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Abstract 

 

The skill of stratospheric and tropospheric predictors in predicting near-surface 

quantities at the extended range (~10 days-2 months) has been investigated, using 40 

years of reanalysis data from the European Centre for Medium-Range Weather 

Forecasts.  The predictors are 1) the geopotential height (Z) at various levels, 2) the 

difference between Z and the 1000 hPa-geopotential  (Z-Z(1000)), and 3) the 

temperature at various levels. The predictors are averages over the area north of 65ºN.  

The predictands are Z(1000) averaged over the same area, and geographical fields of 

several near-surface quantities.  The predictive skill has been investigated for different 

lead-times between predictor and predictand, and different averaging periods of the 

predictor and the predictand.   

 

The results show that the predictive skill of Z in the troposphere is mainly due to the 

predictive skill of sea-level pressure, whereas the predictive skill of Z in the 

stratosphere is mainly due to the predictive skill of stratospheric temperature.  The 

predictive skill is largest in the end of December, for the predictor Z at 50 hPa and the 

temperature between 250 and 50 hPa.  The temperature has also significant predictive 

skill in the upper stratosphere in the summer.  In winter, for lead-times larger than 5 

days the stratospheric Z is a better predictor of the daily Z(1000) than Z(1000) itself.  

Whereas the predictive skill of the stratospheric Z is largest for zero lead-time, the 

predictive skill of the stratospheric Z-Z(1000) and temperature are largest for lead-

times of about ten days, evidencing the finite propagation time of geopotential 

anomalies from the stratosphere to the surface.  The skill of the stratospheric height 

and temperature in predicting the wintertime monthly-mean field of Z(1000), is 
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mainly limited to the region north of 60ºN.  The stratospheric predictive skill for the 

monthly-mean fields of the zonal wind at 850 hPa and the near-surface temperature is 

particularly large around 60ºN.  The correlation pattern of the near-surface 

temperature field and the stratospheric temperature is qualitatively similar to the 

corresponding pattern for the Arctic Oscillation index, except at middle latitudes over 

Eurasia and over the subtropical Pacific.  
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1. Introduction 

 

Recent studies have shown that the stratosphere can be used as a predictor of the 

troposphere on time scales beyond the deterministic time scale of ~10 days.  Baldwin 

et al. (2003) applied a statistical model in which the Northern Annular Mode (NAM) 

at levels between 1000 and 10 hPa was used to predict the monthly-mean Arctic 

Oscillation (AO).  The NAM was defined at each level as the leading empirical 

orthogonal function (EOF) of slowly varying hemispheric geopotential at that level, 

and the AO was defined as the NAM at 1000 hPa.  Their results show that the 

predictability of the AO is greatest in winter, and that the stratospheric NAM is a 

better predictor of the AO than the AO itself.  Charlton et al. (2003) demonstrated that 

using the stratospheric NAM as a predictor of the AO results in a gain of skill of ~5% 

over a troposphere-only predictor.  Christiansen (2004) computed statistical forecasts, 

using as predictor the zonal-mean zonal wind at 60ºN at different altitudes in the 

troposphere and the stratosphere, and as predictands the zonal-mean zonal wind near 

the surface and the near-surface temperature in northern Europe.  His results show 

that the inclusion of stratospheric information increases the skill of the daily forecast 

on lead-times larger than 5 days.  The sensitivity of the troposphere to the stratosphere 

was further illustrated by Charlton et al. (2004), who showed that forecasts of the 

troposphere, computed with a high resolution numerical weather prediction model, 

significantly depend on the initial state of the stratosphere. 

 

The geopotential height in the stratosphere, from which predictors are computed by 

Baldwin et al. (2003) (hereafter denoted as B2003) and Charlton et al. (2003), not 
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only depends on the state of the stratosphere but also on the state of the troposphere.  

In particular, it depends, as expressed by Eq. (1), on the sea-level pressure, the 

temperature in the troposphere and the temperature in the stratosphere: 
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where Z(p) is the geopotential height at the (stratospheric) pressure level p, Z(p) and p 

are in units of meters and hPa, respectively, and the other symbols have their usual 

meteorological meaning.  The Z(1000) is related to sea-level pressure (SLP) by the 

approximate relation SLP=1000+0.121 Z(1000) (Peixoto and Oort, 1992, Section 

7.1.2).  Thus, the predictive skill of the stratospheric height not only depends on the 

state of the stratosphere itself, i.e. on stratospheric temperature, but in addition on the 

state of the troposphere, i.e. on tropospheric temperature and sea-level pressure.   

 

New in the present study is that the predictive skill of the stratosphere itself will be 

studied, i.e. using the stratospheric temperature rather than the stratospheric 

geopotential or NAM as predictor.  In addition, the predictive skill of Z(p) will be 

studied, as well as that of Z(p)-Z(1000).  In the latter predictor the contribution to the 

predictive skill of Z(p) by sea-level pressure is virtually eliminated.  The predictors 

will be computed as averages of these quantities over the polar cap north of 65ºN.  

One advantage of using these predictors is that they can be computed relatively easy 

from atmospheric circulation data.  A second advantage is that for the polar cap-mean 

stratospheric temperature the actual values are available on the Web, via 

http://www.cpc.ncep.noaa.gov/products/stratosphere/temperature/, facilitating the 

construction of actual extended-range forecasts.  As predictands the polar cap-mean 
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Z(1000), and geographical fields of Z(1000), the zonal wind at 850 hPa, and the 2-

meter  temperature will be used.  Geographical fields as predictand have not been 

used before in studies on stratospheric predictive skill.  The predictive skill for the 

polar cap-mean Z(1000) will be investigated for different lead-times and different 

averaging periods of the predictors and the predictands. 

