
Statistical linkage of daily precipitation in Switzerland to
atmospheric circulation and temperature

Theo Brandsma*, T. Adri Buishand

Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE, De Bilt, The Netherlands

Received 29 March 1996; revised 19 September 1996; accepted 31 October 1996

Abstract

The daily precipitation of Bern, Neuchaˆtel and Payerne in Switzerland is statistically linked to
atmospheric circulation and temperature. For all three stations, there is a marked increase of the
mean precipitation amount with increasing temperature for wet days with temperatures between−5
and 208C. The amount of precipitation is also controlled by the direction and strength of the atmos-
pheric flow. To take these dependencies into account, the daily precipitation amounts are modelled
as a function of temperature and strength of the flow for three categories of flow direction. Both
parametric and nonparametric techniques from the statistical literature on generalized linear models
are applied. The nonparametric technique is a helpful tool for the selection and evaluation of
parametric models. The non-linear effects of temperature and strength of the flow on the amount
of precipitation are described by natural cubic splines and piecewise linear functions. The use of the
modelled relationships for climate-change scenario production is discussed.q 1997 Elsevier
Science B.V.

1. Introduction

General Circulation Models (GCMs) have been used to predict future climate condi-
tions resulting from the increase of greenhouse gases in the atmosphere. Because of their
coarse resolution and simplified physics, these models are unable to produce realistic
precipitation scenarios needed for the assessment of the hydrological impact of climate
change. One attempt to improve the representation of precipitation characteristics in the
model simulations is to nest a Regional Climate Model (RegCM) within the GCM.
RegCMs have a grid spacing of about 50 km (Giorgi et al., 1994; Jones et al., 1995).
Because of computational restrictions, today the run length of the RegCM simulations
does not exceed 10 years, which is actually too short for hydrological impact studies. In
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comparison with GCMs, RegCMs produce more realistic regional details of surface
climate as forced by topography, large lake systems or narrow land masses. However,
the difference in seasonal precipitation between the control runs and the observed values
(bias) in present-day simulations of regional climate is still too large to yield a high level
of confidence in simulated climate change scenarios. The simulated changes in seasonal
precipitation owing to doubling CO2 concentrations, are generally the same or smaller
than the precipitation biases (Kattenberg et al., 1996).

Stochastic simulation of time series has been a popular tool for deriving precipitation
scenarios indirectly. The two main approaches are: (1) adjusting the parameters in a
stochastic precipitation model in a manner consistent with the GCM predicted changes
in mean precipitation (Burlando and Rosso, 1991; Cole et al., 1991; Wilks, 1992); and (2)
driving a stochastic precipitation model with the GCM results for the large-scale atmos-
pheric circulation (Ba´rdossy and Plate, 1992; Hughes et al., 1993; Zorita et al., 1995). A
weakness of the first approach is that it relies on the GCM predicted changes in mean
precipitation, which are known to be unreliable. The second approach assumes that the
GCMs realistically reproduce the large-scale features of the upper air and that the change
in precipitation is solely a result of changes in the large-scale circulation. Consequently,
the direct effect of the greenhouse-gas-induced higher temperatures on precipitation is not
taken into account.

Matyasovszky et al. (1993) proposed a modification of the latter approach, based on
their experience with upper air characteristics in a simulation with the Canadian Climate
Centre GCM. They observed that the patterns of the 500 hPa field over their region of
interest were similar in the 1× CO2 and 2× CO2 cases and that there was a significant
increase in the heights of this pressure level for the 2× CO2 case. The latter is related to the
higher temperatures in the lower atmosphere. To generate daily precipitation sequences
for a 2 × CO2 case, they used the changes in the average height of the 500 hPa level to
adjust the parameters of the daily precipitation distribution in a modified version of the
model of Bárdossy and Plate (1992). The other characteristics of the circulation were
assumed to remain the same. In this paper, we follow a quite different approach by taking
the relationship between precipitation and temperature (P–T relationship) as a basis for
precipitation scenario construction. Buishand and Klein Tank (1996) studied this relation-
ship in order to derive precipitation scenarios for De Bilt, The Netherlands. In the present
paper, we extend their work by including information about the direction and strength of
the atmospheric flow and by using more flexible statistical models to describeP–T rela-
tionships in order to obtain precipitation scenarios for western Switzerland. Data from the
stations Bern, Neuchaˆtel and Payerne are analysed for this purpose. As a result, a tem-
perature and flow-direction-dependent scaling-factor is given that can be used to derive a
scenario of daily precipitation for the case of a spatially homogeneous warming. The
research in this paper is part of the EC-project POPSICLE (Production of Precipitation
Scenarios for Impact Assessment of Climate Change in Europe).

The paper is organised as follows. In Section 2, we first present empiricalP–T relation-
ships for Bern, Neuchaˆtel and Payerne. Then we show that theP–T relationships depend
on the direction of the atmospheric flow and that the strength of the flow is a necessary
additional explanatory variable. Section 3 deals with statistical methods for linking the
precipitation to the predictor variables. In that section, a survey is given of techniques that
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have been developed for data analysis with generalized linear models (McCullagh and
Nelder, 1989). A nonparametric smoothing technique is introduced to explore a relation-
ship and to test the adequacy of fitted parametric models. In Section 4, we present the
results for the three Swiss stations. The model choice is discussed in detail. The fitted
parametric model for Bern is used in Section 5 to estimate the change in mean precipita-
tion for the case of a spatially homogeneous warming. A short evaluation of our approach
is also given in that section. Section 6 contains the conclusions.

2. Description and analysis of data

In this section, we first give some background on the precipitation and temperature data
used in this study, then, empirical relationships between precipitation and temperature are
presented for wet days, where a wet day refers to a day with precipitation greater than or
equal to 0.3 mm. The influence of the direction and strength of the flow is discussed. The
need for eliminating seasonal variation is questioned.

2.1. Data description and empirical P–T relationships

2.1.1. Precipitation and temperature data
The locations of the three stations Bern, Neuchaˆtel and Payerne are shown in Fig. 1.

