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Strong universality in forced and decaying turbulence in a shell model
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The weak version of universality in turbulence refers to the independence of the scaling exponeniglof the
order structure functions from the statistics of the forcing. The strong version includes universality of the
coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We
demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbu-
lence. The exponents and the normalized coefficients are time independent in decaying turbulence, forcing
independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also
the case for Navier-Stokes turbulence.
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[. INTRODUCTION large and small length scales in turbulence. While turbulence
was decaying on the time scale of the large eddies, the small
The statistical theory of fluid turbulence is concerned withone had ample time to reach an “energy-flux equilibrium”
correlation functions of the turbulent velocity vector field that in terms of scaling behavior was indistinguishable from
u(r,t), wherer is the spatial position antlis the time[1].  forced turbulence. Thus, there exists a wide-spread belief
Since the velocity field is a vector, multipoint and multitime that at least from the point of view of scaling exponents,
correlation functions are, in general, tensor functions of thdorced and decaying turbulence are in the same universality
vector positions and the scalar times. Naturally such funcelass, sharing the same scaling exponents of the correspond-
tions have rather complicated forms, which are difficult toing correlation functions.
measure and to compute. Consequently, almost from its very To actuallyprovethis type of universality in experiments
beginning, the statistical theory of turbulence had been disand simulations is, however, far from straightforward. To
cussed in the context of an isotropic and homogeneouachieve reasonable precision in the measurement of scaling
model. The notion of isotropic turbulence was first intro- exponents one needs large ranges of scales where scaling
duced by Taylor in 193%2]. It refers to a turbulent flow, in  prevails, and this entails large Reynolds numbers. Unfortu-
which the statistical averages of every function of the velochately large Reynolds numbers are available usually when
ity field and its derivatives with respect to a particular frameanisotropic effects are large, like in the atmospheric bound-
of axes is invariant to any rotation in the axes. This is a veryary layer or in large wind tunnels. Direct Numerical Simula-
effective mathematical simplification, which, if properly tions(DNS) can be used to eliminate anisotropy almost com-
used, can drastically reduce the mathematical complexity gpletely (up to lattice anisotropy that are unavoidable in
the theory. For this reason, it was very soon adopted by othsimulationg, but they are limited to relatively low Re, not-
ers, such as Kaan and Howarth[3] who derived the withstanding the very recent simulations of size 40§6|.
Karman-Howarth equation, and Kolmogord4,5] who de-  Decaying turbulence is even harder to characterize precisely,
rived the 4/5 law. In fact, most of the theoretical work in since the effective Reynolds number decreases in time. Thus,
turbulence in the past 60 years had been limited to the iscactual measurements of scaling properties are fraught with
tropic model. difficulties, corrections to scaling, effects of anisotropy, and
Within the homogeneous and isotropic model there develwhat not. As a result, over the yedrs] and also very re-
oped the notion of universality of turbulence. By universal-cently, it was proposefB] that structure functions in forced
ity, we mean the tendency of different turbulent systems tand decaying turbulence have different exponents. In this
show, for very large Reynolds numbers Re, the same smalpaper we take a strong stand, proposing that the universality
scale statistical behavior when the measurements are domteat actually exists in turbulence is even stronger than what
far away from the boundaries. The statistical objesise has been anticipated so far.
below for definitiong exhibit approximately the same scaling  To make our point clear, recall that the statistical descrip-
exponents whether they are measured in the atmospheriion of fully developed turbulence employs correlation func-
boundary layer, in a wind tunnel or in a computer simulation,tions and structure functions. These are ensemble average of
provided they are measured far from the boundaries. Morevelocity differences across a length scRldn the theoretical
over, the accumulated experimental knowledge over thetudies of turbulence the two most common ensemble aver-
years indicated that not only in forced, stationary turbulenceages areover realizations of the forcingvhen one studies
but also in decaying turbulence, there is a regime of timdorced turbulence, oover initial conditionswhen one studies
where the statistical objects exhibit the same scaling propedecaying turbulence. The longitudinal structure functions are
ties. This phenomenon was explairjddi by the widely sepa- the simplest such objects, being moments of the longitudinal
rated time scale§‘eddy turn over times’) that characterize components of the velocity difference between two points.
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We will denote the longitudinal structure functions in forced [17] the authors argued on the basis of a2B8IS “in favor
and decaying turbulence I8 andF,, respectively, with the  of an ‘exponents only’ universality scenario for forced turbu-
precise definitions lence.”
We believe that this strong version of universality was
R P never stated before, and the common thinking is that ampli-
Sp(R)E< [ [u(r+R,t)—u(r,t)]- _] > , ) tudes depend in a nonuniversal way on details of the forcing
R T or the preparation of the decaying turbulence. While true, we
will argue that the freedom afforded by such details is very
