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Strong universality in forced and decaying turbulence in a shell model
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The weak version of universality in turbulence refers to the independence of the scaling exponents of thenth
order structure functions from the statistics of the forcing. The strong version includes universality of the
coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We
demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbu-
lence. The exponents and the normalized coefficients are time independent in decaying turbulence, forcing
independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also
the case for Navier-Stokes turbulence.
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I. INTRODUCTION

The statistical theory of fluid turbulence is concerned w
correlation functions of the turbulent velocity vector fie
u(r,t), wherer is the spatial position andt is the time@1#.
Since the velocity field is a vector, multipoint and multitim
correlation functions are, in general, tensor functions of
vector positions and the scalar times. Naturally such fu
tions have rather complicated forms, which are difficult
measure and to compute. Consequently, almost from its
beginning, the statistical theory of turbulence had been
cussed in the context of an isotropic and homogene
model. The notion of isotropic turbulence was first intr
duced by Taylor in 1935@2#. It refers to a turbulent flow, in
which the statistical averages of every function of the vel
ity field and its derivatives with respect to a particular fram
of axes is invariant to any rotation in the axes. This is a v
effective mathematical simplification, which, if proper
used, can drastically reduce the mathematical complexit
the theory. For this reason, it was very soon adopted by
ers, such as Ka´rmán and Howarth@3# who derived the
Kármán-Howarth equation, and Kolmogorov@4,5# who de-
rived the 4/5 law. In fact, most of the theoretical work
turbulence in the past 60 years had been limited to the
tropic model.

Within the homogeneous and isotropic model there de
oped the notion of universality of turbulence. By univers
ity, we mean the tendency of different turbulent systems
show, for very large Reynolds numbers Re, the same sm
scale statistical behavior when the measurements are
far away from the boundaries. The statistical objects~see
below for definitions! exhibit approximately the same scalin
exponents whether they are measured in the atmosph
boundary layer, in a wind tunnel or in a computer simulatio
provided they are measured far from the boundaries. Mo
over, the accumulated experimental knowledge over
years indicated that not only in forced, stationary turbulen
but also in decaying turbulence, there is a regime of ti
where the statistical objects exhibit the same scaling pro
ties. This phenomenon was explained@1# by the widely sepa-
rated time scales~‘‘eddy turn over times’’! that characterize
1063-651X/2003/67~6!/066310~9!/$20.00 67 0663
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large and small length scales in turbulence. While turbule
was decaying on the time scale of the large eddies, the s
one had ample time to reach an ‘‘energy-flux equilibrium
that in terms of scaling behavior was indistinguishable fro
forced turbulence. Thus, there exists a wide-spread be
that at least from the point of view of scaling exponen
forced and decaying turbulence are in the same univers
class, sharing the same scaling exponents of the corresp
ing correlation functions.

To actuallyprove this type of universality in experiment
and simulations is, however, far from straightforward.
achieve reasonable precision in the measurement of sca
exponents one needs large ranges of scales where sc
prevails, and this entails large Reynolds numbers. Unfo
nately large Reynolds numbers are available usually w
anisotropic effects are large, like in the atmospheric bou
ary layer or in large wind tunnels. Direct Numerical Simul
tions~DNS! can be used to eliminate anisotropy almost co
pletely ~up to lattice anisotropy that are unavoidable
simulations!, but they are limited to relatively low Re, not
withstanding the very recent simulations of size 40963 @6#.
Decaying turbulence is even harder to characterize precis
since the effective Reynolds number decreases in time. T
actual measurements of scaling properties are fraught
difficulties, corrections to scaling, effects of anisotropy, a
what not. As a result, over the years@7# and also very re-
cently, it was proposed@8# that structure functions in forced
and decaying turbulence have different exponents. In
paper we take a strong stand, proposing that the univers
that actually exists in turbulence is even stronger than w
has been anticipated so far.

To make our point clear, recall that the statistical descr
tion of fully developed turbulence employs correlation fun
tions and structure functions. These are ensemble averag
velocity differences across a length scaleR. In the theoretical
studies of turbulence the two most common ensemble a
ages areover realizations of the forcingwhen one studies
forced turbulence, orover initial conditionswhen one studies
decaying turbulence. The longitudinal structure functions
the simplest such objects, being moments of the longitud
components of the velocity difference between two poin
©2003 The American Physical Society10-1
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We will denote the longitudinal structure functions in forc
and decaying turbulence bySp andFp , respectively, with the
precise definitions

Sp~R![ K H @u~r1R,t !2u~r,t !#•
R

RJ pL
f

, ~1!

