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ABSTRACT

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme
in the ensemble Kalman filter. It is shown that the observations must be treated as random variables at the
analysis steps. That is, one should add random perturbations with the correct statistics to the observations and
generate an ensemble of observations that then is used in updating the ensemble of model states. Traditionally,
this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has
resulted in an updated ensemble with a variance that is too low.

This simple modification of the analysis scheme results in a completely consistent approach if the covariance
of the ensemble of model states is interpreted as the prediction error covariance, and there are no further
requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus,
there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard

Kalman filter approach.

1. Introduction

The ensemble Kalman filter (EnNKF) was introduced
by Evensen (1994b) as an alternative to the traditional
extended Kalman filter (EKF), which has been shown
to be based on a statistical linearization or closure ap-
proximation that is too severe to be useful for some
cases with strongly nonlinear dynamics (see Evensen
1992; Miller et al. 1994; Gauthier et al. 1993; Bouttier
1994). If the dynamical model is written as a stochastic
differential eguation, one can derive the Fokker—Planck
or Kolmogorov’s equation for the time evolution of the
probability density function, which contains all the in-
formation about the prediction error statistics. The
EnKF is a sequential data assimilation method, using
Monte Carlo or ensemble integrations. By integrating
an ensemble of model states forward in time, it is pos-
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sible to calculate the mean and error covariances needed
at analysis times.

The analysis scheme that has been proposed in Ev-
ensen (1994b) uses the traditional update equation of
the Kalman filter (KF), except that the gainis calculated
from the error covariances provided by the ensemble of
model states. It was also illustrated that a new ensemble
representing the analyzed state could be generated by
updating each ensemble member individualy using the
same analysis equation.

The EnKF is attractive since it avoids many of the
problems associated with the traditional extended Kal-
man filter; for example, there is no closure problem as
isintroduced in the extended Kaman filter by neglecting
contributions from higher-order statistical moments in
the error covariance evolution equation. It can aso be
computed at a much lower numerical cost, since usually
arather limited number of model states is sufficient for
reasonabl e statistical convergence. For sufficient ensem-
ble sizes, the errors will be dominated by statistical
noise, not by closure problems or unbounded error vari-
ance growth.
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The EnKF has been further discussed and applied
with success in a twin experiment in Evensen (1994a)
and in a realistic application for the Agulhas Current
using Geosat altimeter data in Evensen and van Leeu-
wen (1996).

A serious point that will be discussed here and was
not known during the previous applications of the EnKF
isthat for the analysis scheme to be consistent one must
treat the observations as random variables. This as-
sumption was applied implicitly in the derivation of the
analysis scheme in Evensen (1994b) but has not been
used in the following applications of the EnKFE It will
be shown that unless a new ensemble of observations
is generated at each analysis time, by adding pertur-
bations drawn from a distribution with zero mean and
covariance equal to the measurement error covariance
matrix, the updated ensemble will have a variance that
is too low, although the ensemble mean is not affected.

A similar problem is present in the ensemble smooth-
er proposed by van Leeuwen and Evensen (1996), al-
though there only the posterior error variance estimate
is influenced since the solution is calculated simulta-
neously in space and time.

There was also another issue pointed out in Evensen
(1994b): the error covariance matrices for the fore-
casted and the analyzed estimate, P and P2, are in the
Kaman filter defined in terms of the true state as

Pr= W W Y, ®
Pe = (0 — 9 — 7, @

where the overbar denotes an expectation value, ¥ is
the model state vector at a particular time, and the su-
perscripts f, a, and t represent forecast, analyzed, and
true state, respectively. However, since the true state is
not known, it is more convenient to consider ensemble
covariance matrices around the ensemble mean s,

Pr=Pl=@ -4 -¥), O
Pa= P2 = (o — ¢2)(Pp* — )T, 4

where now the overbar denotes an average over the
ensemble. It will be shown that if the ensemble mean
is used as the best estimate, the ensemble covariance
can consistently be interpreted as the error covariance
of the best estimate.

Thisleadsto an interpretation of the EnKF asapurely
statistical Monte Carlo method where the ensemble of
model states evolves in state space with the mean as
the best estimate and the spreading of the ensemble as
the error variance. At measurement times each obser-
vation is represented by another ensemble, where the
mean is the actual measurement and the variance of the
ensemble represents the measurement errors.

Ensembles of observations were used by Daley and
Mayer (1986) in an observations system simulation ex-
periment, and more recently by Houtekamer and De-
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rome (1995) in an ensemble prediction system, and by
A. F Bennett (1996) as well (personal communication)
as well to derive posterior covariances for the repre-
senter method. Recently, Houtekamer and Mitchell
(1998) have used ensembles of observations in the ap-
plication of an ensemble Kalman filter technique.

