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Hoedanig een is Deze, dat ook de winden en de zee
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| ntroduction and Overview

The history of The Netherlands has been influenced by floodings foy oeriuries.
Well-known floodings are the St Elisabeth Flood (18—-19 Nov 1421) and 958
flood (31 Jan—1 Feb 1953). By lack of knowledge about the occcerénequency
of extreme sea levels, for a long time the dike design height was taken asgéstlar
recorded sea water level plus about one maBait{es and Gerritsen 20p2

Scientific research to extreme surges along the Dutch coast was largelsiinte
fied after the disastrous flooding in 1953, in which 1835 people died.tIgladter
this disaster, the so-called Delta committee ('Delta commissie’) was established. Its
first task was to determine basic levels ('basispeilen’) of the sea dikeg tleDutch
coast. From economical and societal arguments the committee recommended to de-
fine this basic level to the level that has a flooding probability of 1% per cgrite.,

a return period of 1Dyears Deltacommissie 1960

It may be clear that it is hard to find the sea water levels that correspondho s
a very small probability from observational sea level records, as the tattered
only 70 years at the publication of the Report of the Delta committel960 (and
still a mere 100 years for the reanalysis, donelilingh et al. in 1993. Hence
the calculations imply extrapolations over no less than two orders of magnitude in
probability.

The calculations of the design heights are traditionally based on extreme value
analysis. The reason for this approach is that the theory of extreme sialigtics
states that many distributions converge for their extremes to one of the tipes ty
of the Generalized Extreme Value (GEV) distribution (see eégkaan 1976 This
powerful theorem implies that the determination of extreme value distributices do
not require exact knowledge about the far tail of the parent distribufidre price
paid to get this theorem at work is the gigantic thinning of the data required for
extreme value analysis: commonly only the largest value in each year is Ased.

a consequence, a large statistical uncertainty is introduced in the estinuetethé
short observational records.

This thesis explores the use of an alternative data source, i.e., data@udoly
long runs of weather- and climate models. The model records used aideably
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longer & 1500-10000 years) than the observational records, allowing foma se
empirical study of the statistical properties of model extremes. At the moment, the
quality of the climate models has reached the level that the sea-surge @atiout (
lated from the large-scale wind) describe the statistics of the observatiorsity.
This gives confidence to consider also the model results for very latgerperiods
as faithful substitutes for real observations.

Currently, the long model records enable the examination of questions like:

e How large is the uncertainty in the surge level estimate with an exceedance
probability of 1074 yr—! if based on the observations?

e What is the appropriate extreme value distribution to describe the surge ex-
tremes?

e Is it possible to describe the wind- and surge extremes in the extra-tropics b
a single GEV distribution up to T@year return periods? Or, equivalently, is
there any indication that the systems causing-yi€ar events are of another
nature ('superstorms’) than those causing the moderate extremes?

e Is it possible to improve the estimates of the basic levels by use of weather-
and climate models?

The exploration of these questions is the topic of this thesis.

To obtain answers to the various questions, we applied in this study three type
of numerical climate models. In the chapters dealing with the first three qu&stion
the low-resolution climate model ECBIlt-Clio was used (chapief3.

The potential improvement of the basic level estimate by using model data is ex-
plored with the seasonal forecasts of the European Centre for Medinge-Weather
Forecasts (ECMWF). Combination of all archived seasonal forecastdts in a
large data set of high quality, that is suitable for improving thé-yi€ar surge es-
timates (chapted).

Finally, in a preliminary study on the subject of wind related events, the existen
of the 'superstorms’, detected in chaptérand3, is confirmed in ensemble experi-
ments with the NCAR GCM (chapté). This result from a more sophisticated model
brings the existence of 'superstorms’ closer to reality.

This thesis is likely to represent only a first step in this hitherto unexplored ap
proach to extreme value estimates. With the improvement of models and the avail-
ability of records from very long runs, more and more meteorologicalnpeiers
may come in the reach of this approach. Chaptgives a flavor of the spectrum of
future applications of model runs in extreme value analyses.



Chapter 1

Therdiability of extreme surge levels,
estimated from observational records of
order hundred years

Abstract

General Circulation Model-generated surges are analyzed with thedliead Ex-
treme Value distribution to study the uncertainty in surge level estimates with a retur
period of 10 years, derived from observational records of order hundradsye

Ensemble simulations with a total length of 5336 years were generated with the
KNMI General Circulation Model ECBIlt-Clio, coupled with a simple surge model
to transform the wind field over the North Sea to the surge level at DelfZij).(Nhe
46 estimated surge levels with a return period of §6ars, calculated from sets of
116 year each, vary between 4.5 and 17 meters, with a median of 8.5 meter. Th
10*-year estimate of the 118-year observational Delfzijl record (5.8 metenyéill
among these subsets, but this surge level is considerably lower than trerokthe
ensemble estimate. For an estimate of th&year return level of the surge within
an uncertainty of 10 %, a record length of abodit years is required.

CO,-doubling does not have a detectable influence on the mean wind speed ove
the North Sea in ECBIlt-Clio. However, the model hints on the excitation of sever
storms, with a frequency lower than once in 250 year. In ECBIlt-Clio, thegers
storms tend to dominate tH&*-year return value of the wind speed over the North
Sea.

1.1 Introduction

Protection of the Netherlands against flooding from the sea is a matter tiriwoums
concern. In coastal protection, a probability of f@er year for flooding from the sea
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is used as baselin®éltacommissie 1960 The determination of the corresponding
design height of the dikes requires knowledge about the tides andssurigies are
deterministic, but surges are wind-driven, and hence stochastic.

Several problems arise when the 'accepted risk’ has to be translatedersortie
level being exceeded (on average) only once thykars. First, as the observational
records of skew surges are only*ears in length, the surge level with an average
return period of 10 years requires an extrapolation of two orders of magnitude. It
is unclear how reliable the estimate from such an extrapolation is. Secaimljs/a
probability functions can be fitted to the observational records of extremyes,
leading to different results in the 4@ear return levelsdillingh et al. 1993 de Haan
1990. Third, extrapolation from observational records does not conténrnration
about surges in a greenhousegas-induced changing climate.

These problems can be explored by using a long surge record (in tieasrbo*
years) generated by a climate model. From this record, the most adeqtrateex
value distribution can be determined, as well as its parameter values and theat0
surge level (within the context of the model). This most adequate distribudthen
be applied to subsets of the long record, each with a time length equal to tlabkeva
observational records(100 years). The variation in the estimated parameter values
and in the 10-year surge level among the subsets provides information about the
uncertainty of the estimate from the observational record.

This procedure has been applied using current climate data of the KNMitelima
model ECBIlt-Clio. We have concentrated on the model grid point bestseptiag
the wind field over the North Sea, and applied the surge model to the caasiah s
Delfzijl (NL). The effect of an increased greenhousegas conatoir on extreme
wind speeds is preliminary investigated.

Our study can be regarded to be complementary to studies on changing wind
climate using state of the art GCMKHarin and Zwiers 2000Beersma et al. 1997
Knippertz et al. 2000Schubert et al. 199&all et al. 1994. These studies have
in common that they are based on output of limited length (typical 5 to 50 years),
an unavoidable consequence of the complexity of these models. The limited leng
prevents examination of a possible change in extremes of return peritasisinds
of years. In the present study, a simpler model is used, which enabtedyeserate
5.10° years for the greenhouse climate at£fubling, and to explore the properties
of the extreme value statistics up to return periods dfyigar within the context of
this model, but using a meteorological parameter (surge) that is geneyadedibd
field of time and spatial scales comparable with the (coarse) grid distancatof th
model.

The paper is structured as follows: Sectib2 describes the models used, and
Sectionl.3 the theoretical and experimental design. The validation of the data and
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models used is given in Sectidm. Sectionl.5gives the results, and Secti@réthe
discussion and conclusions.

1.2 Model descriptions

a. climate model

The wind data are produced by a General Circulation Model (GCM) ofrirediate
complexity. A GCM calculates the time evolution of a large number of weather vari-
ables on a discrete grid. For this calculation, the equations of fluid flow otatirg
earth are solved on this grid, while sub-grid physical processes eampterized. In
this way, meteorological quantities can be derived for very long periddsause of

the chaotic nature of the atmosphere, the results do not have deterministiadtr
value, but the sub-daily output does provide statistical information abedlitnate
properties of the model.

In this study, the GCM of the KNMI, called ECBIlt-Clio, was used. The atmo-
spheric component of ECBIlt-Clio is a spectral T21 global 3-level quasistgophic
model. The T21-resolution corresponds (for the latitudes of interest) witial point
distance of approximately 500 km. The atmospheric time step is 4 hours. The atmo-
spheric component of the model is coupled to a simple ocean-GCM and a thermo
dynamic sea-ice model. ECBIlt-Clio is two orders of magnitude faster than dtate-o
the-art GCMs, providing the possibility of studying climate dynamics on time scales
of thousands of years. For a detailed description of ECBIlt-Clio we ref@psteegh
et al.(1998 2001).

b. surge model

The sea level at a certain position and time is determined by a combination of two
effects: the astronomical tide and the surge. The surge is the diffebstaeen
the actual level and the astronomical tide. Neglecting resonances amégetoad-
order effects, the surge is determined by the wind and the pressureredghthe
astronomical tide is deterministic, the meteorological effect is stochastic.

Usually, calculated (or forecasted) surges are verified againstvaitisais of the
so-called skew surge. The skew surge at high (low) tide is the differbatween
the astronomical high (low) tide and the observed high (low) tide. Due toalyidr
effects, the observed and astronomical high tides do not necessatilyai¢che same
moment (see Figuré.l), particularly when the surges are large. Most surge models
do not take this effect into account. The problems arising in the calculatitimeof
surge from time-lagged astronomical tidal curves are bypassed bycaé&dfi on



6 The reliability of extreme surge levels

the skew surge. Usually, the high tide (rather than the low tide) skew sarges
considered, restricting the number of verification moments to two per dayadtige,

Figure 1.1: The surge (solid line) is the difference between obsensetkgel and
astronomical tide at each moment. Due to hydraulic effects, the tidal
curve may be shifted with respect to the astronomical tide. This leads
to spurious effects in the surge. Surge predictions are thereforesderifi
against the skew surge, which is the difference between the astronomical
high (low) tide and the associated observed high (low) tide, which need
not to take place at the same moment. In the figure the skew surges at
the first low tide (0:00) and the high tide (6:00) are negative, whereas the
second low tide skew surge (12:00) is positive (indicated with arrows).
Shown is the situation at Delfzijl from 21 Feb 2002 18:00 to 22 Feb 2002
16:00 local time.
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the observed skew surge is compared with the calculated surge for the maimen
astronomical high tide. In the validation of our model, we adopted this proeedu

The relation we used to model the skew surge is based on the semi-empirical
Timmerman modelT{immerman 197y This surge model was used for many years
at KNMI for operational surge forecasting. We simplified this model by retigig
time- and space-dependencies, and assuming a sinusoidal depeadeheewind
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Figure 1.2: The grid points of ECBIlt-Clio and NCEP. From the NCEP grid, only
the grid points used for validation are shown. The Dutch coastal stations
Hoek van Holland and Delfzijl are indicated.
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direction. This results in the following relation for the skew surge:

1013 —p
i 4 1.1
w005 ™ (1.

The first term is the wind effect, with the wind speed ang the clockwise wind
direction with respect to north. The station-dependent parametans 5 are deter-
mined by fitting Eq.1.1to the time- and space-averaged values, givehilynerman
(1977 for the station considered. For Delfzijl,= 5.5 - 1072 &m~! andg = 321°.
So, the surge is maximal for North Western winds. For extreme surgesetbads
term in Eqg. 1.1, which is the barometric pressure effect, is neglected, as it has a
constant value of only 10 cm (see Sectibda). The station pressugeis in mbar.

The surge is calculated every 12 hours from the wind averaged ovéashad
time steps (of 4 hours) of the ECBIlt-Clio model. The choice for averaging b2e
hours has three reasons. First, the mean time lag between the wind overrthe No
Sea and the surge at the coast is 6 hours, being of the same ordemd St
Timmerman model also uses time-averaged values, to incorporate the inertéa of th
surge phenomenon. Third, the periodicity of the tide is close to 12 hours.

skew surge= ~ u? cos (qi) - ﬁ) +
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Calculations are also done with the NCEP reanalysis wind data. Figisbows
the ECBIlt-Clio and NCEP grid points.

We found that, for our experimental set-up, the intermediate complexity oflECB
Clio lends itself optimally to the calculation of the“t@ear surge level, as on the one
hand ECBiIlt-Clio is fast enough to generate thousands of years of wiadatad on
the other hand it provides the large-scale wind, which drives the surge.

1.3 Methodology

a. Generalized Extreme Value distribution

We applied the Generalized Extreme Value (GEV) distribution to the set ofadinnu
maxima of the surge and the wind speed to describe the statistical propetties of
extremes. The distribution of normalized extremes approaches asymptotidailly to
GEV distribution (see e.gle Haar(1976, Galambo$1978 andKotz and Nadarajah
(2000), which is described analytically by:

Fly)=e (1.2)

wherez is a substitute for:

z=1In (1 — g(y — ,u))_l/e (1.3)

with i the location parametety the scale parametef,the shape parameter, and
the variable consideredénkinson 1956 These parameters are indicated in Figure
1.3 Depending on the sign &f 3 types are distinguished:

1. # = 0; The Gumbel or Fisher-Tippett | distribution

2. § < 0; The Fisher-Tippett Il distribution, having a lower limit

3. # > 0; The Fisher-Tippett Il distribution, with an upper limit
For the Gumbel distributiord(= 0), Eq. (L.3) can be simplified to:

r=24 L (1.4)

The probability of exceedance of a certain level is usually expressedirs & the
return periodl’. Thereturn period Tis the average number of years between two
succeeding exceedances of the correspongitugn level y

1 1

T(y) == Fo) 1 e (1.5)
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Figure 1.3: The parameters of the GEV distribution. The location parameésehe
value corresponding with x = 0 and T = 1.58. The scale parameigr
the slope at x = 0, and the shape parametisrthe curvature. For large
return periodsy strongly depends o

return period
1.58 10 100 10° 10*
10 T T T T T
8=-0.1
8t o]

-2 0 2 4 6 8 10
X = In(-In(-F(y))) (Gumbel variate)

Plotting y against the Gumbel variate = — In(— In(F(y))) (a so-called Gumbel
plot) will result in a straight line if the distribution obeys the Gumbel distribution, o
in a curved line - convex for type Il and concave for type Il (see Fedu3). For a
more comprehensive description we refeKtiiz and Nadarajaf2000.

An estimate ofF'(y) is obtained by using the ordered extrerpes< ys - - - < yy,.
The n extremes divide the total range between 0 and 1 intp 1 equally spaced
intervals, and thu&'{ F'(y;)} = i/(n+ 1) (van Montfort 1969. We used the slightly
different (unbiased) estimaté{ F'(y;)} = (i — 0.35)/n (Hosking et al. 198p Con-
vergence of extremes to the GEV distribution can be regarded as an aaaibtipe
well-known central limit theorem. The central limit theorem states that undgr ve
general conditions the distribution of the sample mean converges to the rdigmal
tribution as the sample becomes large; the limit represented bg.Eolds for the
extremes of large samples.

To determine the distribution of the extremes, usually the annual maxima are
taken. However, this is only a good choice if the number of independali¢agons
within the sampling period (one year) can be considered as asymptoticalg; larg
the extremes are independent and identically distributed.Céak (1982 shows,
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one may expect that the squared wind speed converges faster thamthepeed
itself to the GEV distribution. This assumes a fast convergence for the gasgt is
proportional tou?).

The method of Probability Weighted Moments was used for estimating the three
parameters. The covariance matrix of the estimated parameters is givéosking
et al. (1985, from which the uncertainty i (i.e. the estimated value @f) was
estimated by use of the following estimator:

9y
o
dy Oy Oy dy A Oy Oy

2-2 Lo, &) + 2=2 =2 (i 222 5(&,0 1.

% 9

i) = (52703 + (5210 @) + (520 (0)

with o2 (/1) variance ofii ando (i, &) the covariance betwegnhanda. The deriva-
tives ofy follow from the inverse of Eql.3

o —bx
Z/T:/H‘g(l—ee) (1.7)
and are evaluated gt (4, 6) for a given return period’.

b. Set-up of the numerical experiment

184 runs of 30 years each were generated, with @ €ihcentration according to
the period 1960-1989. This is called the 'control run’. For each ofdle@semble
runs, the same initial condition is used for the ocean and the atmosphep force
a random perturbation in the initial potential vorticity field of the atmospherés Th
leads to different realizations after several days and hence to othgeaBGseries
representative of the 1960-1989 period (see Figu& With the control run, we
tested the uncertainty in the extrapolation of the extreme surges for Delfziig Th
was done by deriving the annual extremes from each year, hen@vengper yeatr.
To ensure independence of the extreme events in two consecutive yeaasinual
periods run from 1 July to 30 June, giving 29 extremes per ensemble meamoer
5336 extremes for the control run. The statistical analysis was perfoinmibtiee
steps: First, the GEV distribution was applied to the total set of 5336 yeaosn F
this is was determined whether the full set of the annual surge extremies mu
described by a Gumbel distributiofd (= 0) or a GEV distribution withd # 0.
Second, the GEV distribution was fitted to the 46 subsets of 116 yearsasatite
same was done with the observational (118 year) Delfzijl surge recticd, Bll 46
estimated 18-year surge levels, and the estimate of the observations, are compared
with the estimate of the total set.
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Figure 1.4: Generating 30-year ensemble runs for two initial conditionstekde the
ensembles, small perturbations were applied to the initial conditions. The
one set corresponds to observedsG@ncentrations during 1960-1989
and make the control run, and the other to projected values for 2050-
2079, making the greenhouse run.

initial conditions

*

1960-1989 2050-2079

ensembles
equilibrium temperature for a

pre—industrial CO2 concentration
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Besides the control run, we also generated ensemble runs of 30 yeagstiith
mated CQ concentrations according to the period 2050-2079 (following the SRES
Al CO, emission scenarid\akicenovic et al. 2000. This emission scenario results
in approximately doubled CQOconcentration in 2050-2079 (620 ppm on average)
with respect to the control run (320 ppm). This ensemble is called the 'goeise
run’. Like the control run, it has a total length of 5336 years. We coetbdine
full greenhouse run with the full control run to investigate a possible inflaeof
increased greenhousegas concentrations on the wind climate over theSdar

1.4 Validation of surge model and ECBIlt-Clio

a. Wind and surge

For verification of the surge model, we used the reanalysis dataset ofatfienil
Center of Environmental Prediction (NCEP), US&afnay et al. 1995 This dataset
provides the weather variables on a globaPZ2.5" grid every 6 hours from 1948

up to the present. The NCEP wind at 10 meter is not a directly measured guantity
but derived via a dynamical atmospheric model from the surface peeasd upper
layer measurements. The grid point value is representative of the atgalahe grid
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Figure 1.5: Gumbel plots for the surge in Delfzijl (a) and Hoek van Holldmddal-
culated with the surge model (Efj.1) from the average wind in the North
Sea representing NCEP grid points, with and without the local pressure
effect. Used is the period 1968-1999. The thick lines represent the fit to
the observations.
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point. We verified the statistics of the NCEP wind with the statistics of Dutch coastal
stations. It was found that the differences in the distribution of the daily meaah
speed and direction in winter according to the (3.75E,52.4N) NCEP grid poaht
the average of two Dutch coastal stations (Hoek van Holland and Vlissiugdim
within the area of this NCEP grid point) were not larger than the differebetgeen

the stations itself. We conclude that the NCEP wind data is good enough torely o
for this study.

