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Abstract

Adopting the viewpoint that atmospheric flow regimes can be associated with steady
states, we investigate the hypothesis that regime transitions in deterministic atmo-
sphere models are related to the existence of heteroclinic connections between these
steady states. We study a low-order barotropic model with topography, in which to-
pographic and barotropic instabilities are the mechanisms dominating the dynamics.
By parameter tuning, the Hopf bifurcation corresponding to barotropic instability
can be made to coincide with one of the saddle-node bifurcations that are due to the
topography in the model. This coincidence is called a fold-Hopf bifurcation. Among
the dynamical structures related to such a bifurcation are heteroclinic connections
and homoclinic orbits, connected to the equilibria. A heteroclinic cycle back and
forth between the equilibria, existing in the truncated normal form of the fold-Hopf
bifuraction, will be perturbed in the full model, leaving orbits homoclinic to one of
the equilibria. The impact of these mathematical structures explains several charac-

teristics of regime behaviour known from previous model studies.



1 Introduction

More than fifty years after the first reports on the topic, the regime behaviour of the
atmosphere remains an enigma. The considerable attention that has been devoted to
the hypothesis that atmospheric low-frequency variability is affected by the existence of
preferred flow regimes has not yet resulted in a fully conclusive picture. Nevertheless, the
detection of regimes in the observational data of the atmosphere has progressed a lot in
the last two decades. Starting with Benzi et al. (1986) and Sutera (1986), the somewhat
intuitive notion of regimes, developed since the works of Namias (1950) and Rex (1950a,b),
was put on a firmer basis using concepts and techniques from modern probability theory.
In papers such as Cheng and Wallace (1993), Kimoto and Ghil (1993a,b), Smyth et al.
(1999) and Monahan et al. (2001), the use of these techniques has resulted in growing
evidence for the existence of regimes in northern hemispheric atmosphere data. Moreover,
the regimes found in these papers, using different techniques, are strikingly similar.
Accepting the existence of regimes still leaves us with the question which dynamical
processes are responsible for this behaviour. An important contribution regarding this
issue was made by Charney and DeVore (1979, CDV from now on), who stated that flow
regimes should be identified with equilibrium solutions of the equations describing the
evolution of large scale atmospheric flow. Their hypothesis, supported by the study of a
low-order model for barotropic flow over topography, was taken up and expanded on by,
among others, Reinhold and Pierrehumbert (1982), Legras and Ghil (1985), Kéllén (1981,
1982), Yoden (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto (1996, 1999).
Although the above model studies unveiled much about the structure of the (model)
regimes, the observed regime transitions have so far not been satisfactorily explained.
From statistical studies of model data as well as observational data, it has been known for
some time that transitions between regimes are not an entirely random process. In Mo

and Ghil (1987, 1988), Molteni et al. (1990) and Kimoto and Ghil (1993b), up to seven



regimes/clusters are identified in various datasets (both from observations and models).
By counting the transitions between the various regimes, these studies made clear that
there exist not only preferred flow regimes, but also preferred transitions between (some
of) the regimes. Plaut and Vautard (1994), studying the interplay between low-frequency
oscillations and regimes using multichannel singular spectrum analysis (MSSA), also found
that transitions are not purely random.

Itoh and Kimoto (1996, 1997, 1999) propose chaotic itinerancy as an explanation for the
preferences and inhomogeneities in regime transitions. Using multi-layer quasi-geostrophic
models of moderate complexity (L2T15 and L5T21), they detect multiple attractors that
are identified as regimes. By changing a parameter (horizontal diffusivity or static stabil-
ity), these attractors lose their stability one by one, thereby admitting regime transitions.
When all attractors have lost their stability, the model shows irregular transitions between
the remnants of the former attractors, and thus between the regimes. This behaviour is
called chaotic itinerancy. The preferred order of the transitions is related to the order
in which the attractors lost their stability. This interesting result once more emphasizes
the inhomogeneities in regime transitions, which must be due to the nonlinear nature of
the system under study. However, it does not provide much insight in the dynamics that
determine the transitions, as the loss of stability of the various attractors is not analysed.
It remains unknown what dynamical processes cause and drive the transitions.

Often a stochasticity assumption is invoked to explain regime transitions. Noise, rep-
resenting the effect of unresolved physics and dynamics, can kick a system out of the basin
of attraction of one regime and into another. This has been studied, by adding stochastic
perturbations to a low-order model, in e.g. Egger (1981), Benzi et al. (1984), De Swart
and Grasman (1987) and Sura (2002). However, the addition of noise is not necessary to
trigger regime transitions. Even in deterministic low-order models transitions can occur.
It is therefore worthwhile to consider how transitions can be generated by the internal,

deterministic dynamics of a system, in the absence of noise.



Our hypothesis will be that barotropic flow over topography is not only sufficient to
create multiple equilibria (as in CDV), but can also generate transitions between those
equilibria, resulting in regime behaviour. This is based on the fact that transitions have
been observed in various barotropic models. Examples are the 25-variable model used
by Legras and Ghil (1985), the 10-dimensional model used by De Swart (1988a,b), and
the T21 model studied in Crommelin (2003b). The presence of baroclinic processes is
apparently no conditio sine qua non for regime transitions. Recently, even in laboratory
experiments designed to mimic as closely as possible the situation of barotropic flow over
topography in the atmosphere, regime behaviour was observed (Weeks et al. 1997, Tian
et al. 2001). Thus, the transitions found in several truncated barotropic models cannot
simply be discarded as model artefacts.

In Crommelin (2003b) strong numerical evidence was found in support of the hypothesis
that remnants of heteroclinic connections are responsible for the transitions between flow
regimes. The regimes were found to correspond with steady states, in accordance with the
paradigm introduced by CDV, and are likely to have deterministic connections running
back and forth between them for nearby parameter values. An attempt was made to find the
trajectories of the connections, and the result of that attempt was shown to be consistent
with the phase space preferences of regime transitions during a 200 year model integration.
In spite of the numerical evidence, analytical, or at least more rigorous mathematical
support is still lacking for the hypothesis that regime transitions are related to heteroclinic
connections (a hypothesis also mentioned by Legras and Ghil (1985), Kimoto and Ghil
(1993b) and Weeks et al. (1997)). In this paper we want to provide such support, by
studying a low-order model of the atmospheric flow at midlatitudes. We hypothesize that
the combination of topographic and barotropic instability is sufficient to create multiple
equilibria corresponding to regimes as well as connections between these equilibria, and we
therefore take the simplest model possible that combines these two instability mechanisms.

