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The simplest ENSO recharge oscillator

Gerrit Burgers
KNMI, De Bilt, The Netherlands

Fei-Fei Jin
Florida State University, Tallahassee, Florida, USA

Geert Jan van Oldenborgh
KNMI, De Bilt, The Netherlands

Eastern Pacific sea surface temperature (SST) and mean
equatorial Pacific thermocline depth are key variables in El
Niño – Southern Oscillation (ENSO). A linear fit to obser-
vations leads to a remarkably simple picture: ENSO can be
represented by a classical damped oscillator, with SST and
thermocline depth playing the roles of momentum and posi-
tion, respectively. An independent fit of observed relation-
ships between western and eastern thermocline depth, cen-
tral wind stress and eastern Pacific SST yields the same pic-
ture and supports a recharge oscillator interpretation. The
oscillation arises from the interaction between the recharge
time of the Warm Pool and the time delay between east and
west Pacific. Both finite Kelvin wave speed and SST dy-
namics contribute to the time delay. Including seasonality
in the description, we find two periods of relative instability:
boreal spring, with a large phase progression, and autumn,
with nearly stationary phase.

1. Introduction

Our understanding of the mechanism of ENSO has deep-
ened over the years, see e.g. the review of Neelin et al. [1998].
Two well-known pictures for the basic El Niño mechanisms
are the delayed oscillator of Suarez and Schopf [1988] and
Battisti and Hirst [1989] and the recharge oscillator of Jin
[1996, 1997]. In the recharge oscillator, the fast propaga-
tion processes are explicitly filtered to emphasize the col-
lective effect of tropical ocean waves. Natural variables are
Eastern Pacific sea surface temperature TE and the mean
thermocline depth h. Meinen and McPhaden [2000] found
that observations roughly follow circular paths in TE − h
space, confirming the phase relationship of the recharge os-
cillator picture. While Kessler [2002]) questioned whether
it is appropriate to speak of oscillations in the observations,
Philander and Fedorov [2003] and Fedorov et al. [2003] ar-
gue that ENSO corresponds to a stable oscillatory system
excited by noise. The two main variables of the system, the
work done on the ocean by the winds and the perturbation
available potential energy of the ocean, are closely related
to TE and h.

In the original formulation of Jin [1997], the tilt of the
thermocline reacts instantaneously to the wind stress, and
wind stress reacts instanteneously to SST. Mechoso et al.
[2003] propose a version that includes a spin-up time for the
reaction of wind stress to SST. In this paper, we include
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a parameterization of the fast wave process by which the
thermocline tilt adjusts to the wind stress into the recharge
oscillator. We show that the original recharge oscillator is a
special case of an extended recharge oscillator model, which
is formulated in terms of four equations for four basic vari-
ables. The four equations can be reduced to two equations
in terms of eastern Pacific SST and mean equatorial thermo-
cline depth. Next, following an approach that is similar to
Mechoso et al. [2003], we show not only that the parameters
of the four-equation system can be fitted to describe the
observations fairly well, but also that they are consistent
with parameters obtained from a fit to the two-equations
system. Moreover, the recharge oscillator has a particular
simple form when formulated in scaled variables, with clear
Bjerknes and Wyrtki feedbacks setting the decay time scale
and period of ENSO, and a negligible damping on mean
equatorial thermocline anomalies. Finally, we discuss the
considerable seasonal dependence of the parameters of the
two-equation system.

2. Extended recharge oscillator

The recharge oscillator in Jin [1997] is based on four equa-
tions for the west Pacific thermocline depth anomaly hW ,
the east Pacific thermocline depth anomaly hE , the central
Pacific zonal wind stress anomaly τ , and the east Pacific
SST anomaly TE . There are two prognostic equations and
two diagnostic equations:

d

dt
hW = −r(hW + ατ)

d

dt
TE = −ε1(TE − γhhE)

τ = bTE

hE = hW + τ . (1)

Units are chosen such that the coefficient of τ in the last
equation equals one. The first equation gives the collec-
tive response of the western Pacific to wind stress changes
through Kelvin waves, Rossby waves and western boundary
reflection, the last equation states that the tilt of the ther-
mocline reacts quasi-instantaneously to wind stress. In this
version of the recharge oscillator, the first prognostic equa-
tion is that of west Pacific thermocline depth, the second
the equation that describes the reaction of east Pacific SST
to east Pacific thermocline depth.