The validity of the surge model is tested for Delfzijl and Hoek van Holland by
feeding Eq. 1.1 with the 12-hourly NCEP wind averaged over 9 grid points over
the North Sea (indicated with open circles in Figr8). These 9 grid points in
NCEP cover the same area as a single grid point in ECBIlt-Clio (bold dots ind=igur
1.2). The Gumbel distribution was applied to the computed annual (July-to-July)
surge extremes, and compared with the distribution of the observed extrBibs
records cover the period 1968-1999. Figlireshows that, despite all simplifications,
the surge model correctly estimates the parameters of the fitted Gumbel distributio
lllustrative is the fact that the model indicates for more than 50 % of the yhars
correct day at which the annual maximum occurred. Fidubealso shows that the
effect of pressure on the extreme surges has indeed a constanbf/aloig 10 cm
throughout the entire range of the extremes. This justifies the neglect pfebsure
effectin Eq.1.1
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Figure 1.6: Ratio of the wind speed at 10uyy to that at 850 hPa levalgsg (a)
and change in wind direction (b) over sea for the surge-relevant wind
directions, for Northern mid-latitudes as derived from NCEP data. The
bars indicate the estimated standard deviations.
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b. ECBIlt-Clio winds

The lowest level of the ECBIlt-Clio output is 800 hPa (corresponding with amme
height of 2 km), whereas the surge model assumes 10 meter winds. With &l NC
dataset, we empirically studied the relation between these winds by consitteging
relation at all NCEP ocean grid points betweenf 48d 60 North for daily-averaged
winds. Figurel.g(a) shows the relation between the wind speed at 85Q.kfgeand
the wind speed ratia;o/usso for the winds between West and North (the relevant
directions for positive surges). Figuteg(b) gives the difference in the wind direction
between those levels. Both figures indicate a constant valugfgr> 15 m/s. This
constant is 0.6 for the wind speed ratio and 1@ the difference in wind direction,
in accordance witlGarratt(1992. From this we conclude that the use of 800 hPa
winds instead of 10 meter winds does not influence the shape paraghoétee GEV
distribution, but only the location paramejeand the scale parameter

Figure 1.7(a) shows the mean geopotential height-field over Europe in winter
(Dec-Marr), both for the ECBIlt-Clio model at 800 hPa and for the NCEP da®50
hPa and 1000 hPa. There is fair agreement between the ECBIlt-Clio 85takieen
and the NCEP 1000 hPa pattern, except that the ECBIlt-Clio pattern is shiftied to
south over 5-10. This shift, which is also visible in the standard deviation of the
geopotential height (Figurg.7(b)), suggests that the wind field over the North Sea
is better represented in ECBIlt-Clio by a somewhat more southerly grid point tha
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by the actual North Sea grid point. Therefore, in our study of surgas the North

Figure 1.7: Mean geopotential height over Europe in winter (Oct-Maraling to
a 30-year run of ECBIlt-Clio at 800 hPa for the control climate, and 30
years of NCEP data at 850 hPa and 1000 hPa (a), with the standard devi-
ation for ECBIlt-Clio and NCEP (b). The path of the maximum standard
deviation is an indicator of the location of the storm track. The grid box
in ECBIlt-Clio, best representing the wind field over the North Sea, is

indicated.
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Sea we considered the grid point (6E,47N), indicated in the ECBIlt-Clio pistofre
Figurel.7 (see also Figuré.2). The fact that this grid point is over land is assumed
to be of minor importance, as the ECBIlt-Clio wind is at 800 hPa, and at that level
boundary layer effects can be neglected.
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Figure 1.8: Comparison between the considered ECBIlt-Clio grid point ariddrte
Sea representing NCEP area for the wind speed (a) and the direction
(treshold 10 m/s) (b). The wind speed distribution is represented as a
Weibull plot. Considered is the winter season (Oct-Mar).
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Figurel.8@) compares the distribution of the 800 hPa wind speed and direction
(threshold 10 m/s) for this ECBIlt-Clio grid point of interest (Figur&) with the
North Sea representing NCEP area at 10 meter (open circles in Figre The
distribution of the wind speed is represented as a Weibull plot, which resudts in
straight line if the distribution is described by the Weibull distributidt{(z) = 1 —
exp (u/a)*. The agreement with the NCEP wind speed is good for the wind up
to 10 m/s, but deviates for larger wind speeds. This deviation will lead to arlarg
location and scale parameter of the GEV distribution in ECBIlt-Clio. The agreemen
in direction distributions is less, although the effect of the discrepancyesutyge
in Delfzijl (determined by North Western winds) is small. This discrepancy thaog
play a role in the investigation of the wind speed.

We conclude from this evaluation that the combination ECBIlt-Clio-surge model
seems adequate for the purpose of this study, i.e. to explore the uncesttiatiare
inherent to the determination of 4Qear return levels from observational series of
10-year length.
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1.5 Results

a. Uncertainty of estimated surge levels

Figure1.9 shows the Gumbel plot of the 5336 annual surge extremes of the control
run, as calculated from the ECBIlt-Clio winds by the surge model. The distributio
of the annual surge extremes can be described by the Fisher-Tip@&EMIdistri-
bution (upward curved < 0), although the largest extremes fluctuate considerably
around the fitted line. Up to a return period of 10 years, the extreme sfrayas
ECBIlt-Clio correspond well with those of the 1881-1999 observationabna of
Delfzijl. However, the estimated 16/ear return level from ECBIlt-Clio is consider-
ably higher (8.5 m) than from the observational record (5.8 m). This is mairgy d
to the difference in estimated shape parameidthe values are given in Tablel

on page?l). Figurel.9clearly indicates that a GEV distributiofi ¢ 0) rather than

a Gumbel distribution is required to describe accurately the annual sxrgenes in
ECBIlt-Clio for the grid point of interest.

Figure 1.9: Gumbel plots and fits of the surges for the 5336-year controin
ECBiIlt-Clio for the North Sea representing grid point (6E,47N) and for
the observational record in Delfzijl (118 years). Both the GEV and the

Gumbel distribution are fitted to the control run.
return period [years]

10 25 50 100 10° 10%

12 T T
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GEV distribution to control run

10 f —— Gumbel distribution to control run .
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Figure 1.10: Histograms of the estimated GEV parametgers and i, from the 46
sets of 116 years each from the control run. The arrows indicate the
estimates from the 1881-1999 observational set of Delfzijl.
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Figurel.10shows the histograms of the estimated parameters of the GEV distri-
bution of surges in Delfzijl from all 46 subsets of 116 years of the contmo. The
mean estimate of the location parametés about 25 cm too low, compared with the
observations, which can partly be attributed to the neglect of the presgect for
the ECBIlt-Clio extremes. The other parameters of the observational ra®id the
range of the ECBIlt-Clio parameters. Noticeable is the wide range in estimated pa-
rameters - clearly an effect of sampling. The influence of the estimated Zoyear
return level is depicted in Figuré.11, which shows for all 46 subsets the estimated
10*-year surge level,,: as a function of the shape parameteiThe wide range in
f results in estimated return levels between 4.5 and 17 meters, with an average of
9.2 meter, and a standard deviation of 3.1 meter. These values corresplbmdth
those for the median sej(« = 8.5 £ 2.7 m) and the total set(y« = 8.5 + 0.4 m),
using Eg.1.6for estimating the standard deviations.

The observational record fits well in the plot, suggesting that this rearde
regarded as a realistic subset among all other subsets.

Although Figurel.9indicated that the Gumbel distributio £ 0) is not able to
describe adequately the annual surge extremes, for 70% of the stileskypothesis
Ho: # = 0 is not rejected (at 5% level, accordinghimsking et al(1985). For most
of these situations, the 1§ear surge level will be underestimated, giving an average
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Figure 1.11: The estimated 4§ear return level for the surge as a function of the
corresponding, together with the estimate form the total control run
of 5336 years, and the estimate from the 1881-1991 observationdl set o
Delfzijl, with its standard deviations af and the 16-year surge level
according to Egl.6. Also shown is the median set fg{ys. The arrow
indicates the range for which the hypothesis 1 = 0 for the subsets
is not rejected (5% level).
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estimate of 8.3 meter instead of 9.2 meter.

In order to find the length of the record required to estimate tHeyg@r surge
level of 8.5 m with an accuracy of 1 meter, we extended two subsets untileeir
timated 10-year surge levels differed no more than 2 meter. As Figut@shows,
in this case the record length should be larger thahysars for an accuracy of 1
meter in the 16-year surge level estimate. Note that also the required record length
dtaper)\ds o. This dependence is shown in Figutel3 for a relative uncertainty
9104

= of 10 %. This relative uncertainty is independentadind ...
J10

We conclude that the uncertainty in the estimate of tHeykar surge level from a
record of 18 years is mainly determined by the uncertainty in the shape paratheter
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Figure 1.12: Estimated surge level as a function of the number of years thathe
set used for the fit. Shown are two independent realizations from the
control run. The estimated value from the total run of 5336 years (8.5
m) is indicated by a solid line. An estimate with an uncertainty of 1 m
(dashed lines) requires a record length of order 1000 years.
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Figure 1.13: Required record length as a function of the shape parahietex rela-

tive uncertainty;% of 10 %, according to EdL.6. The vertical scale
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Figure 1.14: Distributions for the wind speed (a) and the wind direction ¢b) f
the control run and the greenhouse run for the North Sea representing
ECBiIlt-Clio grid point (6E,47N).
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This uncertainty stems from sampling effects, and leads to an uncertaintiaof a
tor two in the 108-year surge level if determined from the observational record. In
practice, a record of order thousand years is required for an tairtgrof 10 %.

b. Greenhouse effect on surge and wind

Figurel.14a) shows a Weibull plot of the distributions of the wind speed for the con-
trol run and the greenhouse run for the North Sea representing gntip& CBilt-

Clio (6E,47N). The distributions are virtually identical. The distributions of theow
direction are depicted in Figure14b). There is a slight increase in westerly- and
a decrease in southerly winds, resulting in increasing frequency dfveosurge in
Delfzijl.

Table 1.1 compares the parameters of the GEV distributions for the control run
and the greenhouse run and the correspontlingyear surge and wind levels. Figure
1.15and Tablel.1(a) show an increase in the location paramgtef 8 %, and in the
scale parameter of 6 % for the surge. The shape paraméteemains unchanged.
This results in an increase of thé*-year surge level of 0.6 meter; this increase is
not statistically significant at the 5 % level.

The influence of the greenhouse climate on the extreme wind speed is shown in
Figurel.16and Tablel.1(b). FollowingCook (1982, the GEV distribution is fitted
to u?. Like as for the surge, also for the extreme wind speed the location pargmete
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Figure 1.15: Gumbel plots and fits of the surges for the 5336-year ¢oatgreen-
house runs in ECBIlt-Clio for the North Sea representing grid point

(6E,47N).
return period [years]
10 25 50 100 10° 10*
12 T T T T T T T T T
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surge [m]
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Table 1.1: GEV-parameters for the fits to the surge (a) and wind speeditb)}the
estimated 1®&-year levels and their uncertainty according to Hqg6 for
the North Sea representing grid point (6E,47N) in ECBIlt-Clio and for the
observational record of Delfzijl. See Secti@réa for comments on the
uncertainty of the observational record.

w[m] a [m] 0[] 10'-year surge [m]
control run 1.45+0.01| 0.49+0.01| -0.091+0.01 8.5+04
greenhouserun 1.574+0.01 | 0.52+0.01 | -0.092+ 0.01 9.1+ 0.4
Delfzijlrecord | 1.69+0.05| 0.43+0.03| -0.011+ 0.07 5.8+1.3

(a) surge
p[m?s7?] | a [m?s7?] 0[] 10*-year wind [m/s]
control run 462+ 2 140+ 2 -0.069+ 0.01 475+ 1.0
greenhouse rum 493+ 2 149+ 2 -0.053+0.01 47.6+ 1.0

(b) wind speed (fitted ta?)
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Figure 1.16: Gumbel plots and fits of the 12-hourly averaged wind spaethé
control- and greenhouse runs in ECBIlt-Clio for the North Sea repre-
senting grid point (6E,47N). The kink at a return period of 250 years in
the greenhouse run suggests the presence of a double population in the
extreme wind distribution. The vertical scale is quadratic.
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and the scale parameterincrease, both with 6 %. The (not significant at 5 % level)
decrease of the shape paramét@ancels the increase due ioand « for a return
period of 10 years.

Figure 1.16 shows for the greenhouse run a systematic deviation with respect
to the fitted distribution for wind speeds with return periods more than 25Gyear
The kink in the graph, caused by severe events, suggests the existensecond
population in the extreme wind distribution. The fit to the total set is not influethge
these severe events, due to the large number of points before the kinkvelopifithe
sampling period is increased from one year to a century, the parametas GEV
distribution are predominantly determined by these severe events. Extragéiam
this severe-events-dominated GEV distribution results in a considerablgrrigh

year return value for the wind speed than extrapolation of the total setrafah
extremes.
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1.6 Discussion and conclusions

a. Uncertainty in extrapolation

The climate model ECBIlt-Clio indicates that the surge extremes of the control cli-
mate can be described with a GEV distribution up to the return period of intd@st:
years. However, the estimates from 46 records of 116 years (like irbdervational
record) vary between half and twice the median value. This range is alamedt
for neighboring grid points, indicating that only a crude estimate can be midlaw
single record of order hundred years.

For a practical useful uncertainty range of about 10 %, one neetgetds of
surge extremes. To improve the confidence in the absolute value of théatedicu
return level, a more complex General Circulation Model has to be used &vajen
103 years of data for a realistic estimate of thé4@ar return level of the surge.

Our results suggest that the observational record can be regadedealistic
subset among all other subsets (Figlr®). The considerable lower estimate of the
uncertainty range for the observational recar@if ) = 1.3 m) than for the ECBIlt-
Clio median setd(y,q+) = 2.7 m) is caused by the non-linearity of the gf,« with
respect t). In the situation of small records (makindé) large) and large return

periods (makingsgo(0) dominant overg—za(u) and %o—(a)), a better uncertainty

estimate is obtained by determining the upper and lower bounggiag, 0 — 20 (0))
andy(, &, 0 + 20(§)) respectively. Estimating the uncertainty interval in this way
results for the observational record of Delfzijl in an upper bound of®.against 8.4
m according to Eql.6. Monte Carlo simulation gives 9.4 m for the parameters of the
observational record. So, EG.6 underestimates the upper bound of the estimated
return level in the situation of short records and large return periods.

The different extrapolation methods, applied to the record for Delfz[flilingh
et al. (1993 show a mutual difference of not more than 10 %, whereas the estimates
from different records differ up to 200 %. This indicates that the metised fior ex-
trapolation is of minor importance with respect to accuracy than the repatisép
of the underlying dataset.

b. Convergence rate to GEV distribution

In this paper we fitted the GEV distribution to the surge andto However, it is
not known beforehand if these variables are the best choices withategptheir
convergence rate to the asymptotic distribution. While theory shows thaaifor
k > 0) the extremes of the Weibull distributidfi(u) = 1 — exp (u/a)* converge
asymptotically to the Gumbel distributio&fbrechts et al. 1997the convergence
rate depends oh. Fast convergence is expected if one fits with & derived from
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the tail of wind speed (practically: u larger than Weibull constant a). €asan is
that this transforms the Weibull distribution into an exponential distribution, kvhic
has a fast convergence to the Gumbel distribution. We therefore recahmédib
u*, wherek can be obtained from Weibull analysis. If a different powes chosen,
then incomplete convergence (due to the finite series length) may result iera ov
estimation o if n < k and vice versa.

The Weibull distribution of the wind (Figur&.14) suggests that in the tafl ~
1.5, which is somewhat smaller than the2-value proposed b€ook (1982. This
implies that for windu!®, or equivalently for surgg® ™, has to be extrapolated to
get optimal convergence. The incomplete convergence due to the efideads to a
g-estimate that is too small. The results on thé-§8ar level are a 3 % smaller wind
speed and a 6 % smaller surge.

We advise a careful evaluation of the variable to be fitted to obtain faseconv
gence to the expected extreme value distribution. In any case, one sleocdddbul
to interpretd > 0 as the result of an upper limit, as long as the level of convergence
is unclear.

c. Severe events

ECBIlt-Clio hints on the excitation of 'superstorms’ in the greenhouse climate, de
fined as storms with more extreme winds than expected from extrapolationsof les
extreme events. If these severe events are real, and if they are paseobnd pop-
ulation that becomes apparent for high return periods only, than the kenketurn
period of ~ 250 year in the Gumbel plot of Figure16 means that these ’'super-
storms’ dominate the extreme value statistics at frequencies lower than ons@ in 2
years.

Itis tempting to find an interpretation for these superstorms. Preliminary amalys
indicates that a part of them may originate from the amalgamation of two pogcurs
cyclones. Cyclogenesis by Wave-Merging is regularly observedeaovth Amer-
ica (Gaza and Bosart 199®ut seem rarer above Europe. Merging cyclones are
known to result in extreme winds and core pressurzkim et al. 1995#).

We speculate at the moment that the changing climate results in a seldom oc-
currence of these Wave-Mergers over North-western Europe. ytheathat this
mechanism is also possible in the control climate, but that its rarity is so extreie tha
it does not show up in the Gumbel plot of order* M@ar. If this conjecture is true,
than the occurrence of superstorms in a greenhouse climate can lebgabe the
result of a increased probability of these events under the changed@@itions.

The time-evolution of the relative vorticity during one of these severe eigst®wn
in Figurel.17(Appendix1.A). It clearly shows the merging of two cyclones, and the
explosive increase in relative vorticity and wind speed.
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The reason for this merging, and its relation to the greenhousegas t@icen)
has to be investigated, as well as the physical reliability of these superstdiiss
future research will concentrate on the analysis of the synoptic situatiatiade
the severe events, and on changes in the spatial distribution of wind estderad¢o
the greenhouse effect.

