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ABSTRACT

Climate extremes are rarely occurring natural phenomena in the climate system.
They often pose one of the greatest environmental threats to human and natural
systems. Statistical methods are commonly used to investigate characteristics of
climate extremes. The fitted statistical properties are often interpolated or extrap-
olated to give an indication of the likelihood of a certain event within a given
period or interval. Under changing climatic conditions, the statistical properties
of climate extremes are also changing. It is an important scientific goal to predict
how the properties of extreme events change. To achieve this goal, observational
and model studies aimed at revealing important features are a necessary prereq-
uisite.
Notable progress has been made in understanding mechanisms that influence cli-
mate variability and extremes in many parts of the globe including Europe. How-
ever, some of the recently observed unprecedented extremes cannot be fully ex-
plained from the already identified forcing factors. A better understanding of why
these extreme events occur and their sensitivity to certain reinforcing and/or com-
peting factors is useful. Understanding their basic form as well as their temporal
variability is also vital and can contribute to global scientific efforts directed at ad-
vancing climate prediction capabilities, particularly making skilful forecasts and
realistic projections of extremes.
In this thesis temperature and precipitation extremes in Europe and Africa, re-
spectively, are investigated. Emphasis is placed on the mechanisms underlying the
occurrence of the extremes, their predictability and their likely response to global
warming. The focus is on some selected seasons when extremes typically occur.
An atmospheric energy budget analysis for the record-breaking European Autumn
2006 event has been carried out with the goal to identify the sources of energy
for the extreme event. Net radiational heating is compared to surface turbulent
fluxes of energy and dynamic horizontal advection of heat. There is clear evi-
dence that the central North Atlantic Ocean was the major source of energy for
the Autumn 2006 extreme event. Within Europe, anomalously high atmospheric
water-vapor loading played a significant role through its strong greenhouse effect
which resulted in an increase of downwelling infrared flux to the surface.
Potential influences and connections between boreal snow cover during the melt
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season (February–April) and near-surface temperature in the spring season are
established. Large amounts of snow act as a precursor to cold spring seasons by
altering the coupling between the land and the overlying air through a modifica-
tion of the surface energy and hydrological processes. In operational numerical
models, a snow signal is found to provide some seasonal forecast skill for cold
spring seasons in Europe.
Changes in the intensity of droughts and floods in Africa in response to global
warming are investigated and compared with changes in mean precipitation sim-
ulated by an ensemble of climate models selected from the Intergovernmental
Panel on Climate Change (IPCC) fourth assessment report (AR4) set. The model
simulations are objectively combined using a Bayesian weighting procedure. In
southern Africa south of about 15◦ S, the most robust climate-change signal is a
shortening of the main rainfall season. This arises from a delayed onset of seasonal
rainfall associated with a reduction in lower-tropospheric moisture advection from
the southwestern Indian Ocean. The semi-arid areas closer to the Kalahari desert
are projected to become drier, while the wet areas are projected to become wetter.
East Africa is projected to get wet in the future climate, much wetter than other
regions within the same latitudinal belt. The zonal asymmetry in tropical pre-
cipitation increase is associated with a shift towards positive Indian Ocean Zonal
Mode (IOZM)-like events via an alteration in the structure of the Eastern Hemi-
sphere Walker circulation.
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1. INTRODUCTION

