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Abstract. Climate proxy data provide noisy, and spatially over Scandinavia during 1790-1820 is linked to anomalous
incomplete information on some aspects of past climatenortherly or easterly atmospheric flow, which in turn is re-
states, whereas palaeosimulations with climate models prolated to a pressure anomaly that resembles a negative state of
vide global, multi-variable states, which may however differ the Northern Annular Mode.
from the true states due to unpredictable internal variabil-
ity not related to climate forcings, as well as due to model
deficiencies. Using data assimilation for combining the em-1  |ntroduction
pirical information from proxy data with the physical under-
standing of the climate system represented by the equationgstimates for past climate are usually either based on empir-
in a climate model is in principle a promising way to obtain ical evidence contained in proxy data or on simulations with
better estimates for the climate of the past. climate models driven by reconstructions of climate forcing
Data assimilation has been used for a long time in weathefactors. A third possibility is the combination of proxy data
forecasting and atmospheric analyses to control the statesnd climate simulations using data assimilation (DA). Here
in atmospheric General Circulation Models such that theywe give an overview on the atmospheric DA efforts that have
are in agreement with observation from surface, upper airbeen undertaken to date in palaeoclimatology and of their
and satellite measurements. Here we discuss the similarirelevance to reconstructing the climate over Scandinavia, yet
ties and the differences between the data assimilation probae begin with a brief discussion of the links between proxy
lem in palaeoclimatology and in weather forecasting, anddata and climate simulations without DA.
present and conceptually compare three data assimilation Empirical reconstructions and standard simulations yield
methods that have been developed in recent years for apadependent results, because the proxy data used for recon-
plications in palaeoclimatology. All three methods (selec- structing the forcings for the simulations are independent
tion of ensemble members, Forcing Singular Vectors, androm those used for the empirical climate reconstructions.
Pattern Nudging) are illustrated by examples that are reAs the errors associated with both approaches are difficult to
lated to climate variability over the extratropical Northern quantify, consistency tests between them are a key tool for as-
Hemisphere during the last millennium. In particular it is sessing the confidence we can have in estimates for past cli-
shown that all three methods suggest that the cold periodnates Jansen et 312007). The mismatch between the local
to regional climate signals recorded in proxy data and the
coarse spatial scales on which palaeoclimate simulations can
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reconstruct large-scale climate anomalids(in et al, 2008 models and empirical information to find estimates for past
Cook et al, 2002 Jones and Widman2003 or full spatial ~ climate that are both consistent with the empirical knowledge
fields (Mann et al, 1998 Luterbacher et al2002 2004, or and with the dynamical understanding of the climate system.
by using downscaling techniques to estimate regional climatéJsually this implies representing the time evolution of ran-
from the simulations\{/agner et a|.2007%). dom variability components in climate simulations, but other
Increasing computer power has led to a considerable numapplications, which will be discussed in the next section, also
ber of simulations for the climate of the Holocerkafisen exist. Moreover, DA provides estimates for variables and lo-
et al, 2007 Wanner et al.2008. Mainly two types of mod-  cations for which no empirical information exists, including
els are used for these simulations, namely Earth system Modarge-scale atmospheric anomalies that are consistent with
els of Intermediate Complexity (EMICs), which are basedthe local information. Using DA in palaeoclimatology has
on substantially simplified atmospheric and ocean dynamicsfirst been suggested hwn Storch et al(2000. Out of the
are computationally fast and thus allow very long or ensem-three methods discussed later in this paper one follows di-
ble simulations, and General Circulation Models (GCMs), rectly the ideas outlined imon Storch et al(2000, and a
which include a representation of climate which is as realis-second one can be seen as a modification of it.

tic as possible, but are Computationally COSt'y. In contrast to In pa|aeoc|imato|ogy the random Variabi”ty Component is
GCMs, many EMICs do not include an adequate representatikely to be of high relevance in the mid-latitudes, as these
tion of the internal climate variability on interannual to mul- are in general characterised by a high level of natural vari-
tidecadal timescales, and the main use of these models is thebility. In Scandinavia natural variability is particularly high,
analysis of the long-term climate response to changes in expecause it is located in an area of a strong precipitation and
ternal forcings Claussen et a120029. The EMIC used here  temperature signal of the Northern Annular Mode (NAM) or
to illustrate various data assimilation methods simulates thehe North Atlantic Ocillation (NAO), which are the domi-
internal climate variability reasonably well in mid and high nant modes of extratropical atmospheric circulation variabil-
latitudes, but strongly underestimates it in tropical regionsity in the Northern HemisphereHgrrell, 1995 Thompson
because of the approximations applied in this model (e.gand Wallace200Q 2001). The NAM/NAO variability char-
Selten et al.1999 Goosse et 312002. Both types of mod-  acterises not only the mean atmospheric flow and thus the
els are usually forced with orbital parameters, and with es-advection of air masses of different temperatures, but also
timates for solar irradiance, greenhouse gas concentrationghe position of the Atlantic stormtrack (with the synoptic-
and sometimes for volcanic aerosol concentrations. Simulascale variability potentially feeding back on the NAM/NAO
tions with GCMs have been performed with constant forc- state), which both are key for the climate over Northern Eu-
ing factors for the Mid-HoloceneBfacconot et a.2007),  rope. Random decadal variability of sea surface temperature
with time-dependent forcings for the last 500 years to thelinked for instance to the Atlantic Multidecadal Oscillation
last millennium Yon Storch et a).2004 Tett et al, 2007 (Delworth and Mann200Q Knight et al, 2005 or to vari-

and in some cases also for most of the Holocémegnz and  ability in the Meridional Overturning CirculatiorHawkins
Lohmann 2004 Wagner et al.2007). Due to the lower com-  and Sutton 2008 can further strongly influence tempera-
puting costs most EMIC simulations are driven with time- tures over Scandinavié;@tton and HOdSQfQOOS

dependent forcing factors and cover the whole Holocene The pasic concepts of DA will be introduced in Sect. 2,

(Crucifix et al, 2002 Brovkin et al, 2003 Weber et al.  40ng with a discussion of the similarities and differences be-
2004 Renssen et al2003 Wang et al. 2003. _ tween the assimilation problem in palaeoclimatology and the
As climate variability is over a large range of timescales highly developed field of DA in meteorology and oceanogra-
a combination of externally forced and of random, internally phy. Specific approaches developed in the context of palaeo-
generated components, empirical reconstructions and Simblilimatology will be presented in Sect. 3, including some re-

lations are of a different nature. Proxy-based reconstructiongits relevant to Europe, followed by a summary and conclu-
represent the historic climate evolution, but only for alimited g;5 section.

set of variables, whereas climate simulations provide com-

prehensive representations of past climate, but usually only

for a combination of the forced component and model-based

internal variability. The latter is in the best case similar to the2 Dynamical models and data assimilation —

true internal variabilty in a statistical sense. The fact that the  the standard framework

actual time evolution of random variability can not be sim-

ulated in forced simulations can in consistency tests eithein this section the standard framework of DA will be out-

be taken into account through comparing ensemble simulalined. The purpose is not to present a comprehensive discus-

tions with empirical reconstructions, or through considering sion, which would be far beyond the scope of this paper, but

temporal averages over periods that are long enough for th® introduce the main elements such that later it can be un-

climate variability to be dominated by the climate forcing.  derstood how the current status of DA in palaeoclimatology
The aim of DA in climatology is to combine dynamical differs from this framework.

