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Summary

The traditional analysis scheme in the Ensemble Kalman Filter (EnKF) uses a stochastic perturba-
tion or randomization of the measurements which ensures a correct variance in the updated ensemble.
An alternative deterministic analysis algorithm is based on a so called square-root formulation where
the perturbation of measurements is avoided. Experiments with simple models have indicated that
ensemble collapse is likely to occur when deterministic filters are applied to nonlinear problems. In this
paper the properties of stochastic and deterministic ensemble analysis algorithms are evaluated in an
identical-twin experiment using an ocean general circulation model. In particular, the implications of
the use of deterministic ensemble square-root filters (EnSRF) for ensemble spread are investigated. An
explanation is presented for the observed collapse and a simple solution based on randomization of the
analysis ensemble anomalies is examined. A 1-year assimilation run with this improved EnSRF is found
to produce Gaussian distributions, similar to the Ensemble Kalman Filter.
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1. Introduction

The Ensemble Kalman Filter (EnKF) provides a linear update to a non-
linear forecast ensemble and can thus be viewed as an intermediate step between
the Kalman Filter and particle filters. Investigations into its application to both
atmospheric and oceanographic systems have shown significant improvements
with respect to OI-type systems (Keppenne and Rienecker, 2002; Houtekamer
et al., 2005), and similar performance as currently operational 3DVar systems
(Houtekamer et al., 2005). The stochastic EnKF algorithm (Evensen, 1994; Burg-
ers et al., 1998) has properties and limitations which are by now well understood.
Outstanding issues are primarily related to the maintenance of ensemble spread
and balance for relatively small ensemble sizes, and the treatment of model bias.

Some recent studies have promoted deterministic filters on the grounds that
they are expected to be more accurate and computationally more efficient, and
preserve certain higher-order, non-Gaussian statistics of the forecast ensemble
(Tippett et al., 2003). Lawson and Hansen (2004) compared the behaviour of the
EnKF with the deterministic Ensemble Square-Root Filter (EnSRF) of Whitaker
and Hamill (2002) in linear and nonlinear dynamical regimes with simple test
models. They noticed that while ensemble variance is formally maintained by
the EnSRF, all members but one tend to collapse onto one state, with a single
outlier providing the prescribed variance. The EnKF on the other hand tends
to maintain a Gaussian ensemble spread also under nonlinear dynamical regimes
due to the Gaussian form of the observation perturbations.

The question addressed here is to what extend these findings are relevant
for realistic applications. In particular, we compare the behaviour of the EnKF
and an EnSRF in an identical-twin experiment where temperature profiles are
assimilated into the Tropical Pacific domain of an ocean general circulation model.
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The assimilation algorithms are reviewed briefly in Section 2. The addition
of a randomization step to the EnSRF algorithm is suggested as a means to
counter the tendency for ensemble collapse. Section 3 gives a short overview
of the experiment setup, including a description of the model. Results from
1-year assimilation runs with the EnKF, EnSRF, and the randomized EnSRF
are presented in Section 4. Finally, Section 5 concludes with a summary and
discussion.

2. Analysis algorithms

The analysis algorithms discussed here are described in detail by Evensen
(2004), but are now reviewed briefly. The EnSRF algorithm is explored in some
more detail.

(a) Ensemble Kalman Filter

The standard EnKF analysis algorithm (Evensen, 1994; Burgers et al., 1998)
is given by

A
a = A + PH

T(HPH
T + R)−1(D − HA) (1)
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′
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T(HA
′
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′T
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(3)

where A = (ψψψ1, . . . , ψψψN ) holds the ensemble of model forecasts, H is the mea-
surement operator, R is the observation error covariance matrix, and D is the en-
semble of perturbed measurements. Primes indicate anomalies with respect to the
ensemble mean, and the ensemble covariances are defined by P = A

′
A

′T/(N − 1).