1.1 Climate extremes

The occurrence of extreme weather events constitutes a primary natural hazard
around the globe owing to the severe impacts they often have on many aspects of
human activities and on ecosystems. Extremes have deservedly attracted signifi-
cant research interest and attention in recent decades (Klein Tank, 2004; van den
Brink, 2005; IPCC, 2007, and many other studies). From a climatological perspec-
tive, extreme events are either those classified as rare on the basis of a predefined
reference or those considered intense in terms of their absolute deviations from the
norm. These two definitions are adopted in this thesis. In some climate-sensitive
sectors e.g., agriculture and infrastructure, an event is classified as extreme on the
basis of the losses associated with it.
Extreme events occur at various temporal and spatial scales. Compared to short-
duration events, seasonal (three-month) extremes are potentially more devastat-
ing because they result from either a few extremely intense events or a persistence
of anomalies of the same sign over an extended period of time. Moreover, sea-
sonal extremes tend to affect wider areas. They therefore deserve the considerable
research attention they have received in recent decades (Wehner, 2004; Tebaldi
et al., 2006).
Of all climate variables, near-surface temperature and precipitation have a large
impact on human activity. High-quality and long observations-derived records of
these two variables are available, particularly in the northern hemisphere extra-
tropics (e.g., Jones, 1994; Peterson et al., 1997; New et al., 2000). This permits
a successful application of statistical models such as extreme value models to the
archived records. Furthermore, owing to the quality of the records, a meaningful
validation of climate models’ precipitation and near-surface temperature simula-
tions or a verification of operational forecasts is possible. For these reasons, this
thesis focuses on an analysis of seasonal near-surface temperature and precipita-
tion extremes, which are generally referred to as climate extremes in the discus-
sion.
Many of the severe impacts of climate extremes are felt at regional or smaller
scales. Accordingly, there is a clear incentive for the analyses of continental or
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regional-scale climate extremes. The studies constituting this thesis focus on Eu-
rope and Africa.
In recent years, Europe has experienced some devastating climate extremes, some
of which were record-breaking. In the summer 2002, Europe was struck by heavy
precipitation leading to severe flooding in central Europe (Toothill, 2003). The fol-
lowing summer (2003) was extremely warm/hot and dry in many parts of Europe
(Schär and Jendritzky, 2004). This extreme event resulted in severe losses, includ-
ing deaths and crop failures. Owing to its adverse effects, the summer 2003 event
has attracted a lot of research attention in recent years (Beniston, 2004; Luter-
bacher et al., 2004; Schär et al., 2004; Stott et al., 2004; Ferranti and Viterbo,
2006; Chase et al., 2006, and many others). The 2006/07 cold season (from fall
to the next spring) also came as a climate surprise. Luterbacher et al. (2007) show
that autumn 2006 was probably the warmest in about 500 years. Compared to the
summer 2003 extreme event, underlying mechanisms responsible for the 2006/07
cold season temperature extremes have been less explored.
One of the greatest concerns regarding climate extremes is the likely change in
the frequency and intensity of droughts and floods in response to global warm-
ing. The developing world, with the least adaptive capacity is most vulnerable
to the severe impacts of precipitation extremes. In Africa, for instance, there is
evidence of an increase in the frequency of precipitation extremes and their asso-
ciated socio-economic losses in recent years (Hellmuth et al., 2007). Examples of
recent precipitation extremes that have had devastating effects include: the 1997
and 2006 intense floods in East Africa, the 2009 severe drought in East Africa,
the 2000 intense floods in southeastern Africa and the 2006 severe drought in
southern Africa. The Sahel region of West Africa experienced prolonged drought
during the 1970s and 1980s (Hagos and Cook, 2008), which had severe impacts
on the economy and the population. Among others, these reasons invited an inves-
tigation of how the intensity of extreme precipitation is likely to change in future
climate conditions in selected regions of Africa. The Sahelian droughts have been
a subject of extensive research in recent decades (Ward, 1998; Zeng et al., 1999;
Giannini et al., 2003; Lu and Delworth, 2005; Haarsma et al., 2005; Biasutti and
Giannini, 2006; Cook and Vizy, 2006, and many others), while climate extremes
in southern and East Africa have received lesser research attention.