The mismatch between wind stress and thermocline slope
is an important factor for interannual variability [Neelin
et al., 1998]. In (1), the mismatch is caused by the prog-
nostic TE equation. An altnernative is that the mismatch is
caused by the finite time it takes for a Kelvin wave to prop-
agate a signal from the central Pacific to the east, while TE
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reacts instanteneously to hE . This can be described by:

d

dt
hW = −r(hW + ατ)

TE = γhhE

τ = bTE

d

dt
hE = −ε2(hE − hW − τ)) . (2)

Eliminating τ and hE , both (1) and (2) reduce to the
same mathematical form, although physically the origin of
the second time scale is quite different. In reality, both the
time it takes for a Kelvin wave to cross the Pacific and the
time it takes for SST to react to thermocline depth play a
role [Zelle et al., 2004]. A natural generalisation that covers
both the original recharge oscillator and the version with
the relaxation time for hE is:

d

dt
hW = −r(hW + ατ)

d

dt
TE = −ε1(TE − γhhE)

τ = bTE

d

dt
hE = −ε2(hE − hW − τ) . (3)

This generalisation is similar to that proposed by Mechoso
et al. [2003], who added an adjustment timescale to the at-
mosphere rather than to the hE equation.

The set of equations (3) has for a wide range of param-
eters one pair of slowly decaying eigenmodes, and one fast
mode with a decay rate that is always larger than about 1
month−1. In Figure 1 the dependence of the eigenvalues on
ε1[ε1 + ε2]

−1 is shown for fixed ε−1 = ε−1

1 + ε−1

2 and for val-
ues of the other parameters as in section 3. The fast decay
rate is much larger than the slow one. To a good approxi-
mation, the slow eigenvalues depend only on ε, that is “the
relaxation times add up”. On the slow manifold, that is the
2-dimensional subspace to which the system trajectories are
attracted, hE is a linear combination of hW and TE . The
combination depends on the ratio ε1/ε2, in the limit that ε1
is infinite, hE is proportional to TE .

TE and h are natural variables for the slow manifold since
the difference hE − hW is highly correlated with TE . Mak-
ing the approximation h ≈ 0.5(hW +hE), the slow manifold
equations can be written in terms of the natural variables:

d

dt
TE = a11TE + a12h

d

dt
h = a21TE + a22h , (4)

where the coefficients aij can be obtained from the coeffi-
cients in (3) by straightforward algebra.

3. Parameter fit to observations

In this section, we estimate the coefficients in (4) with two
methods from observations of monthly mean quantities over
the period 1980–2002. For TE we use the observed NCEP
Niño3 index [Reynolds et al., 2002], that is the SST anomaly
averaged over 5◦S – 5◦N, 150◦W – 90◦W. As a measure for
the wind stress τ we use an average of the FSU objective
pseudo wind stress [Smith et al., 2004] over 6◦S – 6◦N, 160◦E
– 140◦W. For thermocline depth, we use the BMRC dataset
of the 20◦ isotherm depth of Smith [1995] averaged over 5◦S
– 5◦N, hW the average over 130◦E – 170◦E, hE the average
over 150◦W – 90◦W, and h the average over 130◦E – 80◦W.

In the first method, the equations in (3) are treated sep-
arately. The evolution of each variable is estimated by inte-
grating the corresponding equation forward in time from the

observed starting value of January 1980, using on the r.h.s.
the estimate for the variable and the observed values for the
other variables. The parameters are determined from the re-
quirement that they minimize the rms difference between the
estimated and observed variables. For the optimal parame-
ters, the correlation between the simulated and the observed
variables is around 0.85, except for τ , where it is 0.73. We
find r−1 = 6.25 month, ε−1

1 = 2.75 month, ε−1

2 = 2month
γh = 0.077 Km−1, α = 0.67, b = 14mK−1 (bγh = 1.1).
The short timescales ε−1