Fp~R,t ![ K H @u~r1R,t !2u~r,t !#•
R

RJ pL
i

. ~2!

Hereu(r,t) is the velocity field measured at pointr at timet.
^•••& f and ^•••& i stand for ensemble averaging over t
forcing and the initial conditions, respectively. In writing E
~1! we assumed that the forcing is stationary in time, hom
geneous, and isotropic, and thusSn is a function of the scala
R only. In writing Eq.~2! we assumed that the initial cond
tion are homogeneous and isotropic. Of course, the deca
structure functions are by definition time dependent. T
widely spread belief@1,9,10# is that, forR values in the in-
ertial range of turbulence~much smaller than the forcing
scale but much larger than the dissipation scale!, the scaling
exponents zp that characterize Sp(R), i.e., Sp(lR)
5lzpSp(R), are the same as the scaling exponents that c
acterizeFp(R,t) for a given value oft. Of course, also here
R should be well in the~time dependent! inertial range andt
should be neither too small nor too large@11#. In the sequel
we refer to the identity of only the scaling exponents of the
two sets of objects~if it exists! as ‘‘the weak version of
universality.’’ As mentioned above the existence of the we
version of universality is by no means accepted by eve
body in the field of turbulence. Since there is noproof of this
universality, doubts of its existence linger, and, for examp
in Ref. @8# it was concluded that the scaling exponents of
two families of statistical objects arenot the same. We note
however, that in the same paper it was stated that the sca
exponents of the longitudinal and transverse structure fu
tions are also not the same. It was shown recently, howe
that such statements stem from incomplete treatments o
effects of anisotropy@12,13#, leaving hope that the weak ve
sion of universality is still correct.

In fact, in this paper we will propose that not only th
weak version of universality is correct, but in fact also
‘‘strong version of universality’’ is applicable. By the latte
we mean that once properly normalized, the structure fu
tions Fp and Sp agree not only in exponents but also
amplitudes. In the context of the second-order structure fu
tion, this is not a new statement. The universality ofz2 and
C2 was already stated in the 80s by Yaglom@14# and Kader
@15#. Analyzing hundreds of experiments made in differe
flows under different conditions, Sreenivasan in 1995 ca
to the conclusion that ‘‘the Kolmogorov constantC2 is more
or lessuniversal, essentially independent of the flow as w
as the Reynolds number~for Rl.50 or so!, . . . with the
average value ofC2'0.53 with a standard deviation of abo
0.055’’ @16#. Nevertheless, the universality ofC2 andCp for
p<4 is still under debate. For example, very recently in R
06631
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@17# the authors argued on the basis of a 2563 DNS ‘‘in favor
of an ‘exponents only’ universality scenario for forced turb
lence.’’

We believe that this strong version of universality w
never stated before, and the common thinking is that am
tudes depend in a nonuniversal way on details of the forc
or the preparation of the decaying turbulence. While true,
will argue that the freedom afforded by such details is ve
limited, amounting at the end to justonefree number, which,
once taken into account, the strong version of universa
applies.

