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ABSTRACT

In this article global estimates of 100-yr return values of wind speed and significant wave height are
presented. These estimates are based on the ECMWF 40-yr Re-Analysis (ERA-40) data and are linearly
corrected using estimates based on buoy data. This correction is supported by global Topographic Ocean
Experiment (TOPEX) altimeter data estimates. The calculation of return values is based on the peaks-
over-threshold method. The large amount of data used in this study provides evidence that the distributions
of significant wave height and wind speed data belong to the domain of attraction of the exponential.
Further, the effect of the space and time variability of significant wave height and wind speed on the
prediction of their extreme values is assessed. This is done by performing detailed global extreme value
analyses using different decadal subperiods of the 45-yr-long ERA-40 dataset.

1. Introduction

The design of ship, offshore, and coastal structures
requires a good knowledge of the most severe wind and
wave conditions that they need to withstand during
their lifetime. This knowledge is often difficult to infer
because the amount of data available is usually small,
and often there is no data at all on which to base infer-
ences.

The European Centre for Medium-Range Weather
Forecasts (ECMWF) has recently completed ERA-40,
a global reanalysis of meteorological variables, among
which are ocean winds and waves from 1957 to 2002.
The data consist of 6-hourly fields on a 1.5° � 1.5°
latitude/longitude grid covering the whole globe. The
time and space coverage of this dataset makes it ideal
for the study of extreme wind and wave phenomena
over the whole globe. Initial validations of the data
reveal a generally good description of variability and
trends (Caires et al. 2004) but some underestimation of
high wave heights and wind speeds (Caires and Sterl
2003b). The objective of this article is to use the ERA-
40 data to compute global estimates of return values of
significant wave height (Hs) and near-surface wind
speed (U10). Particular attention will be paid to the
effect the ERA-40 underestimation has in the estima-
tion of return values by comparing parameter estimates
obtained from the ERA-40 dataset with those obtained
from in situ buoy and global altimeter measurements.

Following Ferreira and Guedes Soares (1998, 2000)
and Anderson et al. (2001), we compute the return
value estimates using the peaks-over-threshold (POT)
method rather than the widespread approach of fitting
a distribution (such as the lognormal, Weibull, beta,
etc.) to the whole dataset and extrapolating from it.
Although these authors only looked at Hs data, their
objections apply equally to U10 data. Among the argu-
ments given by these authors against the latter method
we mention the following:

• Due to dependence and nonstationarity, Hs and U10

series violate the assumptions of independence and
identity in distribution, which invalidates the applica-
tion of the common statistical methods used (confi-
dence intervals and tests) as well as the definition of
return value.

• �here is no scientific justification for using one par-
ticular distribution to fit to Hs or U10 data, and the
usual goodness-of-fit diagnostics are not able (on the
basis of realistic sample sizes and given the length of
the required “prediction horizon”) to distinguish data
with type I (exponential) tail, say, from data with
type II (heavier than exponential) tail. In contrast, if
for example one concentrates on averages, maximum
values, or excesses over a high threshold of very gen-
eral variables, then statistical theory provides a sci-
entific basis for the use of, respectively, the normal,
generalized extreme value and generalized Pareto
distributions.

Another statistically sound approach to obtain return
values from the data would be to use the annual
maxima method (see, e.g., Coles 2001), in which the
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Generalized Extreme Value Distribution is fitted to the
sample of annual maxima. This approach is not consid-
ered here because the size of the samples obtained from
45 or 10 years of data is too small for reasonably accu-
rate inferences.

The POT approach (e.g., Coles 2001) consists of fit-
ting the generalized Pareto distribution to the peaks of
clustered excesses over a threshold, the excesses being
the observations in a cluster minus the threshold, and
calculating return values by taking into account the rate
of occurrence of clusters. Under very general condi-
tions this procedure ensures that the data can have only
three possible, albeit approximate, distributions (the
three forms of the generalized Pareto distribution) and,
moreover, that observations belonging to different
peak clusters are (approximately) independent.

Ferreira and Guedes Soares (1998) described an ap-
plication of the POT method to predict return values of
Hs. The method was applied to 10 years of Hs data from
one location off the Portuguese coast, and it was con-
cluded that the exponential distribution (the general-
ized Pareto distribution with shape parameter � � 0;
see below) fitted the data well. Moreover, the closely
exponential character of the data was explained theo-
retically: the Hs estimate of each sea state is a realiza-
tion of a random variable whose approximate distribu-
tion is a mixture of Rayleigh distributions with an un-
specified number of parameters, which has a type I or
exponential tail. There is also a lot of literature hypoth-
esizing the exponential character of U10 data; see Simiu et
al. (2001) and references therein. The exponential char-
acter of both ERA-40 and buoy Hs and U10 observations
will be extensively assessed in this article using data from
several locations. As we shall see, the establishment of the
exponential distribution as an appropriate model for the
peak excesses not only points to a general pattern but also
simplifies the problem of predicting extreme values since
one parameter less needs to be estimated.

Many past studies of extreme values of ocean winds
and waves were based on a rather limited number of
years of data, usually no more than a decade. The cli-
mate, however, changes, and it is interesting to investi-
gate how well estimates obtained from certain data pe-
riods compare with estimates from other periods. With
this in mind, we will not only compute estimates using
the whole 45-yr dataset but also using three decadal
subsets (1958–67, 1972–81, and 1986–95) and analyze
the time and space variability of these estimates. How-
ever, we will not look at the effect that within-year
variability and within-decade trends may have on the
return value estimates; for a study of these effects the
reader is referred to Anderson et al. (2001).

2. Data description

a. ERA-40 data

ERA-40 is the name of ECMWF’s most recent re-
analysis of global meteorological quantities, including

ocean winds and waves, from 1957 to 2002. The re-
analysis used ECMWF’s Integrated Forecasting System
(IFS), a coupled atmosphere–wave model with varia-
tional data assimilation (see Simmons 2001). This is a
state-of-the-art model very similar to the one used op-
erationally for weather forecasts, though with lower
resolution. The aim of the reanalysis was to produce a
dataset with no inhomogeneities, as far as the technique
of analysis is concerned, by reconstructing the 45 years
of data using the same numerical model throughout.
This is the fourth reanalysis performed, but the first in
which a wave model is coupled to the atmosphere
model (see Janssen et al. 2002). In previous reanalyses,
wave data had to be generated offline by forcing a wave
model by the reanalyzed winds; an overview of these
efforts can be found in Caires et al. (2004). In terms of
the ocean wave data, the present reanalysis has the
largest time and space coverage. A large subset of the
ERA-40 fields (among which Hs and U10) can, for re-
search purposes, be freely downloaded from ECMWF’s
Web page online at http://data.ecmwf.int/data/d/era40.
The Hs and U10 data consist of 6-hourly fields on a 1.5°
� 1.5° latitude/longitude grid covering the whole globe.

b. Buoy measurements

So far, buoy observations are considered the most
reliable wave observations, but they are limited to some
locations along the coast, mainly in the Northern Hemi-
sphere, and are available only at a small number of
locations before 1978. From 1978 onward buoy obser-
vations from the National Oceanic and Atmospheric
Administration (NOAA)/National Data Buoy Center
(NDBC) off the coast of North America are available
online at http://www.nodc.noaa.gov/BUOY/buoy.html,
and can be retrieved for free. Due to their high quality
they will be used here to assess the return value esti-
mates obtained from the ERA-40 data.

