Analysis of meteorological data and the surface energy balance of McCall

Glacier, Alaska

E.J. Klok⁽¹⁾, M. Nolan⁽¹⁾ and M.R. van den Broeke⁽²⁾

⁽¹⁾ Water and Environmental Research Institute, Institute of Northern Engineering, 455

Duckering Bldg, University of Alaska Fairbanks, AK, USA

⁽²⁾ Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5,

3584 CC, Utrecht, the Netherlands

Submitted to Journal of Glaciology, 31 January 2005

Contact address:

Lisette Klok

KNMI

Postbus 201

3730 AE De Bilt

The Netherlands

Lisette.Klok@uibk.ac.at

1 Abstract

3	We analyzed meteorological data of the period 27 May to 20 August, 2004 from
4	two automatic weather stations on McCall Glacier, Alaska, to study the relationship
5	between climate and ablation. One of the weather stations is located on a mountain ridge
6	and another in the ablation area where we analyzed the energy balance and the specific
7	mass balance. Over this time period, McCall Glacier's ablation area was characterized
8	by an average temperature of 5.3 °C and an average wind speed of 3.1 m s ^{-1} , measured
9	at 2.06 and 3.05 m above the surface, respectively. A sonic height ranger and two
10	ablation stakes indicate a specific mass balance of -1.94 ± 0.09 m water equivalent
11	(w.e.) between 15 June to 20 August at the glacier tongue. The specific mass balance
12	calculated from the surface energy balance, -2.06 ± 0.18 m w.e, is in close
13	correspondence to this. The latter is the sum of 0.12 m w.e of snowfall, 0.003 m w.e. of
14	sublimation (i.e. deposition), and -2.18 m w.e. of melt. About 74% of the melt energy is
15	supplied by net radiation. The ice albedo is measured at 0.19, lower than measured in
16	previous years, possibly due to the influence of ash deposits from forest fires.
17	

17 1. Introduction

18

19	As part of the U.S. National Science Foundation's Freshwater Initiative, this
20	paper describes meteorological measurements and the surface energy balance of McCall
21	Glacier. This project aims to document changes in the freshwater inputs in the Arctic
22	hydrological system and how they relate to climate change. Glaciers can provide useful
23	information about historical changes in climate by means of their length or volume
24	changes or ice core analysis. McCall Glacier has the longest history of research in Arctic
25	Alaska and was for this reason selected for continued long-term research into the
26	glaciological component of the freshwater cycle.
27	The first glacio-meteorological investigations on McCall Glacier took place
28	between 1957 and 1958 as part of the International Geophysical Year (Orvig, 1961).
29	From 1969 to 1971, new glacio-meteorological experiments were carried out by
30	Wendler and Weller (1974) and Wendler and Ishikawa (1974) as part of the
31	International Hydrological Decade. Measurements of air temperature, ice temperature,
32	and ablation, including some temperature-precipitation mass-balance modeling were
33	also conducted during the 1990s (Rabus and Echelmeyer, 1998; Rabus and Echelmeyer,
34	2002). Recently, as part of the Freshwater Initiative project, Nolan and others (2005)
35	investigated the volume changes of McCall Glacier and Pattyn and others (2005)
36	examined the basal motion of McCall Glacier.
37	This paper presents new data on the climate and the surface energy balance of
38	McCall Glacier. This information is needed to explain glacier retreat and its sensitivity
39	to changing climate as well as to support future work on spatially-distributed mass-
40	balance modeling and ice-core proxy interpretation. In 2003, several automatic weather

41	stations (AWS) were installed on the ice and in the vicinity of the glacier. In this paper,
42	we mainly describe measurements from two AWS: one located in the ablation area and
43	another on a mountain ridge several hundred meters above the glacier. Information on
44	these stations is given in section 3. We first give a brief description of McCall Glacier,
45	and its climate in section 2. Section 4 contains an analysis of the meteorological
46	measurements for a summer period in 2004. In section 5, we present the energy balance
47	of the glacier surface and discuss its components, as well as the components of the
48	specific mass balance. Section 6 and 7 contain a discussion on the results and the
49	conclusions, respectively.
50	
51	2. McCall Glacier
52	
53	McCall Glacier is located at 69°18'N 143°48' W, in the Romanzof Mountains
54	of the eastern Brooks Range in northeast Alaska (Fig. 1). Like probably all glaciers in
55	the eastern Brooks Range, McCall Glacier has been losing mass over the last century
56	and probably doing so at a rate that is increasing with time since 1890 (Nolan and
57	others, 2005). Since 1890, McCall Glacier retreated about 800 m. Its current length is
58	7.5 km and its area shout 6.5 km ² . The closical elevation areas from shout 1400 to 2400.
	7.5 km and its area about 0.5 km. The gracier elevation ranges from about 1400 to 2400
59	m a.s.l., and the equilibrium line altitude ranges from 2000 to 2400 m a.s.l.
59 60	m a.s.l., and the equilibrium line altitude ranges from 2000 to 2400 m a.s.l. The climate of McCall Glacier differs from the arctic climate of the coastal
59 60 61	 m a.s.l., and the equilibrium line altitude ranges from 2000 to 2400 m a.s.l. The climate of McCall Glacier differs from the arctic climate of the coastal North Slope of the Brooks Range and also from the continental climate of interior
59606162	 7.5 km and its area about 0.5 km. The glacier elevation ranges from about 1400 to 2400 m a.s.l., and the equilibrium line altitude ranges from 2000 to 2400 m a.s.l. The climate of McCall Glacier differs from the arctic climate of the coastal North Slope of the Brooks Range and also from the continental climate of interior Alaska. It is better described by a mountain climate with relatively high precipitation
 59 60 61 62 63 	 7.5 km and its area about 0.5 km. The glacter elevation ranges from about 1400 to 2400 m a.s.l. m a.s.l., and the equilibrium line altitude ranges from 2000 to 2400 m a.s.l. The climate of McCall Glacier differs from the arctic climate of the coastal North Slope of the Brooks Range and also from the continental climate of interior Alaska. It is better described by a mountain climate with relatively high precipitation amounts compared to coastal and interior Alaska (Wendler and others, 1974). McCall

