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ABSTRACT

A new nonparametric method to correct model data is proposed. At any given point in space and time
the correction is determined from “analogs” in a learning dataset. The learning dataset contains model data
and simultaneous observations. The method is applied to the significant wave height dataset of the 45-yr
European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). Comparison of the cor-
rected data with significant wave height measurements from in situ buoy and global altimeter data shows
clear improvements in bias, scatter, and quantiles in the whole range of values. Temporal inhomogeneities
are also removed.

1. Introduction

The European Centre for Medium-Range Weather
Forecasts (ECMWF) has recently completed the com-
putations of the 40-yr ECMWF Re-Analysis (ERA-40)
dataset, a reanalysis of global variables, among which
ocean surface wind waves from September 1957 to Au-
gust 2002 (45 yr) are included. The reanalysis was pro-
duced by ECMWF’s Integrated Forecasting System,
which uses variational data assimilation. In terms of sea
state data, this reanalysis was the first in which an ocean
wind–wave model was coupled to the atmosphere.
Moreover, its final product consists of the longest and
most complete wave dataset on a 1.5° by 1.5° latitude–
longitude grid covering the whole globe. The ERA-40
wave dataset is intended for studies of the climatology
and variability of ocean waves and to predict extreme
values of wave parameters over the whole globe.

The validation of ERA-40 significant wave height
(Hs) data against other reanalysis datasets (Caires et al.
2004) shows that they are of comparable quality in re-
gard to their errors relative to wave observations. The
assessment of the ERA-40 Hs data against observations
reveals some underestimation of high Hs values (Caires
and Sterl 2003b), which results in low estimates of re-
turn values (Caires and Sterl 2003a). Besides the un-
derestimation of high peaks, another shortcoming of
ERA-40 Hs data is the existence of inhomogeneities in
the monthly mean time series due to assimilation of
different altimeter Hs datasets; these induce clear

jumps and trends in the monthly mean time series,
which discourage basing trend and climate variability
studies on the dataset. The objective of this paper is to
present a complete evaluation of the ERA-40 Hs field
and to provide an alternative—corrected—field that is
free of apparent inhomogeneities and provides a better
description of high wave heights.

There has been already some work on the correction
of reanalysis datasets. Limitations in the wave data pro-
duced by the National Centers for Environmental Pre-
diction (NCEP)–National Center for Atmospheric Re-
search (NCAR) reanalysis winds led Swail and Cox
(2000) to kinematically improve the wind fields for the
North Atlantic. This involved a reported 10 000 meteo-
rologist hours of effort (Wang and Swail 2002). The
corrected wind field was then used to force a third-
generation wave model. Validation of the Swail and
Cox (2000) wave dataset, the ERA-40 data, and a
dataset created by forcing a second-generation wave
model using the original NCEP–NCAR reanalysis
winds Cox and Swail (2001) show that the Swail and
Cox (2000) dataset compares better with observations
(Caires et al. 2004). Although kinematically improving
the wind fields seems to be quite effective in produc-
ing better Hs fields, the high cost involved restricted the
study of Swail and Cox (2000) to the North Atlantic. Also,
errors in the forcing wind fields explain only some of the
deficiencies in the predicted Hs fields; other origins of
deficiencies are wave model inadequacies and resolution
(see, e.g., Janssen et al. 1997; Sterl et al. 1998; Rogers and
Wittman 2002; Cavaleri and Bertotti 2003).

To overcome these problems we propose here a new
nonparametric method that corrects the ERA-40 Hs
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fields directly. Roughly speaking, the method predicts
the error made by ERA-40 under a particular “sce-
nario” (a particular combination of events pertaining to
wave-related variables) by “learning” from what the
ERA-40 errors were in datasets containing similar sce-
narios or “analogs.” Evidently, this requires the avail-
ability of “learning datasets”—that is, datasets for
which measurements (and hence errors) are known.
Moreover, it requires representative learning datasets
and, therefore, due to the inhomogeneities present in
ERA-40 (hence in its error characteristics), also a judi-
cious choice of which dataset is appropriate to correct
which period of ERA-40 Hs data. Accordingly, al-
though the correction method is the same throughout,
the learning datasets used will differ.

The method has a great flexibility in defining the
analog on which to build the correction. Applications to
data with error characteristics other than the data con-
sidered here will naturally require other choices than
those made in this paper. Besides data correction, the
method can also be used for other purposes, such as
prediction and gap filling.

Our results show that our correction method of the
ERA-40 Hs data is capable of dealing with both the un-
derestimation of high Hs values and the inhomogeneities.

2. Validation of the ERA-40 data

a. Data description and preparation

Most of the existing reliable sets of climate observa-
tions have been used in the assimilation procedure of
ERA-40. Since validation is possible only if good, in-
dependent measurements (i.e., not used in the assimi-
lation) are available, the datasets used in the assimila-
tion must be borne in mind. With respect to the re-
analysis of wave data, the measurements assimilated
were the altimeter Hs fast-delivery product (FDP) data
from the ERS-1/2 satellites.

• FDP ERS-1 Hs measurements were assimilated from
December 1991 onward. The data are, however, of
poor quality during the first 2 yr due to an external
processing error. Assimilation of the FDP data was
halted as soon as this problem was realized, with pro-
duction to May 1993. Assimilation was resumed in
January 1994 using good but uncalibrated ERS-1
FDP data up to May 1996.

• FDP ERS-2 Hs measurements were assimilated from
June 1996 onward.

This makes all the other available wave measure-
ments suitable for independent validation. For the pur-
poses of validation, we have not only looked for inde-
pendent but also reliable and established deep-water Hs

observations. Only deep-water locations can be taken
into account since no shallow-water effects are ac-
counted for in the wave model, and they should not be
too close to the coast in order for the corresponding
model grid point to be located at sea.