Clim. Past, 6, 627644, 2010 www.clim-past.net/6/627/2010/



M. Widmann et al.: Atmospheric data assimilation in palaeoclimatology 629

Generally speaking dynamical models transform a state oequence of states that are obtained from a statistcial inter-
a system at a given timel((r)) into a state at a later time polation of direct observations. The fact that the simulated
(¥ (t+Ar)). The time development may be influenced by states and the observations are fundamentally different quan-
time-dependent forcing factors (forcirig)), and the model tities is included in the formalism by abservation operator
F often contains a set of parameters that specify a certairk that transforms the simulated stake(all model variables

model among a class of models. We thus can write at all model locations) at a given time into the observat®ns
(all observed variables at all observed locations) that would
W (t 4 At) = FparametetW (1), forcing(z)) (1) be obtained givenr. Examples include the transformation

from temperature or pressure on model gridcells (often on

In a standard forced simulation empirical knowledge aboutthe order of 100 kmx 100 km) to local measurements, or the
the system is only used in a very general (yet often so-transformation of a vertical temperature profile to satellite
phisticated) way during model development to formulate themicrowave retrievals.
model itself, which includes determining the basic equations In the classical framework for state estimation it can be
that constitute the structure of the model, and setting specifichown that givenv observation®; at timest;, the optimal
values for its parameters. The time evolution of the statesanalysis¥, at time#y(<t) is obtained by minimising the
follows from the forcing as well as from the initial state from following cost function with respect t&
which the model was started, with predictability limits due to
the usually chaotic nature of the system.

The purpose of DA is to use empirical knowledge of the ... T(W) = }(‘I,_‘I,b)TB—l(‘I, —wh)
temporal development of the system states after the model 2
has been constructed. In principle DA can be used in two 1 Feo1
different ways, namely to estimate the system state, or to +§Z(hi(‘1’i)_®i) R“(hi(¥:)—0), (2)
systematically improve model parameters. In this paper we i=1
will focus on methods that are related to the first aim, and ] ]
either correct simulated states or select states from ensemble wherg\llb is the previous forecast (also known as tiagk-
simulations. Examples for the second case can be found foground field at timezo, and¥; andh; are the simulated field
instance iPAnnan et al(2005. and the observation operator at timgs The errors in the

The first type of problem, which is also known site simulation are given by the error covariance maBjwhile
estimation is encountered in many scientific disciplines the observation errors are described by the error covariance

and a mathematically sound framework for it exists (for an MatrixR. _ _ S
overview see for instanc®winbank et al(2003). The field In the special case odequential data assimilationin
in which DA is most closely related to the DA problem in which the observations are assimilated one at a time (i.e.
palaeoclimatology is numerical weather prediction, whereN =1in Eq.2) the solution can be approximated by

DA is used to find the best estimate for the current state of the

a}tmosphere, which is then used to start the fo.recas't. Informag,a _ b +GH®W?) —0) 3)
tion about the state of the atmosphere at a given time can be

obtained in two ways, firstly from a forecast started earlier,

and secondly from the observations at that time or at a latewhereH is the linearisation of the observation operator
time. This key problem in weather forecasting of finding the andG is the so-calledjain matrix The gain matrix is calcu-
initial state for a forecast is solved by combining a previouslated from the error matrice® andR. For linear dynamical
forecast with observations, which include direct surface andsystems this approximation is exact.

upper air meteorological measurements, as well as indirect Methods that directly minimise the cost function in E2). (
observations of meteorological variables through satellites. are calledvariational data assimilatiof{f3D-VAR for N=1,

In an optimal combination of the forecast-based and thedD-VAR for N>1), while sequential methods of the type
observation-based estimates for the atmospheric state, thaf Eq. (3) are known adilters. Two examples of filters are
relative weights of these two types of information dependbriefly discussed in Secs.2, namely the Kalman Filter and
on their errors, with more weight given to the estimates withthe Particle Filter. Equatior8) only uses previous informa-
less uncertainty. The formulation of the best estimate, whichtion to estimate the state of the system at a past tirkw-
is calledthe analysisalso needs to take into account the fact ever, in palaeoclimatology observations from this timep
that the observations and the simulated states usually consis the present are also generally available. Those additional
of different variables, and are defined at different locations.constraints on the system at timean be used with so-called
The goal is to find a model state that is consistent with the obsmootherqe.g., Wunsch 2006, which propagate informa-
servations and with the previous forecast. To a good approxtion backward in time (whereas Egonly propagates it for-
imation this also means that the sequence of analysis stategard), but to the authors’ knowledge such a technique has
is consistent with the model physics, which is not true for anot yet been used in palaeoclimatology. Although the exact
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solution for the analysis is theoretically clear, the main prob-Changing the implementations of the variational techniques
lem in practical applications with variational and sequential such that they take into account the fact that the observa-
approaches is to specify the time-dependent error matriceBons represent temporal means is a theoretical and techni-
such that useful solutions are obtained. cal challenge that has not yet been addressed. In the case
of using proxy data the observation operator would describe
how climate states are transformed into the climate signals

3 Data assimilation in palaeoclimatology contained in proxy data, which in this context is also known
asforward modelling Forward modelling of proxy data is
3.1 Differences between weather forecasting a developing field Reichert et al. 1999 2001 Weber and
and palaeoproblems Oerlemans2003 Evans et al. 2006, but for most proxy

data the observation operator would not be readily avail-

Numerical weather forecasts and palaeoclimatic simulationgible. An intermediate solution, which is used in the methods
both use GCMs. However, assimilation methods developedjiscussed in the following sections, is to infer regional or
for weather forecasting cannot be implemented in model§arge-scale climate states from the proxy data thrauans-
used in palaeoclimatology because of fundamental differer functions(regional) orupscalingmethods (large-scale).
ences in the extent, temporal resolution and type of empiricalt should however be noted that these approaches are po-
information about the system state. Additionally, the mecha+entially problematic because the (unknown) forward mod-
nisms that cause a climate signal in proxy data are often onlg|s may be non-invertible and because many methods have a
incompletely understood. tendency to underestimate variability (eQristiansen et al.

