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Abstract

An expression for the effective viscosity (µe) of a homogeneous channel-type
porous medium has been derived by matching the Brinkman solution for the macro-
scopic flow with the volume average of the corresponding Stokes solution for the
microscopic flow. In a least square error sense, the optimal value for µe is equal to
µ(ǫ − 3/7)/2 for ǫ ≥ 3/7 and 0 for ǫ < 3/7, where ǫ is the porosity and µ is the
fluid viscosity. Thus µe < µ for all ǫ. For µe = 0 the Brinkman equation reduces to
Darcy’s law.

1 Introduction

Because of their complexity, flows through porous media are usually described in terms
of macroscopic quantities. The macroscopic flow can be defined as the local volume–
average of the microscopic flow through the pores. For sufficiently slow flow, i.e. when
inertial effects are negligible, the macroscopic flow can be described by the semi-empirical
Brinkman equation [1]:

0 = −∇〈p〉s + µe∇2〈u〉s − µ ǫK−1 · 〈u〉s, (1)

where p is the pressure, u is the velocity, µ is the fluid viscosity, µe is the effective (or
sometimes called ‘apparent’) viscosity, ǫ is the porosity, and K is the permeability tensor
of the porous medium. The brackets 〈..〉s denote the volume average of the corresponding
microscopic flow variable.

In order to solve the Brinkman equation, knowledge is required of ǫ, K and µe. For
a highly porous medium composed of spheres, Brinkman [1] suggested that µe can be
approximated by Einstein’s formula [2],[3]:

µe

µ
= 1 +

5

2
(1 − ǫ) . (2)
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In his analysis Einstein considered spheres moving with the ambient fluid, which is different
from the case of flow along spheres that stay at rest. It is not trivial that the effective
viscosity in the latter case can be described by the same formula, though it should be
correct in case of a strongly non-uniform flow, i.e. in the limit that the third term on the
right-hand side of equation (1) is negligible compared to the second term. Later studies
by Lundgren [4], Freed & Muthukumar [5] and Kim & Russel [6] confirmed the validity of
equation (2) for a highly porous medium consisting of spheres.

Einstein’s formula is valid only for ǫ close to unity. While in this case µe > µ, Brinkman
[1] suspected that µe < µ for lower porosities. By lack of knowledge about the precise
dependence of µe from ǫ at lower porosities, he therefore simply approximated µe by µ.
This approximation is still common practice in many studies of flows through porous media.

Most studies on the effective viscosity of porous media concerned porous media com-
posed of spheres [4],[5],[6],[7],[8], or two-dimensional arrays of circular or ellipsoidal cylin-
ders [9],[10],[11]. These studies indicated that the effective viscosity may be smaller or
larger than the fluid viscosity, dependent of the porosity and the type of porous medium.
Givler & Altobelli [12] determined the effective viscosity of a porous medium experimen-
tally. For a porous medium composed of open-cell foam with a porosity of 0.972, they
reported that the effective viscosity is 7.5 times the fluid viscosity, much higher than what
may be expected from equation (2).

The effective viscosity of one class of porous media has not been investigated so far,
namely that of channel-type porous media. Examples of this type are fractured rocks
[13]. In an earlier study [14],[15] laminar flow was examined over and through a three-
dimensional regular array of cubes with a porosity of 0.875. The flow in between the
cubes bore resemblance with plane Poiseuille flow and this porous medium can therefore
be classified as a channel-type porous medium. This study indicated that the effective
viscosity of the array of cubes is lower than the fluid viscosity, though no attempt was
made to calculate it quantitatively [15] (paragraph 4.6). This finding has motivated the
present study. The main aim is to obtain an estimation of the effective viscosity of the
simple channel-type porous medium sketched in figure 1. The second aim is to quantify the
improved accuracy of the solution of the Brinkman equation (1) when using this estimate
of the effective viscosity compared to the commonly used assumption that µe = µ.

