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Abstract. Climate proxy data provide noisy, and spatially
incomplete information on some aspects of past climate
states, whereas palaeosimulations with climate models pro-
vide global, multi-variable states, which may however differ
from the true states due to unpredictable internal variabil-
ity not related to climate forcings, as well as due to model
deficiencies. Using data assimilation for combining the em-
pirical information from proxy data with the physical under-
standing of the climate system represented by the equations
in a climate model is in principle a promising way to obtain
better estimates for the climate of the past.

Data assimilation has been used for a long time in weather
forecasting and atmospheric analyses to control the states
in atmospheric General Circulation Models such that they
are in agreement with observation from surface, upper air,
and satellite measurements. Here we discuss the similari-
ties and the differences between the data assimilation prob-
lem in palaeoclimatology and in weather forecasting, and
present and conceptually compare three data assimilation
methods that have been developed in recent years for ap-
plications in palaeoclimatology. All three methods (selec-
tion of ensemble members, Forcing Singular Vectors, and
Pattern Nudging) are illustrated by examples that are re-
lated to climate variability over the extratropical Northern
Hemisphere during the last millennium. In particular it is
shown that all three methods suggest that the cold period
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over Scandinavia during 1790–1820 is linked to anomalous
northerly or easterly atmospheric flow, which in turn is re-
lated to a pressure anomaly that resembles a negative state of
the Northern Annular Mode.

1 Introduction

Estimates for past climate are usually either based on empir-
ical evidence contained in proxy data or on simulations with
climate models driven by reconstructions of climate forcing
factors. A third possibility is the combination of proxy data
and climate simulations using data assimilation (DA). Here
we give an overview on the atmospheric DA efforts that have
been undertaken to date in palaeoclimatology and of their
relevance to reconstructing the climate over Scandinavia, yet
we begin with a brief discussion of the links between proxy
data and climate simulations without DA.

Empirical reconstructions and standard simulations yield
independent results, because the proxy data used for recon-
structing the forcings for the simulations are independent
from those used for the empirical climate reconstructions.
As the errors associated with both approaches are difficult to
quantify, consistency tests between them are a key tool for as-
sessing the confidence we can have in estimates for past cli-
mates (Jansen et al., 2007). The mismatch between the local
to regional climate signals recorded in proxy data and the
coarse spatial scales on which palaeoclimate simulations can
be skillfull, which are on the order of thousand kilometers or
more, can be overcome by using networks of proxy data to
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reconstruct large-scale climate anomalies (Mann et al., 2008;
Cook et al., 2002; Jones and Widmann, 2003) or full spatial
fields (Mann et al., 1998; Luterbacher et al., 2002, 2004), or
by using downscaling techniques to estimate regional climate
from the simulations (Wagner et al., 2007).

Increasing computer power has led to a considerable num-
ber of simulations for the climate of the Holocene (Jansen
et al., 2007; Wanner et al., 2008). Mainly two types of mod-
els are used for these simulations, namely Earth system Mod-
els of Intermediate Complexity (EMICs), which are based
on substantially simplified atmospheric and ocean dynamics,
are computationally fast and thus allow very long or ensem-
ble simulations, and General Circulation Models (GCMs),
which include a representation of climate which is as realis-
tic as possible, but are computationally costly. In contrast to
GCMs, many EMICs do not include an adequate representa-
tion of the internal climate variability on interannual to mul-
tidecadal timescales, and the main use of these models is the
analysis of the long-term climate response to changes in ex-
ternal forcings (Claussen et al., 2002). The EMIC used here
to illustrate various data assimilation methods simulates the
internal climate variability reasonably well in mid and high
latitudes, but strongly underestimates it in tropical regions
because of the approximations applied in this model (e.g.
Selten et al., 1999; Goosse et al., 2002). Both types of mod-
els are usually forced with orbital parameters, and with es-
timates for solar irradiance, greenhouse gas concentrations,
and sometimes for volcanic aerosol concentrations. Simula-
tions with GCMs have been performed with constant forc-
ing factors for the Mid-Holocene (Bracconot et al., 2007),
with time-dependent forcings for the last 500 years to the
last millennium (von Storch et al., 2004; Tett et al., 2007)
and in some cases also for most of the Holocene (Lorenz and
Lohmann, 2004; Wagner et al., 2007). Due to the lower com-
puting costs most EMIC simulations are driven with time-
dependent forcing factors and cover the whole Holocene
(Crucifix et al., 2002; Brovkin et al., 2003; Weber et al.,
2004; Renssen et al., 2005; Wang et al., 2005).

As climate variability is over a large range of timescales
a combination of externally forced and of random, internally
generated components, empirical reconstructions and simu-
lations are of a different nature. Proxy-based reconstructions
represent the historic climate evolution, but only for a limited
set of variables, whereas climate simulations provide com-
prehensive representations of past climate, but usually only
for a combination of the forced component and model-based
internal variability. The latter is in the best case similar to the
true internal variabilty in a statistical sense. The fact that the
actual time evolution of random variability can not be sim-
ulated in forced simulations can in consistency tests either
be taken into account through comparing ensemble simula-
tions with empirical reconstructions, or through considering
temporal averages over periods that are long enough for the
climate variability to be dominated by the climate forcing.

The aim of DA in climatology is to combine dynamical

models and empirical information to find estimates for past
climate that are both consistent with the empirical knowledge
and with the dynamical understanding of the climate system.
Usually this implies representing the time evolution of ran-
dom variability components in climate simulations, but other
applications, which will be discussed in the next section, also
exist. Moreover, DA provides estimates for variables and lo-
cations for which no empirical information exists, including
large-scale atmospheric anomalies that are consistent with
the local information. Using DA in palaeoclimatology has
first been suggested byvon Storch et al.(2000). Out of the
three methods discussed later in this paper one follows di-
rectly the ideas outlined invon Storch et al.(2000), and a
second one can be seen as a modification of it.

In palaeoclimatology the random variability component is
likely to be of high relevance in the mid-latitudes, as these
are in general characterised by a high level of natural vari-
ability. In Scandinavia natural variability is particularly high,
because it is located in an area of a strong precipitation and
temperature signal of the Northern Annular Mode (NAM) or
the North Atlantic Ocillation (NAO), which are the domi-
nant modes of extratropical atmospheric circulation variabil-
ity in the Northern Hemisphere (Hurrell, 1995; Thompson
and Wallace, 2000, 2001). The NAM/NAO variability char-
acterises not only the mean atmospheric flow and thus the
advection of air masses of different temperatures, but also
the position of the Atlantic stormtrack (with the synoptic-
scale variability potentially feeding back on the NAM/NAO
state), which both are key for the climate over Northern Eu-
rope. Random decadal variability of sea surface temperature
linked for instance to the Atlantic Multidecadal Oscillation
(Delworth and Mann, 2000; Knight et al., 2005) or to vari-
ability in the Meridional Overturning Circulation (Hawkins
and Sutton, 2008) can further strongly influence tempera-
tures over Scandinavia (Sutton and Hodson, 2005).