65 and others, 1974). The precipitation sources are the Bering Sea, about 700 km to the 66 west, and the Arctic Ocean, about 100 km to the north. Wind directions are frequently 67 from the southwest and mean monthly air temperature at 2275 m a.s.l. can range from -68 30 °C in winter to 0 °C in summer (Wendler and others, 1974). 69 Compared to mid-latitude glaciers or maritime glaciers, McCall Glacier has a 70 short ablation season (about 2.5 months, often less), a small ablation rate (about 1.5 m 71 ice per year at the glacier tongue), and a small mass-balance gradient (about 0.12 m w.e. 72 per 100 meter altitude). The glacier is therefore characterized by a small mass turnover 73 (Wendler and others, 1972; Wendler and Ishikawa, 1974; Rabus and Echelmeyer, 1998). 74 McCall Glacier is a polythermal glacier, which is common for glaciers in the 75 Arctic. Internal accumulation and superimposed ice formation occur in the accumulation 76 zone of McCall Glacier (Wakahama and others, 1976; Trabant and Mayo, 1985). Due to 77 this refreezing of melt water, the ice temperature of the accumulation area $(-1^{\circ}C)$ is 78 higher than the annual mean surface temperature there (-11°C). For McCall Glacier's 79 accumulation area, internal accumulation can be as much as 64% of the annual 80 accumulation (Trabant and Mayo, 1985). One region of the mid-ablation area is strongly 81 suspected to be temperate at the bed and with either sliding or warm-ice deformation 82 accounting for as much as half of the surface motion (Pattyn and others, 2004; Nolan 83 and others, 2005). 84 85 3. Weather stations

86

For our analyses, we used data of two AWS, which were installed in 2003 by
the Water and Environmental Research Institute, University of Alaska, Fairbanks. The

AWS located on the glacier is called JJMC (Fig. 1). It is situated in the ablation area at
1715 m a.s.l., about 30 m west and 30 m lower (due to ice melt) from where Wendler
and Weller (1974) and Wendler and Ishikawa (1974) carried out their meteorological
measurements.

93 The AWS at JJMC is a floating station such that the sensor heights remain 94 constant throughout the ablation season. Air temperature and relative humidity 95 (HMP45AC Vaisala, with a Young radiation shield) are measured every minute at 1.09, 96 2.06 and 3.02 m above the surface; these measurements are unventilated. At the same 97 heights, air temperature is also measured with a finewire thermocouple (Campbell 98 FW3). A sonic height ranger (Cambell SR50) continually measures surface elevation 99 changes caused by ablation and snowfall, and several tens of meters away two ablation 100 stakes are used for spatial comparison and redundancy in case of instrument failure. 101 Wind speed and direction (Met One 034B) are measured every five seconds at 1.70 and 102 3.05 m. A Kipp & Zonen CNR1 measures the four radiation components (incoming and 103 reflected solar radiation, and incoming and outgoing longwave radiation) at 1.44 m 104 above the surface. This sensor is installed parallel to the surface, within 4 degrees 105 accuracy. Finally, a thermistor string measures ice temperatures every 0.5 m until a 106 depth of 13.5 m at JJMC. A CR10x datalogger stores 15-minute averages of all of the 107 above variables. 108 By comparing the finewire thermocouple and the Vaisala sensor at 2.06 m for 109 the period 27 May to 20 August 2004, we concluded that the Vaisala measurement 110 exceeds the thermocouple temperature on average by 0.16 K. The standard deviation is

- 111 0.58 K. Since the thermocouple can be regarded as free of radiation errors, the
- 112 difference between the two sensors is explained by a radiation error of the Vaisala

113 sensor in the Young radiation shield. This error increases when wind speeds are low and 114 solar radiation is high, as expected in this situation: mean difference and standard 115 deviation between the Vaisala and thermocouple are 1.30 and 1.59 °C, respectively, for situations with wind speeds $< 2.0 \text{ m s}^{-1}$ and incoming solar radiation $> 500 \text{ W m}^{-2}$. In the 116 117 subsequent analyses, we therefore used the 2.06-m finewire thermocouple temperature 118 instead of the Vaisala, unless stated otherwise. 119 AHAB (Fig. 1) is the AWS that is located on the mountain ridge above the 120 glacier at 2415 m a.s.l. Here, air temperature and humidity (HMP45AC Vaisala) at 1.0 121 and 3.0 m, wind speed and direction (Met One 034B) at 3.0 m, and air pressure (Vaisala 122 CS105) are measured. Hourly averages of these variables are stored. 123 In section 4.2, we will also describe temperature measurements of Stations 1 and 124 5 on McCall Glacier (Fig. 1). Station 1 is located in the accumulation area at about 2345 125 m a.s.l. and Station 5 near the glacier snout (1509 m a.s.l.). At these locations, temperature (15-minute averages) is measured at about 0.9 and 2 m above the surface, 126 127 respectively, with an Onset Computer Corporation 12-bit Temperature Smart Sensor and 128 an Onset H21 Micrologger. 129 The accuracy of the sensors installed at the various stations is given in Table 1. 130 Between 27 May and 20 August 2004 (Julian day number (JD) 148-233), all stations 131 measured continuously. Therefore average weather conditions, the energy balance and 132 total ablation for this period will be described in this paper. 133 134 4. Analysis of meteorological measurements 135 136 4.1 Average weather conditions

137	Weather conditions at McCall Glacier measured at JJMC and AHAB for 27
138	May to 20 August, 2004 are plotted in Figure 2. In Table 2, mean daily, mean maximum
139	and mean minimum temperature, wind speed and relative humidity of these AWS is
140	given. Daily mean temperature at AHAB and JJMC ranges between -8 and $+12$ °C (Fig.
141	2). The average air temperature at JJMC over the analyzed period is 5.3 °C, and exceeds
142	the average air temperature at AHAB by only 1.2 $^{\circ}$ C (Table 2). The average temperature
143	gradient between AHAB and JJMC is therefore 0.2 K per 100 m altitude, which is much
144	smaller than the free air temperature gradient. We measured for 2004, a mean annual
145	temperature of -11.0 °C for AHAB and -6.5 °C for JJMC (both HMP45AC Vaisala).
146	This results in a steeper temperature gradient, of 0.6 K per 100 m altitude.
147	Daily mean air temperature and relative humidity at JJMC often reveal the same
148	fluctuations as the measurements at AHAB (Fig. 2). However, when hourly mean air
149	temperature and relative humidity (not shown) are considered, the relationship between
150	AHAB and JJMC is not so strong. For hourly mean temperature, the correlation
151	coefficient between AHAB and JJMC is 0.74 and the regression coefficient 1.13. For
152	relative humidity, the correlation coefficient is 0.61 and the regression coefficient 0.79.
153	Two cold spells occurred during the summer of 2004: one between 6 and 10
154	July (JD 188-192), and another between 31 July and 2 August (JD 213-216). These cold
155	spells coincide with periods of decreasing air pressure, increasing relative humidity, and
156	also high wind speed (Fig. 2). During both periods, a low-pressure system was situated
157	north of Alaska above the Arctic Ocean. This system caused a strong westerly flow at
158	500 hPa above the Eastern Brooks Range and high wind speeds at the surface. Both
159	brought cold, humid air and snow from the northwest to the McCall Glacier area.