 

2. Data and method  

 

The predictors and predictands are computed each day at 12 UTC of the period 1958-

2001, using analyses of the European Centre for Medium-Range Weather Forecasts 

(ECMWF) 40-year reanalysis (ERA-40) dataset (Simmons and Gibson, 2000).  They 

are computed at the 23 pressure levels for which these data are available, i.e. 1, 2, 3, 

5, 7, 10, 20, 30, 50, 70,100, 150, 200, 250, 300, 400, 500, 600, 700, 775, 850, 925, 

and 1000 hPa.  The horizontal resolution of the data is 2.5º latitude by 2.5º longitude.  

The predictors are, except for one result presented at the end of Section 3d, 

instantaneous values valid at time t1, whereas the predictands are averages over the 

period from t1+t0 to t1+t0+�, where t0 is the lead-time and � is the averaging period.   

 

The predictive skill will be expressed in terms of the percent variance, which is the 

fraction of the variance of the predictand that is accounted for by the predictor in a 

linear least-square regression, multiplied by 100%.  This fraction is equal to the 

square of the correlation coefficient.  The predictors and predictands are time series of 

44 elements (N=44), corresponding to a specific calendar-day of the years 1958-2001.  

Using a two-sided Student-t test with the statistic t=r((N-2)/(1-r2))½  to test the 

significance of a nonzero correlation coefficient r, it follows that r is significantly 
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nonzero at a 95%-level if its magnitude is larger than 0.30, corresponding to a percent 

variance larger than 9%. 

 

3.  Results  

 

a.  The annual cycle of the polar cap-mean geopotential height 

 

We will first consider the time-height distribution of the geopotential height, averaged 

over the polar cap north of 65ºN.  This quantity is one of the predictors used in this 

study.   To highlight interannual variations, anomalies are considered, which are the 

deviations from the long-term (1958-2001) mean annual cycle.  To obtain comparable 

magnitudes at different pressure levels, the anomalies at each level are divided by the 

standard deviation of the total 44-year time series of the anomalies at that level.  This 

scaled geopotential height anomaly will hereafter be denoted as Z*.  Fig. 1 shows the 

time-height distribution of Z*.  Note that prior to scaling the geopotential has been 

low-pass filtered by computing its 91-day average, and for conciseness only the 

period 1983-1997 is shown.  This distribution is very similar, both qualitatively and 

quantitatively, to the corresponding distribution of the AO-signature in the 

geopotential height as shown by Baldwin and Dunkerton (1999, their Fig. 6) for levels 

up to 10 hPa.  Thus, the downward propagation that occurs in the AO-signature time 

series is displayed similarly by the more easily computable polar cap-mean 

geopotential height.   

 

The long-term mean annual cycle of (Z*)2 as a function of height is shown in Fig. 2a 

for unfiltered data, and in Fig. 2b for low-pass filtered data.  In Fig. 2a the daily 
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values of the long-term mean of (Z*)2 have been averaged using Gaussian weighting 

with a full width at half maximum of 60 days.  As a result of the scaling, the annual 

average of the long-term mean of (Z*)2 is at all levels equal to one.  The largest values 

of the unfiltered (Z*)2 occur in January and February throughout the entire 

stratosphere.  The largest low-pass filtered values occur in December and January in 

the upper stratosphere, and about one month later in the lower stratosphere.  The low-

pass filtered distribution shows a second maximum during winter near the surface 

about one month later than the maximum in the stratosphere.   

 

b.  Predictive skill of Z(p), Z(p)-Z(1000), and T(p) 

 

We will now consider the skill of the polar cap-mean geopotential height at different 

levels in the troposphere and the stratosphere in predicting the polar cap-mean 

geopotential height at 1000 hPa.   This predictand can be considered as a proxy of the 

AO-index.  Monthly values for December, January and February 1958-2001 of the 

two quantities have a correlation of –0.94.  The applied AO-values are those obtained 

by Thompson and Wallace (2000).  As the AO-index has shown to be significantly 

related to weather in many regions (see, e.g., Thompson and Wallace 1998, 2000 and 

2001; Gong et al., 2001; Kryjov, 2002;  Bamzai, 2003), the large correlation implies 

that the same is true for the polar cap-mean Z(1000).  The predictor is the daily Z(p) at 

12 UTC at the available 23 pressure levels from 1000 hPa to 1 hPa, and the predictand  

Z(1000) is averaged over a period � of one month (31 days), with a lead-time t0 of 10 

days.   These values of � and t0 were also used by B2003.   The percent variance of 

Z(1000) accounted for by Z(p), as a function of pressure altitude and time of the year 

of the predictor, is shown in Fig. 3a.  The daily values of the percent variance have 
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been averaged using the same Gaussian weighting as in Fig. 2a, similar to the 

corresponding result of B2003 (their Fig. 2).  The maximum values of the percent 

variance, about 22%, occur at 50 hPa at the end of December.  Thus, the best 

predictable 31-day mean of Z(1000) is about the January-mean.  Percent variances 

larger than 10%, which are significantly non-zero at a more than 95% level, exist 

from November through March.  The maximum value in Fig. 3a is only slightly 

smaller than the maximum of about 24% that was found by B2003.  In B2003 the 

maximum occurs at a lower level, about 150 hPa, and later in the winter, in early 

February.  In B2003 the maximum at the end of December occurs near 100 hPa, and 

has nearly the same value as in the present study.  At 50 hPa the present values are 

slightly larger than those in B2003.  Like in B2003, a secondary maximum occurs in 

winter near the surface.  Its value, about 11%, is, however, much smaller than the 

19% found by B2003 (see their Fig. 2b).   

 

The stratospheric geopotential height is, as expressed by Eq. (1), determined both by 

sea-level pressure, or Z(1000), and by the vertical temperature distribution, or Z(p)-

Z(1000).  When using Z(p)-Z(1000) as a predictor instead of Z(p), the effect of sea- 

level pressure on the predictive skill is eliminated.  Fig. 3b shows the analogue of Fig. 