1.A Meteorological situation during a severe event

Figure1.17 shows the situation from 4 days before till 1 day after the day with the
largest wind speed in the ECBIlt-Clio greenhouse run. The evolution of dig-d
averaged vertical component of the relative vorticity at 800 hPa indithéswo
storms (with their centers at (55E,52N) and (15E,57N) on day 1), interatinerge
during day 2 to 5. This results in a explosive increase in relative vorticidyvand
speed. The situation in the simulation of Figurd7 resulted in a 12-hourly wind
speed over the North Sea of 53 m/s, and a surge level in Delfzijl of 7.9 m.



Figure 1.17: Meteorological situation of a severe ECBIlt-Clio event. Showihes
daily-averaged vertical component of the relative vorticity (im0
m/s’) at 800 hPa. Panel 5 shows the most extreme situation. The event
resulted in a wind speed of 53 m/s, and a surge level in Delfzijl of 7.9




Chapter 2

Uncertaintiesin extreme surge level
estimates from observational records

Abstract

Ensemble simulations with a total length of 7540 years are generated with a climate
model, and coupled to a simple surge model to transform the wind field over the
North Sea to the skew surge level at Delfzijl (NL). The 65 constructegestecords,

each with a record length of 116 years, are analyzed with the Gener&ktezine
Value (GEV) and the Generalized Pareto distribution (GPD) to study both tdelmo
and sample uncertainty in surge level estimates with a return period'ofekds, as
derived from 116-year records.

The optimal choice of the threshold, needed for an unbiased GPD-estimiate f
Peak-Over-Threshold (POT) values, cannot be determined objgdtiva a hundred-
year data set. This fact, in combination with the sensitivity of the GPD-estimate to the
threshold, and its tendency towards too low estimates, leaves the applicattoa of
GEV distribution to storm-season maxima as the best approach. If the G&tiasian
is applied, the exceedance ratshould be chosen not larger than 4.

The climate model hints at the existence of a second population of very intense
storms. As the existence of such a second population can never beeaskétath
a hundred-year record, the estimateit-year wind speed from such records has
always to be interpreted as a lower limit.

2.1 Introduction

In The Netherlands, a probability of 10 per year for flooding from the sea is used
as baseline for dike desigibéltacommissie 1960 Several problems arise when
translating this 'accepted risk’ into the sea level being exceeded (oage)only
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once in 10 years. First, as the observational records of tidal stations are ofly 10
years in length, the surge level with an average return period ‘bf&frs requires
an extrapolation of two orders of magnitude. It is unclear how reliable te&e
from such an extrapolation is. Second, various probability functiondeditted to
the observational records of extreme surges, leading to differemtses the 10-
year return levelsQillingh et al. 1993 de Haan 1990 Third, extrapolation from
observational records does not contain information about surgesréealtpuse gas
induced changing climate. Fourth, a second population of rare but instoises,
originating from a different kind of meteorological system, would resultighar
return values than estimated from standard extreme value analysis of tteblava
short records.

These problems are explored by analyzing two very long surge retardse
Dutch coastal station Delfzijl, which were generated by a climate model. Oiss ser
refers to the present-day climate; the second to the future (doubledhgresngas
concentration) conditions. The length of these series (ordéryg@rs) allow for
exploring the far tail of the distribution, as well as for uncertainty estimatebef
return values if calculated from much shorter (ortiét years) subsets.

2.2 Model descriptions

Wind data are generated by the General Circulation Model (GCM) ECBilt-Cidin-
sisting of an ocean model CliGposse and Fichefet 199&8nd an atmospheric model
ECBIlt (Opsteegh et al. 199200]). ECBIlt is a spectral T21 global 3-level quasi-
geostrophic model, with a time step of 4 hours. The T21-resolution comdsgor
the latitudes of interest) with a grid point distance of approximately 500 km.

The surge model we used is a simplified version of the Timmerman moide] (
merman 197Y. It is described and validated wan den Brink et al(2003. We
calculated a surge level every 12 hours.

2.3 Methodology

a. Extreme Value distributions

There are two commonly applied approaches in extreme value statistics: Insthe fi
approach, 'block maxima’ are considered, to which the Generalizedrggtkalue
(GEV) distribution is applied. The GEV distribution function is given by:

1/6
GEV =P(Y <y)=exp(—[1 g(yfu)] ) (2.1)

«a
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with i the location parametety the scale parametef,the shape parameter, and
the block maximum of the considered variabde Haan 1976

In the second approach, all values above a certain threshale considered.
To these 'Peak over Threshold’ (POT) values, the Generalized Parstigbution
(GPD) is applied. The GPD distribution function is given by:

GPD/\:P(Y—USZ/|Y>U):1—[1—%(3/—#)}1/9 (2.2)

with . the location parametery the scale parametef,the shape parameter, and
the variable above a chosen thresheldVe follow the common approach to choose
1 equal to the threshold (Palutikof et al. 1999 The exceedance rate which
depends on the threshald is estimated as the average number of exceedances over
the threshold: per 'block’. From both approaches, the level belonging to a given
probability of exceedance can be estimated by inverting equa2idrzsnd2.2

The shape parametefisof the GEV and the GPD distributions are equal if the
threshold is large enougKétz et al. 2002

In order to come to an optimal estimate, it is desirable that the estimate is both
unbiased (i.e., with the right expected value) and efficient (i.e., with a smedirun
tainty). The uncertainty depends mainly on the number of samples that asiel-con
ered, whereas a systematic bias will be introduced if a wrong distributioned us
to describe the data. As both the GPD and the GEV distribution describe only the
‘tail’ of the parent distribution, a bias will be introduced if samples that doheat
long to this 'tail’ are also considered. Which samples belong to the tail, in the sens
that they can be described with the same parameters as the more extremedevents
pends on the convergence rate of the parent distribution to the asymptisémex
value distribution. For the ’block maxima’ approach, this convergencesisnasd
beforehand, whereas for the POT-approach, this question is comnmaieeed em-
pirically, making use of the fact that for the 'tail’, the estimated shape pararfiete
should be independent of the thresho)and thus of the exceedance rateThis can
be explored by plotting the estimated shape paranfedera function of the threshold
u or the exceedance rake The chosen is then the largest one for whighis stable
(de Haan 1990Coles 2001 If there are strong fluctuations or trends in the estimated
#, quantile estimates are difficult to obtain (see 8@bson and Palutikof 2000

So, the larger sample set that is considered in the POT-approack(if) makes
this method more efficient than the 'block maxima’ approach. On the other, hand
the POT-approach is more likely to be biased, as samples less far in the tadl of th
distribution are also used.

For a further overview of the advantages and disadvantages of thepidach
and the 'block maxima’ approach, we referRalutikof et al.(1999
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b. Set-up of the numerical experiment

With ECBIlt-Clio, 260 runs of 30 years each were generated, with a &fdcen-
tration according to the period 1960-1989 (320 ppm on average).diti@uto the
control run, we also generated 233 ensemble runs of 30 years with esti@@te
concentrations according to the period 2050-2079 (following the SREHS @@,
emission scenarid\akicenovic et al. 2000 This emission scenario results in ap-
proximately doubled C@®concentration (620 ppm on average) in 2050-2079 with
respect to the control run.

As every 30-year run contains 29 storm season periods, we havwe2267540
'block maxima’ for the control run, and 6902 for the greenhouse run.

c. Data handling

To remove dependent events from the POT-selection, we require a minimadpne
aration between selected events of 96 hours, dg iHaan1990.

We concentrate on storm season events (October till March) to improve-homo
geneity of the data sedé Haan 1990 We applied the surge model to the ECBIlt-Clio
grid point (6E,47N). This grid point best represents the North Sea wivals den
Brink et al. 2003.

We calculated the parameters of the GEV and GPD distributions via the method
of Maximum Likelihood Coles 200). The 95%-confidence levels were estimated
from the profile likelihood Coles 2001

Figure 2.1 shows the number of exceedancess a function of the threshold
u for the observations and the ECBIlt-Clio data. ECBIlt-Clio has somewhat less
exceedances over a given threshold than the observations. In thiswaidompare
both record for situations with equal exceedance patevhich means that for the
observational record a higher threshold is chosen than for the ECBilt<€lard.

Figure2.2shows a return level plot for the observational set and the ECBIlt-Clio
set. The extremes of ECBIlt-Clio are in reasonable agreement for rettiodpelp
to 50 years. For return periods larger than 50 years, the extremes iittf3XliB are
higher than in the observational set.

2.4 Results

a. Dependence of $0year estimate on model choice

With the control run, we tested the uncertainty in the extrapolation of the extreme
surges for Delfzijl. We applied the GPD distribution to the 116-year obsena
surge record of Delfzijl (1883-1999), to 65 subsets of 116 yeach e& ECBIlt-
Clio, and to the total set of 7540 years, all for several choices. ofVe also ap-
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Figure 2.1: Number of exceedanceper storm season (October to March) as a func-
tion of the threshold. for the observations and the ECBIlt-Clio data. The
vertical scale is logarithmic.
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Figure 2.2: Return level plot for the observational set and the ECBilt-@lio The
lines are GEV- and GPD-fits with exceedance rate- 3 to both sets.

The horizontal scale is logarithmic.
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Figure 2.3: The estimated 4Qear return level for the surge as a function of the
corresponding shape parametéor 65 subsets (each of 116 years length)
from the ECBIlt-Clio control run. Shown are the GEV-estimates (a) and
the GPD-estimates for exceedance rate- 1 (b). Also shown are the
estimates from the total ECBIlt-Clio control run of 7540 storm seasons
(circle), and the estimate from the 1883-1999 observational set ofiDelfz
(square).
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plied the GEV distribution to the storm season block-maxima of all these sets. The
10*-year estimates are shown in Figl@ as a function of the estimated shape pa-
rameterd from the GEV distribution (panel a) and from the GRD distribution
(panel b). Figure.3 shows the following features: First, both panels resemble the
strong correlation between the estimated shape parameted the estimated 10
year return level. Second, the“@ear estimate from the total 7540-year ECBilt-
Clio set are similar for the GEV (8.29 m (7.21,10.9)) and the @PDestimate
(7.87 m (7.28,8.62)) (the values between brackets are the lower- areal 9ppo-
confidence levels). Third, the lower GRD, estimate (4.66 m (3.70,8.95)) than the
GEV estimate (5.85 m (4.17,11.5)) indicates that the two approaches cdnimesu
considerably different I0year estimates (although they do not differ significantly in
this case). Fourth, the 1§/ear estimates of the 116-year ECBIlt-Clio subsets vary
considerably, between 4 and 20 m, both for the GEV- and the GPBstimates.
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Figure 2.4: (a) Estimated shape parameteos the GPD-distribution for the surge
in Delfzijl according to the total 7540-year ECBIlt-Clio set as a function
of the exceedance rafe Also shown are estimates from two arbitrarily
chosen 116-year ECBIlt-Clio subsets (set 1, set 2), and the obseadatio
set. (b) The corresponding 4§ear surge levels. The horizontal axes are
logarithmic.
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b. Dependence of GPD 1§ear estimate on exceedance rate

We now want to explore i > 1 makes application of the GPD distribution more
efficient than the GEV distribution. Figut4 shows the estimated GPD shape pa-
rameters and TGyear return levels as a function af Figure2.4(a) shows the esti-
mates from the total 7540-year set, two arbitrarily chosen 116-year ECHiltsets
and the observational set. Figiey(b) gives the estimated 1§ear surge levels for
the same sets.

Figure 2.4 gives the following information: First, if\ < 1, the estimate of
(and thus the 1Byear estimate) from a 116-year subset is very sensitive thich
is undesired. Second, also far > 1, considerable fluctuations in the estimated
shape parametérremain in 116-year sets, as both the two ECBIlt-Clio sets and the
observational set show. This fact, together with the different 'stablibns ford of
the two ECBIlt-Clio 116-year subsets, make it difficult or even impossible tos#o
an optimal value of\ from a 116-year record. Third, the two 116-year ECBIlt-Clio
subsets remain for all's either below, or above the estimate of the total 7540-year
ECBIlt-Clio set. Fourth, even the estimates of the total 7540-year ECBIlt-Cliarset
not threshold-independent. This suggests that the upward slgp&af i > 4) in
Figure2.4(a) (and the corresponding decreasing-¢6ar estimate in Figur2.4(b))
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is a bias, caused by samples that do not belong to the tail of the parentutistrib
Fifth, the fact that the estimates from the observational set are within thdtEGTB
range for the GEV and the GPD distribution far< 3, but outside that range for

A 2 3, might indicate that the observational set is even more biased for largesvalu
of A than the ECBIlt-Clio set.

We conclude thak should be in the range between 1 and 4 to have a more or less
unbiased 18year surge estimate. However, such a range can only be determined
from an extremely long data set. Data sets of order hundred years asadddao
determine a maximal choice of (and thus of the minimal threshold) that results in
an unbiased estimate. The strong dependence of the GPD-estimates ovi¢ckeoth
A makes it difficult, or even impossible, to obtain reliable unbiased GPD-estimated
10*-year surge levels from 2@year records.

c. Optimal choice for threshold

In order to investigate the bias in more detail, we determine the fraction of the 65
subsets for which the actual value lies outside the 95%-confidence int&ivese
percentages are shown in Figutexa) for a return period of 100 years, split out
to the lower- and upper 95%-confidence level. The actual 100-yéae i&4.20 m
(according to Figur@.2). The open circles in Figurd.5a) show that the fraction
of upper 95%-confidence levels is larger than 2.5% for all exceedates, except
between 2 and 4. Fak > 5, the number of subsets for which the upper 95%-
confidence levels is below the actual value is large, whereas for ndhe 65 subsets
the actual value is below the the lower 95%-confidence levels. This inditees
existence of bias towards too low values.

Fitting a GEV-distribution to the 65 subsets gives one subset for which e 10
year upper 95%-confidence level is lower than the actual value, amdwset for
which the lower 95%-confidence level is higher than the actual 100vztae. The
corresponding percentages are plotted at the right side of FAyb(ed.

To highlight the effects of Figur2.5a), the calculations are repeated, but now
based on 1000 116-years subsets, obtained by randomly sampling feotatah
ECBIlt-Clio set, in order to decrease the noise. The results for a returodpef
100 years are shown in Figuex(d). This confirms the findings of Figu&5a) that
there is a bias in the GRPestimates. Whereas Figu2exa) did not indicate a bias
for A = 3, Figure2.5d) shows that there is a small bias for< 4, which strongly
increases forn > 4. Figure2.5d) indicates no bias in the GEV-estimates (about
2.5% of the upper 95%-confidence intervals is lower than the actual \aidegbout
2.5% of the lower 95%-confidence intervals is above the actual value).
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For the 10-year return periods, the percentages exceeding the upper- and lowe
95%-confidence intervals are depicted in Fig@rgb,c,e,f). In this case, i.e., for
10%-year return periods, the real’ value for the*igear return value has to be cho-
sen, as it can not be determined directly from Fig2i2 As possible 'real’ values
we considered both the GEV- and the GRB-estimates, as obtained from the total
7540-year set. The reason for considering: 3 in the GPD-estimate is that this
value of the exceedance rateturns out to be the best, according to Figar§a).
Another reason is that the GRD;-estimate is correct for a 100-year return period
(Figure2.2).

Figures2.5b,c) show the results for the 65 subsets, respectively taking the 10
year GEV-estimate (8.29 m) as real’ value, and thé-g€ar GPDQ_s-estimate (7.78
m). Figure2.5e,f) show the results for the 1000 sampled subsets.

We see an even stronger bias towards too low values for thedd) return pe-
riods than for the 100-year return periods for the GPD-estimatessif4 (note the
different vertical range of Figured.5b,c,e,f) with respect to Figurés5a,d)). No
bias is detected for the GEV-estimates in the situation that they@@r GEV-estimate
is taken as real’ value (Figurés5(e)), and for the GPD-estimatedlii A < 4 inthe
situation that the 10year GPQ_s-estimate is taken as 'real’ value (Figui2§(f)),
as expected from consistency.

We conclude from Figur@.5that the GPD-estimates are more sensitive to bias
than the GEV-estimates, especially if the exceedance\ratel. The GEV-estimates
are unbiased. This leaves the GEV analysis as the preferred method.

d. Greenhouse effect on wind

The effect of the greenhouse doubling on the extreme wind speed in ECIRilter

the North Sea grid point is shown in Figuzes. Up to return periods of 100 years,

no effect is apparent. However, for wind speeds with return peribdwce than 250
years, the greenhouse run deviates systematically from the fitted GEV wlistnib
This suggests the existence of a second population in the extreme wind distribu
Fitting the GEV distribution to the deviating extremes only, results in a considerably
higher 10-year return value for the wind speed than fitting to the total set. For a
more comprehensive description, we refevam den Brink et al(20043.

2.5 Discussion and conclusions

The variance in the GEV-estimates from 65 records of 116 years inditeatiesnly a
crude estimate of the 1¢/ear surge level can be made from a single record with
a length of the order of a hundred years. The GPD-estimates give Idblér 9
confidence intervals for exceedance raies- 1 than the GEV-estimates, but the
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Figure 2.6: Return level plot of the observed and GEV-estimated 12yhaveraged
wind speeds for the control- and greenhouse runs in ECBIlt-Clio for the
North Sea representing grid point (6E,47N). The kink at a return period
of 250 years in the greenhouse run suggests the presence of a double
population in the extreme wind distribution.
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total 7540-year ECBIlt-Clio set shows that these GPD-estimates are biagau to
lower 10'-year values.

For the ECBIlt-Clio data, the percentage of the 95%-confidence levelsicimgta
the actual value can be determined for a return period of 100 yearsséinthted for
a return period of 10years. This analysis points out that application of the GPD-
analysis to the ECBIlt-Clio data leads to estimates that are biased towards too low
values. We emphasize that this analysis can only be done for extremelydtmg s
and thus not for the short observational sets.

The unknown optimal value of the exceedance vafer the observational set,
combined with the sensitivity of the GPD-estimate to the choic&,aind the ten-
dency towards too low estimates, leaves in our opinion the GEV analysis asethe p
ferred method to apply to the observational data, despite of its large untertid
the GPD-analysis is applied,should be chosen not larger than 4.
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In the future, output of more advanced climate- and surge models will be used
to calculate the 1Byear surge level and its uncertainty. Another possibility may be
to apply the optimal, as obtained from the climate model, to the observational data
and still estimate the T0year surge level and its uncertainty from the observations.

ECBIlt-Clio hints at the excitation of extratropical 'superstorms’, definestaisns
with more extreme winds than expected from extrapolation of less extreméseven
The fact that this second population is only apparent in the greenhonderrthis
grid point indicates that regions where second populations exist, camftedsen-
hanced or generated by climate change. The reality of this model-induceddse
population has still to be showwndgn den Brink et al. 2004aDue to their extreme
rarity, they are not detectable from records of only hundred yearsngthe Re-
versing this argument implies that extrapolations from 100-year recorti3! tpear
return levels are only valid under the condition that the extreme value distributio
is single populated. As this condition can never be proved from 100+geards,
the GEV- or GPD- (or any other distribution) estimated-Y@ar wind speed from
100-year records has always to be interpreted as a lower limit.