From all the NDBC data buoy locations available, we
have selected a total of 20 locations for the validations:
1 off the coast of Peru, 4 around the Hawaiian Islands,
3 in the Gulf of Mexico, 5 in the Northwest Atlantic, 3
off the coast of Alaska, 3 in the Northeast Pacific, and
1 off the coast of California; see Fig. 1. The selection of
the locations took into account their distance from the
coast and the water depth. Only deep water locations
can be taken into account since no shallow water effects
are accounted for in the wave model and since the
buoys should not be too close to the coast in order for
the corresponding grid points to be located at sea. The
buoy Hs and U10 measurements are available hourly
from 20- and 10-min-long records, respectively. These
measurements have gone through some quality control;
we do, however, still process the time series further
using a procedure similar to the one used at ECMWF
(Bidlot et al. 2002) and described in Caires and Sterl
(2003b, 43.2–3). When the anemometers of the buoys
are not at a height of 10 m, the wind speed measure-
ments are adjusted to that height using a logarithmic
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profile under neutral stability (see, e.g., Bidlot et al.
2002, p. 291). To compare the ERA-40 results with the
observations, time and space scales must be brought as
close to each other as possible. The reanalysis results
are available at synoptic times (every 6 h, at 0000, 0600,
1200, and 1800 UTC) and each value is an estimate of
the average condition in a grid cell; on the other hand,
the buoy measurements are local. To make the time
and space scales of the data compatible, the reanalysis
data are compared with 3-h averages of buoy observa-
tions centered around the synoptic times, 3 h being the
approximate time a long wave would take to cross the
diagonal of a 1.5° � 1.5° grid cell at midlatitudes. To get
ERA-40 data at the buoy location, the reanalysis data
at the appropriate synoptic time are interpolated bilin-
early to the buoy location.

c. Altimeter measurements

The Topographic Ocean Experiment (TOPEX)
along-track quality checked deep water altimeter mea-
surements of Hs and the normalized radar cross section
(�0) were obtained from the Southampton Ocean-
ography Center (SOC) Global Altimetry Processing
Scheme (GAPS) interface online at http://www.soc.
soton.ac.uk/ALTIMETER (Snaith 2000). There are
several corrections available to bring the altimeter mea-
surements closer to the buoy’s. The TOPEX wave
height observations for 1997–99 (cycles 170–235) have
drifted; the drift is corrected according to Challenor
and Cotton (1999). Caires and Sterl (2003b), using a
functional linear relationship model, found that
TOPEX data relate to the buoy data according to Hbuoy

s

� 1.05Htopex
s � 0.07. We have made the TOPEX ob-

servations used here compatible with the buoy obser-
vations by applying this relationship.

Although altimeters do not measure U10 directly, the
altimeter backscatter depends on (i.e., correlates highly
with) the sea surface wind speed. There are several
empirical algorithms available to compute the wind
speeds up to 20 m s�1 from �0. The most recent algo-

rithm is due to Gourrion et al. (2002) and is used here.
Caires and Sterl (2003b) have compared the data pro-
duced using this algorithm and those due to Witter and
Chelton (1991), which are used operationally for the
TOPEX/Poseidon satellite altimeters; the results were
inconclusive as to which of the algorithms should be
preferred. For wind speed above 20 m s�1 the relation
of Young (1993) is used.

The satellite measurements are performed about ev-
ery second with a spacing of about 5.8 km. From these
we form altimeter “observations” by grouping together
the consecutive observations crossing a 1.5° � 1.5° lati-
tude–longitude region (observations at most 30 s or
1.5�2° apart). The altimeter observation is taken as
the mean of these grouped data points after a quality
control similar to the one applied to the buoy data. The
reanalysis data at the synoptic times before and after
the time of the altimeter observation are interpolated
bilinearly to the mean observation location, and these
two data points are then linearly interpolated in time to
the mean time of the observation.

3. Peaks-over-threshold method

a. Basics

In the POT method, the peak excesses over a high
threshold u of a time series are assumed to occur ac-
cording to a Poisson process with rate �u and to be
independently distributed with a generalized Pareto
distribution (GPD), whose distribution function is
given by

Fu	x
 � �1 � 	1 � �x��
1�� if � � 0

1 � exp	�x��
 if � � 0,

where the range of x is (0, �) if � � 0 and (0, �/�) if �

 0. For � � 0 the GPD is the exponential distribution
with mean �, for � � 0 it is the Pareto distribution, and
for � 
 0 it is a special case of the beta distribution. For
� � 0 the tail of the GPD; that is, the function x → 1 �
Fu(x) is heavier (i.e., decreases more slowly) than the
tail of the exponential distribution, and for � 
 0 it is
lighter (decreases more quickly and actually reaches 0)
than that of the exponential. The GPD is said to have a
type II tail for � � 0 and a type III tail for � 
 0. The
tail of the exponential distribution is called a type I tail.

As stated in the introduction, the excesses over the
threshold u of a time series X1, X2, . . . are the obser-
vations (called exceedances) Xi � u such that Xi 
 u. A
peak excess is defined as the largest excess in a cluster
of exceedances; hence its definition depends on that of
a cluster. In this paper we shall adopt the usual defini-
tion of a cluster as a group of consecutive exceedances.
The model now outlined can be justified theoretically
for a great variety of time series; see, for example,
Leadbetter (1991) and the references therein.

One of the main applications of the POT method is
the estimation of the m-year return value, x(u)

m . If the

FIG. 1. Buoy codes and locations.
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number of clusters per year is a Poisson random vari-
able with mean �u, then the expected number of clus-
ters/peak excesses in m years is m�u and, if the peak
excesses over u are independently distributed with dis-
tribution function Fu, then the expected number of ob-
servations exceeding x is m�u[1 � Fu(x)]; setting this
equal to 1 and solving for x gives

xm
	u
 � �u �

�

�
�1 � 	�um
��� if � � 0

u � � log	�um
 if � � 0.

	1


b. Estimation and testing

Once a threshold u has been selected and the peak
excesses have been extracted from the time series, the
scale (�) and shape (�) parameters of the GPD can be
estimated by a variety of methods such as maximum
likelihood, the method of moments, etc. The estimates
of the GPD presented here were obtained using the
Method of Probability-Weighted Moments; see Hosk-
ing and Wallis (1987) for this method and some of its
advantages over maximum likelihood.

The choice of a threshold should take into account
the threshold stability property of the GPD: if the GPD
model is valid for peaks over the threshold u0, it is also
valid for peaks over the threshold u 
 u0 with the same
shape parameter � and an “adjusted” scale parameter.
Since higher thresholds will generate fewer peaks with
which the GPD parameters can be estimated (see Davi-
son and Smith 1990, p. 395), one should ideally choose
the lowest threshold at which the GPD is valid.

The parameter �u, the yearly cluster rate, can be es-
timated by the average number of clusters/peak excesses
per year. More generally, for yearly series with different
numbers of observations, �u can be estimated by1

�̂u � k�1�
i�1

k

Ni�pi, 	2


where k is the number of years considered, pi � ni/n, ni

is the number of observations available in the ith year,
Ni is the corresponding number of peak excesses, and n
is the maximum number of observations in a yearly
series. Under the Poisson assumption, E(�̂u) � �u and

var	�̂u
 � �uk�2 �
i�1

k

pi
�1,

and, since �u is relatively large, we have that �̂u is ap-
proximately normal with mean �u and variance var(�̂u).

Confidence intervals for the return value estimates
can be estimated by using the delta method (see Fer-
guson 1996); more precisely, the asymptotic variance of
the return value estimates can be estimated by

var	xm
	u



^
� dT�d,

where d is the vector of derivatives of x(u)
m with respect

to the estimated parameters (�, �, and � if � � 0, and �
and � if ��0) and � the asymptotic covariance matrix
of the parameter estimates, both evaluated at the esti-
mates of the parameters.

When the data can be assumed independent, the
POT method uses all the observations above a thresh-
old. Since the data we are studying are dependent (es-
pecially in the case of Hs), the POT method we shall
apply uses only the peak excesses above a threshold.
The nature of the data makes it necessary to impose
another restriction, namely to take only a single peak
excess from two or more neighboring clusters that hap-
pen to be too close to each other. It can happen that
within a storm there is a somewhat calmer period fol-
lowed by another rough period, in which case the time
series might go below the threshold and then rise again,
thus creating two clusters out of the same storm. In
order that no more than one observation is taken from
the same storm, we shall treat clusters at a distance of
less than 48 h apart as a single cluster—as if belonging
to the same storm—and hence use only the highest of
the cluster excesses.

To test the exponentially of the data we will use the
Anderson–Darling statistic (see, e.g., Stephens 1974),
which can be used for testing the exponential versus
any other distribution. We use a 5% significance level,
for which the asymptotic critical value of the Ander-
son–Darling statistic is 1.341.

c. Application of the POT method to the different
datasets

Although the ERA-40 data at each location consist
of 6-hourly time series with no missing values (missing
values occurring only where the ice coverage changes),
the buoy time series, which are also 6-hourly, may have
a lot of gaps, and the TOPEX time series at each loca-
tion are not sampled regularly. The application of the
POT method to the measurements must therefore be
adapted to this special situation: in order to compare the
estimates arising from the measurements with those from
the ERA-40 data, the ERA-40 data will be sampled in the
same way as the measurements so that the same proce-
dure applies to data from different sources.