In the following sections we will present an analysis
of the consequences of using the ensemble covariance
instead of the error covariance, and then present a mod-
ification of the analysis scheme where the observations
are treated as random variables. Finally, the differences
between the analysis steps of the standard Kalman filter,
the original EnKF, and the improved scheme presented
here will be illustrated by a simple example. An appli-
cation of the improved scheme to a more complex ex-
ample, that of the strongly nonlinear L orenz equations,
is treated in Evensen (1997).

2. The standard Kalman filter

It isinstructive first to review the analysis step in the
standard Kalman filter where the analyzed estimate is
determined by a linear combination of the vector of
measurements d and the forecasted model state vector
¢ *. The linear combination is chosen to minimize the
variance in the analyzed estimate {2, which is then
given by the equation

P =y + Kd - Hy ). ®)
The Kalman gain matrix K is given by
K=PH(HPH + W)L (6)

It isafunction of the model state error covariance matrix
Pf, the data error covariance matrix W, and the mea-
surement matrix H that relates the model state to the
data. In particular, the true model state is related to the
true observations through

dt = Hyt, )

assuming no representation errors in the measurement
operator H, while the actual measurements are defined
by the relation

d = Hyt + € (8)

with e the measurement errors. The measurement error
covariance matrix is defined as

W = ee”
= (d — H¢)(d — Hy)T
= (d — d)(d — doT. (9)

As usual, we assume that (d — d)( — )" = 0.

The error covariance of the analyzed model state vec-
tor is reduced with respect to the error covariance of
the forecasted state as
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= [~ ¥ T K@ — &~ HgT T RN — g T K@~ d R T

= (1 = KW~ )W -
(I — KH)P'(I — H'KT) + KWKT

(I — KH)P*.

Note that after inserting EqQ. (5) in the definition of P2,
Eq. (7) is used by adding Hyst — dt = 0. The further
derivation then clearly states that the observations d
must be treated as random variables to get the mea-
surement error covariance matrix into the expression.

The analyzed model state is the best linear unbiased
estimate. This means that ¢s2 is the linear combina-
tion of 4 " and d that minimizes TrP = (¥ — V) (P
— "), if model errors and observations errors are un-
biased and are not correlated.

3. Ensemble Kalman filter

The analysis scheme in the EnKF was originally
based on Eq. (10). If one takes an ensemble of model
states such that the error covariance of the forecasted
ensemble mean coincides with the ensemble covariance
and one performs an analysis on each of the ensemble
members, then the error covariance of the analyzed
ensemble mean isgiven by Eq. (10) as shownin Evensen
(1994b). However, the ensemble covariance is reduced
too much, unless the measurements are treated as ran-
dom variables. The reason is that in the expression for
the analyzed ensemble covariance there will be no an-
alog to the term K(d — dt)(d — d¥)TKT = KWKT of Eq.
(10), and spurious correlations arise because all ensem-
ble members are updated with the the same measure-
ments. The covariance of the analyzed ensembleisthen

Pa = (I — KH)P'(I — KH)T. (11)

This expression contains one factor, (I — KH), too many.
The effect of this term can be illustrated using asimple
scalar case with Pf = 1 and W = 1. The analysis vari-
ance should then become P2 = 0.5, while Eq. (11) would
give P2 = 0.25.

The original analysis scheme was based on the def-
initions of P and P2 as given by Egs. (1) and (2). We
will now give a new derivation of the analysis scheme
where the ensemble covariance is used as defined by
Egs. (3) and (4). This is convenient since in practical
implementations one is doing exactly this, and it will
also lead to a more consistent formulation of the EnKF

The difference between the original EnKF and the
modified version presented here is that the observations
are now treated as random variables by generating an
ensembl e of observations from a distribution with mean

YT (1 — KH)T + K(d — d)(d — d)TK"

P — KHP' — PHTKT + K(HP'HT + W)KT

(10)

equal to thefirst-guess observation and covariance equal
to W. Thus, we define the new observations

d,=d+ g, (12)

where j counts from 1 to N, the number of model state
ensemble members.

The modified analysis step of the EnKF now consists
of the following updates performed on each of the model
state ensemble members:

gp = l[’jf + Ke(dj - Hl!’jf)' (13)

The gain matrix K is similar to the Kalman gain matrix
used in the standard Kalman filter (6) and is defined as

Ke = PIHT(HPHT + W), (14)
Note that Eq. (13) implies that
P2 = ¢+ K(d — Hg). (15)

Thus, the relation between the analyzed and forecasted
ensemble mean is identical to the relation between the
analyzed and forecasted states in the standard Kalman
filter in Eq. (5), apart from the use of P, instead of P.