The structure of this paper is as follows. In section 2 it is shown that the Brinkman
equation contains an implicit closure model for the drag force that a porous medium exerts
on the macroscopic flow. This closure model is used in section 3 to derive an expression for
the effective viscosity in case of a weakly non-uniform flow characterized by an infinitely
small, but non-zero, wavenumber. In section 4 the improved accuracy of the Brinkman
solution over a wide range of wavenumbers and porosities is quantified numerically for this
estimate of µe compared to the common assumption that µe = µ. This is followed by a
summary of the conclusions and a discussion in section 5.
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Figure 1: A simple spatially periodic two-dimensional channel-type porous medium.

2 Brinkman closure model for drag force

The macroscopic velocity through a porous medium can be formally defined as a local
weighted volume–average of the microscopic velocity. This can be expressed mathemati-
cally by [16]:

〈u〉s ≡
∫

V

γ(x + x′) m(x′)u(x + x′) dx′. (3)

Here x′ is the position vector relative to the centroid x of the averaging volume V , γ is the
phase–indicator function equal to 1 in the fluid phase and to 0 in the solid phase, and m
is the filter or weighting function that is normalized such that its integral over V equals
unity. The volume average defined by equation (3) is usually referred to as the superficial
volume average, hence the superscript s. Sometimes it is convenient to make use of the
intrinsic volume average, defined as 〈u〉 ≡ 〈u〉s/ǫ, where ǫ ≡ 〈1〉s is the porosity of the
porous medium.

The microscopic velocity u can be decomposed into the macroscopic velocity 〈u〉 and
the subfilter-scale velocity ũ according [17]:

u = 〈u〉 + ũ. (4)

Ideally, for meaningful volume averages, the macroscopic velocity should vary on much
larger scales than the subfilter-scale velocity. In addition, the filter length lf should be
chosen such that in the volume averaging the macro-scale structure of u is preserved as
much as possible, while the strongly inhomogeneous pore-scale structure of u is averaged
out. With respect to this it can be expected that some filters perform better than others.
This problem has been thoroughly investigated by Quintard & Whitaker [16]. They made
distinction between ordered and disordered porous media, for which appropriate filters
were proposed and validated. For the two types of porous media the above constraints can
be summarized as:

ordered : O(lp) = lf ≪ Lm, (5a)

disordered : lp ≪ lf ≪ Lm, (5b)
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where lp and Lm are the typical length scales of the pore-scale and the macro-scale flow
field, respectively. When these constraints are satisfied, volume averages are well-behaved
with 〈〈u〉〉 ≈ 〈u〉 and 〈ũ〉 ≈ 0 [17].

At the microscopic level, slow flow through a porous medium is governed by the incom-
pressible Stokes equations:

0 = −∇p + µ∇2u, (6a)

∇ · u = 0. (6b)

The macroscopic counterparts of these equations are found by application of the volume–
averaging operator 〈..〉s. The results read [16]:

0 = −∇〈p〉s + µ∇2〈u〉s +

∫

Ai

mn · [−pI + µ∇u] dA, (7a)

∇ · 〈u〉s = 0. (7b)

Here the surface integral extends over the interface area Ai between the fluid and solid
phase within the averaging volume V , n is the unit normal at Ai pointing from the fluid
into the solid phase, and I is the unit tensor. The last term in equation (7a) represents the
drag force exerted by the solid phase onto the fluid phase within the averaging volume V .

Equation (7a) is exact, but for solving it a closure is needed for the surface integral
in terms of volume-averaged quantities. A complication is its non-local character [16],
since volume averages appear inside the surface integral when p and u are decomposed
according to equation (4). However, by choosing an appropriate filter Quintard & Whitaker
[16] showed that for ordered porous media the volume averages can be removed from the
surface integral:

0 = −∇〈p〉s + µ∇2〈u〉s +

∫

Ai

mn · [−p̃I + µ∇ũ] dA (8)

For disordered homogeneous porous media this simplifiction holds by good approximation
when condition (5b) is satisfied.