Each day there are several hundred thousand in situ and r009. The final key ingredient for the standard DA ap-
mote sensing observations of the state of the atmospere arnstoach outlined above are realistic estimates for the model
ocean available that can be assimilated to initialise weatheand the observation errors, which usually also do not exist in
foreasts. All of these are physical measurements, either dipaleoclimatology.

rect or indirect, and it is thus well known how they are linked  Because of these multiple challenges and because DA for
to the state of the atmosphere or ocean, in other words the Okpa|aeoc|imato|ogy is an emerging field which has not been
servation operator is relatively well known. Decades of de-  worked on by the major modelling centres, the methods used
velopment of assimlation methods at the main weather foreare only loosely linked to the methods used in the mature
casting centres have led to the currently used variational asfield of weather forecasting and atmospheric reanalyses. The

similation schemes that are optimised for this situation. Theapproaches taken are fairly pragmatic and are discussed in
same methods have also been used in the NCEP/NCAR (Nahe following two sections.

tional Center for Environmental Prediction/National Cen-
ter for Atmospheric Research) and the ERA40 (EuropearB.2 Ensemble member selection
Reanalysis) atmospheric reanalysis projects, where constant
model versions have been used to assimilate observatiorihe goal of ensemble techniques is to approximate the sta-
from the last decadeKélnay et al, 1996 Kistler et al, tistical behavior of the system from a finite number /of
2001 Uppala et al. 2005. These reanalyses provide the randomly generated states. In practice thésetates are
most consistent and comprehensive estimates for the atm@btained by performing an ensembleMfsimulations with
spheric states from 1948 (NCEP/NCAR) or 1958 (ERA40) a model, varying initial conditions, model parameters and
to the present. forcing, in a reasonable range. The update of this reason-
More recently DA has also been applied to use the surfacable range as time goes by is generally a key element of the
meteorological observations that extend back to the beginmethod. Ensemble techniques appear well adapted for DA in
ning of the 20th century for a reanalysig/litaker et al, paleoclimatology as it is possible to perform DA even in the
2004 Compo et al.2006 2010. During the development of presence of strong non-linearities (e Gvensen1997 Pitt
this “100 year reanalysis” it became clear that the variationaland Shepard1999 Cappe et al.2007. Furthermore, en-
methods used for the NCEP/NCAR and ERA40 reanalysesemble techniques are relatively easy to implement, as they
are not suitable for dealing with the much sparser set of ob-generally do not require strong modifications in the code of
servations available for the longer analysis, whereas an Enthe climate model nor strong development (as the methods
semble Kalman Filter methdod performed well under thesepresented in Sects. 3.3.1 and 3.3.2).
circumstances. Mainly two groups of ensemble methods have been used
The situation in palaeoclimatology is different in many up to now in paleoclimatology: Ensemble Kalman filters
respects. Even for the last millennium the number of cli- (EnKF) and particle filters. EnKF can easily be described in
mate proxy data is a few orders of magnitude lower than inthe classical framework described in SectE2€nsen1997,
the early 20th century. In addition, the type of data is fun- Burgers et al.1998 Evensen2003. Both the background
damentally different as it typically includes seasonal or an-state and the gain matrix are computed from statistics of the
nual climate signals rather than instantaneous informationensemble, obtaining then the analysis and estimate of the
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uncertainty as in many sequential methods. These ensemblg
statistics are also used to generate the new ensemble for the 221
next analysis step. In particle filters, the gain matrix is not & 531
necessarily computed explicitly. Instead, a time-dependent5=3:%]
weight is computed for each member of the ensemble from §-:§:
its ability to reproduce the observations used to constrain the” **
model. Resampling of the ensemble is often necessary taZ o=
cover well the domain of variation of the system while keep- ]
ing the total number of particles reasonable. From the en-
semble of simulations and the weights, it is easy to compute é:gjj
the (weighted) mean and the dispersion of the ensemble, prog-es{ __—__——
viding an estimate of the state of the system and of the un-_

certainty on this estimate (e.@jtt and Shepardl999 Liu

and West2001;, Cappe et a).2007). o4 /J

I AN
Up to now, none of those methods has been used to per-¢_,2] A A

© —0.4 1

form transient simulations over the Holocene or even the gZo%]
last millennium. However, a technique applied recently can & Lys—rrsr—rssr—sso—rsso—rsso—raso—rsso—rosr—sso—reso—rsso—
be interpreted as a degenerated particle filBall{ns, 2003 Time (year)

Goosse et al.2006 2009 2010. Indeed, as in the parti- _ ) )

cle filter method, at the end of each step (1 year up to 5gig- 1. Time series {C) of the anomaly in annua_l mean surface
years), all the simulations are compared to the available optemperature avergged over the 11 S'm.mat'ons using DA (black) for
servations. Nevertheless, the weights are obtained in a muc candinavia (defined here as the regich¥' E, and 55-75N)

. . . . . i . d (a) the average of the 6 proxies used to constrain model re-
simpler way than in the full particle filter algorithm: the sim- ¢ i<'in this region (green}p) the instrumental data compiled in

ulation that i_s the closest to ob;ervations, i._e. that minimisespe HadCRUT3 data set (green, Brohan et al., 2006)(@ytte av-
a cost function, receives a weight of 1 while all the otherserage over Stockholm and Uppsala long instrumental time series,
have a weight of 0. The next step is then performed usingMoberg et al., 2003). For (a), model results are averaged only
this best simulation as initial condition, adding some noise inover the points where proxy data are available. Reference period
order to sample the uncertainty of the system and generate ia 1850-1995. All the time series have been decadally smoothed. A
new ensemble. 21-year running mean has been applied for panel (c).

This method has been tested over various periods of the
past millennium, using instrumental as well as proxy data _ )
(e.g.,Goosse et 812006 2009 201q Crespin et a].2009. of ensemble members from DA simulations does not neces-
To illustrate the method here, we will show its performancesar”y lead to a reduction of multi-decadal variability. If the
over Scandinavia from 11 simulations performed over theassimilated information fully constrained the multi-decadal
past 600 years using the EMIC LOVECLINGbosse et al. variability, all ensemble members would have the same tem-
2010. These eleven simulations differ in some model pa- poral development_ and no variability reduction would oc-
rameters, the forcing applied, as well as in some parameterUr- If the constraints were weak, the ensemble members
of the DA technique but they are all constrained by the sameould differ strongly, similar to simulations without DA,
set of 56 Northern Hemisphere proxy series derived from awhich at best capture forced but not internally generated
recent compilationNlann et al, 2008. These time series multi-decadal variability, and thus averaging would reduce
have been selected from a larger set in order to keep Onwgrigbi_lity. _The average over the 11 simulatio_ns_with data as-
those that are significantly correlated with instrumental timeSimilation is also in very good agreement with instrumental
series over the years 1850-1995 and have been decada%”éserV‘"‘t!onS over 1850-1995 in this regid@rdhan et al.
smoothed. As a consequence, model results have also beél09: With a correlation between the two time series of

decadally smoothed before plotting them. This means thaf:74: i-6. more than all the local correlations between the
the observation operatdr is relatively simple here. How- Proxies and the instrumental observations (Eg). Only a

ever, it would be interesting to use a more sophisticated ong/€W instrumental data are available before 1850. We have

in particular through the inclusion of forward models that di- cOmpared our model results with two of the longest ones

rectly simulate the proxy variable from the model results. ~ (F19- 1¢), Stockholm and Uppsala, that include the second
As imposed by the DA method, the simulations follow half of the 18th century and whose quality and homogene-

very well the available proxy data over Scandinavia (Egy. 'Y has been carefully checkefberg et al. 2003. These