3a, but with Z(p)-Z(1000) as predictor instead of Z(p).  The differences between Figs. 

3a and 3b are very small, except in the troposphere, where the predictive skill of Z(p) 

is relatively large, but that of Z(p)-Z(1000) is very small.  Thus, the predictive skill of 

Z(p) in the troposphere is mainly determined by Z(1000), whereas in the stratosphere 

it is mainly determined by Z(p)-Z(1000), equivalent to an integral over the vertical 

temperature distribution.   Although the stratospheric Z(p)-Z(1000) is determined by 

the temperature in both the troposphere and the stratosphere, the small tropospheric 



 10 

and large stratospheric values in Fig. 3b suggest that the predictive skill of the 

stratospheric Z(p)-Z(1000), and of the stratospheric Z(p), is determined mainly by the 

predictive skill of the stratospheric temperature.  To investigate this, Fig. 3c shows the 

analogue of Figs. 3a,b, but with the polar cap-mean temperature as predictor.  Indeed 

in the stratosphere the predictive skill of the temperature is much larger than in the 

troposphere.  The largest percent variance occurs, rather uniformly, between about 

250 hPa and 50 hPa, from the middle of December to the middle of January.  Here its 

value is about 18%, which is slightly smaller than the largest values for the predictors 

Z(p) (Fig. 3a, 22%) and Z(p)-Z(1000) (Fig. 3b, 20%).  Although the stratospheric 

geopotential height is a slightly better predictor of Z(1000) than the stratospheric 

temperature, it is concluded that in the winter the latter quantity is still a useful 

predictor.  In the winter the predictive skill of the temperature in the upper 

stratosphere is small compared to that in the lower stratosphere.  Thus, the large 

predictive skill of Z(p) in the wintertime upper stratosphere (Fig. 3a) is mainly due to 

the predictive skill of the temperature in the lower stratosphere.  Fig. 3c shows that 

during summer the temperature has a statistically significant predictive skill in the 

upper stratosphere.  This predictive skill could be a manifestation of the influence of 

solar variability on the climate of the troposphere (Haigh, 2003).    Although the 

stratospheric height and temperature are predictors of the weather at the extended 

range, it should be noted that the physical reasons why the stratosphere affects surface 

weather may depend (in part) on other quantities, such as the wind field. 

 

To test the predictability of Z(1000), we performed a cross-validated forecast, in 

which artificial skill is avoided.  We removed one year at a time, and predicted for the 

removed year the value of Z(1000), using the linear least-squares regression 
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coefficients  that were computed from the remaining 43 years.  This was done 

separately for each calendar day and each level of the predictor Z(p).  The resulting 

cross-validated skill as a function of pressure altitude and time of the year of the 

predictor Z(p) is shown in Fig. 3d.  In the wintertime lower stratosphere the maximum 

predictive skill drops from 22% in Fig. 3a to 15% in Fig. 3d.  Thus, of the predictive 

skill in Fig. 3a about one third is artificial skill.  In the troposphere, Fig. 3d shows no 

significant predictive skill.  Thus, when Z(1000) is actually predicted with this 

scheme, Z(p) is a useful predictor only at lower stratospheric levels. 

 

Actual extended-range forecasts based on the actual stratospheric temperature can be 

made as follows.  The linear least-squares regression line relating the actual 

stratospheric temperature, Ta,  and the predicted value of  Z(1000), Zp(1000), is given 

by 
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where [x] and �(x) are, respectively, the long-term mean and the standard deviation 

(or interannual variability) of x, and r is the correlation coefficient of Z(1000) and T.   

The standard deviation of  Zp(1000) is equal to �(Z(1000))(1-r2)1/2.  With Eq. (2) the 

deviation of Zp(1000) from its long-term mean value, in units of �(Z(1000)), can be 

predicted from Ta, if the values of [T], �(T),  and r are known.  The value of Ta can be 

obtained, for example, from the website mentioned in Section 1.  This will be 

illustrated for T and Z(1000) as used in Fig. 3c, where T is taken at the 70 hPa level.  

The annual cycles of [T] and �(T), computed from the ERA-40 data of the period 

1958-2001, are shown in Fig. 4.  The annual cycle of r2 (*100%) is shown in Fig. 3c.  
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Here the large values of r2 in the wintertime lower stratosphere correspond to positive 

values of r.  A value, for example, of Ta = -60 ˚C on 1 January ([T]= -66.3 ˚C, �(T)= 

4.6 ˚C, and r=(0.19)½ ) gives (Zp(1000)–[Z(1000)])/�(Z(1000))=0.6, i.e. Zp(1000) is 

predicted to be 0.6 standard deviations larger than its long-term mean value; here 

Zp(1000) is the predicted average over the one-month period starting on 11 January.  

The values of [Z(1000)] and �(Z(1000)) are about 100 m and 50 m, respectively, 

throughout the winter.  Thus,  Zp(1000) = 130 m, with a standard deviation of 45 m, 

corresponding to a sea-level pressure of 1016 hPa, with a standard deviation of 5 hPa. 

 

c.  Predictive skill for different lead-times 

 

The differences between the skills of Z(p) and Z(p)-Z(1000) in predicting Z(1000) 

become particularly visible when they are considered as a function of altitude and 

lead-time, as shown in Figs. 5a,b.  The percent variance has been averaged over the 

months December, January and February (DJF), when, as shown in Fig. 3a, its values 

are largest; no Gaussian or other weighting has been applied.  Both the predictor and 

the predictand are instantaneous values at 12 UTC, unlike in Fig. 3, where the 

predictand is an average over 1 month.  As shown in Fig. 5a, for lead-times t0� 5 

days, the predictive skill of Z(p) is largest at the surface.  From t0=5 days to t0=6 days, 

however, the level of largest skill jumps from the surface to the 150 hPa level.  For 

further increasing t0 the pressure level of maximum skill gradually further decreases, 

to 30 hPa for t0 larger than about one month.  Thus, for lead-times larger than 5 days 

the stratospheric Z(p) is a better predictor of Z(1000) than the tropospheric Z(p).   

