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[1] We present a European land-only daily high-resolution gridded data set for
precipitation and minimum, maximum, and mean surface temperature for the period
1950–2006. This data set improves on previous products in its spatial resolution
and extent, time period, number of contributing stations, and attention to finding the most
appropriate method for spatial interpolation of daily climate observations. The gridded
data are delivered on four spatial resolutions to match the grids used in previous products
as well as many of the rotated pole Regional Climate Models (RCMs) currently in use.
Each data set has been designed to provide the best estimate of grid box averages
rather than point values to enable direct comparison with RCMs. We employ a three-step
process of interpolation, by first interpolating the monthly precipitation totals and
monthly mean temperature using three-dimensional thin-plate splines, then interpolating
the daily anomalies using indicator and universal kriging for precipitation and kriging
with an external drift for temperature, then combining the monthly and daily
estimates. Interpolation uncertainty is quantified by the provision of daily standard errors
for every grid square. The daily uncertainty averaged across the entire region is shown
to be largely dependent on the season and number of contributing observations. We
examine the effect that interpolation has on the magnitude of the extremes in the
observations by calculating areal reduction factors for daily maximum temperature and
precipitation events with return periods up to 10 years.
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1. Introduction

[2] Data sets of spatially irregular meteorological obser-
vations interpolated to a regular grid are important for
climate analyses. Such gridded data sets have been used
extensively in the past and will continue to be important for
many reasons. First, such interpolated data sets allow best
estimates of climate variables at locations away from
observing stations, thereby allowing studies of local climate
in data-sparse regions.
[3] Second, for monitoring of climate change at the

regional and larger scale we frequently utilize indices of
area averages. Such indices range in scale, from those
representing local regions such as the Central England
temperature record [Parker and Horton, 2005] up to indices

of global change such as the mean global temperature
[Brohan et al., 2006]. Such area averages require data at
an equal area grid (or an averaging scheme incorporating
this implicitly) so as not to bias the average to regions with
a higher spatial density of observing stations.
[4] Third, climate variability studies often seek regional

patterns of coherent variability and therefore employ multi-
variate eigenvalue techniques, such as principal component
analysis, canonical correlation analysis and singular value
decomposition. Such techniques prefer regularly spaced
observations so as not to bias the eigenvalues to regions
with a higher density of observations.
[5] Fourth, validation of Regional Climate Models

(RCMs) is becoming more important as such models gain
increased popularity for regional climate change studies.
Such a direct comparison between models and interpolated
data assumes that the observations and model are indica-
tive of processes at the same spatial scale. Models are
generally agreed to represent area averaged rather than
point processes [Osborn and Hulme, 1998], especially their
representation of the hydrological cycle. Therefore con-
struction of a gridded data set where each grid value is a
best estimate average of the grid square observations is the
most appropriate data set for validation of the model, rather
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than comparison between the model and point observations
directly.
[6] Finally, impacts models are important for determining

the possible consequences of climate change, such as
changes to water supply or crop yields. Such models often
require regularly spaced data, and are much easier to
implement with temporally complete time series which
gridding achieves, with no need to consider how to deal
with missing data.
[7] In this paper, we present a European high-resolution

gridded daily data set of precipitation and surface temper-
ature (mean, minimum and maximum). The data set was
developed as part of the European Union Framework 6
ENSEMBLES project, with the aim being to use it for
validation of RCMs and for climate change studies.
[8] There are several similar daily gridded data sets

already available for Europe, however none can compare
to the set presented here in terms of the length of record, the
spatial resolution, the incorporation of daily uncertainty
estimates or the attention devoted to finding the best
interpolation method. The currently existing gridded data
sets have either a coarser grid resolution, a shorter time
span, or do not cover all of Europe. Additionally, none of
the data sets includes error estimates. HadGHCND [Caesar
et al., 2006] is a global gridded daily data set based upon
near-surface maximum and minimum temperature observa-
tions. It spans the years 1946–2000 but is available on a
much coarser 2.5� latitude by 3.75� longitude grid. The
European Commission Joint Research Centre in Ispra, Italy
houses the MARS-STAT database containing European
meteorological observations interpolated onto a 50 km grid,
but only from 1975 up to present. The Alpine precipitation
gridded analysis [Frei and Shär, 1998] is based on 6700
daily precipitation series and covers the period 1966–1995.
The spatial resolution of this data set is 25 km and the
region encompasses just the Alpine countries. Daily obser-
vations at point locations, for the present study, have been
available through the European Climate Assessment and
Data set (ECA&D; http://eca.knmi.nl/). Most of the station
data used in the current study have also helped to enhance
the ECA&D station data set to its current status of over
2,000 stations [Klok and Klein Tank, 2008]. All aspects of
the data used are discussed in section 2.
[9] A major part of the gridding exercise has been to

