Anomalous Scaling of Cumulus Cloud Boundaries
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The geometrical properties of cumulus clouds modeled by a
numerical technique called Large-Eddy-Simulation are inves-
tigated. Surface-Volume analyses reconfirm previous scaling
results based on satellite data. This technique allows for the
first time a direct analysis of the scaling behaviour of cloud
boundaries of individual clouds.
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Over the last decade, numerical simulation has be-
come an increasingly more important tool to study at-
mospheric turbulence [1]. Due to improving computer
resources it is now feasible to resolve a spatial scale range
of 2 to 3 orders of magnitude, i.e. (L/ly) ~ 10% ~ 103,
where [ is the grid spacing and L the domain size. Atmo-
spheric dynamics however ranges over 10 orders of mag-
nitude, from the smallest dissipative Kolmogorov scale
7 ~ 1 mm up to largest synoptic disturbances at scales
of several thousand kilometers. So depending on the scale
range of interest one has to choose the appropriate reso-
lution. On the large scale side of this spectrum we have
general circulation models (GCM’s), such as numerical
weather prediction models that use a resolution of Iy ~
50 km. On the small scale side of the spectrum one finds
Direct Numerical Simulation (DNS) models that oper-
ate at a resolution of the dissipative Kolmogorov scale 7.
In this case the Navier-Stokes equations are integrated
directly without having to make any subgrid scale as-
sumptions, but for atmospheric turbulence the domain
size would be L ~ 10 cm. Interesting scaling results
from both model types have been reported recently, that
supply a useful complement to laboratory and field ex-
periments [2,3].

In the present study we are interested in the geom-
etry of cumulus clouds. Clearly, we cannot utilize the
above mentioned simulation techniques since the linear
size of cumulus clouds (0.1 ~ 10 km) is well above the
domain size L of any DNS model and well below the res-
olution Iy of any GCM in the foreseeable future. We will
therefore employ another numerical technique, which is
Large-Eddy-Simulation (LES) [4]. The resolution of an
LES model is such that only the largest and most ener-
getic turbulent eddies of a three-dimensional turbulent
field are explicitely resolved, whereas the smaller subgrid
eddies are described by a diffusive subgrid filter that is
chosen such as to obey the well known scaling behaviour
in the inertial subrange. This approach, pioneered by
Deardorff [5] in the early seventies, was originally ap-

plied to the clear convective atmospheric boundary layer,
but can be used as well to simulate cloudy boundary
layers [6-12]. Comparisons with field experiments have
shown that present state of the art LES models are by
now well capable of numerically resolving the dynam-
ics of atmospheric turbulence in the presence of cumulus
clouds [10-12]. Therefore LES models provide a pow-
erful numerical laboratory generating three-dimensional
fields that are now widely used as testbeds for conceptual
models of cloud dynamics.

No effort has been made however to do a critical test
(or even to formulate one) for the geometrical properties
of these numerically produced synthetic clouds. Fortu-
nately, Nature does provide an excellent and critical test,
since one of the most striking examples of statistical self-
similarity is the fractal scaling of cloud boundaries as first
reported in Refs. [13,14]. Further empirical evidence can
be found in a number of papers on area-perimeter anal-
yses of the geometry of satellite- and radar-determined
cloud and rain patterns [15-18]. These analyses suggest
a fractal scaling of the cloud perimeter in the horizon-
tal plane with a fractal dimension D,, close to 4/3 over
a spectrum of four orders of magnitude in size, rang-
ing from small fair weather cumuli (~ 10! km) up to
huge stratusfields (~ 10 km), although occasional scale
breaks have also been reported [16,17]. For the dimen-
sion of the cloud surface D, this observed scaling im-
plies, assuming isotropy, Ds = D + 1 ~ 7/3. This scal-
ing exponent has been observed for interfaces of several
classical turbulent flows and Reynolds number similar-
ity arguments have been used to explain this behaviour
[19,20].

The main purpose of this Letter is twofold: Firstly we
will use this strong observational scaling fingerprint of
cloud geometries as a critical test for the synthetic clouds
such as simulated by LES. Secondly we will discuss the
consequences of these results for turbulent mixing across
the cloud boundaries. This process, called entrainment,
is an important process in the atmospheres hydrological
cycle, since cumulus clouds form an important transport
mechanism of heat and moisture from the Earth’s sur-
face into the free atmosphere. Yet, the exact intensity
of this mixing process and its parameterization in large
scale weather and climate models is still an active field
of research [21-23]

