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Chapter 1

Introduction

In this report we describe generalizations which have been made to the advec-
tion scheme of the TM5 chemistry-transport model. TM5 [Krol et al., 2005] is a
global atmospheric model used by an international research community for the
purpose of long range transport of chemical species and their subsequent effect
on the regional atmosphere.The model is driven by meteorological fields origi-
nating from the IFS operational model used at ECMWF (European Center for
Medium-range Weather Forecast). The data is stored offline as a pre-processed
input and updated every 3 or 6 hours.

In the current implementation the TM5 model can either use the first-order
slopes scheme [Russell and Lerner, 1981] or the second-order moments scheme
[Prather, 1986], for the transport of tracers. The difference between these
schemes is that less diffusive transport is calculated when using the second-
order moments scheme, which is important for stratospheric studies. To model
the advection, the finite volume method is used, which is natural for chemistry
and has a high user acceptance. Finally, this method satisfies the underlying
conservation of mass automatically. The advection uses a horizontal grid def-
inition which is regular in both longitudinal (x) and latitudinal (y) direction
known as a regular grid, see figure 1.1. The grid cells near the earth’s poles
have a much smaller area than those at the equator. For these smaller cells
there is the possibility that during a model time-step more mass is advected
out of a cell than the cell contains, the so called CFL (Courant, Friedrichs and
Lewy) violation. In order to avoid this the time-step in the model must be
reduced which is computationally expensive. A solution to this problem is the
reduced grid [Petersen et al., 1998] where a number of smaller cells is combined
into larger ones. That is, pole wards an integer number of cells from previous
rows is combined. This is illustrated in figure 1.2. A drawback here is the
relative big jump in the cell size from one latitudinal band to the other.

The original meteorological data originating from ECMWF is provided on
a fully reduced grid. Figure 1.3 is an example of such a grid, where a variable
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Equator

North pole

South pole

Figure 1.1: The regular grid on the earth in 2-D. The regular
grid has on every latitude the same number of cells, they become
smaller and smaller near the poles in terms of area.

90 cells Equator

North pole

South pole

variable number of cells

Figure 1.2: The reduced grid in 2-D. We see that the grid has
only one cell at the poles and an increasing number of cells near
and on the equator.

number of cells is included in the x direction. The cell length is constant within
each row, but might differ from row to row. Since the data provided by ECMWF
is on this type of grid it is desirable that the advection scheme also uses the
fully reduced grid. However, for this to be feasible the advection scheme needs
to be modified so that it performs well for such a grid. These grids on a sphere
are illustrated in the appendix.

In chapter 2 we describe the problem. In chapter 3 we define the grid we
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Figure 1.3: The fully reduced grid. We see that the grid is less
structured then the former grids, which makes it possible to use
lesser cells.

work on. Then, in chapter 4 we will start with the theory for the one dimensional
case, followed by some examples. The general case will be treated in chapter
5. Chapter 6 contains some discussion about the theory. We end with the
conclusion in section 7.
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Chapter 2

Problem Definition

In summary, the definition of the problem is: If the tracer distribution in a
2-D network of grid cells is known at time t = t0, how do we achieve a valid
approximation of the tracer distribution after a typical time step (t = t0 + ∆t)?

Here we consider the advection of a passive tracer in a typical air-mass. A
2-D grid is adopted for this purpose (with advection in the x and y direction),
where no vertical (z) advection is accounted for. In order to limit the computa-
tional cost we use the fully reduced grid (figure 1.3). We model the advection
by considering the mass transfer which occurs to and from a particular grid cell.
However, we must ensure that the advection accounts for multiple interactions
by neighboring grid cells.

Before the advection is performed we assume that the tracer is distributed
linearly throughout each grid cell. The mass of air [kg] in any cell is modified
during the advection step of length ∆t [s] by the prescribed fluxes [kg/s] on
the cell edges. Due to these fluxes, tracer is transfered between cells which
cause changes in the tracer distribution. Then we have multiple distributions
defined on different parts of the cell. By some sort of averaging (least squares
approximation) we have to make one distribution of these. We will come back
to this in detail in the forthcoming sections.

We have a two dimensional problem here, so the advection occurs in two di-
rections simultaneously. Because it is easier to do the advection in one direction
at a time, we use operator splitting. We split the advection in a horizontal and
a vertical part, in a symmetric way. The latter means that for one time step ∆t
we do the following subsequent steps: X(∆t/2), Y (∆t/2), Y (∆t/2), X(∆t/2),
where X, Y are the advection operators in x and y direction respectively. The
symmetric order reduces the error introduced by splitting [Lanser and Verwer, 1999].
Since the grid is regular in the x direction, the only difficult part is the modeling
of the advection in the y direction, that is, the Y operator. That is the operator
we will study here. The modeling of the advection in the x direction can be
seen as a special case of the general advection in y direction.
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Chapter 3

Grid Definition

Assume we are working on a full reduced grid. For explaining the mathematical
model we will use figure 3.1. However, we start with listing some cell properties
that we will use in the model.

i

1 2

43

y

Figure 3.1: Zooming over the reduced grid.