So far, buoy observations are considered the most
reliable wave observations, but they are limited to some
locations along the coast, mainly in the Northern Hemi-
sphere, and are available only at a small number of
locations before 1978. From 1978 onward buoy obser-
vations from the United States National Data Buoy
Center (NDBC)–National Oceanic and Atmospheric
Administration (NOAA) off the coast of North
America are available; due to their high quality they
will be used here as the “true” sea state. Comparisons
for the period before 1978 were made just at one loca-
tion (the Seven Stones Light Vessel, hereafter SSLV) in
the Northern Atlantic. Global validations are made
only for periods when reliable satellite wave observa-
tions are available, and therefore are restricted mainly
to the last decade of ERA-40 data. We have assessed
the ERA-40 Hs data against Geosat altimeter measure-
ments of 1988, against TOPEX altimeter measurements
from 1993 onward, against ERS-1 offline (OPR) altim-
eter observations for June to December 1993, and
against ERS-2 OPR for June 1995–May 1996. In these
two periods the respective ERS-1/2 measurements have
not been used in the ERA-40 data assimilation.

The buoy, altimeter, and ERA-40 data represent dif-
ferent time and space scales. The ERA-40 data comes
on a 1.5° by 1.5° grid at synoptic times. The data are
representative of the average condition in the area oc-
cupied by a grid box. Buoy measurements are available
hourly and come from the processing of 20-min records
at a single location. Altimeter measurements are avail-
able every second and at distances of about 10 km
apart. In the following we will briefly describe how the
observations were processed in order to make the time
and space scales of the different systems compatible.
More details, including the quality controls applied and
collocation procedure, can be found in Caires and Sterl
(2003b) and Bidlot et al. (2002).

From all the NDBC–NOAA data buoy locations
available during this period, we have selected a total of
18 locations for these comparisons (see Fig. 1). Quality-
checked buoy Hs hourly time series are used to produce
a new time series at synoptic times by averaging the
data over 3 h around synoptic times. This averaging
over time is expected to bring the temporal and spatial
scales closer to each other: the model output at a given
synoptic time is an estimate of the average condition in
a grid cell of 1.5° by 1.5° (the wave model resolution),
which long waves take on average 3 h to cross.

The Geosat, TOPEX, and ERS-1/2 along-track al-
timeter measurements of Hs were obtained from
Southampton Oceanography Center (SOC; GAPS in-
terface, available online at http://www.soc.soton.ac.uk/
ALTIMETER/; Snaith 2000). From these we form sat-
ellite “superobservations” by grouping together the
consecutive quality checked deep-water observations
crossing a 1.5° by 1.5° latitude–longitude region (obser-
vations at most 30 s or 1.5 �2° apart).
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There are several corrections available to bring the
altimeter Hs measurements closer to the buoys. We
have applied no correction to the ERS-2 data. The
TOPEX wave height observations for 1997–99 (cycles
170–235) have drifted; the drift is corrected according
to Challenor and Cotton (1999). Once the drift is cor-
rected, we assume the TOPEX Hs measurements to be
consistent from January 1993 to December 2001. Caires
and Sterl (2003b), using a functional relationship
model, found that TOPEX data relate to the buoy data
according to Hbuoy

s � 1.05HTOPEX
s � 0.07; we have

made the TOPEX observations used here compatible
with the buoy observations by applying the previous
linear relationship. The Geosat altimeter data used are
increased by a factor of 1.065 according to Cotton and
Carter (1996).

The differences between the reanalysis data and the
observations will be quantified in terms of the bias, y �
x, the root-mean-square error rmse � �1/n�(yi � xi)

2,
and the scatter index, SI � 1/x�1/n�[(yi � y) �(xi � x)]2.
In all these formulas the xi’s represent the observations,
the yi’s represent the reanalysis products, and n is the
number of observations.

We have validated the ERA-40 dataset against ob-
servations using these statistics, as well as others not
mentioned here. (Detailed comparisons can be con-
sulted in the ERA-40 ocean wave product validation
and analysis Web site online at http://www.knmi.nl/
onderzk/oceano/waves/era40/index.html.). These vali-
dations led to the conclusions given in the following
section. Due to space limitations, and also to ease the
flow of the presentation, only some illustrating and

summarizing plots and statistics will be shown. For
practical reasons—specifically to avoid duplication—
these are presented later in the article when the cor-
rected ERA-40 dataset is also validated.

b. Validation

Due to changes in the HS datasets assimilated into
the ERA-40 system, the ERA-40 wave data needs to be
divided into four sets according to their error charac-
teristics:

P1: Data for the periods from September 1957 to
November 1991 (P1a) and from June 1993 to De-
cember 1993 (P1b), which had no altimeter wave-
height data assimilation.

P2: Data from December 1991 to May 1993, which
had faulty ERS-1 FDP wave-height data assimi-
lated.

P3: Data from 1–1994 up to 5–1996, which had good
but uncalibrated ERS-1 FDP wave-height data as-
similated.

P4: Data from June 1996 onward, which had ERS-2
FDP wave-height data assimilated.

Figure 2 shows the time series of the global average
of ERA-40 Hs monthly means. The data are averaged
using latitude corrections; there is no physical interpre-
tation of this global average, nor are there climatologi-
cal values indicating the range of values such an aver-
age should take. The global average is presented here
to give a synthesized picture of the data. The periods

FIG. 1. Locations of the NDBC–NOAA buoys used in the validation studies.
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associated with the four sets identified above can
clearly be pointed out in the figure. The jump in period
P2 is especially visible; this increase in the monthly
means occurs because the faulty data that was assimi-
lated had a density function with two peaks, one of the
peaks being sharp and located around 2 m (see Bauer
and Staabs 1998, their Fig. 11c). Period P4 can also be
easily identified: it starts with a positive trend and then
levels off.

Validation of the data against the observations re-
ferred to above leads to the following conclusions for
the different periods.