The basic concepts of DA will be introduced in Sect. 2,
along with a discussion of the similarities and differences be-
tween the assimilation problem in palaeoclimatology and the
highly developed field of DA in meteorology and oceanogra-
phy. Specific approaches developed in the context of palaeo-
climatology will be presented in Sect. 3, including some re-
sults relevant to Europe, followed by a summary and conclu-
sion section.

2 Dynamical models and data assimilation –
the standard framework

In this section the standard framework of DA will be out-
lined. The purpose is not to present a comprehensive discus-
sion, which would be far beyond the scope of this paper, but
to introduce the main elements such that later it can be un-
derstood how the current status of DA in palaeoclimatology
differs from this framework.
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Generally speaking dynamical models transform a state of
a system at a given time (9(t)) into a state at a later time
(9(t+1t)). The time development may be influenced by
time-dependent forcing factors (forcing(t)), and the model
F often contains a set of parameters that specify a certain
model among a class of models. We thus can write

9(t +1t) = Fparameter(9(t),forcing(t)) (1)

In a standard forced simulation empirical knowledge about
the system is only used in a very general (yet often so-
phisticated) way during model development to formulate the
model itself, which includes determining the basic equations
that constitute the structure of the model, and setting specific
values for its parameters. The time evolution of the states
follows from the forcing as well as from the initial state from
which the model was started, with predictability limits due to
the usually chaotic nature of the system.

The purpose of DA is to use empirical knowledge of the
temporal development of the system states after the model
has been constructed. In principle DA can be used in two
different ways, namely to estimate the system state, or to
systematically improve model parameters. In this paper we
will focus on methods that are related to the first aim, and
either correct simulated states or select states from ensemble
simulations. Examples for the second case can be found for
instance inAnnan et al.(2005).

The first type of problem, which is also known asstate
estimation, is encountered in many scientific disciplines,
and a mathematically sound framework for it exists (for an
overview see for instanceSwinbank et al.(2003)). The field
in which DA is most closely related to the DA problem in
palaeoclimatology is numerical weather prediction, where
DA is used to find the best estimate for the current state of the
atmosphere, which is then used to start the forecast. Informa-
tion about the state of the atmosphere at a given time can be
obtained in two ways, firstly from a forecast started earlier,
and secondly from the observations at that time or at a later
time. This key problem in weather forecasting of finding the
initial state for a forecast is solved by combining a previous
forecast with observations, which include direct surface and
upper air meteorological measurements, as well as indirect
observations of meteorological variables through satellites.

In an optimal combination of the forecast-based and the
observation-based estimates for the atmospheric state, the
relative weights of these two types of information depend
on their errors, with more weight given to the estimates with
less uncertainty. The formulation of the best estimate, which
is calledthe analysis, also needs to take into account the fact
that the observations and the simulated states usually consist
of different variables, and are defined at different locations.
The goal is to find a model state that is consistent with the ob-
servations and with the previous forecast. To a good approx-
imation this also means that the sequence of analysis states
is consistent with the model physics, which is not true for a

sequence of states that are obtained from a statistcial inter-
polation of direct observations. The fact that the simulated
states and the observations are fundamentally different quan-
tities is included in the formalism by anobservation operator
h that transforms the simulated state9 (all model variables
at all model locations) at a given time into the observations2

(all observed variables at all observed locations) that would
be obtained given9. Examples include the transformation
from temperature or pressure on model gridcells (often on
the order of 100 km×100 km) to local measurements, or the
transformation of a vertical temperature profile to satellite
microwave retrievals.

In the classical framework for state estimation it can be
shown that givenN observations2i at timesti , the optimal
analysis9a at time t0(<ti) is obtained by minimising the
following cost function with respect to9

min J (9) =
1

2
(9 −9b)T B−1(9 −9b)

+
1

2

N∑
i=1

(hi(9i)−2i)
T R−1

i (hi(9i)−2i), (2)

where9b is the previous forecast (also known as theback-
ground field) at timet0, and9i andhi are the simulated field
and the observation operator at timesti . The errors in the
simulation are given by the error covariance matrixB, while
the observation errors are described by the error covariance
matrixR.

In the special case ofsequential data assimilation, in
which the observations are assimilated one at a time (i.e.
N = 1 in Eq.2) the solution can be approximated by

9a
= 9b

+G(H(9b)−2) (3)

whereH is the linearisation of the observation operatorh,
andG is the so-calledgain matrix. The gain matrix is calcu-
lated from the error matricesB andR. For linear dynamical
systems this approximation is exact.

Methods that directly minimise the cost function in Eq. (2)
are calledvariational data assimilation(3D-VAR for N=1,
4D-VAR for N>1), while sequential methods of the type
of Eq. (3) are known asfilters. Two examples of filters are
briefly discussed in Sect.3.2, namely the Kalman Filter and
the Particle Filter. Equation (3) only uses previous informa-
tion to estimate the state of the system at a past timet . How-
ever, in palaeoclimatology observations from this timet up
to the present are also generally available. Those additional
constraints on the system at timet can be used with so-called
smoothers(e.g.,Wunsch, 2006), which propagate informa-
tion backward in time (whereas Eq.3 only propagates it for-
ward), but to the authors’ knowledge such a technique has
not yet been used in palaeoclimatology. Although the exact
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solution for the analysis is theoretically clear, the main prob-
lem in practical applications with variational and sequential
approaches is to specify the time-dependent error matrices
such that useful solutions are obtained.

3 Data assimilation in palaeoclimatology

3.1 Differences between weather forecasting
and palaeoproblems

Numerical weather forecasts and palaeoclimatic simulations
both use GCMs. However, assimilation methods developed
for weather forecasting cannot be implemented in models
used in palaeoclimatology because of fundamental differ-
ences in the extent, temporal resolution and type of empirical
information about the system state. Additionally, the mecha-
nisms that cause a climate signal in proxy data are often only
incompletely understood.

Each day there are several hundred thousand in situ and re-
mote sensing observations of the state of the atmospere and
ocean available that can be assimilated to initialise weather
foreasts. All of these are physical measurements, either di-
rect or indirect, and it is thus well known how they are linked
to the state of the atmosphere or ocean, in other words the ob-
servation operatorh is relatively well known. Decades of de-
velopment of assimlation methods at the main weather fore-
casting centres have led to the currently used variational as-
similation schemes that are optimised for this situation. The
same methods have also been used in the NCEP/NCAR (Na-
tional Center for Environmental Prediction/National Cen-
ter for Atmospheric Research) and the ERA40 (European
Reanalysis) atmospheric reanalysis projects, where constant
model versions have been used to assimilate observations
from the last decades (Kalnay et al., 1996; Kistler et al.,
2001; Uppala et al., 2005). These reanalyses provide the
most consistent and comprehensive estimates for the atmo-
spheric states from 1948 (NCEP/NCAR) or 1958 (ERA40)
to the present.

More recently DA has also been applied to use the surface
meteorological observations that extend back to the begin-
ning of the 20th century for a reanalysis (Whitaker et al.,
2004; Compo et al., 2006, 2010). During the development of
this “100 year reanalysis” it became clear that the variational
methods used for the NCEP/NCAR and ERA40 reanalyses
are not suitable for dealing with the much sparser set of ob-
servations available for the longer analysis, whereas an En-
semble Kalman Filter methdod performed well under these
circumstances.