Besides being an issue of fundamental importance to
bulence, there is another reason for returning at this time
the correspondence between force and decaying turbule
The reason is that the riddle of anomalous scaling of co
lation and structure functions in forced turbulent advect
~passive and active! has been solved recently. First, in th
context of the nongeneric Kraichnan model of passive sc
advection @18#, and then, in steps, for passive vecto
@19,20#, generic passive scalars and vectors@21–23#, and fi-
nally for generic active scalars and vectors@24–26#. The
common thread of this advance is that anomalous scalin
discussed in the context of the decaying~unforced problem!,
in which one shows that there exist statistically preserv
structures~eigenfunctions of eigenvalue 1 of the appropria
propagator of the decaying correlation functions!. The decay-
ing problem is independent of forcing, and one shows t
the statistics of the forced problem is dominated by the sa
statistically preserved structures that are identified in the
caying problem. The calculation of the anomalous expone
boils down then to calculating eigenfunctions of linear o
erators. In these problems the correspondence between
decaying and forced statistics is proven mathematically
demonstrated beyond reasonable doubt by careful nume
A crucial ingredient in all this progress is that turbulent a
vection is described bylinear partial differential equations
There is, therefore, an urgent question how to translate~if it
is possible! the newly acquired insights to the nonlinear tu
bulent problem itself, be it the Navier-Stokes equations
any of the shell models that were frequently discussed
cently in the context of anomalous scaling. In this paper
make a step in this direction, analyzing the decay of
Sabra shell model@27# and showing numerically that th
statistics of the decaying state and the forced turbulent s
are the samein exponentsand in amplitudesup to one free-
dom ~the time-dependent mean energy!. We opt to work with
the shell model rather than the Navier-Stokes equations s
ply because the accuracy required for our aims exceeds
available scaling ranges and decay times for the latter.
express a strong belief that very similar results can be d
onstrated also for Navier-Stokes turbulence. Indeed, in a
ture publication we will present the theory that stands beh
the present numerical findings and demonstrate that the b
structure of that theory is the same for shell models and
Navier-Stokes equations.

The paper is organized as follows. In Sec. II we introdu
the shell model and the numerical simulations that we p
form. We present the data for the energy decay and exp
what is the time domain for which we should compare t
0-2
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TABLE I. Universal coefficientsCp and scaling exponentszp obtained from the best fit of the numerical data. The auxiliary fit parame
in Eq. ~17! are found to be in the intervalsap;0.5–2 andmp;0.6–2.3. The error bars for each parameter correspond to the error fun
E, Eq. ~18!, equal.A2Emin with all other parameters set to their optimal values.

Time C2 z2 nd,2 C4 z4 nd,4 C6 z6 nd,6

Forced 1 0.7360.07 0.72860.006 17.0 0.6060.08 1.25460.008 16.24 0.6260.15 1.7260.01 15.87
Forced 2 0.7360.07 0.72860.006 17.0 0.6060.08 1.25460.008 16.24 0.6160.15 1.7260.01 15.87
Decay 1 20 0.7260.05 0.72860.006 17.2 0.6260.06 1.25460.008 17.0 0.7960.15 1.7260.01 16.4

100 0.7260.06 0.72860.006 16.2 0.6260.07 1.25460.008 16.0 0.7960.15 1.7260.01 15.0
103 0.7260.07 0.72860.006 13.5 0.6160.08 1.25560.008 13.2 0.7760.15 1.7260.01 13.0
104 0.7260.08 0.72860.006 11.0 0.6160.09 1.25660.008 10.2 0.7560.15 1.7360.01 9.8

Decay 2 100 0.7360.1 0.7360.01 15.5 0.660.2 1.2560.01 15.2 0.7060.20 1.7260.02 14.3
103 0.7460.1 0.7360.01 13.3 0.660.15 1.2660.01 13.1 0.6660.20 1.7260.02 12.4
104 0.7260.1 0.7360.01 10.7 0.660.2 1.2560.01 10.5 0.7260.25 1.7360.03 9.8
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decaying and the forced statistics. In Sec. III we present
results for forced structure functions for different types
forcing. In determining the exponentsand the amplitudesof
these functions one has to be extra careful—we explain
one needs to find fits to functions throughout their range
existence. It is not enough to plot log-log plots for the in
tial range. In Sec. IV we present the data for the decay
correlation functions, and explain how to find their exp
nents and amplitudes once the time dependence is taken
account. We explain theoretically that the decaying struct
functions contain subleading contributions that decay fast
ward small scales and do not affect the leading scaling
ponents. The results of our calculations are summarize
Table I, which is the central result of this paper, giving stro
support to the conjecture ofstronguniversality. In Sec. V we
present a summary and some concluding remarks.

II. MODEL AND ENERGY DECAY

A. Model and objectives

The Sabra shell model@27#, like all shell models, is a
reduced dynamical description of turbulence in terms
complex variablesun , which represent velocity amplitude
associated with wave numberkn5k0ln. The equations of
motion are

dun

dt
5 i ~akn11un12un11* 1bknun11un21* 2ckn21un21un22!