RIP limited, amounting at the end to jushefree number, which,
Fp(R,t)E<{[u(r+R,t)—u(r,t)]~ ﬁ] > _ () once taken into account, the strong version of universality
. applies.
Besides being an issue of fundamental importance to tur-
bulence, there is another reason for returning at this time to
Hereu(r,t) is the velocity field measured at poinat timet.  the correspondence between force and decaying turbulence.
(-++); and (---); stand for ensemble averaging over theThe reason is that the riddle of anomalous scaling of corre-
forcing and the initial conditions, respectively. In writing Eq. lation and structure functions in forced turbulent advection
(1) we assumed that the forcing is stationary in time, homo<passive and activehas been solved recently. First, in the
geneous, and isotropic, and thiisis a function of the scalar  context of the nongeneric Kraichnan model of passive scalar
Ronly. In writing Eq.(2) we assumed that the initial condi- advection [18], and then, in steps, for passive vectors
tion are homogeneous and isotropic. Of course, the decayina 9,20, generic passive scalars and veci@$—23, and fi-
structure functions are by definition time dependent. Thenally for generic active scalars and vect¢g#—26. The
widely spread belief1,9,1q is that, forR values in the in-  common thread of this advance is that anomalous scaling is
ertial range of turbulencémuch smaller than the forcing discussed in the context of the decayingforced probler
scale but much larger than the dissipation scatee scaling in which one shows that there exist statistically preserved
exponents {, that characterize Sy(R), i.e., Sy(AR)  structuregeigenfunctions of eigenvalue 1 of the appropriate
=\S,(R), are the same as the scaling exponents that chapropagator of the decaying correlation functiprhe decay-
acterizeF ,(R,t) for a given value ot. Of course, also here ing problem is independent of forcing, and one shows that
R should be well in thétime dependentinertial range and  the statistics of the forced problem is dominated by the same
should be neither too small nor too larfel]. In the sequel statistically preserved structures that are identified in the de-
we refer to the identity of only the scaling exponents of theseaying problem. The calculation of the anomalous exponents
two sets of objectdif it exists) as “the weak version of Dboils down then to calculating eigenfunctions of linear op-
universality.” As mentioned above the existence of the weakerators. In these problems the correspondence between the
version of universality is by no means accepted by everydecaying and forced statistics is proven mathematically or
body in the field of turbulence. Since there isproofof this  demonstrated beyond reasonable doubt by careful numerics.
universality, doubts of its existence linger, and, for exampleA crucial ingredient in all this progress is that turbulent ad-
in Ref.[8] it was concluded that the scaling exponents of thevection is described biinear partial differential equations.
two families of statistical objects areot the same. We note, There is, therefore, an urgent question how to tranglaie
however, that in the same paper it was stated that the scalirig possiblé the newly acquired insights to the nonlinear tur-
exponents of the longitudinal and transverse structure fundsulent problem itself, be it the Navier-Stokes equations or
tions are also not the same. It was shown recently, howeveany of the shell models that were frequently discussed re-
that such statements stem from incomplete treatments of thgently in the context of anomalous scaling. In this paper we
effects of anisotropy12,13, leaving hope that the weak ver- make a step in this direction, analyzing the decay of the
sion of universality is still correct. Sabra shell mode]27] and showing numerically that the
In fact, in this paper we will propose that not only the statistics of the decaying state and the forced turbulent state
weak version of universality is correct, but in fact also aare the samén exponentsind in amplitudesip to one free-
“strong version of universality” is applicable. By the latter dom(the time-dependent mean enexgi/e opt to work with
we mean that once properly normalized, the structure functhe shell model rather than the Navier-Stokes equations sim-
tions F, and S, agree not only in exponents but also in ply because the accuracy required for our aims exceeds the
amplitudes. In the context of the second-order structure funcavailable scaling ranges and decay times for the latter. We
tion, this is not a new statement. The universality/efand  express a strong belief that very similar results can be dem-
C, was already stated in the 80s by Yaglptd] and Kader onstrated also for Navier-Stokes turbulence. Indeed, in a fu-
[15]. Analyzing hundreds of experiments made in differentture publication we will present the theory that stands behind
flows under different conditions, Sreenivasan in 1995 camehe present numerical findings and demonstrate that the basic
to the conclusion that “the Kolmogorov consta®j is more  structure of that theory is the same for shell models and the
or lessuniversal, essentially independent of the flow as wellNavier-Stokes equations.
as the Reynolds numbéfor R,>50 or s9, ... with the The paper is organized as follows. In Sec. Il we introduce
average value of,~0.53 with a standard deviation of about the shell model and the numerical simulations that we per-
0.055”[16]. Nevertheless, the universality 6, andC, for ~ form. We present the data for the energy decay and explain
p=<4 is still under debate. For example, very recently in Refwhat is the time domain for which we should compare the
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TABLE I. Universal coefficient<, and scaling exponents, obtained from the best fit of the numerical data. The auxiliary fit parameters
in Eqg. (17) are found to be in the intervatg,~0.5-2 andu,~0.6-2.3. The error bars for each parameter correspond to the error function
&, Eq.(18), equal= ﬁgmm with all other parameters set to their optimal values.