The situation in palaeoclimatology is different in many
respects. Even for the last millennium the number of cli-
mate proxy data is a few orders of magnitude lower than in
the early 20th century. In addition, the type of data is fun-
damentally different as it typically includes seasonal or an-
nual climate signals rather than instantaneous information.

Changing the implementations of the variational techniques
such that they take into account the fact that the observa-
tions represent temporal means is a theoretical and techni-
cal challenge that has not yet been addressed. In the case
of using proxy data the observation operator would describe
how climate states are transformed into the climate signals
contained in proxy data, which in this context is also known
as forward modelling. Forward modelling of proxy data is
a developing field (Reichert et al., 1999, 2001; Weber and
Oerlemans, 2003; Evans et al., 2006), but for most proxy
data the observation operator would not be readily avail-
able. An intermediate solution, which is used in the methods
discussed in the following sections, is to infer regional or
large-scale climate states from the proxy data throughtrans-
fer functions(regional) orupscalingmethods (large-scale).
It should however be noted that these approaches are po-
tentially problematic because the (unknown) forward mod-
els may be non-invertible and because many methods have a
tendency to underestimate variability (e.g.Christiansen et al.,
2009). The final key ingredient for the standard DA ap-
proach outlined above are realistic estimates for the model
and the observation errors, which usually also do not exist in
paleoclimatology.

Because of these multiple challenges and because DA for
palaeoclimatology is an emerging field which has not been
worked on by the major modelling centres, the methods used
are only loosely linked to the methods used in the mature
field of weather forecasting and atmospheric reanalyses. The
approaches taken are fairly pragmatic and are discussed in
the following two sections.

3.2 Ensemble member selection

The goal of ensemble techniques is to approximate the sta-
tistical behavior of the system from a finite number ofN

randomly generated states. In practice theseN states are
obtained by performing an ensemble ofN simulations with
a model, varying initial conditions, model parameters and
forcing, in a reasonable range. The update of this reason-
able range as time goes by is generally a key element of the
method. Ensemble techniques appear well adapted for DA in
paleoclimatology as it is possible to perform DA even in the
presence of strong non-linearities (e.g.,Evensen, 1997; Pitt
and Shepard, 1999; Cappe et al., 2007). Furthermore, en-
semble techniques are relatively easy to implement, as they
generally do not require strong modifications in the code of
the climate model nor strong development (as the methods
presented in Sects. 3.3.1 and 3.3.2).

Mainly two groups of ensemble methods have been used
up to now in paleoclimatology: Ensemble Kalman filters
(EnKF) and particle filters. EnKF can easily be described in
the classical framework described in Sect. 2 (Evensen, 1997;
Burgers et al., 1998; Evensen, 2003). Both the background
state and the gain matrix are computed from statistics of the
ensemble, obtaining then the analysis and estimate of the
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uncertainty as in many sequential methods. These ensemble
statistics are also used to generate the new ensemble for the
next analysis step. In particle filters, the gain matrix is not
necessarily computed explicitly. Instead, a time-dependent
weight is computed for each member of the ensemble from
its ability to reproduce the observations used to constrain the
model. Resampling of the ensemble is often necessary to
cover well the domain of variation of the system while keep-
ing the total number of particles reasonable. From the en-
semble of simulations and the weights, it is easy to compute
the (weighted) mean and the dispersion of the ensemble, pro-
viding an estimate of the state of the system and of the un-
certainty on this estimate (e.g.,Pitt and Shepard, 1999; Liu
and West, 2001; Cappe et al., 2007).

Up to now, none of those methods has been used to per-
form transient simulations over the Holocene or even the
last millennium. However, a technique applied recently can
be interpreted as a degenerated particle filter (Collins, 2003;
Goosse et al., 2006, 2009, 2010). Indeed, as in the parti-
cle filter method, at the end of each step (1 year up to 50
years), all the simulations are compared to the available ob-
servations. Nevertheless, the weights are obtained in a much
simpler way than in the full particle filter algorithm: the sim-
ulation that is the closest to observations, i.e. that minimises
a cost function, receives a weight of 1 while all the others
have a weight of 0. The next step is then performed using
this best simulation as initial condition, adding some noise in
order to sample the uncertainty of the system and generate a
new ensemble.

This method has been tested over various periods of the
past millennium, using instrumental as well as proxy data
(e.g.,Goosse et al., 2006, 2009, 2010; Crespin et al., 2009).
To illustrate the method here, we will show its performance
over Scandinavia from 11 simulations performed over the
past 600 years using the EMIC LOVECLIM (Goosse et al.,
2010). These eleven simulations differ in some model pa-
rameters, the forcing applied, as well as in some parameters
of the DA technique but they are all constrained by the same
set of 56 Northern Hemisphere proxy series derived from a
recent compilation (Mann et al., 2008). These time series
have been selected from a larger set in order to keep only
those that are significantly correlated with instrumental time
series over the years 1850–1995 and have been decadally
smoothed. As a consequence, model results have also been
decadally smoothed before plotting them. This means that
the observation operatorh is relatively simple here. How-
ever, it would be interesting to use a more sophisticated one,
in particular through the inclusion of forward models that di-
rectly simulate the proxy variable from the model results.

As imposed by the DA method, the simulations follow
very well the available proxy data over Scandinavia (Fig.1a).
Although the average over the 11 simulations with data as-
similation appears to underestimate multi-decadal variations,
its correlation with the mean of the proxy data reaches 0.89
over the period 1400–1995. It should be noted that averaging
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Fig. 1. Time series (◦C) of the anomaly in annual mean surface
temperature averaged over the 11 simulations using DA (black) for
Scandinavia (defined here as the region 5◦–35◦ E, and 55–75◦ N)
and (a) the average of the 6 proxies used to constrain model re-
sults in this region (green),(b) the instrumental data compiled in
the HadCRUT3 data set (green, Brohan et al., 2006), and(c) the av-
erage over Stockholm and Uppsala long instrumental time series,
(Moberg et al., 2003). For (a), model results are averaged only
over the points where proxy data are available. Reference period
is 1850–1995. All the time series have been decadally smoothed. A
21-year running mean has been applied for panel (c).

of ensemble members from DA simulations does not neces-
sarily lead to a reduction of multi-decadal variability. If the
assimilated information fully constrained the multi-decadal
variability, all ensemble members would have the same tem-
poral development and no variability reduction would oc-
cur. If the constraints were weak, the ensemble members
would differ strongly, similar to simulations without DA,
which at best capture forced but not internally generated
multi-decadal variability, and thus averaging would reduce
variability. The average over the 11 simulations with data as-
similation is also in very good agreement with instrumental
observations over 1850–1995 in this region (Brohan et al.,
2006), with a correlation between the two time series of
0.74, i.e. more than all the local correlations between the
proxies and the instrumental observations (Fig.1b). Only a
few instrumental data are available before 1850. We have
compared our model results with two of the longest ones
(Fig. 1c), Stockholm and Uppsala, that include the second
half of the 18th century and whose quality and homogene-
ity has been carefully checked (Moberg et al., 2003). These
simulations with data assimilation are not able to reproduce
well the high-frequency variations recorded at those two lo-
cations (not shown) but the long-term trend is in good agree-
ment with model results (Fig.1c).
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a

b

Fig. 2. a.) Difference in winter geopotential height (in m) averaged over the 11 simulations using data as-

similation between the periods 1401-1500 and 1601-1700. b.) Anomaly of winter geopotential height (in m)

averaged over the 11 simulations using data assimilation in the period 1790-1820 compared to the reference

period 1850-1995.