1) TIME SERIES WITH GAPS

In section 3b we have outlined the application of the
POT method to regularly sampled time series. The pos-
sibility of gaps in the time series was taken into account
by letting pi in Eq. (2) vary. When obtaining estimates
from the ERA-40 dataset alone, there are no gaps in
the time series (so pi � 1) in most of the locations,
exceptions being the locations where the ice coverage
changes. The time series of buoy measurement, on the1 Throughout this article x̂ denotes an estimator of x.
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contrary, often have gaps, some of which are quite large
(of more than a year). The existence of gaps within a
cluster creates a problem because it is then impossible
to say whether the highest observation in the censored
cluster is the peak of the cluster or not. There are two
ways to deal with this problem: one is to use all clusters
and treating the cluster maxima in clusters with gaps as
censored observations from the GPD (see Davison and
Smith 1990, p. 397); the other is to use only noncen-
sored clusters. For the sake of simplicity and because
the number of censored clusters is small, we will use the
latter approach. When computing ERA-40 estimates at
the buoy locations (in order to compare them with the
respective estimates arising from the buoy data), the
ERA-40 data will be sampled in the same way as the
buoy data, thus having the same gaps. When more than
one month is of data missing during a given year, the
whole year is excluded.

2) IRREGULARLY SAMPLED DATA

The altimeter data are collected along the satellite
trajectory. Therefore, no regularly sampled time series
of altimeter observations can be obtained at a given
location. The TOPEX trajectory has a cycle of 10 days.
Due to the way we have combined the 1-s along-track
observations, by averaging the values obtained by the
altimeter when crossing a 1.5° � 1.5° grid, some grid
locations are crossed more than once per cycle, imply-
ing that the number of observations in the same grid
point per month can be of up to 12, while other grid
locations contain at most 3. Since at these time scales
the behavior of Hs and U10 can vary considerably,
whole clusters can be missed. The problem of censoring
also arises here since when identifying a data point
above a certain threshold there is no way of saying
whether it is the peak over the threshold or not; thus
the exceedances are observed at random times in
storms/clusters. However, it is known—see the discus-
sion in Anderson et al. (2001, p. 71) and references
therein—that the distribution of an observation ran-
domly selected from a cluster and the distribution of
cluster peaks is asymptotically the same. This means
that by collecting the exceedances over a threshold of
the altimeter data we should be able to estimate the
parameters of the GPD describing the cluster peaks.
This is as far as we can go in terms of direct estimates
from TOPEX data. Return values cannot be estimated
without further assumptions2 since the number of ex-
ceedances per year, �, cannot be estimated from such
scarcely sampled data. Only the threshold and GPD
estimates of the ERA-40 data can be compared with
those from altimeter data; no comparison of return val-
ues can be made.

4. Validation

In the following analysis, a “year” is defined as the
period from October to September. For Northern
Hemisphere data this definition is preferable to that of
a calendar year because it avoids breaking the winter
period in two.3

a. Significant wave height

We started our analysis by trying to find “good”
thresholds for the buoy and the ERA-40 time series at
different buoy locations. Our approach was to choose
the threshold as the smallest value at which the GPD
fitted the peak excesses reasonably. The threshold is
expected to depend on the location, the period consid-
ered, and the dataset. The most important factor is sup-
posed to be the location since locations at high latitudes
will be exposed to more severe conditions than those at
lower latitudes. From assessments of the ERA-40 data
against buoy data (see Caires and Sterl 2003b), the
thresholds for the ERA-40 data are expected to be
lower than those of the buoy data since ERA-40 un-
derestimates the high values of Hs. We have considered
time series of 3 or more years (the longest going from
1978 to 2001, the whole period for which the NOAA
buoy data are available) and for different periods. We
have tried to fix the threshold by assessing the fit of the
GPD—comparing fitted densities with kernel density
estimates (the continuous analog of the histogram; Sil-
verman 1986) and examining quantile–quantile plots at
different thresholds—and looking at the stability of the
estimates in relation to the threshold (see, e.g., Coles
2001; Ferreira and Guedes Soares 1998; Anderson et al.
2001). So far we have not been able to devise an auto-
matic procedure to fix the threshold, but found that in
most of the cases a threshold fixed at the 93% quantile
of the whole data gives good results. There were cases,
however, where the threshold had to be set higher, up
to the value of the 97% quantile, in order to achieve a
good fit.

Fixing the threshold at the 93% quantile of the data,
we have applied the POT method to buoy data and to
the corresponding ERA-40 data for the periods 1980–
89, 1990–99, and 1980–99. The reason for looking at
10-yr periods is that we later want to compare the POT
estimates obtained with the ERA-40 data from these
three periods with those obtained from other 10-yr pe-
riods for which no buoy measurements are available. It
is of course impossible to obtain estimates based on a
45-yr period of buoy data, as the buoys have not been
deployed for that long. However, in order to check

2 Anderson et al. (2001) obtain return value estimates from
altimeter Hs data assuming that the typical storm duration is
known.

3 The study of Hogg and Swail (2002), which was concentrated
in the Northern Hemisphere alone, defined a “wave year” from
July to June; this definition would have the same disadvantages in
the Southern Hemisphere as the calendar year has in the North-
ern Hemisphere.
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whether POT estimates based on larger buoy and
ERA-40 datasets reveal a different relationship from
that based on 10-yr datasets, we will also be looking at
estimates based on 20-yr datasets.

Table 1 presents some results for the period 1990–99.
The first column gives the code of the data location (see
Fig. 1)—codes ending in “b” refer to buoy data and
codes ending in “e” to ERA-40 data, the second col-
umn (nt) gives the number of points in each time series,
the third column gives the threshold used, the fourth
column the estimates of �,4 the fifth column gives the
values of the Anderson–Darling statistic, the sixth col-
umn gives the estimates of � in the exponential distri-
bution, the seventh column gives the 100-yr return
value (x100) estimates of the exponential distribution,
the eighth and ninth columns give �̂ and �̂ in the GPD,
and the last column gives x̂100 of the GPD. Some of the

estimates are given along with 95% confidence inter-
vals. We note that multiplying �̂ by nt /1460 (the number
of years) yields the approximate number of peak ex-
cesses used to fit the distributions.

Looking at the test statistics, we see that the expo-
nentiality of the data is rejected in only four cases for
the buoy data and two cases for the ERA-40; the cor-
responding values of the statistics are italic in Table 1.
Since the tests are being done at a 5% significance level,
four (two) rejections in 19 tests is above the expected
proportion of rejections. We have analyzed the cases of
rejection in Table 1 and observed that in all of them the
hypothesis of exponentiality was not rejected once the
threshold was increased and set at the 97% quantile of
the whole dataset.

Figure 2 shows the values of the Anderson–Darling
statistic obtained by applying the POT method to the
ERA-40 data from the period 1990–99. The regions
where exponentiality is rejected at a 5% level are
shaded; there are 20% of rejections. The use of differ-
ent test statistics, such as the exponential-versus-GPD

4 From now on we drop the u subscript from the parameters and
their estimates.

TABLE 1. Some results of the application of the POT method to buoy (codes ending with b) and ERA-40 (codes ending with e) Hs

data from 1990 to 1999. For an explanation see the text.