Such a model is provided by De Swart (1989, DS from now on), a six-variable model that



is essentially the same as the model of CDV, also studied by Yoden (1985), except for a
different scaling and a more general zonal forcing profile. We will use this model to study
the interaction between topographic and barotropic instability, in order to see if and how
the combination of these instability mechanisms can generate connections between steady
states, resulting in regime behaviour.

The study of this interaction can provide a first step towards a better understanding
of the mechanisms playing a role in the phenomenon of regime transitions. Although
the model that will be used is probably too simple to arrive at conclusions that pertain
immediately to the real atmosphere, the insights it provides may guide the investigation

of more complex models, or even observational data.

2 Derivation of the low-order model

The starting point for this study is the hypothesis that the combination of topographic
and barotropic instability is sufficient to generate regime behaviour. Notably, baroclinic
processes are not considered to be truly necessary for regime transitions to occur. Thus,
we consider a model without baroclinic dynamics and without stochastic terms supposed
to represent the effect of baroclinic processes. Instead, we wish to study the simplest
deterministic model possible that combines the mechanisms of barotropic and topographic
instability. Therefore we use the model presented in DS, a slightly different version of the
CDV model. It can have multiple equilibria, caused by topography, and is forced by a
zonal flow profile that can be barotropically unstable.

The model is obtained by a Galerkin projection and truncation of the barotropic vor-
ticity equation (BVE) on a (-plane channel. The BVE, a partial differential equation,

reads

OV Y= T,V 0+ f k)~ OV (). (2.1)



Time (t), longitude (z) and latitude (y) can take on values (¢,z,y) € R x [0, 27] x [0, 7b].
The parameter b = 2B/L determines the ratio between the dimensional zonal length L
and meridional width B of the channel. The streamfunction field ¢ (¢, z, y) is periodic in z:
W(t,xz,y) = ¥(t,x+ 2w, y). The restriction to the beta plane implies that at the meridional
boundaries y = 0,7 both 9¢/0z = 0 and fOZW(Gw/ay)dx = 0. The Coriolis parameter f
generates the beta-effect in the model. Orography enters with A, the orographic height,
and is scaled with 7. The Jacobi operator [J acts on two fields, say A(x,y) and B(zx,y), as
follows: J (A, B) = 24 %—1; - % 98 Finally, the model is driven by a Newtonian relaxation
to the streamfunction profile ¥*, with damping coefficient C.

To arrive at a finite-dimensional model, the BVE is projected onto a set of basis func-

tions which are eigenfunctions of the Laplace-operator V2. On the chosen rectangular

domain, with the abovementioned boundary conditions, these functions are double Fourier

modes:
$om(y) = V2cos(my/b)
(2.2)
Gum(2,y) = V/2e" sin(my/b)
in which |n|,m = 1,2,.... The streamfunction and the topographic height are expanded
in this basis:
Yt 2, 9) =Y Yam®) bums h(@,9) =Y Pom Gom, (2.3)
The six-dimensional model is obtained by truncating the expansion after |n| = 1 and

m = 2, so the only remaining basis functions are ¢g1, ¢o2, P11, ¢_11, 12 and ¢_15. The

time-dependent variables g1, Yoo, V111, Y112 are transformed to real variables:

T = %¢01, To = ﬁ(d)n +Y_11), z3= ﬁ(lﬁu —Y_11),
(2.4)
Ty = %%2, T5 = ﬁ(d)u +9_12), Tg= ﬁ@u — Y_12).



The topography h is chosen to have a (1,1) wave profile:

h(z,y) = cos(zx) sin(y/b) (2.5)

so the only nonzero topographic expansion coefficients are hy; = h_yy = 1/ (2\/5) The
forcing profile ¢*, finally, is purely zonal, i.e. ¥* = ¢*(y). For the 6D model this means
that the only forcing terms will be z7 and z} .

The set of ordinary differential equations describing the temporal evolution of the z;
is of the form x = F 4+ Ax + B(x,x), with energy- and enstrophy-preserving quadratic

nonlinearities. In detail it reads:

T = ’71 r3 — C (:El - f{)
Ty = _(alxl _ﬂ1)$3 - Cuxy — 01 T4 T
T3 = (al T _ﬁl) Ta —MT1 —C£U3 +51$4$5 (2 6)
Ty = Foxg —C(xg —xf) +e(r226 — T3T5)
‘i5 = —(062331 _/82)1‘6 _0335 —62$4$3
Tg = (az Ty — ﬂ2) x5 —v2rs —Cug + 09 T4 X9
The various coefficients in these equations are given by
8v2 m? +m?-1 5 BY?
Xy = = —
" T 4m2—1 b2 +m? b2+ m2
5 _64v202 —m?+1 . Am V2b @1
™ Thr Btm? T =V =1 7 '
16v/2 4m? V/2b
€ = y

S5t m:74m2—17r(b2+m2).

In the equations, the terms multiplied by the a; model the advection of the waves by
the zonal flow. The (;-terms are due to the Coriolis force; the y-terms are generated by
the topography. The C-terms take care of the Newtonian damping to the zonal profile
z* = (z7,0,0,2%,0,0). The §- and e-terms describe the nonlinear triad interaction between

the zonal (0,2) mode and the (1,1) and (1,2) waves. This triad is responsible for the

possibility of barotropic instability of the (0,2) mode.
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The number of free parameters in the model equations is six: the damping coefficient
C, the forcing parameters zj and =z}, the length-width ratio of the beta-channel, b, the
beta-effect parameter S and the scaling of the topographic height v. In the analysis of
this paper we will most of the time use the ratio r between z; and z] as a free parameter
instead of x} itself. This is done by putting x} = r x7.

The model parameters z7,x; (or ) and v will be varied throughout this study. The
remaining parameters 5, b and C' will be kept fixed. The choice 5 = 1.25 corresponds to a
channel centered around a latitude of 45°, see also DS. C' was set to 0.1 in DS, corresponding
to a damping timescale of 10 days (the nondimensional time in the equations was scaled
such that At =1 corresponds to roughly one day). We will adopt the same value for C.

