
Asynchronous communication in the HIRLAM weather forecast model

Van Thieu Vu
1

Gerard Cats
2

Lex Wolters
1

1
 Leiden Institute of Advanced Computer Science,

 Leiden University, Leiden, The Netherlands
2
 Royal Netherlands Meteorological Institute,

De Bilt, The Netherlands

vtvu@liacs.nl cats@knmi.nl llexx@liacs.nl

Keywords: weather forecast model, halo data swap, asynchronous communication.

Abstract

In this paper we investigate alternative

asynchronous communication strategies in the

HIRLAM weather forecast model. We perform

experiments to evaluate the efficiency of each

approach on DAS-3 and compare it to the original

communication approach in the HIRLAM system.

1. Introduction

HIRLAM [4] stands for HIgh Resolution Limited

Area Model and is a state-of-the-art analysis and

forecast system for the numerical weather

forecast. The weather forecast model is one of the

three components in the HIRLAM system.

There are several parallel implementations of the

weather forecast model. These have been

developed by hand from the HIRLAM reference

code. The undesirability of hand-code is that it

creates difficulty in maintenance. Furthermore,

making these implementations efficient on

different type of computer architectures is an

impossible task, because each computer system

requires computer architecture-dependent

optimizations. A code generator can assist these

problems.

In [6] van Engelen proposed the CTADEL code

generator, which can generate code for the so-

called dynamics of the HIRLAM weather forecast

model. In this paper we used this generation-code

as a basis for all the experiments performed in

Section 3. However, the modifications needed for

the experiments were hand-coded. The aim of this

paper thus is not to extend the generator, but to

investigate whether it may be fruitful to do so.

In parallelization, the domain is horizontally

decomposed into sub grids, where each processor

contains the grid points of a sub grid. To compute

these grid points we need information of grid

points from adjacent processors. Exchanging data

with those processors is needed. In the HIRLAM

system, this is done by the so-called halo data

swap procedure [5]. In this paper we introduce

new approaches for this halo data swap in the

weather forecast model.

Our experiments are run on DAS-3 [1], a wide-

area distributed system in The Netherlands.

This paper is constructed as follows: Section 2

describes the data communication methods,

including the original halo data swap procedure in

the HIRLAM system and the new asynchronous

communication approaches. In Section 3 we

discuss our experiments on DAS-3 and

performance of the various data communication

methods in the weather forecast model. Section 4

is reserved for conclusion and discusses future

work.

2. Asynchronous communication

In this section, we firstly describe the original halo

data swap procedure in the HIRLAM system.

Then, we introduce new asynchronous

communication approaches for the data swap.

2.1. Halo data swap in the HIRLAM system

In the HIRLAM system the sub grid is divided

into two parts (see Figure 1): the halo zone and

the inner zone.

north-out

north-in

w
es

t-
in

inner

 ea
st

-i
n

south-in

w
es

t-
o

u
t

south-out

ea
st

-o
u

t

Figure 1: Sub grid of HIRLAM halo

data swap. Gray area: inner zone;

dashed area: inner halo zone; white

area: outer halo zone.

The inner zone (gray area) is the un-swapped area,

i.e. it can be computed without the need of the

grid points from the neighbor processors.

The halo zone contains the grid points which are

exchanged with the neighbor processors. It has

two parts: the inner halo zone (dashed area),

which consists of north-in, south-in, west-in, and

east-in, contains the grid points which are sent to

the neighbor processors; and the outer halo zone

(white area) , which consists of north-out, south-

out, west-out, and east-out, contains the grid

points which are received from the neighbor

processors.

In the HIRLAM system, all the grid points in a

sub grid, except the grid points in the outer halo

zone, are calculated first. Then, the data are

exchanged. The swap process has two stages: first,

the data are exchanged with the north and south

processors. Once this exchange has been

completed, the exchange is repeated with the west

and the east processors.

The original halo data swap procedure in the

HIRLAM system includes the following steps:

1) Do the computation in the whole sub

grid;

2) Data in north-in and south-in are copied

to the sending buffers;

3) Exchange data with its adjacent north and

south processors;

4) Call mpi_wait to complete the north-

south exchange;

5) Copy data from the receiving buffers to

north-out and south-out;

6) Repeat steps 2, 3, 4, and 5 for the west-

east exchange.