3.1 Cell properties

In general we have a list of properties for each cell. These properties are for
example: length, width, the number of neighbors, indices of neighbors and
fluxes. All the cell properties are listed in table 3.1. Here we mean the following
by inflow and outflow neighbors. An inflow neighbor is an adjacent cell of cell
i for which during the advection step mass is transfered into cell i. An outflow
neighbor is an adjacent cell for which mass is transfered into from cell i. For
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figure 3.1 this means that neighbors 1, 2 and 3 are inflow neighbors, and 4 is
an outflow neighbor. The arrows indicate the amplitude and direction of the
fluxes.

Property Description Unit
xi x-coordinaat center cell i, [m]
yi y-coordinaat center cell i, [m]

∆xi length cell i, [m]
∆yi height cell i, [m]
Bi, collection of all neighbors -
Bi

out, collection of outflow neighbors -
noi = |Bi

out| # outflow neighbors -
Bi

in, collection of inflow neighbors -
nii = |Bi

in| # inflow neighbors -
Bi

low, collection of lower neighbors indices -
Bi

up, collection of upper neighbors indices -

A1
in, . . . , Anilow

in fluxes of all inflow neighbors [kg/s]
A1

out, . . . , A
no
out fluxes of all outflow neighbors [kg/s]

Ak fluxes between cell i and k [kg/s]

Table 3.1: List of properties of cell i.

In addition to the properties of cell i we need some information or properties
of the neighbors of this cell. For every neighbor of cell i we need to know two
things. The first one is the so-called outward normal n. This means that for
a lower neighbor of i, n = −1 and for an upper neighbor we have n = 1. The
second thing is if the neighbor is a full neighbor or partly a neighbor. This can
be explained easily by considering figure 3.1 again. We see that neighbor 1 and
2 are only partly adjacent two cell i, so these are partly neigbors. Neighbors 3
and 4 on the other hand are full neigbors. Finally, we count the neighbors by
starting by the lower left and we go from left to right.

3.2 Subgrid Tracer Distribution

In general we have within each grid cell a polynomial tracer distribution of
degree n in two dimensions. We want to write the tracer distribution on a basis
Φ of orthonormal functions on a calculation domain which is [− 1

2
, 1

2
] x [− 1

2
, 1

2
].

In general we thus have

Φ = {φ0, . . . , φn}, (3.1)

and we may write the tracer distribution in cell i as
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f i(x, y) =
n

∑

j=0

αi
j φj(x, y), −1

2
< x, y <

1

2
. (3.2)

In this study however, we emphasis on a linear tracer distribution, hence
n = 2.

3.3 Orthonormal Basis

We start with the construction of the orthonormal basis Φ for the innerprod-

uctspace P
1
(

[− 1
2
, 1

2
] x [− 1

2
, 1

2
])
)

, from the standard basis B = {1, x, y}. That

is, the space of all linear functions on the interval [− 1
2
, 1

2
] x [− 1

2
, 1

2
]. The inner

product is defined to be

< u, v >=

1

2
∫

y=−
1

2

1

2
∫

x=−
1

2

u(x, y)v(x, y) dxdy for u, v ∈ P
1. (3.3)

By using the orthogonalizing algorithm from Gramm-Schmidt [Lay, 2003],
with some normalizing in addition, we obtain our desired basis

Φ := {φ0, φ1, φ2} =

{

1, 2
√

3x, 2
√

3 y

}

. (3.4)

Such that for the elements of Φ holds

< φi, φj >= δij =

{

1, i = j,
0, i 6= j

(3.5)

Figure 3.2 illustrates the subgrid tracer distribution for the one dimensional
case which we will treat in the next chapter, where we count the neighbors as
we defined in section 3.1.

The chosen basis has a few advantages. The domain [− 1
2
, 1

2
] x [− 1

2
, 1

2
] is

symmetric around zero, so the middle point of the domain is 0, which is easier
and more readable then in case of an unsymmetric interval. In the end we have
to say that it doesn’t matter which interval we take if we use it in a consequent
way, but there are some choices that makes life easy.
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Figure 3.2: Definition of the tracer distribution with constant flux
in a vertical flow. Tracer distributions are blown up from below.
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Chapter 4

One Dimensional Example

Assume that we have a situation as in the left part of figure 4.1. Here we see
one dimensional flow in the y direction. Let us furthermore assume for now that
the fluxes are equal to each other.