160	However, wind speed measured at JJMC did not peak during the second cold
161	spell (especially 1 August: JD 214), while daily mean wind speed at AHAB shows a
162	clear maximum. Since air temperatures at JJMC were below zero at that time, wind
163	sensors were likely frozen. Or, the high wind speeds could have caused shaking of the
164	weather station which loosened the connector or temporarily shorted something.
165	Mean, minimum and maximum wind speed at AHAB exceed those measured at
166	JJMC (Table 2). When hourly averages are compared, wind speeds measured at AHAB
167	and JJMC hardly show a relationship, with a standard deviation of 3.1 m $\rm s^{-1}$ and a
168	correlation coefficient of 0.11. The explanation for this low correlation is that wind at
169	JJMC is influenced by katabatic forcing and partly by the large scale wind, while wind
170	at AHAB is mainly influenced by the large scale wind and perhaps also by local effects
171	such as valley winds on warm days.

173 *4.2 Daily variation and glacier wind*

174 In Figure 3, mean daily variation in air temperature and wind speed is plotted 175 for JJMC and AHAB. The air temperature at AHAB shows a clear daily fluctuation with 176 a daily range of 5.3 °C. In contrast, JJMC hardly shows a daily cycle. This is explained 177 by the fact that air temperature at JJMC is influenced by a surface temperature that is 178 almost constantly at melting point. This cooling effect of the glacier is also nicely 179 illustrated in Figure 4, where air temperatures of four stations are plotted for four clear-180 sky days. Air temperature at AHAB fluctuates with an amplitude of about 4 °C, and a 181 daily temperature fluctuation is still visible for Station 1 in the accumulation area (Fig. 182 1). However, the daily cycle disappears at JJMC and is absent at Station 5. Figure 4 also 183 demonstrates that the temperature gradient over the glacier is small. Mean temperature

at the glacier snout (Station 5) over these four days exceeds the temperature at the
glacier head (Station 1) by only 0.3 °C (0.04 K per 100 m). It is clear that in this
situation, adiabatic heating of the air that travels down along the glacier is to a large
extent compensated by cooling due to the exchange of sensible heat with the glacier
surface (Greuell and Böhm, 1998).

189 Another marked result in the daily cycle of the meteorological variables is the 190 absence of a wind speed maximum in the afternoon at JJMC (Fig. 3b). We notice that 191 for JJMC, the mean daily variation in wind speed is small with a minimum in the 192 afternoon, like at AHAB. Normally, wind speeds on valley glaciers increase in the 193 afternoon (e.g. Van den Broeke, 1997; and Greuell and Smeets, 2001) as a consequence 194 of an increased glacier wind due to a stronger temperature deficit in the afternoon 195 (temperature difference between the near-surface layer and the ambient atmosphere). If 196 the temperature at AHAB is regarded as a measure for the ambient atmosphere, the 197 temperature deficit at McCall Glacier is largest at around 15 h (Fig. 3a). However, this is 198 not translated into a wind speed maximum at JJMC (Fig. 3b). On the other hand, the air 199 temperature at AHAB is possibly not a representative measure for the ambient 200 temperature that overlies the glacier boundary layer and forces a glacier wind since the 201 temperature at AHAB is influenced by warming and cooling of the rock-covered 202 mountain slopes. 203 Oerlemans and Grisogono (2002) showed the relationship between wind speed 204 and air temperature by plotting measured wind speed against air temperature measured 205 on three glaciers: Morteratschgletscher in Switzerland, Vatnajökull in Iceland and the

ablation zone of the West Greenland Ice Sheet. To investigate the glacier wind at JJMC

in more detail, we did the same (Fig. 5). Figure 5a reveals a weak linear relationship

208	between temperatures above melting point and wind speed at JJMC. It demonstrates that
209	calm periods do not occur at temperatures above the freezing point and that increasing
210	wind speeds are associated with increasing temperatures, indicative of katabatic forcing.
211	Wind direction measured at JJMC also indicates that there is a persistent glacier wind
212	(180° (south) is directly down-glacier) since it hardly varies below wind speeds of 5 m s ^{$-$}
213	¹ (Fig. 5b). Above this winds tend to come from the south-east, in the direction of a large
214	hanging glacier. Explanations for the fact that glacier wind at McCall Glacier does not
215	peak in the afternoon are given in section 6.1.
216	
217	5. The energy balance and the specific mass balance
218	
219	5.1. Methods
220	The energy balance of the glacier surface is described by the sum of the
221	radiative components and the turbulent heat fluxes. The radiative components (incoming
222	and reflected solar radiation, incoming and outgoing longwave radiation) are directly
223	measured by the AWS. Since the radiation sensor was installed more or less parallel to
224	the glacier surface, a correction for incoming solar radiation for tilt is not necessary.
225	However, due to the poor cosine response of the CNR1 and the fact that the solar zenith
226	angle exceeded 80° during about 25% of the measured period, we corrected incoming
227	solar radiation using the method of 'accumulated albedo' (Van den Broeke and others,
228	2004). This method calculates incoming solar radiation from measured reflected solar
229	radiation divided by the daily surface albedo derived from incoming and reflected solar
230	radiation measurements.