P1: In this period the monthly mean wave fields com-
pare well with observations, but the analysis exhib-
its peaks in synoptic Hs time series that are lower
than those observed, and there tends to be also
some overestimation of the low troughs (valida-
tions for the period prior to 1978 were only done at
the SSLV location, and the only thing that can be
said about it is that the errors between the ERA-40
data and SSLV observation prior to 1978 are simi-
lar to the ones from 1978 to November 1991). The
upper half of Table 2 presents statistics comparing
the ERA-40 data and the buoy observations. The
statistics are given for the different periods accord-
ing to the changes in the error characteristics of the
ERA-40 data described above. Obviously, the
comparisons for period P1a start only from Janu-
ary 1978, the date when the buoy observations
start being available. The main feature revealed by
the statistics for this period is the high values of SI
as compared with the other periods. The corre-
sponding 1%–99% quantile–quantile (Q–Q) plots
of the ERA-40 data versus the buoy observations
are presented in Fig. 7. The two top panels refer to
data from the P1 period. The underestimation of
the quantiles is clearly seen in the plots. This is
also visible in the left panels of Figs. 9 and 13,
which show Q–Q plots of the ERA-40 versus the
TOPEX collocated data for a chosen month of P1,
June 1993, and Geosat data for 1988, respectively.
Table 3 presents the error statistics of the ERA-40
data versus the Geosat data for 1988. From the

table we can see that the characteristics of the er-
rors change with latitude with underestimation be-
ing lower in the Tropics where the mean value of
Hs is lower.

P2: In this period the Hs values below 3 m are over-
estimated and those above are underestimated.
The quality of the waves with heights above 3 m is
similar to that in the period with no wave data
assimilation. The Q–Q plot of ERA-40 data versus
the TOPEX data in the left panel of Fig. 8 clearly
exemplifies this behavior with data from May 1993.
This is also clearly seen in the middle left panel of
Fig. 7; the comparisons between the buoy and the
ERA-40 quantiles present an overestimation bump
for values between 1 and 3 m. In Table 2 we can
see that this is the only period for which the bias in
the monthly means and synoptic values is positive.

P3: In this period the known calibration correction to
the ERS-1 FDP data was not applied because, al-
though it would have improved the analyzed Hs

data, it would have given poorer, too high mean
wave periods. The quality of the wave height data
is therefore similar to that of the data in period P1,
though it has a lower SI; this will be further shown
in section 2c. Compare the left panels of Figs. 9 and
10 where Q–Q plots of the ERA-40 versus the
TOPEX collocated data for a chosen month of
each of the P1b and P3 periods exemplifies this.

P4: The assimilation of the ERS-2 FDP measure-
ments of wave height during P4 has improved the
analyzed Hs, especially in the Tropics. The under-
estimation of high wave heights and the slight
overestimation of low wave heights by the ERA-40
dataset, however, continues in this period, as is
clearly seen in the two examples presented in the
right panels of Fig. 6 and also in the Q–Q plots of
Figs. 7 (bottom left) and 11.

c. Study of the impact of the assimilations of ERS-1
altimeter Hs observations

For a period of 6 months, January–June 1994, we
have performed an ERA-40 parallel experiment. The
experiment ran from KNMI using ECMWF’s PrepIFS

FIG. 2. Time series of the ERA-40 monthly means as computed from 6-hourly fields between 81°S and 81°N.

446 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 22



application (available online at http://www.ecmwf.int/
services/prepifs/learn/help/prepIFSUserGuide/
prepIFSUserGuide.html). The run was a copy of the
ECMWF’s ERA-40 run for that period, but without the
assimilation of the ERS-1 FDP altimeter Hs data.
Note that during this period correct ERS-1 altimeter
observations were assimilated (period P3). The objec-
tive was to have an overlapping ERA-40 period with
and without altimeter assimilation in order to be able to
quantify and maybe mimic the effect of the assimila-
tion.

Figure 3 shows the Q–Q plots of the original ERA-40
data and the results from our ERA-40 experiment ver-
sus collocated TOPEX altimeter measurements. Apart
from what happens with the data for January, the dif-
ferences between using and not using data assimilation
are small. The dataset produced with no data assimila-
tion shows slightly less underestimation but, on the
other hand, it has an SI about 0.02 larger than that of
the dataset with data assimilation.

The failure of the ERS-1 altimeter data assimilation
to improve the error between the ERA-40 dataset and
observations is due to the fact that the ERS-1 altimeter
measurements for the period considered are underesti-
mated. This can clearly be seen in Caires and Sterl
(2003b) where the ERS-1 Hs observations from June to
December 1994 are compared with collocated buoy and
TOPEX observations. The decision of the ERA-40 pro-
duction team not to linearly increase the assimilated
ERS-1 measurements was due to the fact that the increase

in the significant wave heights also produced an unwanted
increase in the respective mean wave periods.

Another thing to note in the comparisons between
the original ERA-40 data and that from our experiment
with no data assimilation is that the reported problem
in the ERS-1 FDP data from December 1991 to De-
cember 1993 also seems to be present in the January
1994 data, though to a lesser extent. Compare the top
left panel of Fig. 3 with the left panel of Fig. 8 shown
later. Both plots show a bump at low wave heights that
is absent in the other periods. The bump in Fig. 8 is,
however, larger than that in Fig. 3, indicating that the
assimilated ERS-1 FDP data are probably less cor-
rupted in January 1994. Indeed, at ECMWF it was es-
tablished that the problem with the Hs of ERS-1 FDP
was present in the data until 25 January 1994, and not
until the end of December 1993 as initially thought,
although it is not known whether the magnitude of the
errors was smaller in January 1994 (J.-R. Bidlot 2003,
personal communication).

3. Nonparametric correction

a. The problem

As shown in section 2b, the main problem with the
ERA-40 Hs data is the underestimation of high peaks,
which has not been overcome by the assimilation of the
ERS altimeter data. Because the occurrence of under-
estimation is, to a certain extent, random, this problem
cannot be solved by simply applying a parametric cor-

FIG. 3. Q–Q plots of TOPEX altimeter observations vs original ERA-40 data (asterisks) and the results of our experiment (circles)
for Jan–Jun 1994.
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rection to the data. For example, linearly correcting the
data will not be effective because not all the peaks need
to be corrected, and not all peaks require the same
amount of correction (see Fig. 6).

A solution to the problem would be to somehow
learn or understand how the underestimation process
works in a range of situations, and then use this knowl-
edge to predict the underestimation that would result in
new situations, which consequently would enable an
appropriate correction. A natural way to learn how un-
derestimation takes place is to gather a large amount of
observed and predicted data and quantify the statistical
behavior of the corresponding underestimates accord-
ing to the particular context in which they occurred.