Although the average over the 11 simulations with data asSimulations with data assimilation are not able to reproduce

similation appears to underestimate multi-decadal variations"V€!l the high-frequency variations recorded at those two lo-

its correlation with the mean of the proxy data reaches 0.8g°ations (not shown) but the long-term trend is in good agree-
over the period 1400-1995. It should be noted that averaging€nt with model results (Figc).

o

G0 1450 1800 1880 1600 1680 1700 1750 1800 1880 1900 1980
b

0.4 4

©

£
2
< o.24
<

nomaly (°C
o900
ron

www.clim-past.net/6/627/2010/ Clim. Past, 6, 6844, 2010



632 M. Widmann et al.: Atmospheric data assimilation in palaeoclimatology

-45 -4 -35 -3 -25 -2 -15 -1 =05 0 05 1

Fig. 2. (a) Difference in winter geopotential height:§ averaged over the 11 simulations using data assimilation between the periods 1401—
1500 and 1601-170@b) Anomaly of winter geopotential height:) averaged over the 11 simulations using data assimilation in the period
1790-1820 compared to the reference period 1850-1995.

This comparison is instructive as it shows that, althoughof the system represented by model equation is respected.
the data assimilation method is simple, the data constrainEinally, in some areas where different proxies show incom-
is efficient. However, because of the decadal smoothing, theatible time series, DA can be a way to select the ones that
number of degree of freedom is relatively low, partly explain- are the most compatible with model dynamics and thus most
ing the good correlation achieved by the ensemble membelikely represent a good large-scale estimate of past climate
selection. Furthermore, temperature estimates for Scandiehanges.
navia, derived from the proxies, are directly used to constrain ] ) ) ) ] )
model results. As a consequence, in the present framework, AS Simulations with DA provide also estimates of vari-
the temperature in Scandinavia obtained in the simulatiorfP!€s that cannot be directly derived from the proxy records,
with DA does not bring clear new information compared & flrgt step to evaluate DA S|mulatlgns is to measure the
to the proxy data themselves (Figg). This is not always quality _and robustne_ss of these estl_mates as they are Igss
the case. Data assimilation can be considered as a sophisfonstrained by proxies than the variables directly assimi-
cated way to obtain reconstructions in areas where no pro>§(at?d- The mechanisms responsible for the changes in simu-
is available or to derive large-scale reconstructions. Those ré/@tions with DA can then be analysed. For instance, when
constructions based on simulations with DA are constrained?®mparing the winter atmospheric circulation between the
by available proxies (as any reconstruction based on statistit5th century and the 17th century (which are relatively warm

cal methods) but, in addition, they ensure that the dynamic&nd cold periods in Scandinavia, respectively, Fig) a
relatively weak but clear signal resembling a shift from a
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positive to a negative phase of the North Atlantic Oscilla- might be possible to indirectly control the circulation through
tion emerges (Fig2a). When focusing on the years 1790- assimilating temperature patterns, but so far this has not been
1820, as invan der Schrier and Barkmeij€2005, a pattern  tested. In the examples discussed here the target anomaly
resembling the negative phase of the North Atlantic Oscil-patterns are constant and the goal is to simulate the aver-
lation is obtained for this cold period in Europe (F&h). age conditions during a certain period and to test hypothe-
This circulation anomaly in the simulations with DA presents ses about processes that caused past temperature anomalies.
clear similarities with the reconstruction wan der Schrier However, the methods are also designed to specifiy time-
and Barkmeijer(2005, in particular over Northern Europe dependent anomalies in transient simulations, but this has
(see Fig.3). However, their pattern is associated with much not yet been done. The assimilated large-scale circulation
stronger northerly wind anomalies East of Britain, in the anomalies are either hypothetical situations or are based on a

North Atlantic, than the one displayed in Fzp. statistical upscaling of available early instrumental and proxy
data.
3.3 Upscaling and control of large-scale circulation This general approach has first been suggestedooy

Storch et al(2000. The Pattern Nudging (PN) approach pre-

We now consider two methods that allow assimilation of sented in Sect3.3.2follows directly the Data Assimilation
large-scale climate anomalies without using an ensemblerhrough Upscaling and Nudging (DATUN) idea outlined in
technique. Both methods have been applied to assimilatgon Storch et al(2000, whereas the Forcing Singular Vec-
atmospheric circulation patterns but in principle they couldtor (FSV) method presented in Se8t3.1uses a different
also be used to assimilate temperature. We note that largenethod to control the atmospheric circulation in the model.
scale anomalies could also be assimilated with ensemblén both cases an artificial forcing is added to the model
techniques, but these would be computationally very costlytendencies to keep the simulated states close to the target
when applied to GCMs. patterns, but the two methods differ in the construction of