231	Although we measured wind speed, air temperature and humidity at different
232	levels, we calculated the turbulent heat fluxes using the bulk method (e.g. Munro, 1989).
233	A profile method is not suitable here, since the difference between the wind speed at the
234	two levels at JJMC (1.70 m and 3.05 m) is too small. The 3.05-m wind speed is on
235	average only 0.01 m s ^{-1} higher than the 1.70-m wind speed, and only during 32% of the
236	measured period, wind speed at 3.05 m exceeds the wind speed at 1.70 m by the
237	accuracy of the sensor (Table 1). This suggests a shallow katabatic flow with a wind
238	speed maximum at only few meters above the surface. Under these conditions, a profile
239	method cannot be used (Denby and Greuell, 2000).
240	As input for the bulk method, we used wind speed at 3.05 m and the finewire
241	thermocouple temperature and the HMP45AC relative humidity at 2.06 m. The surface
242	temperature was derived from measured outgoing longwave radiation and the Stefan-
243	Boltzmann Law, assuming that snow and ice have unit emissivity in the longwave part
244	of the spectrum. As is standard practice based on ice physics, we also assumed that the
245	air just above the surface was saturated to calculate the surface vapor pressure from
246	surface temperature. For this, we used air pressure measured at AHAB and an
247	exponential decay with height to derive air pressure at JJMC.
248	Estimating the sensible and latent heat fluxes from Monin-Obukhov similarity
249	theory also requires knowledge of the surface roughness length for wind speed,
250	temperature and humidity. Wendler and Weller (1974) estimated a surface roughness
251	length of 2.4 mm from wind profile measurements on McCall Glacier. We used this
252	value and calculated the surface roughness length for temperature and humidity from the
253	surface renewal model of Andreas (1987). The degree of turbulence also depends on the
254	stability of the atmosphere: turbulent heat fluxes are suppressed in stable atmospheric

255	conditions and enhanced in unstable conditions. On melting glaciers, stable conditions
256	predominate because of positive air temperatures overlying the relatively cold ice.
257	Stability functions account for this effect of stability on turbulence. We applied the
258	stability correction functions from Holtslag and De Bruin (1988) for stable conditions
259	because Andreas (2002) recommends these functions to use over snow and ice because
260	of their good properties in very stable stratification. For unstable conditions, which only
261	occurred 4% of the time, functions from Paulson (1970) were applied.
262	The sub-surface heat flux, which is small at JJMC, was calculated from the
263	temperature gradient between the surface temperature and the ice temperature measured
264	closest to the ice surface by the thermistor-string. Since the thermistor-string slowly
265	melted out during the ablation period, the depths at which the thermistor-string
266	measured changed. The depth of the thermistor closest to the surface used to calculate
267	the sub-surface flux, and the exact depth was derived from the sonic height ranger data.
268	The effective conductivity was calculated from Von Dusen's equation (Sturm and
269	others, 1997), assuming a density of 300 kg m^{3} for snow and 900 kg m^{3} for glacier ice.
270	To calculate the specific mass balance, daily snowfall amounts were derived
271	from changes in surface height measured by the sonic height ranger at JJMC. We used a
272	snow density of 300 kg m ^{-3} to translate snow depths into m w.e. Note that during the
273	period that the sonic ranger was not operating (Fig. 8), we have no direct estimates of
274	snowfall. For this period we estimated snowfall at JJMC using data from sonic height
275	rangers located elsewhere on the glacier. We calculated the amount of melt from the
276	surface energy balance and the amount of sublimation from the latent heat flux.
277	
278	5.2 Energy fluxes

279	All energy fluxes presented in this study are defined as positive when directed
280	towards the surface and therefore tending to warm or melt ice. Figure 6a depicts daily
281	net solar radiation, net longwave radiation and the turbulent heat fluxes, calculated for
282	the period from 27 May to 20 August, 2004. The largest flux over this period is outgoing
283	longwave radiation (-313 W m^{-2}). It is nearly constant during the entire period since the
284	surface was at melting temperature. The second largest energy flux is incoming
285	longwave radiation (284 W m^{-2}). Incoming solar radiation shows the largest day-to-day
286	fluctuations (from 32 to 284 W m ⁻²), and its average is 181 W m ⁻² . Average reflected
287	solar radiation is -71 W m^{-2} , implying an average albedo of 0.39. The sensible and
288	latent heat fluxes are 27 and 5 W m ⁻² , respectively. The sub-surface heat flux is -5 W m ⁻
289	² . Net solar radiation is clearly the largest flux contributing to the surface energy
290	balance. Except for a few days, net longwave radiation is negative.
291	The mean daily cycle in the energy fluxes is presented in Figure 7. Only solar
292	radiation (incoming and reflected) reveals a strong daily fluctuation. Longwave radiation
293	and the turbulent fluxes are nearly constant throughout the day, being a consequence of
294	the small daily variation in air temperature and wind speed (Fig. 3).
295	Daily mean albedo is shown in Figure 6c. The measurements indicate that
296	during both cold spells (section 4.1), the glacier surface was covered by fresh snow.
297	During days that ice was exposed, the albedo was around 0.19, which is a measure for
298	the ice albedo at JJMC. The measured minimum daily albedo is 0.17. This rather low
299	value is discussed in section 6.2.
300	
301	5.3 Sonic height ranger and ablation stake measurements

302	Estimating the specific mass balance from the sonic height ranger and the
303	ablation stakes for comparison to the modeled specific mass balance is not a
304	straightforward exercise in this case. Because the pole of the sonic height ranger melted
305	out during the ablation period and was not reset for several weeks, the measurement
306	record contains a data gap (Fig. 8). We therefore correlated the sonic height ranger data
307	to the ablation stake data to reconstruct the measurement time-series. From the sonic
308	height ranger we could derive the onset and termination of ice melt and from the
309	ablation stakes the total amount of ice melt.
310	The distance between the sonic height ranger and the ice surface was 0.48 m
311	when it was installed in spring 2004. All snow must thus have disappeared when the
312	sonic ranger measured this distance (15 June). Next, we derived from the sonic height
313	ranger that ice melt stopped around 23 August because the surface height remains
314	constant after this date. The period of ice melt thus lasted more than two months. Ice
315	melt between 15 June and 9 August was 1.79 m, according to the average of the two
316	ablation stakes, and 0.39 m between 9 August and 23 August. Hence total ice melt
317	between 15 June and 23 August was 2.18 m. The expected accuracy of this estimate is \pm
318	0.1 m due to uncertainties in measuring the ablation stakes and spatial variation. A snow
319	density of 300 kg m ^{-3} and an ice density of 900 kg m ^{-3} was used to translate the surface
320	height changes measured by the sonic height ranger into m w.e.
321	

322 5.4 Glacier melt, snow fall and the specific mass balance

Figure 6b shows daily melt rates calculated from the surface energy balance and snowfall as measured by the sonic ranger. The daily melt rate peaks in late June and early July, which is at the solar maximum, and declines throughout the summer.