4.1 Advection Theory

A first step in the numerical advection process is to define the new cell mass due
to fluxes through the edges of cell i. Assume that the mass on time t is written
mi(t). The new mass a time step ∆t later can be described using table 3.1 by

mi(t + ∆t) = mi(t) −
∑

k∈Bi

Ak ∆t n(k). (4.1)

Now the air mass has been updated, we consider the advection of the tracer
itself. In general we have inflow or outflow on both edges of the cell, so we
split cell i in 3 parts. In this simple example we have inflow on the lower edge
and outflow on the upper edge (figure 4.1). The lower part (a) is used for the
distribution of the lower inflow neighbor. The middle part (b) is used for the
tracer remaining in the cell. The rest of the cell (c) flows out of cell i, and is not
of that much interest, although we need to know how much air (with tracer) is
blown out of cell i. So we will start with the latter one.

The total net outflow mass leaving cell i through the upper edge is

∆mi
out;up = −

∑

k∈Bi
up∩Bi

out

Ak
out ∆t n(k). (4.2)

The fraction of the air mass that left cell i is

eU =
∆mi

out;up

mi(t)
∈ [0, 1]. (4.3)
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Figure 4.1: Tracer distribution on the subgrid in three adjacent
cells before advection with the in and outflow fractions dL and eU

(left). During advection cell i is divided in two parts (a and b),
separated by the tripple dots line. The lower part (a) is for the
distribution of the tracer that is blown into the cell. The remaining
part (b) is for the distribution of tracer that remains in the cell
(right). The dotted arrows give an indication of the mapping. The
neigbors of cell i are counted as defined in the last chapter.
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Here we have

eU =
A2

out ∆t

mi(t)
. (4.4)

Then we turn our attention to the inflow into cell i from below. The total
net inflow mass entering cell i is

∆mi
in;low = −

∑

k∈Bi
low

∩Bi
in

Ak
in ∆t n(k). (4.5)

The fraction of the air mass that entered cell i through the lower edge is

dU =
∆mi

in;low

mi(t + ∆t)
, (4.6)

which, in this case is equal to

dU =
A1

in ∆t

mi(t + ∆t)
. (4.7)

With this mass there is also tracer advected in cell i. But the part of the cell
from where the tracer originates, is defined on the upper part of cell 1, (see left
side of figure 4.1). We map this function such that it is defined on the lower
part of cell i. We also require tracer mass conservation. Remember that per cell
we work on our calculation domain [− 1

2
, 1

2
]x[− 1

2
, 1

2
]. So it is not sufficient only

to translate the part of the distribution of the inflow tracer, because we would
leave the calculation domain. Therefore we have to map the distribution in the
following way (figure 4.1, block a).

f̂1(x, y) = ρ1 f1(x, ρ1(y − ζ1)), −1

2
< x <

1

2
, −1

2
< y < −1

2
+ dL, (4.8)

where ρ1, ζ1 are provided by the Lin-Map function defined in chapter 5

[ρ1, ζ1] = Lin-Map
(1

2
− dL,

1

2
,−1

2
,−1

2
+ dL

)

. (4.9)

We may actually prove the mass conservation by considering that

∫ 1

2

x=− 1

2

∫ − 1

2
+dL

y=− 1

2

f̂1(x, y) dxdy =

∫ 1

2

x=− 1

2

∫ − 1

2
+dL

y=− 1

2

ρ1 f1
(

x, ρ1(y − ζ1
)

dxdy.

(4.10)
If we now substitute ν = ρ1(y − ζ1), and work out the details we find that

the latter integral in (4.10) is equal to

∫ 1

2

x=− 1

2

∫ 1

2

ν= 1

2
−dL

f1(x, ν) dxdν. (4.11)
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And this is exactly the mass of the tracer that is blown into cell i.

Then we turn to the part of the tracer distribution that remains in cell i. We
already know how much air is blown out, and what fraction of the total mass it
is, so we may directly apply the mapping (figure 4.1, block b)

f̃ i(x, y) = ρr f i(x, ρr(y − ζr)), −1

2
< x <

1

2
, −1

2
+ dL < y <

1

2
, (4.12)

where

[ρr, ζr] = Lin-Map
(

− 1

2
,
1

2
− eU ,−1

2
+ dL,

1

2

)

(4.13)

Now we have a piecewise linear tracer concentration f̄ defined in cell i. We
write the piecewise function f̄ as

f̄(x, y) =







f̂1(x, y), − 1
2

< x < 1
2
, − 1

2
< y < − 1

2
+ dL,

f̃ i(x, y), − 1
2

< x < 1
2
, − 1

2
+ dL < y < 1

2
.