(b) Ensemble Square Root Filter

The EnSRF updates the ensemble mean and the anomalies separately. The
updated mean, ψψψa is computed by an equation similar to (1), i.e.,

ψψψa =ψψψf + PH
T(HPH

T + R)−1(d − Hψψψf), (4)

where d are the unperturbed measurements. This gives exactly the same updated
ensemble mean as the EnKF as long as the measurement perturbations average
to zero.

An equation for the updated perturbations is obtained by equating the
definition of the ensemble covariance matrix with the covariance update which
follows from Kalman Filter theory,
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The notation S = HA
′ and C = SS

T + (N − 1)R is introduced in Eq. 6 and
an eigen value decomposition of the second term within the brackets of Eq. 6 is
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computed to obtain the eigenvectors Z and eigenvalues Λ (see Evensen (2004)
for details). Thus we define the update equation for the ensemble perturbations
as:

A
a′ = A

′
Z
√

I −Λ. (10)

This is essentially the same equation as is solved in the EnSRF algorithms dis-
cussed in Tippett et al., (2003) although they introduced additional simplifica-
tions for computational reasons.

A problem with the square-root filter algorithm can be illustrated by a
simple example where a single observation is used with a scalar state. With a
direct measurement operator H = 1 we have S = A

′. Further, since only the first
eigenvalue in Λ is nonzero, then the first eigenvector in Z must be identically
proportional to S

T (note that we have S ∈ <1×N in the case with a single
measurement). This is seen from the equality between Eqs. (6) and (7). However,
all the remaining N − 1 eigenvectors are orthogonal to the first eigenvector, and
thus also orthogonal to S

T.
Thus, the update equation (10) will lead to an ensemble of updated pertur-

bations where the first member will be equal to S(ST/||S||)
√

1 − λ1 and all the
N − 1 remaining perturbations will be identical to zero. Note that the resulting
ensemble still has the correct variance, but it is determined by the perturbation
in first ensemble member.

This example can clearly be extended to cases with larger state spaces. E.g.,
if the state dimension n > 1 there will still be a problem at the measurement
locations. In fact the rank of the ensemble is reduced to one at the measurement
location.

With more than one measurement the situation changes sligthly but the
same problem will occur if C

−1 is diagonal. Then each of the m columns in S
T

will be proportional to one of the first m eigenvectors in Z. Thus, the first m
ensemble perturbations will represent the analysis variance while the remainder
will be zero. This explains the findings of Lawson and Hansen (2004) where it
was shown that the EnSRF tends to produce ensembles where the variance is
provided by very few outliers.

The problem sketched here can be avoided by the insertion of a random
orthogonal matrix product I = V

T
V in (9), as was proposed by Evensen (2004),

i.e.,

A
a′
A

a′T = A
′
Z
√

I −ΛV
T
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(11)

which leads to the following randomized EnSRF update equation

A
a′ = A

′
Z
√

I −ΛV
T. (12)

The multiplication with V
T is equivalent to a random rotation of the eigenvectors

in Z, which has the effect of randomly distributing the variance reduction
among all the ensemble members. The random orthogonal matrix V

T is easily
constructed from a singular value decomposition of a random matrix B ∈ <N×N ,
i.e. B = UΣV

T.

(c) Localization

Following common practise, a covariance localisation step was added to the
EnKF to reduce long-range spurious correlations and increase the dimension of
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Figure 1. Differences between analysis and truth. (a) Z20 from EnKF, (b) Z20 from EnSRF,
(c) Z20 from EnSRF with rotation, (d) T at 50m from EnKF, (e) T at 50m from EnSRF, (f) T

at 50m from EnSRF with rotation.

the solution space (Houtekamer and Mitchell, 2001; Keppenne and Rienecker,
2002). Localisation was achieved for the EnSRF without covariance filtering by
reducing the data selection range for each grid point, resulting in an approxi-
mately equivalent effective number of observations as for the EnKF.