Bern and Payerne are situated in the Swiss Midland and Neuchaˆtel is situated along the
south-easterly foothills of the Jura Mountains that border the Swiss Midland. According to
Schüepp and Schirmer (1977), the entire area of the Midland has the maximum precipita-
tion in summer, mainly in the form of pre- or post-frontal showers or thunderstorms,
whereas in winter frontal precipitation predominates, modified by upslope or lee effects.

Fig. 1. Site map.
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The mean wet-day precipitation amounts vary from about 5 mm in winter to nearly 9 mm
in July and August. The characteristics of precipitation for Neuchaˆtel are quite similar to
those for the Swiss Midland.

For all three stations, daily precipitation data were obtained for the period 1901–1993.
Daily temperature data for that period were available for Bern and Neuchaˆtel, but for
Payerne only data for 1978–1993 were available. Because the spatial variability of tem-
perature is small, we have used the temperature series of Bern, corrected for the difference
in station altitude, as a substitute for the temperature at Payerne. The corrections have been
obtained by adding the difference between the mean monthly temperatures of Payerne and
Bern for the period 1978–1993 to the complete daily temperature series of Bern. The
corrections were rather small and ranged between 0.318C for the months of May and June
and 0.618C for the month of January. Some information about the three stations is given in
Table 1.

2.1.2. Empirical P–T relationships
Temperature determines the maximum moisture content of the air. The strength

of convection is also controlled by temperature. Because of these factors, there is a
link between precipitation and near-surface temperature. The annual cycle in the mean
wet-day precipitation amounts in western Switzerland is mainly due to this temperature
dependence.

Fig. 2 presents, for Bern, Neuchaˆtel and Payerne, the mean precipitation amounts at
various temperatures. Temperature and precipitation in this figure are averages on wet
days for preselected temperature intervals of 28C. However, classes with less than six wet
days have been combined with the adjoining classes.

TheP–T diagrams of the three stations have much in common. At temperatures of less
than 88C, when frontal precipitation predominates, there is a rapid increase in the mean
precipitation amounts with increasing temperature. At 108C, there is a small dip in the
mean precipitation amounts for all three stations. From 108C to about 158C there is again
an increase in the mean precipitation amounts with increasing temperature. For tempera-
tures greater than 158C the standard errors of the mean precipitation amounts start to
increase and the differences in the shape of theP–T relationships between the three
stations become more pronounced. In particular for Bern and Neuchaˆtel there is even a
decrease for temperatures greater than 208C.

Fig. 3 shows, for Bern, the dependence between daily precipitation and temperature
after removing the annual cycles in the mean wet-day temperature and precipitation. Here,

Table 1
Characteristics of stations that have been used in the study (mean annual values for the period 1901–1993)

Station Altitude (m above
m.s.l.)

Mean annual
temperature (8C)

Mean annual
precipitation (mm)

Bern 572 8.7 1009
Neuchâtel 489 9.6 975
Payerne 441 9.1a 895

a Estimated from a short local record and the long-term Bern data (see text).
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daily precipitation amounts were divided by their long-term monthly means (relative daily
precipitation anomaliesP9) and the long-term monthly mean temperatures were subtracted
from the daily temperatures (daily temperature anomaliesT 9). The left panel in Fig. 3
shows the mean relative daily precipitation anomalyP̄9 as a function ofT 9 over the whole
year. For most wet daysT 9 is between−58C and+58C. In that temperature anomaly range
there is an almost linear increase inP̄9 with increasingT 9 (about 4.5% per8C). There is,
however, no increase at highT 9. The middle and right panels in Fig. 3 give the corre-
sponding diagrams for the winter half of the year (October–March) and the summer half of
the year (April–September). There are marked differences between these two diagrams.

Fig. 2. Relationship between daily mean precipitation and daily mean temperature for wet days (0.3 mm or more)
at Bern, Neuchaˆtel and Payerne for the period 1901–1993. The error bars give the standard error of the mean
precipitation within each class. The total number of wet days for the three stations is 14062, 14147 and 13173,
respectively.

Fig. 3. Mean relative precipitation anomaly as a function of the daily temperature anomaly for wet days (0.3 mm
or more) at Bern for the whole year, the winter half of the year and the summer half of the year for the period
1901–1993. Anomalies are with respect to the long-term monthly mean wet-day precipitation amounts and
temperatures. The error bars give the standard error of the mean precipitation anomaly within each class.

102 T. Brandsma, T. Adri Buishand/Journal of Hydrology 198 (1997) 98–123



The relatively large change ofP̄9 with T 9 for the winter half of the year (about 7% per8C)
agrees with the observed increase in the mean wet-day precipitation amounts at low and
moderate temperatures in Fig. 2. Also, the diminishing of that increase at high tempera-
tures is consistent with the relatively small change inP̄9 for positiveT 9 in the summer half
of the year.

2.2. Atmospheric circulation and the P–T relationship

The atmospheric circulation is an important factor for the amount of precipitation.
Because of this link, the changes in the mean wet-day precipitation amounts shown in
Fig. 2 may not be representative of the true temperature effect. Daily mean sea-level
pressure (MSLP) data on a 58 × 108 grid from the UK Meteorological Office, covering
the whole 1901–1993 period, were used to account for the atmospheric circulation. We
centred the grid over Switzerland (see Fig. 4) and calculated, for each day, the direction of
the flow, the strength of the flowF, and the total shear vorticityZ. The latter is a measure of
the rotation of the atmosphere. Positive vorticity corresponds to a low pressure area
(cyclonic) and negative vorticity corresponds to a high pressure area (anti-cyclonic).
The derivation of the air-flow indicators is explained in Jones et al. (1993).

For the Swiss data it turned out that the direction and strength of the flow had a stronger
impact than vorticity on the wet-day precipitation amounts. To incorporate the direction of
the flow, we plotted theP–T diagrams for each 458 sector of flow direction. Sectors with
identical plots were grouped. This resulted in a classification of three categories of flow

Fig. 4. Grid points of mean sea-level pressure used for the calculation of the air-flow indicators over Switzerland.
Switzerland is situated at about 47N–8E.
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direction: (1) N/NE; (2) E/SE/S; and (3) SW/W/NW. Most rain (on average 64% for the
three stations) comes from the SW/W/NW category. The probability of precipitation for
the E/SE/S category is relatively small owing to a screening influence of the Alps. For
Bern theP–T relationships for the three categories are presented in Fig. 5. The figure
shows that for most temperatures, the mean precipitation amounts for the SW/W/NW
category are 1–2 mm higher than for the other two categories. For the E/SE/S category
the mean daily precipitation amounts show the least variation with temperature. A strong
increase in the mean daily precipitation with increasing temperature is found for the N/NE
category.