Chapter 3

Statistics of extreme synoptic-scale wind
speeds in ensemble ssmulations of current
and futureclimate

Abstract

Statistical analysis of the wind speeds, generated by a climate model of intatened
complexity, indicates the existence of areas where the extreme value distribfitio
extratropical winds is double populated, the second population becomiminalat
for return periods of order £0years. Meteorological analysis of the second popula-
tion shows that it is caused when extratropical cyclones merge in an ekfretmuag
westerly jet stream, conditions are generated which are favorable ¢arreace of
strong diabatic feedbacks. Doubling of the greenhousegas corttamrahanges
and enlarges the areas of second population, and increases its1redfiehese mo-
del results apply to the real world, then in the exit areas of the jet streaextiame
wind speed with centennial to millennial return periods is considerable lgéngar
extreme value analysis of observational records implies.

3.1 Introduction

Motivated by safety and dike design demands, much statistical researabbséhva-
tional data has been done on the estimation of extreme wind speeds andistgem s
(Cook 1982 Simiu et al. 2001de Haan 199p0for return periods up to X0years. Al-
though a wide variety of methods has been developed (sePagikof et al.(1999
for an overview), all practical applications hamper from the restrictegtleaf the
observational series (order hundred years), on which the statisticapelations are
based.

Several assumptions underly the statistical estimate of the wind speed with a
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return period of 10years. The mostimportant one, i.e. that all extratropical extremes
(up to return periods of FOyears) belong to the same population, is hard to verify
from the available short observational sets.

We evaluated this problem within the context of a climate model of intermedi-
ate complexity. We have generated ensemble runs (consisting of 35@9yéaial)
with a climate model, both for the current climate {975) and for a climate at dou-
bled CG, concentrations~ 2065). With these long records we searched for double
populations in the extreme value distributions of annual wind extremes fonnegu
riods up to10? years. In addition, we explored the effect of increased greenbasse
concentrations on the mean annual wind and on the double populationBy, Fuga
analyzed the meteorological conditions of the small but violent secondgiapuof
extreme winds.

The paper is structured as follows: Sect®2 describes the theoretical statis-
tical basis, and SectioB.3the data handling of the model output and the detection
of double populations from extreme value distributions. SecB@hdescribes the
climate model used, and Secti8rb the statistical results. Secti@6 analyzes the
second population in meteorological sense, and Se8tibgives the discussion and
conclusions.

3.2 ExtremeValue Analysis

a. General arguments

Let M,, be the maximum ofn independent observatiods, &, . . . , &, from distri-
bution F'(z):
M, = max(&1,&2, ..., &m) (3.1)

then the distribution of\/,,, is given by:
P(M,, <xz)=P(& <z)P(& < x)...P(&, <x)=F"(x) (3.2)

Extreme Value theory states that the distribution of maxima of many probability dis-
tributions F'(z) (properly normalized witl,,, and,,) approaches asymptotically to
a specific class of functiorns(x):

M. —
lim P(M <z) = lim F™(amx + ) = G(x) (3.3)

m—00 O(m m—00

whereG(x) is given by:
Gz) = e~1-02)"/" (3.4)
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with the parametef € R determining the nature of the function (see edg.Haan
(1990 andKotz and Nadarajaf2000). A special case of/(z) is the Gumbel dis-
tribution, which isG(z) with § = 0. Then, interpreting = 0 as the limit¢ — 0,
(3.4) reduces to:

G(x) = e ¢ (3.5)
There are many examples of parent distributiéf{s) whose normalized extremes
converge to the Gumbel distribution, e.g. the normal distribution, the exgiahen
distribution and the Weibull distributiorEmbrechts et al. 1997

b. Generalized Extreme Value (GEV) distribution of wind data

We rewritem in (3.1) asrp, with r the average number of independent daily averaged
wind speeds in a year, andthe sample period in years from which the maxima
M, are extracted. If we suppose that the distribution of the normafizgehr wind
maxima followsG(z) for p > 1, we can write 8.4) in the form of the so-called
Generalized Extreme Value (GEV) distributich) (v): (Jenkinson 1956

Gy(u) = P(M, <u)=e¢ " (3.6)

with M, the p-year wind maxima¢+,(u) the GEV distribution resulting from p-year
sampling, and:,, a substitute for:

_ g U My -1/0
xp—ln<1 0 o ) (3.7)

in which p,, is the location parametet,, the scale parametetthe shape parameter,
andu the wind speed. The location parametgrcan be interpreted as the wind
speed exceeded on average once during the sample pe(Buishand and Velds
1980. Foré > 0, u is bounded by an upper limit of valyg, + «,,/6; for 6 < 0, u
can approach infinity.

The Gumbel distributionf = 0) is interpreted as the limit of3(7) asf — 0,
leading to:

= P (3.8)
p

Extreme value distributions are often plotted as a so called Gumbel plot, wieere th
variableu is on the ordinate, and the abscissa is transformed into the Gumbel Variate:

Gumbel Variate= — In(— In(F™(u))) (3.9)

On a Gumbel plot, a Gumbel distribution is represented by a straight linepahar
GEV distribution @ # 0) is curved, downwardly fof > 0 and upwardly fo < 0.
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Using that thatG(u)]? = Gp(u) (Leadbetter et al. 1983%. 8), from B.6)
follows:

Ty = w1 —Inp (3.10)
Substituting 8.10 into (3.7) gives:
1— —0
Hp = p1+aq Hp (3.11)
a, = p_0

In the special case of the Gumbel distribution, the right hand side8.df)(are
11 + a1 Inp andag, respectively.

In extreme value studies, the probability of exceedance of a certain valie
usually expressed in terms of threturn period T The return period’ is the average
number of years between two succeeding exceedances of the cowlexgpreturn

valueu: 1
T = =D Tp forT p 3.12
(u) =G (u) e > ( )

c. Two Component Extreme Value (TCEV) distribution

The local wind can be caused by two meteorological systerasdb of different
physical nature, each of them generating its own distribufigin) and F,(u). Then,
the parent distributiot’, ;(u) is said to be mixed, and can be decomposed into:

Fop(u) = (1 — €)Fa(u) + eFy(u) (3.13)

with 0 < e < 1. An interpretation of 8.13 is that of everym samples(1 — ¢)m
originates from mechanism, andem from b. Especially interesting is the case in
which e < 1, and where the far tail of}(u) is heavier than that of,(u). Then
Fop(u) = F,(u), andF,(u) can not easily be detected from the parent distribution.
However, the extremely large events will originate from systemwhich existence
may be detected from the observed distribution of the extremes.

If EX 9™ (1) — Galu) and F¥™(u) — Gyp(u) , then the distribution of the ex-
tremesG, ,(u) of the mixed distribution is given byQook et al. 2008

Gap(u) = FI9™ (W) FE™(u) — Ga(u)Gy(u) (3.14)

where the subscripis b of G(u) refer to the populations of systemsndb.

The simplest case df,;(u) represents the multiplication of two Gumbel dis-
tributions G, (u) and G(u), which Rossi et al.(1984 calls the Two Component
Extreme Value (TCEV) distribution:

u—pq _ U—Hp

Gop(u) =exp(—e @ —e % ) (3.15)




3.2 Extreme Value Analysis 43

Figure 3.1: A Generalized Extreme Value (GEV) distribut@p(«) and a Gumbel
distributionGy(u), with the corresponding Generalized Two Component
Extreme Value (GTCEV) distributioty,, ;(«). The intersection point’
of Go(u) andGy(u) is in this example at; = 3.67, corresponding with
a return period’ of 40 year. The distributions are shown on a Gumbel
plot.
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If transformed into the Gumbel variat&.9) becomes for the TCEV distribution:

u—pq _u—Hp

Gumbel variate= —In(e” e« +e @ ) (3.16)

which shows that a Gumbel plot of extremes from a mixed distributigp(«) results

in a smooth transition from the asymptote of the distribution of the extr&més)
originating from the dominant populatianto the distribution of the violent extremes
Gyp(u), originating from the rare populatidn The intersection poir®' of G, («) and
Gy(u) marks the sampling peridfi- where the probability for sampling an extreme
from populations or b is the same.

Figure3.lillustrates this behavior for the second-simplest case of a Two Compo-
nent Extreme Value distribution, which is the case Hatu) in (3.14) is allowed to
generalize to a GEV distribution, bat,(u) remains a Gumbel distribution. We de-
note this type of Two Component distribution, which we shall concentrate tmsn
paper, by the Generalized Two Component Extreme Value (GTCEV) distniywf
which the Two Component Extreme Value distribution is a special case. &kerre
for analyzing the second-simples case is that the the simplest case is rajtiagg
as populatiorz can not be described by a Gumbel distribution. The combination of
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two GEV distributions is not suitable, as populatibiis too small to estimate the
shape parametér

For a GTCEV distribution to become apparent in the data, three conditiors hav
to be fulfilled. First, the series length in yeadrsshould amply exceed the return
period T of the crossing point. Second, the sampling perigdshould be suf-
ficiently large to achieve convergence for the extremes of both populati@msl
b to their respective limit€7,(u) and Gy (u). Third, the sampling periog should
be much smaller thaffiz, since in the opposite casé,(u) — 1 and hence the
GTCEV approache&’,(u), which is the ultimate extreme value limit of both,(u)
andG, p(u). Note however, that the detection of the presence of a GTCEV distribu-
tion is easiest fof, > 0, as in the opposite cage,(u) curves upwardly so that the
GTCEV distribution becomes more difficult to distinguish from a single componen
GEV distribution withd, < 0. Figure3.1may help to illustrate these points.

3.3 DataHandling

In empirical studies, the parameters of the GEV distribu@ii.) are obtained from
a series with a finite length &f years. Taking the maxima of evepyyears,n values
remain to fit, with

n=— (3.17)
p

Traditionally, the GEV distribution is applied to the annual maxima, so with sample
periodp = 1, givingn = Y values to fit. This practice implicitly assumes that
convergence to the GEV limit (EQ.3) is achieved forn = r, with r ~ 50 < 365

the average number of independent daily averaged wind speeds in(€péss 2001

p. 98). It depends on the mathematical form of the parent distributier) whether
the annual maxima have indeed converged to the asymptotic distribition(u)

for m =~ 50. If the convergence is too incomplete for= 1 to achieve a meaningful
GEV analysis, one remedy is to increase the sampling peridtbwever, this leads
to a proportionally decreased number of poimtsn which the GEV fit is based, and
hence to increased sampling noise and standard errors in the parartistati@ss

of the GEV distribution. In our analysis, we apply an alternative method, lyame
to improve convergence by transforming the data in such a way that theynleec
distributed according to a faster converging parent distribution. The mhettades
use of the fact that, for extratropical wind speeds, the Weibull distribusiomell
established as the parent distribution:

Flu)=1- e~ (u/a) (3.18)
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with « the wind speedq the Weibull scale parameter akdthe Weibull shape pa-
rameter. Theory shows that the maxima of observations from a Weibull disnib
converge asymptotically (for any > 0) to the Gumbel distribution, with the con-
vergence rate depending énbeing largest for the exponential distributidn=£ 1)
(Embrechts et al. 199 o0k and Harris 2001 Hence, improved convergence to the
Gumbel distribution can be obtainedif instead ofu is the fitted parameter, as this
transforms the Weibull distribution into an exponential distribution. We madefse
this property, and determinédin the tail of the parent distribution, after which the
parametern,* was fitted to a GEV distribution (EqS.6, 3.7). The underlying con-
jecture is that, even if deviations from the Weibull distribution in the far tail would
lead to convergence to the GEV distribution instead of to the Gumbel distribution,
the convergence rate to that GEV distribution is still fasterfothan foru.

In the analysis of wind maxima, we restrict ourself to the storm-season (Oct-
Mar) instead of to the annual maxima, assuming better homogeneity of the paren
distribution within the storm seasoDBi(lingh et al. 1993.

a. GEV parameter estimation

The parameters of the GEV distribution were estimated by the method of Probability
Weighted MomentsHosking et al. 1986 We also used his estimate of the plot

positions:
1 —0.35

2 = —In(— In( ) (3.19)
with z* the plot position of the*® maximum in the set of. ordered maxima. Eq.
3.19can be regarded as a discrete versior8d)( The estimated return value of the
wind speedy, 7 for a givenz (which is determined by the sample perjpdnd return
periodT via (3.12) follows from inverting 8.7) and back-transforming® to u:

— % _ 0z 1/k
Up T = (,up—i— 7 (I1—e p)) (3.20)
with k& the Weibull shape parameter. Neglecting the sampling error in the Weibull
shape paramete, the standard erras, , v in the estimated return value,  is
calculated by the so-called delta method (see@ades 2001p. 33):

ooy = Vu'VVu (3.21)

with
ou Ou 8u]T

Vu = [%,a—a,%
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andV the variance-covariance matrix

2
Oy Oua Ouo
_ 2
V = Oua 04 Oaf

2
Oug Oap Oy

with o, the standard error gf etc. The values oV are given byHosking et al.
(1985.

b. Detection of Two Component Extreme Value distributions

The statistical analysis was performed in four steps: First, the Weibulhyeeas

a and k were determined for each grid point on the Northern Hemisphere. These
parameters andk were obtained by least mean square fitting all daily wind speeds
with u > a (i.e. the uppee~! part of the distribution, to exclude the influence of
the lower wind speeds) in the winter season in a 150-year record, B83RQedaily
values per grid point. Second, the GEV distribution was fitted to the set && 350
annual maxima:* for each grid point, so witph = 1 andn = Y = 3509. The third
step was to identify possible GTCEV distributions, i.e. locations where thenagtre
value distribution originates from populatioasandb. In that procedure, we assume
that the data are GTCEV-distributed if thé*-year return value as obtained from
the GEV fit top-yearly sampled maxima,, ;,:« exceeds tha0*-year return value

as obtained from the GEV fit to annual maxima,,« by more than two standard
deviations. Expressed in a signal-to-noise r&tié

Up 104 — Up,104
SN = b, d (3.22)
2 2
\/%,;;,104 + 01100

the criterion reads:
SN > 2 (3.23)

whereo,, ; 19+ is the sampling uncertainty i, 14, ando,, , 19+ the standard error in
u, 10+ When fitting a GEV distribution tp-yearly sampled maxima originating from
Gp—1(uF) (using @.11) to calculatew, anday,). In our situation, the criterior8(23
corresponds to a probability of less than 5% that the wind is single populdied (
probability is, due to the skew distribution of rare return levels, somewtlggidnan
the 2.5% corresponding with a normal distribution). This process is visdaiize
Figure 3.2, which shows 3509 annual maxima with the fitted GEV distributions to
the annualg = 1) and centennial maxima (= 100). We will apply (3.22 to annual
and centennial maxima, although the outcome is rather robust for otheestuijc
The fourth step was to estimate the GTCEV distributiéyy, («) for specific grid
points whereSN > 2. Here, we assumed tha} () is also Weibull distributed with



3.3 Data Handling 47

Figure 3.2: Visualization of the procedure to detect Generalized Two Coemp&x-

50

40

wind speed u [m/s]

treme Value distributions. The)*-year return valuey;q 11, estimated
by fitting the GEV distribution to the centennial maxima, is compared to
the10*-year return value; 144, estimated by fitting the GEV fit to the an-
nual maximaG, (u*) is the estimate of the maxima of populatibh(u)
and G, (u¥) the estimate of population For this caseu; ;p« = 42.5
m/s anduyg 10+ = 51.6 m/s, ando, ; 10+ = 0.9 m/s (indicated by the
bar). The uncertainty in the fit to centennial maximg, o 10+ = 2.1
m/s, givingSN = 3.9. According to 8.23, this implies detection of a
GTCEYV distribution, and hence of a double population in the extreme
winds. Shown is a set of 3509 daily averaged annual maxima from
the greenhouse run at (47N,6E). The vertical axis is linear*inwith
k=1.74.
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10 25 100 108 10%

annual maxima

GEV fit to annual maxima
GEV fit to centennial maxima ----------
uncertainty in fit to centennial maxima -

0 2 4 6 8
Gumbel variate x,



48 Statistics of extreme synoptic-scale wind speeds

the same shape parameteasF, (u). Gy(u) was estimated from the maxima which
deviate considerably from the GEV fit to annual maxima, ahdu*) by adjusting
la, g @andé, iteratively in such a way that fitting a GEV distribution to the given
distributionG,, ;(u*) (assuming tha, (u*) is correctly estimated from the deviating
maxima) results in the same GEV parameters as the original data set.CFraih)
and Gy (u"), the intersection poinf' and the corresponding return peridg were
derived.

3.4 ECBIlt-Clio Model description

The Climate Model used in this study is a coupled atmosphere-ocean-seadek mo
of intermediate complexity, called ECBIlt-Clio. The atmospheric component "EC-
Bilt"is a spectral T21 global 3-level quasi-geostrophic model. The atna@ptime
step is 4 hours. Itis coupled to a dynamic ocean model "Clio”, which hasardic
sea-ice component and a relatively sophisticated parameterization oal/ertiing
(Goosse and Fichefet 1999or a more detailed description of the model, we refer
to Opsteegh et a(1998; Goosse and Fichefét999 andSchaeffer et al(2002.

a. Experimental setup

A transient run was generated for the period 1860 to 2080, using hetgrieen-
house forcings for 1860 to 2000, and the SRES AL Efission scenarid{oughton

et al. 200) for 2000 to 2050. This emission scenario results in approximately dou-
bled CG, concentrations in 2050 (550 ppm) with respect to the emission in 1860 (290
ppm).

An ensemble of 121 runs of 30 years each was generated, startinghfeosiiu-
ation in 1960 of the transient run. The set of all 121 runs for the per@&d-11989
is called the 'control experiment’. For each grid point, vector-averatgig mean
extreme wind speeds were sampled from each October-to-March peribd &et,
giving 29 extremes per ensemble member and grid point, and 3509 extremes pe
grid point for the entire control experiment. Note that we often refer tauahex-
tremes, whereas only storm season extremes are sampled. For five lenaemb
also all 27000 daily-averaged wind speeds in each grid point in the steasos
were archived.

We also generated 121 ensemble runs of 30 years starting from the sitimation
2050 of the transient run. This set for the period 2050-2079 is calledittenhouse
experiment’. As before, the series from which the extremes are samseal total
lengthY of 3509 years, and the sub-series for which all daily values weredvaith
was 150 years.
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Figure 3.3: Location parametgy,—; of the annual wind speeds, estimated from fit-
ting a GEV distribution to the ECBIlt-Clio control experiment (3509
years) and to the NCEP data set (36 years). The location parameter
represents the wind speed which is exceeded on average once éajeatr.
ues larger than 30 m$ and smaller than 15 m$ are shaded.