326 Variations in the surface albedo (Fig. 6c) also impact the modeled melt rate: high

327 albedo's coincide with low melt rates, as the high albedo caused by snowfall

328 significantly decreases net solar radiation.

329 We calculated the specific mass balance over the period 15 June to 20 August 330 (JD 167 to 233), since over this period the specific mass balance is known from the 331 sonic height ranger and energy balance measurements are available. The sonic height 332 ranger together with the ablation stake data measured a specific mass balance of $-1.94 \pm$ 333 0.09 m w.e. over this period (Fig. 8). The modeled specific mass balance calculated 334 from the energy balance measurements is -2.06 m w.e. for this period (Fig. 8), which is 335 an overestimation of 0.12 m w.e. or 6% compared to the sonic height ranger data. The 336 modeled specific mass balance is the sum of 0.12 m w.e of snowfall, 0.003 m w.e. 337 sublimation (i.e. deposition), and -2.18 m w.e of melt. The largest amount of 338 discrepancy between the two time-series begins during the last major snowfall, when the 339 sonic ranger tipped over. Therefore, we are likely underestimating the amount of 340 snowfall. 341 In Figure 9, modeled daily specific mass balance is compared to specific mass 342 balance derived from the sonic height ranger. The mean difference between the modeled 343 and measured values is 1 mm w.e. and the standard deviation is 9 mm w.e. The latter 344 value equals the accuracy of the sonic height ranger (Table 1). 345 Table 3 lists the mean surface energy fluxes over the period that the specific 346 mass balance was calculated. The radiation balance contributes most to the energy 347 available for melting (74%). 348

349 6. Discussion

351 6.1 Glacier wind and afternoon maximum

352	The results of section 4.2 demonstrate that at JJMC, the glacier wind does not
353	peak in the afternoon, not even on clear-sky days with high solar radiation and high air
354	temperatures. Afternoon wind speed maxima normally are found on glaciers at lower
355	latitudes. Following the reasoning of Streten and others (1974), who carried out wind
356	observations on McCall Glacier, there is probably insufficient contrast between the
357	temperature of the ambient atmosphere and the glacier surface to produce a wind
358	maximum during day since McCall is at a high elevation and latitude. During night,
359	however, the temperature inversion reaches a maximum because of radiative cooling of
360	the surface (Streten and others, 1974). This leads to a nocturnal wind speed maximum.
361	This maximum is also indicated by our measurements (Fig. 3).
362	A further factor that explains the absence of the afternoon wind speed maximum
363	at McCall is the up-glacier valley wind that likely retards the glacier wind during the
364	afternoon (Streten and others, 1974). Such gentle winds that cause an up-glacier flow
365	certainly occur now and then, since we regularly observed fog coming in during the
366	afternoon from lower elevations. This fog typically creeps up the glacier to just above
367	JJMC. The significance of this fog on spatial and temporal variations in mass balance
368	has not yet been evaluated.

369

370 6.2 Sensitivity and accuracy of the calculations

371 To test the sensitivity in the calculated energy balance and the specific mass372 balance, we changed some input parameters and parameterizations. The resulting

changes in the radiation balance, the turbulent heat fluxes and the specific mass balanceover 15 June to 20 August, 2004 are listed in Table 4.

375 If the solar radiation sensor was inadvertently placed with a 4° tilt to the east 376 relative to the surface, net radiation increases by 5 W m⁻². It is also shown in Table 4 377 that a correction for the stability of the atmosphere is very important. Applying no 378 stability correction functions to calculate the turbulent fluxes for the analyzed period, in 379 which stable conditions predominate, reduces the turbulent heat fluxes by 43%. The 380 stability correction is large and has a strong impact on the calculated turbulent fluxes 381 because the relatively low wind speeds at JJMC favor stable stratification,

382 The turbulent heat fluxes increase by 8 W m⁻² when the 1.70-m wind speed is 383 used as input for the calculations instead of the 3.05-m. Since wind speed at these two 384 levels does not differ much (section 5.1), using wind speed from a lower level implies a 385 change in the wind profile and an increase in the wind speed gradient, which leads to 386 larger turbulent fluxes.

Table 4 also shows the importance of changes in the meteorological input variables air temperature, relative humidity, wind speed and net radiation. A positive change in the first three variables leads to an increase in the transport of sensible and latent heat towards the glacier surface, which causes an increase in ice melt at JJMC of about 0.1 to 0.2 m w.e. Increasing net radiation by 10 W m⁻² causes a similar change in the melt rate at JJMC.

393 If $\pm 5 \text{ W m}^{-2}$ and $\pm 9 \text{ W m}^{-2}$ represent the accuracy of the radiation balance and 394 the turbulent fluxes, respectively (Table 4), and we assume an accuracy of $\pm 3 \text{ W m}^{-2}$ for 395 the sub-surface heat flux, the standard error in the energy available for melting (125 W 396 m⁻²; Table 3) results in $\pm 11 \text{ W m}^{-2}$. This value ($\pm 9\%$) represents the uncertainty in the

397 calculated specific mass balance at JJMC over 15 June to 20 August 2004, which then

becomes -2.06 ± 0.18 m w.e. The uncertainty is indicated by an error bar in Figure 8

- 399 and overlaps with the range within the measured specific mass balance is estimated.
- 400

401 6.3 Comparison to previous research and other glaciers

402 The mean air temperature at JJMC measured over the analyzed period (5.3 °C; 403 Table 2) is larger than the mean temperature of the warmest month measured in 1971 404 (July), which was 3.2 °C (Wendler and Ishikawa, 1974). It is also larger than the mean 405 1970 July temperature, which was 3.8 °C (Wendler and Weller, 1974). 2004 was an 406 exceptionally warm year in Alaska. For example, Barrow recorded the second warmest 407 summer on record in about 100 years (G. Wendler, personal communication). 408 The measured minimum daily albedo in 2004 was 0.17 (section 5.2). This is 409 smaller than a minimum albedo of 0.28 found by Wendler and Weller (1974) and 0.20 410 found by Wendler and Ishikawa (1974) for the same location in 1970 and 1971, 411 respectively. Since 2004 was a year with numerous forest fires in Alaska, clearly 412 observed increases in soot and dust concentrations on the glacier surface likely explain 413 part of the difference. 414 The individual energy fluxes measured over the time that glacier ice was 415 exposed are similar to those of Wendler and Weller (1974) and Wendler and Ishikawa 416 (1974) (Table 3). They measured at the same location but for different summer periods. 417 Still, the energy available for melting is higher in 2004 than in 1970 and 1971. This is 418 due to the large positive sum of net radiation and the turbulent heat fluxes. 419 Due to high net radiation and the large sensible and latent heat fluxes caused by 420 the exceptionally warm summer of 2004, 1.96 m w.e. of ice melt was measured at JJMC