select the most appropriate methodology for interpolating
the point observations to a regular grid. In this process we
investigated in detail current best-of-class methods and
carried out a detailed comparison of the skill of such
interpolation methods. The details of this comparison are
presented by Hofstra et al. [2008]. While we will not revisit
the comparison here, we will focus more on the details of
the kriging method that was shown by Hofstra et al. [2008]
to be the best method. A discussion of the gridding method
is the focus of section 3.
[10] An important additional product of the data set is the

estimation of interpolation uncertainty of the daily grid
square estimates. The methodology for calculating the
uncertainty is explained in section 3. Quantifying uncer-
tainty has been an important focus of the exercise to enable
users of the data set to gain a better understanding of the
temporal and spatial evolution of data quality. We hope that
products derived from the data set, such as analyses of past

climate change and comparisons with model data, will be
able to incorporate and effectively use these uncertainty
measures.
[11] To measure the impact that interpolation has had on

the daily grid square extremes, we have undertaken a simple
analysis comparing extremes in the raw station data and in
data interpolated to the station locations. This is presented in
section 4.
[12] We conclude the study with a discussion of the

shortcomings of the data set and a summary of our meth-
odology and findings in section 5.

2. Data

2.1. Data Collection

[13] Daily observations were compiled for precipitation,
and minimum, maximum and mean surface temperature
covering the time period 1950–2006. The collection of data
was primarily carried out by the Royal Netherlands Mete-
orological Institute (KNMI), which also hosts the European
Climate Assessment and Data set (ECA&D). The ECA&D
set of observing stations served as the starting point for the
ENSEMBLES data set, and the ECA&D database infra-
structure was also used for ENSEMBLES. At the start of
this project (February 2005), only data from the ECA&D
data set were at our disposal. At that time, this data set
included about 250 stations having data over 50 years,
which is insufficient for the purpose of high-resolution
gridding. Ideally, the preferred station density for high-
resolution (25 km) gridding would be at least one station
per 25 � 25 km. Since Europe’s surface area is approxi-
mately 10,000,000 km2, we would need around 16,000
stations. It was clear early in the project that we would
not be able to achieve this, as that many stations do not
exist. Therefore, it was a high priority that the data set
include interpolation uncertainty estimates based on the
spatial correlation structure of the data.
[14] Additional station series were gained from other

research projects, such as STARDEX [Haylock et al.,
2006], or by petitioning various National Meteorological
Services directly. Contacting the services directly was
carried out in collaboration with the ECA&D. Other exist-
ing data sets provided further stations, such as the Global
Climate Observing System (GCOS) Surface Network
[Peterson et al., 1997], the Global Historical Climatology
Network (GHCND) [Gleason, 2002] and the Mesoscale
Alpine Programme (MAP) [Bougeault et al., 2001]. These
efforts resulted in an increase in the number of stations from
the original 250 to 2316 stations (the exact number varies
over time), still well below the ideal number but an order of
magnitude improvement on the initial set. Further details on
the data collection and a list of contributing institutions are
provided by Klok and Klein Tank [2008].
[15] The map of the station network (Figure 1) reveals

uneven station coverage, with the highest station density in
the UK, Netherlands and Switzerland. The station networks
for minimum and maximum temperature are very similar to
mean temperature (Figure 1b). Figure 1 shows the complete
gridding region. While we have provided grids for northern
Africa to match the coverage of the ENSEMBLES RCMs,
the very poor station coverage (reflected in very high
uncertainty) reduces the utility of the data in these regions.
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2.2. Data Quality

[16] Raw station observations underwent a series of
quality tests to identify obvious problems and remove
suspicious values. This included: precipitation less than
zero or greater than 300 mm; temperatures higher than
60�C; minimum temperature greater than maximum; and
more than 10 days with the same (nonzero) precipitation.
Flagged observations of excessive precipitation were
checked manually in regions where such amounts might
occur (e.g., excessive precipitation in Alpine regions).
[17] Temperature outliers are removed by identifying

those days that were more than five standard deviations
from the mean with reference to all days within five days of
that calendar day over all years. For example, to test the
observation on 12 January 1970, we calculate the mean and
standard deviation using observations from 7 January to 17