This agrees with the results of Christiansen (2004), who used the zonal mean zonal 

wind at 60°N as predictor and predictand.  Although Fig. 5 qualitatively agrees with 
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the corresponding result by Christiansen (2004, his Fig. 5), his predictive skill values 

are generally larger than those in the present study.  An explanation for this might be 

the difference in the used predictor and predictand.  Between 1000 hPa and 70 hPa the 

skill is largest at t0=0.  This is what ‘normally’ is expected for a predictor, as normally 

the near future is better predicted than the distant future.  At higher levels, however, 

the value of t0 with largest skill increases from 1 day at 50 hPa, 3 days at 20 hPa, to 

about 20 days above 10 hPa.  These results indicate that the skill of Z(p) in predicting 

Z(1000) is governed by three aspects: strength, memory and delay.  The strength of 

the tropospheric skill is large, but due to the short tropospheric memory it persists 

only for small lead-times.  The strength of the stratospheric skill is small, but due to 

the longer stratospheric memory it persists for longer lead-times.  The delay that 

exists at levels above 70 hPa evidences the non-zero time required for downward 

propagation of signals from the stratosphere to the surface.  

 

The corresponding pattern for the predictor Z(p)-Z(1000) (Fig. 5b) is very different 

from that for Z(p) (Fig. 5a).  Unlike for Z(p), for small lead-times the predictive skill 

of Z(p)-Z(1000) is small at all levels. Thus, the relatively large skill of Z(p) for small 

lead-times is, both in the troposphere and in the stratosphere, due to the skill of 

Z(1000).  The skill of Z(p)-Z(1000) is largest around 100 hPa for lead-times of about 

one to two weeks.  The skill of Z(p)-Z(1000) in predicting Z(1000) is determined by 

two aspects: memory and delay.  Due to the finite memory of the stratosphere, the 

predictive skill will, like that of a ‘normal’ predictor, decrease with increasing lead- 

time.  On the other hand, the non-zero downward propagation time of signals from the 

stratosphere to the 1000 hPa level causes a delay in predictive skill.  The net effect of 

these two aspects is that with increasing lead-time the skill increases for small lead-
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times, and decreases for large lead-times.  The corresponding pattern for the predictor 

T(p) is very similar to that for Z(p)-Z(1000) (not shown).   

 

d.  Predictive skill for different averaging periods of the predictand and the predictor 

 

We will now consider the DJF-averaged skill of Z(p) in predicting Z(1000) as a 

function of altitude and averaging period �, using lead-times t0 of 0 days (Fig. 6a) and 

10 days (Fig. 6b).  If t0=0 days and � less than about two weeks, then the best 

predictor of Z(1000) is Z(1000) itself.  For larger �, however, the best predictor is at 

stratospheric levels.  For example, the best predictor for the monthly-mean Z(1000) 

(�=31 days) is Z(100).  The level of largest predictive skill slightly increases with 

increasing value of �, up to 50 hPa for � more than two months.  Whereas for 

tropospheric predictors the predictive skill is largest for �=1 day (i.e.: no averaging), 

for stratospheric predictors the largest skill occurs for a longer averaging period.  For 

example, the largest predictive skill of Z(100) occurs for a value of  � of about three 

weeks.  Thus, although the skill of Z(100) of predicting individual days (�=1 day) 

decreases with increasing lead-time (see Fig. 5a), for predicting  time-averages the 

skill increases with increasing averaging period, as long as this period is less than 

about three weeks.  This effect is even stronger for predictions with a lead-time of 10 

days (Fig. 6b).  Note that the skill for �=1 in Figs. 6a and 6b is equal to the skill for, 

respectively, t0=0 days and t0=10 days in Fig. 5a.  The skill in Fig. 6b is largest 

between 70-100 hPa, for values of � of about two weeks. For averaging periods of 

more than three weeks, Z(50) is the best predictor.  The maximum in the stratospheric 

predictive skill in Fig. 6a and, particularly, in Fig. 6b can be interpreted as the result 

of two competing effects.  Firstly, the predictive skill for an average over a period � 
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increases with increasing �.  Secondly, the average skill for the individual days 

decreases with increasing �.  The first effect tends to increase the skill with increasing 

� and dominates for small �, whereas the second tends to decrease the skill and 

dominates for large �.  Consequently, there is an averaging period � where the skill is 

at a maximum. 

 

As the predictive skill is largest during winter (see Fig. 3), in Figs. 5 and 6 the 

attention was restricted to DJF-averages.  However, also within the winter there are 

considerable differences in predictive skill.  This is illustrated in Fig. 7a, which shows 

the skill of Z(50) in predicting Z(1000) as a function of averaging period � and, like in 

Fig. 3,  time of the year of the predictor, using a lead-time of 10 days.  The results 

have been filtered in the same way as those in Fig. 3.  Note that the skill for �=31 days 

in Fig. 7a is the same as that for 50 hPa in Fig. 3a.  As expected, the skill is largest 

during winter, but is different for different parts of the winter.  The tilted pattern 

shows that the value of � for which the skill is largest decreases during the course of 

the winter.  If, however, the time at the horizontal axis is defined as the centre of the 

period over which the predictand is averaged (Fig. 7b), rather than as the time of the 

predictor (Fig. 7a), then the tilting almost disappears and the largest predictive skill 

occurs in the second half of January, for a large range of �.  Thus, the predictive skill 

depends more strongly on the centre of the period to which the predictand applies than 

on the time of the predictor.  This may be interpreted as follows.  The predictive skill 

of a stratospheric predictor is expected to increase with increasing stratospheric 

persistence and with increasing strength of the coupling between the stratosphere and 

the surface.  The strength of the coupling can presumably be approximated by the 

strength at the centre of the averaging period.  The absence of tilting in Fig. 7b, 
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therefore, suggests that the seasonal variations in predictive skill are mainly due to 

seasonal variations in the strength of the coupling, and not to variations in persistence.  