Time C, e Ng2 Ca la Ny .4 Ce e Ny.6
Forced 1 0.730.07 0.7280.006 17.0 0.660.08 1.254-0.008 16.24 0.620.15 1.72:0.01 15.87
Forced 2 0.730.07 0.7280.006 17.0 0.66:0.08 1.254-0.008 16.24 0.6x0.15 1.72:0.01 15.87

Decay 1 20 0.720.05 0.7280.006 17.2 0.620.06 1.254-0.008 17.0 0.7¢0.15 1.720.01 164
100 0.72:0.06 0.7280.006 16.2 0.620.07 1.254-0.008 16.0 0.7¢0.15 1.72:0.01 15.0
10° 0.72£0.07 0.7280.006 13,5 0.6£0.08 1.2550.008 13.2 0.720.15 1.72:0.01 13.0
10t 0.72£0.08 0.728-0.006 11.0 0.6£0.09 1.256:0.008 10.2 0.7%0.15 1.73:0.01 9.8
Decay 2 100 0.730.1 0.73£0.01 15.5 0.60.2 1.25:0.01 152 0.760.20 1.72:0.02 143
10° 0.74+0.1 0.73£0.01 13.3 0.60.15 1.26:0.01 131  0.660.20 1.72£0.02 124
10t 0.72+0.1 0.73£0.01 10.7 0.60.2 1.25:0.01 10.5 0.720.25 1.73:0.03 9.8

decaying and the forced statistics. In Sec. Il we present the

results for forced structure functions for different types of H=2 (a/c)"|uy/?. )
forcing. In determining the exponerasid the amplitudesf "

these functions_ one has to be_ extra careful—we t_axplain that |, this paper we will compare the statistics of the forced
one needs to find fits to functions throughout their range of | tion (with the forcingf , restricted to the first and second
existence. It is not enough to plot log-log plots for the iner-gpq15 n= 1 2) to the statistics of the decaying problem with
tial range. In Sec. IV we present the data for the decaying _ for all n. The comparison will be presented in terms of

correlation func_tions, and expla_in how to find th_eir EXPO-the time-independent forced structure functi®sand time-
nents and amplitudes once the time dependence is taken in pendent decaying structure functiofis defined as fol-
account. We explain theoretically that the decaying structure, .

functions contain subleading contributions that decay fast to-

ward small scales and do not affect the leading scaling ex- Sy(kn)=(|unDs,  Fa(kn,t)=(|u,|?),
ponents. The results of our calculations are summarized in
Table |, which is the central result of this paper, giving strong Sa(Kn) =IM(Up_1UUX 1) (6)

support to the conjecture sfronguniversality. In Sec. V we
present a summary and some concluding remarks. Fa(ky )= 1M(Up_1UnUZ 1)1

Il. MODEL AND ENERGY DECAY Sy(kn) =(un s, Fa(kn,H)=(lun|*;,
A. Model and objectives

i i Sﬁ(kn)E<|un|6>f1 FG(knyt)E<|un|6>i-
The Sabra shell moddR7], like all shell models, is a
reduced dynamical description of turbulence in terms ofHere(---); and(- - -); represent averaging with respect to
complex variabless,,, which represent velocity amplitudes realizations of the forcing and the initial conditions, respec-
associated with wave numbép=ko\". The equations of tively, for the forced and decaying problem.

motion are The main result of the present work is that in this model
there existsstrong universality This means that in the bulk
du, of the inertial interval the “decaying” structure functions

—_— * * -
dt |(akn+1un+2un+1+bknun+1un—1 Cknflun71un72) Fp(kn ,t) take on the form

p/3

—vk2u,+f,, ©)
A", @

&i(t)
Fp(kn )= Cp{k_
where the asterisk stands for complex conjugation arnisl 0
the “viscosity.” The qoefficientsa, b, andc are cho_sen such  ith the same anomalous scaling exponeftandthe same
that?+b+c=0. This guarantees the conservation of “en- gimensionless constants,C as in the scaling laws of the
ergy “forced” structure functions

; p/3
—f} Ao, @)