Focusing on circulation is motivated by two reasons. the artificial forcing terms. If differences between simulated
Firstly, simulated continental-scale temperature variabilityand target states originate from an incomplete or incorrect
is closely linked to the forcings, while decadal circulation representation of the response to forcings, the forcing term
variability has a large random component which leads tocan be interpreted as a crude way to account for the missing
considerable spread of regional temperatures or precipitaprocesses in the model equations. If the differences are due
tion among different simulationd\(agner and Zorita2004 to non-predictable chaotic variability, they are the means by
Yoshimori et al, 2005 Raible et al.2005. In particular the  which the simulated states are kept close to reality.
Northern and Southern Annular Modes (NAM/SAM) have  Statistical upscaling models have been used extensively
been shown in modelling studies to be caused by internal atin palaeoclimatology to link proxy data for the last mille-
mospheric processekifnpasuvan and Hartmanh999 and nium or long instrumental records from multiple sites to the
empirical NAM and SAM reconstructions have also shown intensities of hemispheric- or continental-scale temperature
considerable variability that is apparently not linked to forc- (Mann et al, 1998 2008 or circulation patternsGook et al,
ings (Cook et al, 2002 Jones and Widmanr2004 Fogt 2002 Luterbacher et al.2002 Jones and Widmanr2003
and Bromwich 2006 Jones et a].2009. Secondly, there Jones et a].2009. They are based on statistical relation-
is ample evidence for a forced component of decadal andhips between the local data and large-scale climate variabil-
longer scale circulation variability (e.gHartmann et al. ity obtained from spatially (almost) complete fields which are
200Q Shindell et al. 200, Thompson and Solomo2002 available for large parts of the 20th century. These relation-
Zorita et al, 2004 Arblaster and MeehP00G Stendel etal.  ships are then applied to the past to infer large-scale climate
2006 Fogt et al, 2009, but it is difficult to simulate due to  variability from the local data. Compared to the use of lo-
the complexity of processes involved, which include for in- cal data in the assimilation framework outlined in Segts.
stance stratospheric dynamics and chemistry. A comparisoand3.2the obvious advantage and original reason for these
of observed and simulated Northern Hemisphere, large-scalmethods is that large-scale climate information can be ob-
winter circulation trends for the period 1955-2005 showedtained without running climate models and without dealing
for instance that none of the currently used GCMs is able towith the theoretical and technical challenges of assimilation.
simulate the observed trends, which are likely to be a combi-The FSV and PN methods are designed to use this existing
nation of a response to the forcings and of random variabil{arge-scale information in simulations directly and at rela-
ity (Gillett, 2009. Until forced circulation variabilty can be tively low computational costs.
successfully simulated, it may partly be taken into accountin The statistical link is usually formulated via linear
paleoclimate simulations through assimilation of empirical methods, such as Multiple Linear Regression, Principal
circulation estimates. Component Regression, pattern-based regression methods

The methods described in this section control the large{e.g. Canonical Correlation Analysis), or via Regularised Ex-
scale atmospheric circulation variability in simulations such pectation Maximation. The key assumption on which the
that it is close to prescribed target patterns. In principle itupscaling approach relies is the stability of the statistical
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relationships over time, which however can not be fully of the state space orthogonal®g . There is no fundamen-
tested with empirical data. Moreover there are questiondal reason for separating the time dependence and the spatial
related to how details of the statistical methods affect thepattern as is done here, it is merely convenient for the appli-
reconstructions, which have mainly been discussed with recations where only the amplitude of the target pat®yrix)
spect to temperature reconstructionsr{ Storch et a].2004 is time-dependent. This is the case in three out of the four
Rutherford et a.2004 Birger et al. 2006 Lee et al, 2008 FSV examples discussed below, while in one example a tar-
Christiansen et g12009, but which in principle also apply get pattern is assimilated that has both temporal and spatial
to circulation variables. In addition upscaling assumes thevariability on a year-to-year timescale. In this case, the term
invertability of the relationship between the large-scale statexy (r)® 7 (x) needs to be written in the more general from
and the local information (which is closely linked to the ob- @1 (x,) and the remainder of this section can easily be gen-
servation operator), in other words it assumes that two dif-eralised to include this case as well.

ferent large-scale states lead to different local observations. The aim is to bring, in a time-averaged sense, the coeffi-
Although these issues need to be taken seriously and may baentay, close to the target valuey, while the expansion
seen as suggesting that DA based on upscaling is less prefecoefficientsy; (r) can assume any values. The tendency per-
able than DA based on forward modelling of local informa- turbationsf are constructed to produce after some optimisa-
tion, it should be noted that in the context of palaeoclimatol-tion time a deflection of the model atmospheric state in the
ogy the question arises how stable over time a given forwardirection of the target patter;. The amplitude of this de-
operator is, and how the choice of forward operators affectdlection is aimed at reducing the difference between the target
the DA results. Thus similar methodological challenges arevaluea; and the projection coefficienty, . If the target value
present in both cases, yet avoiding the invertability problemhas a time dependency, it will usually vary on timescales far

is a clear principle advantage of forward modelling. larger than the typical time step of the model, which is a con-
sequence of the fact that large spatial scales are associated
3.3.1 Forcing singular vectors with long timescales. The optimisation time will be on the

order of days, which is much larger than the model time step
i;—x_nd much smaller than the typical timescale of the target co-
efficient.

If the tendency perturbations are sufficiently small, the
volution of deviations of the model atmospheric state
hat results from tendency perturbations can be computed

This section describes a technique that determines small pe
turbations to the time evolution of the prognostic variables of
the model (the tendencies) that lead the atmospheric model
to a pre-defined target pattern. In terms of Eq. (1), a mode

forcing_perturbgtionf is_ added to the model - on the r_ight- by a linearisation of the dynamical model along a (time-
hand side of this equation. These tendency perturbations arge/pendent) solution of this model. Thus the linear evolution

determined to result in large perturbation growth during aof a perturbatiore, measuring the deviation between a con-
short period of time (of several days length). The tendency P ' 9

perturbationsf are referred to a$orcing singular vectors trol and perturbed model run, satisfies
(Barkmeijer et al.2003. In the examples discussed here de
the method is used to assimilate only one large-scale circuladt

tion pattern, although multiple patterns are possible. Appli-yhere| s the time-dependent linearisation of the model

cations to patterns of variability in physical aspects of the at'along a solution. For a forcing perturbatigh the vector

mosphere (like temperature) or ocean dynamics are theoretig-(t:T)EMf is simply determined by integrating Ecg)(

cally possible, but put demanding requirements on the mode{0 time =T with initial condition ¢(r=0)=0. The forcing

:L8+f, (6)

used. _ perturbation is now determined by minimisation of
If Wy denotes the proxy-based reconstruction of atmo-
spheric circulation an# , the circulation in the model, then  [P(M f — (a7 —am) @7 (1)

these fields can be expressed as where®7 is the target pattern arfélis a projection operator.

Wr(x,)=Wr(x)+ar()®r(x) (4)  Through the use of the latter only information over the spatial
domain that is available in the reconstruction enters the cost
Wy (x,1) = W (x) + oy () B (x) +Zo‘i )®;(x), (5) function. Afast minimisation routine requires the derivative
; of Eq. (7) with respect tof, which can be efficiently com-
puted using the adjoint aM. The requirements of having
whereW 7 is a (modern) climatology andf , the model’s  a linearisation of the climate model, or a part of the climate
equivalent. The two climatologies need not to be similar, model, and an adjoint of this linearisation makes the FSV
and when using intermediate complexity models, usually areapproach not applicable to every model. Although numeri-
not. The patterndr is referred to as the target pattern and cal methods exist that automatically generate the code of the
its time dependency is captured in the target time expansiomdjoint model from the model cod&iering and Kaminski
coefficientar. The set of pattern®;(x) can be any basis 1998 Heimbach et a).2005 not many atmosphere GCMs
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Fig. 3. Stream function anomaly (m2 s (a) target pattern in the data assimilation, gbjl mean difference in winter (DJF) between
the data assimilated run and the control run.

have this feature. An extensive and more technical discussiodescribes the pattern of a two-dimensional flow. Lines in
of this approach can be foundBarkmeijer et al(2003 and  the horizontal plane where the stream function is constant
van der Schrier and Barkmeijé2005. give the direction of the flow. The target pattern is assimi-
ed only in winter in the model, the model evolves freely
n the remaining seasons. The lower panel shows the winter
stream function anomaly at the 800 hPa level, averaged over
the length of the simulation and relative to the control clima-
tology W,. There is a distinct qualitative similarity between
the two patterns, with a reproduction of the tripole of the tar-

et pattern. The FSV approach successfully assimilates the
information contained in the target pattern with repect to the
strength and position of the negative and positive anomalies
over Labrador and Iceland, whereas the negative anomaly
over the European continent is not reproduced.