1.2 Mechanisms responsible for climate extremes

Many recent studies have tended to focus on the statistical analysis of climate
extremes, whereas less attention is paid to linking the extremes to underlying
physical mechanisms responsible for them (e.g., Wehner, 2004). Understanding
the statistics of extremes is important as a first step. However, this has little appli-
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cation in the context of the predictability of extremes, which is crucial in devising
strategies that may help reduce their adverse effects. In this thesis, physical fac-
tors responsible for some of the recently observed climate extremes in Europe are
investigated.
With regard to future climate conditions, confidence in the projected precipitation
changes can be achieved if changes in the underlying physical mechanisms are
consistent. Future changes in climate controls known to influence precipitation
in southern and East Africa are also investigated and compared to the simulated
changes in mean and extreme precipitation.
Climate extremes result from a combination of various mechanisms and feedbacks,
and their interactions. Numerous studies have identified a wide variety of slowly
evolving oceanic and land-surface conditions, and large-scale circulation patterns,
which exert a discernible influence on climate variability from seasonal to longer
timescales. In most cases, seasonal extreme events result from extreme phases of
the various slowly evolving local, regional or remote climate controls.
The El Niño-Southern Oscillation (ENSO)(Neelin et al., 1998), a principal mode
of climate variability, has been found to have a large impact on seasonal climate
extremes in many locations around the world (e.g., Gershunov and Barnett, 1998;
Gershunov, 1998). ENSO refers to the anomalous warming of the ocean surface in
the eastern equatorial Pacific Ocean and the associated changes in the atmospheric
circulation. Several studies have identified spatial locations where and seasons
when extreme climate events have a discernible response to ENSO phases. In
many regions, however, the ENSO signal on seasonal extremes is modulated by
local controls such as sea-surface conditions from nearby oceans. The influence
of the tropical Indian Ocean on extreme precipitation in southern (Washington
and Preston, 2006) and East Africa (e.g., Black et al., 2003) is a prime example.
The modulating effect of the North-Atlantic Ocean on European climate can be
inferred from previous studies (e.g. Mathieu et al., 2004).
An influence of the Atlantic Ocean on climate variability and on seasonal extremes
in Europe has been suggested (e.g., Cassou et al., 2005). One possible pathway
through which North-Atlantic SSTs’ signal can propagate to the European seasonal
temperature field is via the North-Atlantic Oscillation (NAO; Hurrell et al., 2003).
NAO refers to a vascilation in atmospheric mass between the subtropical North
Atlantic close to Portugal and latitudes further north close to Iceland. The NAO,
which attains its peak amplitude in boreal winter is associated with a change in
low-level atmospheric circulation patterns around the mid-latitude North-Atlantic
Ocean, directly impacting the seasonal climate (e.g. Hurrell and van Loon, 1997)
and extremes (Scaife et al., 2008) in Europe. Temperature extremes in Europe
respond much stronger to NAO than to ENSO (Kenyon and Hegerl, 2008). The
relative influence of the North-Atlantic SSTs on the NAO appears debatable. Nu-
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merous studies support the existence of a SST-NAO link (e.g., Peng and Robinson,
2001; Peng et al., 2003; Cassou et al., 2004) while others argue that this link is not
strong enough for the purposes of NAO predictability (Doblas-Reyes et al., 2003;
van Oldenborgh, 2005).
Other circulation patterns, which have been found to exert a non-negligible influ-
ence on seasonal extremes in Europe, include the northern Hemisphere annular
mode (NAM; Thompson and Wallace, 2001), north-Atlantic blocking highs and
mid-tropospheric troughs (Cassou et al., 2005). The NAM gives a measure of the
variation in atmospheric pressure between the northern Hemisphere mid-latitudes
and polar regions. In literature, the NAM is regarded as a hemispheric-scale pat-
tern in the Northern Hemisphere north of about 20◦ N, while the closely related
NAO refers to a Euro-Atlantic phenomenon. Kenyon and Hegerl (2008) argue that
the NAM influence on temperature extremes in Europe is similar to that of the
NAO, which is related to the impact that both patterns have on the mid-latitude
westerlies. Blocking highs refer to large scale patterns of higher-than-average
pressure that are nearly stationary in time, which block or divert the climatological
westerly flow and migratory low pressure patterns into western Europe northward
towards Scandinavia.
There is a growing body of evidence supporting that land-atmosphere interactions
could play a significant role in forcing climate extremes in Europe, particularly the
probability (Seneviratne et al., 2006) and intensity of heat waves (Ferranti and
Viterbo, 2006; Fischer et al., 2007) and droughts via an alteration of the energy
and hydrological cycles through soil-moisture patterns. Snow cover at the surface
is potentially important in forcing climate extremes through its influence on the
terrestrial energy balance by e.g., increasing the surface albedo and limiting heat
fluxes through its low thermal conductivity.
The climate controls identified so far explain a small percentage of the long-term
(e.g., seasonal and inter-annual) variability in temperature and precipitation in
Europe. Furthermore, regional teleconnections may either be less robust or be
modulated by local forcings. For instance, Yiou et al. (2007) show that while circu-
lation features were favourable for a mild autumn 2006 in Europe, they were not
unprecedented. This demonstrates that there are other important contributing fac-
tors which need to be accounted for. Therefore, there is room for further research
aimed at identifying these mechanisms which vary from event to event. Mecha-
nisms responsible for extreme events is one of the subjects investigated here. The
goal is to use the findings to develop climate models to a point where skilful sea-
sonal forecasts of climate extremes and changes in their characteristics in response
to changes in atmospheric chemical composition can be made.
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1.3 Seasonal predictability