— 2
E—; |uq|?, 4 Sy(kn)=C, K

in the inviscid (#=0) forceless limit. As it is well known, Here
the Sabra model has a second quadratic invariant, analogous .
to the helicity in fluid mechanics, of the form ei(t)=(e (1)), ei=(en(t))s. (9)
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In these equations the instantaneous value of the energy flu | A
going throughnth shell(in a given realizatiohis Y
or
en(t)=2kp{—a\ Im[un(t)un+l(t)u:+2] Bl \‘\\
e Im[Up- (DU U} 1T} (10 A

(for more details, see Rgf27]). The only difference between

Egs.(7) and(8) is that the energy fluxe_i(t), averaged over
the statistics of the initial conditions, decays in time, while -4t

the energy fluxe;, averaged over the statistics of the forc-
ing, is time independent. Equatioi® and(8) imply that the

probability distribution functionPDF) of the velocity fluc- iy
tuationsu,, on scalek, within the inertial range in decaying
turbulence can be obtained from the corresponding PDF ir -7t

-3t

Log, (E)

stationary forced turbulencdand vise versa This is 0 1 2 log. (1) 3
achieved simply by the interchangg(t)<e¢. Moreover, 10
strong universality means that the PDF dependence, @h FIG. 1. The total energy decay from Decay 1 datashed ling

for the fine scales in decaying turbulence is independent adnd from Decay 2 datésolid line). The lines coincide within the

the initial conditions, provided that the Reynolds numberlinewidth.

Re>1 and all the initial energy is concentrated in the region

of large scalegfirst shellg. Similarly, the PDF dependence recorded starting after a short transient time wi= 10.

on &; for the fine scales in forced turbulence is independenfor this case, the data were averaged over 13 200 initial con-

of the statistics of forcing for Re1, provided that the forc- ditions. In the other casédecay 3, the data were recorded

ing is concentrated in the region of large scales. when the energy in each realization had reached the value
The rest of this paper is devoted to substantiating thesE=0.1 with E;=5. These data were averaged over about

strong propositions, which can be summarized in terms o7 000 initial conditions. The decay of the total energy for

the existence of a probability distribution function two cases, plotted with an appropriate time shift, is shown in
Fig. 1. It is clear that the two schemes are equivalent for the
P(ug, ... un)=[v(t] NP(Xs, ... Xn), (11 study of the advanced stages of the decay.
in which x;=u; /v (t) andv (t)=[e,(t)]*?is the correspond- C. The law of energy decay

ing velocity scale. ) .
ng v 'y We first discuss the total energy decay, where the total

B. Simulations energyE(t) is defined as

The calculations presented bellow were carried out for the E(t)= 2 uy|2. (12)
Sabra model with 28 shells,=2, a=1, b=c=-0.5, kg N
=2"% andv=10". In our simulations we employed two
different types of forcing. We denote them as Forced 1 andn the Navier-Stokes case the law of energy decay had been
Forced 2. Forced 1 has white noise added to the equation ¢ftensively studied following the influential works of Taylor
the first shell. Forced 2 is forced by a Gaussian force on thg2], Kolmogorov[4,5], and Batchelor and Townsefnti0,28.
first shell, which is correlated exponentially in time. In both For recent development, see, e.g., R&l and references
cases the amplitude of the force in the first shell was taken teherein. It was found tha (t)oct " with the decay exponent
be f;=0.01, while the forcing amplitude in the second shelln ranging between 1 and 5/2. This large degree of uncertainty
was adjusted to reduce the helicity inplyt=/(—c/a)f, stems from difficulties in pinpointing the energy spectrum at
for more details, see Ref27], pp. 1813 and 1815. scales larger than the energy containing stalé is also not

In the decaying case, the total initial enefgyin the two  easy to determine holvdepends on time. Take, for example,
first shells was kept constant. The amplitudes of the first twahe case of grid turbulence in a wind tunnel. Immediately
shell velocities were defined asu;(0)|?>=aE, and behind the gridL is of the order of the mesh size. It in-
[u,(0)|?=(1- a)E, with @ random, uniformly distributed creases, however, with the distance from the grid. Down-
in the intervall 0,1]. The phases in both shells were random,streamL may saturate at the wind tunnel diameter. In this
uniformly distributed in the intervel0,27]. A fourth-order  regime the phenomenological analy$B)| predictsn=2,
Runge-Kutta scheme with adaptive time step was appliedvhich is a number that is not in contradiction with experi-
The total energy decay was followed for nine decades imments[11]. The same predictiom(=2) was reached in DNS
time. The statistical objects were accumulated during fiveof the Navier-Stokes equatiofy] and for the GOY shell
decades in time. model [29]. This prediction was shown to be in agrement