The LES model used in this study is standard and ex-
tensively described in the literature [10,11]. The govern-
ing set of equations are the filtered Navier-Stokes equa-
tions within the Boussinesq approximation for the ve-



locity field, and transport equations for heat and mois-
ture. For these quantities a monotone upwind advection
scheme is used in order to deal with the strong gradients
around the cloud boundaries [24]. A longwave radiation
model based on the ”grey-body” approximation [25] and
a shortwave ”two-stream” radiation model [26] is used.
Subgrid-scale turbulent fluxes are determined using a 1.5
order closure scheme for which an additional equation
of the turbulent kinetic energy is solved. Local pressure
fluctuations are calculated solving a Poisson equation.
Condensation effects are taken into account whenever
oversaturation effects are encountered. The equations
are solved on a computional domain of roughly 5 km?
in the horizontal and 3 km in the vertical which is di-
vided in 128 x 128 x 75 grid points with a grid size length
lo = 40m. The lateral boundary conditions are cyclic and
the surface fluxes for heat and moisture at the bottom
are prescribed.

The numerical simulation is based on the Bar-
bados Oceanographic and Meteorological Experiment
(BOMEX), during which nonprecipitating shallow cumu-
lus clouds, typical for the whole trade wind region, were
the only type of cumuli that were observed under steady-
state conditions. A time integration of 10 hours has been
made during which a realistic steady state was achieved
in agreement with observations. For a detailed discus-
sion on the the resulting dynamics for this case we refer
to the literature [11]. Our main focus here is on the cloud
geometry.

FIG. 1. Snapshot of a three-dimensional cloud field gener-
ated by the LES model.

In Fig. 1 we show a snapshot of a typical cloud field
after a simulation time of 4 hours. In analogy with
the aforementioned area-perimeter analyses we apply a
volume-surface analysis for the cumulus field shown in
Fig. 1 by measuring the surface area A and the volume
V of each cloud. A linear size of each cloud is then de-
fined as L = V'/3. For smooth shapes (balls, cubes etc.)
the surface area should scale as A ~ LP* with a surface
dimension of D; = 2.
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FIG. 2. Log-log plot of the surface area A versus its linear
size L = V'3 of all clouds displayed in Fig. 1 along with
a linear fit and a line corresponding to the Euclidean case
D; =2

Figure 2 shows a scatter plot of A versus L of all the
clouds in logarithmic coordinates. All the points corre-
sponding to clouds with a linear size [ > 4l are fitted to
a straight line. To improve statistics, this procedure is
repeated each 5 minutes over a period of 3 hours, thereby
building up a database of over 6000 clouds (Fig. 3).
This demonstrates that cloud surfaces show a strong and
significant non-Euclidian scaling behaviour indicating a
surface dimension close to Ds ~ 7/3. Let us stress the
fact that this result is highly non-trivial since it is hard
to define a dynamics that creates non-Euclidean shapes.
Arbritrary random shapes (lattice animals etc.) all fall
on the Euclidean (D, = 2) line.

It should be noted however that this simple volume-
surface analysis is not a complete numerical demonstra-
tion of fractal scaling of the individual cloud surfaces.
The possibility of some perverted self-affine scaling can-
not be excluded. For instance, if clouds were made of
cylinders with radius » and a height z(r) that scale with
the radius as z ~ r%/2, a volume-surface analysis would
also give D, = 7/3 even though the individual clouds
are ordinary Euclidean objects. To exclude this possibil-
ity we performed two additional tests. Firstly, in order
to mimick the observational satellite analysis method as
much as possible, we show in Fig. 3 also the results of an
area-perimeter analysis based on a two dimensional pro-
jection of the three-dimensional cloud fields. The method
is less accurate than the volume-surface analysis since it
clearly suffers more from discretisation effects. Neverthe-
less, a linear fit over the same size range gives a slope close
to Dp ~ 4/3 in agreement with observations. Apparently,
the isotropy assumption Dy = D, + 1 is justified.
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FIG. 3. The same analysis as in Fig. 2, but now using a
database of 6000 clouds. In the same plot we also show the
results of an area-perimeter analysis along with a fit and a
line corresponding to the Euclidean case D, = 1.