The strength of the atmospheric flowF influences the enhancement of precipitation in
hilly and mountainous areas by orographic lifting (Weston and Roy, 1994; Brown, 1995).
For the Swiss stations,F has the strongest effect in the SW/W/NW category. This is
illustrated in Fig. 6, which gives the mean wet-day precipitation amounts in distinct classes
of T andF for Bern. The enhancement of precipitation with increasing strength of the flow
is apparent from this figure. Fig. 6 also shows that precipitation at high temperatures
(summer showers) is not associated with strong winds.

2.3. Seasonal variation

Like temperature, the strength of the flow exhibits a clear annual cycle. For wet days,
the mean ofF in winter is about twice as large as it is in summer. Besides the annual cycles
in the means ofT andF, their relationship with precipitation varies over the year. The
annual cycle in the monthly mean wet-day precipitation amounts, assuming a constant
relationship, might, therefore, differ from the observed annual cycle. In the case of a
constantP–T relationship, the expected monthly means are easily obtained by replacing
the observed precipitation amount of each wet day by the mean precipitation amount in the
appropriate temperature class (dots in Fig. 2). For a constant relationship withT andF, the

Fig. 5. Relationship between daily mean precipitation and daily mean temperature for wet days (0.3 mm or more)
at Bern for the period 1901–1993 for three categories of flow direction: (1) N/NE; (2) E/SE/S; and (3) SW/W/
NW. The error bars give the standard error of the mean precipitation within each class. The total number of wet
days for the three categories of flow direction is 4617, 1716 and 7729, respectively.
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expected monthly means follow similarly from the mean wet-day precipitation amounts in
the various classes of these predictor variables. Fig. 7 compares the observed monthly
mean wet-day precipitation amounts for Bern with those for a constant relationship withT
and for a constant relationship withT andF within each category of flow direction. In both
cases, the mean wet-day precipitation amount is underestimated in July and August and
overestimated in spring. A similar discrepancy, though somewhat larger in magnitude, was

Fig. 6. Relationship between daily mean precipitation, temperature and strength of the flow for wet days (0.3 mm
or more) at Bern (1901–1993) for the SW/W/NW category. The radii of the circles are directly proportional to the
magnitude of the mean precipitation amounts; flow units are geostrophic, expressed as hPa per 108 latitude at
458N (1 unit is equivalent to 0.87 m s−1).

Fig. 7. Comparison between the observed monthly mean wet-day precipitation amounts for Bern (1901–1993)
and the expected monthly means for constantP–T andP–T–F relationships over the year. DifferentP–T–F
relationships are assumed for each of the three categories of flow direction N/NE, E/SE/S and SW/W/NW.
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observed by Klein Tank and Buishand (1993) for De Bilt. Additional predictor variables
would be needed to obtain a better description of the annual cycle of the mean wet-day
precipitation amounts. Plausible variables were, however, not available in this study.

Fig. 3 already showed quite different relationships for the anomalies in the winter and
summer halves of the year. Seasonal variation, thus, cannot simply be removed by analys-
ing anomalies instead of the original data. Working with anomalies ofT and F is also
rather unnatural because factors like the maximum atmospheric moisture content and
orographic enhancement are actually related toT andF themselves. Part of the seasonal
variation in the anomalies is due to nonlinearities in the effects ofT andF. A satisfactory
treatment of seasonal variation, in fact, needs a separate analysis for each season. This
leads, however, to a considerable increase in the number of parameters.

The constant relationship withT andF explains a large part of the annual cycle in the
mean wet-day precipitation amounts. It also reasonably describes the relatively strong
change in the mean wet-day precipitation amounts with increasing temperature during the
winter season and the relatively strong effect ofF during that season. Seasonal variation in
the relationship withT andF was, therefore, ignored in the statistical analysis.

3. Statistical modelling

The statistical modelling of relationships like those presented in Figs 2, 5 and 6 is not a
trivial problem. The main difficulty is that the standard deviation of daily precipitation
often tends to be large in situations where the mean amount is large. The statistical
techniques that deal with such data have shown a rapid development during the past 20
years. In this section, we give the necessary background for the applications to the Swiss
precipitation data. For ease of exposition, the case of a single predictor variable (tempera-
ture) is addressed first. Both parametric and nonparametric methods are discussed. The
extension to more than one predictor variable (both temperature and strength of the flow)
is examined at the end of this section.

3.1. Parametric models for the P–T relationship

3.1.1. Model description
For the statistical analysis, it is useful to represent the amount of precipitationP on a wet

day with temperatureT as:

P=exp[g(T)] + e (1)

whereg(T) is a function ofT ande is a random error with zero mean. The first term on the
right-hand side gives the expected value,m, of P:

m =E�P� =exp[g(T)] (2)

The change of the mean precipitation amount withT is thus determined by the function
g(T). For the linear model:

g(T) =a+bT (3)
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the mean increases exponentially with increasingT. From the diagrams in Section 2, it is
clear that more general functions are needed. Piecewise polynomials can be used to
describe complex relationships. For theP–T relationship at De Bilt (The Netherlands),
Buishand and Klein Tank (1996) considered the following function:

g(T) =

a+bT T # s1

a+bT +c(T −s1)2 +d(T −s1)3 s1 , T # s2

a+bT +c(s2 −s1)(2T −s2 −s1)

+d(s2 −s1)2(3T −2s2 −s1) T . s2

8

>
>
>
>
>
<

>
>
>
>
>
:

(4)

wheres1 ands2 are two pre-chosen knots. The functiong(T) is, thus, linear in the regions
beyond these knots. Linearity is assumed in these regions to avoid large standard errors
and rapid changes of the fitted values at the ends of the temperature range. The polynomial
pieces fit together at the knots in such a way thatg(T) and its first derivative are continuous
everywhere. The second derivative ofg(T) has, however, a discontinuity at the knotss1

ands2.
In this study, natural cubic splines are considered. A natural cubic spline (NCS) with

knotss1, …, sq is a separate polynomial for each of the intervals (s1,s2), …, (sq−1; sq) and is
linear outside (s1, sq). The different pieces are forced to join at these knots such thatg(T)
itself and its first and second derivatives are continuous at eachsj and thus over the entire
temperature range. These continuity constraints and the linearity forT , s1 require that
g(T) is of the form:

g(T) =a+bT + ∑
q

j =1
dj T −sj

ÿ �3
+ (5)

where (T − sj)+ = max(0,T − sj). This equation containsq+2 parameters. Linearity for
T . sq leads to the following two parameter constraints:

d1 +d2 +… +dq =0

d1s1 +d2s2 +… +dqsq =0

(

(6)

The total number of unknown parameters is, therefore, equal to the number of knots.
For q = 2, Eq. (6) yieldsd1 = d2 = 0 and the NCS reduces to the linear model given by
Eq. (3). Computer programmes for fitting natural cubic splines generally make use of the
B-spline basis functions:

g(T) = ∑
q

j =1
vjBj(T) (7)

EachBj(T) is a non-negative piecewise cubic polynomial with only limited support:
for 3 # j # q − 2 the functionBj(T) is zero outside (sj −2, sj +2), whilst B1(T), B2(T),
Bq−1(T) andBq(T) are similar, but linear or constant outside (s1, sq). Further details about
the natural B-spline basis can be found in Greville (1969).

The functiong(T) is linear in the unknown parametersa andb in Eq. (3) andv1, v2, …,
vq in Eq. (7). The model given by Eq. (1) is, however, non-linear in these parameters
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because of the exponential function. Another complication is that the distribution ofe

depends onT. For the precipitation amounts in Fig. 2, the standard deviationj of P
increases from about 5 mm atT = 08C to 10 mm atT = 208C. The coefficient of variation
CV= j/m shows less variation. Therefore it makes sense to considerCV rather thanj. The
change ofCV with temperature can simply be described by a linear relation:

CV =a +bT (8)

A consequence of the use of this relation is that the variance depends on the expected
response,m. We further assume that there is no correlation between the errors,e, for
successive wet days.

3.1.2. Fitting procedure
The situation where the expected response,m, is a monotone function of a linear

combination of unknown parameters and where the variance is a function ofm, is char-
acteristic of generalized linear models and their extensions. These models are discussed in
detail in McCullagh and Nelder (1989). An introduction to generalized linear models in
hydrology can be found in Clarke (1994). Parameter estimation in these models is based on
an iteratively-reweighted least-squares (IRLS) algorithm. The unknown coefficients in
g(T) can be estimated by an IRLS fit to the mean precipitation amounts in the various
temperature classes (Buishand and Klein Tank, 1996). It can be shown that the IRLS
procedure reduces to an iterative adjusted dependent variable regression.

Let nk denote the number of wet days,T̄k the mean temperature and̄Pk the mean
precipitation amount for thekth temperature class (k = 1, …, K). The adjusted dependent
variablezk is defined as:

zk = lnmk +
P̄k −mk

mk
k =1, …, K (9)

where

mk =exp g(T̄k)� � (10)

is the expected value ofP̄k. The variablezk is just the first-order Taylor expansion of ln(P̄k)
aboutmk. Themk andzk values are calculated after each iteration step, using the current
estimates of the coefficients ing(T̄k). Revised estimates are then obtained by a linear
regression ofzk on the various temperature components ofg(T̄k) with weightqk. For the
linear model given by Eq. (3) the model forzk reads:

zk =a+bT̄k +hk k =1, …, K (11)

and for the NCS we have:

zk =v1B1(T̄k) +… +vqBq(T̄k) +hk k =1, …, K (12)

In both caseshk is a random error with mean 0 and varianceCV2
k =nk, with CVk the

coefficient of variation for thekth class, andqk =nk=CV2
k . With the revised parameter

estimates new values ofmk andzk can be computed, and the process is repeated until the
relative change in the coefficients is small. The process is started withP̄k as a first estimate
of mk. Further details on the adjusted dependent variable regression are given in Buishand
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and Klein Tank (1996). In this paper, the S-PLUS software (see e.g. Chambers and Hastie,
1993) was used to obtain parameter estimates and to assess the adequacy of the fit.

The weights in the adjusted dependent variable regression need an estimate of the
coefficients of variationCVk. These are derived from Eq. (8). The parametersa andb

in that equation are obtained from a weighted least-squares fit (with weightnk) to the
sample coefficient of variation in the various classes.

3.1.3. Testing goodness of fit and model comparison
Because the number of wet days is large, it is quite reasonable to treat theCVk values

from Eq. (8) as known constants. For the mean precipitation amounts, the following scaled
log quasi-likelihood can then be defined:

Q(u) = −
1

CV2
k

∑
K

k =1
nk

P̄k

mk(u)
+ lnmk(u)

� �

(13)

with u the vector of unknown coefficients ing(T). The IRLS procedure maximisesQ(u)
with respect tou. The scaled log quasi-likelihood can be used to test the significance of the
various terms ing(T) in the same way as a log likelihood (McCullagh, 1986). It also
provides a goodness-of-fit statistic for testing the adequacy of the fitted model.

Let H0 and H1 be two nested hypotheses aboutg(T) with p and q . p coefficients,
respectively. For instance, under the null hypothesisH0 we may assume thatg(T) is linear
(p = 2) as given by Eq. (3) and underH1 we assume thatg(T) is an NCS withq . 2 knots.
Then a quasi-likelihood-ratio statistic can be obtained as:

QLR=2[Q(û1) −Q(û0)] (14)

with û0 and û1 the vectors of parameter estimates underH0 andH1, respectively. Under
H0, QLR has an asymptotic chi-squared distribution withq–p degrees of freedom.