The occurrence of record-breaking climate extremes in recent decades provides
an incentive to determine and improve their predictability. Seasonal predictabil-
ity refers to the ability to foretell (within some uncertainty range) what is likely
to happen within the next months to a season given certain initial and slowly-
evolving boundary conditions. Predictability efforts rely on purely statistical meth-
ods, numerical physically-based models or a combination of both. Statistical ap-
proaches use empirical relationships between predictor variables (e.g., sea-surface
temperatures) and a response variable (e.g., air temperature). Their success is
therefore dependent on availability of long records and/or stability of the statis-
tical connections between variables. Numerical models are systems of differen-
tial equations based on the physical laws governing fluid motion, physical and
chemical processes occurring within the climate system. These models are able to
capture non-linear relationships between climate variables and can cope with the
random dynamical nature of the earth’s atmosphere. Tools used in climate predic-
tion and a range of other issues involved are discussed by Goddard et al. (2001)
and van den Hurk and Jacob (2009).
To date, predictability of large-scale controls of climate extremes beyond a cer-
tain time horizon (∼14 days) is perceived to be quite low, particularly at higher
latitudes (e.g., Johansson, 2007). Notwithstanding, potentially useful seasonal
forecasts of climate extremes are possible to the extent that the slowly changing
environmental factors and large-scale atmospheric circulation patterns mentioned
in Sec. 1.2 and their associated climate impacts are reproducible in numerical ex-
periments and simulations. Although the prediction information may not be very
specific at spatial and temporal scales, it can still give indications of the most likely
scenarios under certain conditions.
ENSO is an important factor for seasonal predictability of climate extremes in the
tropical regions (Goddard et al., 2001). Its influence in the mid-latitudes remote
from the Pacific Ocean (e.g., in Europe) is weaker. As discussed in Sec. 1.2, at-
mospheric circulation patterns such as the NAO and Atlantic–European blocking
highs exert a stronger influence on climate extremes in Europe than ENSO. For ex-
ample, during the exceptionally warm summer 2003, two warm regimes (blocking
and the Atlantic low) persisted much longer than on average (Cassou et al., 2005)
in the Atlantic–European area. The fact that the predictability of atmospheric cir-
culation in Europe is low (Palmer et al., 2004) places a limit on the seasonal pre-
dictive skill of climate extremes that can be achieved on the basis of atmospheric
circulation.
Several studies have attributed the European summer 2003 extreme event to soil-
moisture deficits in southern Europe (Ferranti and Viterbo, 2006; Vautard et al.,
2007). The weaker influence of neighboring SSTs relative to soil-moisture condi-
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tions in summer 2003 (Ferranti and Viterbo, 2006) demonstrates the importance
of land-atmosphere coupling for predicting climate extremes in Europe. There is
also modelling evidence that land-surface-atmosphere coupling from snow prop-
erties can offer an improved seasonal climate prediction skill in Europe (Douville,
2009). The effect of snow on European climate extremes and their predictability
is investigated in this thesis (see Sec. 1.6).
An assessment of seasonal predictability of climate extremes can be done using
hindcasts/forecasts from state-of-the-art climate models which are used opera-
tionally by several groups within Europe and elsewhere. Both in the model world
and in observations, seasonal climate extremes are defined based on a threshold
exceedance. Probabilistic forecasts can be derived from ensemble prediction sys-
tems. By quantitatively comparing the model simulations with observations, an
estimate of the predictive skill of extremes can be made. Jolliffe and Stephenson
(2003) present an overview of the standard measures of forecast skill in atmo-
spheric sciences. Various scores are used to measure different aspects of forecast
performance. For instance, the relative operating characteristic (ROC; Mason and
Graham, 1999) measures a model’s ability to discriminate between events and
non-events. Reliability diagrams and rank histograms are used to detect model
under- or over-confident predictions (Mason and Mimmack, 2002). Several skill
scores such as the Brier skill score (BSS) and the ranked probability skill score
(RPSS; Weigel et al., 2007) which measure the improvement of the model fore-
casts over a reference system are also in use.

1.4 Future precipitation projections

Potential changes in mean precipitation, and in the frequency and intensity of
droughts and floods in many parts of the globe (including Africa) have been a fo-
cus of many climate studies in recent years. In general, there are indications for
wetter conditions in the wet mid-latitudes and tropical regions, and drying in the
sub-tropics in the future climate (IPCC, 2007, and references therein). However,
in cases when the interannual precipitation variability also increases, changes in
extreme seasonal rainfall may not parallel those of mean annual or seasonal rain-
fall. Also, regional and local features induce inhomogeneities in the precipitation
response to global warming. Therefore, the need to determine changes in the in-
tensity of precipitation extremes at regional rather than global scales is evident.
However such regional scale studies are still few, particularly in Africa, where they
are supposed to be natural priorities because of the rising trends of extremes and
their devastating effects (Hellmuth et al., 2007; van Aalst et al., 2007).
Most climate change studies where Africa is included have identified certain re-
gions where mean or extreme precipitation changes across the IPCC AR4 mod-