The channel width-length ratio b will be set to 0.5, which is different from the value
taken throughout most of the study of DS. There, b = 1.6 was chosen. However, at that
value the model contains pitchfork bifurcations that create additional branches of equilib-
ria. Since we want to isolate the mechanisms of barotropic and topographic instability in
their simplest form, such additional bifurcations are unwanted. By choosing b = 0.5 (i.e.
reducing the north-south extent of the channel from 80% to 25% of its east-west extent)
these extra pitchfork bifurcations do not occur. This value of b is not unphysical, consider-
ing that the east-west extent of the midlatitude regions on earth is a lot larger than their
north-south extent. Moreover, since regime behaviour is a low-frequency variability phe-
nomenon, it is associated with planetary scales rather than synoptic scales. The planetary
waves are not isotropic; in longitudinal direction their wavelength is much larger than in

meridional direction.

3 Topographic and barotropic instability

Nonzero topography may introduce a mechanism of instability in the system. The inter-

action between the zonal flow and the topography can generate standing wave solutions.



The (0,1) zonal flow component will excite a wave with the same wavenumber as the to-
pography, in this case the (1,1) wave. The effect of the topography doesn’t end there; as
can be seen in the equations, the (1,2) wave mode is coupled to the (0,2) zonal mode via
the topography. It must be pointed out that the topography does not create an oscillatory
mode (as is usually the case with instabilities), but rather a resonant response curve which
corresponds to a parameter range with multiple equilibria. These equilibria are associated
with three different ways in which the advection of relative vorticity, the advection of plan-
etary vorticity and the vortex stretching caused by flow over topography, can balance. One
of the equilibria is unstable. Since the instability of this steady state is entirely due to the
topography, and not to other mechanisms such as barotropic instability or wave instability,
the effect of the topography here has been given a new name, topographic instability.

The barotropic instability is an instability mechanism in the more common sense of the
word, as it refers to a situation where a steady state (a mainly zonal flow) loses its stability
while a (stable) oscillatory wave mode (a travelling wave) is created. The zonal flow profile
must obey certain conditions for this instability to be possible, see e.g. Kuo (1949) and
Cushman-Roisin (1994). In particular, the profile must have at least one inflection point
(a change in the sign of the total vorticity) in meridional direction. For that reason it is
necessary to have more zonal modes resolved in the model, since the (0,1) zonal mode can
never be barotropically unstable by itself (it does not obey the inflection point condition).
The (0,2) zonal mode can become unstable, though only when 6> < 3, due to Fjgrtofts
theorem (see DS). Our choice of b = 0.5 clearly satisfies this condition.

The effect of the two mechanisms is shown in figure 1. On the left is a curve of fixed
points depicted in the situation without either mechanism playing a role. This was achieved
by putting v = z; = 0, so that topography is zero and the zonal flow profile cannot be
barotropically unstable. The response of the model to varying x7 is a shift of the steady
state such that z; = z7. On the right, both mechanisms are present. The deformation of

the straight curve on the left to the S-shaped curve on the right, involving two saddle-node
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bifurcations (snl and sn2), is the result of non-zero topography (v = 1). The (supercritical)
Hopf bifurcation on the upper part of the branch represents the barotropic instability, which
was triggered by non-zero z;. To be able to perform fixed point continuations starting with
zero flow (all z; = 0) at zero forcing, z; is scaled with 7}, by putting = = r 2} and fixing
r at some value (thus, 7 then controls the shape of the forcing profile while z3 determines
its strength). This scaling will be used throughout this paper. In the right panel of figure
1, » = —0.4 was taken. The continuations were carried out using the software package
AUTO (Doedel and Wang, 1995).

The flow patterns corresponding to the three different fixed points existing at 7 = 6 in
figure 1 are shown in figure 2. As was already known from previous studies (e.g. DS), the
upper branch eql corresponds to equilibria with largely zonal character. The other two are
dominated by topographically excited standing wave patterns, one superresonant (eq2),
the other subresonant (eq3). The former has a slightly stronger zonal flow component
than the latter. The phases of their wave components with respect to the topography are
somewhat different: the wave pattern of eq3 is a bit more upstream than that of eq2. The
phase difference goes to zero when moving towards sn2.

The subresonant solution eq3 is usually the one that is identified as the regime of
blocked flow. The main reason for that seems to be the fact that in the simplest setting
(that is, topographic instability being the only physical mechanism present) eq3 is the
stable solution, whereas eq2 is unstable. Nevertheless, eq2 also possesses the characteristics
of a blocked flow regime. To call eq2 an intermediate solution only because it is unstable
in the simple setting seems premature. Eventually, all equilibria have to be unstable for
regime transitions to occur in a model without stochastic terms. We see no a priori reason

to exclude eq2 as a candidate for the blocked regime.
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4 The merging of two instabilities: a fold-Hopf bifur-

cation

4.1 Instabilities and bifurcations

The two instabilities are, mathematically, represented by saddle-node and Hopf bifurca-
tions. The locations of these bifurcations depend on the parameters of the model. Figure 1
already gave an idea of this dependence. The straight curve of fixed points, where the equi-
librium is such that the dissipation and the forcing of the first zonal mode are in balance,
gets deformed by increasing the amplitude of the topography above some threshold value.
At the threshold value, the two saddle-node bifurcations snl and sn2 coincide. Thus, the
threshold is a cusp bifurcation. The cusp is a codimension two bifurcation (two parameters,
say 7 and -y, must be tuned for this bifurcation to occur) and can be continued adding a
third parameter, say r. This means that the value of v for which the cusp occurs changes
when altering the shape of the zonal forcing. A curve showing the y-location of the cusp for
varying r is drawn in figure 3. It must be stressed that the value of z] for which the cusp oc-
curs also changes along the curve: it decreases monotonically from 7 = 1.992 at v = 0.3198
to z¥ = 0.3320 at v = 3.0 x 1072, The continuation of the cusp was performed using the
continuation software package CONTENT (Kuznetsov and Levitin, 1997). Note that if
the zonal forcing profile has the right shape and strength (z7 = 0.3320,7 = —0.861467),
the influence of the topography is even felt when its amplitude is infinitesimally small (vy
approaching zero).

The Hopf bifurcation is the dynamical expression of barotropic instability. Since the
(0,2) zonal mode can become barotropically unstable but the (0,1) mode cannot, it can be
expected that the bifurcation occurs at smaller x7 values if |r| is increased. By doing so,
the Hopf bifurcation will approach the saddle-node snl, and at some point coincide with

it. This simultaneous occurrence of a saddle-node (or fold) and a Hopf bifurcation is called
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a fold-Hopf bifurcation, and has codimension two.