January for all years. In each test we excluded our candidate
observation so as not to influence the calculation of the
mean and standard deviation in case this is a very large
outlier. Since each removal of a value will influence the
detection of other outliers, we ran this test repeatedly
through the data until no more outliers were detected.
[18] In a preliminary analysis of the spatial correlation

structure of the raw station data, we discovered that by
shifting some stations forward or backward in time by one
day, we obtained much higher correlations between stations.
This revealed the problem that the method of assigning
dates to each observation by the different National Meteo-
rological Services possibly varied between countries. For
example, it is unclear whether the 24 h precipitation total
recorded as 1960-01-02 corresponds to the precipitation that
fell on that date, or this was the date the observation was
made (often at 0900). This holds similarly for the maximum
temperature reading. There is also the possibility that this
methodology changed through time. This problem has not
been detailed before in the literature, but is nevertheless
critical to producing a daily gridded data set, and so needed
to be addressed.
[19] With limited time and resources available, we

addressed the issue by finding the shift for each station
(�1, 0, or 1 day) that produced the highest correlation with
the nearest grid square in the ERA40 data set. While the
ERA40 data could have possibly assimilated the incorrect
data, it does at least maintain dynamical consistency be-
tween the variables. To calculate the ERA40 daily observa-
tion from the four six-hourly time steps the method
depended on the variable. For precipitation, we used the
0600–0600 total, which assumes that our precipitation
totals were measured at 0900. For example, for 1960-01-
01 we added the 1200 and 1800 values of 1960-01-01 to the
0000 and 0600 values of 1960-01-02. For maximum
temperature, we took the maximum of the four time steps
0000, 0600, 1200, and 1800 for each day and for minimum
temperature the minimum of these four time steps. Each
variable was treated independently, so a different shift could
be applied to different variables at the same station. Most
stations were either unshifted or moved one day earlier
(the value that is recorded as 1960-01-02 was moved to
1960-01-01).

3. Gridding Methodology

3.1. A Three-Step Process

[20] Kriging involves solving a set of linear equations to
minimize the variance of the observations around the
interpolating surface. This least squares problem therefore
assumes that the station data being interpolated are homo-
geneous in space. This is not the case when we have stations
across Europe from many climate zones. In regions with
higher precipitation, our interpolation should allow for
higher interpolation error. The daily data therefore need to
be made homogeneous across the region.
[21] We addressed this problem by adopting a three-step

methodology of interpolating the daily data: interpolating
the monthly mean using thin-plate splines to define the
underlying spatial ‘‘trend’’ of the data; kriging the anoma-
lies with regard to the monthly mean; and applying the
interpolated anomaly to the interpolated monthly mean to

Figure 1. The complete gridding region (land-only),
showing the station network for (a) precipitation and (b)
mean temperature.
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create the final result. This is similar to universal kriging
[Journel and Huijbregts, 1978], whereby a polynomial is fit
to the underlying spatial trend. In such a large and complex
region, thin-plate splines are more appropriate method for
trend estimation than polynomials. For temperature we
calculated anomalies as the difference between the daily
observation and the monthly mean. For precipitation we
calculated the daily anomaly as the quotient of the daily
precipitation total and the monthly total. The precipitation
anomaly is therefore the proportion of the monthly total that
fell on that day. This has the effect of transforming all the
precipitation anomalies to the range [0,1].
[22] As well as homogenising the data across stations,

there were other reasons to perform two separate interpola-
tions. First, it enables us to use two separate methods for
interpolating the monthly and daily data. We performed
cross validation exercises to compare the skill of various
methods in interpolating monthly means/totals and daily
anomalies to determine the best method. The results of the
daily comparison are given by Hofstra et al. [2008], which
revealed kriging to be the best method. A similar cross
validation was carried out for monthly data which showed
thin-plate-splines to be the best method. For monthly
precipitation and temperature we use three-dimensional
splines, taking into account the station elevation.

3.2. Monthly Temperature Means and Precipitation
Totals

[23] Thin-plate smoothing splines can be thought of as an
extension of linear regression, where the parametric linear
function in linear regression is replaced by a smooth
nonparametric function. The function is determined from
the data, in particular the degree of smoothness is deter-
mined by minimizing the predictive error, given implicitly
by a cross validation error. The method was originally
described by Craven and Wahba [1978]. We utilized the
ANUSPLIN package based on the work of Hutchinson
[1995]. Note that thin-plate splines are a stochastic method
(see section 3.3) and are a very different approach to
interpolation than the commonly used cubic (or higher
order) splines which fit polynomials to each section of the
plane to pass through all the data points and maintain
continuity of the derivative (slope).
[24] Monthly precipitation totals and monthly means of