421	for the summer of 2004 (section 5.3). This is about double compared to the values
422	reported by Wendler and others (1972), who measured about 1.20 and 0.78 m w.e. ice
423	melt for 1969 and 1970, respectively, and larger than measured there since then.
424	Wendler and Weller (1974) and Wendler and Ishikawa (1974) already
425	concluded that net radiation is the most important energy source for melting at McCall
426	Glacier. Their measurements, collected in 1970 and 1971, showed that 87% and 60% ,
427	respectively, of the melting energy was supplied by net radiation during the period that
428	glacier ice was exposed (Table 3). The present study indicates a value of 74% (section
429	5.4). These values compare well to similar measurements carried out in the ablation
430	areas of other valley glaciers (Table 3): 65% for Morteratschgletscher in Switzerland
431	(Klok and Oerlemans, 2002), 66% for Storglaciären in Sweden (Hock and Holmgren,
432	1996) and 76% for Pasterze in Austria (Greuell and Smeets, 2001). Nevertheless, net
433	radiation and the turbulent heat fluxes are often smaller on McCall Glacier than on the
434	glaciers at the lower latitudes due to lower temperatures and less incoming solar
435	radiation. For instance, Table 3 shows that incoming shortwave and longwave radiation
436	as well as the turbulent heat fluxes are higher on Morteratschgletscher and Pasterze than
437	on McCall Glacier.
438	

439 7. Conclusions

440

From the close correspondence between modeled and measured specific mass balance and our sensitivity analyses, it is clear that our instrumentation and methods are reliable enough to make robust conclusions regarding the surface energy balance. The warm summer of 2004 led to high melt rates on McCall Glacier, Alaska, and a specific

445	mass balance at the glacier tongue of -1.94 ± 0.09 m w.e. between 15 June and 20
446	August, estimated from sonic height ranger and ablation stake data. The specific mass
447	balance calculated from the surface energy balance for this period is -2.06 ± 0.18 m
448	w.e., which agrees well with the measurements. The largest deviation between the
449	modeled and measured specific mass balance begins when the sonic ranger failed and
450	our model has poor input in regards to snowfall. Comparisons of modeled to measured
451	daily specific mass balance have a mean difference of 1 mm. Our calculations showed
452	that 74% of the melt energy is supplied by net radiation, which corresponds well both
453	with prior measurements on McCall Glacier and with values found for glaciers at lower
454	latitudes. Still, the turbulent heat fluxes and net radiation are often smaller at McCall
455	Glacier than at lower-latitude glaciers due to colder temperatures and less incoming
456	solar radiation.
457	Compared to energy balance and ablation measurements in 1970 and 1971 at the
458	same location by Wendler and Weller (1974) and Wendler and Ishikawa (1974),
459	summer ablation in 2004 was large. This melt is explained by the combination of a
460	relatively low albedo, a high net radiation, and relatively large turbulent heat fluxes in
461	2004. 74% of the melt energy was supplied by net radiation in 2004, in between the two
462	other years, but net radiation was about 45% higher than previous measurements. The
463	low ice albedo in 2004 (0.19) is possibly due to the influence of soot and dust from
464	forest fires that covered a large portion of the state. It is clear from these comparisons
465	that there is a complicated interplay between the variables of the surface energy balance,
466	and no single one can be isolated as having significantly changed between the time
467	periods from this analysis, other than perhaps the temporarily-low albedo.

468	This study raises questions about the competition between valley and glacier
469	winds. An analysis of meteorological data from the station at the glacier tongue and at a
470	mountain ridge above the glacier reveal that the mean temperature gradient between the
471	two sites is very small in summer (-0.2 K per 100 m altitude) because both stations
472	measure in a different boundary layer. The air temperature at the mountain site shows a
473	clear daily fluctuation due to local heating and cooling of nearby rock slopes. The
474	station on the glacier tongue hardly shows a daily cycle because its temperature is
475	influenced by the cooling effect of the glacier. Wind direction measurements and the
476	fact that wind speed shows a weak linear relationship with air temperature lead us to
477	believe that a glacier wind is often present at McCall Glacier. However, wind speed in
478	the glacier's ablation area does not show a maximum in the afternoon, which is normally
479	observed on glaciers at lower latitudes (Streten and others, 1974). This can be explained
480	by a valley wind that retards the glacier wind during the afternoon or by McCall's high
481	elevation and latitude, which lead to a small temperature contrast between the ambient
482	atmosphere and the glacier surface (Streten and others, 1974).
483	These findings are of interest for modeling the spatial distribution of the energy
484	and mass balance for McCall Glacier and need further investigation. Modeling the
485	spatial distribution requires first of all knowledge about the spatial variation in air
486	temperature and wind speed over the glacier. Often, it also requires information on the
487	relationship between such air temperatures and wind speed and those outside the glacier
488	boundary system when, for instance, meteorological reanalysis datasets are used as
489	climate input. The results learned from this study will also inform future process studies
490	that will facilitate a better understanding of the history of the glacier's dynamics and the
491	changes in freshwater inputs to the Arctic Ocean in response to recent climate change.
492	

492 Acknowledgments

494	We are grateful to Wouter Greuell and Gerd Wendler for commenting on the
495	results. We would also like to thank Erin Pettit, Kristin Scott Nolan, and Bernhard
496	Rabus for their help in establishing and maintaining the weather stations, Ken Irving for
497	maintaining the telemetry system, and Larry Hinzman and the US Fish and Wildlife
498	Service for support of the project. This work was funded by the National Science
499	Foundation's Arctic System Science Program's Freshwater Initiative (Grant # 0229705);
500	any opinions, findings, and conclusions or recommendations expressed in this material
501	are those of the authors and do not necessarily reflect the views of the National Science
502	Foundation.
503	