(4.14)

We construct a function g by

g(x, y) =

2
∑

j=0

βj φj(x, y), −1

2
< x, y <

1

2
, (4.15)

By applying the method of least squares we can choose the coefficients βj

such that the difference is minimal in l2 sense.

I =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

[f̄(x, y) − g(x, y)]2 dxdy. (4.16)

The expression for the coefficients βj is (for the proof see appendix B)

βj =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

f̄(x, y) φj(x, y) dxdy, for j = 0, 1, 2. (4.17)

4.2 Notation

We saw in the example of the advection scheme in section 4.1 for the most
simple case that we need some notational conventions to keep things readable
and understandable. We introduce the following notation. Before we do any
advection we have a tracer distribution in all cells, denoted by
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f l(x, y) =

2
∑

j=0

αl
j φj(x, y), −1

2
< x, y <

1

2
and l = 1, . . . , Ntot (4.18)

where Ntot is the total number of cells. During the advection step we have
to map the distributions of the inflow neighbors. These neighbors are numbered
1, . . . , ni and the mapped functions will be denoted by f̂k(x, y) for k = 1, . . . , ni.
The mapping parameters we use (ρ and ζ) are denoted by ρk

in, ζk
in. Then we

have to map the part of the tracer distribution that remains in the cell under
consideration (we assume this is cell i). We denote this mapped distribution by
f̃ i(x, y), the mapping parameters are ρr, ζr .

After we have accomplished all the mappings we have to do a least squares
approximation. We build a piecewise linear function and denote it by f̄(x, y).
Finally we obtain a continuous fit to this piecewise function which we will call
g(x, y).

If we have to write the functions in terms of linear combinations of basis
functions, we apply the same notation for the coefficients as for the functions
itself. This means, for example, that we write

f̄(x, y) =

2
∑

j=0

ᾱj φj(x, y), −1

2
< x, y <

1

2
. (4.19)

Furthermore, the coefficients of the function g are chosen to be βj . A whole
list of used variables and constants can be found in appendix C.

4.3 Examples

In this section we want to illustrate the theory of the former sections. We show
a number of one dimensional examples with different fluxes to show different
situations. The grid consists of Ntot = 10 cells and is uniform with cell length
∆x = 1. We will start with a constant flux on the whole domain (0 ≤ x ≤ 10.)
After that we will show what happens if a flux is chosen zero somewhere. Finally
we will show the consequence of a varying flux through the domain. In all
examples we consider periodic boundary conditions, and an initial air mass of
100 kg in every cell. The first two examples assume a tracer mass of 1 kg in cell
1, the last example assumes a tracer mass of 1 kg in cells 5 and 7.

4.3.1 A constant flux

We define all the fluxes to be equal: 10 kg/s and one timestep is 1 s. We will
only show figures of the tracer mass, since the air mass is constant.

We see that there is nothing spectaculair. The tracer is transported through
the domain and spreads out (diffusion). See figure 4.2.
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Simulation of advection, tracer distribution after 8 iteration
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Simulation of advection, tracer distribution after 16 iteration
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Simulation of advection, tracer distribution after 50 iteration

Figure 4.2: The tracer mass simulated after 1, 2, 4, 8, 16 and 50
iterations respectively, with constant flux.

4.3.2 A one sided zero-flux

In this example we define all fluxes to be 10 kg/s, but there is no flux out of cell
2. We expect that the tracer mass is transported to the second cell and remains
there.

In figure 4.3 we see things happen as we expected. But after a number
of timesteps we can’t simulate further since the air mass in cell 3 is getting
negative. This is the case because there is a negative net mass transfer in this
cell. We have build in an error exception that aborts the simulation as soon as
this happens.
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Simulation of advection, air mass after 1 iteration
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Simulation of advection, air mass after 8 iteration

Figure 4.3: The tracer mass simulated after 1 and 2 iterations,
with no flux out of cell 2. The lowest two figures represent the air
mass per cell.

4.3.3 A flow in two directions

In the last example we take a flow in two directions. We start with a tracer
mass of 1 kg in cells 5 and 7. Then we define our flux in such a way that there is
a flow out of these two cells into their adjacent ones. But we have a zero flux at
the left of cell 4 and at the right of cell 8, because this illustrates this example
better. The figures are shown in 4.4.