2nkn
2un1 f n , ~3!

where the asterisk stands for complex conjugation andn is
the ‘‘viscosity.’’ The coefficientsa, b, andc are chosen such
that a1b1c50. This guarantees the conservation of ‘‘e
ergy’’

E5(
n

uunu2, ~4!

in the inviscid (n50) forceless limit. As it is well known,
the Sabra model has a second quadratic invariant, analo
to the helicity in fluid mechanics, of the form
06631
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H5(
n

~a/c!nuunu2. ~5!

In this paper we will compare the statistics of the forc
solution~with the forcingf n restricted to the first and secon
shells,n51,2) to the statistics of the decaying problem wi
f n50 for all n. The comparison will be presented in terms
the time-independent forced structure functionsSn and time-
dependent decaying structure functionsFn defined as fol-
lows:

S2~kn![^uunu2& f , F2~kn ,t ![^uunu2& i ,

S3~kn![Im^un21unun11* & f , ~6!

F3~kn ,t ![Im^un21unun11* & i ,

S4~kn![^uunu4& f , F4~kn ,t ![^uunu4& i ,

S6~kn![^uunu6& f , F6~kn ,t ![^uunu6& i .

Here ^•••& f and ^•••& i represent averaging with respect
realizations of the forcing and the initial conditions, respe
tively, for the forced and decaying problem.

The main result of the present work is that in this mod
there existsstrong universality. This means that in the bulk
of the inertial interval the ‘‘decaying’’ structure function
Fp(kn ,t) take on the form

Fp~kn ,t !5CpF «̄ i~ t !

k0
G p/3

l2n zp, ~7!

with the same anomalous scaling exponentszp andthe same
dimensionless constants Cp , as in the scaling laws of the
‘‘forced’’ structure functions

Sp~kn!5CpF «̄ f

k0
G p/3

l2n zp. ~8!

Here

«̄ i~ t ![^«n~ t !& i , «̄ f[^«n~ t !& f . ~9!
0-3
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In these equations the instantaneous value of the energy
going throughnth shell ~in a given realization! is

«n~ t !52kn$2a l Im@un~ t !un11~ t !un12* #

1c Im@un21~ t !un~ t !un11* #% ~10!

~for more details, see Ref.@27#!. The only difference between
Eqs.~7! and ~8! is that the energy flux«̄ i(t), averaged over
the statistics of the initial conditions, decays in time, wh
the energy flux«̄ f , averaged over the statistics of the for
ing, is time independent. Equations~7! and~8! imply that the
probability distribution function~PDF! of the velocity fluc-
tuationsun on scaleskn within the inertial range in decaying
turbulence can be obtained from the corresponding PDF
stationary forced turbulence~and vise versa!. This is
achieved simply by the interchange«̄ i(t)⇔ «̄ f . Moreover,
strong universality means that the PDF dependence on«̄ i(t)
for the fine scales in decaying turbulence is independen
the initial conditions, provided that the Reynolds numb
Re@1 and all the initial energy is concentrated in the reg
of large scales~first shells!. Similarly, the PDF dependenc
on «̄ f for the fine scales in forced turbulence is independ
of the statistics of forcing for Re@1, provided that the forc-
ing is concentrated in the region of large scales.

The rest of this paper is devoted to substantiating th
strong propositions, which can be summarized in terms
the existence of a probability distribution function

P~u1 , . . . ,uN ,t !5@v~ t#2NP~x1 , . . . ,xN!, ~11!

in which xi[ui /v(t) andv(t)}@en(t)#1/3 is the correspond-
ing velocity scale.

B. Simulations

The calculations presented bellow were carried out for
Sabra model with 28 shells,l52, a51, b5c520.5, k0
5224, andn51027. In our simulations we employed tw
different types of forcing. We denote them as Forced 1 a
Forced 2. Forced 1 has white noise added to the equatio
the first shell. Forced 2 is forced by a Gaussian force on
first shell, which is correlated exponentially in time. In bo
cases the amplitude of the force in the first shell was take
be f 150.01, while the forcing amplitude in the second sh
was adjusted to reduce the helicity inputf 25A(2c/a) f 1,
for more details, see Ref.@27#, pp. 1813 and 1815.