Let us investigate what happens when this fold-Hopf bifurcation occurs (i.e. when the
two instability mechanisms merge). The description of the various dynamical phemonena
and structures that emerge out of this codimension two point in parameter space, the so-
called unfolding of the bifurcation, is given in Kuznetsov (1995). We will briefly review it

here.

4.2 The fold-Hopf bifurcation: some theory reviewed

The occurrence of a bifurcation of a fixed point can be read off from the eigenvalue-spectrum
of the fixed point. In a saddle-node (or fold) bifurcation, one eigenvalue is exactly zero, all
the others have non-zero real parts. In a Hopf bifurcation, one complex conjugated pair of
eigenvalues has real part zero (and imaginary part non-zero); again, all other eigenvalues
are bounded away from the imaginary axis. It will come as no surprise that a fold-Hopf
bifurcation is characterised by a fixed point eigenvalue spectrum with one zero and one
purely imaginary pair (i.e. A; = 0,\y3 = %iw) as its only eigenvalues on the imaginary
axis. The fold-Hopf bifurcation is sometimes also referred to as zero-Hopf, zero-pair or
Gavrilov-Guckenheimer bifurcation.

Suppose we have a n-dimensional system depending on p parameters
= f(z,p), T€R", peRr, (4.1)

with fixed point z = x¢ at u = pg (so f(zo, o) = 0). If py is a fold-Hopf bifurcation point,
the eigenvalue spectrum contains n_ eigenvalues A; with negative real part, n. eigenvalues
A with positive real part and finally one zero and one imaginary pair: ReA[,..., )\, <
0 < ReA[,..., A\t A = 0,03 = fiw. Clearly, n_ +ny +3 = n. We will denote the
linear eigenspaces corresponding to the three groups {\; }, {\/}, {\?} by E~, E* and E°,
respectively: the stable, the unstable and the center eigenspace. The Center Manifold

Theorem states that there exists a (only locally defined) 3-dimensional invariant manifold
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W¢ that is tangent to E° in xy. The only interesting dynamics of the system in the
neighbourhood of zy takes place on W¢. Away from W€, the system is either exponentially
fast repelled from W¢ (along the unstable manifold) or attracted towards W¢ (along the
stable manifold), and thus “trivial”. W¢ is called the center manifold.

The dynamics of the system around z can be described (apart from the exponentially
fast repelling and/or attracting to W¢°) by the dynamics on the center manifold. Thus,
to understand the (local) behaviour of the system in and near a fold-Hopf bifurcation, we
can restrict ourselves by looking at the center manifold dynamics. A nonlinear, parameter-
dependent transformation of variables allows us to isolate the description of the system on
We (a so-called center manifold reduction). The equations describing the evolution on W*¢
can be cast in a standardized form; this is called the normal form. We will not discuss the
way to calculate the normal form and the center manifold reduction, see Kuznetsov (1995,
1999) for a detailed discussion. Instead, we only give the normal form of the fold-Hopf

bifurcation:

g = pt+yi+sle?+0(y, 22"
(4.2)
2= (ptiw) e+ @+id)yz+y* 2+ O(y, 2 2"
Here, y € R and z € C. p; and p, are called the unfolding parameters, w,# and ¢ are
coefficients whose values depend on p; and ps, and s = 4+1 or —1. We assume 6 # 0 when
p1 = po = 0. The fold-Hopf bifurcation point is at (p1, p2) = (0,0). There, the normal
form equations have a fixed point y = z = 0 with eigenvalue spectrum 0, 4i wy.

Truncating the normal form after the cubic terms and transforming z to polar coordi-

nates, z = ue'?, yields
gy = pty’+sa’
@ = (p+0y+y)u (4-3)
¢ = w+Iy

This system is called the truncated normal form. As can be seen, the equations for y and

14



u do not depend on ¢. Moreover, in the neighbourhood of the fixed point, ¢ ~ wi, due to
small y. The bifurcations in the above system can therefore be understood by only studying
the equations for y and u, the so-called (truncated) amplitude equations. Note that the
truncated amplitude equations are Z,-symmetric, as they are invariant under v — —u.
See Kuznetsov (1995) for a discussion. This symmetry is related to the S'-symmetry
(invariance under ¢ — ¢ + ¢, for arbitrary constants ¢.) of the truncated normal form.

Qualitatively, the bifurcation diagram near the origin in the (p;, p2) plane is determined
by the signs of s and . There are four different cases, or unfolding scenarios. Which
scenario applies to our situation can be deduced from the fact that in our system the
Hopf bifurcation, when it is located on the upper, stable branch, is supercritical: the
stable equilibrium loses its stability while a stable periodic solution is created. It leaves
the scenario with normal form coefficients s = 1,0 < 0 as only possibility. This can be
checked by continuation of the Hopf bifurcation using (a not yet publicly available version
of) CONTENT, which calculates the normal-form coefficients when the Hopf bifurcation
curve crosses a fold-Hopf point. Indeed it is found that s =1,60 < 0.

We will not discuss all four unfolding scenarios but restrict ourselves to the one relevant
for this study. The bifurcation diagram for the truncated normal form in case s = 1,6 < 0
is shown in figure 4, together with phase portraits in the (u, y) plane for the various regions
of the diagram. In origin of the (p1, p2) plane we find the fold-Hopf point. From the origin,
a saddle-node line sn (p; = 0) and a Hopf curve hb (p; = —p2/6? + o(p3)) emanate.
For p; > 0 no equilibria or periodic orbits exist. When crossing sn, two equilibria are
created. The invariance of the line v = 0 (or, equivalently, z = 0) in the truncated normal
form guarantees the existence of a heteroclinic connection on the y-axis between the two
equilibria.

When crossing hb, one of the equilibria (which one depends on the sign of ps) undergoes
a Hopf bifurcation. The periodic orbit born on the Hopf curve encounters a Neimark-Sacker

bifurcation (also called torus bifurcation) when crossing the line p, = 0,p; < 0. The
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Neimark-Sacker line, denoted ns, also emanates from the origin of the parameter plane.
Note that in the truncated amplitude equations a Hopf bifurcation actually appears as
a fixed point moving into the u > 0 plane. A fixed point of the truncated amplitude
equations with u > 0 corresponds to a periodic orbit in the truncated normal form. In
the same spirit, a Neimark-Sacker bifurcation and a torus in the truncated normal form
equations appear as a Hopf bifurcation resp. a periodic orbit in the truncated amplitude
equations.