Two recording schemes for the decaying turbulence weravith numerical simulation in which is time independent
applied. In one casédenoted as Decay)lthe data were due to the special choice of initial conditions.
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10 ' ' " " " process requires a finite tinlg, of a few unitsT. In our case
? T,~3T.
Fort>T, the total energy of the systeB(t) begins to
decay with
dEb _ o t 13
g = e (13)

log,(F,)

Accordingly, the time-dependent Reynolds number tRe(
which is proportional toyE(t), decreases, and the viscous
cutoff ky(t) moves towards smaller shell numbers, as it can
be seen in Fig. 2, lower panel. For examplg(10°T)
~212 Kky(10°T)~22 and the inertial interval almost disap-
peares. For larger times all the energy is contained in the first
shell, and it decays exponentially,

@) E(t)cexd — 2vk?t], (14)

following the linear part of the equation of motion for the
first shell.

0 For intermediate times, which in our simulations span
-10r eight orders of magnitude B<t<1C® T, the slope of plots
20| of log,F4(k,) VS n remains more or less constant. This is a

manifestation of the time independence of the scaling expo-
~, 30 nents. Taking this as a fact, one immediately sees from Eq.
<. 10 (7) for p=2 that E(t)=[#;(t)]?® and hence &(t)

g -4 «[E(t)]%2 Notice that this result is independent of the pre-
-50r — 10 cise value of the scaling exponeti}, anomalous or not.
_60l : 182 Thus, Eq.(13) can be presented as

—— 108
” = 10° B e 19
5 10 15 20 25 with a prefactork, which may be expressed via the param-
(6) n eters of the shell modek,, £, andC,. Approximately, «

FIG. 2. The temporal behavior &f,. The different lines corre- =Ko. In our _Calculatlons, both Decay 1 and De(;ay;(Z,
spond to the different time moment® units of T, see the text =0.0687, whileky=0.0625. The solution of Eq15) is
Upper panel: the development of the energy cascade. The energy,
initially concentrated in the first two shells, cascades down to
higher shell numbers with acceleration. The cascade process is
completed in about, ~3T. Fort>T, the total energy decreases.
Lower panel: the decay phase. Th_e total energy decreases for ‘"Wheret* :Z/K\/E andE, is the integration constant. The
scales and, at the same time, the viscous cligpifmoves towards  yagyits of the numerical simulations for the total energy,
smaller shell numbers. At later stages of the decay all the energy 'E(t), (cf. Fig. 3, solid ling, are in excellent agreement with
contained in the first shell and decays exponentially. Eq. (16), which is shown in the figure as a dashed line. The

_ . total energy decay was followed for nine decades in time.

For the sake of completeness we review the theoreticahfier 1.5 decades of transient behavior, the decay of total
analysis of Ref[29], aljd show that our 5|mulat|_on_s of thg energy follows very closely the 2 law, until at about six
Sabra shell model are in excellent agreement with its predicgecades the viscous scale reaches the first shells and the de-

tions. Consider a decaying solution with the energy initiaIIyCay becomes exponential in agreement with Ed).
concentrated, say, in the first two shells, see Fig. 2, upper

panel. The time is measured in natural time ufitdhat are
determined by the characteristic time of the first shéll,
=1/5ky\Ey (E, is the total initial energy One sees that In this section we present results for the forced structure
during oneT the energy cascades down to the 6th shell, andunctions. As far as the scaling exponents are concerned,
during ZT down to the 12th shell. At later times the cascadethere is not much novelty in this section, the exponents are
process accelerates, and the energy goes from the 13th shiedisically the same as those reported in a number of previous
to “infinite” shells during a time that is roughly between publications. The aspect stressed here is related tocdbge

2.75T and 3T. As expected, the completion of the cascadeficients G, of the structure functions, cf. E¢8). We demon-

t2
E(t)=E, —(t+:*)2' (16)

Ill. FORCED STRUCTURE FUNCTIONS
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FIG. 3. The decay of the total energy= 2n|un|2 averaged over FIG. 4. The structur.e funct_ion for two types of the forcing.
3200 initial conditions. The dashed line corresponds to the decal@rge symbols, shown in the figure correspond to Forced 2 data.
law, Eq.(16), with E, =12.15 and, =8.35T. he dashed lines are the fits for the corresponding structure func-

tions. Small black dots denote Forced 1 data. The fits for these data

strate that these coefficients are independent of the forcin@‘,re not shown. Both sets were normalized by their respective total
and that the scaling form proposed in E§) is indeed uni-
versal.