The latter point is confirmed by the small variation of the 1/e (~0.37) autocorrelation 

time-scale of Z(50) during December, January and February.  For these months we 

computed a mean value of 29.6 days, with a daily standard deviation of only 3.7 days. 

 

In the results presented above the predictors are instantaneous values at time t1.  The 

question arises whether the predictive skill would increase if, in addition, the predictor 

would include information from prior to t1.  Although intuitively it might be assumed 

that the future is better predicted by the present than by the past, Figs. 5a,b show that 

this is not always true for stratospheric predictors, and Fig. 6b shows that 

stratospheric predictors can better predict time-averaged than instantaneous 

predictands.   The DJF-averaged skill of Z(p) in predicting Z(1000) as a function of 

altitude and averaging period � of the predictor is shown in Fig. 8.  Here the predictor 

is averaged over the period [t1- �, t1].  The lead-time is 10 days, and the predictand is 

averaged over a period of 31 days (i.e. the predictand is averaged over the period [t1 + 

10, t1 +40]).   For predictors in the upper stratosphere the predictive skill indeed 

slightly increases with increasing averaging period of the predictor, but in the lower 

stratosphere, where the predictive skill is largest, the skill decreases with increasing 

averaging period.  Thus, the best predictor of Z(1000) is the instantaneous 

geopotential height in the lower stratosphere. 

 

e. Predictive skill for geographical fields as predictand 
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In the results presented above, the predictand is the average of Z(1000) over the entire 

area north of 65ºN.   In the present subsection the predictand will instead be the 

geographical field of Z(1000) in the Northern Hemisphere.  The predictor is the daily 

Z(50) averaged over the area north of 65ºN, which was shown above to give the 

largest predictive skill of the area-mean of Z(1000) (see Fig. 3a).  In addition, the skill 

of the area-mean Z(50) in predicting the geographical fields of the zonal wind at 850 

hPa (U(850)) and the near-surface (2 meter level) temperature (T2m) will be 

considered.  Anomaly monthly-means of these fields for December, January and 

February 1958-2001 have been correlated with the anomaly daily area-mean Z(50), 

using a lead-time of 10 days.  For example, the December-mean has been correlated 

with Z(50) on 21 November.  The anomalies are deviations from the long-term mean 

(1958-2001) annual cycle.  For a time series of 3*44 elements, the correlation 

significantly deviates from zero at a 95% level if its magnitude is larger than 0.2. 

 

The field of the correlation between Z(50) and the field of Z(1000) (Fig. 9a) is 

dominated by a dipole pattern over the Atlantic sector, with positive values larger than 

0.3 in the Arctic, and negative values less than -0.3 around 45ºN.  If the Z(1000) 

averaged over the area north of 65ºN is used as predictor of the field of Z(1000) (Fig. 

9b), then the positive correlations in the Arctic become much smaller, whereas the 

negative correlations at middle latitudes weaken only slightly.  Thus, only in the polar 

region the stratospheric polar cap-mean geopotential is a better predictor of Z(1000) 

than the polar cap-mean of Z(1000) itself.  The correlation map between Z(50) and 

U(850) (Fig. 9c) is physically consistent with the correlation between Z(50) and the 

meridional pressure gradient that can be inferred from Fig. 9a.  A positive Z(50) 

anomaly corresponds to a weaker than average pressure gradient around 60ºN, which 
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in turn corresponds to a negative U(850) anomaly.  Similarly, a positive Z(50) 

anomaly corresponds to a stronger than average pressure gradient south of the middle 

latitude minimum in Fig. 9a, which in turn corresponds to a positive U(850) anomaly.  

The correlation map between Z(50) and T2m (Fig. 9d) is consistent with that of Z(50) 

and U(850).  If the Z(50) anomaly is positive, then the negative U(850) anomaly 

around 60ºN induces a negative T2m anomaly over Siberia, less influenced by the 

relatively warm westward oceans, and a positive T2m anomaly between Canada and 

Iceland, less influenced by the cold North American winter continent.  Similarly, the 

positive U(850) anomaly at middle latitudes induces a positive T2m anomaly over the 

Mediterranean. In these regions the near-surface temperature anomalies are much 

better predicted by the polar cap-mean Z(50) than by the polar cap-mean Z(1000) 

(Fig. 9e).  The negative anomaly east of Florida, on the other hand, is better predicted 

by the polar cap-mean of Z(1000) than by the polar cap-mean of Z(50).  For 

geopotential height predictors at other levels within the range of 30-100 hPa, or for 

temperature predictors within this range, the correlation fields are similar to that for 

the Z(50) predictor, but with slightly smaller magnitudes.  As an example, Fig. 9f 

shows the correlation between the field of T2m and the polar cap-mean temperature at 

70 hPa (T(70)).  Although for this predictor the magnitude of the correlations around 

60ºN is slightly smaller than those for the Z(50) predictor (Fig. 9d), they are larger 

than those for the Z(1000) predictor (Fig. 9e). 