In the decaying case, the total initial energyE0 in the two
first shells was kept constant. The amplitudes of the first
shell velocities were defined asuu1(0)u25aE0 and
uu2(0)u25(12a)E0 with a random, uniformly distributed
in the interval@0,1#. The phases in both shells were rando
uniformly distributed in the interval@0,2p#. A fourth-order
Runge-Kutta scheme with adaptive time step was appl
The total energy decay was followed for nine decades
time. The statistical objects were accumulated during fi
decades in time.

Two recording schemes for the decaying turbulence w
applied. In one case~denoted as Decay 1!, the data were
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recorded starting after a short transient time withE0510.
For this case, the data were averaged over 13 200 initial c
ditions. In the other case~Decay 2!, the data were recorde
when the energy in each realization had reached the v
E50.1 with E055. These data were averaged over ab
37 000 initial conditions. The decay of the total energy f
two cases, plotted with an appropriate time shift, is shown
Fig. 1. It is clear that the two schemes are equivalent for
study of the advanced stages of the decay.

C. The law of energy decay

We first discuss the total energy decay, where the to
energyE(t) is defined as

E~ t !5(
n

uunu2. ~12!

In the Navier-Stokes case the law of energy decay had b
intensively studied following the influential works of Taylo
@2#, Kolmogorov@4,5#, and Batchelor and Townsend@10,28#.
For recent development, see, e.g., Ref.@8# and references
therein. It was found thatE(t)}t2n with the decay exponen
n ranging between 1 and 5/2. This large degree of uncerta
stems from difficulties in pinpointing the energy spectrum
scales larger than the energy containing scaleL. It is also not
easy to determine howL depends on time. Take, for exampl
the case of grid turbulence in a wind tunnel. Immediate
behind the gridL is of the order of the mesh size. It in
creases, however, with the distance from the grid. Dow
streamL may saturate at the wind tunnel diameter. In th
regime the phenomenological analysis@8# predicts n52,
which is a number that is not in contradiction with expe
ments@11#. The same prediction (n52) was reached in DNS
of the Navier-Stokes equation@7# and for the GOY shell
model @29#. This prediction was shown to be in agreme
with numerical simulation in whichL is time independent
due to the special choice of initial conditions.

FIG. 1. The total energy decay from Decay 1 data~dashed line!
and from Decay 2 data~solid line!. The lines coincide within the
linewidth.
0-4
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For the sake of completeness we review the theoret
analysis of Ref.@29#, and show that our simulations of th
Sabra shell model are in excellent agreement with its pre
tions. Consider a decaying solution with the energy initia
concentrated, say, in the first two shells, see Fig. 2, up
panel. The time is measured in natural time unitsT that are
determined by the characteristic time of the first shell,T
51/5k0AE0 (E0 is the total initial energy!. One sees tha
during oneT the energy cascades down to the 6th shell, a
during 2T down to the 12th shell. At later times the casca
process accelerates, and the energy goes from the 13th
to ‘‘infinite’’ shells during a time that is roughly betwee
2.75T and 3T. As expected, the completion of the casca

FIG. 2. The temporal behavior ofF2. The different lines corre-
spond to the different time moments~in units of T, see the text!.
Upper panel: the development of the energy cascade. The en
initially concentrated in the first two shells, cascades down
higher shell numbers with acceleration. The cascade proces
completed in aboutT* '3T. For t.T* the total energy decrease
Lower panel: the decay phase. The total energy decreases fo
scales and, at the same time, the viscous cutoffkn,d moves towards
smaller shell numbers. At later stages of the decay all the energ
contained in the first shell and decays exponentially.
06631
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process requires a finite timeT* of a few unitsT. In our case
T* '3 T.

For t.T* the total energy of the systemE(t) begins to
decay with

dE~ t !

dt
52 «̄ i~ t !. ~13!

Accordingly, the time-dependent Reynolds number Re(t),
which is proportional toAE(t), decreases, and the viscou
cutoff kd(t) moves towards smaller shell numbers, as it c
be seen in Fig. 2, lower panel. For example,kd(105T)
'212, kd(108T)'23 and the inertial interval almost disap
peares. For larger times all the energy is contained in the
shell, and it decays exponentially,

E~ t !}exp@22nk1
2t#, ~14!

following the linear part of the equation of motion for th
first shell.