We see that the cells 4, 6 and 8 fill up with tracer, where cell 6 fills up faster
since it has inflow from both sides. Again we can’t simulate more since the air
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Figure 4.4: The tracer mass after 1, 2 and 4 iterations. We start
with 1 kg tracer in cells 5 and 7 and choose the flux such that there
is a flow in two directions out of these cells. There is no flux out
of cells 4 and 8.

mass is becoming negative then in cells 5 and 7.
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Chapter 5

General algorithm

Now we consider the general case of vertical advection on a fully reduced grid.
The situation is as in figure 5.1. Several steps have to be taken to do the advec-
tion step, which will be stated below and explained in detail in the forthcoming
sections.

i

1 2

43

y

Figure 5.1: Zooming over the reduced grid.

5.1 Algorithm

We note that we have to distinguish between two kinds of updates for imple-
mentation. The first is a general update for all the cells, the second is a cell by
cell update. The following steps can be performed for all cells at once.

1. Compute the new cell mass m(t + ∆t).
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2. Compute the total lower outflow mass eL.

3. Compute the total upper outflow mass eU .

4. Compute the total lower inflow mass dL.

5. Compute the total upper inflow mass dU .

Now we know the new mass and the in and outflow mass for all cells, we
loop over all the cells. For each cell the following steps are taken

6. Use the values of eL which were computed in step 2 to divide the inflow
neighbors and cell i itself in remaining and outflow parts

7. Determine for the inflow neighbors from which cell they originate (outflow
from this cell) and which parts flow in where.

8. Do the same for the upper inflow neighbors.

9. Apply the appropriate mapping.

10. Map the tracer distribution for the remaining part.

11. Apply least squares to obtain a continuous tracer distribution in cell i.

5.2 Allocation of Mass

We start with a visual explanation of the algorithm. Here we only emphasize
on the question ’If a part of a cell is advected, where is it a time step later?’
Figure 5.2 (left) shows a part of the grid with for each cell the outflow blocks.
The right part shows the inflow blocks for each cell. If we now number the
outflow blocks, then we can easily see where they are after advection. However
we must be careful in case of a cell with double in or outflow. Assume we have
double outflow from a cell (The cell with the blocks 2 and 3 in the left part of
figure 5.2). Then we have to determine which part of the outflow block flows in
where using the fluxes. In this case we divide the outflow block in two parts.
The greatest flux will advect the most mass, hence this part must be bigger.
Note that we only numbered some blocks in figure 5.2, since this is only a small
example to explain the steps we will take.

5.3 Mass Update

We can update the mass (step 1) for every cell, since we know the neighbors
(Bi) and the prescribed fluxes (A). From equation (4.1) we obtain

mi(t + ∆t) = mi(t) −
∑

k∈Bi

Ak ∆t n(k). (5.1)
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t t+    t

 e_L

e_U

d_U

Figure 5.2: The outflow (left) and inflow (right) diagram. Here
we show where the different parts of a new cell originate from. We
see that blocks 2, 3 and 8 are advected to another cell.

For the tranfer of mass we start with the outgoing mass through the lower
edge. We compute this by

∆mi
out;low = −

∑

k∈Bi
out∩Bi

low

Ak
out ∆t n(k). (5.2)

The fraction of the cell that flows out (step 2) is then defined by

eL =
∆mi

out;low

mi(t)
. (5.3)

Idem for the mass transfer through the upper edge (step 3). Then we com-
pute the total mass incoming (step 4) through the lower edge by

∆mi
in;low = −

∑

k∈Bi
in

∩Bi
low

Ak
in ∆t n(k). (5.4)

The fraction of cell i to be filled with parts of the distributions of the lower
inflow neighbors is dL and this number is defined by

dL =
∆mi

in;low

mi(t + ∆t)
, (5.5)

For the upper inflow neighbors we do exactly the same (step 5).

5.4 Determination of Distributions

Assume that cell i has n outgoing fluxes on the lower edge (hence this block is
divided in n parts: one for each neighbor) as illustrated in figure 5.3 for n = 2.
The fluxes are numbered A1, . . . , An. Every flux determines the size of a part
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A^2

A^1

e_L

x

Figure 5.3: The parting of an outflow block in two pieces, depend-
ing on the size of the fluxes. Here we have x = |A1|∆t/∆mi

out;low.

of the block that is advected (step 6). For flux number l we get the following
part of the original outflow block

[cl− 1

2

, cl+ 1

2

], (5.6)

where

cl− 1

2

= −1

2
+

l−1
∑

j=1

|Aj |∆t

∆mi
out;low

, (5.7)

cl+ 1

2

= cl− 1

2

+
|Al|∆t

∆mi
out;low

. (5.8)

For the example in figure 5.3 we have c2− 1

2

= − 1
2

+ x.