In statistical terms, our problem can thus be trans-
lated into that of predicting the value of one variable
(an appropriate correction) conditionally on the infor-
mation provided by other variables (the values of cer-
tain wind- and wave-related variables conditionally
upon which the need for the correction arose), and
hence to the problem of regression. The apparently dif-
ficult aspect of the proposed solution lies in two facts:
first, the data we are interested in are dependent and
nonstationary; second, it seems difficult to come up
with a parametric function that would fit and explain
the data in all situations (linear regression, for instance,
would appear as unrealistic at the outset). Fortunately,
there exist already very natural statistical tools tailored
to deal precisely with our problems: nonparametric re-
gression estimators.

Nonparametric regression methods have been
around for some time in the statistical literature, but
they are not yet very well known in applied areas, in
particular in oceanography. The books by Györfi et al.
(1989) and Bosq (1998) provide many references and
overviews of the main methods, which include estima-
tion of conditional means as a special case and apply not
only to random samples but also to general classes of
time series. More recently, Caires and Ferreira (2005)
have proved the consistency of estimators of the con-
ditional distribution function, of estimators of condi-
tional quantiles, and estimators of conditional means,
for sequences of certain conditionally stationary ran-
dom variables, a class of processes that includes station-
ary as well as Markov processes.

Roughly speaking, a conditionally stationary process
is a process that behaves at all times in the same way
conditionally on the same information. As illustrated by
the application of Caires and Ferreira (2005) to Hs time
series, wave data seems to conform approximately to
the hypotheses of a conditional stationary process.

b. Heuristic explanation of the method

Applied to our problem, the natural prediction
method suggested by nonparametric regression estima-
tors (and advocated in particular by Caires and Ferreira
2005) consists of predicting the required correction of
an Hs value of ERA-40, HE

s , at a certain time given m

consecutive HE
s values, in terms of the conditional dis-

tribution and conditional mean of the correction as es-
timated from a learning dataset—that is, a dataset con-
taining both ERA-40 and measurements, and hence
also corrections.

To predict the correction that should be applied
given the knowledge of a vector of m consecutive HE

s

values, which we may refer to as the conditioning vec-
tor, the method consists in the first place of looking in
the learning dataset for other vectors of m consecutive
HE

s values that are close, componentwise, to the condi-
tioning vector. Figure 4 exemplifies how this is done for
a fictitious ERA-40 Hs time series: The two enveloped
sequences of three observations correspond to events
that are in some sense close to each other; specifically,
the distance between each of the three components in
the first enveloped sequence and the analogous com-
ponent in the second enveloped sequence is less than a
certain h � 0. Accordingly, if the process is condition-
ally stationary, the error between the last value of the
first enveloped sequence and the corresponding mea-
surement (the distance marked by the black arrow) can
be used to predict the error between the last values of
the second enveloped sequence and the corresponding
measurement. Of course, this prediction would be
based on a single analog (the first enveloped sequence)
and therefore might be quite inaccurate. However, if
more analogs can be found, then a more accurate fore-
cast can be obtained by averaging the errors associated
with each analog. The corresponding formulas are
given in the next section.

In our applications we are using the above estimators
with one variable (Hs) to obtain corrections of ERA-40
values. The method is, however, general, and can be
used with several variables simultaneously, as for in-
stance with Hs and U10, and for other purposes, such as
forecasting (Caires and Ferreira 2005) or filling gaps.

c. Formal description of the method

To introduce our estimators, we denote V as the cor-
rection to be applied to an HE

s value at a particular time
and location, and U as a vector of dimension m con-
taining the HE

s value at that time and the m � 1 previ-
ous HE

s values (all at the particular location). To predict
V on the basis of the knowledge that U � u we need to
know the conditional mean of V given U � u,

R�u� � E�V |U � u�,

and the conditional distribution function of V given
U � u,

F �� |u� � P�V � � |U � u�.

Although these items are unknown, we can estimate
them using a sample of pairs (Ui, Vi), i � 1, . . . , n,
where Ui and Vi are analogous to the above U and V
variables. This sample of pairs can be obtained from
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ERA-40 data and buoy/altimeter measurements when-
ever the two are available at the same time and loca-
tion, so that the corrections are also available.

Write S(u, h) � {u� � �m: |uj � u�j | 	 h, j � 1, . . . , m}
for h � 0, and let hn � 0 be a given number depend-
ing on the sample size n. Then the estimator of R(u)
is called the empirical regression function and is de-
fined by

Rn�u� �

�
i�1

n

Vi1
Ui�S�u,hn��

�
i�1

n

1
Ui�S�u,hn��

, �1�

and the estimator of F(� |u) is called the empirical con-
ditional distribution function and is defined by

Fn�� |u� �

�
i�1

n

1
Vi��,Ui�S�u,hn��

�
i�1

n

1
Ui�S�u,hn��

, � � �. �2�

Here, the notation 1A, where A is an event, means 1 if
A occurs, and 0 otherwise. Thus, each value of both
Rn(u) and Fn(� |u) is an average whose terms include
only those values of Vi for which Ui � S(u, hn).

The motivation for using these estimators is that they
both converge (as n grows) in some sense and in certain
conditions to their theoretical counterparts, R(u) and
F(�|u) (see Caires and Ferreira 2005 and references
therein).

Once Rn(u) is available, one can estimate an un-
known value of V on the basis of U by V̂: � Rn(U).
Similarly, using Fn(� |u) one can estimate the probabil-
ity that the unknown value of V falls in a particular
interval (a, b) by Fn(b |U) � Fn(a |U), and consequently

find a prediction interval for V with a specified approxi-
mate probability of containing it.