2.2. Asynchronization communication on
data swap

In the previous subsection we have described the

original halo data swap procedure in the HIRLAM

weather forecast model. This procedure uses non-

blocking MPI calls for data exchange. However,

we observe that the exchange only starts when the

computation is completed. Moreover, the data in

the halo zone can be used only when the exchange

is finished. This means that the communication

can be seen as blocking MPI calls.

With non-blocking MPI calls [7], the computation

can be done immediately after a MPI call, without

waiting for the completion of the communication.

Therefore, we may get an overlap between

communication and computation. Our new

approaches make use of this property of non-

blocking MPI calls. The idea is to perform part of

the computation while exchanging data. Firstly,

we divide the computation into five parts: north-

in, south-in, west-in, east-in, and inner zone (see

Figure 1). Then, we overlap one of these

computation parts with the exchange, with the

requirement that the data have to be calculated

before they are exchanged. With different ways of

overlapping computation with communication we

have different data swap methods, which are listed

below:

Strategy-1:

The idea of the strategy-1 is to overlap the

computation of the inner part with the west-east

exchange and the computation of the west-in and

east-in parts with the north-south exchange. In this

way, we obtain an overlap between west-east

communication and inner part computation as

well as an overlap between north-south

communication and west-east computation. The

data swap is as follows:

1) Exchange data in the west and the east

halo zones with their adjacent west and

east processors;

2) Do the computation in the inner part;

3) Call mpi_wait to complete the west-east

exchange;

4) Copy data from the receiving buffers to

the west-out and the east-out halo zones;

5) Exchange data in the north and the south

halo zones with their adjacent north and

south processors;

6) Do the computation in the west-in and

the east-in zones;

7) Copy data in west-in and east-in to the

sending buffers;

8) Call mpi_wait to complete the north-

south exchange;

9) Copy data from the receiving buffers to

the north-out and the south-out zones;

10) Do the computation in the north-in and

the south-in zones;

11) Copy data in the north-in and the south-

in zones to the sending buffers.

Strategy-2:

In strategy-1, if the computation time of the west-

in and east-in, which are small parts, is less than

the north-south communication time then we do

not make use of the overlap completely. In this

case, overlapping the inner part with both west-

east and north-south exchange processes is more

efficient. To do this, we divide the computation of

the inner part into two halves and overlap them

with the west-east and north-south exchanges.

This is the idea of strategy-2.

Now, the data swap is as follows:

1) Exchange data in the west and east halo

zones with their adjacent west and east

processors;

2) Do the computation in the first half of the

inner part;

3) Call mpi_wait to complete the west-east

exchange;

4) Copy data from the receiving buffers to

the west-out and the east-out zones;

5) Exchange data in the north and south

halo zones with their adjacent north and

south processors;

6) Do the computation in the second half of

the inner part;

7) Call mpi_wait to complete the north-

south exchange;

8) Copy data from the receiving buffers to

north-out and south-out;

9) Do the computation in the west-in and

the east-in halo zones;

10) Copy data in the west-in and the east-in

halo zones to the sending buffers;

11) Do the computation in the north-in and

south-in halo zones;

12) Copy data in north-in and south-in to the

sending buffers.

Strategy-3:

In strategy-1 and strategy-2 the west-in and the

east-in parts are computed separately. These parts

are short vectors. With the same total length, the

computation of a set of short vectors can be more

expensive than the computation of a set of long

vectors. Therefore, in strategy-3, we compute the

west-in, the inner, and the east-in parts at the same

time while exchanging data with adjacent north-

south processors.

The data swap is as follows:

1) Exchange data in the west and the east

halo zones with their adjacent west and

east processors;

2) Call mpi_wait to complete the west-east

exchange;

3) Copy data from the receiving buffers to

the west-out and east-out zones;

4) Exchange data in the north and the south

halo zones with their adjacent north and

south processors;

5) Do the computation in west-in, inner, and

east-in part;

6) Copy data in the west-in and the east-in

zones to the sending buffers;

7) Call mpi_wait to complete the north-

south exchange;

8) Copy data from the receiving buffers to

the north-out and the south-out zones;

9) Do the computation in north-in and

south-in;

10) Copy data in the north-in and the south-

in zones to the sending buffers.