Buoy nt u (m) �̂u AD �̂(m) x̂100 (m) �̂(m) �̂ x̂100(m)

32302b 4390 3.20 18.02 2.16 0.58 7.58 (6.40, 8.76) 0.88 0.51 (0.10, 0.92) 4.90 (4.24, 5.56)
32302e 4390 3.02 13.99 0.28 0.35 5.58 (4.80, 6.37) 0.37 0.05 (�0.31, 0.40) 5.29 (3.26, 7.32)
51001b 9987 4.00 19.65 1.28 1.15 12.72 (11.18, 14.26) 1.47 0.28 (0.05, 0.51) 8.65 (6.91, 10.39)
51001e 9989 3.49 16.86 0.41 0.55 7.60 (6.84, 8.36) 0.61 0.11 (�0.11, 0.33) 6.63 (5.04, 8.22)
51002b 10 231 3.47 19.94 0.70 0.53 7.49 (6.80, 8.17) 0.51 �0.03 (�0.22, 0.17) 7.81 (5.21, 10.41)
51002e 10 231 2.97 15.70 0.65 0.35 5.54 (5.05, 6.02) 0.37 0.06 (�0.16, 0.27) 5.19 (3.96, 6.42)
51003b 14 492 3.37 19.97 2.10 0.67 8.42 (7.70, 9.15) 0.86 0.29 (0.10, 0.47) 6.02 (5.22, 6.82)
51003e 14 493 3.08 15.68 0.63 0.44 6.30 (5.79, 6.81) 0.50 0.13 (�0.06, 0.33) 5.39 (4.44, 6.35)
51004b 11 693 3.40 17.41 0.69 0.62 8.04 (7.26, 8.82) 0.70 0.13 (�0.07, 0.33) 6.76 (5.26, 8.27)
51004e 11 693 3.04 13.87 0.34 0.36 5.62 (5.14, 6.11) 0.38 0.07 (�0.15, 0.29) 5.20 (4.06, 6.34)
42001b 8520 2.23 22.22 0.54 0.81 8.45 (7.35, 9.55) 0.85 0.05 (�0.15, 0.26) 7.61 (4.64, 10.57)
42001e 8522 1.87 20.92 0.98 0.62 6.64 (5.78, 7.50) 0.71 0.14 (�0.07, 0.36) 5.19 (3.60, 6.78)
42002b 13 029 2.40 24.48 1.77 0.83 8.85 (7.97, 9.72) 1.03 0.24 (0.07, 0.41) 6.00 (4.87, 7.13)
42002e 13 030 1.92 23.31 0.48 0.58 6.45 (5.83, 7.07) 0.64 0.09 (�0.07, 0.25) 5.48 (4.04, 6.92)
42003b 11 454 2.27 23.66 0.64 0.84 8.81 (7.83, 9.79) 0.80 �0.05 (�0.22, 0.13) 9.75 (5.57, 13.94)
42003e 11 456 1.80 20.67 0.34 0.67 6.91 (6.12, 7.71) 0.68 0.01 (�0.17, 0.19) 6.77 (4.21, 9.33)
41001b 9744 3.90 26.71 1.04 1.19 13.30 (11.84, 14.76) 1.35 0.13 (�0.06, 0.32) 10.53 (7.63, 13.44)
41001e 9747 3.15 24.80 0.44 0.93 10.40 (9.29, 11.51) 1.00 0.08 (�0.10, 0.26) 8.98 (6.26, 11.69)
41002b 8642 3.53 21.55 1.03 1.28 13.39 (11.61, 15.17) 1.42 0.11 (�0.11, 0.32) 10.98 (7.16, 14.81)
41002e 8643 2.94 20.83 1.21 0.92 9.98 (8.72, 11.23) 1.07 0.16 (�0.05, 0.38) 7.64 (5.47, 9.80)
41006b 2805 3.27 18.40 0.86 1.31 13.10 (9.71, 16.48) 1.81 0.38 (�0.10, 0.86) 7.72 (5.01, 10.44)
41006e 2806 2.57 16.85 0.75 0.90 9.23 (6.90, 11.55) 1.16 0.29 (�0.17, 0.75) 6.09 (3.58, 8.59)
41010b 14 125 2.90 20.60 0.48 0.98 10.37 (9.30, 11.45) 0.95 �0.03 (�0.19, 0.14) 10.98 (6.88, 15.09)
41010e 14 128 2.35 18.85 0.68 0.69 7.54 (6.78, 8.30) 0.63 �0.09 (�0.26, 0.08) 9.11 (5.28, 12.94)
44004b 12 661 4.13 27.48 0.42 1.34 14.78 (13.34, 16.21) 1.43 0.07 (�0.09, 0.22) 12.95 (9.21, 16.69)
44004e 12 664 3.35 26.78 0.49 0.92 10.64 (9.70, 11.58) 0.96 0.04 (�0.11, 0.19) 9.82 (7.07, 12.56)
46001b 13 153 5.03 26.01 1.28 1.41 16.09 (14.65, 17.53) 1.67 0.19 (0.03, 0.35) 11.90 (9.62, 14.18)
46001e 13 153 4.37 22.98 1.00 1.00 12.15 (11.08, 13.21) 1.18 0.17 (0.00, 0.34) 9.43 (7.63, 11.22)
46003b 10 119 5.40 26.15 2.18 1.45 16.81 (15.11, 18.52) 1.75 0.20 (0.02, 0.39) 12.25 (9.71, 14.79)
46003e 10 120 4.77 24.54 0.59 1.04 12.90 (11.66, 14.13) 1.11 0.06 (�0.11, 0.24) 11.57 (8.36, 14.78)
46002b 10 107 5.03 21.48 0.21 1.36 15.48 (13.79, 17.18) 1.41 0.04 (�0.15, 0.22) 14.50 (9.58, 19.42)
46002e 10 108 4.39 17.12 1.40 1.06 12.26 (10.83, 13.69) 1.37 0.30 (0.06, 0.53) 8.51 (7.00, 10.03)
46005b 11 569 5.27 21.42 1.15 1.51 16.83 (15.04, 18.61) 1.84 0.22 (0.03, 0.42) 12.05 (9.59, 14.50)
46005e 11 570 4.68 19.53 1.63 1.09 12.92 (11.61, 14.23) 1.37 0.26 (0.05, 0.46) 9.23 (7.65, 10.81)
46006b 7307 5.43 20.29 0.49 1.44 16.39 (14.20, 18.57) 1.64 0.14 (�0.10, 0.38) 13.12 (9.02, 17.22)
46006e 7307 4.78 20.39 0.50 1.00 12.43 (10.93, 13.93) 1.10 0.10 (�0.13, 0.33) 10.66 (7.38, 13.94)
46059b 8645 4.97 23.42 0.53 1.27 14.81 (13.14, 16.48) 1.33 0.05 (�0.15, 0.24) 13.60 (8.94, 18.26)
46059e 8645 4.28 17.66 0.44 0.92 11.19 (9.85, 12.53) 0.98 0.06 (�0.17, 0.28) 10.23 (6.77, 13.70)
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test of Gomes and van Montfort (1986), yields much the
same results. If the threshold is fixed at the 97% quan-
tile of the whole datasets, the percentage of rejections
drops to only 10% and the estimates of 100-yr return
values based on the exponentiality assumption would
not change significantly, by which we mean that the
confidence intervals based on the two thresholds always
overlap.

Similar rejection percentages are obtained in the
three other 10-yr periods considered: 17% for 1958–67;
14% for 1972–81, and 19% for 1986–95. In view of the
amount and breadth of the data used, we conclude from
these results that the exponential distribution is a rather
good model for modeling the peak excesses of both
buoy and ERA-40 Hs data and will estimate return
values using the fitted exponential distributions.

Clearly, there are certain regions where the exponen-
tial assumption does not seem to apply. These occur
mainly at high latitudes in the storm track regions, and
in most of the cases the GPD estimate of � is greater
than zero, suggesting a type III rather than an expo-
nential tail, and hence, that the return value estimates
based on the exponential distribution are actually over-
estimates; compare, for instance, column 7 with column
10 of buoy location 46003 in Table 1. However, a closer
examination of the data reveals that in most of these
cases the 100-yr return value estimates based on the
GPD are too low, implying that the GPD is really an
inappropriate model for the data. For instance, the
buoy measurements at location 32302 yield an x100 es-
timate of 4.9 m based on the GDP, but this value is
exceeded three times in the period considered (in 1992,
1994, and 1995). A look at the kernel density estimate,
which is presented in the left panel of Fig. 3 along with

the fitted exponential and GPD densities, indicates that
the threshold has not been taken high enough since
neither the GPD nor the exponential provide a good fit
of the data. That the fitted GPD model is especially
unrealistic is clear from the fact that the upper limit of
its support (1.73, the estimate of �/�) is far below the
upper range of the data (about 2.75).5 The right panel
of Fig. 3 shows the densities obtained when setting the
threshold at the 97% quantile; both GPD and exponen-
tial provide reasonable fits to the data, but the “hump”
around 1.80 m suggests the presence of two populations
of extremes. In spite of the poor fit provided by any of
the models when exponentiality of the data is rejected,
one can say that the return value estimates based on the
exponential distribution are the more realistic and on
the conservative side. The exponential x100 estimate set-
ting the threshold at the 97% is 6.57 m with confidence
interval (5.56, 7.57).