The invariant torus, created when the periodic orbit crossed the ns curve, blows up and
eventually touches both equilibria. This happens on the curve hc (see figure 4), and creates
a second heteroclinic connection between the equilibria. The second connection corresponds
to a sphere-like surface in the full (truncated) normal form. Together with heteroclinic
connection on the y-axis, it forms a heteroclinic cycle between the two equilibria. In figure
5, this cycle is drawn in three dimensions.

The bifurcation scenario sketched in figures 4 and 5 is valid for the ¢runcated normal
form equations (4.3). Since in practice we always deal with systems in which higher or-
der, perturbative terms show up when carrying out the normalization, the effect of such
perturbations (the O(|y, z, z|*) terms in equation (4.2)) must be considered. The pertur-
bations do not affect the local bifurcations (saddle-node, Hopf, Neimark-Sacker) but they
perturb the heteroclinic connections. For instance, the connection on the y-axis is due to
the invariance of that axis, since in the truncated normal form (4.3) @ is proportional to
u. However, the higher order perturbations can contain terms proportional to y**,[ € N,
that destroy the invariance and thereby the connection. In other words, the perturbations
break the symmetry of the truncated normal form.

The heteroclinic cycle will, in general, be destroyed by the perturbations, leaving in-
stead two homoclinic orbits. These are attached to either one of the two fixed points and
stretch towards the other equilibrium. An example is shown in figure 5. The homoclinic

orbit resembles the former heteroclinic cycle but does not reach all the way to the second
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equilibrium. The other orbit, attached to the lower equilibrium and stretching towards the
upper one, is not shown. In some cases the homoclinic orbits can be of the Shil’nikov type,
implying the presence of a chaotic invariant set. As the issue of chaotic behaviour is not

our focus here, we do not explore this possibility.

4.3 Numerical bifurcation analysis

Figure 6 shows the results of the numerical bifurcation analysis of the model equations (2.6).
The calculations were done using AUTO. The orographic height was decreased to v = 0.2
for the calculation, corresponding to a topography amplitude of 200 meter (instead of 1 km
when v = 1). This is more realistic than v = 1, since the individual spectral components
(see section 2) of realistic topography will have amplitudes (much) smaller than the original
topography itself (see e.g. Charney et al. (1981), where topographic maxima of about 2
km result in spectral amplitudes of a few hundred meters or less). Moreover, a decrease of
~ will shift the region of multiple equilibria to more realistic physical values. We will come
back to this in the next section. A value of 0.2 for v results, as could have been predicted
from figure 3, in a cusp bifurcation (c) at (z7,7) = (1.178645, —0.4965761), in which the
two saddle-node bifurcation curves (snl and sn2) coincide. This implies that when v = 0.2,
only one equilibrium is found if there is no forcing in the second zonal mode (i.e. r = 0).
The numerical analysis recovers the theoretically predicted phenomena sketched in the
previous section. The Hopf curve (hb) becomes tangent to snl in the fold-Hopf bifurcation
point fh at (z},r) = (0.783324, —0.821677). The eigenvalue spectrum at this bifurcation
point is (0, £10.293756, —0.103994, —0.248003 4+ 10.206738). Thus, locally in phase space
the system is attracted towards the center manifold associated with the fh bifurcation.
From the th point the Neimark-Sacker curve (ns) can be seen to originate (figure 6, bottom).
The ns curve ends on the curve of the first period-doubling bifurcation (pd). This pd

curve is not predicted by the unfolding of the fold-Hopf bifurcation, as it is not in the
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immediate parameter neighbourhood of the fh point. The period doubling is encountered
when following the periodic orbit born on the hb curve into the parameter plane. It is the
first of what is probably a cascade of period doublings. In Shil’nikov et al. (1995) and Van
Veen (2003), similar (but more detailed) bifurcation analyses are presented in the context
of the Lorenz 1984 baroclinic model.

As has been explained, the unfolding of the truncated normal form of the fold-Hopf
bifurcation contains a heteroclinic bifurcation curve on which a heteroclinic cycle exists
that connects the two equilibria eql and eq2. The cycle will be broken under perturbations,
leaving homoclinic orbits that are nearly heteroclinic cycles. One of these orbits is found
numerically by continuation of the periodic orbit created on the curve hb. Starting the
continuation in r of the periodic orbit born on hb at 27 = 0.9, the orbit becomes homoclinic
to the upper equilibrium eql at » = —1.188582. During the continuation, the first period-
doubling curve pd is crossed twice. By continuation of the homoclinic bifurcation, a curve
is obtained that winds in towards the point fh. In figure 6 this curve is denoted ho. Note
that part of the curve falls beyond the limits of the upper figure. The two segments in the
figure are connected via a turning point at (z},r) = (1.806245, —0.5173513). When the
curve approaches the fth point, its windings are very close to each other and calculation
becomes increasingly harder. Therefore, the continuation of the ho curve does not reach
all the way to the th point, although that is were the curve can be expected to really end.
The second homoclinic curve, not shown in figure 6, also winds in towards the th point. It
intersects the first homoclinic curve ho infinitely many times near th. The orbits on this
second curve are homoclinic to eq2.

In order to show that the homoclinic orbits indeed become nearly heteroclinic cycles
near fh, three orbits taken from curve ho are depicted in figure 7 (see also figure 6, where
the three locations on the ho curve are indicated by e). The first is the orbit that exists
at (x7,7) = (0.8738674, —0.8815827). This is still quite far from the fold-Hopf point. The

orbit is attached to the zonal equilibrium eql and can be seen to tend towards the second,
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wave-like equilibrium eq2, but does not come very close to it. The second orbit, with
(xF,7) = 0.9037240, —0.7474002), tends more clearly to eq2. The third orbit, (z},r) =
0.7991501, —0.8128589), comes very close to the second equilibrium and almost forms a
heteroclinic cycle. In figure 8, this nearly heteroclinic cycle is plotted in various projections.
They suggest that one part of the cycle runs over a sphere-like surface, while the other
part is approximately an axis through the middle of that sphere. This is in agreement
with the theoretical picture, see figure 5. A similar structure showed up in an EOF-based
atmosphere model studied in Crommelin (2002).