11

Fig. 2. (a)Difference in winter geopotential height (m) averaged over the 11 simulations using data assimilation between the periods 1401–
1500 and 1601–1700.(b) Anomaly of winter geopotential height (m) averaged over the 11 simulations using data assimilation in the period
1790–1820 compared to the reference period 1850–1995.

This comparison is instructive as it shows that, although
the data assimilation method is simple, the data constraint
is efficient. However, because of the decadal smoothing, the
number of degree of freedom is relatively low, partly explain-
ing the good correlation achieved by the ensemble member
selection. Furthermore, temperature estimates for Scandi-
navia, derived from the proxies, are directly used to constrain
model results. As a consequence, in the present framework,
the temperature in Scandinavia obtained in the simulation
with DA does not bring clear new information compared
to the proxy data themselves (Fig.1a). This is not always
the case. Data assimilation can be considered as a sophisti-
cated way to obtain reconstructions in areas where no proxy
is available or to derive large-scale reconstructions. Those re-
constructions based on simulations with DA are constrained
by available proxies (as any reconstruction based on statisti-
cal methods) but, in addition, they ensure that the dynamics

of the system represented by model equation is respected.
Finally, in some areas where different proxies show incom-
patible time series, DA can be a way to select the ones that
are the most compatible with model dynamics and thus most
likely represent a good large-scale estimate of past climate
changes.

As simulations with DA provide also estimates of vari-
ables that cannot be directly derived from the proxy records,
a first step to evaluate DA simulations is to measure the
quality and robustness of these estimates as they are less
constrained by proxies than the variables directly assimi-
lated. The mechanisms responsible for the changes in simu-
lations with DA can then be analysed. For instance, when
comparing the winter atmospheric circulation between the
15th century and the 17th century (which are relatively warm
and cold periods in Scandinavia, respectively, Fig.1a) a
relatively weak but clear signal resembling a shift from a
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positive to a negative phase of the North Atlantic Oscilla-
tion emerges (Fig.2a). When focusing on the years 1790–
1820, as invan der Schrier and Barkmeijer(2005), a pattern
resembling the negative phase of the North Atlantic Oscil-
lation is obtained for this cold period in Europe (Fig.2b).
This circulation anomaly in the simulations with DA presents
clear similarities with the reconstruction ofvan der Schrier
and Barkmeijer(2005), in particular over Northern Europe
(see Fig.3). However, their pattern is associated with much
stronger northerly wind anomalies East of Britain, in the
North Atlantic, than the one displayed in Fig.2b.

3.3 Upscaling and control of large-scale circulation

We now consider two methods that allow assimilation of
large-scale climate anomalies without using an ensemble
technique. Both methods have been applied to assimilate
atmospheric circulation patterns but in principle they could
also be used to assimilate temperature. We note that large-
scale anomalies could also be assimilated with ensemble
techniques, but these would be computationally very costly
when applied to GCMs.

Focusing on circulation is motivated by two reasons.
Firstly, simulated continental-scale temperature variability
is closely linked to the forcings, while decadal circulation
variability has a large random component which leads to
considerable spread of regional temperatures or precipita-
tion among different simulations (Wagner and Zorita, 2004;
Yoshimori et al., 2005; Raible et al., 2005). In particular the
Northern and Southern Annular Modes (NAM/SAM) have
been shown in modelling studies to be caused by internal at-
mospheric processes (Limpasuvan and Hartmann, 1999) and
empirical NAM and SAM reconstructions have also shown
considerable variability that is apparently not linked to forc-
ings (Cook et al., 2002; Jones and Widmann, 2004; Fogt
and Bromwich, 2006; Jones et al., 2009). Secondly, there
is ample evidence for a forced component of decadal and
longer scale circulation variability (e.g.,Hartmann et al.,
2000; Shindell et al., 2001; Thompson and Solomon, 2002;
Zorita et al., 2004; Arblaster and Meehl, 2006; Stendel et al.,
2006; Fogt et al., 2009), but it is difficult to simulate due to
the complexity of processes involved, which include for in-
stance stratospheric dynamics and chemistry. A comparison
of observed and simulated Northern Hemisphere, large-scale
winter circulation trends for the period 1955–2005 showed
for instance that none of the currently used GCMs is able to
simulate the observed trends, which are likely to be a combi-
nation of a response to the forcings and of random variabil-
ity (Gillett, 2005). Until forced circulation variabilty can be
successfully simulated, it may partly be taken into account in
paleoclimate simulations through assimilation of empirical
circulation estimates.

The methods described in this section control the large-
scale atmospheric circulation variability in simulations such
that it is close to prescribed target patterns. In principle it

might be possible to indirectly control the circulation through
assimilating temperature patterns, but so far this has not been
tested. In the examples discussed here the target anomaly
patterns are constant and the goal is to simulate the aver-
age conditions during a certain period and to test hypothe-
ses about processes that caused past temperature anomalies.
However, the methods are also designed to specifiy time-
dependent anomalies in transient simulations, but this has
not yet been done. The assimilated large-scale circulation
anomalies are either hypothetical situations or are based on a
statistical upscaling of available early instrumental and proxy
data.

This general approach has first been suggested byvon
Storch et al.(2000). The Pattern Nudging (PN) approach pre-
sented in Sect.3.3.2follows directly the Data Assimilation
Through Upscaling and Nudging (DATUN) idea outlined in
von Storch et al.(2000), whereas the Forcing Singular Vec-
tor (FSV) method presented in Sect.3.3.1 uses a different
method to control the atmospheric circulation in the model.
In both cases an artificial forcingf is added to the model
tendencies to keep the simulated states close to the target
patterns, but the two methods differ in the construction of
the artificial forcing terms. If differences between simulated
and target states originate from an incomplete or incorrect
representation of the response to forcings, the forcing term
can be interpreted as a crude way to account for the missing
processes in the model equations. If the differences are due
to non-predictable chaotic variability, they are the means by
which the simulated states are kept close to reality.

Statistical upscaling models have been used extensively
in palaeoclimatology to link proxy data for the last mille-
nium or long instrumental records from multiple sites to the
intensities of hemispheric- or continental-scale temperature
(Mann et al., 1998, 2008) or circulation patterns (Cook et al.,
2002; Luterbacher et al., 2002; Jones and Widmann, 2003;
Jones et al., 2009). They are based on statistical relation-
ships between the local data and large-scale climate variabil-
ity obtained from spatially (almost) complete fields which are
available for large parts of the 20th century. These relation-
ships are then applied to the past to infer large-scale climate
variability from the local data. Compared to the use of lo-
cal data in the assimilation framework outlined in Sects.2
and3.2 the obvious advantage and original reason for these
methods is that large-scale climate information can be ob-
tained without running climate models and without dealing
with the theoretical and technical challenges of assimilation.
The FSV and PN methods are designed to use this existing
large-scale information in simulations directly and at rela-
tively low computational costs.