Comparing the buoy estimates with the respective
ERA-40 estimates (assuming exponentiality of the
data), we see that the ERA-40 threshold and the � and
� estimates are lower than those of the buoy data; con-
sequently, the ERA-40 return value estimates are
lower.

Figure 4 compares 100-yr return value (x100) esti-
mates of the ERA-40 and the buoy data from the 1980–
89 and 1990–99 periods. A striking, and for us unex-
pected, feature of this comparison is that the ERA-40
underestimation of x100 can be reliably accounted for
using a linear correction. This linear association be-
tween the ERA-40 and buoy x100 estimates is present
for all the periods considered. Moreover, the estimates
of its parameters (slope and “constant term”) obtained
with data from different periods are compatible; that is,
they are approximately the same regardless of whether
we fit a line to the x100 estimates arising from the 1980–
89 dataset, from the 1990–99 dataset, from these two
datasets pooled together, or from the 1980–89 dataset.
To maximize the number of data points used to esti-
mate the linear association, we have put together the
x100 estimates from the two decades, 1980–89 and 1990–
99, which is a total of 38 data points. Since the estimates
at different buoy locations are associated with different
sample sizes because the availability of data varies and
therefore have different confidence intervals (see col-
umns 2 and 7 of Table 1), it would be inappropriate to
fit a line by giving equal weight to each estimate. We
have therefore opted for fitting a functional linear re-
lationship in which the variance of each estimate is
taken into account (Anderson 1984).

5 Estimates obtained with the maximum likelihood and with the
moment methods in this particular case yield lower estimates of
the shape parameter (�̂ � 0.72, �̂ � 0.24 and �̂ � 0.79, �̂ � 0.36,
respectively), and any of these yields a fit that is much more
plausible from a graphical point of view, but the lack of fit of the
GPD model remains. All three estimation methods provide simi-
lar estimates when the threshold is increased.

FIG. 2. The shades in the map indicate location where exponen-
tiality is rejected at a 5% level. The rejections are based on the
Anderson–Darling statistic results of the application of the POT
method to Hs data from 1990 to 1999 using the 93% sample quan-
tile as a threshold.
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The following relation between buoy and ERA-40
data 100-yr return values is found:

X100
buoy � 0.52 � 1.30X100

ERA�40. 	3


Equation (3) is plotted in Fig. 4.
The realization that the ERA-40 x100 estimates of Hs

can be reliably calibrated is quite a fortunate one. This,
however, is based on comparisons with buoy estimates
that, though quite reliable, are limited to a restricted
number of locations. To consolidate this linear calibra-
tion it is desirable to have an idea of how parameter
estimates obtained from ERA-40 compare with those
obtained from measurements on a global scale. This

can only be done by resorting to altimeter data. How-
ever, as explained in section 3c(2), these comparisons
can only be made in terms of the threshold u and of �̂
[two of the parameters used in the estimation of x100;
see Eq. (1)]. The u and � estimates were obtained from
the TOPEX and collocated ERA-40 data from January
1993 to December 2001. Again, the 93% quantile of the
data was used as the threshold, and only data for which
the exponentiality of the data was not rejected are con-
sidered. The Anderson–Darling statistic gives only 12%
of rejections, providing further evidence of the expo-
nential character of Hs data. Figure 5 presents scatter-
plots of the ERA-40 estimates versus the TOPEX es-

FIG. 3. Kernel density estimates (full line) and fitted exponential (dashed line) and GPD densities (dotted line) from
buoy data at location 32302. (left) Threshold fixed at the 93% quantile. (right) Threshold fixed at the 97% quantile.

FIG. 4. Illustration of the linear relationship between the Hs 100-yr return values estimated
from ERA-40 and buoy data.
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timates. To compare the relationships between ERA-
40 and TOPEX with those between ERA-40 and buoy,
we have computed u and �̂ for buoy and ERA-40 data
from January 1993 to December 2001; the values of
these are superimposed in the figure. Obviously, there
is more scatter in the comparisons between ERA-40
and TOPEX estimates than in those between ERA-40
and buoy estimates, but the relationship seems to be the
same in both cases. Thus, the results suggest that rela-
tion (3) can be applied globally.

It is also interesting to check whether the distribution
of an observation at a randomly selected cluster time

and the distribution of cluster peaks are approximately
equal. This can be done using the ERA-40 data since
the complete time series at each location are available.
The ERA-40 estimates obtained when sampling the
data in the same way as the TOPEX data and those
obtained without subsampling the data (i.e., using the
complete time series in each location) were compared.
Figure 6 shows scatterplots comparing the thresholds
and estimates of � of the exponential distribution in the
two cases. The majority of the estimates of � arising
from the subsampled data are less than or equal to the
estimates obtained from the whole time series, the un-

FIG. 5. Scatter diagrams of (left) u and (right) � estimates from TOPEX vs ERA-40 data with the buoy estimates vs those from
ERA-40 superimposed. Estimates based on Hs data for Jan 1993–Dec 2001.

FIG. 6. Scatter diagrams of (left) u and (right) � estimates from ERA-40 vs subsampled ERA-40. Estimates based on Hs data for
Jan 1993–Dec 2001.
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derestimation being higher for higher values. This does
not invalidate the approximate equality of the distribu-
tions, which is an asymptotic property. It shows, how-
ever, that the presently available amount of altimeter
data is not sufficient for the estimation of extreme val-
ues and accentuates the importance of datasets such as
ERA-40 in obtaining such estimates. Still, the discrep-
ancy between the estimates could probably be ac-
counted for by estimating upper bounds of the esti-
mates of the undersampled data as described by Rob-
inson and Tawn (2000).

Preliminary Hs 100-yr return value estimates based
on the ERA-40 data were presented in Caires and Sterl
(2003a). The present estimates, however, are more re-
liable because in order to obtain Eq. (3) we now use
more data and a functional linear relationship instead
of simple linear regression. Caires and Sterl (2003a)
were also less stringent in their identification of clusters
belonging to the same storm, having required clusters
to be 18 h apart instead of the 48-h limit used here;
while this had no significant effect on the estimates of
x100, it did have an effect in the results of the Anderson–
Darling tests.

Motivated by deficiencies of the ERA-40 Hs dataset,
mainly by some overestimation of low wave heights and
underestimation of high wave heights, Caires and Sterl
(2005) produced a corrected version of it, the C-ERA-
40 dataset, using a nonparametric correction method
based on nonparametric regression techniques (e.g.,
Caires and Ferreira 2005). Although C-ERA-40 repre-
sents a considerable improvement of the ERA-40 Hs

dataset, it still shows some underestimation of high
quantiles, so its return value estimates would also re-
quire a linear correction (smaller than the present one,
though); for this reason we have chosen to base our
analysis on the original ERA-40 Hs data.

b. Wind speed

The same procedures used for analyzing Hs were also
used to analyze the U10 data. One thing that became

immediately clear was that the application of the POT
method required a rather high threshold. For example,
fixing the threshold at the 97% quantile of the whole
data gives good fits in only about 60% of the cases. As
in the case of Hs, the most problematic locations are
those with higher mean U10 climate and the lack of fit
is apparently due to the coexistence of two populations
of extremes. Although raising the threshold would be
an option, the required increase would depend very
much on the location, and the corresponding sample
sizes would be too small.