In order to get an accurate determination of the scalindgions are separated and even data corresponding to Force 1
exponents and of the coefficients, and to be able to demornd Force 2 cases may be distinguished.
strate strong universality, it is mandatory to fit the measured The fit procedure allows us to express the structure func-
data to model functions that contain the presumed dissipativion in the inertial range a§p=ApEp’2kﬁp. To calculate the

behavior. Failing to do so results in inaccuracies that mayoefficientsC, we have now estimate the value of the energy
lead to confusion. As a first step in the analysis of the dat

it th i ) , b2 ysing the fi a@x; [see Eq(8)]. We use the exact result {8 to express
g?rr:tfaeEno(rﬂ? flrzgrcrjw Sg;f{;;? unctioSg/E"* using the fit g¢ via A; and the parameters of mod@0). The coefficient
q: ' ' C,, of the structure functions, other th&, may therefore be

; (k ) Ap ( . kn )#p F{ ( kn )x} (17) written as
=2\ 1l+a—| exg—|—| |,
piTn kip pkd’p kd,p Ap

Cp=———:. 19
where P [2As(a—c)]PR (19

Ap &y ap, prp, Kap,  OF Ngp=l0goKyp The results are summarized in Table |, which is the central

) ) result of this paper. Before discussing them, we turn to the

are the fit parameters ang-=log,(1+/5)/2 is the exponent analysis of the decaying structure functions and add their

of the viscous range. The parametéss,(, determine the  anajogous results to the table.

behavior of P(k,) in the inertial intervalky , determines

the viscous cutoff. The “auxiliary parametersé,,u, cor-

rect the behavior in the transient inertial-viscous region. The IV. DECAYING STRUCTURE FUNCTIONS

beSF fit is obtained by minimizing the following error func- In this section we present results for the decaying struc-

tion: . : . .

ture functions, including the numerical support for the strong

l0010P (k)| 2 universality proclaimed in Eq(7). We cautio_n th(_a reader

&= \/ > ( 1— w) , (18  (and whoever wants to repeat these calculations in other sys-

n 10g;0Sp(Kn) tems, including Navier-Stokes decaying turbulenitet the

issue is fraught with subleading contributions, even in the

whereS, refers to the numerically obtained data. Both setsisotropic sector. One obvious subleading term is provided by

of forced structure functions data were fitted with all thethe rate of change oF ,(kn,t), which is coupled, via the

shells taken into account except the first two and the lasihfinite hierarchy of equations, to terms involving

three shells, in order to minimize boundary effects. Fp+1(Km.t), with m of the order ofn. To see this phenom-
The quality of the fit may be seen in Fig. 4. The forcedenon clearly and to learn how to take it into account, we

data are shown normalized by the respective total energy, bidiscuss first the case of the third-order structure function that

not compensated tiyﬁp, so that the different structure func- can be dealt with analytically.
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A. Subleading corrections to the scaling in the infinite hierarchy of equations. Since these equations
of decaying turbulence always havek, on the right-hand side, one can immediately

The easiest case for theoretical analysis of the scalinguess the general form of the correction to fgscaling,
behavior of the decaying structure functidhs(k,,t) is the ~ 1-€.,
casep=3, since in the forced casy(k,) is known exactly
[27]. For simplicity we will discuss here the helicity-free
case, for which 6F p(Kn 1) 1

oC
— (A+sp-1-¢p) "
Sy(kn) =81 [kn(C—a). 20 Folka ) A7 6276

(26)

We will show now that in the decaying case strong univer- heref h leadi ¢ ¢
sality is realized, but only well within the inertial range. In 1€refore, the subleading term of theorder structure func-

: ~2ni3
the vicinity of the energy containing scales there are signifilion decreases towards small scales roughlyas™® for
caormal” scaling of Kolmogorov's 1941 statisticgK41),

cant subleading corrections caused by the time dependenc - )
of s_(t) and somewhat slower for anomalous scaling. Strong univer-
i .

To find these corrections, consider the equation of motio sality of the turbulent statistics is thus expected only deeply

"h the inertial interval
of the second-order structure function in the inertial interval the Inertial interval.

(i.e., fork,<kgy), Eq. (9) of Ref.[27]:
B. Numerical results
dFZ(kn 1t)

c
TR =aNFj3(k,1,t) +bFs(k,,t) + XF3(kn,1,t). All the calculated statistical objects were normalized by
n

the total energy, i.e.F (k,,t)/EP?(t). All the normalized,
(21 P .
compensated, decaying structure functions show a plateau.