Moreover, the covariance of the analyzed ensemble
is reduced in the same way as in the standard Kalman
filter as given by Eq. (10),

Pe = (¥ — U)W — )

= (I — KHPS + o(N-2), (16)
where Egs. (13) and (15) are used to get
o=t = (- KH)@ = g7 + K(d = d), (17)

otherwise the derivation is as for Eq. (10). The finite
ensemble size fluctuations, which have on the average
zero mean and O(N-¥2) rms magnitude, are proportion-
atoW— (d—-d)d—d)"and (¢ — )d — d).

Note that the introduction of an ensemble of obser-
vations does not make any difference for the update of
the ensemble mean since this does not affect Eq. (15).

Also in the forecast step the correspondence between
the standard Kaman filter and the EnKF is maintained.
Each ensemble member evolves in time according to a
model

jk+1 = M(dljk) + dqu(v (18)
where k denotes the time step, 4 is a model operator,
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and dq is the stochastic forcing representing model er-
rors from a distribution with zero mean and covariance
Q. The ensemble covariance matrix of the errorsin the
model equations, given by

Q. = (dg* — dg¥)(dg* — dg")” = dg*dg"’, (19)

converges to Q in the limit of infinite ensemble size.
The ensemble mean then evolves according to the
equation

P = B
= M) + nl., (20)

where n.l. represents the terms that may arise if M is
nonlinear. These terms are not present in the traditional
Kaman filter. Theleading nonlinear termisproportional
to the covariance and to the Hessian of 44, as shown by
Cohn (1993).

The covariance of the ensemble evolves according to

Pkit = MPXM™ + Q, + n.l., (21)

where M is the tangent linear model evaluated at the
current time step. Thisis again an equation of the same
form asis used in the standard Kalman filter, except for
the extra terms n.l. that may appear if 97 is nonlinear.
Implicitly, the EnKF retains these terms also for the
error covariance evolution.

Thus if the ensemble mean is used as the best esti-
mate, with the ensemble covariance P/2 interpreted as
theerror covariance P 2, and by defining the model error
covariance Q, = Q, the EnKF and the standard Kalman
filter become identical. This discussion shows that there
is a unique correspondence between the EnKF and the
standard Kalman filter (for linear dynamics), and that
one can interpret the ensemble covariances as error co-
variances while the ensemble mean is used as the best-
guess trajectory.

For nonlinear dynamics the so-called extended Kal-
man filter may be used and is given by the evolution
Egs. (20) and (21) with the n.l. terms neglected. This
makes the extended Kalman filter unstable is some sit-
uations (Evensen 1992), while the EnKF is stable. In
addition, there is no need in the EnKF for a tangent
linear operator or its adjoint, and this makes the EnKF
very easy to implement for practical applications.

An inherent assumption in al Kalman filters is that
the errors in the analysis step are Gaussian to a good
approximation. After the last data assimilation step, one
may continue the model integrations beyond the time
that this assumption is valid. The ensemble mean is not
the maximum-likelihood estimate, but an estimate of
the state that minimizes the rms forecast error. For ex-
ample, the ensemble mean of a weather forecast will
approach climatology for long lead times, which is the
““best guess” in the rms sense, although the climato-
logical mean state is a highly unlikely one (Epstein
1969; Leith 1974; Cohn 1993).

The ensemble size should be large enough to prop-
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agate the information contained in the observations to
the model variables. Going to smaller ensembles, the
analysis error becomes larger. Too small ensembles can
give very poor approximations to the infinite ensemble
case. In those situations, it can be better to go back to
optimal interpolation. In the formulation of the EnKF
presented here there is a second effect. The finite size
flucuations in Eq. (16) tend to make the covariance of
the ensemble smaller for smaller ensemble sizesinstead
of larger. Thus, for too small ensembles, the ensemble
covariance underestimates the error covariance substan-
tially. This effect can be monitored by comparing the
actual forecasted model data differences to those ex-
pected on the basis of the forecasted ensemble covari-
ance. Of course, also a wrong specification of Q or W
or a systematic error in the model will lead to a differ-
ence between the ensemble covariance and the error
covariance.

4. An example

An exampleis now presented that illustrates the anal -
ysis step in the original and modified schemes. Further,
as a validation of the derivation performed in the pre-
vious section the results are also compared with the
standard Kalman filter analysis.

For the experiment a one-dimensional periodic do-
main in x, with x [0 [0, 50], is used. We assume a char-
acteristic length scale for the function ¥(x) as € = 5.
The interval is discretized into 1008 grid points, which
means there are a total of about 50 grid points for each
characteristic length.