temperature were calculated for stations with less than 20%
missing data in that month. For months with fewer than
20% missing days, precipitation totals were adjusted by
dividing the totals by the proportion of nonmissing obser-
vations. This was to account for the possibility of rain on the
missing days. A threshold of 20% was considered as high
enough so as not to reject too many stations and low enough
so as not to create large uncertainty in the monthly total or
average. Stations that have a large amount of missing data
might also be expected to have other problems, such as
incorrect flagging of precipitation accumulation over sever-
al days. The number of stations selected by this methodol-
ogy (Figure 2) shows a sharp rise up until 1960, then
increases slightly until 1990, after which there is a large
drop. The precipitation stations show a sharp dip in 1976.
The number of stations with at least one observation (or less
than 99% missing data) per month (Figure 2) also shows a
decline in 1976, suggesting that the dip is caused by a

reduction in the number of stations rather than an increase in
the amount of missing data. The number of precipitation
stations with less than 20% missing data shows a decline
every winter, which is not reflected in the number of
stations with at least one observation, suggesting that this
annual decline is due to an increase in the amount of
missing data. A closer examination of the stations that
exhibit an increase in the proportion of missing observations
every winter (not shown) does not reveal any regional or
elevation dependence. This suggests the increase in missing
precipitation observations in winter cannot be explained by,
for example, snowfall upsetting gauge measurements. The
number of temperature stations does not show such a
decline every winter.
[25] The monthly means or totals were then interpolated

with thin-plate splines using elevation to a high resolution
0.1� by 0.1� rotated pole grid, with the ‘‘North Pole’’ at
162�W, 39.25�N. We chose to use a rotated pole grid so as
to allow quasi-equal area grid spacing over the study region.
This enabled the largest spatial coverage with the minimum
number of interpolated grid squares to increase computa-
tional efficiency. Using an unrotated grid would have
resulted in a higher grid density in the north of the region
compared to the south. The rotated pole was chosen to
match the grid used by many of the regional climate models
in ENSEMBLES, including models run by the Community
Climate Change Consortium for Ireland, the Danish Mete-
orological Institute, GKSS Forschungszentrum Geesthacht
GmbH, the Royal Netherlands Meteorological Institute, the
Norwegian Meteorological Institute, the UK Met Office and
the Swedish Meteorological and Hydrological Institute.
[26] Although the final grids produced in the data set

were spaced at 25 and 50 km, we chose to produce the high
resolution 0.1� rotated pole master grid, which we would
use to area average to create the final grids. The reason for
this is that the interpolation methods were tuned to repro-
duce as accurately as possible a point observation, whereas

Figure 2. The number of stations with less than 99% and
20% missing observations for each month.

D20119 HAYLOCK ET AL.: EUROPEAN GRIDDED DAILY PRECIP AND TEMP

4 of 12

D20119



the aim of the gridding exercise was to produce grid square
averages. Although the interpolated data calculated directly
at the center of a grid square using thin-plate splines or
kriging would be very similar to the result obtained after
interpolating to many points in the grid square then aver-
aging these, this may not be the case for precipitation
occurrence. We wanted to have grid cells with a precipita-
tion occurrence distribution more like an area average (as in
a regional climate model) than an observing station which
has generally fewer rain days and higher totals on these days
than a climate model. This can best be achieved by
interpolating to a finer grid with each point having a
precipitation occurrence distribution similar to that of an
observing station, then averaging these to create a coarser
grid.

3.3. Daily Anomalies

[27] Kriging is an interpolation method that has been
developed extensively in the geosciences for the application
of mapping ore reserves using sparsely sampled drill cores.
The methodology has a long history of development,
beginning with the pioneering mathematical formalization
of Kolmogorov in the 1930s [Kolmogorov, 1941]. The
popularity of kriging as a tool for spatial interpolation
increased substantially through the efforts of Matheron
[1963] and the later work of Journel and Huijbregts
[1978]. It is now used extensively in many fields of
geoscience because of its skill as an interpolator and its
powerful application to other problems such as estimating
uncertainty. The term kriging was adopted by Matheron in
recognition of the work of Krige [1951].
[28] Kriging, in various forms, has been applied to

precipitation interpolation. Barancourt and Creutin [1992]
used indicator kriging (see below) for interpolation of daily
rainfall in a high station density region in southern France.
Ali et al. [2005] adopted universal kriging for Sahelian
rainfall at different timescales. Their study included a cross
validation of several interpolation methods to prove the
superiority of regression kriging (defining the spatial trend
using multivariate regression) compared with universal and
ordinary kriging. In the far larger and more heterogeneous
region of our study we prefer to define the spatial trend with
thin-plate splines. Dinku et al. [2007] created a station-
based gridded data set of daily rainfall over East Africa for
the validation of satellite products. Although they used
kriging for the mean values, anomalies were interpolated
with angular distance weighting.
[29] Kriging is a stochastic interpolation method. It