A perfect fit to the mean precipitation amounts is obtained if we takemk = P̄k, k = 1, …,
K. This is in fact aK parameter model. The scaled log quasi-likelihood is then maximal:

Qmax= −
1

CV2
k

∑
K

k =1
nk[1+ lnP̄k] (15)

For the model under investigation themk values are estimated asm̂k =mk(û) and the maxi-
misedQ(u) is Q(û). The difference betweenQmaxandQ(û) is a measure of the goodness of
fit. The scaled deviance:

D(û) =
2

CV2
k

∑
K

k =1
nk

P̄k −mk(û)
mk(û)

− ln
P̄k

mk(û)

 !" #

(16)

has underH0 a chi-squared distribution withK–p degrees of freedom wherep is the
number of parameters underH0.

An alternative goodness-of-fit test based on the generalized Pearsonx2 statistic was
considered in Buishand and Klein Tank (1996). This statistic is just the first-order Taylor
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approximation ofD(^u). It should be noted further that theQLRstatistic in Eq. (14) can be
rewritten as the difference between the scaled deviances underH0 andH1:

QLR=D(û0) −D(û1) (17)

Besides theQLR statistic the Akaike-information criterion (AIC) can be used to select
the number of parameters. TheAIC statistic is defined by (Hastie and Tibshirani, 1990):

AIC =D(û) +2q (18)

with q denoting the number of parameters in the model. Inclusion of an extra parameter
reducesD(û), but leads to an increase of the second term on the right-hand side of Eq. (18).
That term can be thought of as a penalty for heavily parameterized models. The model for
whichAIC is smallest is selected. AQLR test at the 5% level is a more severe criterion for
the inclusion of a small number of additional parameters than theAIC (Hastie and
Tibshirani, 1990).

3.2. Nonparametric modelling of the P–T relationship

In the nonparametric approachg(T) is estimated without reference to a specific math-
ematical form. The value ofg(T) at a certain temperatureT0 is estimated from a local
approximation ofg(T) using only data from an interval aroundT0. This can be done in
different ways. In this paper, we use the so-called locally weighted running-line or loess
smoother owing to Cleveland (1979). For eachT0 the linear model in Eq. (3) is fitted in a
neighbourhoodN(T0) aroundT0 andg(T0) is then estimated as the fitted value atT0:

ĝ(T0) = â(T0) + b̂(T0)T0 (19)

Here â(T0) and b̂(T0) denote the estimates of the coefficientsa andb from the local fit.
These estimates are obtained from an iterative process using the adjusted dependent
variablezk given by Eq. (11). The weights in the adjusted dependent variable regression
now depend on both var(hk) and the distancedk of T̄k to the target pointT0. To account for
the latter, a tricube weight function is introduced:

Wk = 1−
dk

dmax

� �3� �3

k =1, …, r (20)

wherer is the number of points inN(T0),

dk = lT̄k −T0l, k =1 …, r (21)

anddmax the distance ofT0 to the furthest point inN(T0):

dmax= max
1#k#r

dk (22)

The total weight ofzk becomesqkWk. In the loess smootherN(T0) consists of ther closest
points toT0, regardless of which side they are on. The span,l, is defined by

l =
r
K

(23)
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The span controls the smoothness of the fitted relationship. A small value ofl results in a
relatively rough curve.

In Fig. 8, the nonparametric method is illustrated for the SW/W/NW category of Bern.
The figure presents the loess smooth forl = 0.3, 0.5 and 0.8. For the largest span the
smooth approaches the linear regression fit. Furthermore, it should be noted that in this
paper, some pre-smoothing has been done by averaging the precipitation values in each
temperature class. Pre-smoothing is a common technique when one deals with huge
amounts of data.

One purpose of smoothing is data description. Smooth curves help our eyes with
the interpretation of a scatter plot and are useful for finding suitable parametric formula-
tions. The nonparametric smoother also provides additional diagnostics to check the
adequacy of the fitted models. TheQLR statistic in the previous section can be used for
that purpose:

QLR=D(û0) −D(l) (24)

whereD(l) is the deviance for the nonparametric fit. The expression forD(l) is identical
to Eq. (16), except that the estimate ofmk is now determined byl rather than by estimated
parameters. An effective number of parameters or degrees of freedom (df) for the non-
parametric fit is needed in order to find the critical values of the test statistic. This effective
number is mainly controlled by the spanl. The degrees of freedom,df, decrease asl
increases. Details about the computation ofdf can be found in Hastie and Tibshirani
(1990). A value of theAIC statistic for the nonparametric fit can be obtained by replacing
q in Eq. (18) bydf. This statistic can be very helpful for finding a suitable span for the
smoother.

The adequacy of a nonparametric fit can be tested with the scaled devianceD(l). This
statistic has, under the null hypothesis, a chi-squared distribution withK–df degrees of
freedom.

Fig. 8. Illustration of the nonparametric method for wet days at Bern for the SW/W/NW category (Fig. 5, right
panel). The loess smooth is applied to the data for three values of the span,l = 0.3, 0.5 and 0.8. The choice ofl =
0.5 in the middle panel resulted in the smallest value of the Akaike-information criterion.
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3.3. Extension to two predictor variables

In Section 2.2 it was shown that the expected precipitation amount is influenced by the
strength of the flowF. The dependence ofP on bothT andF can be described by a model
similar to that for theP–T relationship:

P=exp[g(T,F)] + e (25)

wheree is a random error with zero mean. The change of the coefficient of variation withT
andF is approximated by the linear relation:

CV =a +bT +gF (26)

The functiong(T,F) and the coefficientsa, b andg in Eq. (26) are estimated for each
category of flow direction (N/NE, E/SE/S and SW/W/NW) separately.

Parametric models with two predictor variables can be analysed in the same way as the
P–T relationship in Section 3.1. There is a backfitting algorithm for nonparametric
models. This iterative smoothing algorithm can be used when the predictor effects in
g(T,F) are additive. Eq. (25) then takes the form:

P=expa+g1(T) +g2(F)� � + e (27)

where g1(T) and g2(F) are smooth functions inT and F, respectively. To avoid free
constants in Eq. (27), it is assumed that E[g1(T)] = E[g2(F)] = 0. The iteration process
is initialised withĝ1(T) = ĝ2(F) =0 andâ= ln(P̄), whereP̄ is the mean precipitation amount
of all wet days. The backfitting algorithm replaces the weighted linear regression of the
adjusted dependent variable on temperature and flow components by an additional loop in
which g1(T) andg2(F) are estimated alternately by smoothing partial residuals, e.g. using
the loess smoother in the previous section. Letzk be the adjusted dependent variable for the
kth class of the two predictor variables (k = l, …, K), and letT̄k andF̄k denote the mean
temperature and strength of the flow, respectively, for this class. Using the current estimate
of g2(F) an improved estimate ofg1(T) is obtained by smoothing the partial residuals:

r1, k =zk − â− ĝ2(F̄k) k =1, …, K (28)

on T. With this new estimate we can get a revised estimate ofg2(F) by smoothing the
partial residuals:

r2, k =zk − â− ĝ1(T̄k) k =1, …, K (29)

on F. This process is continued until neitherg1(T) nor g2(F) change from one iteration to
the next.