Objectives 7

els are consistent (Kharin et al., 2007). However, even where models agree, the
physical mechanisms through which the climate signal will propagate to the pre-
cipitation field remain uncertain. They therefore deserve more research attention.
Likely candidates include the role of sea-surface temperatures and their associated
teleconnection patterns (e.g., Nicholson and Kim, 1997), atmospheric circulation
features (e.g., Todd and Washington, 1999) and atmospheric moisture charac-
teristics, which are influenced by moisture fluxes and soil-moisture-precipitation
feedbacks (e.g., Cook et al., 2006).
Despite of the significant progress made in numerical model development, many
uncertainties in simulating the future climate exist. These arise from natural vari-
ability, model errors and emission scenarios used to force the models. For this
reason, no single climate model is considered accurate (i.e., free from biases).
For example, Hoerling et al. (2006) show that most models fail to reproduce the
pattern of the late twentieth century drying in southern and West Africa. A con-
siderable inter-model spread is also found. This demonstrates a need for objective
methods to be used in combining model simulations such that the least perform-
ing models are downweighted. This has become an area of active research (e.g.,
Giorgi and Mearns, 2002; Tebaldi et al., 2005; Smith et al., 2008; Tebaldi and
Sanso, 2008) whose findings have found useful application in this thesis.
Trends in twentieth century climate extreme indices in southern and East Africa
have been detected (New et al., 2006). An observation of this trend, particularly
that of precipitation extremes provided the motivation for the Netherlands Red
Cross/Red Crescent (RC/RC) Climate Centre coordinated research project. In this
research project, an analysis of projected changes in several characteristics of pre-
cipitation in almost the whole of sub-Saharan Africa was carried out. Changes
in mean seasonal rainfall, the intensity of precipitation extremes and the rainfall
seasonal cycle were investigated. A time-series analysis of the precipitation simu-
lations was also carried out. Some results from the RC/RC project form part of this
thesis (Chapters 4 and 5). Other results are available on the KNMI Africa scenarios
web-site (http://www.knmi.nl/africa scenarios/).

1.5 Objectives

The main goal of the studies presented in this thesis is to go beyond the statisti-
cal analyses of seasonal extremes and provide a physical explanation of why they
occur. We also investigate the extent to which adequate representation of the
underlying mechanisms leads to skilful seasonal forecasts in current operational
numerical models. Furthermore, possible future changes in the forcing factors
are probed and linked to those of mean and extreme precipitation. The findings
herein are expected to inspire their validation through numerical experiments.
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Ultimately, the findings can contribute to the global scientific effort aimed at ad-
vancing capabilities for predicting climate extremes and making realistic future
projections. To achieve our goals, two questions are posed:

• Which fundamental physical linkages associated with the occurrence of
seasonal climate extremes need to be represented comprehensively in
numerical models in order to improve the prediction skill of the ex-
tremes?

• How consistent are the projected changes of climate extremes in Africa
and their underlying mechanisms in climate change scenarios?

To accomplish our scientific objectives, observations, reanalysis data, and climate
model simulations and forecasts are used. To seek answers to the key questions,
we break them down into the specific questions listed below.

1.6 Questions addressed in this thesis

• WHAT PHYSICAL MECHANISMS WERE RESPONSIBLE FOR THE RECORD-BREAKING

MILD AUTUMN 2006 SEASON IN EUROPE? Chapter 2

Excessive atmospheric energy/heat was an essential ingredient for the occurrence
of the Autumn 2006 extremely mild episode. To have a deeper understanding of
the underlying physical mechanisms and their temporal evolution, an investigation
of the major regional energy sources and sinks, and possible interactions between
them is a prerequisite. An understanding of the mechanisms responsible for this
extreme event has a potential for significant contributions towards exploring the
predictability potential of the occurrence of similar events in future.
In Chapter 2 (published in Climate Dynamics), an observational analysis of the
atmospheric energy budget for the exceptionally mild Autumn 2006 in Europe is
undertaken. Top of the atmosphere (TOA) and surface radiation, surface turbulent
fluxes and lateral energy-transport-convergence terms are investigated for their
relative contributions in forcing the extreme event. Factors that influence the
atmospheric energy budget such as clouds and water vapor, and their effect on
the regional radiation budget are also considered.