Next we consider an inflow block of n incoming fluxes, also on the lower
edge, which is illustrated in figure 5.4 for n = 5. Again we have to compute the
size of the different parts (step 7) depending on the fluxes. We obtain for flux
number k

[ak− 1

2

, ak+ 1

2

], (5.9)

where

ak− 1

2

= −1

2
+

k−1
∑

j=1

Aj
l ∆t

∆mi
in;low

, (5.10)
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Figure 5.4: The kth lower inflow neighbor is advected into cell i.
We have to map the tracer distribution in order to apply the least
squares method later on.

ak+ 1

2

= ak− 1

2

+
Ak

l ∆t

∆mi
in;low

. (5.11)

Again everything we did in this section also holds for the upper edge of cell
i (step 8).

5.4.1 Linear Mapping

Now we know which part of the tracer distribution of an inflow neighbor comes
where in cell i, we must map (step 9) the functions to be able to perform the
least squares method in the next subsection. Figure 5.4 illustrates the advection
of the kth lower inflow neighbor. We divide the mapping in two parts: the
mapping in x- and in y-direction respectively. The mapping in x-direction is
given by Lin-Map

[λ, ξ] = Lin-Map(x1, x2, x̃1, x̃2). (5.12)

If we look at the left part of figure 5.5 where we see the mapping in detail, we
see that the input for the linear mapping in this case is x1 = − 1

2
, x2 = 1

2
, x̃1 =

ak− 1

2

and x̃2 = ak+ 1

2

.

The mapping in y-direction is illustrated in the right part of figure 5.2, which
is given by

[ρ, ζ] = Lin-Map(y1, y2, ỹ1, ỹ2), (5.13)

The input for this mapping is y1 = 1
2
− zk, y2 = 1

2
, ỹ1 = − 1

2
and ỹ2 =

− 1
2

+ dL, where zk is defined as the fraction of mass the flux Ak blows into cell
i.

Note that in case of a partial lower neighbor, that is, a neighbor that has
two upper neighbors, the input for the linear mapping changes a bit. For a full
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Figure 5.5: The linear mapping in x (left) and y (right) direction.
Here we have zk = Ak ∆t/mi(t + ∆t).

neighbor we always have x1 = − 1
2

and x2 = 1
2
. For a partial neighbor on the left

side we get x1 = 1
2
− part1 while x2 is unchanged. For a right partial neighbor

we obtain x2 = − 1
2

+ partn and in this case x1 is unchanged.

5.5 Advection Summary

What do we have now? We have mapped the tracer distributions of the inflow
neighbors in such a way that we may apply a least squares approximation. We
thus have for the lower inflow neighbor k

f̂k(x, y) = λk ρk fk(λk(x−ξk), ρk(y−ζk)), ak− 1

2

< x < ak+ 1

2

, −1

2
< y < −1

2
+dL.

(5.14)
For the upper inflow neighbors this whole derivation is analogue.

The last thing we have to do, is to map the distribution of the part of the
tracer that remains in cell i (step 10). Due to outflow out of this cell (eL, eU )
the mapping arguments are

[ρr, ζr] = Lin-Map
(

− 1

2
+ eL,

1

2
− eU ,−1

2
+ dL,

1

2
− dU

)

. (5.15)

5.6 Applying Least Squares Method

After all the mappings we have a piecewise linear distribution in cell i. We write
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f̄(x, y) =























































f̂1(x, y), − 1
2

< x < a1+ 1

2

, − 1
2

< y < − 1
2

+ dL,
...

...
...

f̂n(x, y), an− 1

2

< x < 1
2
, − 1

2
< y < − 1

2
+ dL,

f̃ i(x, y), − 1
2

< x < 1
2
, − 1

2
+ dL < y < 1

2
− dU ,

f̂n+1(x, y), − 1
2

< x < b1+ 1

2

, 1
2
− dU < y < 1

2
,

...
...

...

f̂ni(x, y), bnii−n− 1

2

< x < 1
2
, 1

2
− dU < y < 1

2
,

Then we want to approximate this function f̄ with a continuous one (step
11), we name it g

g(x, y) =

2
∑

j=0

βj φj(x, y), −1

2
< x, y <

1

2
. (5.16)

We choose the coefficients βj such that the integral

I =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

[f̄(x, y) − g(x, y)]2 dxdy, (5.17)

is minimal, see appendix B. The expression for the coefficients βj is then

βj =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

f̄(x, y) φj(x, y) dxdy, for j = 0, 1, 2. (5.18)

If we really want to calculate the coefficients β we have to split the integral
in (5.18) into ni + 1 pieces, since we have that much discontinuities. If we do
this, we see in the end that we only need integrals I of the form:

I(a, b, c, d, ρk, ζk, λk, ξk) =

∫ b

x=a

∫ d

y=c

φi

(

λk(x − ξk), ρk(y − ζk)
)

φj(x, y) dxdy.