(a) ECBilt-Clio (800 hPa) (b) NCEP (850 hPa)

b. Validation of extreme statistics

For validation of the extreme wind distribution in ECBIlt-Clio, we used the Reanal-
ysis Dataset of the National Center of Environmental Prediction (NCEBNay

et al. 1996. This dataset provides the wind on a global°2&2.5° grid every 6
hours. We used the July 1965 - June 2002 NCEP data. By lack of a T@aper

in ECBIlt-Clio, we sampled wind speeds at 800 hRa km height) instead, being
the lowest wind level in ECBIlt-Clio. Comparison of the wind distributions at 850
and 1000 hPa for ocean grid points within the NCEP data shows similarity betwee
the extreme value distributionggn den Brink et al. 2003 So, we assume that the
ECBilt-Clio 800 hPa extreme winds have the same behavior as the extremeesurfa
winds.

A suitable parameter to illustrate the ability of generating extremes is the GEV
location parametet,—1, as it represents the wind speed that is exceeded on average
once a year. Figurg.3showsy,,—; (back transformed from* to the windu) as esti-
mated from the 3509 annual wind extremes in the control experiment of ECBilt-
at 800 hPa and from the 36 annual wind extremes in the NCEP data st bP&5
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Figure 3.4: Distribution of the annual maxima at (65W,47N) in ECBIlt-Clio and
NCEP. The variability in extremes in ECBIlt-Clio is considerably larger

than in the NCEP data.
return period T [years]
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respectively. Figur8.3shows an overall agreement in the patterns over sea, although
the position of the storm tracks in ECBIlt-Clio and NCEP are slightly different, with
the Pacific storm track in ECBIlt-Clio being too strong. Enhanced land-sehegts

and underestimations over land are apparent in ECBIlt-Clio, probablydduysthe
simplified parameterizations of the boundary layer over land and the extréoaely
vertical resolution.

The wind speeds with return periods longer thdi? years are considerably
larger in ECBIlt-Clio than in NCEP. This is illustrated in FiguBed for grid point
(65W,47N), for which ECBIlt-Clio and NCEP have comparable estimates ofrthe a
nual wind p,—1, but differ considerably for larger return periods. Apparently, the
variability in extremes is much larger in ECBIlt-Clio than in the NCEP data.

In conclusion, it is clear that in the verification of ECBIlt-Clio, considerabite d
ferences emerge. This is to be expected from models of intermediate complexity
like ECBIlt-Clio. Despite of these shortcomings, the ECBIlt-Clio values seem close
enough to reality to justify studies like the present one, i.e. exploration oftéhe s
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Figure 3.5: Estimated GEV scale parametgr; (back transformed from/* to
u) and shape parametéy_, of the daily averaged wind speed for the
ECBIlt-Clio control experiment at 800 hPa as derived from 3509 annual
maxima ofu*. The standard errar, according toHosking et al (1985
is between 0.012 and 0.015.

(a) scale parameter,—;. Values larger (b) shape parametéh,—;. Positive val-
than 3.5 and smaller than 2.0 are shaded ues are shaded

tistical nature of extreme winds, like the potential existence of a double papula
However, it should be emphasized that the question of the reality of spésafic
tures generated in ECBIlt-Clio can only be answered with results of modeighuh
complexity.

3.5 Reaults

a. Spatial distribution of GEV parameters in the control experiment

The estimated GEV scale parametgy_; and shape parametéj—_, of the daily
averaged annual maxima of the wind speed for the ECBIlt-Clio control expeat

at 800 hPa are shown in FiguBeb. All three GEV parameters are largest over the
oceanic storm tracks. In these regiofis,.; is lightly positive, i.e. downwardly
curved on a Gumbel plot. A possible reason might be that here there issicahy
upper limit to the wind speed (although this limit is far beyond thé&-y€ar wind).
The small range of absolute valueséfn Figure 3.5b) indicates that the annual
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Figure 3.6: Signal-to-noise rati®N for Figure 3.7: Relative changes (in %) in
[SN| > 1.5 in the control experiment. the GEV location parameter,_; due to
According to our criterion (Eq3.23, the greenhouse effect. The shaded areas
SN > 2indicates the existence of a dou-are significant at 5% level.

ble population.

maxima ofu* in ECBIlt-Clio do not strongly deviate from the Gumbel distribution.

b. Two Component Extreme Value distributions in the control experiment

The spatial distribution of NV is shown in Figure3.6for |[SN| > 1.5. Only patterns
of large positivesignal-to-ratiosS N are detected. This indicates the reality of the
patterns, as only situations with positi¥éV can be attributed to second populations.
For 9.4 % of the area shown in FiguBeg, SN is larger than 2, which is a factor
two more than the expected 5% from Monte Carlo simulations. Figueshows
patterns ofS NV that fulfill our criterion (Eq.3.23 over the Atlantic, the East Pacific
and Siberia, which indicates that in the control run, double populations extheme
wind speeds are apparent at the end of both storm tracks.

c. Greenhouse effect on wind extremes

The change in the annual extreme wind due to the greenhouse effeptésaented
by the change in the GEV location parametgr, shown in Figure3.7. It shows
a significant increase of the once-a-year exceeded wind speethevdorthern At-
lantic and Europe, as well as over the Pacific and North America. Maximuedse
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Figure 3.8: Signal-to-noise rati®V for |[SN| > 1.5 in the greenhouse experiment.
According to our criterion (Eg3.23, SN > 2 indicates the existence of
a double population.

(5%) is found over Scandinavia. Comparison with FigBi@shows a zonally more
elongated storm track, which is consistent with the positive NAO-like resptmen-
hanced greenhousegas forcing in ECBIlt-Clio (Figure 15ahaeffer et al(2003).
Apparently, the change in the annual wind maxima, behaves similarly to the
change in the mean wind in winter.

The regions where Two Component Extreme Value distributions are detected
the greenhouse experiment are shown in Figuéelt shows the same patterns as in
the control run, with the Atlantic region shifted to the east and elongated $qmain
to Finland. For 10.6 % of the area shown in FigB8r8, SN is larger than 2, which is
an slight increase with respect to the control run.

3.6 Meteorology of the second population

Close inspection of the grid points with large positiv& reveals that the deviating
extremes of neighboring grid points all originate from a restricted numbgtoains.
Apparently, the storms are so intense, that they influence the higheshestmer a
larger area during their track to the east.

To find the meteorological circumstances responsible for this secondgtiopyl
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Figure 3.9: Gumbel plot for grid point (17W,42N) in the control run. Tignal-
to-noise ratioSN according to 8.22) is 3.8. Especially the three most
severe events deviate from the fit, and are assumed to originate from the

second population. The vertical scale is lineanfpwith & = 1.71.
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we concentrate on the events which clearly belong to that second populakonill
consider grid point (17W,42N) in the control run, for which the maximum aligo-
noise ratioSN of 3.8 occurs. Figur8.9 shows that the three most severe events
substantially deviate from the fit, and thus can safely be assumed to origioate f
the second population. This is also apparent from the facttivatlecreases from 3.8
t0 0.1 <« 2 if these three points are omitted from the data set, which means that there
is no significant detection of a second distribution possible without the thrgeska
events. The relative vorticity for the most extreme event is shown in Figue

In the first two days, it displays a mature cyclone which is no longer dewvejop
However, at day 3, another cyclone is starting to merge with the origindbroyc
resulting in explosive cyclogenesis and extreme wind speeds at the lochitiberest
until day 5. After day 5, the decay phase of the eddy sets in. The imporvdmece
merging for the process of explosive cyclogenesis is stressed iraketservational
studies of cyclogenesis, e.glakim et al.(1995ab) andGaza and BosaftL990. In

our results, merging occurs in thé, 27 374 and5t* most extreme events, but not
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Figure 3.10: Daily averaged 800 hPa relative vorticity (° s—!) during merging. At
day 4, the most extreme wind in 3509 years is reached for the indicated
location (17W,42N).
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in the situations of the other 10 largest extremes. We hypothesize that merging
crucial condition for a second population of extreme wind speeds to.occur

Analysis of normal annual extremes shows that, at this location, wave merging
is not exceptional. So, although important for the cyclogenesis protéss)early
not a sufficient condition for a second population to occur. To distingbéttveen
normal annual extremes and the merging events of the second populatieram-
ined the anomalous time mean 500 hPa streamfunction pattern. The anomaly pattern
was computed by first averaging the 500 hPa streamfuncbicover a period of
7 days preceding the day for which the maximum wind occurred in the grid poin
(17W,42N). This was done for 600 cases belonging to the first populatiand the
four cases belonging to the second populatioithe anomalous pattenr,,, is de-
fined as the mean of the mentioned ca#rgsninus the mean of the 600 casés in
the area between 80W and 10W and between 20N and 65N:

v, = ¥,-T, (3.24)
600 4

1 1
v, = @;\I’ \Ifb—iz;%

where¥, ; is the 7-day averaged 500 hPa streamfunction pattern of;caske first
populationa, and¥, ; is the same for the second populattorFigure3.11displays
W, (a) and¥,,(b), and Figure.12the corresponding zonal wind pattern.
Figures3.11and3.12show that annual extremes develop in a mean circulation
which is in a strong westerly phase, with maximum time mean zonal winds of 24
m/s. The anomaly pattern of the second population has a large positive amplitude
in the model’s version of the North Atlantic Oscillation pattern, and leads to a much
stronger jet than normal annual extremes (up to 31 m/s). The pattern bakasion
in easterly direction. We have computed the probability that the anomaly patt@rn o
member in the first population projects just as strong ordthg pattern as the four
members of the second population. For the projection we used the squaned n

<‘Ila,i - ‘Ilay ‘Ilan>
<lIlzm> \I’an>

pi = (3.25)
The events of populatiom will have an average projection of zero, and population
of one.

There are only six events of the 600 with a projection larger than unity, which
means that the location and intensity of the jet stream of the second population h
a frequency of order once ir)? years. Another striking feature of the second popu-
lation is that the events are accompanied by extreme precipitation, wherstalge
precipitation and convective precipitation contribute equally. All four e&venthe
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Figure 3.11: Mean streamfunctial, of the first populatior: (a) and the difference
v .., between the second populatiband the first population (b).

gow sow 70w oW 50w 40w 3ow 20w 1ow 0

(a) mean 7-day averaged 500 hPa streamfuncligrof the first
populationa

8ow 7w 80w 50w 40w 3ow 20w 10ow 0

(b) difference®,, in the mean streamfunction of the second pop-
ulation ¥, with that of the first populatio®,
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Figure 3.12: Time mean zonal wind at 500 hPa of the first population (a3eitend
population (b), and their difference (c).
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(a) mean 7-day averaged 500 hPa zonal wind speed of the first
populationa

0w 8ow 70w 60w 50W 40w 30W 20w 100 0 10E

(b) mean 7-day averaged 500 hPa zonal wind speed of the second
populationd

second population have daily precipitation rates which have return pesfautsler
10° years.

We tentatively conclude that an extremely strong jet stream in which wave merg
ing occurs can generate conditions which are favorable for the ermerof strong
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Figure3.12(continued): (c) difference of (a) and (b)

diabatic feedbacks. This leads to anomalously strong cyclogenesis agehigration
of a second population of wind extremes.

We checked this hypothesis with the data from the greenhouse experiment. W
consider grid point (5E,47N), which has a maximum in the signal-to-noise $afio
of 3.9. Here, the* to 7** and 10" largest extremes belong to cyclones that origi-
nated after merging. Skipping the 7 largest events from the data seesflNdrom
3.9100.35 < 2. So, again, the detection is only significant when the merging events
are incorporated.

Projection on the area between 80W and 10E and between 20N and 6&hl sho
an increase of the maximum mean zonal wind from 22 to 31 m/s. Once in 56 years
the projection is larger than unity. Also the precipitation rates are extraoydifRar
6 of the 7 events, the return periods of the precipitation rates are of thélgears.

So, our hypothesis based on the control experiment is confirmed bysihiésref the
greenhouse experiment.

We conclude that the extreme wind speed belongs to a second population if the
following three conditions are fulfilled: First, there is an intense jet stream, co
responding with a positive NAO. Second, two cyclones merge to a singlesiten
cyclone. Third, the cyclone is accompanied by extreme precipitation.

3.7 Discussion and conclusions

The climate model ECBIlt-Clio shows preferred regions for the extratropiaioh
the annual wind extremes with return periods of ordet yi€ars belong to another
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population than the more frequent annual winds. One consequencs oéghlt is

that in such regions, the 4@ear wind speed can not be estimated from annual ex-
tremes in observed series with timelengths of order hundred years. Ombealimit

of the 10%-year wind can be estimated from such a series, as the existence of a sec-
ond population in the extremes always increases they&@r wind. Another, closely
related, consequence is that this low frequency of the second poputateants
detection from single-station observational records.

We found that the second population in EcBilt-Clio exists of merging cyclones
embedded in a strong jet stream, and that they are accompanied with extesipe pr
itation. The robustness of these results has to be confirmed by analyziregsthis
of more advanced models.

Doubling of the greenhousegas concentrations has two important effete
second population in the wind speed. The first is that the regions changéich
second populations appear. This implies that regions, which are singlgaped in
the current climate, may be double-populated in a 2C@nate and vice-versa. The
second effect of C@doubling in EcBilt-Clio is that, in double populated areas, the
frequency of cyclones from the second population increases. \Afhé¢he second
population is dominant over the first population for return periods of &#¥s/and
larger for the control run, this turning point lays at a return period ofe&d#rs for the
greenhouse run. This implies that not only thé-y@ar winds are influenced by the
second population, but also the*#Pear winds.

We attribute the eastward shift of the Atlantic area with double populations in
the greenhouse experiment to the response in the climatological winter migah, w
resembles a positive NAO pattern with largest westerly wind increase aegds
navia (see Figure 11 iBchaeffer et al(2003). This response causes the eastward
elongation of the storm track as shown in Fig8ré and consequently of the area in
which a second population occurs.



Chapter 4

Improving 10*-year surge level estimates
using data of the ECMWF seasonal
prediction system

Abstract

The vulnerability of society on extreme weather has resulted in extenseansh

on the statistics of extremes. Although the theoretical framework of extrelae va
statistics is well developed, meteorological applications are often limited by Ithe re
ative shortness of the available datasets. In order to overcome thisprokéeuse
archived data from all past seasonal forecast ensemble runs Bltbpean Centre

for Medium-Range Weather Forecasts (ECMWEF). For regions wherétbheasts
have very little seasonal skill the archived seasonal forecast etesepriovide in-
dependent sets that cumulate to over 1500 years. We illustrate this appas-
timating 10t-year sea-surge levels at high-tide along the Dutch coast. No physical
mechanisms occur in the ECMWF model that make the distribution of very extreme
surges different from what is inferred from a direct analysis of theeovations. In
comparison with the observational sets, the ECMWF set shows a dednetme
statistical uncertainty of the estimated'ayear return value by a factor four.

4.1 Introduction

Meteorological extremes have large impacts on society. Typical exampgléoad-
ing of rivers caused by extreme precipitation, extended droughts nextiempera-
tures, and flooding from the sea caused by extreme wind speeds. Tz thig ex-
tremes, the more difficult it is to obtain their statistics from the observationadetsta
However, these very extreme meteorological situations cause the modtalisas
events. For many types of extremes, the meteorological situations caussegethe
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treme events are of synoptic scal®({0® km)), and last for longer timesx12 hours).
These properties make them appropriate to be explored with the set ofldaseof
simulations generated by the ECMWF seasonal prediction sygeate(son et al.
2003. The resolution in space and time of the dataset is high enough to resolve
extremes on synoptic scales.

The ECMWEF seasonal forecast dataset has two properties advaunsaige ex-
amining current-climate extremes. First, it combines high resolution in spagé&{1.8
40 levels) and time (6-hourly output) with large record length (1569 yedrgahby
May 2004). This length exceeds that of most high-resolution climate modsl ru
(Kharin and Zwiers 2000Kysely 2002 Kiktev et al. 2003. Second, the ECMWF
model does not drift far from the observed climatology, as the indivithratast en-
semble members are only 6 months in length. Here, we illustrate the power of the
dataset by estimating extreme surge levels along the Dutch coast.

4.2 GEV analysis of observed surges

Approximately 40% of the Netherlands is below sea level. This part, with millions of
inhabitants, is protected against flooding from the sea by dikes. Dutclabfiblicy
is that a flooding event is "allowed’ to happen with a probability of at most*iger
year, hence with a mean return period of ¥@ars. However, the heights of the dikes
that correspond to this probability are hard to determine from Dutch chisenal sea
level records, which cover order hundred years. So, an extiégolaver two orders
of magnitude in probability is required, resulting in an 95%-confidence iatarfv
several meters, which is considerably larger than the value of the edpsaadevel
rise in the coming centuryGhurch et al. 2001

We follow the common choice in empirical studies to fit the annual maxima to the
Generalized Extreme Value (GEV) distribution, and plot the results on a Quopiobe
i.e., a plot with the ordered values on the ordinate and on the abscissa theslGumb
variater = — In(— In(F'(z))), with F'(z) the cumulative distribution function of the
variablex (see sectiod.7 for further details). Figurd.1 shows the annual maxima
of the117-years observational record for the Dutch coastal station Hoek viartdo
the fitted GEV distribution, its extrapolation to a return period of §ars, and the
corresponding 95%-confidence interval at this return period.

There are no known physical processes that limit the surge height tsvadliow
the estimated upper 95%-confidence level (6.44 m for Hoek van Holldm) high
95%-confidence level has large consequences for dike desigrthénancertainty
in the extrapolation from the- 100 years of observations is the question if all surge
extremes up to the 26year return period can be described by one GEV distribution
with fixed parameters, a condition which is not always satisfrad gen Brink et al.
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Figure 4.1: Gumbel plot for the 117 annual surge maxima of the Hoek vélartdo
observational set for 1887-2004)( and for the 1569 annual maxima ac-
cording to the archived data generated by the ECMWF seasonal $breca
ensembles for 1987-2004)( Also shown are the GEV fits up to a re-
turn period of 10 years and the 95%-confidence interval of thé-g8ar
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20043.

The ECMWEF dataset offers the possibility to check this condition, as well as to
decrease the statistical uncertainty in thé-§8ar estimate, due to the thirteen times
larger amount of data compared to the observations.

4.3 ECMWF Model

Since August 2001 the ECMWF produces every month an ensemble oflztl gea-
sonal forecasts up to six months ahead, i.e., amply surpassing the 2fwaedm
of weather predictability from the atmospheric initial state. Over the perio@-198
2001, hindcasts, that is forecast runs on historical data, have leefrmped with
smaller ensembles for calibrating the forecast system. The system consistsle
pled atmosphere-ocean moda&h@erson et al. 2003 The atmospheric component
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has a horizontal resolution of T95 (1.87%nd 40 levels in the verticaR{tchie et al.
1995 Gregory et al. 2000Anderson et al. 2003 The ocean component has a resolu-
tion of 1.4 and 29 vertical levelsWolff et al. 1997%. The ECMWF dataset provides,
among other fields, global fields of 6-hourly winds and 2m-temperatugesodrly
sea level pressures and temperatures, and 24-hourly precipitatiom&smou

We constructed 1569 calendar years by combining pairs of ensemble nsember
with six months difference in starting date (see Tablefor details), all of them
generated by the so-called SystemARderson et al. 2003

Since the ECMWF model has very limited skill in predicting the NAO index
(see alsdPalmer et al. 2004 effectively the simulations sample all different NAO
situations.