The statistical link is usually formulated via linear
methods, such as Multiple Linear Regression, Principal
Component Regression, pattern-based regression methods
(e.g. Canonical Correlation Analysis), or via Regularised Ex-
pectation Maximation. The key assumption on which the
upscaling approach relies is the stability of the statistical

www.clim-past.net/6/627/2010/ Clim. Past, 6, 627–644, 2010



634 M. Widmann et al.: Atmospheric data assimilation in palaeoclimatology

relationships over time, which however can not be fully
tested with empirical data. Moreover there are questions
related to how details of the statistical methods affect the
reconstructions, which have mainly been discussed with re-
spect to temperature reconstructions (von Storch et al., 2004;
Rutherford et al., 2004; Bürger et al., 2006; Lee et al., 2008;
Christiansen et al., 2009), but which in principle also apply
to circulation variables. In addition upscaling assumes the
invertability of the relationship between the large-scale state
and the local information (which is closely linked to the ob-
servation operator), in other words it assumes that two dif-
ferent large-scale states lead to different local observations.
Although these issues need to be taken seriously and may be
seen as suggesting that DA based on upscaling is less prefer-
able than DA based on forward modelling of local informa-
tion, it should be noted that in the context of palaeoclimatol-
ogy the question arises how stable over time a given forward
operator is, and how the choice of forward operators affects
the DA results. Thus similar methodological challenges are
present in both cases, yet avoiding the invertability problem
is a clear principle advantage of forward modelling.

3.3.1 Forcing singular vectors

This section describes a technique that determines small per-
turbations to the time evolution of the prognostic variables of
the model (the tendencies) that lead the atmospheric model
to a pre-defined target pattern. In terms of Eq. (1), a model
forcing perturbationf is added to the model F on the right-
hand side of this equation. These tendency perturbations are
determined to result in large perturbation growth during a
short period of time (of several days length). The tendency
perturbationsf are referred to asforcing singular vectors
(Barkmeijer et al., 2003). In the examples discussed here
the method is used to assimilate only one large-scale circula-
tion pattern, although multiple patterns are possible. Appli-
cations to patterns of variability in physical aspects of the at-
mosphere (like temperature) or ocean dynamics are theoreti-
cally possible, but put demanding requirements on the model
used.

If 9T denotes the proxy-based reconstruction of atmo-
spheric circulation and9M the circulation in the model, then
these fields can be expressed as

9T (x,t)= 9̄T (x)+αT (t)8T (x) (4)

9M(x,t)= 9̄M(x)+αM(t)8T (x)+
∑

i

αi(t)8i(x), (5)

where9̄T is a (modern) climatology and̄9M the model’s
equivalent. The two climatologies need not to be similar,
and when using intermediate complexity models, usually are
not. The pattern8T is referred to as the target pattern and
its time dependency is captured in the target time expansion
coefficientαT . The set of patterns8i(x) can be any basis

of the state space orthogonal to8T . There is no fundamen-
tal reason for separating the time dependence and the spatial
pattern as is done here, it is merely convenient for the appli-
cations where only the amplitude of the target pattern8T (x)

is time-dependent. This is the case in three out of the four
FSV examples discussed below, while in one example a tar-
get pattern is assimilated that has both temporal and spatial
variability on a year-to-year timescale. In this case, the term
αT (t)8T (x) needs to be written in the more general from
8T (x,t) and the remainder of this section can easily be gen-
eralised to include this case as well.

The aim is to bring, in a time-averaged sense, the coeffi-
cient αM close to the target valueαT , while the expansion
coefficientsαi(t) can assume any values. The tendency per-
turbationsf are constructed to produce after some optimisa-
tion time a deflection of the model atmospheric state in the
direction of the target pattern8T . The amplitude of this de-
flection is aimed at reducing the difference between the target
valueαT and the projection coefficientαM . If the target value
has a time dependency, it will usually vary on timescales far
larger than the typical time step of the model, which is a con-
sequence of the fact that large spatial scales are associated
with long timescales. The optimisation time will be on the
order of days, which is much larger than the model time step
and much smaller than the typical timescale of the target co-
efficient.

If the tendency perturbations are sufficiently small, the
evolution of deviations of the model atmospheric state
that results from tendency perturbations can be computed
by a linearisation of the dynamical model along a (time-
dependent) solution of this model. Thus the linear evolution
of a perturbationε, measuring the deviation between a con-
trol and perturbed model run, satisfies

dε

dt
= Lε+f , (6)

where L is the time-dependent linearisation of the model
along a solution. For a forcing perturbationf , the vector
ε(t=T )≡Mf is simply determined by integrating Eq. (6)
to time t=T with initial condition ε(t=0)=0. The forcing
perturbation is now determined by minimisation of

|P(Mf −(αT −αM)8T )| (7)

where8T is the target pattern andP is a projection operator.
Through the use of the latter only information over the spatial
domain that is available in the reconstruction enters the cost
function. A fast minimisation routine requires the derivative
of Eq. (7) with respect tof , which can be efficiently com-
puted using the adjoint ofM. The requirements of having
a linearisation of the climate model, or a part of the climate
model, and an adjoint of this linearisation makes the FSV
approach not applicable to every model. Although numeri-
cal methods exist that automatically generate the code of the
adjoint model from the model code (Giering and Kaminski,
1998; Heimbach et al., 2005) not many atmosphere GCMs
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a

b

Fig. 3. Stream function anomaly9 in m2 s−1: a.) target pattern in the data-assimilation, and b.) mean

difference in winter (DJF) between the data-assimilated run and the control run.

eddy-driven jet at mid-latitudes is observed in the assimilated experiment. The disappearance of the

eddy-driven jet has dynamical origins in which a double jet situation is replaced with a single jet as

the subtropical jet increases in strength. The latter study indicates that data-assimilation methods as465

discussed in this study may also prove useful for studies into atmospheric dynamics.

17

Fig. 3. Stream function anomaly9 (m2 s−1): (a) target pattern in the data assimilation, and(b) mean difference in winter (DJF) between
the data assimilated run and the control run.

have this feature. An extensive and more technical discussion
of this approach can be found inBarkmeijer et al.(2003) and
van der Schrier and Barkmeijer(2005).

This method has been used in several palaeoclimatic stud-
ies (van der Schrier and Barkmeijer, 2005, 2007; van der
Schrier et al., 2007; Luterbacher et al., 2010; Palastanga
et al., 2010). To illustrate the method, we show results using
the intermediate complexity model ECBilt-Clio. A linearisa-
tion of the dynamic core of the atmospheric part (ECBilt) of
the climate model and its adjoint exist. They have been used
earlier in predictability studies, e.g.Barkmeijer et al.(1993).
The effect of parameterised processes is not included in the
computation off ; an accurate approximation if the optimi-
sation timeT is sufficiently small.