3. Experiments

In this section we perform experiments for data

communication on DAS-3 using the original

HIRLAM halo data swap procedure as well as

new approaches strategy-1, strategy-2, and

strategy-3.

3.1. Environment

Our experiments are run on DAS-3 [2]. This is a

wide-area distributed system which consists of

five clusters located at five universities in The

Netherlands: Vrije Universiteit (fs0), Leiden

University (fs1), University of Amsterdam (fs2),

Delft University of Technology (fs3), and the

MultimediaN Consortium (fs4). All our

experiments are run on clusters fs0 and fs1.

To create environment we use command module

to load all default modules for interconnection.

Then we use mpif77 to compile the Fortran-MPI

code and use prun to submit job to DAS-3.

We use various numbers of processors x Nx Ny ,

where Nx and Ny varying from 1 to 8 are the

number of processors in x- and y-direction,

respectively. The computation domain is

128x128x16. The size of halo zones is one grid

point for north-, south-, west-, and east-direction.

3.2. Results

To investigate the efficiency of the

communication methods, we measure the total

execution time. This is shown in Table 1.

We observe that the new approaches slow down

the weather forecast model, although there is an

overlap between communication and computation;

this is not what we expected. Table 1 shows that

the elapsed time of the original HIRLAM halo

data swap is the smallest, followed by that of

strategy-3 and strategy-1; whereas it is largest in

strategy-2. Furthermore, it is observed that this

order reflects the number of computation domains

in each approach, that is 1, 3, 5, and 6 in

HIRLAM, strategy-3, strategy-1, and strategy-2,

respectively.

To analyze this result, we split the elapsed time in

communication and computation time. Table 2

shows the measured communication and

computation time of the original HIRLAM halo

data swap and new approaches.

The communication time is the time for

exchanging data and the time for copying to and

receiving from the buffers. The computation time

is the total computation time of all parts in the sub

grid. We see that it increases with the number of

computation domains (i.e. 1, 3, 5, and 6 in

HIRLAM, strategy-3, strategy-1, and strategy-2,

respectively).

In the paragraphs below, we will figure out the

explanation for this observation.

Observe that the arrays in the original HIRLAM

method are long vectors, with the order of

accessing array similar to the order of storing

Nx x Ny HIRLAM strategy

1

strategy

2

strategy

3

1x1 48.891 50.441 50.555 49.633

1x2 24.816 25.531 25.641 25.086

2x2 12.553 12.871 12.949 12.555

2x4 6.375 6.645 6.813 6.609

4x4 3.309 3.520 3.602 3.402

4x8 1.746 1.867 1.930 1.840

8x8 0.926 1.008 1.023 0.953

Table 1: Elapsed times (in seconds) of the data

swap approaches.

Nx x Ny HIRLAM strategy

1

strategy

2

strategy

3

1x1 0 0 0 0

1x2 0.191 0.207 1.117 0.227

2x2 0.152 0.117 0.098 0.117

2x4 0.137 0.137 0.082 0.082

4x4 0.105 0.109 0.074 0.082

4x8 0.125 0.051 0.070 0.059 C
o

m
m

u
n

ic
at

io
n

8x8 0.125 0.031 0.051 0.066

1x1 48.891 50.441 50.555 49.633

1x2 24.625 25.406 25.508 24.957

2x2 12.406 12.797 12.879 12.449

2x4 6.238 6.605 6.770 6.535

4x4 3.203 3.461 3.574 3.340

4x8 1.621 1.848 1.895 1.805 C
o

m
p

u
ta

ti
o

n

8x8 0.844 0.996 0.992 0.902

Table 2: Communication and computation times

(in seconds) of data swap approaches.

Nx x Ny north-in, south-in west-in, east-in

2x2 0.680 0.715

4x4 0.332 0.352

Table 3: Computation time (in seconds) of

north-south and west-east parts in strategy-2.

array in memory. In our new approaches, the

computation is divided into parts. In some part,

e.g. west-in and east-in, the computation is done

with different order of accessing and storing array.

The arrays used in the calculations are short

vectors, the computation of which may be more

expensive than the computation of long vector. To

verify this, we make the following comparisons.