This method has been used in several palaeoclimatic stchat
ies (van der Schrier and Barkmeije2005 2007 van der
Schrier et al. 2007 Luterbacher et al.201Q Palastanga
et al, 2010. To illustrate the method, we show results using
the intermediate complexity model ECBIlt-Clio. A linearisa-
tion of the dynamic core of the atmospheric part (ECBIlt) of
the climate model and its adjoint exist. They have been use
earlier in predictability studies, e.Barkmeijer et al(1993.

The effect of parameterised processes is not included in thé
computation off’; an accurate approximation if the optimi-
sation timeT is sufficiently small.

One application\fan der Schrier and Barkmeije2005 The simulation shows very large changes in 2m temper-
assimilated the averaged atmospheric circulation over thetures over the European continent compared to the control
North Atlantic sector for the 1790-1820 period, sometimessimulation (Fig.4a and b). In the winter (DJF) season, tem-
referred to as the Dalton Minimum, and one of the cold spellsperatures are more tharf@ colder over northern Scandi-
in the Little Ice Age. Figur&® shows the target pattedr, in navia to around 0% colder over Spain. In the summer
terms of the 800 hPa stream function anomaly, for the winter(JJA) season, temperatures are lower in the eastern half of the
season. Stream function is a mathematical expression thafiorth Atlantic ocean with minima of circa0.9°C over the
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Fig. 4. Left-hand panels: difference in 2m temperatukg) petween the data assimilated and the control run, averaged over 25 years,
(a) winter (DJF) andb) summer (JJA). All temperature changes shown are statistically significant at the 5% level. Right-hand panels:
difference in reconstructed surface air temperatérefor the period 1790-1820 AD with respect to 1971-20@Ywinter (DJF), andd)
summer (JJA). Reconstructed temperatures are from Luterbacher et al. (2004).

UK. Positive anomalies are found over Poland and western This results in an over-amplification of parts of the PNA-
Russia. Reconstructed temperatures for this pefiode¢- pattern, while other parts of the PNA-pattern are suppressed.
bacher et a).2004 show a compelling similarity with the In order to reach a time-averaged atmospheric circulation
simulated temperatures (Figc and d) for both the win-  with persistent negative or positive PNA conditions, it was
ter and summer season. Yan der Schrier and Barkmei- required to artificially enhance or weaken the monopoles of
jer (2005 it is shown that the winter temperature responsethe target pattern in order to counteract the model’s tendency
is related to the anomalous atmospheric circulation, whereato distort the PNA pattern. This problem seems to be asso-
the summer response is related to a feedback via ocean argilated with unrealistic aspects of the model rather than with
soil-moisture dynamics. This illustrates the strength of thea conceptual problem in the DA approach. Data assimilation
DA, where different climatic components are coupled andwith the FSV method has not been tested with a model more
the simulated climate remains dynamically consistent withcomplex than ECBIlt-Clio.

the assimilated data. We note however that we do notexclude The drawback associated with the model deficiency de-
an additional direct effect of the solar and volcanic radiative s¢criped above puts some limitations to the applicability of

forcing, in particular on larger spatial scales, and that the cirthis method for DA. In_uterbacher et al2010, a sea-level
culation anomaly itself could be a response to the forcings. pressure (SLP) pattern is discussed which is constant for the
A problem associated with the FSV methodology is stum-JFM season, but has a year-to-year variability. This sea-level
bled upon byvan der Schrier and Barkmeij¢2007. In pressure pattern is assimilated into the ECBIlt-Clio model to
that study, positive and negative phases of the Pacific-Norttproduce a climate that is dynamically consistent with the re-
American (PNA) pattern were assimilated. None of the dom-constructed atmospheric circulation. The SLP pattern is first
inant natural modes of variability of the ECBIlt-Clio model related to stream function, which is the prognostic variable
bears a direct similarity with the PNA pattern, but the first of the ECBIlt model, and then the yearly varying pattern is
few natural modes of variability have a nonzero projection assimilated in the ECBIlt-Clio model using the FSV tech-
on the PNA. nique. For each year, the JFM-averaged stream function is
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1 . . . ; ; Finally, the FSV as well as PN approach discussed in the
next section, can be used for experiments where hypotheti-
0.8 8 cal atmospheric circulations are assimilated. One example is
given byvan der Schrier et a(2007), where tendency per-
0.6 turbations are calculated that nearly double the strength of
the North Atlantic subtropical jet. These tendency perturba-
04 r tions were calculated and applied on the 200 hPa level of the
0z b 1 model only. The study aimed to test an alternative hypothesis
' (Seager and Battist2007) for rapid climate change involv-
ol | ing strong variations in the North Atlantic subtropical jet that
trigger a reorganisation of the atmospheric circulation in the
02k 4 North Atlantic sector and a cessation of the northward atmo-
spheric heat transport. Figuéeshows the zonally averaged
-0.4 L L L L L zonal velocity over the North Atlantic sector for the DJF sea-
1800 1850 1900 1950 2000 son, for the control simulation and one of two experiments.

Next to the increase in the strength of the subtropical jet, the

Fig. 5. Pattern correlations between fields of the simulated streandiS@Ppearance of the eddy-driven jet at mid-latitudes is ob-

function at the 800 hPa level, averaged over JFMA, and the recon-served In th_e as_s'm'lated eXpe.r'men.t' .Th(_:" dlsa}ppearance of
struction of stream function as derived from a SLP reconstruction. the €ddy-driven jet has dynamical origins in which a double

jet situation is replaced with a single jet as the subtropical
jet increases in strength. The latter study indicates that DA

200 methods as discussed in this study may also prove useful for
300 - studies into atmospheric dynamics.

400 h it

5001 . O 3.3.2 Pattern nudging

600 :

700 The aim of PN is very similar as in the FSV approach,
8001 ‘ : — ‘ | ‘ ‘ namely to bring the model time expansion coefficiegt(z)

10N 20N 30N 40N 50N 60N 70N 80N R L.
of atarget pattern in Eg5J close to a target coefficieat (¢).