One application (van der Schrier and Barkmeijer, 2005)
assimilated the averaged atmospheric circulation over the
North Atlantic sector for the 1790–1820 period, sometimes
referred to as the Dalton Minimum, and one of the cold spells
in the Little Ice Age. Figure3 shows the target pattern8T , in
terms of the 800 hPa stream function anomaly, for the winter
season. Stream function is a mathematical expression that

describes the pattern of a two-dimensional flow. Lines in
the horizontal plane where the stream function is constant
give the direction of the flow. The target pattern is assimi-
lated only in winter in the model, the model evolves freely
in the remaining seasons. The lower panel shows the winter
stream function anomaly at the 800 hPa level, averaged over
the length of the simulation and relative to the control clima-
tology 9̄M . There is a distinct qualitative similarity between
the two patterns, with a reproduction of the tripole of the tar-
get pattern. The FSV approach successfully assimilates the
information contained in the target pattern with repect to the
strength and position of the negative and positive anomalies
over Labrador and Iceland, whereas the negative anomaly
over the European continent is not reproduced.

The simulation shows very large changes in 2 m temper-
atures over the European continent compared to the control
simulation (Fig.4a and b). In the winter (DJF) season, tem-
peratures are more than 3◦C colder over northern Scandi-
navia to around 0.5◦C colder over Spain. In the summer
(JJA) season, temperatures are lower in the eastern half of the
North Atlantic ocean with minima of circa−0.9◦C over the
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(a) (c)

(b) (d)

Fig. 4. Left-hand panels: difference in 2 m temperature (K) between the data assimilated and the control run, averaged over 25 years,
(a) winter (DJF) and(b) summer (JJA). All temperature changes shown are statistically significant at the 5% level. Right-hand panels:
difference in reconstructed surface air temperature (K) for the period 1790–1820 AD with respect to 1971–2000,(c) winter (DJF), and(d)
summer (JJA). Reconstructed temperatures are from Luterbacher et al. (2004).

UK. Positive anomalies are found over Poland and western
Russia. Reconstructed temperatures for this period (Luter-
bacher et al., 2004) show a compelling similarity with the
simulated temperatures (Fig.4c and d) for both the win-
ter and summer season. Invan der Schrier and Barkmei-
jer (2005) it is shown that the winter temperature response
is related to the anomalous atmospheric circulation, whereas
the summer response is related to a feedback via ocean and
soil-moisture dynamics. This illustrates the strength of the
DA, where different climatic components are coupled and
the simulated climate remains dynamically consistent with
the assimilated data. We note however that we do not exclude
an additional direct effect of the solar and volcanic radiative
forcing, in particular on larger spatial scales, and that the cir-
culation anomaly itself could be a response to the forcings.

A problem associated with the FSV methodology is stum-
bled upon byvan der Schrier and Barkmeijer(2007). In
that study, positive and negative phases of the Pacific-North
American (PNA) pattern were assimilated. None of the dom-
inant natural modes of variability of the ECBilt-Clio model
bears a direct similarity with the PNA pattern, but the first
few natural modes of variability have a nonzero projection
on the PNA.

This results in an over-amplification of parts of the PNA-
pattern, while other parts of the PNA-pattern are suppressed.
In order to reach a time-averaged atmospheric circulation
with persistent negative or positive PNA conditions, it was
required to artificially enhance or weaken the monopoles of
the target pattern in order to counteract the model’s tendency
to distort the PNA pattern. This problem seems to be asso-
ciated with unrealistic aspects of the model rather than with
a conceptual problem in the DA approach. Data assimilation
with the FSV method has not been tested with a model more
complex than ECBilt-Clio.

The drawback associated with the model deficiency de-
scribed above puts some limitations to the applicability of
this method for DA. InLuterbacher et al.(2010), a sea-level
pressure (SLP) pattern is discussed which is constant for the
JFM season, but has a year-to-year variability. This sea-level
pressure pattern is assimilated into the ECBilt-Clio model to
produce a climate that is dynamically consistent with the re-
constructed atmospheric circulation. The SLP pattern is first
related to stream function, which is the prognostic variable
of the ECBilt model, and then the yearly varying pattern is
assimilated in the ECBilt-Clio model using the FSV tech-
nique. For each year, the JFM-averaged stream function is
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Fig. 5. Pattern correlations between fields of the simulated stream
function at the 800 hPa level, averaged over JFMA, and the recon-
struction of stream function as derived from a SLP reconstruction.

Fig. 6. Zonally averaged zonal velocity (m s−1) for the control sim-
ulation (upper panel), and the data assimilated experiment (lower
panel). The zonal velocity is averaged over the North Atlantic sec-
tor (60◦W, 40◦E) and averaged over the December–February pe-
riod. Both contours and colourbar denote zonally averaged zonal
velocity.

determined as deviation from the mean of the control cli-
mate, and compared to the target pattern. The pattern cor-
relation coefficients are shown in Fig.5, which shows that
for many years the pattern correlation is reasonably high, but
the pattern correlation drops to near-zero (or below zero) val-
ues for some years. The lack of a resemblance between the
target pattern and the model’s natural modes of variability
are related to the poor performance in these years.

Finally, the FSV as well as PN approach discussed in the
next section, can be used for experiments where hypotheti-
cal atmospheric circulations are assimilated. One example is
given byvan der Schrier et al.(2007), where tendency per-
turbations are calculated that nearly double the strength of
the North Atlantic subtropical jet. These tendency perturba-
tions were calculated and applied on the 200 hPa level of the
model only. The study aimed to test an alternative hypothesis
(Seager and Battisti, 2007) for rapid climate change involv-
ing strong variations in the North Atlantic subtropical jet that
trigger a reorganisation of the atmospheric circulation in the
North Atlantic sector and a cessation of the northward atmo-
spheric heat transport. Figure6 shows the zonally averaged
zonal velocity over the North Atlantic sector for the DJF sea-
son, for the control simulation and one of two experiments.
Next to the increase in the strength of the subtropical jet, the
disappearance of the eddy-driven jet at mid-latitudes is ob-
served in the assimilated experiment. The disappearance of
the eddy-driven jet has dynamical origins in which a double
jet situation is replaced with a single jet as the subtropical
jet increases in strength. The latter study indicates that DA
methods as discussed in this study may also prove useful for
studies into atmospheric dynamics.

3.3.2 Pattern nudging

The aim of PN is very similar as in the FSV approach,
namely to bring the model time expansion coefficientαM(t)

of a target pattern in Eq. (5) close to a target coefficientαT (t).
Analogously to the FSV approach the method is designed
such that the time expansion coefficientsαi(t), which are re-
lated to the other patterns, are not affected, in other words
PN aims at simulated states that have a specified projection
onto the target pattern rather than being identical to the target
pattern. The motivation is the fact that large-scale circulation
indices such at the NAM and SAM indices describe such a
projection rather than represent the full spatial field. The dif-
ference to the FSV approach is how the simulation is con-
trolled. Pattern nudging does not use knowledge about the
dynamical evolution of a perturbation, and is based on the
expectation that if a perturbation is introduced the circulation
anomalies will change in the direction of this perturbation.
The approach taken is a simple Newtonian relaxation in
which the additional forcing termf , which is callednudging
term, is proportional to the difference between the simulated
and the target state in the one-dimensional subspace defined
by the target pattern. The nudging term is thus given by

f = G(αT (t)−αM(t))8T , (8)

whereG is a constant that determines the strength of the
nudging and has the dimension 1/time. The simulated field
9mod,old(x,t) is modified by the nudging to

9mod,new(x,t) = 9mod,old(x,t)+21tf , (9)
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where1t is the time step of the model. A generalization to
nudging with respect to multiple, mutually orthogonal target
patterns is straightforward.