3. Experiment setup

The ocean model that is used here is the Max Planck Institut für Meteorologie
Ocean Model, or MPI-OM (Marsland et al. 2003). The model is run in a global
configuration with meridional refinement of the grid (0.5◦) within a 20◦ latitude
band centered on the equator.

The true ocean state is defined by a forward run of the ocean model using
NCEP/NCAR reanalysis forcing fields.

An unconstrained control run is forced with the ECMWF 40-year reanalysis
(ERA40) forcing fields. The use of two different forcing products is meant to
reflect the errors in our best-guess forcing products with respect to the true
forcing. The initial ensemble at the start of the assimilation run consists of
64 model states which are obtained by a 1-year spinup of an ensemble with
perturbed ERA40 forcing using the control state as initial condition. Details of
the perturbation method can be found in Leeuwenburgh (2005).
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Figure 2. Differences between analysis and truth. (a) T at 150m from EnKF, (b) T at 150m
from EnSRF, (c) T at 150m from EnSRF with rotation, (d) U at 75m from EnKF, (e) U at 75m

from EnSRF, (f) U at 75m from EnSRF with rotation.

Temperature measurements were simulated by sampling the truth run at the
geographical positions of the TAO (Tropical Atmosphere Ocean) buoys and the
corresponding depths of the temperature sensors. Random perturbations with a
1◦C standard deviation were added to all measurements to simulate realistic data
errors.

The assimilation run lasts 12 months and consists of consecutive 10-day
forward integrations of the ensemble (the resulting mean states will be referred
to as the forecasts), each followed by a filter step during which the simulated
observations are assimilated into the ensemble. The mean states of the resulting
ensembles (the analyses) will be compared with the control and the truth to
determine whether the assimilation has brought the model closer to the true
state. The ensemble statistics resulting from the EnKF and EnSRF runs are
compared to study the characteristics of the ensemble.

4. Results from assimilation runs

(a) Ensemble mean states

In this section the results are presented from 1-year assimilation runs per-
formed with the EnKF and the EnSRF. A third run was performed in which
the analysis ensemble anomalies resulting from the EnSRF undergo a random
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Figure 3. Temperature values at 220E 0N 120m depth from the truth, control, observations, and
the ensembles obtained with (a) the EnKF, (b) the EnSRF, and (c) the EnSRF with rotation.

rotation as described in the section 2 (this run will be referred to as EnSRF+).
Figures 1 and 2 show the time series of differences along the equator between
analyis and truth for the depth of the 20◦C isotherm (a good measure for the
position of the thermocline near the equator), temperature at 50m and 150m
depth, and zonal velocity at 75m depth. The figures indicate that the mean
states have comparable quality. Perhaps surprisingly, the EnKF appears to have
produced slightly better analyses. This runs contrary to the idea that the use
of observation perturbations introduces noise leading to worse analyses. These
figures can be compared to Figs. (6) and (7) from (Leeuwenburgh, 2005) which
show the corresponding differences between control and truth and between a sea
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Figure 4. Ensemble skewness determined at observations points for (a) the forecast ensembles
and (b) the analysis ensembles resulting from the assimilation runs with the EnKF, EnSRF and
EnSRF with roration (+). The box’ bounds indicate the interquartile range, and the whiskers
extend to the min and max values. The thick line indicates the median value. The maximum

theoretical value is 7.75.

level assimilation run and the truth. The EnKF analyses resulting from tem-
perature assimilation are consistently better than those resulting from sea level
assimilation, while the EnSRF analyses are of comparable quality.

(b) Ensemble distribution

Figure 3 shows time series of the analyzed temperature at one of the
measurement locations for all three runs. The small dots in these figures show
the distribution of the individual members of the analysis ensembles. The three
important observations that can be made on the basis of this figure are that
(1) the EnSRF produces the same behaviour that was observed by Lawson and
Hansen (2004), with in most cases only one outlier apparently providing the
required variance; (2) the random rotation in the randomized version EnSRF+
produces an ensemble with a more even spread (3) the EnSRF+ members are
grouped together more closely than those resulting from the EnKF.