4. Results

We now present the results of the regression of daily precipitation on temperature and
strength of the flow. This regression needs information about the coefficient of variation
CV. The parameters in the model forCV are, therefore, discussed first. We then present
our nonparametric fits. These fits are used to find a suitable parametric model. Special
attention is given to the screening of models for the Bern data.
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4.1. Coefficient of variation CV

For each of the three stations, Bern, Neuchaˆtel and Payerne, the parameters in Eq. (26)
were estimated for the three categories of flow direction using a weighted least-squares
regression procedure with the number of wet days in a class specifying the weight. When
one or two parameters were not significant at the 0.05 level, the model was fitted again
with only the significant terms left. Table 2 presents the parameter estimates for the three
stations. The table shows that for the SW/W/NW category,F cannot be neglected in the
calculation ofCV. Because the range forF is about 30 geostrophic flow units, the influence
of F on CV can be, for Bern, as large as 0.58. The influence ofT on CV is somewhat
smaller. The range forT is roughly 258C which, in the worst case, may affect the magni-
tude ofCV by 0.24 (Bern, N/NE category).

4.2. Nonparametric fits

For each station and category of flow direction, we considered the nonparametric
estimation of the functionsg1(T) andg2(F) in Eq. (27). The spanslT andlF for T and
F were allowed to vary between 0.1 and 1.0 with intervals of 0.1. For each combination of
spans, we calculated theAIC. The combination oflT andlF that gave the smallestAIC
was considered further. To facilitate the comparison between the stations, we decided to
use, for all of them, the same span for a specific category of flow direction. This combina-
tion consisted of the lowestlT andlF of the three stations. For the three categories of
flow direction, this resulted in the following combinations of spans: (1) N/NE:lT = 0.4,
lF = 0.5; (2) E/SE/S:lT = 0.7,lF = 0.9; and (3) SW/W/NW:lT =0:4, lF =0:5.

Figs 9 and 10 present the estimated shapes ofg1(T) andg2(F), respectively. From Fig. 9,
it can be noted that there is, in general, an increase ofg1(T) with increasingT. For the N/
NE and SW/W/NW categories the increase ofg1(T) with T is small for large values ofT,
though this effect is less pronounced than in Figs 2 and 5 where often a decrease in the
mean precipitation amount with increasingT is found. For the SW/W/NW category, the
graph for Neuchaˆtel is rather different from that for Bern and Payerne. It is also apparent
that for the E/SE/S categoryg1(T) is almost linear.

Fig. 10 shows, for the SW/W/NW category, a strong increase ofg2(F) with increasingF,
which is in line with Fig. 6 for Bern. Possible explanations of this phenomenon are the
enhanced supply of maritime air on days with a strong west circulation and a larger

Table 2
Estimates of the parameters in Eq. (26) for the coefficient of variation

Parameter Bern Neuchaˆtel Payerne

N/NE E/SE/S SW/W/NW N/NE E/SE/S SW/W/NW N/NE E/SE/S SW/W/NW

a 1.0556 1.2198 1.2842 1.1074 1.2376 1.2386 1.2115 1.1736 1.2127
b 0.0097 — −0.0081 0.0092 — — — — —
g — — −0.0193 — — −0.0180 −0.0083 — −0.0128

The given estimates are significant at the 0.05 level.
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influence of the mountains on such days. However,g2(F) is almost constant at low values
of F, especially for Neuchaˆtel and Payerne. For the N/NE category the relationship
betweenP andF is weaker and more or less opposite to that for the SW/W/NW category.
Besides, there are considerable differences between the three stations for the N/NE cate-
gory (for small values ofF there is a decrease ofg2(F) with increasingF, for Berng2�F�
continues to decrease while especially for Neuchaˆtel g2(F) starts increasing for larger
values ofF). A reversal of the effect of the flow on orographic rainfall has been reported
elsewhere (Weston and Roy, 1994; Brown, 1995). The differences between the stations
indicate that the local topography is important. For the E/SE/S category the relationship
betweenP andF is weak, which is probably caused by the fact that the stations are situated
along the lee side of the Alps.

It is important to combine the NW direction with the W and SW directions and not

Fig. 9. Estimates of the contributiong1(T) of temperatureT to the logarithm of the expected daily precipitation
amounts on wet days for Bern, Neuchaˆtel and Payerne, for three categories of flow direction. The dashed curves
are, pointwise, standard-error bands (calculated according to Chambers and Hastie, 1993, pp. 303–304).
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with the N and NE directions. There is a sharp transition in the effect ofF on wet-day
precipitation between the NW and N directions, causing large differences in the shape of
g2(F) for the SW/W/NW and the N/NE categories.