This simple nudging approach has the advantage that it
does neither require linearisations of the dynamical model
nor adjoint models and can thus be implemented with-
out very large technical effort, which makes it suitable for
GCMs. PN is implemented in the ECHAM4 atmosphere
GCM and has been used with a T30 horizontal resolution
(approx. 3.75 lat×3.75 lon or 400 km lat×400 km lon) and
19 hybrid sigma-pressure levels with the highest at 10 hPa.
The ECHAM4 model with a finer T42 resolution is described
in Roeckner et al.(1996), andStendel and Roeckner(1998)
showed that it still performs well with the lower T30 resolu-
tion, which is computationally less expensive and thus partic-
ularly suited for long simulations in palaeoclimatology. The
T30 version of ECHAM4 has been coupled to the HOPE-G
ocean model byLegutke and Voss(1999) and this so-called
ECHO-G model has been used for a 1000 year long equilib-
rium simulation with present day forcing conditions, which
has been described and validated inMin et al. (2005a,b), as
well as for transient simulations for the last 500 years and the
last 1000 years (von Storch et al., 2004; Zorita et al., 2004;
Fischer-Bruns et al., 2005; Gonźalez-Rouco et al., 2006).
The experiments discussed here have been conducted with
the uncoupled ECHAM4 and climatological sea surface tem-
peratures, in order to analyse the atmospheric response to PN
without ocean feedbacks and to save computing time during
the test phase. Experiments with the coupled model are in
preparation.

In applications it is likely that the target pattern and coeffi-
cient describe circulation patterns such as the NAM or SAM,
and are thus based on SLP fields. However, PN is not directly
applied to SLP (or surface pressure, which is the equiva-
lent prognostic variable in ECHAM), because all circulation-
related variables above the surface would still be free, and
internally generated variability could potentially make it dif-
ficult to keep the atmosphere close to the target state. In addi-
tion particular care would be needed to ensure conservation
of mass if the surface pressure was nudged. Therefore the
nudging is used in the lower and middle troposhere and is ap-
plied to the horizontal vorticity of the wind field. The wind
field in the free, extratropical atmosphere is approximately
geostrophic and divergence-free, and thus well defined by
vorticity. The vorticity target patterns are the linear signals
of the SLP target time expansion coefficient.

This approach works generally well in test experiments
in which the model is nudged towards positive and nega-
tive states of the NAM. The exception is the summer season,
where it appears that the smaller spatial structures of the tar-
get pattern do not allow geostrophic adjustment. In the other
seasons the simulated SLP anomalies are close but not iden-
tical to the target patterns. Discrepancies may partly be ex-
plicable by the non-constrained orthogonal components, but
it also seems that the model tends to respond to the nudging

with anomalies that are close to its internal variability pat-
terns, for instance with a NAM pattern that has similarities
to EOF1 of SLP in ECHAM. In this respect PN behaves sim-
ilar to FSV, which, as discussed above, is problematic if the
target patterns are very different from the model’s own dom-
inant variability patterns. The nudging constantG can be
chosen such that the simulation is close to the target index,
but still retains considerable variability of the target pattern
time expansion coefficient on daily timescales. A key prop-
erty of PN is that aspects of circulation variability that are
different from the target pattern, for instance synoptic-scale
variability, evolve freely, but are consistent with the nudged
state of the target pattern.

Here we present an experiment in which the atmospheric
circulation has been nudged towards a negative NAM index
of one (monthly) standard deviation. This simulation repre-
sents a target circulation anomaly similar to the one used for
the FSV simulations discussed in the previous section. As
the current version of PN has only been developed and tested
with respect to nudging the NAM pattern, and as the first
transient simulations will be based on specifying the NAM
index, the NAM pattern rather than the full reconstructed
SLP anomaly during the Dalton Minimum has been used as a
target pattern. Figure7 shows the winter NAM pattern (for a
positive index of one standard deviation) and the SLP winter
(DJF) anomaly in a 20 year long nudged simulation relative
to a non-nudged simulation. The target pattern and the re-
sponse have a clearly similar spatial structure and the ampli-
tudes of the local response anomalies are consistent with the
prescribed negative NAM index. Differences in the structure
between target and response pattern can indicate the limita-
tions of PN, but can also be due to sampling effects and to the
fact that PN only prescribes the amplitude of the target pat-
tern and does not constrain the amplitudes of all orthogonal
patterns.

The response pattern is similar to the reconstructed Dalton
Minimum anomaly (Fig.3a) as it shows positive pressure
anomalies over Iceland and Northern Europe, and negative
anomalies over Southern Europe, the northwest Atlantic and
northeastern America. Over western Europe both patterns in-
dicate anomalous flow from northeasterly or easterly direc-
tions. However, the exact locations of maxima and minima,
and the directions of the geostrophic flow are different. Over
the North Pole this seems clearly a consequence of the hemi-
spheric PN target pattern, whereas the locations of the two
simulated negative anomalies in the Atlantic sector and the
strong Pacific anomaly are features that are not part of the
NAM target pattern and that appear to be a model-specific
response to the NAM forcing.

The simulated temperature anomaly (Fig.8) is very similar
to the well-known NAM temperature signal (Thompson and
Wallace, 1998) and is consistent with anomalous advection
of air masses according the circulation anomaly. It shows
lower than normal temperatures over Western and Northern
Europe and higher temperatures over Turkey and the Black
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Fig. 7. Top: Winter SLP anomaly for a positive NAM index of one standard deviation (hPa). Bottom: Mean

winter (DJF) SLP difference (hPa) between a 20 year long simulation with ECHAM4 nudged towards a negative

NAM index of one standard deviation and a 20 year long control simulation.
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Fig. 7. Top: Winter SLP anomaly for a positive NAM index of one standard deviation (hPa). Bottom: Mean
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Fig. 7. Left: winter SLP anomaly for a positive NAM index of one standard deviation (hPa). Right: mean winter (DJF) SLP difference
(hPa) between a 20 year long simulation with ECHAM4 nudged towards a negative NAM index of one standard deviation and a 20 year long
control simulation.

Sea region. Compared to the temperature reconstruction in
Fig. 4 there is agreement over Western and Northern Eu-
rope and over Turkey, whereas Eastern Europe has strong
negative anomalies in the reconstruction and small negative
to positive anomalies in the simulation. The simulated posi-
tive temperature anomalies are consistent with the advection
of warm air from Northern Africa into Eastern Europe and
the Black Sea region according to the simulated circulation
anomaly, which in this aspect is not in agreement with the
reconstructed anomaly (Fig.3a).