Analogously to the FSV approach the method is designed
such that the time expansion coefficieatét), which are re-
lated to the other patterns, are not affected, in other words
PN aims at simulated states that have a specified projection
onto the target pattern rather than being identical to the target
pattern. The motivation is the fact that large-scale circulation
indices such at the NAM and SAM indices describe such a
projection rather than represent the full spatial field. The dif-
ference to the FSV approach is how the simulation is con-
trolled. Pattern nudging does not use knowledge about the

Fig. 6. Zonally averaged zonal velocity (n3) for the control sim- dynamlcal eVOIU,tlon of a per_turb,at_lon’ and is basgd on _the

ulation (upper panel), and the data assimilated experiment (IowePXpec‘["’!tlon that ifa pert_urbatlor) IS 'UthduceP' the C'rcm"’}t'on

panel). The zonal velocity is averaged over the North Atlantic sec-2nomalies will change in the direction of this perturbation.

tor (60°W, 40°E) and averaged over the December—February pe-The approach taken is a simple Newtonian relaxation in

riod. Both contours and colourbar denote zonally averaged zonawhich the additional forcing ternf, which is callechudging

velocity. term is proportional to the difference between the simulated
and the target state in the one-dimensional subspace defined
by the target pattern. The nudging term is thus given by

determined as deviation from the mean of the control cli-

mate, and compared to the target pattern. The pattern corf = G (ar(t) —ap () @7 , 8

relation coefficients are shown in Fig, which shows that

for many years the pattern correlation is reasonably high, butvhere G is a constant that determines the strength of the

the pattern correlation drops to near-zero (or below zero) valhudging and has the dimension 1/time. The simulated field

ues for some years. The lack of a resemblance between th&modold(x,?) is modified by the nudging to

target pattern and the model’s natural modes of variability

are related to the poor performance in these years. W modnew(X,7) = ¥modold(X,1) +2At f 9)
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whereArt is the time step of the model. A generalization to with anomalies that are close to its internal variability pat-
nudging with respect to multiple, mutually orthogonal target terns, for instance with a NAM pattern that has similarities
patterns is straightforward. to EOF1 of SLP in ECHAM. In this respect PN behaves sim-
This simple nudging approach has the advantage that illar to FSV, which, as discussed above, is problematic if the
does neither require linearisations of the dynamical modetarget patterns are very different from the model's own dom-
nor adjoint models and can thus be implemented with-inant variability patterns. The nudging const&ntcan be
out very large technical effort, which makes it suitable for chosen such that the simulation is close to the target index,
GCMs. PN is implemented in the ECHAM4 atmosphere but still retains considerable variability of the target pattern
GCM and has been used with a T30 horizontal resolutiontime expansion coefficient on daily timescales. A key prop-
(approx. 3.75 lat3.75 lon or 400 kmlat400kmlon) and erty of PN is that aspects of circulation variability that are
19 hybrid sigma-pressure levels with the highest at 10 hPadifferent from the target pattern, for instance synoptic-scale
The ECHAM4 model with a finer T42 resolution is described variability, evolve freely, but are consistent with the nudged
in Roeckner et al(1996, andStendel and Roecknét998 state of the target pattern.
showed that it still performs well with the lower T30 resolu-  Here we present an experiment in which the atmospheric
tion, which is computationally less expensive and thus particcirculation has been nudged towards a negative NAM index
ularly suited for long simulations in palaeoclimatology. The of one (monthly) standard deviation. This simulation repre-
T30 version of ECHAM4 has been coupled to the HOPE-G sents a target circulation anomaly similar to the one used for
ocean model by.egutke and Vos$1999 and this so-called the FSV simulations discussed in the previous section. As
ECHO-G model has been used for a 1000 year long equilibthe current version of PN has only been developed and tested
rium simulation with present day forcing conditions, which with respect to nudging the NAM pattern, and as the first
has been described and validatedvim et al. (2005gb), as  transient simulations will be based on specifying the NAM
well as for transient simulations for the last 500 years and thendex, the NAM pattern rather than the full reconstructed
last 1000 yearsvpn Storch et a).2004 Zorita et al, 2004 SLP anomaly during the Dalton Minimum has been used as a
Fischer-Bruns et gl.2005 Gonzlez-Rouco et al.2006. target pattern. Figuré shows the winter NAM pattern (for a
The experiments discussed here have been conducted withositive index of one standard deviation) and the SLP winter
the uncoupled ECHAM4 and climatological sea surface tem-(DJF) anomaly in a 20 year long nudged simulation relative
peratures, in order to analyse the atmospheric response to Pfd a non-nudged simulation. The target pattern and the re-
without ocean feedbacks and to save computing time duringgponse have a clearly similar spatial structure and the ampli-
the test phase. Experiments with the coupled model are inudes of the local response anomalies are consistent with the
preparation. prescribed negative NAM index. Differences in the structure
In applications it is likely that the target pattern and coeffi- between target and response pattern can indicate the limita-
cient describe circulation patterns such as the NAM or SAM,tions of PN, but can also be due to sampling effects and to the
and are thus based on SLP fields. However, PN is not directlfact that PN only prescribes the amplitude of the target pat-
applied to SLP (or surface pressure, which is the equivatern and does not constrain the amplitudes of all orthogonal
lent prognostic variable in ECHAM), because all circulation- patterns.
related variables above the surface would still be free, and The response pattern is similar to the reconstructed Dalton
internally generated variability could potentially make it dif- Minimum anomaly (Fig.3a) as it shows positive pressure
ficult to keep the atmosphere close to the target state. In addanomalies over Iceland and Northern Europe, and negative
tion particular care would be needed to ensure conservatioanomalies over Southern Europe, the northwest Atlantic and
of mass if the surface pressure was nudged. Therefore theortheastern America. Over western Europe both patterns in-
nudging is used in the lower and middle troposhere and is apdicate anomalous flow from northeasterly or easterly direc-
plied to the horizontal vorticity of the wind field. The wind tions. However, the exact locations of maxima and minima,
field in the free, extratropical atmosphere is approximatelyand the directions of the geostrophic flow are different. Over
geostrophic and divergence-free, and thus well defined byhe North Pole this seems clearly a consequence of the hemi-
vorticity. The vorticity target patterns are the linear signals spheric PN target pattern, whereas the locations of the two
of the SLP target time expansion coefficient. simulated negative anomalies in the Atlantic sector and the
This approach works generally well in test experimentsstrong Pacific anomaly are features that are not part of the
in which the model is nudged towards positive and nega-NAM target pattern and that appear to be a model-specific
tive states of the NAM. The exception is the summer seasontesponse to the NAM forcing.
where it appears that the smaller spatial structures of the tar- The simulated temperature anomaly (Fdpis very similar
get pattern do not allow geostrophic adjustment. In the othetto the well-known NAM temperature signallffompson and
seasons the simulated SLP anomalies are close but not ideiallace 1998 and is consistent with anomalous advection
tical to the target patterns. Discrepancies may partly be exof air masses according the circulation anomaly. It shows
plicable by the non-constrained orthogonal components, bulower than normal temperatures over Western and Northern
it also seems that the model tends to respond to the nudgingurope and higher temperatures over Turkey and the Black
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Fig. 7. Left: winter SLP anomaly for a positive NAM index of one standard deviation (hPa). Right: mean winter (DJF) SLP difference
(hPa) between a 20 year long simulation with ECHAM4 nudged towards a negative NAM index of one standard deviation and a 20 year long
control simulation.