 

Recent studies have shown a significant correlation between the temperature of the 

polar lower stratosphere and the AO-index (e.g. Thompson and Wallace, 2000; 

Hartmann et al., 2000).  This raises the question about the similarity of the correlation 

patterns of T(70) and of the AO-index with the surface temperature field.  Fig. 10a 
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shows the correlation pattern of the AO-index with the field of T2m.  This result has 

been computed using monthly AO-indices (Thompson and Wallace, 2000) and 

monthly temperature anomalies for December, January and February 1958-2001.  

Although Fig. 10a  resembles in several  aspects the correlation pattern of T(70) with 

the field of T2m (Fig. 9f), there are important differences.   To facilitate the 

comparison of Fig. 10a with Fig. 9f, the AO-index has been multiplied by minus one.   

Both correlation patterns show positive values over Northern Africa and between 

Canada and Iceland, and negative values over Siberia and east of Florida.  One 

obvious difference concerns the magnitude of the correlations, which is much larger 

in the AO-pattern.  Two other important differences concern the negative correlation 

patterns over Eurasia.  Firstly, the AO-pattern has a strong minimum both over 

Scandinavia and over Siberia, whereas the T(70)-pattern only has a minimum over 

Siberia.  Secondly, in the AO-pattern the minimum over Siberia is around (120°E, 

45°N), whereas in the T(70)-pattern the minimum has shifted northward to about 

(120°E, 60°N). The correlation pattern of the monthly T(70) and the monthly T2m 

anomalies for DJF is shown in Fig. 10b.  The similarity with Fig. 9f is large, 

indicating that the lag-time between T(70) and  T2m  (10 days in Fig. 9f, no lag in Fig. 

10b) and the type of averaging of T(70) (daily values in Fig. 9f, monthly means in 

Fig. 10b) has only a weak effect on the correlation with the field of T2m.  Figs. 10a,b 

show that the correlations of the near-surface temperature field with the polar cap-

mean stratospheric temperature and with the AO-index are qualitatively similar.  

However, there are several important differences.  For example, at the middle 

latitudes of Eurasia, including a large part of Western Europe, the correlation with the 

AO-index is significantly positive (i.e., negative values in Fig. 10a), but the 

correlation with the stratospheric temperature is close to zero.  Also large differences 
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occur over the subtropical Pacific, where Fig. 10b shows a dipole whereas Fig. 10a 

does not.  Thus, although the polar cap-mean lower stratospheric temperature and the 

AO-index are significantly correlated, there exist important differences between the 

correlation patterns of the two indices with the near-surface temperature field. 

 

4. Summary 

 

This study was motivated by previous studies showing that during winter the 

stratospheric NAM, derived from the geopotential height, has substantial skill in 

predicting the time-averaged lower troposphere at the extended range.  Since the 

stratospheric geopotential height depends on sea-level pressure, tropospheric 

temperature, and stratospheric temperature, we questioned whether the stratospheric 

predictive skill is mainly due to the stratosphere itself, i.e. to the stratospheric 

temperature, or whether there are substantial contributions from the troposphere, 

particularly from sea-level pressure.  In addition, we investigated whether instead of 

the NAM also the more easily computable polar-cap mean geopotential and 

temperature can be used as predictors.  An additional advantage of the latter quantity 

is, that its actual stratospheric values are directly available on the Web.  As 

predictands we used the polar-cap mean geopotential height at 1000 hPa (Z(1000)), 

and geographical fields of several near-surface quantities.  The predictive skill has 

been determined for different lead-times between predictor and predictand, and 

different averaging periods of the predictor and the predictand.   

 

The skill of the stratospheric polar-cap mean geopotential in predicting the polar cap- 

and monthly-mean Z(1000) is slightly less than that of the stratospheric NAM in 
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predicting the monthly-mean AO as computed in B2003 (the maximum percent 

variances are, respectively, 22% and 24%).  When the contribution of sea-level 

pressure to the stratospheric predictive skill is eliminated (Fig. 3b), the maximum 

reduces to 21%.  When the polar-cap mean stratospheric temperature is used as 

predictor (Fig. 3c), the maximum reduces to 18%.  This is more than the predictive 

skill of Z(1000) (11%, Fig. 3a), but just below the skill of the AO in predicting the 

monthly-mean AO (19%, B2003).  When artificial skill is excluded (Fig. 3d), the 

maximum reduces to 15%.  There is also a significant predictive skill of the 

temperature in the upper stratosphere in summer, which possibly points to a link 

between solar variations and surface weather.  Given the relatively easy availability of 

the polar-cap mean predictors, it is concluded that these are useful extended-range 

predictors.  An example of computing the value of the predictand from an (actual) 

value of the predictor is given in Section 3b.  The largest predictive skill of the 

temperature occurs rather uniformly in the layer between 250 hPa and 50 hPa (Fig. 

3c).  The optimum single level for forecasting the AO as computed by B2003, 150 

hPa, is at the middle of this layer.  The largest predictive skill of the geopotential is at 

the top of this layer (Fig. 3a), as is also suggested by Eq. (1).   

 

Predictive skill results for different lead-times and different averaging periods can be 

interpreted in terms of strength, memory, and delay.  The strength of the tropospheric 

geopotential as predictor is large, but due to the short tropospheric memory it persists 

only for a short time (Fig. 5a).  The strength of stratospheric predictors is small, but 

due to the long stratospheric memory the predictive skill persists for a long time.  The 

tropospheric predictive skill is almost entirely due to the predictive skill of sea-level 

pressure (Figs. 5a,b).  Because of the finite downward propagation speed of 
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geopotential anomalies from the stratosphere to the surface, the response of the 

surface to the stratosphere is delayed.  As a result, for predictors in the upper 

stratosphere the skill maximizes at lead-times larger than zero (Fig. 5a).  If the 

predictive skill of sea-level pressure is excluded, then the skill maximizes in the lower 

stratosphere at a lead-time of about ten days (Fig. 5b).  This suggests that the time of 

downward propagation from the lower stratosphere to the surface is about ten days.  

