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Abstract- SeaWinds data are provided by the Jet Propulsion
Laboratory (JPL) at 25-km resolution, whereas most numerical
weather prediction (NWP) models use observations at least a
100-km density. We have developed a QuikSCAT wind product
at a coarser resolution than the JPL product in order to achieve
a more appropriate information content for assimilation in
NWP models. This product includes quality control, wind
retrieval, and ambiguity removal.

I. INTRODUCTION

The SeaWinds instrument on QuikSCAT satellite is a
conically scanning pencil-beam scatterometer, which in
comparison with the fan-beam NASA scatterometer
(NSCAT) has the following advantages: higher signal-to-
noise ratio, smaller size, and superior coverage.

Severe storms that hit Europe often originate over the North
Atlantic Ocean, where sparse meteorological observations are
available. As a consequence, the initial stage of severe storms
is often poorly analysed and their development poorly
predicted. The SeaWinds data coverage is such that
developing storms are likely observed, thus depicting their
position and amplitude. However, the SeaWinds product as
available from Jet Propulsion Laboratory (JPL) is often
contaminated by serious inversion problems and ambiguity
removal errors and do not provide any meteorological
guidance [1]. In such cases, SeaWinds product improvement
as described in this report is essential.

SeaWinds data are nominally provided with a sampling of
25 km, whereas most numerical weather prediction (NWP)
models use observations at at least a 100-km density. The
small-scale structures observed by a scatterometer cannot be
well fitted by the relatively broad spatial structure functions,
and result in statistical noise in the analyses. For
scatterometer data, in order to reduce systematic wind
retrieval errors it is better to reduce noise and average
backscatter measurements (o) to lower resolution before the
non-linear wind retrieval process. Here we present a 100-km
SeaWinds wind product which is based on three major steps:
wind quality control, wind retrieval and ambiguity removal.
Applications such as nowcasting, short-range forecasting and
NWP assimilation may benefit from this product.

II. QUALITY CONTROL

In order to successfully assimilate QuikSCAT data into
NWP models, a comprehensive quality control (QC) needs to
be done in advance. References [2] and [3] use a method to
detect and reject WVCs with poor quality wind information

using a Maximum-Likelihood-Estimator-based (MLE)
parameter for the European Remote-Sensing Satellite (ERS)
scatterometer and NSCAT, respectively. Here, we adapt this
method for QuikSCAT.

The MLE indicates how well the backscatter measurements
used in the retrieval of a particular wind vector fit the
Geophysical Model Function (GMF), which is derived for
fair weather wind conditions. A large inconsistency with the
GMF results in a large MLE, which indicates geophysical
conditions other than those modeled by the GMF, such as
rain, confused sea state, or ice, and as such, the MLE
provides a good indication for the quality of the retrieved
winds.

Collocations with ECMWF winds and SSM/I rain data are
used to characterize the MLE-based QC parameter called the
normalized residual (Rn). The QC procedure is defined to
achieve the following goals: maximum low-quality data
rejection, including rain contamination; and minimum good-
quality data rejection. An Rn threshold is found, which
satisfies these goals [4]. The QC is using the MLE
information from the JPL 25-km product and therefore
applied to the 25-km WVC, prior to the wind inversion at
100-km resolution.

III. WIND RETRIEVAL

In order to retrieve winds in a super WVC or SWVC (100-
km resolution) coming from o,s measurements of 16 25-km
WVC’s, we consider three different scenarios :

1) Simply use per beam the up to 16 &5 values together
with the observed noise values of K,,,, K5 K,,, azimuth and
incidence angles from the WVC's, for the valid data in the
QuikSCAT BUFR product.

2) Construct a K,-averaged backscatter value per beam
representative for the SWVC from the up to 16 o’. The
values of the azimuth and incidence angle are averaged per
flavour (beam) for the 16 WVC's.

3) The same as scenario 2 except that we take the geometric
mean of the 16 o’ values as the backscatter value
representative for the SWVC.

In order to test which of the 3 scenarios gives the optimal
wind retrieval, we perform a simulation. We use the JPL 25-
km BUFR product rank-1 wind field to simulate the
measurements with their appropriate noise. We then perform
the inversion at 100-km resolution for the three different
scenarios. The JPL rank-1 wind solution closest to the



centroid of the SWVC is used as truth for validation
purposes. We compare the rank-1 solution to the truth. We
conclude from the results (not shown) that a SWVC mean
0100 based on the geometric mean of the backscatter values
of the individual WVC’s (scenario 3) gives the best fit
between simulated winds and the truth, also in terms of
smallest standard deviation of the difference (SD) and biases.
Therefore, scenario 3 is chosen to retrieve 100-km winds [1].