1 and ε−1

2 are of similar magnitude.
So neither wave dynamics nor SST dynamics dominates the
time delay between west and east Pacific. Note that for re-
laxation equations as in (3), the ε−1 are about twice as large
as the lag for which the maximal covariance occurs between
the dependent variable and the forcing variable, and also
that the values found above depend somewhat on the areas
that enter the definitions of the four basic variables. For
the slow manifold, hE = 0.67hW + 1.05τ . This gives for the
parameters in (4):

(

a11 a12

a21 a22

)

=

(

−0.12 0.022
−0.94 0.004

)

(5)

with TE in K, h in m, and time in months.
In the second method, the parameters in (4) are obtained

from a standard fit that minimizes the rms error of 1-month
forecasts of monthly mean values. We used a statistical
bootstrap procedure with a 9-month moving block length to
estimate 95% CL limits. This method gives:

(

a11 a12

a21 a22

)

=

(

−0.076 ± 0.023 0.0236 ± 0.0033
−1.25 ± 0.13 −0.008 ± 0.016

)

. (6)

The agreement between the results obtained by the two
methods is reasonable. The consistency between the two
methods is evidence for the recharge oscillator model, be-
cause in the first method sets of parameters have been fitted
with independent criteria instead of assuming the existence
of an interannual oscillation. For the original recharge oscil-
lator model the first method gives a11 = −0.17, a12 = 0.028,
a21 = −1.55, a22 = 0.038, which agrees not that well.

We have also tested whether (6) can be used for making
ENSO predictions. It was found that the system has consid-
erable skill over persistence, and that using h observations or
estimates from wind-driven ocean models increases the fore-
cast skill compared to when only TE timeseries information
is used (using the method of Burgers [1999]), in line with
the results obtained by Xue et al. [2000] for linear Markov
models that include sea-level information.

4. The simplest recharge oscillator

The above result clearly shows that the damping on east-
ern Pacific temperature TE is much stronger than the damp-
ing on the mean equatorial thermocline depth h. In retro-
spect, this is not surprising. The damping on TE is the net
result of a number of positive and negative feedbacks, in-
cluding the Bjerknes feedback. So only by coincidence, this
would result in a very small damping or growth rate. A
sudden positive perturbation of τ will give rise to Ekman
transport that initially deepens the mean equatorial ther-
mocline depth h. On longer timescales, the change in h is
mainly governed by the geostrophic response to the wind
stress that causes Sverdrup transport to off-equatorial re-
gions, and hardly by the thermocline depth itself. This re-
sults in a damping rate that is very close to zero and in a
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negative a21. For the western equatorial thermocline depth
hW , the damping rate is higher because here also east-west
exchanges through wave dynamics play a role.

We scale TE and h by appropriate factors such that for
the scaled variables a21 = −a12 in (6). This gives

(

a11 a12

a21 a22

)

=

(

−0.08 ± 0.02 0.17 ± 0.02
−0.17 ± 0.02 0.01 ± 0.02

)

. (7)

Solutions of the weakly damped system (7) follow almost
circular trajectories, so we expect that the variances of the
scaled TE and h are of similar magnitude after scaling. In
fact, the scaling makes the variances of TE and h equal
within the error estimates. So within the error estimates
we can make the approximations a22 = 0 and a21 = −a12

when TE and h are normalized by their variances, and we
obtain:

d

dt

(

TE

h

)

=

(

−2γ ω0

−ω0 0

)(

TE

h

)

(8)

with a period 2πω−1 = 37+8

−4 months and a decay time
γ−1 = 24+22

−11 months (we have indicated 95% CL limits;
note that ω2 = ω2

0 − γ2).
By fitting the linear system (4) to observations, we auto-

matically obtain a weakly damped harmonic oscillator form.
However, it should be noted that this result does not neces-
sarily mean that in reality ENSO is a linear damped oscilla-
tor excited by stochastic forcing. Weakly damped systems
and slightly supercritical systems show very similar behav-
ior in the presence of noise and are hard to distinguish, as
e.g. discussed in Jin [1997]. We found above that scaling
makes the variances of TE and h almost equal rather than
of similar magnitude as one would expect for a linear sys-
tem with a damping that is as large we found. Perhaps this
is an indication that the linear fit overestimates the ampli-
tude of the stochastic forcing and in reality non-linearities
play a role. Then the near-neutral oscillator could be the
result of non-linear equilibration through both deterministic
nonlinear dynamics and stochastic fluctuations.