The Brinkman equation (1) is an approximation of equation (8). From equation (8)
the Brinkman equation is obtained when the following closure model for the drag force is
adopted:

∫

Ai

mn · [−p̃I + µ∇ũ] dA ≈ −µ ǫK−1 · 〈u〉s + (µe − µ)∇2〈u〉s. (9)

The second term on the right–hand side of equation (9) should not be confused with
diffusion effects by mechanical and/or turbulent dispersion [18]. It can be interpreted
as the porous media analogue of the Faxén correction [19] to Stokes’s drag law for flow
around a sphere. Since this correction term is proportional to the Laplacian of the velocity,
it appears as a modification of the fluid viscosity in the Brinkman equation (1).
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Lundgren [4], Freed & Muthukumar [5], Kim & Russel [6] and Koplik, Levine & Zee [7]
gave theoretical support for the validity of the Brinkman closure model (9) for porous media
composed of randomly distributed spheres. Kim & Russel [6] (KR for short) argued that
for this disordered porous medium the Brinkman equation holds only when the particle
volume fraction c (= 1 − ǫ) is small, based on similar constraints as given by equation
(5b). Equivalent to lp ≪ lf , they demanded that the averaging volume contains many
particles. This can be expressed as c(lf/a)3 ≫ 1, where a is the radius of the spherical
particles. Furthermore, equivalent to lf ≪ Lm, they demanded that the dimension of the
averaging volume is small compared to the scales of the volume-averaged flow field. KR
took Lm = O(

√
K) based on considering the variations in 〈p〉s in the hypothetical case that

∇〈u〉s would be spatially uniform. Combining the two constraints together, it follows that
c1/3

√
K/a ≫ 1, which can be satisfied only for c ≪ 1 as in this limit

√
K/a = O(c−1/2).

Note that for obtaining the second constraint, KR considered the specific flow case of a
uniform ∇〈u〉s for which, according to the Brinkman equation (1), a strongly non-uniform
〈p〉s is needed to maintain this. This resulted in the estimate Lm = O(

√
K), which is

however not generally true for other flow cases. A more general case would be to consider
a non-uniform macroscopic flow that varies in space at a typical wavenumber k, so that
Lm = O(2π/k). Combining this with c(lf/a)3 ≫ 1, this yields (ka/2π)3 ≪ c ≤ 1. This
condition states that the Brinkman equation is valid for all c provided that for given c the
wavenumber k is sufficiently small, while the original KR condition suggests that it is valid
only for small c.

In this paper we consider flow through the channel-type porous medium of figure 1,
which is driven by a streamwise pressure gradient that varies sinusoidally across the chan-
nels at wavenumber k. Thus Lm = O(2π/k). Furthermore, for this ordered porous medium
the filter length is equal to the dimension lz of the unit cell (see next section). The con-
straint (5a) becomes thus that klz/2π ≪ 1, which is independent of the porosity.

The Brinkman closure model (9) for the drag force is used in the next section to derive
an expression for the effective viscosity. Because of the constraint that the wavenumber
must be sufficiently small, the expression for the effective viscosity is derived for the limit
of an infinitely small, but still non–zero, wavenumber.

3 Estimate of effective viscosity

We consider an arbitrary non-uniform streamwise pressure gradient that varies periodically
across the height of the channels in figure 1. A spatially periodic pressure gradient can
be expressed in a Fourier series. Since the Stokes equation (6a) is linear, we may restrict
ourselves to a single cosine function without loss of generality:

−∂p

∂x
= A cos(kz), (10)

where A is the amplitude and k is the wave number. The corresponding velocity field in
the channels can be computed from the Stokes equation (6a) and the no-slip condition at
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the channel walls. For |z| ∈ [0, 3H + 2d] the solution reads:

u(z) =

{

A [cos(kz) − cos(kH)] /(µk2) , |z| ∈ [0, H ] ,
A cos(kz)/(µk2) + C1z + C2 , |z| ∈ [H + 2d, 3H + 2d] ,

(11)

with the coefficients C1 and C2 given by:

C1 =
A

µk22H

(

cos(k[H + 2d]) − cos(k[3H + 2d])
)

,

C2 = −A(3H + 2d)

µk22H
cos(k[H + 2d]) +

A(H + 2d)

µk22H
cos(k[3H + 2d]).