• ARE THE MECHANISMS IMPORTANT FOR SKILFUL FORECASTS OF COLD SPRING

SEASONS ADEQUATELY REPRESENTED IN CURRENT OPERATIONAL, SEASONAL

FORECAST MODELS? Chapter 3

Similar to other mid-latitude regions, seasonal predictability of near-surface tem-
perature in Europe remains low. There has been some hope that some NAO-related



Questions addressed in this thesis 9

predictability could be achieved particularly during the Northern Hemisphere win-
ter (Rodwell, 2003). Outside the winter, the influence of other slowly-varying
boundary conditions have a larger influence relative to the largely unpredictable
atmospheric circulation. Factors such as SST in coastal areas (van den Dool and
Nap, 1985), snow (Douville, 2009) and soil moisture (Douville, 2000b; Douville
and Chauvin, 2004) give rise to seasonal predictability in these seasons. In eastern
Europe, an area classified as being sensitive to snow during the cold season (Gro-
isman et al., 1994), some potential predictability may exist. It is well known that
snow cover and snow depth are variables that can potentially have an impact on
cold temperature extremes, particularly in snow transient regions. It is surprising
though that in contrast to the oceanic parameters, the predictability of snow and
its influence on climate predictability and extremes in Europe have received less
research attention.
In Chapter 3 (published in Monthly Weather Review), an objective verification of
cold spring hindcasts/forecasts produced by three operational numerical models
is carried out. A lag-relationship between snow and near-surface temperature
during spring in eastern Europe is established. The predictability of snow and
the migration of the snow-line during the melt season in the operational models
is assessed. Evidence of useful predictability of extremely cold spring seasons in
Europe has emerged.

• HOW DO CHANGES IN FACTORS KNOWN TO CONTROL SEASONAL TO INTERAN-
NUAL RAINFALL VARIABILITY IN AFRICA RELATE TO CHANGES IN THE INTEN-
SITY OF EXTREMELY WET AND DRY SEASONS IN AFRICA IN IPCC MODELS?
Chapters 4 and 5

A rigorous regional statistical analysis has been carried out to investigate how
seasonal mean and extreme precipitation in Africa are projected to change by a
subset of climate models selected from the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) ensemble. The changes are esti-
mated from a fractional change in statistics computed in the control simulations
and those forced by the intermediate SRES A1b scenario. The analyses have been
carried out on objectively delineated climate zones of smaller spatial scale than the
commonly used Giorgi regions (Giorgi and Francisco, 2000). Extreme value sta-
tistical theory (Coles, 2001) has been applied to estimate the intensity of observed
and model simulated 10-year droughts and floods. Anderson-Darling goodness-
of-fit tests (Laio, 2004) are performed. The model simulations are then combined
through an unequal weighting procedure based on Bayesian statistics (Tebaldi
et al., 2005). The Bayesian procedure attempts to penalize models that show
significant biases in their twentieth century precipitation simulations, particularly
when they are outliers with respect to the large ensemble in their future climate
simulations.
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In Chapter 4 (published in Journal of Climate) projected changes in mean and
extreme precipitation in southern Africa are investigated. With the precipitation
annual cycle in mind, changes in mean precipitation during the transition seasons
(i.e. austral spring and autumn) are investigated. This is to identify any changes
in the duration of the rainy season, which typically spans September of one year
to about the following May. Moisture availability, mainly from advection, which
influences the rainfall onset, is also investigated and associated with the changes
in rainfall during the onset season.
The analysis of changes in extreme precipitation are undertaken during the peak of
the rainy season (December–February). The likely future behavior of the tropical-
temperate-trough system (TTT; Washington and Todd, 1999), a major rain-bearing
mechanism in southern Africa (Kuhnel, 1989) is probed and linked to the projected
changes in precipitation patterns.
The results presented in Chapter 5 (submitted to Journal of Climate) apply the
same statistical analysis to East Africa precipitation data. Because of its geograph-
ical location, East Africa has both bimodal and unimodal rainfall regimes. Our
focus has been on the peak of the rainfall seasons in each regime. In East Africa,
interannual rainfall variability and seasonal extremes respond to the Indian Ocean
zonal mode (IOZM) during boreal autumn. The extent to which the IOZM-rainfall
relationship is reproduced by IPCC AR4 models is assessed. We further establish
likely changes in the tropical Indian Ocean zonal SST gradients and their con-
sequences for the IOZM probability-density function. Possible alterations in the
structure of the eastern Hemisphere zonal circulation, which communicates the
IOZM signal on rainfall, are also investigated.
The main findings from our research aimed at answering the above questions are
summarized in Chapter 6 concluding with some recommendations.