4.3. Parameter estimates and goodness of fit

It appeared that an NCS with four knots was sufficient to model the non-linear effect of
T. The position of the knots was found by trial and error. Only minor improvement could
be achieved when the position of the knots was optimised for each station and category of
flow direction. Therefore, we chose to locate the knots forT at the same positions for all
stations and categories of flow direction at 2, 7, 12 and 178C. We used a truncated linear
term (F − t1)+ to represent the changes in the slope of the contribution of the strength of the

Fig. 10. Estimates of the contributiong2(F) of strength of the flowF to the logarithm of the expected daily
precipitation amounts on wet days for Bern, Neuchaˆtel and Payerne, for three categories of flow direction. The
dashed curves are, pointwise, standard-error bands (Chambers and Hastie, 1993, pp. 303–304); flow units are
geostrophic expressed as hPa per 108 latitude at 458N (1 unit is equivalent to 0.87 m s−1).
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flow for the N/NE (Neuchaˆtel, Payerne) and SW/W/NW (all stations) categories. For the
complete parametric model, the functiong(T,F) in Eq. (25) takes the form:

g(T, F) = a+bT +d1(T −s1)3
+ +d2(T −s2)3

+ +d3(T −s3)3
+ +d4(T −s4)3

+

+e1F +e2(F − t1) + �30�

where (s1, …, s4) = (2, 7, 12, 17) andt1 = 7 (SW/W/NW), 9 (N/NE, Neuchaˆtel) or 16 (N/
NE, Payerne). Depending on the situation, a number of terms could be left out in the final
model. For the E/SE/S category, the model even reduced to the simple linear model as
given by Eq. (3). For the other two categories, we compared, for Bern, the final model with
the linear model:

g(T, F) =a+bT +eF (31)

Table 3 presents, for this station, the scaled deviances and the accompanying degrees of
freedom for the two parametric models and the loess fits. The number of classes,K, equals
58, 47 and 60 for the N/NE, E/SE/S, and SW/W/NW categories, respectively. The
deviances can be used for screening models.

For the N/NE and SW/W/NW categories, the deviances for the linear model are much
larger than those for the loess model, indicating that the linear model is inadequate.
However, for the E/SE/S category, the loess fit does not lead to a significant decrease
of the deviance. This confirms the choice of the linear model for that category. For the N/
NE category, the difference between the deviances for the nonparametric loess model and
the final parametric NCS model is 8.1 on 4.7df, which is not significant according to the
chi-squared distribution. The two models thus, fit equally well. However, for the SW/W/
NW category, the nonparametric fit is much better than that achieved with the final
parametric NCS model. This is because an NCS with four knots is not capable of describ-
ing the rather wiggly shape of the functiong1(T) in Fig. 9 for that category. We can
improve the parametric fit by supplying two additional knots. In that case, the degrees
of freedom of the loess model and the NCS model are nearly the same and the deviance of
the NCS model (74.4) is even slightly smaller. Nevertheless, we decided to use the NCS
model with four knots because we have no physical reasons to assume that the wiggly
shape is real and also because the other two stations did not have the same problem with
the SW/W/NW category. To assess the consequences of our decision, we performed the
computations for Section 5 also with the NCS model with six knots.

The adequacy of the fit of the final model can be tested by comparing the scaled
deviances in Table 3 with the percentiles of the chi-squared distribution. These values
are significant at the 5% level for the N/NE and SW/W/NW categories. This is also the

Table 3

Scaled deviances and accompanying degrees of freedom (in parentheses) for the linear model, the loess fit and the
NCS model for Bern

Model N/NE E/SE/S SW/W/NW

Linear model 107.6 (55) 44.7 (45) 114.4 (57)
Loess model 69.1 (48.3) 41.5 (41.6) 74.8 (49.9)
NCS model 77.2 (53) — 95.7 (55)

116 T. Brandsma, T. Adri Buishand/Journal of Hydrology 198 (1997) 98–123



case for the loess fit for these categories. For the SW/W/NW category, a large contribution
to the deviance statistic comes from classes with moderate temperatures and high values of
F. This is of some concern because these classes have relatively high mean precipitation
amounts and they refer to wet days at or near the border of the observedT–F range as
given in Fig. 6. Both positive and negative outliers occur. There is, however, no clustering
of large positive or negative residuals that may suggest a systematic model deficiency. The
poor fit for the N/NE category is caused by a serious overestimation of the mean
precipitation amount in a single class with low temperatures (T , −48C) and weak
flows (2.5, F , 5). This outlier has a rather strong influence on the coefficiente1 for
the effect ofF. The estimate of this coefficient increases by about 15% when the outlier is
omitted.

The parameter estimates of the final model for the three stations and the three categories
of flow direction are presented in Table 4. The estimates ofa, b, d1,…, d4 in that table are
not provided by the S-PLUS software. S-PLUS works with the B-spline basis functions in
Eq. (7) instead of the truncated cubic polynomials in Eq. (5). Forq = 4 knots, there is,
however, no advantage in working with B-splines. The estimates ofa, b, d1,…, d4 were
obtained from the S-PLUS output by solving a set of six linear equations with six
unknowns. The two parameter constraints in Eq. (6) give the first two equations and the
values ofm at the four knots (withF set to zero) give the other four equations. The B-spline
basis functions forT and the (piecewise) linear terms inF were statistically significant at
the 5% level.

From Table 4, it is seen that there are marked differences between the various categories
of flow direction. It was already obvious, from Fig. 10, that, in particular, the effect ofF on
P differs from category to category. There are also differences between the stations
mutually, in particular between Bern and Payerne, on the one hand, and Neuchaˆtel on
the other.

Table 4 also presents the scaled deviances for the fitted models. The large values
for Neuchâtel for the N/NE and SW/W/NW categories are due to outliers that occur
more or less at the same positions as those for Bern. For Payerne, there is no evidence
of lack of fit.

5. Application to precipitation scenario production

The objective of the statistical linkage of daily precipitation to temperature and flow
characteristics was to provide precipitation scenarios for hydrological impact studies. This
application requires that the fitted relationships continue to hold under the altered climate.
The application, furthermore, needs reasonable guesses of the changes in the predictor
variables. One possibility is that the changes in the circulation patterns can be neglected, as
in Matyasovszky et al. (1993), but that there is a homogeneous temperature rise over a
large area. That this is indeed a realistic option for the changes owing to increased green-
house gases in the atmosphere is illustrated in Fig. 11. The figure gives the changes in
temperature and flow characteristics over Switzerland in a simulation with the Hadley
Centre coupled ocean–atmosphere model (Mitchell et al., 1995). Both greenhouse gases
and the direct radiative effects of sulphate aerosols are represented in this simulation
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experiment. Up to the year 2050, there are no changes in the annual averages of the
direction and strength of the flow and the vorticity. On the other hand, the increase in
temperature is quite clear. After the year 2050, there is a small decline in the vorticity and
the mean flow direction tends to shift from north-westerly to westerly. The changes in flow
direction mainly occur during the winter half of the year.