The structure of fixed points, periodic orbits and connections arising out of the fold-
Hopf bifurcation induces several periodicities in the system. The unstable and stable
leading complex eigenmodes of eql resp. eq2 each have an oscillation period. These oscil-
lations are not related to periodic orbits (although it is possible that in a more complex
situation periodic orbits will be thrown off by eql or eq2, due to new Hopf bifurcations).
Also, the primary periodic orbit born on the Hopf curve hb is an essential element in the
unfolding of the fold-Hopf bifurcation. Furthermore, the torus created in the Neimark-
Sacker bifurcation is characterized by a second period (the first being, initially, the period
of the primary periodic orbit just mentioned). This second period is likely to be highly
variable in parameter space, as the torus may be destroyed or touch the equilibria. Fi-
nally, the orbits homoclinic to eql and eq2 will give rise to either an infinity of periodic
orbits (in case of a Shil’nikov type homoclinic bifurcation) or one unique periodic solution
(in the other case). For mathematical details of the periodic orbits generated by homo-
clinic bifurcations, see Kuznetsov (1995). See also Van Veen (2003) for a detailed analysis
of the relation between the homoclinic bifurcation and the period doubling cascade. In
Tuwankotta (2002) heteroclinic behaviour is analysed in a general 3-dimensional system

with quadratic, norm-preserving nonlinearities.
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5 Bimodality

Numerical integration of the system, in order to see the influence of the fold-Hopf bifurca-
tion, is complicated by the presence of the stable equilibrium eq3. In the parameter range
under consideration (see figure 6), this fixed point does not become unstable. However,
if we inspect the behaviour just beyond the second saddle-node curve sn2, eq3 does not
exist anymore but its former presence still generates a stagnation point for the system.
The role of such stagnation points in regime behaviour, also called “ghost equilibrium”
points or “quasi-stationary” states, is discussed in Legras and Ghil (1985) and studied
in detail in Mukougawa (1988). If we integrate the system at (z},r) = (0.95,—0.801), a
point in parameter space close to the homoclinic bifurcation curve ho and just beyond sn2
(which is at 27 = 0.945 when r» = —0.801), regime behaviour is visible. That is, the system
alternately visits the neighbourhoods of eql and (the former location of) eq2/eq3.

The results of an integration of 4000 time units (equivalent to 4000 days) are shown in
figure 9. Plotting x; versus time, we see lingering around and transiting between eql on the
one hand and the former location of eq2/eq3 on the other hand. Also shown is a projection
of the integration orbit onto the (x1,z4) plane. Comparing with figure 8 one sees that the
trajectories of the system have grown in phase space extent, but still follow roughly the
same route as the nearly heteroclinic cycle in figure 8. The probability density function
(PDF) of the distribution of states in the (z1,x4) plane shows two maxima towards the far
ends of the elongated structure. This is the imprint of the regime behaviour on the PDF.
The high phase speed of the system during its oscillating transition from the zonal to the
wave-like equilibrium has the effect that states from these transitions are hardly visible in
the PDF.

The system trajectory can be seen to turn around before really reaching the fixed
points. It causes the PDF maxima to lie closer to the time mean state of the system

than the fixed points. This has been observed elsewhere (Reinhold and Pierrehumbert,
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1982; Achatz and Opsteegh, 2003): the anomaly patterns of the regimes are similar to
those of the fixed points, but the amplitudes of the regime anomalies are smaller. In
figure 10, the flow patterns corresponding to eql at (z7,7) = (0.95,—0.801) and to eq2,3
at (z3,7) = (0.945,—0.801) (the saddle-node bifurcation point sn2, where eq2 and eq3
collide) are shown. In dimensional units (using a wind speed scaling Uy = 10 m/s, related
to a channel length of 27 x 10® km), the zonal wind speed reaches a maximum of about
30 m/s in the jet of the eql pattern. In the eq2,3 pattern it is about 25 m/s. These are
surprisingly realistic values, especially when compared to the jet speed maxima of 150 m/s
or more, usually seen for this type of model. It results from the decrease of the topographic
height (0.2 instead of 1.0 km), which causes the region of parameter space with multiple
equilibria to be located at more realistic values of the forcing parameters. Thus, the almost
classical objection of unrealisticly strong jets, raised against CDV-like studies in e.g. Tung
and Rosenthal (1985), does not hold for our choice of parameters.

To get an impression of the strength of the forcing the model is exposed to in the above
integration, the forcing profile ¢* corresponding to (x3,r) = (0.95, —0.801) is converted to
the zonal velocity forcing profile u = —0vy*/0y. The resulting dimensional profile, using
again the scaling of Uy = 10 m/s, is shown in figure 11. Also plotted there is the forcing
profile corresponding to the fold-Hopf bifurcation point (z3,r) = (0.783324, —0.821677).
The maximum velocity in the jet in the northern half of the domain is about 30 m/s for
the forcing used in the integration, and 25 m/s for the forcing in the fold-Hopf bifurcation.
These values are in the range of the velocities reached by the tropospheric jet in the real
atmosphere.

In the previous section, the occurrence of several periodicities, associated to the un-
folding of the fold-Hopf bifurcation, was discussed. For the integration parameter set-
tings, (x3,7) = (0.95,—0.801), the zonal equilibrium eql has a complex pair (0.247140 +
10.315545) as its only unstable eigenvalues. The oscillation period corresponding to this

eigenvalue pair is about 20 days. The period related to the stable leading eigenmode of
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eq2 just before sn2 at (z7,r) = (0.945,—0.801), is about 9 days. The principal periodic
orbit, born on the curve hb, has a period of 18 days at (z},r) = (0.95,—0.801). The second
period of the torus is not recognisable; the torus may very well not exist anymore for these
parameter values. A typical period associated with the switching between the regimes does

not exist anymore, due to the irregular nature of the regime switching.