In the stationary case, the left-hand side of this equatior-lro improve the statistics, the data were first normalized by

: . . . the total energy and then averaged over one-tenth of a tem-
vanishes and Ed20) is a solution. In the decaying case, let : .
poral decade. For the same reasons that were explained in the

case of the forced objects, the fit region for the decaying

Fa(kn,1)=F&(kn,t) + 8Fa(kn ), (22 structure functions was chosen fram-3 ton= Ngp+5 for
o the Decay 1 data and from=5 ton=nq ,+5 for the Decay
) gl 2. Fort=10°T ny=7 and only a few shells may be consid-
Fy'(kn )= k.(c—a) ered as the “inertial interval.” Therefore the fit parameters

become unreliable. The quality of the fit can be seen in Fig.
5 for t between 20 and 10 T. For t<20T the flux equi-
librium cannot be guaranteed and the coefficie€@ygsand the
exponents may be not universal. This is definitely the case
fort<10T. The decaying structure functions are plotted nor-
malized by the total energy and compensated in order to

) o _ emphasis the fact that main temporal effect is the shift of
Comparing this with Eq(21), we see that the leading solu- |

tion for F5 gains a subleading termF4(k, t)ock 72 P

In the intermediate time regime, one has tRatk, ,t)«(t
+t,) 2, consequently

dFy(k,,0)/2kdt=—F5(k,, D) /K, (t+1,). (23

More precisely V. SUMMARY AND DISCUSSION
F(k. 1) In summary, we analyzed, using the Sabra shell model of
SF3(ky,t)=— Zon . (24  turbulence, forced structure functiodg(k,) for two types
(t+t,)ky(@an~2+b+cnf2) of forcing, and decaying structure functioff,(ky,t) for

two types of initial conditiongcalled Decay 1 and Decay.2
Notice thatF{”(k,,t) and 6F4(k,,t) have the same time For Decay 1 we considered four times, which differ in order
dependencet(-t, )3, but different scaling. As a result, of magnitudest=20T, 1? T, 10°T, and 16 T, whereT is
their ratio is time independent; the subleading term does ndhe characteristic time of the first shelFor Decay 2 we
become relatively smaller in time. On the other hand, it de-considered three different timés-10? T, 10° T, and 16 T.

cays relatively to the leading term &g increases: In all these cases we found the scaling exponéptand the
dimensionless amplitudes, for the three even ordefs=2,
4, and 6. The results are collected in Table | together with
oF3(kn,t) 1 :
o L Thn (25  our estimates of the error bars.
F3/(kn,t)  A"2 We can state that our resulssipport the conjecture of

strong universalitywithin the numerical accuracy. Taking
While the third-order structure function is the easiest tointo account that before the data analysis presented above the
handle, it is clear that there will always be a subleading ternrtaw results contained objects differing by orders of magni-
added td-, from the time derivative oF ,_;, which appears tude, the degree of precision of the identity of the amplitudes
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FIG. 5. The normalized compensated decaying structure functions for Decay 1 data averaged over 13 200 initial conditions and over
one-tenth of the decade in time. The symbols show the calculated data at differenfdirfilesd in the legendThe dashed lines denote the

fits for the corresponding structure functions. The best fit scaling exponents used for the compéfisa@ior?8, (=1, {,=1.254, and
{s=1.72) are the same as in the forced case. The Decay 2 data show similar behavior.

C, and the exponentg, shown in Table | should be taken exhibit weak universality only. In contrast, the nonlinearity

very seriously. We propose that all the results presented bgf the Navier-Stokes equations and their shell-model coun-
previous authors with negative indications about universalityterparts leads to coupled, hierarchical equations for all the
(even of the weak typestem from problems in handling the p-order statistical objects that have to be solved simulta-

corrections to scaling, either from anisotropy or from dissi-neously. This rigid structure allows much less freedom than
pative or other boundary effects. the linear advection problem, leading to the possibility of
It should be stressed at this point that the strong universtrong universality.

sality observed here is not expected in the much simpler Finally, we comment on a possible theoretical support for
problem of turbulent advection. The difference stems fronthe strong universality conjecture. We propose that a neces-

the linearity of the advection problem vs the nonlinearity ofsary condition for strong universality is the local character of
the Navier-Stokes problem and its shell counterpart. In thehe interaction, which allows to formulatsee Refs[30—

linear advection problem one finds equations for the statisti32]) the hierarchy of equations in terms of inertial-range ob-
cal objects that decouple for each orgerThe independent jects only. The locality of energy transfer over scales, which
p-order equations determine the anomalous scaling exponei#t built in the shell models of turbulence, is an assumption in
{p from solvability conditions, leaving the amplitud&, to  the Richardson-Kolmogorov cascade picture of turbulence,
be found by matching the scale invariant correlation functiorsee, e.g., Refd.1,4,9]. The locality of the interaction was

in the inertial interval with its nonuniversal “boundary con- demonstrated in Ref33], using the Belinicher-L'vov trans-
ditions” at the energy-containing scales. The amplitu@gs  formation of the Navier-Stokes equatioi8t], which allows
depend, therefore, on the details of the nonuniversal forcingo eliminate from the theory the effects of sweeping. Once
and the statistics of the turbulent advection problem mayve have a theory in terms of inertial-range objects, it is quite
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natural that amplitudes should be universal as well, up to an ACKNOWLEDGMENTS

overall single parameter, which is the energy flux per unit

time and mass. An elaboration of these ideas will be pre- This research was supported in part by the Israel Science
sented in a future publication. At this point we finish with the Foundation administered by the Israeli Academy of Science
conjecture that strong universality is a property shared alsand the European Commission under the TMR network

by Navier-Stokes turbulence. “Nonideal Turbulence.”