The shape of the ensemble distribution can be assessed quantatively using
the skewness measure which is an indication of the asymmetry around the
mean. Since a Gaussian distribution is symmetric, high skewness values indicate
strong deviations from a Gaussian shape. The skewness of temperature values is
determined at all measurement locations and at all time steps. Figure 4 shows for
all three algorithms the resulting minimum and maximum values, the median,
and the interquartile ranges found during each run. While the skewness values
are very low for the EnKF and the EnSRF+, high values are obtained for the
EnSRF, in agreement with the indications from the time series of Fig. 3. Since
the forecast skewness estimates indicate fairly symmetric distributions, these high
values must be a result of a deficiency of the EnSRF analysis algorithm.

Lawson and Hansen (2004) produced rank histograms as an additional tool to
illustrate the high number of outliers. Hamill (2001) showed that rank histograms
may indicate several deficiencies of the ensemble simultaneously, one of them
being conditional biases which result in U-shaped histograms similar to those
shown by Lawson and Hansen (2004). Ocean assimilation in the tropics may
introduce biases on the equator through disturbance of the balance between the
sea level gradient and surface wind stress (Bell et al., 2004). Rank histograms may
therefore not be the optimal tool for assessment of the ensemble distribution
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in this case. Instead, a χ2 test is performed here to determine whether the
distributions are Gaussian or not. The temperature samples shown in Fig. 3 were
binned into 6 classes relative to the ensemble mean values, each representing
an equal area of the Gaussian PDF corresponding to the estimated standard
deviation of ensemble spread. The sum of the squared differences between the
number of occurances in each class and the expected value (64/6) has a χ2

distribution. The corresponding p-values are determined at every time step during
the assimilation run. If the number of rejections of the Gaussian assumption,
following from all individual χ2 tests, exceeds a critical number associated with
the binomial distribution and a chosen significance level, we conclude that
the ensemble distributions are non-Gaussian. For the time series of Fig. 3 the
Gaussian null-hypothesis is rejected at every time step for the EnSRF. The
number of rejections for the EnKF and EnSRF+ is low enough that we can
state with a 95% confidence level that the distributions are Gaussian.

5. Summary and conclusions

Experiments are conducted to compare the behaviour of stochastic and deter-
ministic ensemble filters in a realistic application. Simulated tropical temperature
profiles are assimilated in an OGCM using Ensemble Kalman and Square-Root
Filters. The mean analyzed states produced with the EnKF appear to be slightly
better than those from the EnSRF. In agreement with Lawson and Hansen (2004)
we find that the EnSRF has a tendency to collapse all but a few members onto a
single state. Skewness measures and χ2 tests confirm that the resulting ensembles
are highly non-Gaussian.

These findings point to some fundamental problems with the EnSRF. Mem-
bers of an ensemble should be equally likely, but the EnSRF returns singular
vectors ordered by decreasing or increasing (depending on the algorithm) singular
values (the square-root term in Eq. (10)). Given also that the sign of the vectors
Z is arbitrary, not all of the ensemble statistics are preserved. In particular the
skewness observed with the EnSRF is most likely inherited from the skewness of
the singular values (many near-zero singular values, few large values).

The EnSRF reduces errors along specific directions defined by Z in Eq.
(10), where Z is a rotation which comes from the SVD of the product of the
eigenvectors of C and S. Dependent on this product it is not clear what this
will mean in different situations. The single observation and diagonal C cases are
just two cases where problems arise, and there may be more. In fact, even though
all observations were assimilated simultaneously at each step, and a diagonal C

is unlikely to occur in realistic applications in oceanography and meteorology,
similar behaviour was found to occur in our experiments.

An additional random rotation of the ensemble anomalies is found to fix
the above problems well, although it was observed that the ensemble values are
grouped together more closely than for the EnKF.
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