The strategy that we adopted was to base our analysis
on U2

10 rather than on U10. This can be partly motivated
by the fact that the wind velocities subtracted by their
means are sometimes assumed normally distributed
with mean 0, which implies that the wind speed has a
distribution close to the Rayleigh, and hence its square
has a distribution close to the exponential. (The assess-
ment of this assumption is difficult and outside the
scope of this study.) Our main argument to switch from
U10 to U2

10, however, rests on the fact Galambos (1987)
that the rate of convergence at which the tail of the
distribution function of the observations can be ap-
proximated by the tail of the GPD in the case of dis-
tributions such as the normal, which are rather concen-
trated around the mean can be very slow, demanding
comparatively high thresholds/large sample sizes. In-
deed, the histogram of the whole U10 dataset reveals a
rather concentrated distribution, not dissimilar to a
normal one (in contrast with that of Hs data, e.g.),
which explains why the application of the POT method
to U10 will not be very successful; see Fig. 7. The dis-
tribution of U2

10, on the other hand, is much more
skewed and “nonnormal” than that of U10, and hence
more suited to the application of the POT method.
Note that this phenomenon matches what happens in
theory: although the convergence required by the POT
method is slow in the case of normal random variables,
it will be rather fast with their squares, which are
roughly chi-square variables.

FIG. 7. Kernel density estimates of (left) U10 and (right) U2
10 ERA-40 data at a location in the Southern Hemisphere

storm track.
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Cook (1982) also advocates using U2
10 instead of U10,

not only because of the higher rate of convergence of
the former, but also because in many cases engineers
are more interested in dynamic pressure, which is pro-
portional to U2

10.
Fixing the threshold at the 97% quantile of the data

we have applied the POT method to buoy and ERA-40
U10 data from the periods 1980–89, 1990–99, and 1980–
99. Table 2 presents some results for the period 1990–
99. The information in the table is organized in the
same way as in Table 1. Although the estimates are
based on U2

10, the values of u, the estimates of x100, and
the confidence intervals associated with the latter are,
for U10, given in meters per second. It is straightforward
to convert quantities pertaining to U2

10 into quantities
pertaining to U10 (simply take the square root). To con-
vert the variance of an estimate based on U2

10 into the
variance of an estimate related to U10, we compute the
approximate variance of x̂100 using the relation
var(x̂100) � var(x̂2

100)/(4x2
100). No conversion was applied

to the estimates of � since they have no interpretation
in terms of U10.

The exponentiality of the data is rejected in three
cases for the buoy data and in one case for the ERA-40
data; the corresponding values of the Anderson–
Darling statistic are italic in Table 2. As in the case of
Hs data the rejection rate (at least in the case of buoy
observations) is above the expected proportion of re-
jections. In the application of the POT method to the
ERA-40 data from the four 10-yr periods of 1958–67,
1972–81, 1986–95, and 1990–99, the Anderson–Darling
statistic gives about 20% of rejections in each of the
periods. Just as in the case of Hs data, the exponenti-
ality of U2

10 data is rejected in the regions with higher
U10 (Southern and Northern Hemisphere storm tracks).
Moreover, in most of the cases where exponentiality is
rejected the estimates of � in the GPD are above zero
(with confidence intervals in most cases not including
zero, as in the cases in Table 2). To conclude, the
amount of rejections is small and seems to occur due to
a wrong choice of threshold combined with the possible
coexistence of two populations of extremes in those
locations. In the estimates presented from now on we
will therefore assume exponentiality of the U2

10 data,

TABLE 2. Some results of the application of the POT method to buoy (codes ending with b) and ERA-40 (codes ending with e)
based on U2

10 data from 1990 to 1999. For an explanation see the text.

Buoy nt U (m s�1) �̂u AD �̂ (m s�1)�2 x̂100 (m s�1) �̂ (m s�1)�2 �̂ x̂100 (m s�1)

32302b 4390 10.53 11.11 1.44 18.36 15.48 (14.05, 16.92) 29.36 0.60 (0.04, 1.16) 12.62 (11.82, 13.42)
32302e 4390 10.17 9.99 0.96 18.32 15.16 (13.65, 16.67) 27.15 0.48 (�0.06, 1.02) 12.56 (11.44, 13.68)
51001b 9987 12.04 10.93 0.47 39.40 20.51 (18.94, 22.08) 35.89 �0.09 (�0.36, 0.18) 22.22 (15.80, 28.64)
51001e 9989 11.32 9.80 0.26 31.10 18.50 (17.10, 19.90) 32.96 0.06 (�0.22, 0.34) 17.73 (14.30, 21.16)
51002b 10 231 12.65 10.85 0.59 31.07 19.42 (18.13, 20.72) 26.25 �0.16 (�0.43, 0.11) 22.17 (15.35, 29.00)
51002e 10 231 10.66 10.42 0.79 19.11 15.70 (14.72, 16.68) 16.98 �0.11 (�0.38, 0.15) 17.08 (12.72, 21.44)
51003b 14 492 10.90 12.15 0.93 29.69 18.15 (17.08, 19.23) 28.14 �0.05 (�0.26, 0.16) 18.99 (15.02, 22.96)
51003e 14 493 10.34 10.04 1.21 23.75 16.46 (15.47, 17.45) 29.38 0.24 (�0.01, 0.49) 14.37 (12.94, 15.81)
51004b 11 693 11.86 12.70 2.29 24.62 17.79 (16.75, 18.84) 17.56 �0.29 (�0.57, �0.01) 23.55 (13.56, 33.54)
51004e 11 693 10.99 8.49 0.32 21.09 16.22 (15.17, 17.28) 20.20 �0.04 (�0.32, 0.23) 16.69 (13.18, 20.20)
42001b 8520 11.67 16.20 0.24 45.40 21.72 (20.13, 23.30) 44.81 �0.01 (�0.25, 0.22) 21.99 (16.62, 27.36)
42001e 8522 10.76 15.26 0.86 35.63 19.41 (18.00, 20.82) 42.14 0.18 (�0.07, 0.44) 16.91 (14.38, 19.44)
42002b 13 029 12.27 18.01 0.75 45.98 22.25 (21.01, 23.49) 51.46 0.12 (�0.07, 0.31) 20.14 (17.39, 22.89)
42002e 13 030 11.09 16.22 0.88 40.57 20.57 (19.37, 21.76) 46.89 0.16 (�0.04, 0.35) 18.14 (15.79, 20.49)
42003b 11 454 12.30 15.25 0.73 64.54 24.99 (23.18, 26.79) 54.28 �0.16 (�0.38, 0.06) 30.08 (20.00, 40.16)
42003e 11 456 10.67 13.78 0.57 42.74 20.56 (19.13, 21.99) 46.30 0.08 (�0.14, 0.31) 19.11 (15.66, 22.57)
41001b 9744 15.14 18.67 0.60 69.17 27.39 (25.60, 29.18) 76.53 0.11 (�0.12, 0.33) 25.01 (20.85, 29.18)
41001e 9747 13.88 18.86 1.20 59.37 25.31 (23.75, 26.87) 74.48 0.25 (0.03, 0.48) 21.03 (18.74, 23.33)
41002b 8642 13.96 16.67 0.23 67.26 26.34 (24.38, 28.31) 64.00 �0.05 (�0.28, 0.19) 27.68 (20.13, 35.24)
41002e 8643 13.58 17.28 0.61 54.68 24.33 (22.69, 25.97) 59.61 0.09 (�0.14, 0.32) 22.54 (18.57, 26.52)
41006b 2805 14.18 14.48 0.29 63.10 25.07 (22.23, 29.16) 58.96 �0.07 (�0.51, 0.38) 27.41 (13.60, 41.21)
41006e 2806 12.31 13.63 0.63 55.08 23.43 (20.14, 26.72) 70.87 0.29 (�0.22, 0.79) 19.17 (14.80, 23.54)
41010b 14 124 13.08 15.58 0.37 55.29 24.03 (22.63, 25.44) 56.81 0.03 (�0.16, 0.22) 23.44 (19.30, 27.58)
41010e 14 128 11.70 14.76 0.15 46.64 21.84 (20.56, 23.13) 45.22 �0.03 (�0.22, 0.16) 22.50 (17.95, 27.06)
44004b 12 661 15.47 17.75 0.48 73.25 28.06 (26.39, 29.73) 75.35 0.03 (�0.17, 0.23) 27.33 (22.34, 32.31)
44004e 12 664 14.66 19.19 0.45 60.84 25.98 (24.62, 27.33) 66.28 0.09 (�0.09, 0.27) 24.07 (20.73, 27.40)
46001b 13 153 15.69 18.00 1.48 69.46 27.69 (26.09, 29.29) 88.01 0.27 (0.05, 0.49) 23.05 (20.80, 25.29)
46001e 13 153 15.08 16.99 1.33 64.62 26.61 (25.16, 28.05) 80.81 0.25 (0.05, 0.45) 22.36 (20.24, 24.48)
46003b 10 119 15.58 18.42 0.63 75.94 28.52 (26.58, 30.46) 89.12 0.17 (�0.06, 0.41) 24.84 (21.19, 28.48)
46003e 10 120 15.68 17.87 0.78 58.68 26.18 (24.69, 27.67) 70.63 0.20 (�0.02, 0.42) 22.74 (20.24, 25.25)
46002b 10 107 14.18 16.34 0.65 73.40 27.28 (25.39, 29.17) 82.99 0.13 (�0.10, 0.36) 24.39 (20.37, 28.40)
46002e 10 108 14.11 16.38 1.10 63.86 25.92 (24.23, 27.61) 67.78 0.06 (�0.15, 0.28) 24.54 (20.07, 29.01)
46005b 11 569 14.77 20.86 0.59 68.52 27.24 (25.57, 28.90) 71.82 0.05 (�0.15, 0.25) 26.03 (21.25, 30.80)
46005e 11 570 14.98 17.16 1.75 62.31 26.24 (24.74, 27.74) 80.43 0.29 (0.07, 0.51) 21.66 (19.70, 23.62)
46006b 7307 15.28 15.34 0.63 61.15 26.12 (24.02, 28.21) 69.90 0.14 (�0.15, 0.44) 23.47 (19.27, 27.67)
46006e 7307 14.87 16.79 0.69 55.70 25.20 (23.42, 26.97) 64.65 0.16 (�0.10, 0.42) 22.39 (19.00, 25.79)
46059b 8645 13.89 18.37 0.36 50.74 23.96 (22.37, 25.55) 53.29 0.05 (�0.18, 0.28) 22.94 (18.52, 27.37)
46059e 8645 13.57 15.40 0.28 51.27 23.67 (22.03, 25.32) 55.85 0.09 (�0.15, 0.33) 22.02 (18.08, 25.96)
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since this assumption seems to apply to the majority of
the data, with the caveat that our estimates at locations
of high U10 may be conservative.