assumes that the interpolated surface is just one of many
possible solutions, all of which could have produced the
observed data points. Stochastic methods use probability
theory to model the observations as random functions. The
aim of the interpolation is to produce a surface that fits to
the expected mean of the random function at unsampled
locations. Kriging forms part of a class of interpolators
known as best linear unbiased estimators (BLUE): the
‘‘estimated’’ (interpolated) value is a linear combination of
the predictors (nearby stations) such that the sum of the
predictor weights is 1 (unbiased) and the mean squared error
of the residuals from the interpolating surface is minimized
(best estimate). The interpolating surface is therefore a local

function of the neighboring data, but conditional on the data
obeying a particular model of the spatial variability.
[30] The key to kriging is deciding which statistical

model best describes the spatial variation of the data. This
is determined by fitting a theoretical function to the exper-
imental ‘‘variogram’’: the absolute difference between sta-
tions as a function of their distance. For this comparison we
have selected the best of five models: Gaussian, exponen-
tial, spherical, hole effect, and power. These are the most
common functions used for variogram modeling and their
mathematical description can be found in most geostatistical
texts [e.g., Kitandis, 1997; Webster and Oliver, 2001]. The
most appropriate function was determined by fitting each of
these nonlinear functions to the experimental variogram
using the method of Marquardt [1963], and selecting the
model with the lowest Chi-square statistic. The model
fitting gave more weight to those points in the experimental
variogram that were calculated from more station pairs. All
variogram models contained three parameters: the range, a
measure of how rapidly the spatial correlation reduces with
distance; the sill, which describes the expected temperature
or precipitation anomaly difference between two stations at
far separation; and the nugget variance to allow for spatial
variation at a scale not resolved by the station network.
[31] We tried calculating the variogram independently for

each day of the analysis period, as well as for each calendar
month or just a single variogram for every day. A cross
validation exercise showed that the best interpolation skill
came from using just a single variogram for all days,
probably due to greater statistical certainty in model fitting
when using the larger amount of data. Lebel et al. [1987]
adopted a similar approach of using a single ‘‘climatological
variogram’’ for interpolating Sahelian rainfall, although
they used a scale factor that depended on the time of year.
In our case, we are interpolating the rainfall deviation from
the monthly mean and so a monthly-dependent variogram
did not add skill.
[32] We tested different search radii to select neighboring

stations for variogram modeling and interpolation. The
highest cross-validation skill came from using a radius of
450 km for precipitation and 500 km for temperature.
Selecting smaller search radii might improve local detail,
but at the expense of providing fewer stations for variogram
modeling and interpolation.
[33] Variogram modeling allows for the possibility that

spatial correlation may depend on orientation, for example
in mid latitudes one might expect that observing stations
might be more highly correlated in an east-west direction
than north-south because of the prevailing weather patterns.
Creating direction-dependent variograms is known as an-
isotropic variogram modeling [Kitandis, 1997]. We exam-
ined the potential added value of this approach by
calculating variograms separately for directions 45� either
side of the north-south axis and comparing this with
directions 45� either side of the east-west axis. We found
no significant difference that would warrant anisotropic
modeling at the expense of increased variogram uncertainty
due to fewer data.
[34] There have been many extensions to kriging, such as

indicator kriging to model binary distributions (such as
precipitation occurrence) and kriging with an external drift,
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which uses information from a covariate (such as elevation)
to assist interpolation. For temperature we incorporate
elevation dependencies by using external drift kriging
[Goovaerts, 2000]. Block kriging is a further extension that
enables the estimation of areal means rather than point
valuess [Grimes et al., 1999; Journel and Huijbregts,
1978]. We chose not to adopt this, instead interpolating to
a fine resolution master grid and averaging this to different
resolutions. Still, block kriging would be worth considering
as a better estimation of areal means in future updates.
[35] Kriging of precipitation anomalies is more compli-

cated than for temperture due to the binary nature of
precipitation occurrence. Indicator kriging is an established
method to model such spatially discrete variables and
developed from the application of interpolating concentra-
tions in ore reserves, which often occur in discrete bodies.
Indicator kriging has been successfully applied to precipi-
tation [Atkinson and Lloyd, 1998; Barancourt and Creutin,
1992; Teo and Grimes, 2007]. We adopted a similar method
to Barancourt and Creutin [1992], whereby the rainfall is
transformed to a binary distribution dependent on being
above or below a threshold. We selected a threshold of
0.5 mm to define a rainy day. Adopting rainy day thresholds
lower than this has been shown to be sensitive to data
quality, such as under reporting of small rainfall amounts
due to bad observer practice [Hennessy et al., 1999].
Variogram modeling and ordinary kriging was then per-
formed on the binary variable to produce interpolated values
of the probability of observing a rainfall event above
0.5 mm. Those grid boxes with a probability higher than
a certain probability threshold are then assigned a rainfall
anomaly using ordinary kriging. A probability threshold of
0.4 was used, selected by testing various thresholds with
cross validation. Barancourt and Creutin [1992] show that
an unbiased estimate of the probability threshold is just the
proportion of observations that are above 0.5 mm.
[36] All variogram modeling and kriging was imple-