Secondly, we performed a direct correlation dimension
analysis based on individual clouds. This is done by us-
ing the correlation integral C(l) [27] which measures the
probability of finding two points Z; and Z; of the cloud
boundary within a cell of linear size [

Cly=>Y 00— |2 -z ~1" (1)
1,5
where 0(x) is the Heaviside step function, and where the

summation is taken over all possible pairs of cloud bound-
ary points.
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FIG. 4. Log-log plot of the correlation integral Eq. 1 for ten
individual clouds. Note that the scaling behaviour of the in-
dividual cloud surface areas is identical to the surface-volume
scaling displayed in Fig. 3

In Fig. 4 we show a plot of logl versus log C(l) for
the 10 largest clouds from the above mentioned cloud
database along with a line with a slope of 7/3 as a guide
to the eye. As an estimate for the surface dimension
we use the average of all the slopes of the lines in Fig.
4 for which we find D; = 2.32 £+ 0.01 where the error
is based on the standard deviation. This demonstrates
that individual clouds do all scale with the same dimen-
sion D as obtained by the volume-surface method. Note
that this is direct numerical evidence for the fact that
upscaled small clouds are statistically indistinghuisable
from coarse grained large clouds. In the present case the
lower cut-off is due to the model resolution ly. In this
respect the LES model can be regarded as an experimen-
tal device that can ”measure” the surface only up to an
accuracy of [ = lp. The real physical cut-off is set by the
Kolmogorov scale [ = 7, i.e. the scale where molecular
diffusion smoothes the fields. The variation of the surface
area S(l) with the resolution [ in the inertial subrange can
in general be written as [18,20]

1\ 2D
S(l)y=5t (f) n<l<L (2)
where S7, ~ L? is the normalizing area that would be ob-
tained if the surface area was measured with resolution
equal to the the outer scale L. From Eq. 2 two important
conclusions can be drawn. Firstly a naive Euclidean es-
timate S underestimates the ”true” cloud surface area
S(I = n) by a factor of (n/L)?>~ P+ which can be as large
as a factor of 100. Secondly, even using a model resolu-
tion of 40 m underestimates the real cloud surface area
by a factor of 5.

This result raises serious doubts whether LES can pro-
vide realistic estimates for turbulent transport across
such a cloud boundary. On the other hand LES results
are reported indicating that this entrainment process is
reasonably resolution independent [22]. To resolve this
apparent, paradox, let us write the diffusive transport T’
of a scalar with concentration ¢ across a fractal scaling
boundary at a model resolution ly as a product of the
area of the interface S (lozaand the diffusive flux across

. c
the interface F(ly) = -Ka-
Ac
T(lo) = S(lo) F(lo) ~ S(lo) K (lo) T 3)

where Ac is the typical concentration jump across the
interface. For the eddy diffusivity K in the LES model
the usual turbulent kinetic energy closure is used [4]

K (lo) ~ o |0t(lo)| (4)

where |d@(lo)| is a typical velocity difference over a length
lo. Invoking the usual Kolmogorov scaling

1/3
g ~ oyl () Q



illustrates that the closure given by Eq. 4 obeys the
Richardson 4/3 law and allows us, using Eq. 2, to write
Eq. 3 explicitly as a function of the model resolution Iy

7/3—D,
T(lo) ~ Ac Sy, |§@(L)| (%’) . (6)

This result implies that the turbulent transport T'(lp)
becomes resolution independent only if Dy = 7/3, very
close to the value that we obtained. From this result
the following physical picture emerges: At the resolved
scales lg < | < L an enlongated fractal scaling interface
is created under the action of turbulent stretching and
folding. Then at the resolution scale of the model ly, dif-
fusion does the actual mixing across the twisted interface.
As one can read off from Eq. 2, the length of the cloudy
boundary is underestimated by a factor (n/lp)?>~P due
to the model resolution. On the other hand, due to the
subgrid closure Eq. 4, the diffusion across the interface is
enhanced according to Richardsons law in precisely such
a way that the resulting transport across the interface
becomes resolution independent.

It is interesting to remark that this result is closely re-
lated to an heuristic proof of Sreenivasan et al. [18] show-
ing that the surface dimension of interfaces in turbulent
flows has to be Dy = 7/3. Repeating the arguments that
led to Eq. 6 at the Kolmogorov scale | = 7 gives
)7/3—D5

T(n) ~ Ac Sy 10i(L)] (2 Re~3/4(7/3-D) (7

~—

where in the last step we used that 7/L scales with the
Reynolds number as Re ™%/ 4 whereas the other terms
are independent of the Reynolds number. Subjecting the
boundary flux T'(n) to Reynolds number similarity, which
states that the flux should be Reynolds number indepen-
dent, the dimension of the surface must be Dy = 7/3.

In conclusion, the anomalous scaling of cloud bound-
aries such as observed by satellites is strongly reproduced
by LES models thereby providing numerical evidence
that such models generate a dynamics that reproduce
the correct cloud geometry. This allows more careful re-
search on the origin of this scaling since we now have a
numerical laboratory where we can study the cloud dy-
namics and cloud geometry in more detail.
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