Sea region. Compared to the temperature reconstruction in
Fig. 4 there is agreement over Western and Northern Eu-
rope and over Turkey, whereas Eastern Europe has stron(
negative anomalies in the reconstruction and small negative
to positive anomalies in the simulation. The simulated posi-
tive temperature anomalies are consistent with the advectior
of warm air from Northern Africa into Eastern Europe and
the Black Sea region according to the simulated circulation
anomaly, which in this aspect is not in agreement with the
reconstructed anomaly (Figa).

PN has also been implemented in the HadCM3 model and
a simulation nudged towards a negative winter NAO index,
which aims at representing the circulation during the Maun-
der Minimum, is discussed iRalastanga et a2010. This
experiment is idealised to the point that radiation changes,
due to changes in volcanic dust loading or solar activity, are
ignored. ThePalastanga et a{2010 study aims to assess
whether a persistently negative NAO-type circulation could
be the primary driver of climate change as seen in the Maun-
der Minimum period. The resulting temperature anomaly has
a similar structure to the one obtained with the ECHAM4
model, but the cold anomaly over Europe is shifted eastward,
with the consequence that simulated temperatures are stil
lower than normal over Northern Europe, but close to av-
erage over western and central Europe, whereas temperature

reconstructions during this period show negative anomalie%ig_ 8. Mean winter (DJF) 2 m temperature differendg) between

over all of EUfOPe- The _partly un_realistic simulated temper-, 29 year long simulation with ECHAM4 nudged towards a negative
ature anomaly is tentatively attributed Balastanga et al.  NAM index of one standard deviation and a 20 year long control
(2010 to a too strong mean westerly flow in HadCM3. simulation.
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4 Summary and conclusions can aid process understanding. In particular it has has been
shown that the cold periods in Europe around 1680-1720
The temporal evolution of gquasi-random internal climate and around 1790-1820 can be produced by anomalous at-
variability on decadal timescales can not be simulated inmospheric circulation that is associated with a negative NAO
climate models, and complex climate responses to externabr NAM index and northerly or easterly wind anomalies. It
forcings are difficult to simulate. Details of internal variabil- has also been shown that the cold period around 1790-1820
ity in simulations and climate reconstructions can only beis associated with colder eastern Atlantic SSTs which help to
brought in agreement through DA, and in cases where forcmaintain cold conditions all year long over Northern Europe.
ing signals are unrealistically simulated DA may also be use- DA also provides a framework to test the compatibility be-
ful. Although DA has the potential to improve estimates of tween proxies and models. In order to satisfy its constitutive
past climate variability for regions in which proxy data are equations a model may not be able to simultaneously fol-
available, the main added value compared to purely statisticalow all the constraints given by a set of proxy data. Prox-
climate reconstructions is that it yields spatially complete ies that are not in good agreement with the simulation have
fields in a dynamically consistent way. Simulations with DA then to be carefully analysed in order to determine the rea-
provide information for variables and at locations for which son for the discrepancies, which could for instance be re-
no proxy data are available, and thus allow the analysis ofated to model biases, or instationarities and misinterpreta-
dynamical processes that caused the local climate variabilition of the proxies. FSV and PN are much simpler than
at the locations covered by proxy data. the filter or variational methods used in numerical weather
Here we have presented three methods for performingrediction, while the selection of ensemble members is con-
DA in the context of palaeoclimatology, namely selection ceptually related to filters. A major obstacle for applying
of ensemble members, Forcing Singular Vectors, and Patvariational methods in palaeoclimatology is that the current
tern Nudging. The first two methods are implemented usingimplementations in weather prediction use adjoint models,
EMICs, while the third method is implemented in GCMs. which are based on linear approximations for the climate dy-
All methods have been successful in bringing the simulationsnamics. On the timescales given by the temporal resolution
closer to reconstructions. However, as could be expectedyf proxy data (e.g. interannual) the standard linear approxi-
DA has a tendency to produce anomalies that are within thenations are not valid. We note however that FSV is able to
model’s range of internal variability for a given external forc- use adjoints by prescribing reconstructed climate anomalies
ing. For the ensemble method this is the case by constructiornrelated to long timescales periodically at intervals of several
but with the FSV and PN methods it is also difficult to assim- days, which means that the linear approximation of the cli-
ilate target patterns that are different from internal variabil- mate dynamics can still be used between the intervals. Some
ity patterns. Moreover, the PN simulations with HadCM3 high-frequency temporal variability of the amplitude of the
show that biases in the mean simulated climate can affectarget pattern is maintained by choosing sufficiently long in-
the temperature response to circulation variability. This istervals. Similarly PN prescribes target values at every model
also not surprising as the influence of the mean flow on linkstime step and maintains high-frequency variability through a
between circulation and temperature anomalies has been aufficiently small nudging constant. We thus do not exlude
ready discussed iroll et al. (2009 and Groll and Wid-  that modifications of the methods used in weather prediction
mann(2006. Thus the different methods are associated withcould be used in palaeoclimatology.
similar methodological challenges. It should be noted that The methods currently used in palaeoclimatology are not
problems linked to an unrealistic simulation of the mean cli- formulated within the standard DA framework and would
mate and of the statistical properties of climate variability therefore not be able to provide estimates for the uncer-
can be expected to become less important as increasing containty of the DA results even if the uncertainties of models
puting power allows to use higher resolution and more so-and proxy data were known, which however usually is not
phisticated models for DA in palaeoclimatology. An advan- the case. The potential of DA to provide uncertainties that
tage of the ensemble member selection is that in principle itare lower and better defined than those of statistical climate
uses forward modelling to link the simulations and the prox- reconstructions is not yet explored and further progress to-
ies and thus avoids the potential non-invertability problemwards exploiting this advantage of DA can be expected. It
associated with the upscaling that is used in the FSV and PNvould require not only further development of DA methods
approach. However, current implementations still use verybut also of forward models for proxy data that provide error
simple forward models. estimates.
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