Besides the choice of m, the application of the
method now outlined requires the specification of hn,
which is called the smoothing parameter. In theory, hn

should tend to 0 as n tends to infinity, and in most
applications one may suppose that (see Caires and Fer-
reira 2005)

hn � �cn��1 logn2�1�m, �3�

where c and 
 are constants, which just like m have to
be determined empirically.

d. Application to the correction of Hs data

In the following we will try to correct the ERA-40 Hs

fields based on sequences of m � 3 observations and on
the error between the last value in the sequence and the
corresponding measurement. Referring to Fig. 4, once a
match of three observations is found we gather the er-
ror between the last value and a corresponding mea-
surement. More precisely, recalling that the ERA-40
time resolution is 6 h, given a dataset of pairs [HE

s (x, t),
Hmeas

s (x, t)] we match the sequence [HE
s (x, t � 12),

HE
s (x, t � 6), HE

s (x, t)] with sequences [HE
s (xi, ti � 12),

HE
s (xi, ti � 6), HE

s (xi, ti)], and gather the errors between
the last ERA-40 values and the corresponding mea-
surements, [Hmeas

s (xi, ti) � HE
s (xi, ti)]. Assuming that p

matches were gathered, the corrected value of Hs,
HC

s (x, t), is given by

Hs
C�x, t� � Hs

E�x, t� �
1
p �

i�1

p


Hs
meas�xi, ti� � Hs

E�xi, ti��.

�4�

Two sequences are said to match or to be each other’s
analog if |HE

s (xi, ti) � HE
s (x, t) | 	 hn, |HE

s (xi, ti � 6) � HE
s (x,

t � 6) | 	 hn and |HE
s (xi, ti � 12) � HE

s (x, t � 12) | 	 hn.

FIG. 4. Example of the nonparametric prediction of a correction. The asterisks indicate
measurements, and the circles the uncorrected time series values.
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Here hn is given by (3), with c � 0.3m/(700
�1 log 7002)
and 
 � 0.2. (�his choice of c allows two sequences
to be considered as analogs if the maximum absolute
difference between them is of at most 30 cm, when
the sample size of possible analogs is n � 700.) The
choices of m, c, and 
 were based on some performance
checks.

The use of the same constraint (	hn) on the three
components as a criterion for including or excluding
analogs reflects the fact that all components pertain to
the same variable, and also the lack of reliable infor-
mation as to which constraints, if any, should be slack-
ened or made tighter.

In Eq. (4) we are considering analogs at locations xi,
ti other than those where the correction is to apply.
Naturally, this requires some restrictions on the dis-
tances |x � xi | and t � ti, which will be defined in the
following section.

4. Nonparametric correction of the ERA-40 data

a. Correction methodology

We have corrected the full 45-yr ERA-40 Hs dataset
using the procedure described in the previous section.
We will refer to the corrected Hs dataset as C-ERA-40.
The measurements used to estimate the conditional
mean and distribution functions were collocated
TOPEX measurements. At each location the learning
set is composed by sequences that are within a 10° circle

centered at the location for which the values are being
corrected.

We have carried out many trials and sensitivity tests
in order to decide which dataset should be used in the
creation of the C-ERA-40 dataset, the amount of past
observations to be taken into account, which param-
eter(s) should be used to define the conditional mean,
and how big the learning dataset should be. We have
started by correcting the ERA-40 Hs values at a buoy
location based on a learning dataset consisting of se-
quences of ERA-40 Hs values and the errors between
the ERA-40 and buoy observations at that location for
periods other than the period being considered. The
results were quite encouraging, and independent of
whether the period being corrected was or was not in-
cluded in the learning dataset. We then tried to gener-
alize our procedure by correcting the ERA-40 Hs val-
ues at a buoy location using a learning dataset obtained
at locations other than the one being considered. The
results were also encouraging and sometimes even bet-
ter than those obtained by a learning dataset with only
buoy data from the location at which the data was being
corrected. From this experiment we learned that the
most effective learning set would consist of data from
buoys at latitudes not very far from those being consid-
ered, while distances in longitude seemed to have no
effects.

Since the distance in latitude between the locations
of the data being corrected and the data considered for
the learning dataset have an effect on the quality of the
correction, and since buoy locations are mainly at high
latitudes and in the Northern Hemisphere, it would not
be optimal to correct the whole ERA-40 dataset by a
learning dataset containing only buoy observations. We
thus turned our attention to the TOPEX dataset, which
is the longest Hs altimeter dataset available and covers
almost the whole globe (from 63°S to 63°N). We began
by building a learning set with data at a distance of at
most 10° in latitude from the location of the data point
being corrected and putting no constraints on distances
in longitude. This, however, resulted in poor results in
the Gulf of Mexico. Better results were obtained by
also restricting the longitudinal distance. The final

FIG. 5. Time series of the ERA-40 and the corrected ERA-40 datasets monthly means as computed from 6-hourly fields between
66°S and 66°N. ERA-40 (solid line), C-ERA-40 (dashed line).

TABLE 1. Periods covered by the datasets used in the creation of
the C-ERA-40 dataset. The dates in italics correspond to periods
where the data used come from our parallel experiment.

Descriptor
Periods covered by

the data being corrected
Periods covered by
the learning dataset

P1* Jan 1958–Nov 1991,
Jun–Dec 1993,
and Jan 1994

Jun–Dec 1993 and
Jan–Jun 1994

P2 Dec 1991–May 1993 Jan 1993–May 1993
P3* Feb 1994–May 1996 Jan 1994–Dec 1995
P4 Jun 1996–Dec 2001 Jan 1997–Dec 1998

* Note the slight change in the periods covered by P1 and P3.
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learning dataset contains data from a 10° circle around
the point in question.

From our assessment of the ERA-40 data we had
noted that one of the important variables in the under-
estimation of the high peaks of Hs is the presence or
absence of swell. High peaks are more likely to be un-
derestimated when the sea state is a mixture of swell
and wind sea. We have therefore tried to look for ana-
logs where not only the last three consecutive observa-
tions of HS are within certain margins but also such that
the ratio between the significant wave height of wind
sea and Hs at the time at which we want to predict the
corrections is within a certain margin. This extra restric-
tion decreased the number of values contributing to the
conditional mean estimate, increased the computa-
tional effort, and only gave marginal improvements in

some situations. We have therefore decided to consider
only Hs.