To compute the macroscopic flow field from equation (3), we need to choose an appro-
priate weighting function. For spatially periodic porous media Quintard & Whitaker [16]
proposed the following triangular-shaped weighting function:

m(z′) =

{

(lz − |z′|) /l2z , |z′| ≤ lz ,
0 , |z′| > lz ,

(12)

where lz = 2(H +d) is the size of a unit cell in the z-direction. It is precisely this weighting
function for which equation (8) is exact. Using this weighting function the volume-averaged
velocity for |z| ∈ [0, H ] is given by:

〈u〉s = − 1

µk2

∂〈p〉s
∂x

+
2A sin2(klz/2)

µk2l2z
cos(kH)

(

z2 + H2
)

−ǫA cos(kH)

µk2
− ǫ2A

6µk2
sin(klz) sin(kH), (13a)

with the gradient of the volume-averaged pressure given by:

−∂〈p〉s
∂x

=
4A sin(klz/2)

k2l2z

[

sin(klz/2) cos(kz) − sin(kd) − kH cos(kd)
]

+

2A

klz
sin(kH). (13b)

Over the same interval, the following expressions are obtained for the diffusion term and
the drag force in equation (8):

µ
∂2〈u〉s
∂z2

=
4A sin2(klz/2)

k2l2z

[

− cos(kz) + cos(kH)
]

, (13c)

∫

Ai

m nz µ
∂ũ

∂z
dA =

4A sin(klz/2)

k2l2z

[

kH cos(kd) − sin(kH) cos(klz/2)
]

−

2A

klz
sin(kH). (13d)
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For small values of k, equations (13a)-(13d) can be simplified according to:

〈u〉s =
ǫAH2

3µ
− Ak2H4

24µ

(

4ǫ

15
+ 3 + 6

[ z

H

]2

−
[ z

H

]4
)

+ O(k4), (14a)

−∂〈p〉s
∂x

= ǫA +
AH2k2

2

(

−
[ z

H

]2

− 1 +
ǫ

3

)

+ O(k4), (14b)

µ
∂2〈u〉s
∂z2

=
AH2k2

2

(

[ z

H

]2

− 1

)

+ O(k4), (14c)

∫

Ai

m nz µ
∂ũ

∂z
dA = −ǫA +

AH2k2

2

(

2 − ǫ

3

)

+ O(k4). (14d)

The permeability Kxx of the porous medium can now be calculated by taking the limit
of k → 0 and using equation (9):

Kxx = lim
k→0

−µǫ〈u〉s
∫

Ai
m nz µ∂ũ

∂z
dA

=
ǫH2

3
, (15)

which is a well-known result [13].
Finally, an expression for the effective viscosity is found from the requirement that it

minimizes the square residual error of the Brinkman closure model (9) on global average.
For z ∈ [0, H ] the mean square residual error is given by:

R2 =
1

H

∫ H

0

(
∫

Ai

m nz µ
∂ũ

∂z
dA + µ

ǫ

Kxx

〈u〉s − (µe − µ)
∂2〈u〉s
∂z2

)2

dz. (16)

With help of equations (14a), (14d) and (15), and requiring that µe ≥ 0 for physically
realistic Brinkman solutions, this yields the following estimate of µe valid for k ≪ 1:

µe

µ
≈

{

0 , ǫ ∈ [0, 3

7
) ,

1

2

(

ǫ − 3

7

)

, ǫ ∈ [3
7
, 1] .

(17)

The effective viscosity is always smaller than the fluid viscosity, consistent with the findings
in [15] for a regular array of cubes. For ǫ ≤ 3/7, µe ≈ 0, in which case the Brinkman
equation reduces to Darcy’s law [13]. For ǫ → 1, neither the effective viscosity approaches
the fluid viscosity µ, nor the permeability given by (15) becomes infinite. This originates
from the no-slip condition at the channel walls, which must be satisfied even when the
channel walls become infinitely thin for ǫ → 1.