2. ENERGY BUDGET OF THE EXTREME AUTUMN 2006 IN
EUROPE

Autumn 2006 was extraordinarily mild in many parts of Europe. Near-surface
temperatures were more than three standard deviations above the 1961–90 cli-
matology. Even accounting for global warming, this event was far outside the
probability density function (PDF) of previous observations or climate model sim-
ulations. To investigate the mechanisms behind this event, the energy-budget for
Autumn 2006 in Europe is estimated. Atmospheric energy-transport convergence
over Europe is calculated and compared with the net energy flux at the top of the
atmosphere (TOA) as well as at the earth’s surface.
The central North-Atlantic Ocean constituted the major source of energy. Here,
the release of both sensible and latent heat was anomalously high. Atmospheric
circulation played a crucial role by transporting the excess energy into Europe. Of
this energy excess, dry-static energy was larger than the latent part, partly due to
an additional contribution derived from a conversion of latent energy to sensible
heat, which occurred upstream of the study area in the eastern Atlantic. In Eu-
rope, surface turbulent-energy fluxes into the atmosphere respond to atmospheric
energy-transport convergence and are accordingly suppressed due to the anoma-
lously high temperature and humidity content of the overlying air. The net outflow
of radiational energy to space is anomalously high but not sufficient to offset the
large positive anomaly of energy found over Europe.
Even though the relative humidity was near its normal values in Europe, the spe-
cific humidity was considerably higher than usual. The high water-vapour content
induced a local radiative positive feedback, increasing the opacity of the atmo-
sphere to long-wave radiation. This appears to have significantly contributed to
the extreme event. Atmospheric circulation played a crucial role in sustaining this
feedback loop.

This chapter is based on the article “Energy budget of the extreme Autumn 2006 in Europe.” by Mx-
olisi E. Shongwe, Rune G. Graversen, Geert Jan van Oldenborgh, Bart J. J. M. van den Hurk, and Fran-
cisco J. Doblas-Reyes, 2009, published in Climate Dynamics doi:10.1007/S00382-009-0689-2.
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2.1 Introduction

Mean and extreme climate conditions are changing in many parts of the globe,
partly as a response to anthropogenic changes in the chemical composition of the
earth’s atmosphere (IPCC, 2007). Mean and extreme temperatures are directly
affected by changes in radiative forcing. Changes in global temperature extremes
have attracted much interest in recent years (Alexander et al., 2006), primarily be-
cause of their impact across different sectors such as terrestrial ecosystems (Ciais
et al., 2005). There has also been growing interest in studying changes in conti-
nental scale temperature variability and extremes (Klein Tank and Können, 2003;
Klein Tank et al., 2006).
Increases in the severity of temperature extremes in Europe over the past century,
with the warmest events occurring in the last few years (since the mid 1990s)
are reported (Xoplaki et al., 2005). Superimposed within the gradual warming
are episodic extreme events such as summer (June–August) 2003 (Schär et al.,
2004; Beniston, 2004; Ferranti and Viterbo, 2006; Fischer et al., 2007), autumn
(September–November) 2006 (Luterbacher et al., 2007; van Oldenborgh, 2007;
Yiou et al., 2007) and winter (December–February) 2006/07 (Luterbacher et al.,
2007; Yiou et al., 2007). The extent to which Autumn 2006 (hereafter SON06)
was exceptionally warm has been documented (van Oldenborgh, 2007, hereafter
GJvO07). After removing the effect of global warming in the temperature time
series, GJvO07 showed that the lower bound of the 95% confidence interval of
the return period corresponding to SON06 was 200 years in parts of Germany.
In qualitative agreement with GJvO07, Luterbacher et al. (2007) used observed
and reconstructed temperatures (from 1500) to show that SON06 was probably
the warmest autumn in 500 years. The probability of warm extremes is likely
to increase in the 21st century in Europe, particularly during summer months
(Beniston et al., 2007; Sterl et al., 2008, among many others). In autumn, most
climate models show a shift in the location of the probability density function
(PDF). It is therefore crucial to investigate the mechanisms underlying an event
such as SON06, and to what extent they are represented in current climate models.
The extreme SON06 has recently been attributed to south-westerly atmospheric
circulation anomalies that advected warm air from the eastern subtropical Atlantic
Ocean (Luterbacher et al., 2007). GJv07 and Cattiaux et al. (2009) confirm that
this anomaly was to a large extent forced by atmospheric circulation. Using a
linear regression model, in which circulation was one of the predictors, GJvO07
was able to reproduce a large fraction of the observed near-surface temperature
anomalies. Yiou et al. (2007) argue, however, that although atmospheric circula-
tion was favourable for the warmer conditions during SON06, the intensity of the
anomalies by far exceeded those previously recorded when similar flow regimes
were prevalent. Of the 91 fall days, ∼43 (i.e. 47%) had a temperature anomaly
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warmer than that of the same date during 10 previous analogue years in terms of
atmospheric flow regimes (Yiou et al., 2007). In addition, a recent study by Catti-
aux et al. (2009), using both a linear regression technique and a regional model,
links ∼50% of the SON06 surface-temperature anomalies over the European con-
tinent to atmospheric dynamics, and 30% to eastern North-Atlantic sea-surface
temperature anomalies.
Other factors may also be important: changes in solar irradiance, heat transported
by the oceans affecting the surface heat fluxes, effects of clouds and other local
feedback mechanisms, all factors that are important for the energy balance of the
earth’s atmosphere. The present study extends the work of GJvO07 by calculat-
ing the atmospheric energy budget for SON06 in Europe. This study is done on
the premise that energy available to the European atmosphere during SON06 ex-
ceeded its long-term autumn average. It is assumed that the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim represents fields of ra-
diation and surface turbulent energy fluxes quite well. These fields are estimated
as forecasts by the background model. By making a synthesis of all the energy-
budget components and fluxes in the region of Europe that experienced the largest
temperature anomalies, the underlying factors responsible for this extreme event
are identified. These factors are linked to their possible forcings such as circula-
tion, cloudiness and humidity. The analyses reveal energy sources and sinks, and
provide a holistic view of the relative importance of the different forcing factors
underlying the extreme SON06 temperatures.