6 Conclusion

The purpose of the work presented in this paper was to isolate and study a specific mecha-
nism that can generate regime transitions in an atmosphere model that has no noise-terms.
The mechanism involves the simultaneous occurrence, in a realistic parameter range, of
barotropic and topographic instability in a so-called fold-Hopf bifurcation. Due to this
bifurcation, phase space connections are created that allow for transitions between flow
regimes. These transitions are deterministic (in the sense that they are not noise-induced
but instead generated by a completely deterministic model) but not necessarily predictable,
due to possible chaotic behaviour (as in figure 9). The aim of this work was not to study
or simulate regime transitions in considerably realistic detail; caution is therefore war-
ranted when applying or extrapolating the results to the real atmosphere or to complex
atmosphere models. The applicability of these results rests primarily on the fact that the
presence of orography and a barotropically unstable jet is a combination that is both re-
alistic and by itself capable of generating regime transitions. Moreover, the values for the
topographic heights and atmospheric jet speeds in this paper are in a realistic range. Thus,
the mechanism studied here may play a role in generating regime transitions in complex
models or in the real atmosphere. We do not claim that the precise shapes of the phase-
space connections found in this study should be very similar to those in complex models
or in reality.

The normal form equations, associated with the fold-Hopf bifurcation, describe the
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dynamics of the system restricted to the center manifold. Truncating the normal form
equations after their cubic terms yields a system which needs the tuning of only one
parameter to have a heteroclinic cycle among its solutions. The truncated normal form
equations are S'-symmetric, which explains the low codimensionality of the cycle (see
Krupa (1997) for the relation between symmetries and heteroclinic cycles). This symmetry
(or near-symmetry, for the non-truncated system) is made explicit by the normalisation,
and is a hidden symmetry of the non-normalised system.

The heteroclinic cycle consists of connections back and forth between two steady states.
For the model studied in this paper, one of these steady states represents a situation of
dominant zonal flow, the other an equilibrium flow with a mainly wave-like character. The
fold-Hopf bifurcation and its unfolding thus provide a scenario in which regime transitions
can be related to heteroclinic connections.

Since in a natural system perturbative terms will always be present in the model equa-
tions, the heteroclinic cycle will be broken. Two homoclinic orbits are left (in general with
different stability properties), each attached to one of the involved equilibria. The curves
of the two homoclinic bifurcations extend quite far into parameter space. Their existence
is not limited to the immediate parameter neighbourhood of the fold-Hopf point (see figure
6). Near the th point the homoclinic orbits are nearly heteroclinic cycles, further away they
still tend towards the unconnected second fixed point without coming really close. This
dynamical configuration can explain why regime behaviour often tends to favor one regime
over the other, an explanation previously speculated on in Crommelin (2003b).

The crucial ingredients for the dynamical structure described in this paper are saddle-
node and Hopf bifurcations. The occurrence of such bifurcations are certainly no model
artefacts, but on the contrary very generic features in atmosphere models. In the model
studied here, the presence of topography creates saddle-node bifurcations, whereas Hopf
bifurcations are the result of barotropic instability. In more complex models, the number of

bifurcations will increase, not decrease, as e.g. many more topographic spectral components

23



will be present (thereby increasing the number of saddle-node bifurcations). Moreover, the
inclusion of baroclinic dynamics will add a new source of instabilities and thus increase
the number of Hopf bifurcations. Having a considerable number of saddle-node and Hopf
bifurcations around, it should not be too hard to have two of them merge into a fold-Hopf
bifurcation by tuning two of the available parameters. Thus, in complex models, fold-Hopf
bifurcations are likely to be present. However, since the behaviour of these models will
be complicated by many other phenomena, the central role of fold-Hopf points in more
complex models remains to be assessed.

Note that the model does not need to be drawn exactly to the parameter values of the
fold-Hopf bifurcation (or to a very narrow parameter range surrounding the bifurcation
point) to still “feel” the presence of this bifurcation. The fold-Hopf bifurcation itself is
a codimension two phenomenon, i.e. occupies only a point in a 2-dimensional parameter
plane (or a curve in a 3-dimensional parameter space), but its influence stretches far beyond
the immediate vicinity of that point. See for instance the top panel of figure 6: the
homoclinic bifurcation curve (ho) that emanates from the fold-Hopf point varies over a large
range of parameter values. Also, the integration shown in figure 9 clearly still bears the
characteristics of the heteroclinic cycle, but was made with parameter values corresponding
to a roughly 20% stronger forcing when compared to the fold-Hopf point (see also figure
11).

The existence of multiple equilibria in this model is an effect of the zonal resonance
brought about by a waveguiding effect due to the channel geometry and severe truncation
of the model. One may wonder what will be left of the zonal resonance and multiple
equilibria in more complex spherical models. A study by Yang et al. (1997) shows that not
all is lost once the Rossby wave dispersion due to spherical geometry enters the stage. This
study points out that baroclinic processes can have a waveguide effect that counteracts the
Rossby wave dispersion. Thus, the wave guide effect in the barotropic channel model is not

completely artificial but rather mimics the wave guiding of the more complex baroclinic
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spherical models.

The general idea that regime transitions are related to heteroclinic cycles would be
"falsified” (or at least not be very useful) if transitions in complex models or in the real
atmosphere would not show any sign of preferred transition paths through phase space. For
a moderately complex model, preferred transition routes were shown to exist in an earlier
study (Crommelin 2003b). The existence of preferred transition paths in the real atmo-
sphere is presently under study; preliminary results can be found in Crommelin (2003a)
and suggest that such preferences indeed exist. More specifically, checking whether the in-
teraction of barotropic and topographic instabilities is indeed responsible for the creation
of a cycle can be done by either carrying out a numerical bifurcation analysis of more com-
plex models, or by using weakly nonlinear analysis, the common tool of analysing models

with heteroclinic-like behaviour.
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List of Figures

Continuation of fixed points. Solid lines denote stable branches and dashed
lines unstable branches. On the left, barotropic instability is not possible
and topography is zero (r = v = 0). On the right, topography is nonzero
(v = 1), generating two saddle-node bifurcations (snl and sn2). The three
branches of equilibria are denoted by eql, eq2 and eq3. The Hopf bifurcation
hb (M) is due to barotropic instability (r = —04). . . . . .. ... .. ...
Streamfunction patterns corresponding to the equilibria at 27 = 6,r =
—0.4,v = 1. At the top and bottom are the stable equilibria, in the middle
the unstable one. Thick lines are streamfunction lines (contour interval 1
in nondimensional units), thin lines are topography contours (interval 0.25
km). Dashed contours are for negative values, solid contours for zero or
positive values. . . . . . . ..o
Location of cusp bifurcation for varying v and r. The value of z7 also
changes along the curve but is not shown. . . . . ... ... ... ... ..
Bifurcation diagram of the truncated amplitude equations of the fold-Hopf
bifurcation with s = 1,0 < 0. The various lines and curves in the diagram
are denoted hb for Hopf bifurcation, hc for heteroclinic cycle, ns for Neimark-
Sacker bifurcation and sn for saddle-node bifurcation. The seven phase
portraits a — f and hc show the dynamics in the (u,y)-plane. . . . . . . ..
Left: Sphere-like heteroclinic cycle between two equilibria. The cycle exists
on curve hc of the truncated normal form (4.3). Right: One of the homo-
clinic orbits remaining after adding perturbative higher order terms to the

truncated normal form. . . . . . . . ...
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10