506	Andreas, E. L. 1987. A theory for the scalar roughness and the scalar transfer
507	coefficients over snow and sea ice. Boundary-Layer Meteorol., 38, 159-184.
508	Andreas, E. L. 2002. Parameterizing scalar transfer over snow and ice: a review. J.
509	<i>Hydrometeorol.</i> , 3 (4), 417–432.
510	Denby, B. and W. Greuell. 2000. The use of bulk and profile methods for determining
511	the surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445-
512	452.
513	Greuell, W. and R. Böhm. 1998. 2m temperatures along melting mid-latitude glaciers,
514	and implications for the sensitivity of the mass balance to variations in
515	temperature. J. Glaciol., 44(146), 9–20.
516	Greuell, W. and P. Smeets. 2001. Variations with elevation in the surface energy
517	balance on the Pasterze (Austria). J. Geophys. Res., 106(D23), 31717-31727.
518	Hock, R. and B. Holmgren. 1996. Some aspects of energy balance and ablation of
519	Storglaciären, northern Sweden. Geografiska Annaler, 78A(2-3), 121-131.
520	Holtslag, A. A. M. and H. A. R. de Bruin. 1988. Applied modeling of nighttime surface
521	energy balance over land. J. Appl. Meteorol., 27, 689–704.
522	Klok, E. J. and J. Oerlemans. 2002. Model study of the spatial distribution of the energy
523	and mass balance of Morteratschgletscher, Switzerland. J. Glaciol., 48(163), 505-
524	518.
525	Munro, D. S. 1989. Surface roughness and bulk transfer on a glacier: comparison with

526 eddy correlation. J. Glaciol., **35**(121), 343–348.

- 527 Nolan, M., A. Arendt, B. Rabus and L. Hinzman. In Press. Volume change of McCall
- 528 Glacier, Arctic Alaska, from 1956 to 2003. Ann. Glaciol., 42.
- 529 Oerlemans, J. and B. Grisogono. 2002. Glacier winds and parameterisation of the related
- 530 surface heat fluxes. *Tellus*, **54**A, 440–452.
- 531 Orvig, S. 1961. McCall Glacier, Alaska: Meteorological observations 1957-1958. *Arctic*
- 532 *Institute of North America Research Paper*, No. 8, 30 pp.
- 533 Pattyn, F., M. Nolan, B. Rabud and S. Takahashi. In Press. Localized basal motion of a
- 534 polythermal Arctic glacier: McCall Glacier, Alaska, U.S.A. Ann. Glaciol., 40.
- 535 Paulson, C. A. 1970. The mathematical representation of wind speed and temperature
- 536 profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857–861.
- 537 Rabus, B. and K. E. Echelmeyer. 1998. The mass balance of McCall Glacier, Brooks
- Range, Alaska, USA: its regional relevance and implications for climate change in
 the Arctic. J. Glaciol., 44(147), 333-351.
- 540 Rabus, B. and K. E. Echelmeyer. 2002. Increase of 10 m ice temperature: climate
- 541 warming or glacier thinning? *J. Glaciol.*, **48**(161), 279-286.
- 542 Streten, N. A., N. Ishikawa, and G. Wendler. 1974. Some observations of the local wind
- 543 regime on an Alaskan Arctic Glacier. Arch. Met. Geoph. Biokl., B(22), 337–350.
- 544 Sturm, M., J. Holmgren, M. König and K. Morris. 1997. The thermal conductivity of
- 545 seasonal snow. J. Glaciol., **43**(143), 26–41.
- 546 Trabant, D. C. and L. R. Mayo. 1985. Estimation and effects of internal accumulation on
- 547 five glaciers in Alaska. Ann. Glaciol., 6, 113–117.
- 548 Van den Broeke, M. R. 1997. Structure and diurnal variation of the atmospheric
- 549 boundary layer over a mid-latitude glacier in summer. *Boundary-Layer Meteorol.*,
- **83**, 183–205.

551 Van den Broeke, M. R., D. van As, C. H. Reijmer and R. S. W. van de Wa	1. 2004.
--	----------

- Assessing and improving the quality of unattended radiation observations in
 Antarctica. J. Atmosph. and Oceanic Technol., 21, 1417-1431.
- 554 Wakahama, G., D. Kuroiwa, T. Hasemi and C. S. Benson. 1976. Field observations and
- 555 experimental and theoretical studies on the superimposed ice of McCall Glacier,
- 556 Alaska. J. Glaciol., **16**(74), 135–149.
- 557 Wendler, G., C. Fahl and S. Corbin. 1972. Mass balance studies on the McCall Glacier,
- 558 Brooks Range, Alaska. Arct. Alp. Res., 4(3), 211-222.
- 559 Wendler, G., N. Ishikawa and N. Streten. 1974. The climate of the McCall Glacier,
- 560 Brooks Range, Alaska, in relation to its geographical setting. *Arct. Alp. Res.*, 6(3):
 561 307–318.
- 562 Wendler, G. and N. Ishikawa. 1974. The combined heat, ice and water balance of
- 563 McCall Glacier, Alaska: a contribution to the International Hydrological Decade.

564 *J. Glaciol.*, **13**(68): 227–41.

- 565 Wendler, G. and G. Weller. 1974. A heat-balance study of McCall Glacier, Brooks
- 566 Range, Alaska: a contribution to the International Hydrological Decade *J*.
- 567 *Glaciol.*, **13**(67), 13–26.

Tables and figures

Sensor type	Parameter	Accuracy	Location
CNR1, Kipp &	shortwave & longwave	± 10% for daily totals	JJMC
Zonen	radiation		
Met One 034B	wind speed	$\pm 0.1 \text{ m s}^{-1} \text{ or } 1.1\%$	JJMC, AHAB
	wind direction	± 4°	
HMP45AC Vaisala	air temperature	$\pm 0.2 \ ^{\circ}C \ (T = 20 \ ^{\circ}C)$	JJMC, AHAB
		± 0.4 °C (T = -20 °C)	
	relative humidity	$\pm 2\%$ (RH < 90%)	
		± 3% (RH > 100%)	
Campbell SR50	surface height	± 0.01 m or 0.4%	JJMC
Vaisala CS105	air pressure	± 400 Pa	AHAB
Onset 12-bit Smart	air temperature	$\pm 0.2 \ ^{\circ}C \ (T = 20 \ ^{\circ}C)$	Station 1,
Sensor		± 0.4 °C (T = -20 °C)	Station 5
	<u>'</u>	<u>'</u>	1

Table 1: Specifications of sensors measuring at JJMC, AHAB, Stations 1 and 5.