mented in custom FORTRAN code based partly on GSLIB
code [Deutsch and Journel, 1998]. The GSLIB kriging code
was altered to use the more stable singular value decompo-
sition method to solve the kriging linear equations rather
than Gaussian elimination [Press et al., 1986].
[37] The modeled ‘‘theoretical’’ variograms (Figure 3) are

all spherical, apart from precipitation amount which is
exponential. The ranges of the variograms range from
470 km, for rainy day probability, up to 1262 km for
precipitation amount.

3.4. Uncertainty Estimates

[38] Obtaining estimates of uncertainty was a high prior-
ity for this data set. Uncertainty arises from many sources,
including all stages of the observation and analysis, from
measurement and recording errors to data quality, homoge-
neity and interpolation. Incorporating all these sources
would be ideal, but without significantly more resources
this was not possible. We therefore focused on a best
assessment of the interpolation uncertainty. Our cross val-
idation exercise to select the best interpolation methodology
[Hofstra et al., 2008] showed typical interpolation error to
be much larger than the expected magnitude of other
sources of uncertainty. Folland et al. [2001] adopt temper-
ature uncertainty in the order of tenths of Kelvin for

inhomogeneities, thermometer exposure and urbanization
compared with an interpolation error of several Kelvin
[Hofstra et al., 2008].
[39] The final uncertainty estimate is dependent on the

uncertainty in the monthly means/totals and the uncertainty
in the daily anomalies. Both thin-plate splines, used for
monthly interpolation, and kriging, used for daily interpo-
lation, are stochastic methods that allow an estimate of
interpolation uncertainty. ANUSPLIN uses the methods
described by Hutchinson [1993] and Hutchinson [1995], a
detailed description of which is beyond the scope of this
paper. For the monthly uncertainty we would have ideally
liked to calculate uncertainty for each month separately,
however computational constraints prohibited this. We
therefore calculated the monthly uncertainty by using the
uncertainty determined by interpolating the monthly clima-
tology (calculated from all available years of data) and
applied this to all years. Therefore the monthly uncertainty
for January 1960 is the same as for January 1961 and all
other Januaries in the period.
[40] Daily uncertainty was determined from the kriging

method. Kriging provides a measure of the expected mean
at an interpolated point as well as the variance. Several
climate studies have used the kriging variance as a proxy for
uncertainty. Lebel and Amani [1999] analyzed single event
accumulated rainfall in a station-dense region of the Sahel
to reveal the behavior of the estimation variance with
varying station density. Similarly, Grimes et al. [1999]
merged guage and satellite data based on their relative
uncertainties determined using the kriging variance.
[41] However previous work on kriging showed that

the kriging variance is not a true estimate of uncertainty
[Journel and Rossi, 1989; Monteiro da Rocha and
Yamamoto, 2000], but rather just a product of the
variogram. Kriging variance is independent of local
variation and dependent only on station separation. For
example, the kriging variance of precipitation is the same
at an interpolated point regardless of whether the neigh-
boring stations have all recorded no precipitation or have
all recorded widely varying extreme amounts.
[42] The best solution to quantify kriging uncertainty is to

perform an ensemble of stochastic simulations. This ap-
proach produces a set of interpolated realizations, all of
which honor the observations but vary away from the
observing stations by an amount dependent on the distance
to the observations as well as the variability of the obser-
vations [Deutsch and Journel, 1998]. This methodology has
been adopted in the past with precipitation observations
[Ekstrom et al., 2007; Kyriakidis et al., 2004; Teo and
Grimes, 2007]. Unfortunately the computational require-
ments increase linearly with the ensemble size. Therefore to
have a reasonable ensemble to determine uncertainty (at
least 30 members) would have required many months of
computational power compared to the two weeks required
for the single realization of 57 years of daily data at high
spatial resolution for four variables. Shortcuts have been
proposed to speed up simulations by reducing the degree of
randomness of the simulations. One method is to execute
the simulations in the same grid box order for each
simulation, thereby removing the need to calculate kriging
weights for each simulation separately [Bellerby and Sun,
2005; Teo and Grimes, 2007]. We did not consider attempt-
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Figure 3. Experimental (dashed lines) and theoretical (solid lines) semivariograms for rainy day
probability, precipitation amount, and mean, minimum, and maximum temperature.
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ing such optimizations, but they would be well worth
investigating for future updates to the data set.
[43] We adopted a solution provided by Yamamoto