The learning dataset thus consists of sequences of
three ERA-40 Hs values and the error between the
ERA-40 data and the TOPEX observations. Next, we
conducted some sensitivity studies as to how big the
learning dataset should be. Our results have shown that
a 2-yr dataset is the most effective, although the per-
formance is not much better than that obtained from a
1-yr dataset. Datasets longer than 2 yr increase the
computational costs significantly while providing no
visible improvements.

As specified in section 2b the error characteristics of
the ERA-40 data vary in time and therefore we have to
change the periods covered by the learning sets accord-
ingly. TOPEX observations are available during the

FIG. 6. (left) Observations of 6-hourly buoy (solid line), C-ERA-40 (circles) values, and the corresponding 95% confidence bands
(dashed lines) and errors (dotted line). (right) Observations of 6-hourly buoy (solid line), ERA-40 (dotted line), and C-ERA-40
(dashed) values. (top) Aug 1996 and (bottom) Dec 1996.
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whole P3 and P4 periods and therefore we have defined
in each case learning sets of 2 yr of overlapping periods.
For the P2 period the overlap with the TOPEX data is
only 5 months, January–May 1993; these are less than
optimal conditions, but as we will see the results are still
impressive. For the P1 period the overlap with the
TOPEX data is only 7 months, June–December 1993;
these are again less than optimal conditions. The learn-
ing dataset can, however, be increased by including the
dataset generated by our experiment with no ERS-1
altimeter data assimilation described in section 2c. In
doing so, the learning dataset extends from June 1993
to June 1994, covering more than a whole year, a clearly
desirable extension taking into account the fact that the
P1 period is by far the largest one. Table 1 indicates
the periods covered by the learning sets used to correct
the ERA-40 data and the corresponding periods that
were corrected. Since the TOPEX data are only avail-
able from January 1993 onward, the learning sets start
only from that date. The dates in italic correspond to
periods where the ERA-40 data used is not the official
ERA-40 data but the one generated by our experiment
described in section 2c. As shown in section 2c error
characteristics of the ERA-40 data for January 1994 are
different from those of the rest of the P3 period and
also from those on the P2 period. We have therefore
replaced the ERA-40 January 1994 data by that coming
form our ERA-40 run and corrected it as if it belonged
to the P1 period.

Another aspect worth mentioning, which also results
from our sensitivity studies, is that accounting for the
differences in the error characteristics of the ERA-40
Hs dataset in the choice of the periods of the corre-
sponding learning datasets is of the utmost importance
for the effectiveness of the correction of the ERA-40
data. For example, correcting an ERA-40 field belong-
ing to the period P1 with the learning set assigned to the
period P4 (January 1997–December 1998) leads to less
improvement of the original fields and in some cases

even to their deterioration (mainly for low values of
Hs).

Figure 5 shows the time series of the global mean of
the C-ERA-40 field and compares it with the time se-
ries of the global mean of the ERA-40 Hs field. It is
immediately obvious from the figure that

• the C-ERA-40 data does not have the inhomogene-
ities present in the ERA-40 data (the transition from
P1 to P2, the trend in P4), and

• the mean of the C-ERA-40 time series is higher than
that of the corresponding ERA-40 data.

In the following two subsections we will validate the
C-ERA-40 dataset against in situ buoy observations
and global altimeter observations.

b. Validation of the C-ERA-40 data against in situ
buoy measurements

Figure 6 compares buoy observations from a location
off southwest Alaska with the corresponding ERA-40
and C-ERA-40 data; the top (bottom) panels illustrate
the comparison for August (December) 1996. Figure 6
(left panels) shows the 6-hourly time series of buoy
observations (full line), the C-ERA-40 time series
(circles) along with its 95% confidence bands (dashed
lines), and the difference between the two (dotted line),
that is, the series of biases of the C-ERA-40 data. The
C-ERA-40 represents a clear improvement for the
ERA-40 data. Specifically, the C-ERA-40 shows less
underestimation of the high peaks and less overestima-
tion of the low values, and still remains close to the
ERA-40 data whenever the latter compares well with
the buoy observations. However, the nonparametric
correction method is powerless in correcting mis-
matches due to lack or extra features in the ERA-40
data. For example, the noise or small-scale features of
the buoy observations during the first days of August
(Fig. 6, top right) are absent in the ERA-40 time series,

TABLE 2. Comparative statistics between buoy measurements and (top) ERA-40 and (bottom) C-ERA-40 data.

Synoptic values Monthly means Monthly variances

n Bias Rmse SI Bias Rmse SI Bias Rmse SI

ERA-40
P1a 226 858 �0.21 0.53 0.23 �0.21 0.35 0.13 �0.35 0.51 0.50
P1b 14 407 �0.20 0.46 0.21 �0.18 0.30 0.12 �0.25 0.35 0.47
P2 34 176 0.08 0.45 0.20 0.07 0.30 0.13 �0.30 0.46 0.50
P3 54 778 �0.30 0.50 0.18 �0.29 0.34 0.08 �0.31 0.45 0.45
P4 102 085 �0.17 0.42 0.18 �0.17 0.25 0.09 �0.29 0.44 0.48
All 432 304 �0.19 0.49 0.21 �0.19 0.32 0.12 �0.32 0.48 0.49

C-ERA-40
P1a 226 858 0.00 0.42 0.20 0.01 0.22 0.10 �0.12 0.31 0.38
P1b 14 407 0.00 0.35 0.18 0.01 0.14 0.07 �0.10 0.17 0.27
P2 34 176 �0.02 0.40 0.18 �0.03 0.24 0.11 �0.16 0.34 0.42
P3 54 778 �0.01 0.35 0.16 0.00 0.15 0.07 �0.12 0.27 0.32
P4 102 085 �0.04 0.35 0.16 �0.03 0.16 0.07 �0.07 0.25 0.36
All 432 304 �0.01 0.39 0.19 �0.01 0.20 0.09 �0.11 0.29 0.37
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and the nonparametric correction cannot reproduce the
buoy variations. It only adjusts the values to a level
closer to the observations. This can be further seen in
the small peak on 28 August. In the ERA-40 data this

peak occurs 12 h earlier, and the nonparametric correc-
tion cannot shift it.