The GEV location parameter for the annual maximum of 6-hourly wind speed
(averaged between 38—60°N and 90W-3C°E) is constant within 1% for different
forecast times. This indicates that the wind climatology of the system shows no
detectable deterioration with forecast time.

The dependence between the ensemble members in the first weeks oétaster
has negligible influence on the estimates of the GEV parameters of the surge.

We compared the daily-mean annual minima of the sea level pressure (3h@) a
Dutch coastal station Den Helder over 1906-2004 with the 1569 annual mirfitme
ECMWEF SLP at the nearest sea grid point to Den Helder. The Gumbel plodves
in Figure4.2 There is a good agreement between the annual minima of the ECMWF
data and the observations. We conclude that the ECMWF seasonadbsgstem
generates (deep) depressions with the same frequency and intendiseageal.

4.4 Surge Equation

We use the following equatiowgn den Brink et al. 20030 calculate from the mete-

orological data the surge at high-tide (i.e., the difference between tleevaloshigh

tide and the calculated height of the astronomical high tide) at the coastahstatio

Hoek van Holland:

1015 — SLP
100.5 (m) (4.1)

with C; the drag coefficienty;o the wind speed at 10 m averaged over 12 hours at a

central grid box over the North Sea (depicted in FiguBa), ¢ the wind direction and

A and empirically determined constants Bimmerman(1977. The second term

on the right hand side of E4.1represents the barometric pressure effect, with SLP

the instantaneous sea level pressure in Hoek van Holland in hPa. Hedeseribe

the dependence @f,; on the wind speed;( as

10® Cy = 0.738 + 0.068 u1g 4.2)

Surge= A Cqu3, sin(¢ — 3) +
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Figure 4.2: Gumbel plot for the 98 annual SLP minima of the Den Helder edser
tional set for 1996-2004e], and for the 1569 annual SLP minima of the
ECMWF datasetd). The lines are the GEV fits up to a return period of
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whereuyg is expressed in m3, and in which the constants were obtained from
a linear fit between the instantaneous, once-a-day available dragcwogfiof the
ECMWF dataset andqy. To assure that Ed.2 describes optimally the specific
case of strong north-westerly winds, we used in the determination of thetaris
in Eq.4.2 only those situations that resulted in the annual maximum surges in Hoek
van Holland. In the 12-27 m/s range, which covers our range of intdtgs, 2 fits
closely to a Charnock relatiottharnock 195bwith parameter 0.016. Our estimate
compares well with other estimates of high-speed drag over sea$egh et al.
1992 Bonekamp et al. 2002

The surge equation was validated by comparing the 1957-2002 obsetaedl
extreme surges in Hoek van Holland with the annual extreme surges caiciutate
Egs4.1and4.2 using the wind and pressure of the ERA40-Reanalysis @&ita-(
mons and Gibson 2000 Table4.3 and Figuret.1 show good agreement between
the GEV distributions fitted to the observed and calculated surges. Aboaf 2
annual extremes according to the ERA40 dataset correspond to thetsameas the
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annual extremes in the observations.

45 Results

We calculated the surge at high-tide for coastal station Hoek van Hollandg#td. 1
and4.2, using SLP and:;o of the ECMWF dataset. The 1569 annual extremes are
shown on a Gumbel plot in Figu#el, together with the 117 annual extremes of
the 1887-2004 observational set. The following four features ararappfrom Fig-
ured.1l First, the ECMWF-based data indicate that for extreme surges, a single GE
distribution is appropriate up to return periods of at leastykars. So, the ECMWF
data gives no indication that physical processes limit the strength of exstemes,

nor that the 18-year winds are caused by another type of storms than 10-year winds,
as in the less comprehensive model discusse@inden Brink et al(20043. Sec-
ond, the GEV location parametgr(representing the surge level with an exceedance
probability of once a year) estimated from the ECMWF dataset equals thiag of
observational record within one cm (see also Tdb#e This implies that systematic
differences between the observed data and the results from the EClBi¢Fswith

the surge equation are small compared to the statistical uncertainties. THuykdr
surge level estimates from the ECMWF dataset (3.96 m) and from the alisewrl
record (3.78 m) are nearly equal. Fourth, the 95%-confidence intefrtta 10-year
estimate reduces from 3.52 m for the observational set to 0.84 m for tha/HCdét,

i.e., a reduction by a factor four.

The meteorological situation in the ECMWF data that leads to the highest surge
at Hoek van Holland (3.68 m) is depicted in Figdt8a. For comparison, Fig-
ure4.3b shows the meteorological situation according to the ECMWF-Reanalysis of
the largest real event in the observations (2.93m, on 1 February.1B68) situa-
tions show a large-scale depression, generating a strong north4wésterover the
entire North Sea. The 25 hPa deeper depression and the more naettlygassition
of the depression in Figue3a with respect to the situation in Figuted leads to
a 0.75m higher surge level at Hoek van Holland. FiguBshows that the largest
surge from the ECMWEF dataset is caused by a realistic meteorological situatio

46 Conclusions

The ECMWF seasonal forecast dataset can serve as a powelftbt@stimating
103-10%-year return values for meteorological extremes that are caused bytal
weather systems. The statistics of extreme storm surge levels in the Netedrand
this dataset can be described well by a single GEV distribution for retuindse
ranging from 1 tol0? years. The statistical uncertainty in the!-year return surge
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Figure 4.3: Wind and pressure field for the situations of highest surgiglattide in
Hoek van Holland.a: in the ECMWF dataset for day 57 in ensemble
member 15, starting from 1 November 1987 (calculated surge in Hoek
van Holland: 3.68 m). The dot is the location used for calculating the
surge at high-tide via Eq4.1 and4.2 b: ECWMF Reanalysis, for the
highest surge in the observations for Hoek van Holland (2.93m, on 1
February 1953).
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level is reduced by a factor four with respect to observations. Theelabéfers po-
tentials to estimate $0to 10'-year return values for wind, temperature, precipitation
and related variables as surge and river discharges, with unpréeddecuracy.

4.7 Auxillary Information

This section is only part of the electronical version of the paper, anditaale from
ftp://ftp.agu. org/ apend/ gl / 2004GE.020610/ .


ftp://ftp.agu.org/apend/gl/2004GL020610/
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Extreme value statistics

A fundamental theoretical result from the statistics of extremes is that any limiting
distribution of so-called 'block maxima’ must be in the form of the Generalized E
treme Value (GEV) distributionGoles 200):

xT

Glx)=PM<y)=e* (4.3)

with M the maximum over a block of standard lengfh,x) the GEV distribution,

andx a substitute for:
y—p\ "0
z=In (1 .y —) (4.4)
«
with i the location parametet, the scale parametérthe shape parameter, anthe
variable considered. In order to eliminate the effects of the annual @/ c@nmon
choice in empirical studies is to examine the distribution of annual max@alaijkof
et al. 1999 Katz et al. 2002 The probability of exceedance of a certain vajuis
usually expressed in terms of the return periddwhich is the average number of
years between two succeeding exceedances of the corresportdimgvauey:

1

T=1"¢cw

~e®  forT > 1 (4.5)

The results in Figure$.1 and4.2 are plotted on a Gumbel plot, a plot with the
Gumbel variate- In(— In(F'(x))) as abscissai{(x) being the cumulative distribu-
tion function) and the return valug as ordinate. This representation transforms a
Gumbel distribution G (x) with # = 0) into a straight line.

For fitting the data to the GEV distribution, we used the maximum-likelihood
procedure. The 95%-confidence values in the return value estimateslietermined
from the log-likelihood profile Coles 2001
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Table 4.1: Combinations of 6-months forecasts to construct calendas. y&dre
1987-Aug 2001 period are hindcasts, and the Aug 2001-May 2004 are
forecasts. Notation: *1 to 4" digit: year; 3" and 6" digit: month; last

two digits: ensemble number.

ensemble 00-04
198707-00— 198801-00
198708-00— 198802-00
198709-00— 198803-00
198710-00— 198804-00
198711-00— 198805-00
198712-00— 198806-00
198807-00— 198901-00
198808-00— 198902-00
198809-00— 198903-00
198810-00— 198904-00
198811-00— 198905-00
198812-00— 198906-00

) o .

—

200107-00—~ 200201-00

200108-00—~ 200202-00
200109-00— 200203-00
200110-00—~ 200204-00
200111-00— 200205-00
200112-00—~ 200206-00
200207-00—~ 200301-00
200208-00—~ 200302-00
200209-00—~ 200303-00
200210-00—~ 200304-00
200211-00—~ 200305-00
200212-00— 200306-00
200307-00—~ 200401-00
200308-00— 200402-00
200309-00—~ 200403-00
200310-00— 200404-00
200311-00—~ 200405-00

ensemble 05-39
198711-05— 198805-05
198811-05~ 198905-05
198911-05— 199005-05
199011-05~ 199105-05
199111-05~ 199205-05
199211-05~ 199305-05
199311-05~ 199405-05
199411-05— 199505-05
199511-05~ 199605-05
199611-05— 199705-05
199711-05~ 199805-05
199811-05— 199905-05
199911-05~ 200005-05
200011-05-~ 200105-05

200108-05— 200202-05
200109-05— 200203-05
200110-05- 200204-05
200111-05- 200205-05
200112-05- 200206-05
200207-05%- 200301-05
200208-05— 200302-05
200209-05%- 200303-05
200210-05— 200304-05
200211-05- 200305-05
200212-05— 200306-05
200307-05— 200401-05
200308-05— 200402-05
200309-05— 200403-05
200310-05— 200404-05
200311-05- 200405-05

ensemble 40
198711-40— 198805-40
198811-40— 198905-40
198911-40— 199005-40
199011-40— 199105-40
199111-40— 199205-40
199211-40— 199305-40
199311-40— 199405-40
199411-40— 199505-40
199511-40— 199605-40
199611-40— 199705-40
199711-40— 199805-40
199811-40— 199905-40
199911-40— 200005-40
200011-40— 200105-40
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Table 4.2: Specification of the number of years constructed from therémsdore-

casts.

#ensembles hindcasts forecasts total
ensemble 00-04 5 14x6+1=85 16 505 years
ensemble 05-39 35 14 16 1050 vyears
ensemble 40 1 14 - 14 years
total \ 1569 vyears

Table 4.3: GEV parameter estimates and their standard errors, andrsygealevel
estimates with the 95%-confidence values, as obtained from the obser-
vational dataset for Hoek van Holland, and from the ERA40-Reanalysis
dataset using Eq. 1 and 2, both for the period 1957-2002.

1 [m] a [m] 0 50-year surge [m]
ERA40 1.18+ 0.05 0.27+0.03 -0.02+0.13 2.26 332
observations 1.2%0.04 0.23+0.03 0.25+0.09 1.78 2.9

Table 4.4: GEV parameter estimates and their standard errors, dngedOsurge
level estimates with the 95%-confidence values, as obtained from the
1887-2004 observational dataset for Hoek van Holland, and from the
1569-year ECMWF dataset using Eqg. 1 and 2.

w[m] a[m] 0 10*-year surge [m]
ECMWF 1.21+0.01 0.31+0.01 0.008+ 0.018 3.96 335
observations 1.22-0.03 0.264+0.02 -0.017+0.06 3.78 43




Figure 4.4: Gumbel plot of the observed surge in Hoek van Hollapétd the surge
calculated from the ERA40-Reanalysis dataset using Eq.1 and, 2 (
both for the period 1957-2002. The lines are the GEV fits to the an-
nual maxima. The 95%-confidence values are shown for a return period
of 50 years.
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Chapter 5

Estimating return periods of extreme
events from ECMWF seasonal forecast
ensembles

Abstract

Meteorological extremes have large impacts on society. The fact thabapately
40 % of The Netherlands is below sea level, makes this country especiallrahbla
for floodings, both from the sea and from the rivers. This has resintedtensive
research on the statistics of extremes. However, application to meteordkgiday-
drological situations are always hampered by the shortness of the dwalkthsets,
as the required required return levels exceed the records lengths weithoa 10 to
100. In order to overcome this problem, we use archived data fromstlspasonal
forecast ensemble runs of the European Centre for Medium-Rangbé&W€&arecasts
(ECMWEF) since 1987 as input for extreme value statistics analysis. We nsakef u
the fact that the seasonal forecast have little seasonal skill for TtineNends, which
implies that the ensembles can be regarded as independent sets that ctoravate
1500 years.

We investigate the hydraulic response in the Netherlands to extreme synoptic
scale weather systems by studying the extreme value distributions of seasatgen
levels, waves and river discharges. The application is detailed in faatipal exam-
ples originating from coastal protection, river flooding protection, aattwmanage-
ment problems. The long record length of the ECMWF data reduces theainte
in the 103-year and tha 0*-year return values considerably with respect to the results
based on observational time series. The ECMWF data set gives thetampoto
explore the distribution of events that depend on several kind of extremes
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5.1 Introduction

Much statistical research has been done on estimating the statistics of extfemes
weather (related) variables, like precipitation, wind speed, river digehend surge
from observational record8(ishand 199;1Palutikof et al. 1999Katz et al. 2002

de Haan 199D To overcome the rather short length of the observational records (o
der hundred years), we explored an alternative data source, i.ectiiecal seasonal
forecast ensemble data of the European Center for Medium-Range alVé&aite-
casts (ECMWEF) over the period 1987-2004, which cumulate to a total siz6GH
simulated years (status May 2004). Assuming that this model is a faithfudseps
tation of the climate system, these simulated years represent many realizatioas of
present climate on synoptic scale. Because this model dataset is an fontksyro-
tude longer than the length of the observational sets, an improved estimateeoie
levels can be obtained. In an earlier artickar{ den Brink et al. 2004bwe dis-
cussed the extreme value statistics of storm surges at the Dutch coastuMlgtiat
the ECMWF model represents the statistics of large and deep depressibn§ive
statistcal uncertainty of the height ofla—* probability storm surge was decreased
by a factor four compared with the use of the historical observations, wéte -
atic errors that appeared smaller than the statistical uncertainty. As amatlabf
van den Brink et al(2004h), we apply in this paper the ECMWF seasonal forecast
data set to four hydraulics-related situations in The Netherlands, that fiesn
severe weather events on synoptic scale. First, to extreme Rhine ricbadjes

at the location where it flows into the Netherlands. Second, to the duratitire of
spells that sea-level is too high sluicing water from the ’lIJsselmeer’ into tréhN
Sea. Third, to the frequency that the big 'Maeslantkering’ storm suagéeh in the
'Nieuwe Waterweg’' Rhine outlet must be closed in order to prevent flapdfrthe
densely populated Rotterdam area. The criteria for closing the barpendeon the
sea level as well as on the Rhine river discharge. Fourth, to the freguéfailure

of the 'Pettemer zeewering’ sea dike, which depends both on sea levaliereand
wave height. See Figuf1for the locations of the towns, rivers and barriers.

This paper is structured as follows: Sect®i2 describes the theoretical frame-
work, Sections.3the ECMWF model and seasonal forecast ensembles, Séction
the extreme value analysis of the mentioned applications, and S&citive conclu-
sions and discussion.

52 Theory

A fundamental theoretical result from the statistics of extremes is that any limiting
distribution of 'block maxima’ must be in the form of the Generalized Extremeé/alu
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Figure 5.1: Map of The Netherlands, with the locations that are mentioned in the
text. The lines represent the physical grid to which the ECMWF data
have been interpolated.6° x 1.5°). The triangles are the 15 stations
used for verification of the precipitation.
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(GEV) distribution (e.gde Haan 1978
Gz)=P(M <y)=e°" (5.1)
with M the maximum over a 'block’ of standard lengtH(x) the GEV distribution,

andzx a substitute for:
y — /e
z=In (1 .y ) (5.2)
«
with 1 the location parametety the scale parametef,the shape parameter, and
the considered variable. A common choice is to examine the distribution of lannua
maxima. In that case, the location parametegpresents the value which is exceeded
on average once a year.
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In extreme value studies, the probability of exceedance of a certain yakie
usually expressed in terms of theturn period T The return period’ is the average
number of years between two succeeding exceedances of the cowleggpreturn

valuey:
1

T = 1_—G($) ~ e’ forT > 1 (5.3)

For fitting the data to the GEV distribution, we used the method of maximum
likelihood. The 95%-confidence values in the return value estimates wiererdieed
from the log-likelihood profile Coles 2001

The results are plotted on a Gumbel plot, a plot of a cumulative distribution func
tion F'(x) with the Gumbel variate- In(— In(F'(x))) as abscissa and the return value
y as ordinate. This representation transforms the Gumbel distributi¢n) (with
6 = 0) into a straight line.

Extreme value theory is often required to find return values for retuingethat
amply exceed the record length. This implies extrapolation of the GEV fit to aidoma
outside the range of the observations. In our approach, the retusdedermination
involves little extrapolation, as series length and return periods of intErast about
equal. This considerably reduces the uncertainty in the estimate.

53 ECMWF Modd

a. Description

From September 2001 onward the European Centre for Medium-rarai&véore-
casts (ECMWF) produces every month an ensemble of 40 global s¢és@tasts
up to six months ahead, i.e., amply surpassing the 2-weeks horizon of wpethe
dictability from the atmospheric initial state. Over the period 1987-2001, hitsica
with smaller ensembles have been performed to calibrate the system. Thasforec
system consists of a coupled atmosphere-ocean mAdeletson et al. 2003 The
atmospheric component has a horizontal resolution of T95 ()&l 40 levels in
the vertical Ritchie et al. 1995Gregory et al. 2000Anderson et al. 2003 The
ocean component has a resolution of°lafhd 29 vertical levelsWolff et al. 1997.
We combined all hindcasts and forecasts generated up to May 2004 irfdcan-
dar years of data, all of them generated by the so-called Systemde(son et al.
2003. The ECMWEF dataset provides, among other fields, global fields auhn
winds and 2m-temperatures, 12-hourly sea level pressures and temggrand 24-
hourly precipitation amounts.
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Figure 5.2: Gumbel plots of the 1-day (a) and 20-day (b) accumulateipfiedion,
for the average of 15 Dutch stations (1901-2001) and the corresmpnd
ECMWF boxes (4.5-6°E,52.5N). See Figureb.1 for the locations of
the 15 stations.
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b. Verification

In order to model hydraulic extreme events correctly, especially the widgaatip-
itation should well be represented in the model. As it is difficult to verify the rhode
winds directly (due to the relatively short (homogeneous) observatienatds over
the North Sea)yan den Brink et al(20040 validated the sea level pressure (SLP)
instead: a direct model parameter which can easier be compared witlvatimes
than wind data, and which is a good measure of the capability of the modeldogao
deep depressions. They found a good agreement between the statisiitemely
low SLP’s in the ECMWF model and the observations for coastal station [@é&feH
Also the surge statistics for the coastal station Hoek van Holland are wedicheqed
by the ECMWF modelyan den Brink et al. 2004b

Figure 5.2 compares the extreme precipitation rates of the average of the two
ECMWEF boxes (4.5-6°E,52.5N) in the ECMWF data with the accumulated pre-
cipitation averaged over 15 stations in the Netherlands (indicated in FaglréBoth
the 1-day and the 20-day accumulated quantities are shown. FBglisdiows that
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Figure 5.3: Scatter plot of the NAO index anomaly (Dec-Mar) of the ECMWé&- s
sonal forecast against the observed NAO, for first (a) secoreh@sixth
(c) forecast month. The lines represent a least-square fit.
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the statistics of extreme precipitation are well reproduced for both timescales.