PN has also been implemented in the HadCM3 model and
a simulation nudged towards a negative winter NAO index,
which aims at representing the circulation during the Maun-
der Minimum, is discussed inPalastanga et al.(2010). This
experiment is idealised to the point that radiation changes,
due to changes in volcanic dust loading or solar activity, are
ignored. ThePalastanga et al.(2010) study aims to assess
whether a persistently negative NAO-type circulation could
be the primary driver of climate change as seen in the Maun-
der Minimum period. The resulting temperature anomaly has
a similar structure to the one obtained with the ECHAM4
model, but the cold anomaly over Europe is shifted eastward,
with the consequence that simulated temperatures are still
lower than normal over Northern Europe, but close to av-
erage over western and central Europe, whereas temperature
reconstructions during this period show negative anomalies
over all of Europe. The partly unrealistic simulated temper-
ature anomaly is tentatively attributed byPalastanga et al.
(2010) to a too strong mean westerly flow in HadCM3.

Fig. 8. Mean winter (DJF) 2 m temperature difference (K) between
a 20 year long simulation with ECHAM4 nudged towards a negative
NAM index of one standard deviation and a 20 year long control
simulation.
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4 Summary and conclusions

The temporal evolution of quasi-random internal climate
variability on decadal timescales can not be simulated in
climate models, and complex climate responses to external
forcings are difficult to simulate. Details of internal variabil-
ity in simulations and climate reconstructions can only be
brought in agreement through DA, and in cases where forc-
ing signals are unrealistically simulated DA may also be use-
ful. Although DA has the potential to improve estimates of
past climate variability for regions in which proxy data are
available, the main added value compared to purely statistical
climate reconstructions is that it yields spatially complete
fields in a dynamically consistent way. Simulations with DA
provide information for variables and at locations for which
no proxy data are available, and thus allow the analysis of
dynamical processes that caused the local climate variability
at the locations covered by proxy data.

Here we have presented three methods for performing
DA in the context of palaeoclimatology, namely selection
of ensemble members, Forcing Singular Vectors, and Pat-
tern Nudging. The first two methods are implemented using
EMICs, while the third method is implemented in GCMs.
All methods have been successful in bringing the simulations
closer to reconstructions. However, as could be expected,
DA has a tendency to produce anomalies that are within the
model’s range of internal variability for a given external forc-
ing. For the ensemble method this is the case by construction,
but with the FSV and PN methods it is also difficult to assim-
ilate target patterns that are different from internal variabil-
ity patterns. Moreover, the PN simulations with HadCM3
show that biases in the mean simulated climate can affect
the temperature response to circulation variability. This is
also not surprising as the influence of the mean flow on links
between circulation and temperature anomalies has been al-
ready discussed inGroll et al. (2005) and Groll and Wid-
mann(2006). Thus the different methods are associated with
similar methodological challenges. It should be noted that
problems linked to an unrealistic simulation of the mean cli-
mate and of the statistical properties of climate variability
can be expected to become less important as increasing com-
puting power allows to use higher resolution and more so-
phisticated models for DA in palaeoclimatology. An advan-
tage of the ensemble member selection is that in principle it
uses forward modelling to link the simulations and the prox-
ies and thus avoids the potential non-invertability problem
associated with the upscaling that is used in the FSV and PN
approach. However, current implementations still use very
simple forward models.

Despite these issues all DA simulations presented here
were consistent with empirical knowlege over large parts
of Europe. These simulations demonstrate the value that
DA adds compared to statistical reconstructions of individ-
ual variables by providing physically consistent and spatially
complete information for a large number of variables, which

can aid process understanding. In particular it has has been
shown that the cold periods in Europe around 1680–1720
and around 1790–1820 can be produced by anomalous at-
mospheric circulation that is associated with a negative NAO
or NAM index and northerly or easterly wind anomalies. It
has also been shown that the cold period around 1790–1820
is associated with colder eastern Atlantic SSTs which help to
maintain cold conditions all year long over Northern Europe.

DA also provides a framework to test the compatibility be-
tween proxies and models. In order to satisfy its constitutive
equations a model may not be able to simultaneously fol-
low all the constraints given by a set of proxy data. Prox-
ies that are not in good agreement with the simulation have
then to be carefully analysed in order to determine the rea-
son for the discrepancies, which could for instance be re-
lated to model biases, or instationarities and misinterpreta-
tion of the proxies. FSV and PN are much simpler than
the filter or variational methods used in numerical weather
prediction, while the selection of ensemble members is con-
ceptually related to filters. A major obstacle for applying
variational methods in palaeoclimatology is that the current
implementations in weather prediction use adjoint models,
which are based on linear approximations for the climate dy-
namics. On the timescales given by the temporal resolution
of proxy data (e.g. interannual) the standard linear approxi-
mations are not valid. We note however that FSV is able to
use adjoints by prescribing reconstructed climate anomalies
related to long timescales periodically at intervals of several
days, which means that the linear approximation of the cli-
mate dynamics can still be used between the intervals. Some
high-frequency temporal variability of the amplitude of the
target pattern is maintained by choosing sufficiently long in-
tervals. Similarly PN prescribes target values at every model
time step and maintains high-frequency variability through a
sufficiently small nudging constant. We thus do not exlude
that modifications of the methods used in weather prediction
could be used in palaeoclimatology.

The methods currently used in palaeoclimatology are not
formulated within the standard DA framework and would
therefore not be able to provide estimates for the uncer-
tainty of the DA results even if the uncertainties of models
and proxy data were known, which however usually is not
the case. The potential of DA to provide uncertainties that
are lower and better defined than those of statistical climate
reconstructions is not yet explored and further progress to-
wards exploiting this advantage of DA can be expected. It
would require not only further development of DA methods
but also of forward models for proxy data that provide error
estimates.
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Küttel, M., Müller, S., Prentice, C., Solomina, O., Stocker, T.,
Tarasov, P., Wagner, M., and Widmann, M.: Mid to late Holocene
climate change – an overviev, Q. Sci. Rev., 27, 1791–1828, 2008.

Weber, S. L. and Oerlemans, J.: Holocene glacier variability: three
case studies using an intermediate-complexity climate model,
Holocene, 13, 353–363, 2003.

Weber, S. L., Crowley, T. J., and van der Schrier, G.: Solar ir-
radiance forcing of cenntennial climate variability during the
Holocene, Clim. Dynam., 22, 539–553, 2004.

Whitaker, J. S., Compo, G. P., Wei, X., and Hamill, T. M.: Reanaly-
sis without radiosondes using ensemble data assimilation, Mon.
Weather Rev., 132, 1190–1200, 2004.

www.clim-past.net/6/627/2010/ Clim. Past, 6, 627–644, 2010



644 M. Widmann et al.: Atmospheric data assimilation in palaeoclimatology

Wunsch, C.: Discrete inverse state estimation problems, Cambridge
University Press, 371 pp., 2006.

Yoshimori, M., Stocker, T., CC, C. R., and Renold, M.: Externally
forced and internal variability in ensemble climate simulations of
the Maunder Minimum, J. Climate, 18, 4253–4270, 2005.
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