Using the methodology outlined in the appendix of
Evensen (1994b), we can draw smooth pseudorandom
functions from a distribution with zero mean, unit vari-
ance, and a specified covariance given by
_ (Xl — X2)2

€2 '

This distribution will be called ®(is) where the func-
tions ¥s have been discretized on the numerical grid.

A smooth function representing the true state ¢t is
picked from the distribution ®, and this ensures that the
true state has the correct characteristic length scale ¢.
Then a first-guess solution ¢ f is generated by adding
another function drawn from the same distribution to
st that is, we have assumed that the first guess has an
error variance equal to one and covariance functions as
specified by Eq. (22).

An ensemble representing the error variance equal to
one is now generated by adding functions drawn from
® to the first guess. Here 1000 members were used in
the ensemble. Thus we now have a first-guess estimate
of the true state with the error covariance represented
by the ensemble.

Since we will compare the results with the standard
Kaman filter analysis, we also construct the error co-

P(X, = X;) = exp (22)
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Fic. 1. (Top) The true reference state, the first guess, and the estimates calculated from the
different analysis schemes are given. (Bottom) The corresponding error variance estimates.

variance matrix for the first guess by discretizing the
covariance function (22) on the numerical grid to form
Pf.

There are 10 measurements distributed at regular in-
tervals in x. Each measurement is generated by mea-
suring the true state ¢t and then adding Gaussian dis-
tributed noise with mean zero and variance 0.5. This
should give a posterior error variance at measurement
locations of about 1/3 for the standard Ka man filter and
the modified EnKF, while the original version of the
EnKF should give a posterior error variance equal to
about 1/9.

The parameters used have been chosen to give illus-
trative plots. The results from this example are given
in Fig. 1. The upper plot shows the true state ¥, the
first guess ¥ f, and the observations plotted as dia-
monds. The three curves that almost coincide are the

estimates from the original and the new modified EnKF
and the standard Kalman filter analysis. The ensemble
estimates are of course the means of the analyzed en-
sembles. These three curves clearly show that the EnKF
gives a consistent analysis for the estimate s 2.

The lower plot shows the corresponding error vari-
ances from the three cases. The upper lineis the initial
error variance for the first guess equal to one. Then there
are three error variance estimates corresponding to the
original version of the EnKF (lower curve), the new
modified EnKF nonsymmetric middle curve, and the
standard Kaman filter symmetric middle curve. Clearly,
by adding perturbations to the observations, the new
analysis scheme provides an error variance estimate that
is very close to the one that follows from the standard
Kalman filter.

Finally, note also that the posterior variances at the
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measurement locations are consistent with what we
would expect from a scalar case.

5. Discussion and conclusions

The formulation of the ensemble Kalman filter
(EnKF) proposed by Evensen (1994b) has been reex-
amined with the focus on the analysis scheme. It has
been shown that in the original formulation of the EnKF
by Evensen (1994b), the derivation of the method was
correct but it was not realized that one needs to add
random perturbations to the measurements for the as-
sumption of measurements being random variables to
be valid. This is essentia in the calculation of the an-
alyzed ensemble, which will have a too low variance
unless random perturbations are added to the observa-
tions.

The use of an ensemble of observations also allows
for an alternative interpretation of the EnKF where the
ensemble covariance is associated with the error co-
variance of the ensemble mean. The EnKF then gives
the correct evolution of the ensemble mean and the en-
semble covariance, provided the ensemble size is large
enough, as discussed at the end of section 3.

Note that the only modification needed in existing
EnKF applicationsis that random noise with prescribed
statistics must be added to the observations at analysis
steps. This can be done very easily by adding a couple
of linesin the code, that is, one function call to generate
the perturbations with the correct statistics and aline to
add the perturbations to the measurements.

There are a couple of reason why the problem with
the original analysis scheme has not been discovered
earlier. For example, in Evensen (1994b), observations
with rather low variance equal to 0.02 were used in the
verification example. With prior variance equal to 1 at
the measurement locations the theoretical value of the
posterior variance is equal to 0.0196, while the original
analysis scheme in the EnKF should give 0.00038. Thus
therelative difference between themisrather small com-
pared to the prior variance, actually less than 2%, which
can be explained by statistical noise caused by using a
limited ensemble size.

It should be noted that the results presented here apply
equally well to the recently proposed ensemble smooth-
er (van Leeuwen and Evensen 1996). However, for the
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smoother only the posterior error covariance estimates
are affected since a single analysis is calculated only
once and simultaneously in space and time.
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