In order to investigate the dependence between the ensembles and their initial
states, we calculated the correlation between the observed (monthly medh) Nor
Atlantic Oscillation (NAO) index and the calculated NAO-index from the ECMWF
data. Figureb.3 shows the scatter plots for different forecast months. For the first
forecast month, there is a small correlation< 0.34) between the monthly-averaged
NAO of the seasonal forecast and the observed NAO. This correlativearly zero
(Ir] < 0.07) for longer forecast times. This implies that the NAO index of ECMWF
data setis (almost) independent of the initial NAO index, and thus is repegse for
a more general situation than for the 1987-2004 period only. A very simélsion
of the ECMWF model has also been shown to have very limited skill in predicting
the NAO index Palmer et al. 2004

The constant variance of the modelled NAO index with forecast time, and-the in
dependence of fitted GEV parameters with forecast time indicate that the cligpatolo
of the system shows no detectable deterioration with forecast time.

We verified that the dependence between the ensemble members in thedicst we
of the forecasts has negligible influence on the estimates of the GEV parameter
making the whole 6-month period usable for our purpose.
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54 Four Applications

a. Rhine discharge

The dikes along the Dutch rivers are supposed to withstand a dischdlge meturn
period of 1250 years. The Rhine discharge at the Dutch border anacthamu-
latedn-day precipitation over the Rhine basin correlate welkfe0-30 Fink et al.
1996. We concentrate on 20-day accumulated values (validated in s&c8on

We calculated the Rhine discharge at Lobith at the Dutch-German boeter (s
Figure5.1) with the following simple water balance equation:

19
Q= A+ Z Z Si <LSPZJ + CPiJ — Ei,j — Si,j) (54)

j=0 i

with LSP, ; the large-scale precipitation on thié¢#-last day in grid box, of which a
surface area; (in m?) belongs to the catchment of the Rhine. CP is the convective
precipitation, E the evaporation and S the snow accumulation, all in meters water
per second. The adjustment paramedervas determined empirically by tuning the
location parameter of the GEV distribution (i.e. the once-a-year event) with its
observed value at Lobith4 turns out to be-4 - 103 m3s~1.

The Gumbel plot of the Rhine discharge according to the observaticcairat
Lobith and to the ECMWF data (E&.4) are shown in Figur&.4. The estimate from
the observations for the 1250-year dischange3?)- - 103 m3s~1) is 9% smaller than
the estimate from the ECMWF datgx(7171-10° m3s~!). The ECMWF estimate lies
amply within the 95% uncertainty interval of the estimate from the observatidres. T
application of the ECMWF data reduces the 95% confidence interval o2& tear
level estimate by a factor three.

b. IJsselmeer sluicing

The 1Jsselmeer (Lake 1Jssel) in central Netherlands covers anf@@@0kn?, and is
separated from the North Sea by the Afsluitdijk. To keep the level of tiselldeer at
the preferred level of 0.45 m below mean sea level (MSL) in winter (arelf.Below
MSL in summer) (Peilbesluit, 1992), the excess of IJsselmeer water is dischato
the North Sea during low tide by opening the Afsluitdijk sluices at Kornweaated
and Den Oever (Low lower tide at Kornwerderzand: 1.23 m below M®lying
high tide, the sluice gates are closed. If a surge elevates the low-tide skalleve
a value of 0.55m below MSL, sluicing is not possible during an entire tiddécyc

To examine the period that surges prevent sluicing, we calculated theveta le
at every low tide by adding the surge to the astronomical low tide, where the 6-
hourly calculated surge was linearly interpolated to the time of the astronomical lo



80 Estimating return periods of extreme events

Figure 5.4: Gumbel plot for the 100 observed annual maximum Rhine dgehat
Lobith (1900-2000)([(0) and for the 1569 annual maxima as derived from
the ECMWEF data via Eg5.4 (o). Also shown are the extrapolated GEV
fits to 1250-year return periods and the 95%-confidence intervals to the
observations and to the ECMWF data.
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tide. The harmonical constituents of the astronomical tide at Kornwenmlgrzare
obtained fromFlater(1998. The surge was calculated from the ECMWF data by
applying a simple surge model (see Eqg. (1Van den Brink et al. 2004kto the
nearby location Harlingen (see Figusd).

Figure5.5shows a Gumbel plot of the time period of non-sluicing, both for the
current sea level, and for the situation with a sea level rise of 0.25 m. This va
is within the expected range of 5-32 cm in 205 (ghton et al. 2001 and is the
estimate of the medium scenario for The Netherlakdsg et al. 200D Apparently,
for the present-day sea level a one-week period of non-sluicing®ewary 25 years.
With constant water management practice, a 0.25 m sea level rise wouldsache
length of the extreme duration of non-sluicing by at least a factor of twoisé\ af
0.45 m (which is the extreme scenario for The Netherlands in K&, et al. 200D
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Figure 5.5: Gumbel plot of the period that surges prevent sluicing frertugselmeer
into the North Sea, both for current mean sea level and for the situation
after a sea level rise of 25 cm, expected for 2050.
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would cause another factor three increase.

c. Storm surge barrier closure

The 'Maeslantkering’ is a storm surge barrier in the 'Nieuwe Waterwémn®outlet
near Hoek van Holland (see Figusel), which automatically closes when the water
level Lr at Rotterdam is expected to exceed a level of 3 m above MSL. The water
level at Rotterdam is determined not only by the Rhine discharge, butwatbe tidal
motions of the sea and the surges.

The water level at Rotterdaibr relates statistically to the sea level at Hoek van
Holland Ly and the Rhine discharge at Lobithby:

LR = Luvn + aQ + bQ? (5.5)

wherea andb are constants. The average closure frequency of the Maeslantkering
is not exactly known, as there has been some debate whether the extrgesead
discharges can be treated independently in the risk analysis.
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Figure 5.6: Left: Gumbel plot of the water level with respect to M54 at Rotter-
dam, both for the observational set and for the ECMWEF set. Also shown
are the closure criterion, the GEV fits, and the 95%-uncertainty inter-
vals for return periods of 10, 100 and 1000 years for the obsenation
set. The closure criterion of the Maeslantkering, = 3 m, is indicated.
Right: Scatter plot of the water level at Hoek van Hollahg,y versus
the Rhine discharg@ for all high-tide values of.r of the ECMWF set,
together with the closure criteriabr = 3 m. According to our analysis,
the closure criterion is exceeded once every 8.1 years.
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We calculated the Rhine discharge according to5=.and the high-tide sea
level at Hoek van Holland by calculating the high tide surge every 12 Hooms
the ECMWEF data according to (Eqg. (1) man den Brink et al. 2004band adding
that value to the astronomical high tide that occurred in the 12 preceding.hau
Gumbel plot of Lg is shown in Figur®.7(a) both for the observations and for the
ECMWEF data. The scatter plot of the Rhine discharge and the sea levekatudn
Holland for the annual maxima dfgr, as well as the closure criteridig = 3 m, are
shown in Figuré.7(b) According to the ECMWEF data, the criterion is exceeded on
average once in 8.1 years. Note that most of these events occurbetanextreme
surge level rather than an extreme river discharge, due to the smathsgnsf the
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Figure 5.7: Effect of sea level rise on the frequency of closing theeN&mtkering'.
The vertical scale is logarithmic.

criterion (Eq5.5) to the river discharge. Note also that no positive correlation is
apparent between surges and discharges.

Figure5.7 shows that the number of closure events increases exponentially with
sea level rise. In this calculation, no greenhouse-effect on the tidggssand Rhine
discharges is taken into account. With the increase of number of closiegs/ehage
duration of closing will also increase.

d. Wave and sea level interaction

The "Pettemer zeewering”is a small stretch of sea dike that closes a gamiattinel
coast protection formed by sand dunes near Petten. The design hdightikes is
determined not only by sea level elevations, but also by wave heights)$eof run-
up of waves. Extreme surges and sea wave heights are correlategl bettntend to
occur during strong North-Westerly winds. Failure of the "Pettemer zeeg/enay
occur if the dike load exceeds the design load (seade.glaan and de Ronde 1998

dike load= Lp+ 0.3 H > 7.6 [m] (5.6)

with Lp the sea level at Petten amflthe wave height. For the evaluation of B,
we consider the tidal station IJmuiden, located about 30 km south of Peigen (F
ureb5.1), for which wave data are also available. The surge was calculatedtfirem
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ECMWF data by applying the surge model (Eqg. van den Brink et al. 2004ko
Petten/IJmuiden, and then transformed into sea level by adding the astrahbigic
tides.

The ECMWEF data include deep-water wave heights, calculated by the WAM mo-
del (Komen et al. 1994 We scaled the ECMWF deep-water wave height to the
depth-limited wave height using the following relation (basedBonws. et al. 1998
by taking the limit of fully developed wind waves):

h 0.75

) ] (5.7)

deep

Hsha”ow == Hdeeptanh [063(

with Hghalow the depth-limited wave height/geep the ECMWF deep-water wave
height andh the water depth (25 m for [Jmuiden).

A Gumbel plot of the dike load.p + 0.3 H is shown in Figure 5.8(a) both for the
observations and for the ECMWF data. The scatter plot of the wave haighthe
sea level, as well as the failure criterion at Petten, are shown in Figul® 5B(e
estimate of the exceedance of the failure criterion-i$% years, i.e., in agreement
with the design return period for coastal protection.

5.5 Discussion and conclusions

The ECMWF seasonal forecast ensembles provide a large data sét wablicre-
produces the annual extremes of wind over the North Sea and of préoipitaer
the Rhine basin. This opens the possibility to semi-empirically estimate the return
values with return periods up to 4@ears, which is an order larger than what is pos-
sible from the observational sets, and to improve the accuracy of ekitams to the
10*-year level.

Four applications are shown, all of them associated with hydraulic respon
synoptic-scale meteorologic events. Checking the results with the extrenecaveli
ysis for observations shows good agreement for surges, waeeipation rates and
Rhine discharge. This strengthens the belief that the ECMWF data cam$ideed
as a realistic 'climate series’ of extended length that is representativesfeutinent
climate on synoptic scale. This opens the possibility to study the extreme faotail fr
the climatological probability density function, a region that is of great impodan
for society but whose characteristics cannot be studied from oltserahrecords
other than by huge extrapolation. The four applications show improvechretlue
estimates. Two of the applications explore the correlation between violemisevie
different types.

The type of analysis explored here may be extended to other meteorolelical
ements, such as temperature. However, the application has its limitations. Some of
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Figure 5.8: Left: Gumbel plot of the dike lodd+ 0.3 H of the Pettemer zeewering,
with Lp the sea level and/ the wave height at Petten, for the ECMWF
set (1569 years) and for the observational set (1979-2001).shi@on is
the GEV fit to the ECMWEF data. The failure level (7.6 m) is indicated by
a horizontal line. Right: Scatter plot @fp versusH is shown in (b) for
all high-tide events in the ECMWEF set. The failure area is reached with a
return period of 110* years. Also shown is the line with a return period
of 100 years.
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the largest weather-related impacts on society are caused by syn@écgstems,
but if meso-scale systems (order 10-100 km) are the driving force théfhénevents,
the ECMWEF set cannot represent them. Obvious examples are extremerstamd
gusts. Another limitation of the present approach is the use of simple downsca
ing relations, e.g., the representations for the drag relation in the surggaquhe
Rhine discharge (E&.4) and the bottom effects in waves (Eq7). In principle,
these downscaling relations can be improved by using advanced models.¢se
Gerritsen et al. 199%an Deursen and Kwadijk 1993

Despite the encouraging results of our analysis, the estimates of the ex&reme r
turn values may have a limited validity. As the climate system for present daycond
tions may exhibit low frequency variability, this 17-year dataset may nontiecty
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representative for the full spectrum of the present-day climate. Intlaetsimula-
tions only represents the extreme statistics associated to the single realizdtien of
1987-2004 period, where the simulations are initiated from.

In order to explore the extreme statistics of the climate in a wider time window,
or for different climate conditions than the 1987-2004 window, one hasttoir to
long simulations with climate models, but these lack the benefits mentioned in the
introduction. A better alternative is to base the analysis on the seasodaitjone
hindcasts, as recently produced for the 1958-2001 window in the "Defpeigect
(Palmer et al. 2004

It is fortunate that ECMWF archived these seasonal forecasts stutbathat a
big dataset is available now for an application that was not envisioned sietimg
time. As the length of the dataset will only be expanded in the future (with 2&yea
every month), it will allow for more accurate extreme value estimations undex mor
general climatological circumstances than the present 1987-2004 leaselin



Chapter 6

| ncreased evidence for the existence of
‘'superstorms

Abstract

The existence of a second population in the extreme wind speed, as déatetiag-
ter 3, is confirmed by the output of a ensemble run with the NCAR-GCM, which has
a higher complexity than ECBIlt-Clio. The analyzed event shows similar ctearac
istics (i.e., merging of two cyclones, a strong jet stream, and extreme precipjtatio
as the events analyzedvan den Brink et al(20043 (chapter3).

6.1 Introduction

The existence in the real world of a second population in the extreme wied sag
detected and described in chapseiis hard to verify from observational data. The
reason is that we have not yet enough detailed understanding abalyriamical
aspects of the second population to look for their characteristics in thevakiseal
data set. In other words, so far we can only detect second populati@nstatistical
technique. The point that makes the validation hard is that the observataoatis
are far too short and the second population is far too rare to apply thetisthtis
detection method.

At the moment, the only way to gain support for the results of chaptes to
find second populations in climate models more complex than EcBilt-Clio. This
motivated us to redo the analysis of cha@@ewvith the GCM ensembles data of the
so called 'Challenge project’.
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6.2 Model Description

In the Challenge projecSelten et al. 2004 the evolution of the climate system up

to the year 2080 was simulated with version 1.4 of the Community Climate System
Model (CCSM) of the National Center for Atmospheric Reseasmrhann et al.
2004 and references therein). The model simulated the evolution of the coupled
atmosphere-ocean-sea-ice-land system under prescribed climatg$orthe atmo-
spheric component has a horizontal resolution of TRI%’) and 18 levels in the
vertical.

The simulations cover the period 1940-2080. Until 2000, historic forcimgs a
used Ammann et al. 2003004, and from 2000 onwards, all forcing factors are kept
at their year 2000 values, except for the concentrations of GHGshwirnicease ac-
cording to a ’business-as-usual’ scenabaiet al. 200) that is similar to the SRES-

Al scenario of the Intergovernmental Panel on Climate Change (IRCGK)denovic
et al. 2000.

An ensemble of 62 simulations was produced, each covering the 14gear
riod. All initial ensemble fields are the same, apart from small random jpations
applied to the initial atmospheric temperature fields.

6.3 Presence of second population in wind speed

In chapter3, we classified extreme winds to belong to a rare second distribution if
the centennial extremes can not be described with the same GEV distributiom as
annual extremes. We found that the meteorological circumstances ofahests
are characterized by the merging of two vortices into a single one, that #issele
embedded in a very strong jet stream, accompanied by extreme precipitation.
We repeated both the statistical and meteorological analysis of chiaptih
the Challenge data. The signal-to-noise r&fiy used for the detection of second
populations (see E@.220n page46) is calculated for the whole 1941-2080 period,
giving 62x140=8680 years. The small sensitivity of extreme winds on greenhouse
forcing (see Sectio6.4) justified our decision to use the entire set for our purpose.
Figure6.1showsS N applied to the five-yeamp(= 5 in Eg. 3.22 and centennial
maxima fp = 100) for both periods. (We uspe = 5 instead ofp = 1 to get rid of
the lower annual maxima, which do not converge to a GEV distribution, reguitin
a 'kink’ in the Gumbel plot around a 2-year return period, see Figu®&). This
'kink’ is caused by the fact that the parent distribution can not be desstiby a
Weibull distribution, and thus the annual extremes do not converge to a &Gy
distribution (see pagé4). Takingp = 1 would erroneously lead to doubling V).
A pattern with highS N-values is present over the North Atlantic, i.e., on more-or-
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Figure 6.1: Signal-to-noise rati®/N for detection of a second population in the ex-
treme wind speeds for the data of the Challenge project. Only areas with
|SN| > 1.5 are plotted. According to the criterion of E§.22 SN > 2
is an indication for the existence of a second population. See s&:8on
for a more comprehensive description.

-1.5

less the same location as in the control run of the ECBIlt-Clio data (Figuren
pageb2).

We now focus on the grid point (2®,35°N) in this area, indicated with a black
dot in Figure6.1(a), for which SN = 4.53. For this grid point, the Gumbel plot
of the daily-averaged wind speed at the lowest sigma-levet(0.9925) is shown
in Figure6.2(@). It shows that it is especially the largest wind event that deviates
from the other extremes. If this most violent event were omitted from the lealcu
tion, thenSN reduces from 4.53 to 1.5. This event, occurring in February 2021 of
ensemble member 24, is not only extreme in the wind speed, but also in the SLP
and vorticity. Indeed, the most extreme values in SLP and vorticity (Fi§(®)
and6.2(c)) correspond to this same event, in which the SLP value truly represents
outlier. The Feb 2021/member 24 event is accompanied by a daily-averagest-
tive precipitation rate which is not the largest of all, but still with a 500-yeaisrn
period (Figures.2(d)).

The evolution of the SLP pattern of the Feb 2021/member 24 event is shown in
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Figure 6.2: Gumbel plots of the daily-average wind speed-at0.992 (a), SLP (b),
relative vorticity atr = 0.992 (c) and convective precipitation (d) for the
1941-2080 period of the Challenge data. For all panels, the value belong
ing to the cyclone occurring in February 2021 of ensemble member 24 is
indicated with an arrow.
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Figure 6.3: Evolution of SLP patterns of the storm leading to the most extreme
wind speed in the Challenge data (Feb 2021/member 24) at position
19°W,31°N (indicated with a black dot). This event occurs at panel f.
The time step between the successive panels is 9 hours. Values below
1000 hPa are shaded.