To illustrate the accuracy of the effective viscosity estimate, we consider the case of
klz/2π = 0.233 and ǫ = 0.5. The Reynolds number Re ≡ ρuτH/µ = 0.1, with ρ the fluid
density and uτ ≡

√

|µ∂u/∂z|z=H/ρ the microscopic friction velocity at z = H . Figure 2.a
shows the dimensionless microscopic and the corresponding volume-averaged flow field for
z/lz ∈ [0, 10]. Inside the channel walls the microscopic velocity is put to zero. Figure 2.b
shows the different terms in the volume-averaged momentum budget (8). The pressure
gradient is balanced mainly by the drag force. The effect of diffusion is small, though not
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-0.06
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0

0.03

0.06(a)

z/lz
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-0.6
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z/lz
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0.6(c)

z/lz

0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1(d)

z/lz

R·H
ρu2

τ

Figure 2: (a) Microscopic and volume-averaged velocity field for klz/2π = 0.233, ǫ = 0.5
and Re = 0.1. ——, u/uτ ; · · · · ·, 〈u〉/uτ . (b) Corresponding volume-averaged momentum

balance (8), normalized by ρu2

τ/H . ——,
∫

Ai
m nz µ∂ũ

∂z
dz; · · · · ·, −∂〈p〉s

∂x
; – – –, µ∂2〈u〉s

∂z2 .
(c) Validation of Brinkman closure model (9) with µe = µ(ǫ − 3/7)/2 and normalized

by ρu2

τ/H . ——,
∫

Ai
m nz µ∂ũ

∂z
dz; · · · · ·, −µ ǫ

Kxx
〈u〉s; – – –, (µe − µ)∂2〈u〉s

∂z2 ; – · – ·
–, −µ ǫ

Kxx
〈u〉s + (µe − µ)∂2〈u〉s

∂z2 . (d) Residual error (R) of Brinkman closure model (9)

normalized by ρu2

τ/H . Note that the vertical scaling is different from (c). ——, µe =
µ(ǫ − 3/7)/2; – – –, µe = µ.
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negligible. Figure 2.c depicts the different terms in the Brinkman closure model (9) with
µe = µ(ǫ− 3/7)/2. The lion’s share of the drag force is accounted for by the first term on
the right-hand side of (9), but this term generally overestimates the drag. The second term
on the right-hand side of (9) compensates for this and significantly improves the estimate
of the drag; the dash-dotted line collapses almost entirely with the solid line. The residual
error of (9) is plotted in figure 2.d for µe = µ(ǫ − 3/7)/2 compared to the commonly used
assumption that µe = µ. Although the local error for µe = µ(ǫ − 3/7)/2 is sometimes
slightly larger than for µe = µ, the global error is much smaller, confirming the improved
accuracy of the Brinkman closure model for this estimate of µe with respect to µe = µ.

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05(a)

klz/2π

R2

ǫ2
H2

ρ2u4
τ

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2(b)

klz/2π

R2|µe

R2|µ

Figure 3: (a) R2, as given by equation (16) and normalized by ǫ2ρ2u4

τ/H
2, as function

of wavenumber and porosity for µe given by equation (17). (b) Ratio of R2 for µe given
by (17) to R2 for µe = µ. The arrows point in the direction of increasing porosity with
ǫ = 0.01, 0.25, 0.5, 0.75, 0.99.

To further test the accuracy of the estimate for the effective viscosity, R2 has been
calculated over a wide range of k and for different porosities with help of equations (13a),
(13d) and (15). For a honest comparison of R2 at different porosities, its intrinsic form must
be considered, and it is therefore divided by ǫ2. It is furthermore nondimensionalized by
ρ2u4

τ/H
2. The absolute error is depicted in figure 3.a and the relative error compared to the

case that µe = µ in figure 3.b. The absolute error increases for larger ǫ and larger k. The
latter is consistent with the condition derived in the previous section that the Brinkman
equation is valid for klz/2π ≪ 1. The relative error has a more complex behavior as
function of k and ǫ. According to figure 3.b, the largest mean square residual error, for
ǫ → 1, is still typically an order of magnitude smaller for µe given by equation (17) as
compared to the case that µe is simply taken equal to µ.
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4 Error estimate of Brinkman solution

In this section the error in the solution of the Brinkman equation (1) is quantified numeri-
cally for µe given by (17) compared to the commonly used assumption that µe = µ. This is
done by comparing the numerical solution of the Brinkman equation for the channel-type
porous medium of figure 1 against the volume average of the corresponding solution of the
Stokes equation. We will first briefly discuss the two types of simulations before we move
on to the results.