The equations for (TE , h) of the recharge oscillator (8) are
identical to the equations for (p, q) of a classical damped os-
cillator, with TE having the role of momentum p and h that
of position q. We propose that (8) is the simplest system
that contains the essence of ENSO.

5. Seasonal cycle effects

Obviously, the system (8) is far from a complete of ENSO.
Only two variables were retained, and even the dynamics of
the two variables has been simplified enormously. In partic-
ular, in the present analysis non-linear effects are neglected
completely, although ENSO fluctuations can be large with
respect to the variations in the background state and nonlin-
earities cause the asymmetry between El Niño and La Niña
events [An and Jin, 2004]. Also, zonal advection effects on
SST are all lumped into the constant ε1 [Jin and An, 1999],
mirroring the extremely crudely fashion the atmosphere is
represented. Finally, our analysis is limited to extracting
one oscillating mode.

Perhaps the most important omission is that we have not
considered seasonality so far. Xue et al. [2000] and Clarke
and van Gorder [2003] present evidence that including sea-
sonality improves the forecast skill of simple models that use
upper ocean heat content. McPhaden [2003] discusses the
strong seasonality of the autocorrelations and crosscorrela-
tion of TE and h. The importance of seasonality is obvious
when we make a fit of (4) with parameters that depend

on the month of the year. Figure 2 shows the real and
imaginary parts γ and ω of the seasonal-dependent eigen-
values. The fluctuations are significant and so large that
during some months there are two real roots instead of a
pair of complex roots. Boreal spring and fall are relatively
unstable. In spring the phase progression ω is larger than
the annual average, in fall it comes almost to a halt. Inter-
preting the residues of the fit as noise, the signal-to-noise
ratio is largest in fall and smallest in spring because of fluc-
tuations in amplitude (not shown). Both the behaviour of
the eigenvalues and of the signal-to-noise ratio make El Niño
easier to predict through boreal fall than through spring.

6. Conclusion

Observations support that the minimal description of
ENSO is a recharge oscillator of equatorial eastern Pacific
temperature anomalies TE and mean equatorial Pacific ther-
mocline depth anomalies h. The ENSO oscillator equation
has the very same form as the equation of a classical damped
oscillator, with TE playing the role of momentum and h that
of position, and is characterized by two time scales. The
first time scale is a characteristic period of 3–4 years, the
second time scale an effective decay time of the order of 2
years. In this approximation, basic geostrophy makes that
the damping on h is almost zero and its evolution governed
by Sverdrup transport due to wind stress anomalies which
in turn are directly proportional to TE . For TE direct feed-
backs such as the Bjerknes feedback of TE and wind stress
anomalies play a role. Both wave dynamics and SST dy-
namics contribute to the phase difference between TE and
the western equatorial thermocline depth hW that makes
an oscillation possible. During boreal spring, with a large
phase progression, and boreal autumn, with nearly station-
ary phase, the system is more unstable stable than in the
remainder of the year.

Acknowledgments. Discussions with Henk Dijkstra, Michael
Ghil, Michael McPhaden, Huug van den Dool and Yan Xue are
gratefully acknowledged.

References

An, S.-I., and F.-F. Jin (2004), Nonlinearity and asymmetry of
ENSO, J. Climate, 17, 2399–2412.

Battisti, D., and A. C. Hirst (1989), Interannual variability in a
tropical atmosphere-ocean model: Influence of the basic state,
ocean geometry and nonlinearity., J. Atmos. Sci., 46, 1687–
1712.

Burgers, G. (1999), The El Niño Stochastic Oscillator, Climate
Dynamics, 15, 521–531.

Clarke, A., and S. van Gorder (2003), Improving El Niño winds
and equatorial Pacific upper ocean heat content, Geophys. Res.
Lett., 30 (7), 1399, doi:10.029/2002GL016673.

Fedorov, A., S. Harper, S. Philander, B. Winter, and A. Wit-
tenberg (2003), How predictable is El Niño?, Bull. American
Meterol. Soc., 84, 911–919, doi:10.1175/BAMS-84-7-911.