IV. AMBIGUITY REMOVAL

Ambiguity removal (AR) is the process of selecting the
wind vector solution at each observation point in a way that
results in a spatially and meteorologically consistent wind
field. In order to do so, we apply a variational scheme called
2D Variational Ambiguity Removal 2D-VAR [1], which
attempts to minimize the cost function

J(Ex)=J, + 2, )]

where J, is the background term and J,* is the observation
term. It uses an incremental formulation with the control
variable of wind increments, §x=x-x,, defined on a

rectangular equidistant grid. The control variable x, is the

background field, which in 2DVAR is an NWP model
forecast. The forecast is also used as first guess making the
control variable equal to the null-vector at the start of the
minimization.

The J, is a quadratic term that contains the inverse of the
background error covariance matrix. It penalizes the
deviation from the background field. The background error
covariances are considered homogeneous and isotropic, i.e. a
function of separation distance only. Since the background
error covariance matrix is a full (not diagonal) and large
matrix, it is expensive to compute its inverse. Therefore, J,, is
computed in the Fourier domain, where the matrix can be
expressed as a diagonal matrix. The J,*“ expresses the misfit
between the ambiguous wind vector solutions and the control
variable at each observation point. The contribution of the
wind solutions (up to four in this case) in each observation
point is weighted by a solution probability. This solution
probability depends on the angular sector distribution of the
retrieved wind directions and the distance to the GMF after
inversion. It is assumed that these two pieces of information
are independent.

In order to solve the minimization problem, a conjugate
gradients method is used, which also requires the gradient of
the cost function. After convergence, the control variable
vector of wind increments is added to the background field to
obtain the wind analysis. The analyzed wind field is a
spatially consistent weighted mean of the background field
and the observations. It is used to select at each observation
point the wind solution ambiguity with the smallest RMS-
difference. The selected ambiguity is considered to be the
observed wind.

V.RESULTS

To assess the quality of the retrieval and the ambiguity
removal a comparison was made between the JPL 25-km
BUFR wind product thinned to 100-km and the KNMI 100-
km wind product. For the comparison, wind speed, wind
direction and wind components (u and v) were computed for
an independent reference (ECMWF 10-m wind) and both the
JPL-thinned product and the 100-km KNMI product. Here
we only show the results for the comparison of the wind
direction component, but similar conclusions can be drawn
from the other wind component comparisons.

Figs. 1 and 2 show the two-dimensional histograms of rank-
1 and selected wind directions, respectively, versus ECMWF
wind directions, for JPL-thinned (a) and KNMI 100-km (b)
winds.

The distributions in Fig. 1 show some peaks around the
lines of 180 degrees deviation, which refer to a directional
ambiguity problem. These peaks are significantly less
pronounced in fig. 1b, showing that the ambiguity problem is
much reduced in the KNMI product. Moreover, the statistics
show a higher SD in fig. 1a compared to fig. 1b. This gives a
strong indication that the retrieval at 100-km improves the
quality of the rank-1 solution at the ECMWF model
resolution. However, if we look at Fig. 2, the direction
distribution has been considerably improved by the JPL AR
(fig. 2a), while in KNMI (fig. 2b) the 180-degree ambiguity
problem slightly remains. The statistics show lower SD in
fig. 2b compared to fig. 2a. Therefore, JPL AR works better
than KNMI AR.

In fig. 3, we show a typical tropical case with more
moderate and low winds. In fig. 3a, the JPL winds show a
general preference to blow across-swath and to a lesser
degree along-swath. Moreover, some erratic large wind
vectors appear that are most likely caused by rain [4]. The
KNMI product in fig. 3b has cured to a large degree both the
directional preference and the erratic speed variations. This is
fairly typical in the tropical area, thus indicating an improved
performance at low and moderate wind speeds.

Meteorologists at KNMI have been validating the 100-km
product for a period of 4 months. They report that in 15.5 %
of cases the wind products are considered as essential
information, in 48.8% as important and in 35.7% of cases
rated as of little use. It is apparent that a 100-km
scatterometer wind product has added value for synoptic
meteorological analysis. We conclude that the KNMI 100-km
inverted winds are of better quality than the JPL thinned
product. However, work remains to be done in the AR
scheme.
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Fig. 1. Two-dimensional histograms of JPL-thinned (a) and KNMI 100-km (b) wind
directions versus ECMWF 10-m wind directions. N is the number of data; mx and my are
the mean directions along x and y axis, respectively; m(y-x) and s(y-x) are the bias and
SD, respectively; and cor_xy is the correlation factor.
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Fig. 2. Same as fig. 1 but for selected instead of rank-1 wind directions.
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