For intermediate times, which in our simulations sp
eight orders of magnitude 3T,t,108 T, the slope of plots
of log2F2(kn) vs n remains more or less constant. This is
manifestation of the time independence of the scaling ex
nents. Taking this as a fact, one immediately sees from
~7! for p52 that E(t)}@«̄ i(t)#2/3 and hence «̄ i(t)
}@E(t)#3/2. Notice that this result is independent of the pr
cise value of the scaling exponentz2, anomalous or not.
Thus, Eq.~13! can be presented as

dE~ t !

dt
52k@E~ t !#3/2, ~15!

with a prefactork, which may be expressed via the param
eters of the shell model,k0 , z2, andC2. Approximately,k
.k0. In our calculations, both Decay 1 and Decay 2,k
50.0687, whilek050.0625. The solution of Eq.~15! is

E~ t !5E*
t
*
2

~ t1t* !2
, ~16!

wheret* 52/kAE* andE* is the integration constant. Th
results of the numerical simulations for the total ener
E(t), ~cf. Fig. 3, solid line!, are in excellent agreement wit
Eq. ~16!, which is shown in the figure as a dashed line. T
total energy decay was followed for nine decades in tim
After 1.5 decades of transient behavior, the decay of to
energy follows very closely thet22 law, until at about six
decades the viscous scale reaches the first shells and th
cay becomes exponential in agreement with Eq.~14!.

III. FORCED STRUCTURE FUNCTIONS

In this section we present results for the forced struct
functions. As far as the scaling exponents are concern
there is not much novelty in this section, the exponents
basically the same as those reported in a number of prev
publications. The aspect stressed here is related to thecoef-
ficients Cp of the structure functions, cf. Eq.~8!. We demon-
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strate that these coefficients are independent of the forc
and that the scaling form proposed in Eq.~8! is indeed uni-
versal.

In order to get an accurate determination of the sca
exponents and of the coefficients, and to be able to dem
strate strong universality, it is mandatory to fit the measu
data to model functions that contain the presumed dissipa
behavior. Failing to do so results in inaccuracies that m
lead to confusion. As a first step in the analysis of the d
we fit the normalized structure functionsSp /Ep/2 using the fit
formula Eq.~44! from Ref. @27#:

Pp~kn!5
Ap

kn
zp

S 11ap

kn

kd,p
D mp

expF2S kn

kd,p
D xG , ~17!

where

Ap , zp , ap , mp , kd,p , or nd,p[ log2kd,p

are the fit parameters andx5 logl(11A5)/2 is the exponen
of the viscous range. The parametersAp ,zp determine the
behavior ofPp(kn) in the inertial interval,kd,p determines
the viscous cutoff. The ‘‘auxiliary parameters’’ap ,mp cor-
rect the behavior in the transient inertial-viscous region. T
best fit is obtained by minimizing the following error func
tion:

E5A(
n

S 12
log10Pp~kn!

log10Sp~kn! D
2

, ~18!

whereSp refers to the numerically obtained data. Both s
of forced structure functions data were fitted with all t
shells taken into account except the first two and the
three shells, in order to minimize boundary effects.

The quality of the fit may be seen in Fig. 4. The forc
data are shown normalized by the respective total energy
not compensated bykn

zp , so that the different structure func

FIG. 3. The decay of the total energyE5(nuunu2 averaged over
3200 initial conditions. The dashed line corresponds to the de
law, Eq. ~16!, with E* 512.15 andt* 58.35T.
06631
g,

g
n-
d
ve
y
a,

e

s

st

ut

tions are separated and even data corresponding to For
and Force 2 cases may be distinguished.

The fit procedure allows us to express the structure fu
tion in the inertial range asSp5ApEp/2kn

zp . To calculate the
coefficientsCp we have now estimate the value of the ener
flux «̄ f @see Eq.~8!#. We use the exact result forS3 to express
«̄ f via A3 and the parameters of model~20!. The coefficient
Cp of the structure functions, other thanS3, may therefore be
written as

Cp5
Ap

@2A3~a2c!#p/3
. ~19!

The results are summarized in Table I, which is the cen
result of this paper. Before discussing them, we turn to
analysis of the decaying structure functions and add th
analogous results to the table.