Bifurcation diagram with fold-Hopf bifurcation (fh) as guiding center. Shown
are the saddle-node bifurcation curves snl and sn2 (coming together in the
cusp bifurcation c¢), the Hopf bifurcation curve hb and the period doubling
curve pd. The thin solid line winding in towards the fold-Hopf point is the
homoclinic bifurcation curve ho. Finally, in the magnification (bottom) the
curve of the Neimark-Sacker (or torus) bifurcation ns is visible: it emanates
from the fh point and ends on the pd curve. The homoclinic orbits from
three locations on the curve ho, indicated by e, are shown in figure 7. . . .
Homoclinic orbits at various points on the homoclinic curve ho. The orbits
are all attached to the zonal equilibrium eql and can be seen to approach
the wave-like equilibrium eq2 when moving along the curve ho towards the
fold-Hopf point. . . . . . . .. .o
Nearly heteroclinic cycle in various projections. . . . . . .. .. ... ...
Results of a 4000 days integration at (z},7) = (0.95,—0.801). Top: x; versus
time. The z;-values of eql and of the previous location of eq2/eq3 (see text)
are indicated. Bottom, left: projection of integration data onto (z1,x4)

plane. Bottomn, right: PDF in (z1,x4) plane calculated from integration

Flow regimes corresponding to eql (top) at (z7,r) = (0.95, —0.801) and to
eq2,3 (bottom) at the point where they collide (the saddle-node point sn2
at (z3,r) = (0.945,—0.801)). Thick lines are streamfunction lines (contour
interval 0.2 in nondimensional units), thin lines are topography contours
(interval 0.05 km). Dashed contours are for negative values, solid contours

for zero or positive values. . . . . . . .. ... .. L
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Meridional dependence of forcing profile 1)*, converted to zonal wind speed
v in m/s. Solid line: profile corresponding to (x3,r) = (0.95, —0.801), used
for the forward integration in section 5. Dashed line: profile corresponding

to fold-Hopf bifurcation point at (z},r) = (0.783324, —0.821677). . . . . . .
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Figure 1: Continuation of fixed points. Solid lines denote stable branches and dashed lines
unstable branches. On the left, barotropic instability is not possible and topography is
zero (r =+ = 0). On the right, topography is nonzero (v = 1), generating two saddle-node
bifurcations (snl and sn2). The three branches of equilibria are denoted by eql, eq2 and
eq3. The Hopf bifurcation hb (M) is due to barotropic instability (r = —0.4).
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Figure 2: Streamfunction patterns corresponding to the equilibria at 7 = 6,7 = —0.4,7 =
1. At the top and bottom are the stable equilibria, in the middle the unstable one. Thick
lines are streamfunction lines (contour interval 1 in nondimensional units), thin lines are
topography contours (interval 0.25 km). Dashed contours are for negative values, solid
contours for zero or positive values.
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Figure 3: Location of cusp bifurcation for varying v and r. The value of z] also changes
along the curve but is not shown.
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Figure 4: Bifurcation diagram of the truncated amplitude equations of the fold-Hopf bi-
furcation with s = 1,0 < 0. The various lines and curves in the diagram are denoted hb
for Hopf bifurcation, hc for heteroclinic cycle, ns for Neimark-Sacker bifurcation and sn for
saddle-node bifurcation. The seven phase portraits a — f and hc show the dynamics in the

(u,y)-plane.
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Figure 5: Left: Sphere-like heteroclinic cycle between two equilibria. The cycle exists on
curve he of the truncated normal form (4.3). Right: One of the homoclinic orbits remaining
after adding perturbative higher order terms to the truncated normal form.
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Figure 6: Bifurcation diagram with fold-Hopf bifurcation (fh) as guiding center. Shown are
the saddle-node bifurcation curves snl and sn2 (coming together in the cusp bifurcation
¢), the Hopf bifurcation curve hb and the period doubling curve pd. The thin solid line
winding in towards the fold-Hopf point is the homoclinic bifurcation curve ho. Finally, in
the magnification (bottom) the curve of the Neimark-Sacker (or torus) bifurcation ns is
visible: it emanates from the fh point and ends on the pd curve. The homoclinic orbits
from three locations on the curve ho, indicated by e, are shown in figure 7.
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Figure 7: Homoclinic orbits at various points on the homoclinic curve ho. The orbits
are all attached to the zonal equilibrium eql and can be seen to approach the wave-like
equilibrium eq2 when moving along the curve ho towards the fold-Hopf point.
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Figure 8: Nearly heteroclinic cycle in various projections.
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Figure 9: Results of a 4000 days integration at (z7,7) = (0.95, —0.801). Top: z; versus
time. The x1-values of eql and of the previous location of eq2/eq3 (see text) are indicated.
Bottom, left: projection of integration data onto (x,z4) plane. Bottomn, right: PDF in
(x1,z4) plane calculated from integration data.
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Figure 10: Flow regimes corresponding to eql (top) at (z},r) = (0.95,—0.801) and to
eq2,3 (bottom) at the point where they collide (the saddle-node point sn2 at (z3,r) =
(0.945,—0.801)). Thick lines are streamfunction lines (contour interval 0.2 in nondimen-
sional units), thin lines are topography contours (interval 0.05 km). Dashed contours are
for negative values, solid contours for zero or positive values.
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Figure 11: Meridional dependence of forcing profile 1*, converted to zonal wind speed u
in m/s. Solid line: profile corresponding to (z7,r) = (0.95,—0.801), used for the forward
integration in section 5. Dashed line: profile corresponding to fold-Hopf bifurcation point
at (z7,r) = (0.783324, —0.821677).
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