In August 1996 the correction of the ERA-40 reduces
the bias from 0.04 to �0.03, the rmse from 0.25 to 0.19,

FIG. 7. Graphs comparing the quantiles of buoy Hs observations against original ERA-40 data (asterisks) and C-ERA-40 data
(circles) for different periods.
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and the SI from 0.16 to 0.11; moreover, the confidence
band covers 100% of the true values. In December 1996
the bias changes from �0.50 to 0.03, the rmse from 0.79
to 0.51, and the SI from 0.13 to 0.11; the confidence
band covers 96.77% of the true values.

Table 2 presents statistics (bias, rmse, SI, sample
size) quantifying and comparing the quality of the
ERA-40 and C-ERA-40 data relative to buoy observa-
tions in terms of synoptic values, monthly means, and
monthly variances over the several periods considered.
The results show that the C-ERA-40 data always com-
pare better with the observations than the ERA-40
data. By virtue of the correction the biases are reduced
by about 20 cm, and the rmse by 5–20 cm; the SI sta-
tistics also become smaller. This improvement of the
C-ERA-40 data on the ERA-40 data is visible in the
synoptic values, monthly means and variances.

Figure 7 shows Q–Q plots of the ERA-40 and C-
ERA-40 data versus the buoy observations for the pe-
riods considered in Table 2. The plots show that the
nonparametric corrections work effectively in the
whole range of Hs values and for periods with different
error characteristics. Specifically, compare the middle-
left panel (period P2) with the top-right panel (period
P1b). The error characteristics of the ERA-40 data are
quite different in these two periods. In the P2 data there
are an overestimation for wave heights around 2 m,
which is easily identified in the plot by a bump in the
ERA-40 data. This bump is nonexistent in the C-ERA-
40 data. On the other hand, in the P1b ERA-40 data
there is a bump of underestimation of data around 1.5
m. This bump also does not exist in the C-ERA-40 data
and the underestimation of the high quantiles is also
substantially reduced. From these plots it is apparent

FIG. 8. (left): Q–Q plots comparing the TOPEX Hs measurements against ERA-40 data (asterisks) and C-ERA-40 data (circles).
(right) Bias in the ERA-40 and C-ERA-40 data monthly means. Data for May 1993 (period P2).

FIG. 9. The same as Fig. 8, but for Jun 1993 (period P1).
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that the C-ERA-40 still underestimates high Hs values,
although less so than the ERA-40 data does. Also, for
very low wave heights (below 1 m) the C-ERA-40 data
compare slightly worse with the buoy observations than
does the ERA-40 data.

c. Validation of the C-ERA-40 data against global
altimeter measurements

We now look at some spatial fields to see how the
data are being corrected in different ocean basins and
regions. Figures 8–11 present the biases between the
ERA-40 and C-ERA-40 data monthly means (right
panels) and the Q–-Q plots of the corresponding ERA-
40 and C-ERA-40 data versus TOPEX observations.
The figures are for a selected month in each of the
periods for which different learning sets were consid-

ered: May 1993 (P2), June 1993 (P1b), May 1994 (P3),
and June 1996 (P4). The Q–Q plot comparisons are
similar to those for the in situ data (Fig. 7) and identify
the same problems in the quantiles—for example, the
overestimation of waves around 2 m in the P2 period
and a general underestimation of high quantiles. The
comparisons between TOPEX and the C-ERA-40 data
show that these mismatches have been substantially re-
duced.

Looking in more detail at the geographical differ-
ences between the ERA-40 and C-ERA-40 data, it can
be observed in Fig. 8 (right) that the monthly means of
the ERA-40 data, for this example of P2, are too high in
the regions where the mean values of Hs are low, es-
pecially in the Tropics, and are too low in the Northern
and Southern Hemisphere storm track regions and at
some semi-enclosed regions, such as the Gulf of Mexico

FIG. 10. The same as Fig. 8, but for May 1994 (period P3).

FIG. 11. The same as Fig. 8, but for Jun 1996 (period P4).
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and the Sea of Japan. From Fig. 9 we can see that the
ERA-40 monthly means for P1 are almost everywhere
too low except for some regions in the tropical Pacific
and off the western coast of America. This behavior is
similar to that for period P4, as illustrated in Fig.
11. Figure 10 shows that the underestimation of the
ERA-40 data for P3 is global, the biggest corrections

occurring, as for the other periods, in the storm track
regions.

For the whole period for which TOPEX data are
available, Fig. 12 compares monthly statistics of the
ERA-40 and C-ERA-40 data with the collocated
TOPEX observations. The top panel presents the
monthly means of the TOPEX data versus the respec-

FIG. 12. Monthly statistics of the comparisons between the ERA-40 and the corrected ERA-40
datasets collocated with the TOPEX data: (top) monthly means (computed using no latitude correction),
(middle) rmse, and (bottom) scatter index.

TABLE 3. Comparative statistics between Geosat measurements
and the ERA-40 and the C-ERA-40 data. The x column repre-
sents the mean of the observations. Data for 1988.

ERA-40 C-ERA-40

Region x Bias Rmse SI Bias Rmse SI

20°–80°N 2.55 �0.20 0.54 0.20 0.09 0.46 0.18
20°S–20°N 1.92 �0.01 0.32 0.17 0.07 0.31 0.16
80°–20°S 3.21 �0.22 0.59 0.17 0.10 0.53 0.16
Global 2.65 �0.15 0.51 0.18 0.09 0.45 0.17

TABLE 4. Comparative statistics between ERS-2 measurements
and the ERA-40 and the C-ERA-40 data. The x column repre-
sents the mean of the observations. Data for Jun 1995–May 1996.