IV. DECAYING STRUCTURE FUNCTIONS

In this section we present results for the decaying str
ture functions, including the numerical support for the stro
universality proclaimed in Eq.~7!. We caution the reade
~and whoever wants to repeat these calculations in other
tems, including Navier-Stokes decaying turbulence! that the
issue is fraught with subleading contributions, even in
isotropic sector. One obvious subleading term is provided
the rate of change ofFp(kn ,t), which is coupled, via the
infinite hierarchy of equations, to terms involvin
Fp11(km ,t), with m of the order ofn. To see this phenom
enon clearly and to learn how to take it into account,
discuss first the case of the third-order structure function
can be dealt with analytically.

y

FIG. 4. The structure function for two types of the forcin
Large symbols, shown in the figure correspond to Forced 2 d
The dashed lines are the fits for the corresponding structure f
tions. Small black dots denote Forced 1 data. The fits for these
are not shown. Both sets were normalized by their respective t
energy.
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STRONG UNIVERSALITY IN FORCED AND DECAYING . . . PHYSICAL REVIEW E67, 066310 ~2003!
A. Subleading corrections to the scaling
of decaying turbulence

The easiest case for theoretical analysis of the sca
behavior of the decaying structure functionsFp(kn ,t) is the
casep53, since in the forced caseS3(kn) is known exactly
@27#. For simplicity we will discuss here the helicity-fre
case, for which

S3~kn!5 «̄ f /kn~c2a!. ~20!

We will show now that in the decaying case strong univ
sality is realized, but only well within the inertial range.
the vicinity of the energy containing scales there are sign
cant subleading corrections caused by the time depend
of «̄ i(t).

To find these corrections, consider the equation of mot
of the second-order structure function in the inertial inter
~i.e., for kn!kd), Eq. ~9! of Ref. @27#:

dF2~kn ,t !

2kndt
5alF3~kn11 ,t !1bF3~kn ,t !1

c

l
F3~kn21 ,t !.

~21!

In the stationary case, the left-hand side of this equa
vanishes and Eq.~20! is a solution. In the decaying case, l

F3~kn ,t !5F3
(0)~kn ,t !1dF3~kn ,t !, ~22!

F3
(0)~kn ,t !5

«̄ i~ t !

kn~c2a!
.

In the intermediate time regime, one has thatF2(kn ,t)}(t
1t* )22, consequently

dF2~kn ,t !/2kndt52F2~kn ,t !/kn~ t1t* !. ~23!

Comparing this with Eq.~21!, we see that the leading solu
tion for F3 gains a subleading termdF3(kn ,t)}kn

2(11z2) .
More precisely

dF3~kn ,t !52
F2~kn ,t !

~ t1t* !kn~a l2z21b1clz2!
. ~24!

Notice thatF3
(0)(kn ,t) and dF3(kn ,t) have the same time

dependence (t1t* )23, but different scaling. As a result
their ratio is time independent; the subleading term does
become relatively smaller in time. On the other hand, it
cays relatively to the leading term askn increases:

dF3~kn ,t !

F3
(0)~kn ,t !

}
1

lnz2
. ~25!

While the third-order structure function is the easiest
handle, it is clear that there will always be a subleading te
added toFp from the time derivative ofFp21, which appears
06631
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in the infinite hierarchy of equations. Since these equati
always havekn on the right-hand side, one can immediate
guess the general form of the correction to theFp scaling,
i.e.,

dFp~kn ,t !

Fp~kn ,t !
}

1

ln(11zp212zp)
. ~26!

Therefore, the subleading term of thep-order structure func-
tion decreases towards small scales roughly asl22n/3 for
‘‘normal’’ scaling of Kolmogorov’s 1941 statistics~K41!,
and somewhat slower for anomalous scaling. Strong uni
sality of the turbulent statistics is thus expected only dee
in the inertial interval.