With increasing averaging period, the predictive skill for a time-averaged predictand 

tends to increase due to the decrease of ‘noise’, but tends to decrease due to the 

decreased predictive skill for the individual days in the period. As a result, there exists 

an averaging period with a maximum skill, which for a lead-time of 10 days is about 

two weeks (Fig. 6b).  Any averaging of the predictor, for this lead-time, decreases the 

predictive skill (Fig. 8). 

 

The field correlation results show that the stratospheric height and temperature are a 

better predictor of the monthly-mean Z(1000) than Z(1000) itself in the entire region 

north of 60ºN.  Additional stratospheric skill in predicting the monthly-mean U(850), 

however, is limited to the edge of this region. This suggests that the monthly-mean 

response of Z(1000) to the state of the stratosphere is rather uniform in this region, 

leading to additional stratospheric skill in predicting the monthly-mean meridional 

lower tropospheric pressure gradient, and the related U(850), only near the edge of 

this region.  The additional stratospheric skill in predicting the monthly-mean near-

surface temperature is limited to those regions around 60ºN where this temperature 

strongly depends on the zonal wind, particularly Siberia and the western Atlantic.  

The near-surface temperature field correlates in a similar way with the polar cap-mean 
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stratospheric temperature as with the AO-index, except at middle latitudes over 

Eurasia and over the subtropical Pacific. 

 

Although the focus of this study is on extended-range weather predictability, some of 

the results may also be relevant for the wider subject of stratosphere-troposphere 

coupling.  This coupling plays an important role not only in weather-related 

phenomena but also in climate change (e.g.,  Shindell et al., 1999; Gillet et al., 2003; 

Sigmond et al., 2004). The dynamical mechanism of the coupling is currently under 

discussion in the literature (e.g., Polvani and Kushner, 2002; Norton, 2003; Sigmond 

et al. 2003; Charlton et al., 2004).   Our results (Fig. 3a) show, that the predictive skill 

of the stratospheric temperature is largest, and uniformly large, between 250 and 50 

hPa.  Thus the largest stratospheric predictive skill does not arise just from a shallow 

layer directly above the tropopause, as suggested by Baldwin et al. (2003), but from 

the entire layer between the tropopause and 50 hPa.   Above 20 hPa the predictive 

skill of the stratospheric temperature becomes statistically insignificant.  On the other 

hand, the geopotential, which depends on the vertically integrated temperature (Eq. 

1), has statistically significant predictive skill at levels up to almost 1 hPa (Figs. 3a 

and 6).  Thus, although stratosphere-troposphere coupling can be detected from 

information from the upper stratosphere, the origin of the coupling can be in the lower 

stratosphere.  The stratospheric skill at 100 hPa in predicting surface values at 

individual days is largest for lead-times of about 10 days (Fig. 5b).  This lead-time is 

expected to be the downward propagation time from the 100 hPa level to the surface.   

Finally, the results suggest (Fig. 7) that the variations during the winter of the 

stratospheric predictive skill are mainly due to variations in the strength of the 
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stratosphere-troposphere coupling, whereas variations in the stratospheric persistence 

only play a minor role. 
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Figure captions 

 

FIG. 1. Time-height distribution of scaled geopotential height anomalies, 1983-1997. 

The geopotential height is averaged over the polar cap north of 65ºN; the scaled 

anomaly is the deviation from the 1958-2001 mean annual cycle, divided at each level 

by the standard deviation of the anomaly time series at that level.  The daily data have 

been low-pass filtered (91-day running average).  The contour interval is 0.6; the zero 

contour is omitted; negative contours are dashed; light shading: larger than 0.6; dark 

shading: less than  -0.6. 

 

FIG. 2. Long-term (1958-2001) mean annual cycle of the square of the scaled 

geopotential height anomaly, as defined in Fig. 1. a) unfiltered data; b) low pass–

filtered data.  The contour interval is 0.3; values larger than 2.1 are shaded.   

In a) daily values have been averaged using a Gaussian weighting with FWHM of 60 

days.   

 

 

FIG. 3. a) Predictive skill (percent variance) as a function of season and pressure 

altitude of the predictor Z(p) (in hPa); the predictand is Z(1000); the lead-time is 10 

days, and the predictand is averaged over one month. b) and c): as a), but with, 

respectively, Z(p)-Z(1000) and T(p) as predictor.  d): as a), but excluding artificial 

skill.  Predictors and predictand are averages over the polar cap north of 65ºN.  The 

Gaussian weighting of daily values is as in Fig. 2a.  The contour interval is 2%.  

Values that are statistically significant at a 95%-level are shaded.  
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FIG. 4. The annual cycle of the 70-hPa temperature averaged over the area north of 

65ºN: 1958-2001 average (solid line, in ºC, left axis) and standard deviation (dashed 

line, in ºC, right axis). 

 

FIG. 5. Winter (DJF)-averaged predictive skill (percent variance), as a function of 

lead-time (days) and altitude (hPa) of predictors a) Z(p) and b) Z(p)-Z(1000); the 

predictand is the daily Z(1000). The contour interval is 2%; contour values larger than 

50% have been omitted.  The shading is as in Fig. 3. 

 

FIG. 6. Winter (DJF)-averaged predictive skill (percent variance), as a function of the 

averaging period of the predictand Z(1000) (days) and altitude (hPa) of the predictor 

Z(p); the lead-time is a) 0 days, b) 10 days.  The contour interval is 2%; contour 

values larger than 50% have been omitted.  The shading is as in Fig. 3. 