In the simulations of the microscopic flow the instationary Stokes equation was solved,
i.e. equation (6a) with the temporal derivative of the velocity on the left-hand side. The
flow was forced by the pressure gradient given by equation (10) with the wavenumber in
the range of 2πk/lf ∈ [0, 0.5]. The Reynolds number was fixed at Re = 0.1. The flow
domain extended from z = 0 to z = 12lf + H . The boundary conditions were the no-
slip condition at the channel walls and the free-slip condition at z = 0. The instationary
Stokes equation was discretised on a uniform grid with the grid spacing ∆z = H/80. Spatial
derivatives were approximated with the central differencing scheme. For the integration in
time the second-order Adams-Bashforth scheme [20] was used, with the time step equal to
∆t = ρ∆z2/(24µ). A stationary solution was typically obtained after a time of 0.3H/uτ .
The volume-averaged velocity was subsequently computed from equation (3) using the
weighting function given by equation (12).

In the simulations of the macroscopic flow the Brinkman equation was solved. The
pressure gradient in this equation was obtained from volume averaging of the microscopic
pressure gradient, which for z ∈ [0, H ] is given by equation (13b). The Reynolds number
for the macroscopic flow was the same as for the microscopic flow, while the flow domain
was slightly smaller, extending from z = 0 to z = 11lf + H . The Brinkman equation was
discretised on a uniform grid with the same grid spacing as used for the microscopic flow.
The boundary conditions were the free-slip condition at z = 0 and 〈u〉s equal to the volume
average of the microscopic solution at z = 11lf + H . Different from the microscopic flow
domain, the macroscopic flow domain contained no internal boundaries, so the discretised
Brinkman equation could be written as a linear matrix system of form MU = G, with
M a tridiagonal matrix, and U and G the grid representation vectors of the volume-
averaged velocity and the pressure gradient, respectively. The volume-averaged flow field
was obtained from this system by means of Gauss elimination [20]. Two solutions were
computed from the Brinkman equation. The first one corresponded to µe = µ and the
second one to µe given by equation (17).

As an example figure 4 depicts the volume average of the microscopic solution and
the two macroscopic solutions (for µe = µ and µe = µ(ǫ − 3/7)/2) for ǫ = 0.5 and
klz/2π = 0.233. The Brinkman solution for µe = µ may deviate locally less from the volume
average of the microscopic solution than the Brinkman solution for µe = µ (ǫ−3/7)/2, but
over most of the flow domain the deviation is significantly smaller in the latter case. The

10



0 2 4 6 8 10
-0.04

-0.02

0

0.02

0.04

z/lz

〈u〉
uτ

Figure 4: Volume-averaged flow field for klz/2π = 0.233, ǫ = 0.5 and Re = 0.1. ——,
〈u〉/uτ computed from microscopic flow field; · · · · ·, 〈u〉/uτ computed from Brinkman
equation with µe = µ; – – –, 〈u〉/uτ computed from Brinkman equation with µe =
µ (ǫ − 3/7)/2.

deviations have been quantified by computing the mean square error from:

E2 =
1

10lf

∫

10lf

0

[〈u〉bs − 〈u〉ms]
2 dz, (18)

where the subscripts bs and ms denote the Brinkman solution and the volume average of
the microscopic solution, respectively. Figure 5.a shows E2 for µe given by (17) as function
of wavenumber and porosity. The smaller the wavenumber and the porosity, the smaller
the error. The waviness in the profiles at larger wavenumber is due to the relatively short
domain size; the waviness becomes smaller when the domain size is increased. Figure 5.b
shows the relative error, defined as the ratio of E2 for µe given by (17) to E2 for µe = µ.
In the limit of k → 0, when diffusion becomes negligible, the relative error reaches 1.
For small, but non-zero, wavenumber the relative error rapidly decreases, while for larger
wavenumber it goes up again. The results show that over a large range of wavenumbers
the error is an order of magnitude smaller when µe is given by (17) as compared to µe = µ.
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Figure 5: (a) E2 calculated from equation (18) and normalized by u2

τ , as function of
wavenumber and porosity for µe given by (17). (b) Ratio of E2 for µe given by (17) to E2

for µe = µ. The arrows point in the direction of increasing porosity. ——, ǫ = 0.2; – – –,
ǫ = 0.5; · · · · ·, ǫ = 0.73; · − · − · − ·, ǫ = 0.99.

5 Conclusions and discussion

The effective viscosity of a simple channel-type porous medium has been derived by match-
ing the macroscopic Brinkman solution to the volume average of the Stokes solution for the
microscopic flow. The optimal value for µe is given by equation (17). For all ǫ, µe < µ. For
ǫ ≤ 3/7, µe = 0, and the Brinkman equation reduces to Darcy’s Law. A quantitative error
estimate confirmed the improved accuracy of the Brinkman solution based on µe given
by (17) as compared to the commonly used assumption that µe = µ; at all porosities the
global error is typically an order of magnitude smaller over a large range of wavenumbers.
The absolute error in the Brinkman solution becomes large near klz/2π = O(1), which
substantiates the theoretically derived condition that the Brinkman equation is valid only
for sufficiently small wavenumbers.

The effective viscosity is not only a function of the porosity, but, as mentioned in the
introduction, it also strongly depends on the geometrical structure of a porous medium.
With respect to this porous media can be divided into three different types dependent of
the structure of the pore-scale flow field [21]: the channel (or conduit) type, the bluff-body
type, and the more general hybrid type that bears characteristics of both other types. In
the channel type the (Stokes) flow is aligned along the surface of the solid elements and
consequently the drag is purely viscous drag, while for the bluff-body type the flow is
generally not aligned along the solid elements and hence both viscous and pressure drag
contribute to the total drag. The present paper is the first in which µe is thoroughly
evaluated for a channel-type porous medium. For this type the behavior of µe at high
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porosities is completely different from the bluff-body type such as for instance a random
array of spheres. While for the channel-type porous medium µe < µ, for the random array
of spheres µe > µ according to equation (2).

In the derivation of the effective viscosity we made use of the triangular-shaped filter
as given by equation (12). Another well-known weighting function is the rectangular-
shaped filter given by equation (A-1) in the appendix. It is shown in the appendix that
for homogeneous porous media the estimate of µe would be the same for both filters if the
drag closure (9) would be exact. In general this is not true. However, one may expect that
the residual (R) is usually small compared to the second term on the right-hand side of
equation (9), as for instance can be observed from figures 2.c,d. In that case the effective
viscosity estimate is insensitive to the choice of the filter and the interval over which R2 is
minimized.

The analysis in this paper was restricted to a homogeneous porous medium, i.e. a porous
medium with a spatially uniform porosity. Porous media generally become heterogeneous
near macroscopic boundaries, such as for instance the interface between a porous medium
and a clear fluid or a macroscopic solid wall. The present analysis could be extended by
considering the effect of spatial heterogeneity of a porous medium on the effective viscosity.
Is the local effective viscosity of a (weakly) heterogeneous porous medium solely a function
of the local porosity? If this is the case, does this mean that the effective viscosity can
then be determined from an analysis of the corresponding homogeneous porous medium
with the same porosity? This issue may not be easy to analyze analytically, but it could
be investigated with help of detailed numerical simulations of microscopic Stokes flow
through heterogeneous porous media. Several numerical methods are available for this kind
of simulations such as the Lattice Boltzmann Method [22] and the Immersed Boundary
Method [23]. The Immersed Boundary Method has been successfully used in previous
studies of the author to simulate both laminar and turbulent flows over and through a
three-dimensional array of cubes [14],[15],[24],[25].
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Appendix A: Effect filter on effective viscosity esti-

mate

In this paper we made use of the triangular-shaped filter (12). Another well-known filter
is the following rectangular-shaped filter:

m(z′) =

{

1/lz , |z′| ≤ lz/2 ,
0 , |z′| > lz/2 .