B. Numerical results

All the calculated statistical objects were normalized
the total energy, i.e.,Fp(kn ,t)/Ep/2(t). All the normalized,
compensated, decaying structure functions show a plat
To improve the statistics, the data were first normalized
the total energy and then averaged over one-tenth of a t
poral decade. For the same reasons that were explained i
case of the forced objects, the fit region for the decay
structure functions was chosen fromn53 to n5nd,p15 for
the Decay 1 data and fromn55 to n5nd,p15 for the Decay
2. For t5105 T nd'7 and only a few shells may be consid
ered as the ‘‘inertial interval.’’ Therefore the fit paramete
become unreliable. The quality of the fit can be seen in F
5 for t between 20T and 104 T. For t<20T the flux equi-
librium cannot be guaranteed and the coefficientsCp and the
exponents may be not universal. This is definitely the c
for t<10T. The decaying structure functions are plotted n
malized by the total energy and compensated in orde
emphasis the fact that main temporal effect is the shift
kd,p .

V. SUMMARY AND DISCUSSION

In summary, we analyzed, using the Sabra shell mode
turbulence, forced structure functionsSp(kn) for two types
of forcing, and decaying structure functionsFp(kn ,t) for
two types of initial conditions~called Decay 1 and Decay 2!.
For Decay 1 we considered four times, which differ in ord
of magnitudes (t520T, 102 T, 103 T, and 104 T, whereT is
the characteristic time of the first shell!. For Decay 2 we
considered three different timest5102 T, 103 T, and 104 T.
In all these cases we found the scaling exponentszp and the
dimensionless amplitudesCp for the three even ordersp52,
4, and 6. The results are collected in Table I together w
our estimates of the error bars.

We can state that our resultssupport the conjecture o
strong universalitywithin the numerical accuracy. Takin
into account that before the data analysis presented abov
raw results contained objects differing by orders of mag
tude, the degree of precision of the identity of the amplitud
0-7
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FIG. 5. The normalized compensated decaying structure functions for Decay 1 data averaged over 13 200 initial conditions
one-tenth of the decade in time. The symbols show the calculated data at different times~defined in the legend!. The dashed lines denote th
fits for the corresponding structure functions. The best fit scaling exponents used for the compensation~z250.728,z351, z451.254, and
z651.72) are the same as in the forced case. The Decay 2 data show similar behavior.
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Cp and the exponentszp shown in Table I should be take
very seriously. We propose that all the results presented
previous authors with negative indications about universa
~even of the weak type! stem from problems in handling th
corrections to scaling, either from anisotropy or from dis
pative or other boundary effects.

It should be stressed at this point that the strong univ
sality observed here is not expected in the much sim
problem of turbulent advection. The difference stems fr
the linearity of the advection problem vs the nonlinearity
the Navier-Stokes problem and its shell counterpart. In
linear advection problem one finds equations for the stat
cal objects that decouple for each orderp. The independen
p-order equations determine the anomalous scaling expo
zp from solvability conditions, leaving the amplitudeCp to
be found by matching the scale invariant correlation funct
in the inertial interval with its nonuniversal ‘‘boundary con
ditions’’ at the energy-containing scales. The amplitudesCp
depend, therefore, on the details of the nonuniversal forc
and the statistics of the turbulent advection problem m
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exhibit weak universality only. In contrast, the nonlinear
of the Navier-Stokes equations and their shell-model co
terparts leads to coupled, hierarchical equations for all
p-order statistical objects that have to be solved simu
neously. This rigid structure allows much less freedom th
the linear advection problem, leading to the possibility
strong universality.

Finally, we comment on a possible theoretical support
the strong universality conjecture. We propose that a ne
sary condition for strong universality is the local character
the interaction, which allows to formulate~see Refs.@30–
32#! the hierarchy of equations in terms of inertial-range o
jects only. The locality of energy transfer over scales, wh
is built in the shell models of turbulence, is an assumption
the Richardson-Kolmogorov cascade picture of turbulen
see, e.g., Refs.@1,4,9#. The locality of the interaction was
demonstrated in Ref.@33#, using the Belinicher-L’vov trans-
formation of the Navier-Stokes equations@34#, which allows
to eliminate from the theory the effects of sweeping. On
we have a theory in terms of inertial-range objects, it is qu
0-8
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natural that amplitudes should be universal as well, up to
overall single parameter, which is the energy flux per u
time and mass. An elaboration of these ideas will be p
sented in a future publication. At this point we finish with th
conjecture that strong universality is a property shared a
by Navier-Stokes turbulence.
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