 

FIG. 7. Predictive skill of Z(50) (percent variance), as a function of season and 

averaging period of the predictand Z(1000); in a) the season corresponds to the time 

of the predictor, and in b) to the centre of the period over which the predictand is 

averaged. The lead-time is 10 days.  The contour interval is 2%. The weighting of 

daily values and the shading are as in Fig. 3. 

 

FIG. 8. Winter (DJF)-averaged predictive skill (percent variance), as a function of the 

averaging period and the pressure altitude of the predictor Z(p).  The predictand is the 

polar cap- and 31 day-averaged Z(1000). The lead-time is 10 days.  The contour 

interval is 2%.  The shading is as in Fig. 3. 
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FIG. 9. a) Winter (DJF)-averaged correlation map between the predictor Z(50) and the 

predictand Z(1000).  The predictor is the anomaly (deviation from long-term mean) 

averaged over the area north of 65ºN; the predictand is an anomaly monthly-mean 

geographical field; the lead-time is 10 days; b): as a), but with Z(1000) as predictor; c) 

and d): as a) but with, respectively, the zonal wind at 850 hPa and the 2- meter 

temperature as predictand; e) and f): as d) but with, respectively, Z(1000) and T(70) as 

predictor.  Contour values are 0, ±0.2, ±0.3, ±0.4,…; contours less than or equal to 

zero are dashed.  Values that are statistically significant at a 95%-level are shaded; 

light shading: larger than 0.2; dark shading: less than -0.2.   

 

FIG. 10. DJF-averaged correlation map between the field of the monthly 2-meter 

temperature anomalies and a) the monthly AO-index (multiplied by minus one), b) the 

temperature at 70 hPa averaged over the area north of 65ºN.  Contours and shadings 

as in Fig. 9.  
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FIG. 1. Time-height distribution of scaled geopotential height anomalies, 1983-1997. 

The geopotential height is averaged over the polar cap north of 65ºN; the scaled 

anomaly is the deviation from the 1958-2001 mean annual cycle, divided at each level 

by the standard deviation of the anomaly time series at that level.  The daily data have 

been low-pass filtered (91-day running average).  The contour interval is 0.6; the zero 

contour is omitted; negative contours are dashed; light shading: larger than 0.6; dark 

shading: less than  -0.6. 
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FIG. 2. Long-term (1958-2001) mean annual cycle of the square of the scaled 

geopotential height anomaly, as defined in Fig. 1. a) unfiltered data; b) low pass–

filtered data.  The contour interval is 0.3; values larger than 2.1 are shaded.   

In a) daily values have been averaged using a Gaussian weighting with FWHM of 60 

days.  
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FIG. 3. a) Predictive skill (percent variance) as a function of season and pressure 

altitude of the predictor Z(p) (in hPa); the predictand is Z(1000); the lead-time is 10 

days, and the predictand is averaged over one month. b) and c): as a), but with, 

respectively, Z(p)-Z(1000) and T(p) as predictor.  d): as a), but excluding artificial 

skill.  Predictors and predictand are averages over the polar cap north of 65ºN.  The 

Gaussian weighting of daily values is as in Fig. 2a.  The contour interval is 2%.  

Values that are significantly different from zero at a 95%-level are shaded.  
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FIG. 4. The annual cycle of the 70-hPa temperature averaged over the area north of 

65ºN: 1958-2001 average (solid line, in ºC, left axis) and standard deviation (dashed 

line, in ºC, right axis). 
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FIG. 5. Winter (DJF)-averaged predictive skill (percent variance), as a function of 

lead-time (days) and altitude (hPa) of predictors a) Z(p) and b) Z(p)-Z(1000); the 

predictand is the daily Z(1000). The contour interval is 2%; contour values larger than 

50% have been omitted.  The shading is as in Fig. 3. 
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FIG. 6. Winter (DJF)-averaged predictive skill (percent variance), as a function of the 

averaging period of the predictand Z(1000) (days) and altitude (hPa) of the predictor 

Z(p); the lead-time is a) 0 days, b) 10 days.  The contour interval is 2%; contour 

values larger than 50% have been omitted.  The shading is as in Fig. 3. 
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FIG. 7. Predictive skill of Z(50) (percent variance), as a function of season and 

averaging period of the predictand Z(1000); in a) the season corresponds to the time 

of the predictor, and in b) to the centre of the period over which the predictand is 

averaged. The lead-time is 10 days.  The contour interval is 2%. The weighting of 

daily values and the shading are as in Fig. 3. 
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FIG. 8. Winter (DJF)-averaged predictive skill (percent variance), as a function of the 

averaging period and the pressure altitude of the predictor Z(p).  The predictand is the 

polar cap- and 31 day-averaged Z(1000). The lead-time is 10 days.  The contour 

interval is 2%.  The shading is as in Fig. 3. 
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FIG. 9. a) Winter (DJF)-averaged correlation map between the predictor Z(50) and the 

predictand Z(1000).  The predictor is the anomaly (deviation from long-term mean) 

averaged over the area north of 65ºN; the predictand is an anomaly monthly-mean 

geographical field; the lead-time is 10 days; b): as a), but with Z(1000) as predictor; c) 

and d): as a) but with, respectively, the zonal wind at 850 hPa and the 2- meter 

temperature as predictand; e) and f): as d) but with, respectively, Z(1000) and T(70) as 

predictor.  Contour values are 0, ±0.2, ±0.3, ±0.4,…; contours less than or equal to 

zero are dashed.  Values that are significantly different from zero at a 95%-level are 

shaded; light shading: larger than 0.2; dark shading: less than -0.2.   
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FIG. 10. DJF-averaged correlation map between the field of the monthly 2-meter 

temperature anomaly and a) the monthly AO-index (multiplied by minus one), b) the 

temperature at 70 hPa averaged over the area north of 65ºN.  Contours and shadings 

as in Fig. 9.  

 

 