Nx x Ny HIRLAM strategy

1

strategy

2

strategy

3

1x1 0 0 0 0

1x2 0 0.082 0.984 0.098

2x2 0 0.043 0.027 0.012

2x4 0 0.098 0.039 0.008

4x4 0 0.051 0.047 0.020

4x8 0 0.031 0.036 0.023

8x8 0 0.020 0.020 0.016

Table 4: Overlap of asynchronous

communication, is obtained by subtracting the

execution time from the total of

communication and computation time.

Firstly, in Table 3 we show the calculation time of

parts in strategy-2 separately. We find that the

computation time of west-in and east-in is larger

than the computation time of north-in and south-

in, although the number of grid points in west-in

and east-in is smaller than the number of grid

points in north-in and south-in (see Figure 1). This

is also true for strategy-1, verifying our

conclusion for the individual strategies.

Next, we compare different tests which use

different types of arrays. We know that in

strategy-3 and in HIRLAM, the calculation arrays

are long vectors in all parts, meaning consecutive

memory locations are accessed, resulting in a

good performance. As we can see from Table 2,

the computation times in strategy-3 and in

HIRLAM are smaller than that in strategy-1 and

strategy-2.

We conclude that the difference between the

computation time in the original HIRLAM

method and in the new approaches is due to the

different ways of accessing data.

As it was mentioned, our idea was to make use of

the overlap to speed up the execution. However,

as we have seen in Table 2, the result was not

what we expected. What could be the reason?

This is because the communication time is very

small compared to the computation time. The

overlap hence does not affect significantly the

speed up of new asynchronous communication

approaches. This is indeed shown in Table 4.

In summary, the above result can be explained by

the fact that the overlap that we gain is smaller

than the increase of the computation time due to

dividing the domain into parts.

4. Conclusion and future work

We have introduced the new asynchronous

communication strategies for the halo data swap

procedure in the HIRLAM weather forecast

model. Some experiments of alternative

communication methods on DAS-3 have been

shown. It turned out that the new asynchronous

communication approaches slow down the

weather forecast model. This is because the

overlap that we gain from communication and

computation is smaller than the increase of the

computation time due to dividing the domain into

parts.

In our experiments, the size of the halo zones is

one grid point for north-, south-, west-, and east-

direction. In future, we will study larger halo

zones, as e.g. required in the semi-Lagrangian

formulation of the model. Larger halo zone

requires longer time for communication, hence

returns larger overlap. Thus, larger savings by the

asynchronous communication method are

expected. Currently, we investigate the

implementation of our model on more than one

cluster of the DAS-3 computer, which serves as a

prototype for a (wide-area) Grid computer

implementation. We expect that communication

times will become much larger than in the current

one cluster implementation and hence, we expect

to gain from asynchronous communication here as

well.

Dependent on the outcome of these experiments

we may decide to extend the Ctadel code

generator, to the effect that it will be able to

generate asynchronous communication code. In

our current set-up, each sub-domain is processed

by a separate subroutine call. If our further

investigations warrant an extension of Ctadel, we

will also modify Ctadel such that it will generate

inline codes. Although the savings will be small,

they may be big enough to make asynchronous

communication interesting, even in the one-row

halo zone, single cluster case that we investigated

so far.

REFERENCES

[1] DAS-3: http://www.cs.vu.nl/das3.

[2] Execution job on DAS-3:

http://www.cs.vu.nl/das3/jobexec.shtml.

[3] Haobo Zhou, Lex Wolters, and Gerard

Cats, Evaluation of the HIRLAM

Forecast Module on the Grid

Environment DAS-2,

http://www.hirlam.org/open/publications/

NewsLetters/48/72_GCa_rep.pdf.

[4] HIRLAM project: http://hirlam.org/.

[5] Reference HIRLAM Scalability

Optimization Proposal – revision 1.2:

http://www.hirlam.org/open/publications/

NewsLetters/44/HIRLAMOptNewsletter.

pdf.

[6] Robert A. van Engelen, Ctadel: A

Generator of Efficient Numerical Codes,

PhD thesis, Universiteit Leiden, 1998.

[7] The Message Passing Interface (MPI)

standard:

http://www-unix.mcs.anl.gov/mpi/.