ERA-40 C-ERA-40

Region x Bias Rmse SI Bias Rmse SI

20°–80°N 2.35 �0.19 0.46 0.18 0.13 0.39 0.16
20°S–20°N 1.82 �0.06 0.26 0.14 0.12 0.26 0.13
80°–0°S 3.15 �0.29 0.52 0.14 0.12 0.41 0.12
Global 2.51 �0.19 0.43 0.15 0.12 0.36 0.13
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tive ERA-40 and C-ERA-40 data. As for the buoy com-
parisons, the C-ERA-40 data have a bias very close to
zero and about 20 cm lower than that of the ERA-40
data. The middle and bottom panels of the figure show
the ERA-40 and C-ERA-40 rmse and SI time series,
respectively. The reduction in rmse reaches 20 cm, and
that of SI is at least 0.02. The largest discrepancies be-
tween the TOPEX and the C-ERA-40 data are for data
from the P1 period and for February 2001. The higher
error statistics in the P1 (1993) period can be explained
by the fact that the training set for this period is about
half the size of the one used in the following periods.
The discrepancies in February 2001 are due to some
changes in the errors characteristics of the ERA-40
data from 9–14 February due to the assimilation of
faulty ERS-2 FDP data (J.-R. Bidlot 2003, personal
communication). From these plots it is clear that the
inhomogeneities of the ERA-40 data are not present in
the C-ERA-40 data. Also worth noting is the fact that
the nonparametric correction works well irrespective of
whether there is an overlap between the learning
dataset and the data; compare the statistics of the C-
ERA-40 for the last 3 yr (1999–2001, when there is no
overlap) with the 2 yr before (1997–98, when there is an
overlap).

The global validation presented so far was in com-
parison to the TOPEX data. The data, however, are not
independent of the C-ERA-40 dataset (especially in the
periods overlapping the learning set periods) since it
was used in its creation. Therefore, it is desirable to
validate it with independent observations other than
buoy since these are not global. We have therefore vali-
dated the C-ERA-40 data against Geosat and ERS-2
global observations.

Tables 3 and 4 give statistics comparing measure-
ments from Geosat and from ERS-2 with the ERA-40
and the C-ERA-40 data over different latitudinal

bands. The Geosat data are from 1988, and those from
ERS-2 for June 1995–May 1996, the period that ERS-2
was not assimilated into ERA-40. The negative bias in
the ERA-40 data becomes positive in the C-ERA-40
data, except for in the Tropics where the magnitude is
lower. In terms of rmse and SI, the C-ERA-40 dataset
compares better with observations everywhere.

Figure 13 shows the Q–Q plots of the ERA-40 and
C-ERA-40 data versus the Geosat (left) and the ERS-2
(right) altimeter observations. The plots testify to the
superiority of the C-ERA-40 dataset relatively to the
ERA-40 dataset for Hs values above 1.5 m. The com-
parison between the data and the Geosat observations
is very similar to that with the ERS-2 observations. The
plots show no underestimation of the high Hs values by
the C-ERA-40 data, but show some overestimation of
the Hs values below 5 m. This is in contradiction with
the validation of the C-ERA-40 data against buoy and
TOPEX data and may indicate a small underestimation
of Hs by the Geosat and ERS-2 data. As we mentioned
before a 1.065 correction factor was applied to the Geo-
sat data, and no correction was applied to the ERS-2
data. In more recent work Cotton et al. (1997), again
using buoy data as reference, postulate a linear correc-
tion to the Geosat data of Hbuoy

s � 1.069HGeosat
s � 0.089

and also a linear correction to the ERS-2 data of Hbuoy
s

� 1.053HERS-2
s � 0.189. The application of this positive

increments to the Geosat and ERS-2 data would make
their comparison with the ERA-40 and C-ERA-40 data
compatible with their comparisons with the buoy and
TOPEX data.

5. Conclusions

Limitations in the ERA-40 Hs data seriously discour-
age its use for direct studies of climate variability and

FIG. 13. Graphs comparing the Q–Q plots of altimeter collocated Hs observations against ERA-40 (asterisks) and C-ERA-40 data
(circles) for different periods: (left) Geosat data for Jan–Dec 1988, and (right) ERS-2 data for Jun 1995–May 1996.
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trends. The two main limitations of the data are the
existence of inhomogeneities in time that are due to the
assimilation of different altimeter Hs datasets in the
ERA-40 computations, and the underestimation of
high Hs values that discourages the use of the data in
design studies where the good description of the data in
all ranges is important. We have presented results of
the data validation against high quality measurements
and have assessed the effects of the assimilation of one
of the altimeter datasets by presenting results of an
ERA-40 parallel experiment with and without ERS-1
altimeter data assimilation. Our results have shown that
one of the reasons for the poor results given by the data
assimilation was the bad quality of the data being as-
similated, and that even in periods when the data being
assimilated are supposedly of good quality (the period
when ERS-2 altimeter HS observations have been as-
similated) the results are still far from good. We then
proposed a new approach to improve the ERA-40 Hs

fields based on nonparametric estimation, the idea be-
ing to estimate for each ERA-40 Hs value the error
between the ERA-40 value and the “true” Hs value and
then correct the data using the estimate, thus creating a
new 45-yr global 6-hourly dataset: the C-ERA-40
dataset. This was achieved by taking into account the
changes in the error characteristics of the ERA-40 data,
using the differences between certain ERA-40 values
and the corresponding TOPEX measurements, along
with the behavior of the ERA-40 time series at that
location from 12 h before the time of the observation.
Comparisons of the C-ERA-40 data with measure-
ments from in situ buoy and global altimeter data show
clear improvements in bias, scatter, and quantiles in the
whole range of values and the removal of the inhomo-
geneities present in the ERA-40 dataset. The success of
the application of the nonparameteric method to cor-
rect the ERA-40 Hs is in the first place due to the
flexibility and generality of the method, and in the sec-
ond place to the existence of global TOPEX measure-
ments in all the periods during which the errors of the
ERA-40 data have different characteristics. Limitations
are the necessity of having a learning dataset (TOPEX
measurements) in all the periods with different error
characteristics and the prerequisite knowledge of the
periods with a given type of error characteristics. There
were some caveats in the ERA-40 data that remain in
the C-ERA-40 dataset.

• �he ERA-40 model does not account for shallow-
water effects and therefore the data are only valid in
deep-water regions.

• Due to resolution, tropical cyclones are not resolved
by the ERA-40 system. Therefore, the data for the
regions of the tropical storms may be too low.
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