Jin, F.-F. (1996), Tropical ocean-atmosphere interaction, the Pa-
cific Cold Tongue, and the El Niño/Southern Oscillation, Sci-
ence, 274, 76–78.

Jin, F.-F. (1997), An equatorial recharge paradigm for ENSO. I:
Conceptual Model, J. Atmos. Sci., 54, 811–829.

Jin, F.-F., and S.-I. An (1999), Thermocline and zonal advec-
tive feedbacks within the equatorial ocean recharge oscillator
model for ENSO, Geophys. Res. Lett., 26, 2989–2992.

Kessler, W. (2002), Is ENSO a cycle or a series of events?, Geo-
phys. Res. Lett., 29 (23), 2125, doi:10.1029/2002GL015924.

McPhaden, M. (2003), Tropical Pacific Ocean heat content vari-
ations and ENSO persistence barriers, Geophys. Res. Lett.,
30 (9), 1480, doi:10.029/2003GL016872.



X - 4 BURGERS ET AL.: THE SIMPLEST ENSO RECHARGE OSCILLATOR

Mechoso, C., J. Neelin, and J.-Y. Yu (2003), Testing simple mod-
els of ENSO, J. Atmos. Sci., 60, 305–318.

Meinen, C., and M. J. McPhaden (2000), Observations of Warm
Water Volume Changes in the Equatorial Pacific and Their
Relationship to El Niño and La Niña, J. Climate, 13, 3551–
3559.

Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata,
T. Yamagata, and S. E. Zebiak (1998), ENSO Theory, J. Geo-
phys. Res., 103, 14,261–14,290.

Philander, S., and A. Fedorov (2003), Is El Niño spo-
radic of cyclic?, Ann. Rev. Fluid Mech., 31, 579–594, doi:
10.1146/annurev.earth.31.100901.141255.

Reynolds, R. W., N. Rayner, T. M. Smith, D. Stokes, and
W. Wang (2002), An improved in situ and satellite SST anal-
ysis for climate, J. Climate, 15, 1609–1625.

Smith, N. (1995), An improved system for tropical ocean sub-
surface temperature analyses, J. Atmos. Oceanic Technol., 12,
850–870.

Smith, S., J. Servain, D. Legler, J. Stricherz, M. Bourassa, and
J. O’Brien (2004), In situ based pseudo-wind stress products

for the tropical oceans, Bull. American Meterol. Soc., 85, 979–
994.

Suarez, M., and P. S. Schopf (1988), A delayed action oscillator
for ENSO, J. Atmos. Sci., 45, 3283–3287.

Xue, Y., A. Leetmaa, and M. Ji (2000), ENSO prediction with
Markov models: the impact of sea level, J. Climate, 13, 849–
871.

Zelle, H., G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh
(2004), The relationship between sea surface temperature and
thermocline depth in the eastern equatorial Pacific, J. Phys.
Oceanogr., 34, 643–655.

Gerrit Burgers and Geert Jan van Oldenborgh, Royal Nether-
lands Institute of Meteorology (KNMI), P.O. Box 201, NL-
3730 AE De Bilt, The Netherlands. (burgers@knmi.nl, olden-
borgh@knmi.nl)

Fei-Fei Jin, Department of Meteorology, Florida State Uni-
versity, P.O. Box 4520, Tallahassse, FL 32306-4520, USA.
(jff@met.fsu.edu)



BURGERS ET AL.: THE SIMPLEST ENSO RECHARGE OSCILLATOR X - 5

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.10

1.00

10.00

   
   

   
   

  (
m

on
th

−
1 )

ε1 /(ε1+ε2)

Figure 1. Eigenvalues of the system of equations (3)
as a function of ε1[ε1 + ε2]

−1, for fixed ε−1
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2 . The
solid and dashed lines denote the imaginary part and the
decay rate of the pair of complex eigenvalues, the dotted
line the fast decay rate.
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Figure 2. Seasonal cycle in decay constants (solid; neg-
ative for damping, positive for growth) and frequency
(dashed) for the period 1980-2002. Bars denote 95%CL
limits determined by a statistical bootstrap procedure.