[2000], who gives an alternative method of assessing
kriging uncertainty using just the data provided by the
single realization. Kriging interpolates to a point by calcu-
lating a weighted sum of neighboring observations, with the
weights determined by the variogram model and the sepa-
ration distances. The method of addressing uncertainty is
based on the premise that we would expect higher uncer-
tainty at an interpolated point when the neighbors are more
variable. When neighbors are similar, one would expect less
uncertainty. Through cross validation, Yamamoto [2000]
shows that their ‘‘interpolation variance’’ shows much
closer correspondence to the true error than the kriging
variance. We applied this method to every grid point for
every day to arrive at the standard error for the daily
anomaly. For precipitation, the standard error (in units of
proportion of monthly total) is converted to mm by multi-
plying by the interpolated monthly total. For temperature
the kriging standard error is in Kelvin.
[44] As discussed in section 3.3, for precipitation we use

separate interpolations for occurrence and magnitude. The
uncertainty estimate is calculated from the magnitude inter-
polation, irregardless of whether the occurrence model
designated a wet or dry day. Unfortunately we cannot
easily incorporate uncertainty from the occurrence model
[Barancourt and Creutin, 1992], which would best be
addressed through simulations.
[45] To calculate the final uncertainty at a grid square we

combined the uncertainties from the monthly climatology
and the daily anomaly in quadrature, i.e., the square root of
the sum of the squares of the two uncertainties. The final

uncertainty for the 0.1� master grid is given for every grid
square on every day as a standard error.
[46] The average uncertainty over the entire domain is

largely dependent on the number of stations (Figure 4). There
is a tendency for greater uncertainty at the start and end of the
period due to the reduced number of stations. For tempera-
ture, the uncertainty also shows a strong annual cycle, with
higher uncertainty in spring and lower uncertainty in autumn
(Figure 5). There is also a marked reduction in temperature
uncertainty in December compared with the adjacent
months. An examination of the monthly maps of uncertainty
(not shown) shows this to be due to generally lower uncer-
tainty in December in the central and southern latitudes.
Uncertainty is generally higher in snow covered northern
latitudes in winter due to decreased spatial consistency.
[47] Standard errors for the 25 and 50 km gridded data

sets are calculated from the uncertainty in the high-resolu-
tion master by allowing for spatial autocorrelation. Error
propagation theory [Goodman, 1960] gives that for a linear
function of correlated variables (equation (1)), the standard
error is dependent on the variance-covariance matrix of the
dependent variables (equation (2)). The variances in M are
the square of the standard error of the master grid and the
covariances are calculated directly from the variogram.

f ¼ aTx ð1Þ

s2
f ¼ aTMa; ð2Þ

where M ¼

s2
1 COV12 COV13 . . .

COV12 s2
2 COV23 . . .

COV13 COV23 s2
3 . . .

. . . . . . . . . . . .

2
664

3
775 is the

Figure 4. Annual average standard error for 0.1� master
grid averaged across the entire region for mean temperature,
along with the monthly number of stations with less than
20% missing observations.

Figure 5. Daily mean standard error for 0.1� master grid
for mean temperature averaged across the entire region for
the years 1970–1974.
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variance-covariance variance of x. When f is the mean of x,
equation (2) reduces to

s2
f ¼

1

n2

X
i

X
j

Mij; ð3Þ

where n is the number of dependent variables contributing
to the mean.

4. Extremes of Observed and Interpolated Data

[48] With increasing attention to analysis of extremes, the
gridded data set will likely be used for validation of
extremes in climate models as well as looking at changing
extremes. We have therefore briefly examined the extremes
in the gridded data compared with the station observations.
[49] There are two elements in the interpolation method-

ology that affect the behavior of extremes. The first is the
smoothing introduced by the spline and kriging interpola-
tion, as these nonexact interpolators will smooth out peaks
and troughs in a surface. The second is the methodology of
creating grid square averages by interpolating to a high-
resolution grid then averaging this to coarser resolution.
[50] To examine the effect of the kriging smoothing we

compared the extremes in the station data against those in a
cross validation data set, by selectively removing each
station then using its neighbors to interpolate to the missing
station’s location. This latter cross-validated data set was
used in an earlier study for determining the best interpola-
tion method [Hofstra et al., 2008]. We calculated the
magnitude of the extremes in both data sets for various
higher annual quantiles and return periods and compared the
two by calculating the reduction factor as either a propor-

tional decrease in the return level for precipitation or the
anomaly for maximum temperature.
[51] Figures 6 and 7 show the reduction factor for