(5.19)
Since the φj are polynomials in x and y, analytical expressions for these

integrals can be derived. To avoid mistakes, our advise is to use a computer
algebra package like Maple for this.
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Chapter 6

Discussion

The question is, now we have finished the algorithm, does it always work? There
might be some (one or more) cases in which the algorithm fails.

One possibility is a flux that is so large that there is more mass advected then
there originally was in that cell (CFL-violation). This is not possible offcourse,
since the time step ∆t is chosen in such a way that prevent this to occur.

Another thing that we did not mention yet, is the presence of boundary
conditions. To handle these (periodic) conditions, we place a set of halo cells
all around the grid and define appropriate fluxes through the cell edges. This
enables us to implement the algorithm more easily, since we don’t have to worry
about transfered air mass from the left to the right boundary. We have to be
careful to update these halo cells every timestep, with the properties of their
originals on the other side of the grid. Note that the introduction of halo cells
only works if we prescribe the right fluxes for this cells.

We must also mention here that our choice of subdividing the in and outflow
blocks in rectanges is quite random. We could have chosen it another way
around, but this choice has been made for implementation reasons. If we keep
working with rectangular cells and partitionings this is more easy.

The final remark which has already been tipped of in the introduction is
about the dimensional reduction. In general we are working in three dimensions.
Since we assume that in the vertical (z) direction we have one dimensional
columns of grid cells, we may do this advection over the whole grid at once.
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Chapter 7

Conclusion

In this report we proposed a more efficient method for advection which can be
used in the chemical transport model TM5. Therefore we have introduced a full
reduced grid on which we do not have to limit the time step in certain regions,
which was the case in the old situation. The advection scheme itself became
rather complicated since we have multiple interactions between cells during a
time step. These interactions are caused by the different number of cells on each
row in the full reduced grid.

With the introduction of orthonormal polynomial tracer distributions in each
grid cell, we have generalized the description of the subgrid concentration. The
orthonormal basis Φ we build for the space of linear functions of two variables
(P1), makes it easy to find or map new distributions, using the Lin-Map op-
erator. Another thing is, that it is easily extended to more than just linear
functions. For example, we can do the second-order moments by adding some
extra orthonormal basis functions to Φ. The advection itself is fully governed
by the in and outflow blocks as illustrated by figure 5.2. The placement of
in-/outflow blocks is a matter of bookkeeping for cells with a lot of neighbors.

We have seen that with the full reduced grid it is not necessary anymore to
use very small time steps near the poles. This is good for the advection, since it
can be solved more quickly. On the other hand, we have more work to do every
timestep as mentioned in section 4.
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Appendix A

Linear Mapping

In chapters 4 and 5 we have introduced a linear mapping, without explaining
in detail what it does. So we will do this here. The mapping is called Lin-Map
and maps the line segment on the x axis through the points x1 and x2 to the
line segment on the y axis through points χ1 and χ2. This map is defined by

[λ, µ] = Lin-Map(x1, x2, χ1, χ2), (A.1)

and this is illustrated in figure A.1.

x_1  x_2

χ_1

χ_2

Figure A.1: The linear mapping maps a straight line segment
between points x1 and x2 to the line segment between χ1 and χ2.

The mapping parameters λ, µ are obtained by solving the equations

x1 = λ(χ1 − µ),

x2 = λ(χ2 − µ).
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Solving yields

λ =
x1 − x2

χ1 − χ2

,

µ = χ1 −
x1

λ
.

Note that these parameters are always well defined. It is not possible to
have a division by zero since χ1 and χ2 are never the same.
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Appendix B

Least Squares Proof

In chapters 4 and 5 we did not prove that our function g is really the least
squares approximation to the discontinuous function f̄ . We will prove this here
for the case that there is only one discontinuity, in the point y = c.

Theorem 1 (Least Squares) Suppose f̄ is a piecewise linear function on [− 1
2
, 1

2
]2

of the form

f̄(x, y) =







f̂(x, y), − 1
2

< x < 1
2
, − 1

2
< y < c,

f̃(x, y), − 1
2

< x < 1
2
, c < y < 1

2
,

(B.1)

where c ∈ [− 1
2
, 1

2
] and f̂ , f̃ are defined by

f̂(x, y) =

2
∑

j=0

α̂j φj(x, y), −1

2
< x <

1

2
, −1

2
< y < c (B.2)

f̃(x, y) =
2

∑

j=0

α̃j φj(x, y), −1

2
< x <

1

2
, c < y <

1

2
. (B.3)