[1] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics Phys.73, 913 (2001, and references therein.
(MIT, Cambridge, MA, 197% [19] M. Vergassola, Phys. Rev. &3, R3021(1996.

[2] G.I. Taylor, Proc. R. Soc. London, Ser.151, 421(1935. [20] I. Arad and I. Procaccia, Phys. Rev.@3, 056302(2002.

[3] T.D. Karman and L. Howarth, Proc. R. Soc. London, Ser. A [21] A. Celani and M. Vergassola, Phys. Rev. L&6, 424 (2007).
164, 192 (1938. [22] I. Arad, L. Biferale, A. Celani, |. Procaccia, and M. Vergassola,

[4] A.N. Kolmogorov, Dokl. Akad. Nauk SSSRBO, 301 (1941). Phys. Rev. Lett87, 164502(2001).

[5] A.N. Kolmogorov, Dokl. Akad. Nauk SSSB1, 538 (1941). [23] Y. Cohen, T. Gilbert, and I. Procaccia, Phys. Re%3:026314

[6] Y. Kaneda, in Proceedings of IUTAM Symposium on Rey- (2002.
nolds Number Scaling in Turbulent Flow, 2002, Princeton, NJ[24] A. Celani, T. Matsumoto, A. Mazzino, and M. Vergassola,

(unpublished Phys. Rev. Lett88, 054503(2002.
[7] V. Borue and S.A. Ozsag, Phys. Rev5E, R856(1995. [25] E.S.C. Ching, Y. Cohen, T. Gilbert, and I. Procaccia, Europhys.
[8] D. Fukayama, T. Oyamada, T. Nakano, T. Gotoh, and K. Lett. 60, 369 (2002.

Yamamoto, J. Phys. Soc. Jpg®, 701 (2000. [26] E.S.C. Ching, Y. Cohen, T. Gilbert, and I. Procaccia, Phys.
[9] U. Frisch,Turbulence: The Legacy of A. N. Kolmogor@am- Rev. E67, 016304(2003.

bridge University Press, Cambridge, 1995 [27] V.S. L'vov, E. Padivilov, A. Pomyalov, I. Procaccia, and D.
[10] G.K. Batchelor, The Theory of Homogeneous Turbulence Vandembroucq, Phys. Rev. %8, 1811(1998.

(Cambridge University Press, Cambridge, 1953 [28] G.K. Batchelor and A.A. Townsend, Proc. R. Soc. London,
[11] L. Skrbek and S.R. Stalp, Phys. Fluiilg, 1997(2000. Ser. A190 534(1947; 193 539(1948.
[12] I. Arad, B. Dhruva, S. Kurien, V.S. L'vov, I. Procaccia, and [29] J.-O. Hooghoudt, D. Lohse, and F. Toschi, Phys. Flui@s

K.R. Sreenivasan, Phys. Rev. Legfl, 5330(1998. 2013(20012).
[13] S. Kurien, V.S. L'vov, I. Procaccia, and K.R. Sreenivasan,[30] V.S. L'vov and I. Procaccia, Physica 267, 165 (1998.

Phys. Rev. B61, 407 (2000. [31] V.I. Belinicher, V.S. L'vov, and I. Procaccia, Physica2%4,
[14] A.M. Yaglom, Atmos. Oceanic Phy4.7, 919 (198)). 215(1998.
[15] B.A. Kader, Fluid Dyn. Res19, 38 (1984). [32] V.I. Belinicher, V.S. L'vov, A. Pomyalov, and I. Procaccia, J.
[16] K.R. Sreenivasan, Phys. Fluids 2778(1995. Stat. Phys93, 797 (1998.
[17] L. Biferale, G. Beffetta, A. Celani, A. Lanotte, F. Toschi, and [33] V.S. L'vov and I. Procaccia, Phys. Rev.22, 3840(1995.

M. Vergassola, e-print nlin.CD/0301040. [34] V.I. Belinicher and V.S. L'vov, Zh. Esp. Teor. Fiz.93, 1269

[18] G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. (1987 [Sov. Phys. JETB6, 303(1987)].

066310-9