In this section, we first use the fitted parametric model for Bern to derive a precipitation

Fig. 11. Annual mean values for temperature and flow characteristics over Switzerland in a simulation with the
Hadley Centre coupled ocean–atmosphere model with aerosol effects included (Mitchell et al., 1995). Flow and
vorticity units are geostrophic, expressed as hPa per 108 latitude at 458N (1 unit is equivalent to 0.87 m s−1 and
0.78× 10−6 s−1 for flow and vorticity, respectively). The solid lines are locally weighted running-line smooths
with a span of 30 years.

119T. Brandsma, T. Adri Buishand/Journal of Hydrology 198 (1997) 98–123



scenario for the case of a spatially homogeneous warming. Then we discuss the complica-
tions that arise if there are changes in the atmospheric flow as well. Some difficulties with
the estimation of the temperature effect on precipitation are also identified.

5.1. Precipitation scenarios for the case of a spatially homogeneous warming

Here, we deal with the case in which there is a systematic changeDT in the daily
temperatures and there are no changes in the direction and strength of the flow. A quite
reasonable assumption in this situation is that the number of wet days remains the same.
For the sake of simplicity, we further assume that there is no seasonal variation in the
values ofDT. A precipitation scenario can then simply be obtained by multiplying the
observed wet-day precipitation amounts by a scaling factorG. For a day with temperature
T and strength of the flowF, G is derived as:

G(T,DT) =
m(T +DT,F)

m(T, F)
=exp[g(T +DT,F) −g(T,F)] (32)

wherem(T,F) is the expected value ofP as a function ofT andF. Because in our models
the effects ofT andF ong(T,F) are additive,G does not depend onF; for the linear model
(E/SE/S category)G is even constant.

Fig. 12 presentsG for the three categories of flow direction forDT = 1 and 38C using the
parameter estimates for Bern in Table 4. The factorG for the E/SE/S category is rather
different from that for the two other categories. ForDT = 38C the mean annual precipita-
tion at Bern increases by 11.2% while the mean precipitation in the winter and summer
half of the year increases by 16.8 and 7.5%, respectively.

A deterministic transformation of historical precipitation records implies that the tem-
poral dependence of precipitation is more or less preserved as it should be when there are
no significant changes in the atmospheric circulation. The transformation only requires a
statistical description of the mean precipitation amounts instead of their complete distri-
bution as in Matyasovszky et al. (1993). The method proposed by those authors also needs
a substantial extension for applications where daily temperature data are needed.

5.2. Extensions for changes in the atmospheric flow

A scaling factor similar to that in Eq. (32) can be derived to account for the effect of a
systematic change ofF on the mean wet-day precipitation amounts. However, a simple
transformation of the observed wet-day precipitation amounts is not sufficient for that
case, because a change in the strength of the flow will generally be accompanied by an
increase or decrease in the number of wet days. Klein Tank and Buishand (1995) describe
the use of logistic regression to include or remove wet days in an observed record.

A deterministic transformation of observed rainfall is not the most obvious method
when the frequencies of the flow directions change as well. In that case, it may be
advantageous to combine a time series model for generating daily rainfall sequences,
conditional on the large-scale circulation, with the regression models developed in the
present paper, to adjust the precipitation amounts for the higher expected temperatures.
The derivation of the temperature effect on the precipitation amounts needs some care in
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that application. Part of the temperature rise after the year 2050 in Fig. 11 is due to the
systematic change in the mean flow direction. This contribution to the temperature rise
must be separated from the overall warming resulting from the increased atmospheric
greenhouse gas concentrations.

5.3. Confidence in the estimated temperature effect

The use of the transformation technique in Section 5.1 requires that the temperature
effect on precipitation can be separated from other factors. Suitable climatic data for such
a separation may not be available. Regression models with a limited number of parameters
can only take the most important factors into account. However, a model with many
predictor variables becomes intractable, in particular when the effects of these variables
are non-linear.

There are also uncertainties in the modelling of the non-linear temperature effect on
precipitation. In Section 4.3 we found that, for Bern, the parametric fit for the SW/W/NW
category could be improved by taking an NCS with six knots for the temperature effect.
The estimated change in summer precipitation is sensitive to the chosen NCS. For a
spatially homogeneous warming of 38C, the increase in the mean precipitation for the
summer half of the year is only 4.1% for the NCS with six knots (was 7.5% for the NCS
with four knots). Furthermore, the effect of this warming on the mean precipitation
amounts at Neuchaˆtel and Payerne is smaller than that for Bern, especially in the winter
half of the year (increases of 9.5% for Neuchaˆtel, 12.7% for Payerne and 16.8% for Bern).
Although the temperature effect on precipitation may vary over the region, the differences
may also be due to simplifications in our approach.

The negligence of seasonal variation in the model parameters and the scaling factorG,
further lowers the confidence in the estimated temperature effect on precipitation. Another
point of concern is that, at high temperatures, the change in the mean wet-day precipitation
amounts with increasing temperature is much smaller than that expected for summer
thunder storms (Klein Tank and Ko¨nnen, 1994). To get a better description of theP–T
relationship at high temperatures, it might be necessary to include some information about

Fig. 12. Scaling factors,G, for Bern for the three categories of flow direction and forDT = 1 (solid line) and 38C
(dashed line).
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the precipitation mechanism. This may also improve the reproduction of the annual cycle
of the mean wet-day precipitation amounts.

6. Conclusions

In this paper, we explored theP–T relationship as a basis for precipitation scenario
production. Three Swiss stations were considered: Bern, Neuchaˆtel and Payerne. For these
stations, we included information about the direction and strength of the atmospheric flow
F. An iterative smoothing technique gave a clear insight into the effects ofT andF on the
expected precipitation amounts on wet days. Parametric NCS were introduced as flexible
tools to model the nonlinearities in theP–T relationships. Abrupt changes in the effect ofF
could be modelled by a truncated linear term. From the fitted relationships, a scaling factor
was derived to produce a precipitation scenario for the case of a systematic temperature
change. A combination with other models is necessary to use our relationships for the wet-
day precipitation amounts in situations where the temperature increase is accompanied by
a systematic change in the airflow. Information about the precipitation mechanism may be
required to improve our estimates of the changes in precipitation, especially at high
temperatures.
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