The return value estimates computed from the buoy
are in most cases higher than those computed from
ERA-40, which is consistent with the underestimation
of high values of U10 by ERA-40 reported by Caires
and Sterl (2003b). Figure 8 compares the two types of
estimates obtained with the data from the 1980–89 and
1990–99 periods. Fitting a functional linear relationship
to these estimates yields

x100
buoy � 2.94 � 0.94x100

ERA�40. 	4


This straight line is represented in Fig. 8 together
with the pairs of estimated return values. As with Hs

data, it is clear that the return values computed from
ERA-40 data can be reliably calibrated using Eq. (4).
The main difference relative to the straight line for Hs

is that the scatter around Eq. (4) is somewhat greater,
and not all ERA-40 estimates of x100 for U10 are un-
derestimates—in some locations, the correspondence
between the ERA-40 and buoy estimates is quite good.

This last observation suggests that the quality of the
ERA-40 estimates of U10 x100 depends on the buoy
location. An explanation for this dependence may lie in
the data assimilated into ERA-40. ERA-40 benefited
from the assimilation of some NOAA/NDBC buoy
wind speed measurements present in the Comprehen-
sive Ocean–Atmosphere Data Set (COADS; Woodruff

et al. 1998). Although it is difficult to pinpoint the pre-
cise buoy measurements that were, if at all, used in the
creation of the ERA-40 data, it is likely that the loca-
tions at which the ERA-40 estimates compare very well
with the buoy estimates are those at which the original
buoy data were used in the creation of ERA-40.6

To investigate whether the linear correction given by
Eq. (4) can be reliably applied to global estimates based
on the ERA-40 data, we resort to comparing the POT
estimates obtained with ERA-40 with those obtained
with altimeter data. The POT method was applied to
TOPEX and collocated ERA-40 data from January
1993 to December 2001, using again the 97% quantile
of the data as the threshold, and values of u and esti-
mates of � were obtained. Figure 9 presents scatterplots
of the ERA-40 estimates versus the TOPEX estimates,
with the corresponding buoy and ERA-40 pairs of es-
timates superimposed. The plots only present data for
which exponentiality was not rejected for both the al-
timeter and ERA-40 data, which make up 87% of the
data. It is clear from the plots that the pairs of buoy and
ERA-40 estimates lay within the scatter of the pairs of
TOPEX and ERA-40 estimates, so (4) does apply glo-
bally. This assessment justifies the application of (4) to
obtain the global ERA-40 U10 100-yr return value esti-
mates used in the sequel.

6 It should be noted that no Hs buoy measurements were used
in the production of the ERA-40 data and therefore this problem
did not arise in the comparison of ERA-40 and buoy Hs data.

FIG. 8. Illustration of the linear relationship between the U10 100-yr return values
estimated from ERA-40 and buoy U10 data.
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5. ERA-40 estimates

a. Significant wave height

Figure 10 presents global maps of the 100-yr return
values of Hs computed using different 10-yr periods as
well as the whole dataset, assuming the exponentiality
of the peak exceedences and corrected by Eq. (3). The
storm tracks of the Southern and Northern Hemi-
spheres can be easily identified; the highest return
value estimates from all the decadal datasets occur in
those regions. The width of the 95% confidence inter-
vals of the estimates is about 20% of the estimate in
those coming from 10-yr periods and about 10% when
considering the whole dataset.

Statistically significant differences between the re-
turn values estimated from the three different decades
occur only in a small number of regions: in the North
Atlantic (an increase in the region around 51°–56°N,
20°W and a decrease in the region around 42°N, 28°W
when comparing the estimates with data from 1986 to
1995 relative to those obtained with data from 1972 to
1981) and North Pacific (an increase in the region
around 40°N, 150°E–180° when comparing the esti-
mates with data from 1972 to 1981 with those obtained
with data from 1958 to 1967) storm tracks and the west-
ern tropical Pacific. The changes in the storm tracks
mirror the decadal variability in the Northern Hemi-
sphere.

Several earlier studies have found high correlations
between the North Atlantic wave pattern and the North
Atlantic Oscillation (NAO) index7; see, for example,

Lozano and Swail (2002). More precisely, the North
Atlantic storm track varies according to the NAO in-
dex. During periods when the NAO index is positive
the storms tend to move from North America in the
direction of the Norwegian Sea. On the other hand,
when the NAO index is negative the storms move in the
direction of the Mediterranean Sea (see Rogers 1997;
Fig. 3), and the wave conditions are milder (see Wang
and Swail 2001). From the beginning of the 1940s to the
beginning of the 1970s the NAO index exhibited a
downward trend, the index being negative from 1958 to
1967 (see, e.g., Lozano and Swail 2002; Fig. 2). From the
beginning of the 1970s the trend was positive, the pe-
riod between 1972 and 1981 being characterized by
both positive and negative NAO index years. From
1986 to 1995 the index was always positive. The change
in the pattern and intensity of the 100-yr return values
in the North Atlantic basin is completely in line with
these decadal changes of the NAO index. The higher
estimates from the period 1958–67 are lower and lo-
cated to the south of those of the later periods. The
pattern of the estimates for the period 1972–82 is char-
acterized by two high lobes, one due to the positive
NAO index years and another due to the negative
NAO index years. The highest estimates, which are also
those with the most northerly peak, are from the period
1986–95, the period during which the NAO index was
at its highest.

The plots in Fig. 10 show a clear and strong increas-
ing trend in the estimates of the 100-yr return values
from the three decadal periods in the North Pacific
storm track, especially from the first to the second pe-
riod. This is in line with the results of Graham and Diaz
(2001). There is some discussion about the reasons for
this increase. Graham and Diaz suggest the increasing

7 A measure of the difference of the sea surface pressure be-
tween Reykjavik (Iceland) and Ponta Delgada (Portugal).

FIG. 9. Scatter diagrams of (left) u and (right) � estimates from TOPEX vs ERA-40 data, with the buoy estimates vs those from
ERA-40 superimposed. Estimates based on U10 data for Jan 1993–Dec 2001.
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sea surface temperatures in the western tropical Pacific
(region between 20°S and 5°N, 155°E and 180°) as a
plausible cause. However, further research is still
needed to determine the exact causes.