precipitation and the reduction anomaly for maximum
temperature. Quantile amounts were calculated as empirical
quantiles using the empirical distribution function, while
higher return period levels were calculated using L
moments with generalized extreme value code provided
by Hosking [1990]. The reduction factors show a clear
reduction in all extremes higher than the annual 75th
percentile for precipitation and 90th percentile for maxi-
mum temperature. The median reduction for the 10-year
return level is a factor of 0.66 for precipitation or an
anomaly of �1.1�C for maximum temperature. However,
for some stations the precipitation 10-year return level could
be reduced by more than half, or the maximum temperature
intensity by more than 3�C.
[52] The reduction of extremes can also be seen in a map

of the precipitation 10-year return level for the stations
and cross-validated data (Figures 8a and 8b). Note that
Figures 8a and 8b are only for the central part of our
gridding domain. We have plotted the values by interpolat-
ing to a regular grid using an exact interpolator, natural
neighbor interpolation [Sibson, 1981], so as not to smooth
the values further. The map of extremes at the station scale
(Figure 8b) is generally of higher magnitude and with
higher peaks than the interpolated data (Figure 8a). Also
shown is the precipitation 10-year level for the 0.1� master
gridded data set (Figure 8c). This shows similar magnitudes
to the cross-validated data (Figure 8a). Since the cross-
validated station data has retained the true climatology at
each station (we interpolated only the anomaly then added it
back to the true climatology at the omitted station), we can
conclude that most of the smoothing in extremes is from the

Figure 6. Areal reduction factor for daily quantiles of
precipitation from the median (50% quantile) up to the
10-year return level. Bars show the variation across the
stations, marking the median, 25% and 75% range (box)
and the 5% and 95% range (dashes).

Figure 7. Areal reduction anomaly for daily quantiles of
maximum temperature from the median (50% quantile) up
to the 10-year return level. Bars show the variation across
the stations, marking the median, 25% and 75% range (box)
and the 5% and 95% range (dashes).
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kriging of the daily anomalies, rather than from the inter-
polation of the climatology.
[53] The effect of averaging the 0.1� master grid to create

25 and 50 km data sets would be expected to reduce the
extremes further (a desired effect), but since the interpolated
fields are already smoothed, we would expect the effect to
be less than the kriging smoothing.
[54] In conclusion, the interpolation methodology has

reduced the intensities of the extremes, which is what would
be expected for grid square average data. We should
therefore be able to compare the extremes in this data set

directly with regional climate models at the same spatial
scale.

5. Conclusion

[55] We have created a high-resolution European land-
only daily gridded data set for precipitation and mean,
minimum and maximum temperature for the period
1950–2006. This data set is unique in its spatial extent,
resolution and the use of many more European observing
stations than in other European or global sets.

Figure 8. Ten-year return level for daily precipitation for (a) cross-validated station data, (b) station
data, and (c) the final gridded data.
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[56] An important part of the data set is daily estimates of
interpolation uncertainty, provided as standard errors. While
interpolation uncertainty is the largest source of uncertainty
in spatially interpolated data, there are other sources of
uncertainty that would be worthwhile to include in future
updates to this data set, including uncertainty related to
measurement, homogeneity, and urbanization. A simple
approach to model measurement error would be to assume
a Gaussian distributed random error. For temperature,
Folland et al. [2001] suggest this approach with a standard
deviation of 0.2�C, an approach also adopted by Brohan et
al. [2006]. A similar approach could be taken for precip-
itation. Homogeneity of records can be assessed using
probabilistic methods [Peterson et al., 1998] to quantify
the probability and magnitude of jumps in the record. Bias
in temperature records can contribute to uncertainty, aris-
ing from sources such as thermometer exposure and
urbanization. Folland et al. [2001] addressed both these
issues and decided for thermometer exposure on a random
error with standard deviation of 0.1�C pre-1900 reducing
to zero by 1930. Urbanization, more relevant to the period
of our data set, was handled similarly by Folland et al.
[2001] with a Gaussian distributed random error with
standard deviation increase of 0.0055�C/decade since
1900. With all these uncertainty sources interacting in a
complex manner, the most appropriate means to quantify
these probabilistic errors in the final interpolated result
would be by using stochastic simulations [Deutsch and
Journel, 1998; Webster and Oliver, 2001].
[57] Spatial interpolation has a large impact on the

magnitudes of extremes. We showed that the largest
smoothing of the extremes occurs in the interpolation of
daily anomalies. Using a data set of cross-validated station
observations, we showed that the median reduction for the
10-year return level is a factor of 0.66 for precipitation or an
anomaly of �1.1�C for maximum temperature.

[58] Acknowledgments. ENSEMBLES is a research project (contract
GOCE-CT-2003-505539) supported by the European Commission under
the 6th Framework Programme 2002–2006.
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