	Air temperature	Relative humidity	Wind speed
	(°C)	(%)	(m s ⁻¹)
JJMC			
Mean	5.3	72	3.1
Maximum	8.2	88	5.9
Minimum	2.6	54	0.9
AHAB			
Mean	4.2	69	3.6
Maximum	8.1	85	7.1
Minimum	0.8	51	1.4

Table 2: Daily means, mean daily maximums and mean daily minimums for temperature, relativehumidity and wind speed at JJMC and AHAB for the period 27 May to 20 August 2004.

Table 3: Average daily energy fluxes in W m⁻² in the ablation area measured over the ablation period: incoming (S_{in}) , reflected (S_{out}) , net (S_{net}) solar radiation, incoming (L_{in}) , outgoing (L_{out}) , net (L_{net}) longwave radiation, net radiation (R_{net}) , sensible (Q_H) and latent (Q_L) heat fluxes, subsurface heat flux (G), and the energy involved in glacier melt (Q_M)). McCall 2004 are results of this study and McCall 1970 and 1971 from Wendler and Weller (1974) and Wendler and Ishikawa (1974), respectively. Data of the Pasterze in Austria are from Greuell and Smeets (2001) and of Morteratschgletscher from Klok and Oerlemans (2002).

	McCall	McCall	McCall	Pasterze	Morteratsch
	2004	1970	1971	1994	1999/2000
Period	15 June-	18 July-	17 June-	22 June-	all days with
	20 August	28 August	22 July	6 August	melting
S _{in}	166	169	230	256	255
Sout	-51	-79	-87	-53	-110
$S_{net} \left(S_{in} + S_{out} \right)$	115	90	143	203	145
α	0.30	0.48	0.38	0.21	0.43
L_{in}	290	?	?	299	310
Lout	-314	?	?	-315	-316
$L_{net} \left(L_{in} + L_{out} \right)$	-22	-24	-80	-16	-6
$R_{net} \left(S_{net} + L_{net} \right)$	93	66	63	187	139
Q_H	31	23	44	48	50
Q_L	6	-8	6	10	24
G	-5	-5	-8	-	-
Q_M	125	76	105	245	213

Table 4: Change in mean net radiation, the turbulent heat fluxes and the specific mass balance over 15 June to 20 August, 2004 with regard to the reference situation (where R_{net} is 93 W m⁻², Q_H+Q_L is 37 W m⁻², and the specific mass balance is -2.06 m w.e.) for varying parameters and parameterizations.

Change in parameter or	R _{net}	Q_H + Q_L	Specific mass
parameterization	(W m ⁻²)	(W m ⁻²)	balance (m w.e.)
Surface tilts 4° to the north ⁽¹⁾	+1	-	-
Surface tilts 4° to the south ⁽¹⁾	+4	-	-0.08
Surface tilts 4° to the east ⁽¹⁾	+5	-	-0.09
Surface tilts 4° to the west ⁽¹⁾	-3	-	+0.06
Surface roughness length * 10	-	+7	-0.13
Surface roughness length * 10 ⁻¹	-	-9	+0.13
No correction for stability ⁽²⁾	-	+28	-0.45
3.05-m \rightarrow 1.70-m wind speed ⁽³⁾	-	+8	-0.14
2.06-m → 3.02-m air temperature	-	+2	-0.04
and humidity ⁽⁴⁾			
Temperature + 1 K	-	+7	-0.11
Temperature – 1 K	-	-8	+0.11
Relative humidity + 10%	-	+8	-0.12
Relative humidity – 10%	-	-9	+0.12
Wind speed + 1 m s ⁻¹	-	+14	-0.23
Wind speed – 1 m s ⁻¹	-	-13	+0.19
Net radiation + 10 W m ⁻²	+10	-	-0.16
Net radiation – 10 W m ⁻²	-10	-	+0.15

⁽¹⁾ Tilt of the glacier surface with respect to the tilt of the solar radiation sensor.

⁽²⁾ The stability correction functions to account for the stability of the atmosphere are not applied (Section 5.1).

⁽³⁾ The 1.70-m wind speed is used as input for the calculation of the turbulent heat fluxes.

⁴⁵⁾ Air temperature and humidity at 3.02 m (HMP45AC Vaisala) are used as input for the calculation of the turbulent heat fluxes.

Figure 1: Location and map of McCall Glacier. The map indicates the locations of the automatic weather stations (AWS) JJMC and AHAB, and Stations 1 and 5. The contour map was created from a digital elevation model based on the 1956 USGS map (Demarcation Point B-5).

Figure 2: Daily mean air temperature (a), relative humidity (b), wind speed (c) and air pressure (d) at AHAB and JJMC for the period 27 May to 20 August 2004 (JD 148-233).

Figure 3: Mean daily fluctuation in air temperature (a) and wind speed (b) at AHAB and JJMC averaged over the period 27 May to 20 August 2004.

Figure 4: Air temperature for four clear-sky days at AHAB (a), Station 1 (b), JJMC (c) and Station 5 (d) shown in Figure 1. Measurements at AHAB are hourly averages, and at the other stations 15-minute averages.

Figure 5: Wind speed at JJMC as function of air temperature (a), and wind direction (b) for the period 27 May to 20 August 2004 (15-minutes averages).

Figure 6: (a) Daily means of the net solar radiation (S_{net}), net longwave radiation (L_{net}) and the sensible (Q_H) and latent (Q_L) heat fluxes, (b) daily surface melt and snowfall and (c) daily mean albedo for the period 27 May to 20 August 2004 (JD 148-233).

Figure 7: Mean daily cycle in incoming (S_{in}) and reflected (S_{out}) solar radiation, incoming (L_{in}) and outgoing (L_{out}) longwave radiation and the sensible (Q_H) and latent (Q_L) heat fluxes. The daily fluctuations are averages over the period 27 May to 20 August 2004.

Figure 8: Specific mass balance as measured by the sonic height ranger and the ablation stakes (squares), and modeled from the surface energy balance. All records start at 15 June (JD 165) and the modeled specific mass balance ends at 20 August 2004 (JD 233). The error bars at 20 August indicates the accuracy of the modeled (thin error bar; section 6.2) and measured (thick error bar; section 5.3) specific mass balance.

Figure 9: Modeled (derived from the surface energy balance) versus measured (derived from sonic height ranger and ablation stake data) daily specific mass balance (smb).