In the region between 20°S and 5°N, 155°E and 180°
there is a statistically significant increase in the return
value estimates obtained with data from the period
1972–81 relative to those obtained with data from 1958–
67. This is the same region where Graham and Diaz
(2001) report an increase in the sea surface tempera-
tures and, as we will see in the next section, it is due to
an increase in wind speed from one period to the next.

Figure 10 also presents Hs x100 estimates based on the
whole ERA-40 data from 1958 to 2001. These estimates
are also not compatible, in the sense that the corre-
sponding confidence intervals do not intersect, with
those from the different decadal periods in the regions
mentioned above, especially when compared with the
estimates from the first period. In accordance with the
estimates obtained from the different periods, this plot
shows that the most extreme wave conditions are
clearly in the storm track regions and that the highest
return values occur in the North Atlantic. The latter
fact may be surprising since some readers might expect
the highest return value estimates to be in the Southern

Hemisphere storm track region, where average condi-
tions are higher. The explanation for this apparent con-
tradiction is that the variance of the data determines to
a certain extent the character of extremes and, even
though waves in the Southern Hemisphere storm track
region are usually higher, they have smaller standard
deviations than those in the North Atlantic storm track.

b. Wind speed

Figure 11 presents global maps of 100-yr return value
estimates of U10 computed using data from the periods
1957–67, 1972–81, 1986–95, and 1958–2001, assuming an
exponential tail for U2

10 and calibrating the estimates
using Eq. (4). The width of the 95% confidence inter-
vals of the estimates is about 20% of the estimate in
those coming from 10-yr periods and about 10% when
considering the whole dataset. The spatial pattern of
the x100 estimates is quite similar to that of the Hs. The
highest values are found in the storm tracks and the
lowest in the Tropics. Again, the highest values are in
the North Atlantic. There are some high x100 estimates
in the regions close the ice boundaries; these are prob-
ably spurious results due to the variability of the ice
coverage in those regions. The highest U10 x100 esti-

FIG. 10. Corrected 100-yr return value estimates of Hs based on ERA-40 data from three different 10-yr periods and the whole
ERA-40 period as indicated.
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mates are upwind of the corresponding Hs x100 esti-
mates. The x100 estimates from the various 10-yr peri-
ods are significantly different in the same regions where
significant differences were obtained for the return
value estimates of Hs. The variation of x100 estimates of
U10 is consistent with the explanations we gave for the
variation of x100 estimates of Hs. In the region between
20°S and 5°N, 155°E and 180° there is a significant
increase in the U10 x100 estimates from data from the
period 1972–81, relative to those from data from 1958–
67. This can be clearly seen comparing the top-left
panel with the top-right panel of Fig. 11. The tongue of
low winds in the western tropical Pacific has clearly
shrunk. We have looked at the ERA-40 data in this
area and there is a clear increase in the mean U10 over
this area from 1958 to 1972 and we have found similar
increases in other datasets. The reason for this increase
is, however, unknown to us.

6. Discussion and conclusions

We have presented global 100-yr return value esti-
mates of Hs and U10 based on the ERA-40 dataset.
These estimates have been directly assessed against es-

timates from buoy measurements and indirectly against
estimates from TOPEX altimeter measurements. We
have also looked at the effects of climate variability on
the estimates.

Based on the application of the POT method to buoy,
TOPEX, and ERA-40 Hs data we have concluded that
in the majority of cases the tail of Hs data is exponen-
tial. Using this as a model, we have then obtained glob-
al x100 estimates from the ERA-40 data. Since ERA-40
data underestimates the high values of Hs, it is neces-
sary to apply a correction based on a linear relationship
to the return value estimates. Although the determina-
tion of this correction was based only on buoy x100 es-
timates, the estimates and thresholds obtained from the
POT analysis of TOPEX altimeter data support the
validity of the proposed relationship. Corrected global
estimates based on three different 10-yr periods of
ERA-40 data and on the whole dataset were given, and
it was shown that estimates obtained from the different
periods differ in the Northern Hemisphere storm tracks
and in the western tropical Pacific. The differences in
the storm tracks can be attributed to the decadal vari-
ability in the Northern Hemisphere, and we have linked
them to changes in the global circulation patterns, most

FIG. 11. Corrected 100-yr return value estimates of U10 based on ERA-40 data from three different 10-yr periods and the whole
ERA-40 period as indicated.
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notably to the NAO index. As expected, the x100 esti-
mates of Hs are higher in the storm tracks and lower in
the Tropics. The most extreme wave conditions are ex-
pected to occur in the North Atlantic.

We have tried to analyze the ERA-40 U10 data using
the same procedures applied to the Hs data. However,
we concluded that, due to the distributional character-
istics of U10 data, return value estimates should be
based on U2

10 rather than on U10 data. In most cases, the
exceedances of U2

10 data were found to be approxi-
mately exponentially distributed. Systematic differ-
ences were found between the x100 estimates of U10

from buoy and ERA-40 data, and the latter were also
corrected through a linear relationship. Estimates
based on TOPEX data indicate [from what was said in
the paragraph following Eq. (3)] that this linear correc-
tion is valid globally. There were significant differences
between the U10 return value estimates arising from the
three 10-yr periods of data, and these differences are
consistent with those detected in the case of Hs.

About 80% of data comply with the exponentiality
assumption. The 20% of the cases in which exponenti-
ality does not apply occur mainly in locations of mod-
erate to high wind and wave conditions. In those loca-
tions the POT method yields tails that are lighter than
exponential, but these are a consequence of poor fits,
and not a sign that a light-tailed GPD is an appropriate
model for the peak excesses. Our analysis indicates that
the required threshold for a valid POT analysis in these
regions is too high for the amount of data available and
that there may actually be two coexisting extreme
populations.

The establishment of the exponential distribution as
the approximate distribution of the peak excesses of Hs

and U10 data may be useful in a number of problems.
For instance, it could be used to assess the capacity of
numerical models to reproduce extreme winds and
waves. The reader, however, should be aware that there
are people in the extremes community that (in certain
situations) advocate fitting the GPD rather than the
exponential even when the exponential seems a plau-
sible model (see Coles and Pericchi 2003).

There are some caveats about the return value esti-
mates we present here:

• The assumption of exponentiality of the data does
not apply in some locations. In such cases the esti-
mates tend to be conservative.

• Choosing the threshold at a fixed percentile of the
data is a somewhat crude method. A case-by-case
analysis would improve the fits somewhat, but with
this amount of data this is an expedient method that
still gives rather good results.

• Due to resolution, tropical cyclones are not resolved
by the ERA-40 system. Therefore, the estimated re-
turn values in the regions of tropical storms may be
underestimated.

• The ERA-40 model does not account for shallow wa-

ter effects, and therefore the estimates may not be
valid in coastal regions.

• The estimates given here are based on data averaged
on a 1.5° � 1.5° region or equivalently a period of
about 3 h; these values can be exceeded at short time/
space scales.

This research shows once more that the estimation of
extremes is not a straightforward business and that
more work on general as well as more specific tech-
niques needs to be done:

• The choice of the appropriate threshold is a well-
known problem that needs to be addressed from both
mathematical and modeling points of view.

• Although a 45-yr global dataset is definitely a con-
siderable amount of data, still more data are needed
to answer questions about the possible existence of
different extreme populations in regions with high
mean conditions and to be able to model climate vari-
ability.

• Reliable ways to obtain estimates from altimeter data
need to be devised—still in the framework of the
POT method since the amount of data will continue
to be too small for the annual maxima method. The
estimates obtained here from the TOPEX data sug-
gest that the amount of data is not enough for asymp-
totic assumptions such as the equality of distributions
of randomly sampled excesses and peak excesses to
hold in a satisfactory way: But how much more data
are needed? Would it be enough to pool altimeter
measurements from different satellite missions?
There would still be the problem of how to go from
the GPD parameter estimates to the 100-yr return
value estimates. One way would be to obtain esti-
mates of � from the reanalysis, or other data, and
combine these with the altimeter GPD parameter es-
timates to obtain x100 estimates. Another would be to
define a point process, as done by Anderson et al.
(2001), and obtain estimates of mean storm duration
by modeling the variability of Hs in each region using
the method suggested by Baxevani et al. (2004).
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