Figure6.3. The time step between consecutive panels is 9 hours. It shows a cyclone
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A and anotheB which separates from a third on€, in panel c. In panel d, the
cyclonesA and B merge into a single ond/B. From this moment the deepening
starts, from 978 hPa in panel d to 951 hPa just after panel g. The sir@ngctions
between the vorticed and B, and possibly’, seem to enhance the deepening of the
main vortex (lowest SLP 951 hPa, maximum wind speed 40.4'naso = 0.992,
46.3 ms ! ato = 0.866). This behavior — strong interactions between neighouring
vortices — is similar to what was found to be responsible for the secondaiimpuin
extreme wind speeds in ECBIlt-Clio (chap®r

For a more detailed analysis of the Feb 2021/member 24 storm, we project (like
in chaptei3) the geopotential heighit of this single storm on that of 141 storms from
the first population:

b, = & -, (6.1)
1 141
®, = mz;%,i B, = B,
1=

where®, ; is the 7-day averaged pattern of the 500-hPa geopotential height for the
region 80W-10E and 20N-65N for casén the first populatioru, and ®,, for the
single event of the second populati@r~or the projection we use (see B325:

<‘I)a,i - q)av (I)an>
<<I)cm7 <I)an>

We applied this projection to the 500-hPa geopotential height field, and fiband
for the 141 cases of populatiat the largest projection on populatiéns 0.83, i.e.,
considerably lower than unity. From extrapolation it follows that unity is edeel
about once in hundred years. This suggests that the backgrounéhflehich the
event of populatiord developed is rare.

Applying the projection to other variables also results in small maximum projec-
tions for populatioru: The maximum projection for the 7-day averaged total precip-
itation is 0.51 (corresponding with a frequency of less than once in thdyszars),
and for SLP 1.01 (corresponding with a frequency of about oncendiaa years).

The zonal wind patterns at 0.866or populationa andb are shown in Figuré.4.

The maximum zonal wind in the second population is stronger, and more edstwa
than in the first population. These results are also found in ECBIlt-Clio (Eigl2
on pages8).

We conclude from this analysis that the single event that we examined in the
Challenge data has similar characteristics as the events of the secondipaguola
the ECBIlt-Clio data. This supports our hypothesis that the merging pra€ess;
bedded in a strong jet stream, and accompanied by extreme precipitatideadda

pi = (6.2)
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Figure 6.4: Time mean zonal wind at= 0.866 [m/s] of the first population (a) and
the second population (b).

(a) mean 7-day averaged zonal wind speed at 0.866 of
the first populatior

B0V 70W 60w 500 40W 30W 200 10W 0 10E

(b) mean 7-day averaged zonal wind speed at 0.866 of
the second population

93
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Figure 6.5: Change of the ensenble mean 2m-temperature in winter (Octéa)
aged over 2000-2020 with respect to 1940-1960 (a) and 208021060
respect to 2000-2020 (b). Units &t€. Negative values are shaded.

(a) (2000-2020)—(1940-1960) (b) (2060-2080)—(2000-2020)

larger wind speeds than extrapolated from non-merging cyclones. athéhft the
Challenge data reproduces the ECBIlt-Clio results increases the belief éhextith
tence of an earlier identified second population in the extreme wind speetlas no
model artifact, but rather seems to be an existing feature that dominatedrém@ex
value statistics for large return periods in the real world. Hence it reptegn im-
portant feature to be counted with in safety design calculations in certdsqgidhe
world.

6.4 CO, effect

As afinal point of this study, we investigate the effect of the increasegddd@centra-
tions. Figure6.5 compares the ensemble mean 2m-temperature in winter (Oct—Mar)
at the begining, halfway, and at the end of the simulated period. It shevesraing

over the whole NH up to the year 2020, and a further warming up to 20@@péx

for the area between Greenland and Iceland, where the strong warmlf@g® is
followed by a cooling of 3C (Figure6.6). We attribute this local cooling to melting
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Figure 6.6: Ensenble mean 2m-temperature in winter (Oct-Mar) aW.I5°N).
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of the Arctic sea ice, which reduces salinity and stops the convection lafiyedy
warm) deep water around the year 2020 (see Stswmeffer et al. 2002

The time evolution of the once-a-year exceeded wind speed for tR8(3¥ N)
grid point, which is the grid point analyzed in the previous section, is shovamgn
ure6.7. We fitted a GEV distribution to the 62 annual maxima that are available for
each year from the 62 ensemble members. The smoothedliee{and 1979using
70-year span) shows a variation of at most 3 % on the GEV location panaimetiee
o = 0.992 wind speed. We hypothesize that the increase of the extreme wind speed
up to 2020, and the decrease afterwards, is related to the temperatougelsaown
in Figures6.5and6.6.

The arrows in Figuré.7 indicate the occurrences of the five largest wind events
in the whole set. No evidence is found that the magnitude of these largess eve
influenced by the increased G©@oncentrations.

6.5 Discussion and conclusions

The existence of a second population in the extreme wind speed as infiemed
the ECBIlt-Clio data, is confirmed in the ensemble run of the NCAR model. This
increases the probability that the second population is a real featureotmaiates

the extreme value distribution of the wind in certain areas of the earth, incltitkng
extra-tropics. Evidence for this result requires a better understaodifhg mecha-
nism of these 'superstorms’. In particular, recognizing certain ckeniatics of this
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Figure 6.7: Time series of the GEV location parametesf the o = 0.992 wind
speed for (19W,31°N), as estimated for each set of 62 annual extremes
for every year in the Challenge data (1941-2080). The line i<iege-
land (1979 smoother with 70-year span. The arrows indicate the dates of
the five largest wind events in the total set (Figarga)).
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population may enable in the future the identification of less violent members of this
second population. Hopefully, this leads to an empirical estimation of the Ipilitypa

of occurrence in datasets as short as ERA40-reanalysisons and Gibson 20D0
This challenging extension is beyond the scope of this thesis.

A second result of this preliminary GCM study on extreme winds is the non-
trivial nature of the response of extreme winds on greenhouse fofEiggres6.6
and6.7). Itis encouraging that the present GCM ensemble experiment nowgeed
a clear signal in changes of extreme winds. It is clear that the nature oéuiense
needs further research in that direction.



Summary

This thesis deals with the problem of how to estimate values of meteorological pa-
rameters that correspond to return periods that are considerably thagehe length
of the observational data sets.

The problem is approached by considering the output of weather- lamdte
models as pseudo-observations. These pseudo-observationrdstegbich are one
to two orders of magnitude longer than the observational records, opgossibility
to reduce the large statistical uncertainty in thé-g¢6ar estimate from observations,
as well as to examine the assumption that all extremes (up'tgddr return periods)
are part from the same population.

In Chapter 1 we quantify the statistical uncertainty in the*dgear surge level if
estimated from hundred-year records (as the observational remm@)dsT his is done
by dividing the 5336-year long outputs of the climate model ECBIlt-Clio into sub-
sets of hundred year. This chapter shows that annual maxima of liipeae surge
records can generally, within the uncertainty, be described by a Gurigbébdtion
(a commonly applied distribution for annual hydrological extremes (seekaty,
et al. 2002). However, the total 5336-year record of the control run (19698) can
clearlynot be described by a single Gumbel distribution, but requires a GEV distri-
bution instead. This implies that uncertainty ranges calculated from Gumivé! dis
butions will produce numbers that are misleadingly low (see @lsles et al. 20033
The uncertainty in the estimate of the shape parameter of the GEV distribution on
basis of hundred-year records results in a large uncertaintyng) in the 10-year
surge estimate. For the grid point representing the North Sea, the gusenhm
(2050-2080) of ECBIlt-Clio reveals a ’kink’ in the distribution of the annoreglx-
ima if displayed on a Gumbel plot. The extremes with a lower probability than once
in 250 years seem to originate from another distribution than the less extvemts.e
It is hypothesized that the super-extremes originate from a secondatiopun the
extreme wind speed distribution.

Chapter 2 deals with the optimal method of determining‘3year surge estima-
tes by statistical means. Next to the GEV analysis (that usually only congiders
annual maxima) the so-called Peak Over Threshold (POT) method exigt$, @adm-
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siders all independent events above a certain threshold. These methesgalaated
with the ECBIlt-Clio record of simulated surges in Delfzijl by first estimating the
100-year surge level and its uncertainty for all 116-year subsedsth@m checking

if these uncertainty intervals contain the correct realization, as determirexdiyl

from the total (7540-year) set. We found that in our experimental settiegPOT-
method systematically underestimates the uncertainty in tReydér surge level,
while application of the GEV distribution results in a unbiased estimate, making the
last approach most appropriate for determining safety levels.

Chapter 3 focuses on the 'superstorms’ detected in chapteA statistical cri-
terion is developed to determine whether all annual extremes can be desoyila
single GEV distribution or not. We found that for specific geographicatioas in
ECBIlt-Clio, the extreme winds can not be described with a single GEV distrigution
but requires a Generalized Two-Component Extreme Value (GTCEV)hdistn.

The meteorology resulting in the second component of the GTCEV distribusisn h
the following characteristics: the extreme winds are related to situations in tinich
vortices merge into a single one. In addition, the cyclones are embeddettimg s
jet stream, and extreme precipitation accompanies the development of theecyclo

It is found that the area for which a second population is detected shitsodu
the greenhouse effect from the North-Atlantic ocean to the Europedimeat. This
explains that in chapterthe 'superstorms’ are only detected in the greenhouse run.

In Chapter 4 we explore the suitability of the European Centre for Medium-
Range Weather Forecasts (ECMWF) seasonal forecast archivextieme value
analysis of surges. The combined seasonal forecasts of the ECMWiate to
1600 years. The high resolution in time and space and the more completesphysic
(even compared with state-of-the-art climate models) make these data highdy ap
priate to be analyzed with extreme value statistics. The results for the surgein H
van Holland shows good statistical agreement with the observed extreheong
model record reduces the statistical uncertainty in tHeyBair estimate with no less
than a factor four.

We demonstrate i€hapter 5 that the archived ECMWF seasonal forecasts can
also be used for extreme value estimates of other variables than wind gecsiy.

Four examples are presented, i.e., the Rhine discharge at Lobith, theghfitiake
IJssel water into the sea, the closure-frequency of the 'Maeslaniehaand the
(wave and sea level dependent) load on the Pettemer sea wall. The exidogitase

that the -still expanding- ECMWF data set offers unforeseen possibititiregdeling
(hydrological) extremes. Especially, the simultaneous modeling of multiple exdreme
opens new perspectives.

Preliminary results obtained with the so-called Challenge data are presented in
Chapter 6. De 'superstorm’ that we analyzed in the Challenge data has similar char-
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acteristics as the events in the ECBIlt-Clio model. This result supports the idea tha
the earlier detected 'superstorms’ are not a model-artifact, but ratbersst be
indeed a phenomenon belonging to the real world.
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Samenvatting

In dit proefschrift wordt het probleem behandeld van het schagenwaarden van
meteorologische grootheden die corresponderen met herhalingstijdeandienlijk
langer zijn dan de periode waarover gemeten is. Deze moeilijkheid spekbitest
bepalen van de hoogte van de zeedijken in grote delen van Nederland|gias de
Wet op de Waterkering niet vaker dan eens in de 10000 jaar mogen beawieze
herhalingstijd is dus honderd keer zo lang als de lengte van de meetregksndgerd
jaar.

We benaderen dit probleem door de uitkomsten van weer- en klimaatmodellen
te beschouwen als pseudo-waarnemingen. Deze reeksen, zijn tiemterddeer
langer zijn dan de 'echte’ waargenomen reeksen. Hiermee kan de tabstische
onzekerheid, die er in de schattingen van hétjs@r niveau vanuit de waarnemingen
is, verkleind worden. Ook kan er met de pseudo-waarnemingen dewraandat
alle extremen (tot aan 1@aar herhalingstijden) tot een enkele populatie behoren,
onderzocht worden.

In Hoofdstuk 1 kwantificeren we de statistische onzekerheid in dgd8r storm-
vloedniveau (de zogenaamde ’'opzet’), als deze geschat wordemibh@nderd jaar
lange reeks (dit de lengte van de waargenomen reeksen). We doeooditlel
5336 jaar aan output van het klimaatmodel ECBIlt-Clio, te verdelen in deskeek
van elk zo’n 100 jaar. In dit hoofdstuk wordt aangetoond dat in hetra&en de jaar-
maxima van opzet-reeksen van honderd jaar (binnen de onzekerbesthreven
kunnen worden met een Gumbel verdeling (deze verdeling wordt veatiidst om
hydrologische jaarmaxima te beschrijven (zie bffatz et al. 2003). De totale reeks
van 5336 jaar van het controle klimaat (1960-1990) kan ecl¢door een enkele
Gumbel verdeling worden beschreven; hiervoor is een GEV verdelidign Dit
impliceert dat onzekerheidsbanden die berekend worden met een Grenteding
misleidend laag uit kunnen vallen (zie o@les et al. 2008 De onzekerheid in de
schatting van de vormparameter van de GEV verdeling op basis van edartion
jaar lange reeks resulteert in een grote onzekerheidirg) in het geschatte 10
jaar opzet-niveau. Voor het gridpunt van ECBIlt-Clio dat de Noordepeesenteert
toont de 'broeikas-run’ (2050-2080) een ’knik’ in de verdeling denjaarmaxima
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bij weergave op een Gumbel plot. De extremen die zeldzamer optrederedan e
in de 250 jaar lijken te ontstaan vanuit een andere verdeling dan de miridamex
gevallen. Dit suggereert dat de super-extremen door een anderaleggsch mech-
anisme worden voortgebracht dan de rest van de extremen.

Hoofdstuk 2 gaat over de optimale methode omidé-jaar opzet-niveaus statis-
tisch te schatten. Naast de GEV analyse, waarin gewoonlijk alleen de jaaranax
beschouwd worden, bestaat er de zogenaamde 'Peak Over Tidi¢8H@T) meth-
ode waarin alle onafhankelijke gevallen die boven een bepaalde dreitkmehan,
in de analyse meegenomen worden. Beide methoden wordamlgeerd met de
ECBIlt-Clio reeks van gesimuleerde opzetten in Delfzijl. Hiertoe worden elerst
100-jaar niveaus en hun onzekerheden geschat vanuit 116-fi@eecksen. Ver-
volgens wordt gekeken of de echte waarde (die eenvoudig is af te leidéa totale
reeks) binnen het onzekerheidsinterval ligt. Het blijkt dat in ons exyeart de POT-
methode de onzekerheid in hef3j@ar opzet-niveau systematisch onderschat, terwijl
toepassing van de GEV verdeling in een zuivere schatting resulteert. Bt meze
laatste verdeling het best geschikt om veiligheidsniveaus te bepalen.

In Hoofdstuk 3 richten we ons op de in hoofdstukgedetecteerde 'superstor-
men’. Hier wordt een statistisch criterium ontwikkeld om te bepalen of alle jaar-
maxima met een enkele GEV verdeling beschreven kunnen worden of nitt. H
blijkt dat in ECBIlt-Clio er specifieke locaties zijn waar de extreme winden niet
beschreven kunnen worden door een enkele GEV verdeling, madGeearalized
Two-Component Extreme Value’ (GTCEV) verdeling nodig is. De meteoieldig
resulteertin de tweede component van de GTCEYV verdeling blijkt de votglesrak-
teristieken te hebben: De extreme winden horen bij situaties waarbij tweelaer
samensmelten tot een enkele; Daarbij is de storm ingebed in een extrekm ster
straalstroom, en gaat de ontwikkeling van de storm gepaard met extremstagee
Het geografische gebied waar een tweede populatie wordt gedetieaterschuift
onder invloed van het broeikas-effect van de Noord-Atlantische@teaar het Eu-
ropese continent. Dit verklaart dat in hoofdstlilde 'superstormen’ alleen in de
‘broeikas-run’ gedetecteerd worden.

In Hoofdstuk 4 onderzoeken we of de langetermijnverwachtingen van het Eu-
ropees Centrum voor Middellange Termijn Verwachtingen (ECMWF) gksehin
voor analyse van de extreme stormvloeden. Momenteel vormen de gecendgine
langetermijnverwachtingen in totaal zo'n 1600 jaar. De hoge resolutie in tijd en
ruimte, en de completere fysica (zelfs ten opzichte van state-of-the-artatlimd-
ellen) maken dat deze reeksen uitermate geschikt zijn om geanalyseeoddenw
via de statistiek van extremen. De resultaten voor Hoek van Holland lateroedr g
overeenkomst zien tussen de schattingen van de langetermijnverwanhéingee
waarnemingen. Door de grote totale lengte van de langetermijnverwachtirmgdn
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de statistische onzekerheid in de*g@ar schatting met maar liefst een factor vier
verkleind.

We laten inHoofdstuk 5 zien dat de langetermijnverwachtingen van het ECMWF
ook voor andere grootheden dan wind en opzet kunnen wordenigebdm extreme
waarden schattingen te maken. Er worden vier voorbeelden geprsknie de
Rijnafvoer bij Lobith, het spuien van IJsselmeerwater in de Waddedzesieequen-
tie waarmee de 'Maeslantkering’ in de Nieuwe Waterweg gesloten moet mjozde
de belasting (die afhankelijk is van zowel golfhoogte en zeeniveaujledtettemer
zeewering. Dit hoofdstuk illustreert dat de -nog steeds langer wdedeBCMWF
reeks onvoorziene mogelijkheden biedt bij het modelleren van (hydsclog) ex-
tremen. Vooral het simultaan modelleren van meerdere, gelijktijdig optredeade
tremen biedt nieuwe perspectieven.

Voorlopige resultaten die verkregen zijn met de zogenaamde 'Challeage’ d
van het NCAR model worden gepresenteerdHioofdstuk 6. De 'superstorm’ die
we in de Challenge data geanalyseerd hebben, heeft dezelfde kiateken als de
gevallen in het ECBIlt-Clio model. Dit resultaat ondersteunt het idee daediee
gedetecteerde 'superstormen’ niet een model-artefact zijn, maar jnisee@meen
zijn dat tot de werkelijkheid behoort.
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begeleiding die je me hebt gegeven.
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Ook mijn moeder, schoonouders, broers en zussen, schoonzasagagers wil
ik hartelijk bedanken voor jullie meeleven. Vooral tijdens mijn (mislukte) poging om
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het met je Nature artikel?’ Ook al kon ik inhoudelijk niet veel vertellen, hetlegn
heeft me altijd wel goed gedaan!

Lieve Jalla, vooral jou wil ik bedanken. Het feit dat ik ging promoveren heeft
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thuis er aan moest werken, en jij er dan alleen voor stond. Toch hebligceaehter
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