(A-1)
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Recall that lz is the size of a unit cell in the z-direction. Both filters have been discussed by
Quintard & Whitaker [16]. It can be shown that the application of the triangular-shaped
filter is equivalent to twice the application of the rectangular-shaped filter:

〈u〉st =
1

l2z

∫ lz/2

−lz/2

∫ lz/2

−lz/2

γ(z + z′ + ẑ)u(z + z′ + ẑ) dẑdz′ = 〈〈u〉sr〉r, (A-2)

where the subscripts t and r refer to, respectively, the triangular-shaped and the rectangular-
shaped filter. Below we analyze the effect of the filter choice on the estimate of the effective
viscosity.

Let us consider Stokes flow through a homogeneous porous medium with the volume-
averaged flow directed along the x-axis. Application of the rectangular-shaped filter to the
streamwise component of the Stokes equation (6a) yields:

0 = −∂〈p〉sr
∂x

+ µe,r
∂2〈u〉sr
∂z2

− µ
ǫr

Kxx,r

〈u〉sr + Rr. (A-3)

Here Rr is the residual at the right-hand side of equation (9); Rr = 0 if the drag closure
would be exact. Once more applying the rectangular-shaped filter to equation (A-3) yields:

0 = −∂〈〈p〉sr〉r
∂x

+ µe,r
∂2〈〈u〉sr〉r

∂z2
− µ

ǫr

Kxx,r
〈〈u〉sr〉r + 〈Rr〉r. (A-4)

Direct application of the triangular-shaped filter to the Stokes equation yields:

0 = −∂〈〈p〉sr〉r
∂x

+ µe,t
∂2〈〈u〉sr〉r

∂z2
− µ

ǫt

Kxx,t
〈〈u〉sr〉r + Rt. (A-5)

It is not difficult to show that for a homogeneous porous medium, for which the porosity
and permeability are spatially uniform, ǫt = ǫr and Kxx,t = Kxx,r. But are the effective
viscosities, µe,t and µe,r, also the same? Subtracting equations (A-4) and (A-5) from each
other gives:

0 = (µe,t − µe,r)
∂2〈〈u〉sr〉r

∂z2
+ Rt − 〈Rr〉r. (A-6)

For the moment let us assume that µe,t = µe,r. Then from (A-6) it must follow that
Rt = 〈Rr〉r. In this paper the effective viscosity has been determined from minimizing the
mean square residual error at low wavenumber over a specified spatial interval. In case of
the triangular-shaped filter µe,t has been determined from minimizing R2

t , which given the

assumption that µe,t = µe,r is equal to 〈Rr〉2r , while in case of the rectangular-shaped filter
µe,r would have been determined from minimizing R2

r . The assumption that µe,t = µe,r is

only correct if the minimum of R2
r is found at the same µe as the minimum of 〈Rr〉2r. In

general this will not be true, although the difference between the two effective viscosity
estimates is expected to be small. Ideally, when the closure (9) would be exact and hence
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R2
r = 〈Rr〉2r = 0, the two viscosities would be the same. Indirect evidence that the effective

viscosities are nearly the same for the two filters, was found from plotting figure 5.b for the
case of the rectangular-shaped filter (not shown). From this figure it was observed that,
just as for the triangular-shaped filter, E2 was significantly smaller over a large range of k
when µe was given by (17) as compared to µe = µ.

References

[1] Brinkman, H. C. 1948 A calculation of the viscous force exerted by a flowing fluid
on a dense swarm of particles. Applied Scientific Research A1, 27-34.

[2] Einstein, A. 1906 Eine neue Bestimmung der Moleküldimensionen. Annalen der
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