(B.4)

If we want to approximate f̄ by a continuous function g written as

g(x, y) =

2
∑

j=0

β̂j φj(x, y), −1

2
< x, y <

1

2
, (B.5)

that satisfies

g(x, y) = min
g∗∈P1

∫ 1

2

− 1

2

∫ 1

2

− 1

2

[g∗(x, y) − f̄(x, y)]2 dxdy, (B.6)
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then we have to choose the constants βj as

βj =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

f̄(x, y) φj(x, y) dxdy for j = 0, 1, 2. (B.7)

Proof : Assume that we can write f̄ as in equation (B.1) and consider the
integral

I =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

[f̄(x, y) − g(x, y)]2 dxdy. (B.8)

We write g as in equation (B.5) where the coefficients (βj) are unknown
(for now). Then g is our desired minimum of I for ∂I

∂βj
= 0. Let us write the

expression for I out in detail and compute the derivatives after that, using the
discription of equation (B.2) and (B.3) for f̄ . We then find

I =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

g2(x, y) + f̄2(x, y) − 2f̄(x, y)g(x, y) dxdy

=

∫ 1

2

− 1

2

∫ 1

2

− 1

2

g2(x, y) + f̄(x, y)
(

f̄(x, y) − 2g(x, y)
)

dxdy

Since we have orthonormal functions, this then yields

I =

2
∑

j=0

β2
j +

∫ 1

2

− 1

2

∫ 1

2

− 1

2

f̄(x, y)
(

f̄(x, y) − 2

2
∑

j=0

βj φj(x, y)
)

dxdy. (B.9)

Next we split up the integral in two pieces because f̄ is discontinuous in
y = c, yielding

I =

2
∑

j=0

β2
j +

1

2
∫

x=− 1

2

c
∫

y=− 1

2

f̂(x, y)
(

f̂(x, y) − 2

2
∑

j=0

βj φj(x, y)
)

dxdy

+

1

2
∫

x=− 1

2

1

2
∫

y=c

f̃(x, y)
(

f̃(x, y) − 2
2

∑

j=0

βj φj(x, y)
)

dxdy.

If we now differentiate I with respect to βj and set this equal to zero we get

∂I

∂βj

= 2βj +

1

2
∫

x=− 1

2

c
∫

y=− 1

2

−2f̂(x, y) φj(x, y) dxdy
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+

1

2
∫

x=− 1

2

1

2
∫

y=c

−2f̃(x, y) φj(x, y) dxdy = 0.

And hence we obtain

βj =

∫ 1

2

−
1

2

∫ 1

2

−
1

2

f̄(x, y) φj(x, y) dxdy, (B.10)

just as in equations (4.17) and (5.18), for j = 0, 1, 2. �

The proof is similar for higher order polynomials and more discontinuities.
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Appendix C

Used Variables and

Parameters

In the table below we summarize the variables and parameters that we have used
in this article. We distinguish between five kinds of variables: grid, tracer dis-
tribution, mapping parameters, flux and advection distances and finally, mass.
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Table of variables and parameters

variable summary dimension
Grid

Ntot nr. gridcells -
∆x horizontal spacing m
∆y vertical spacing m
∆t timestep s
i, j cell number -

Tracer distribution
Φ orthonormal basis -
φn elements of Φ -
f tracer distribution before mapping kg
α coefficients of f -
f̄ tracer distribution after mapping kg
ᾱ coefficients of f̄ -
g tracer distribution after LS kg
β coefficients of g -

Mapping parameters
λ, ξ Lin-Map par’s in x direction -
ρ, ζ Lin-Map par’s in y direction -

flux and advection
A flux kg/s

dL, dU relative advection distance for inflow [0, 1]
eL, eU relative advection distance for outflow [0, 1]

Mass
m(t) air mass in a cell at time t kg

∆mlow, ∆mup net inflow masses kg
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Appendix D

Grids and the Earth

In the three figures D.1 - D.3 we illustrate the three grids we have discussed in
the introduction. The first one is the regular grid, with very small cells near
the poles (in terms of area). Then we have figure D.2 where some cells are add
up together. This grid is still structured which is not optimal. Finally we have
figure D.3 where we need lesser cells. This increases the speed of the model, but
the advection step itself is more complicated than in case of a more structured
grid like the reduced grid.
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Figure D.1: The regular grid around the earth. The area of the
gridcells becomes very small near the poles.
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Figure D.2: The reduced grid around the earth. Cells are add up
together to hold the grid structured and avoid very small cells.
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Figure D.3: The full reduced grid around the earth. Lesser cells
are needed near the poles, which increases the simulation speed,
since there are less iterations necessary.
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