2.2 Data description

The ERA-Interim (1989–2006) reanalysis and forecast fields form the major input
for the present study. Six-hourly fields of analysed horizontal wind, temperature
and specific humidity are obtained from the reanalysis data (Simmons et al., 2006;
Uppala et al., 2008). The six-hourly resolution data are then converted into daily
fields for each day (D) through a weighted average which assigns 0.125, 0.25,
0.25, 0.25 and 0.125 to the 00D, 06D, 12D, 18D and 00D+1 data, respectively.
These fields are used to compute the energy tendency and transport. In all cases,
3D fields are taken at model levels.
The surface and top-of-the-atmosphere (TOA) fluxes are obtained from forecast
fields of short-wave and infrared radiation, and sensible and latent heat at the
surface. Clear-sky radiative fluxes are used to estimate the effect of clouds. These
fluxes are provided as accumulated quantities over the forecast period. Forecasts
are initialized from the ERA-Interim analyses once every 12 hours (at 00 and 12
GMT). The sum of the fluxes over the first 12 hours of the two daily forecasts is
used as the daily value. Results obtained using the 24 hour accumulations are very
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similar.
Near-surface and 300-hPa temperature anomalies from the ERA-Interim analysis
and NCEP/DOE Reanalysis II (Kanamitsu et al., 2002) are displayed in Fig. 2.1.
The two analysis fields agree as regard the hot spot over Europe (10◦ W−20◦ E,
40◦ −60◦ N; rectangular area in Fig. 2.1). Near the surface, the temperatures ex-
ceed three standard deviations of September–November (SON) interannual vari-
ability in both datasets. The near-surface temperature anomalies shown here are
consistent with GJvO07 and Luterbacher et al. (2007), who also show absolute
surface-air-temperature anomalies. In both datasets used here, the temperature
anomalies in Europe have a barotropic structure extending throughout the tropo-
sphere (up to 300-hPa).

Fig. 2.1: SON06 near-surface (TnSFC) and 300-hPa (T300hPa) temperature anomalies for
ERA-Interim (a, b) and NCEP/DOE Reanalysis II (c, d) data. Temperature anoma-
lies are expressed in terms of SON interannual standard deviations (σ) based on
the 1989–2005 period. The area within Europe where the temperature anomalies
have the largest amplitude in both datasets (i.e. 10◦ W – 20◦ E, 40◦ – 60◦ N) is
enclosed with the dashed rectangular box.
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2.3 Analysis methods

In this study, the atmospheric energy budget is analysed. An analysis of energy
fluxes is also provided in order to reveal the sources and sinks of energy during
SON06.

2.3.1 Atmospheric energy budget

The energy budget can be expressed as the time rate of change of atmospheric
energy (Ev) due to (i) convergence of lateral energy transport by the horizontal
wind (v), (ii) radiational fluxes at the top of the atmosphere (TOA), (iii) radia-
tional fluxes at the surface (SFC), and (iv) surface turbulent fluxes:

∂〈Ev 〉

∂t
= −∇ · 〈~vEp〉 +RTOA +RSFC + LH + SH . (2.1)

Here, using η, g and p(η) to denote model levels, gravitational acceleration and
pressure, respectively. For a general variable X, the column integral is represented
as

〈X 〉 =
1

g

∫ 1

0

X
∂p

∂η
dη . (2.2)

RTOA and RSFC correspond to the radiative fluxes at the top of the atmosphere
and surface, respectively. LH and SH are the net upward turbulent fluxes of
latent and sensible heat, respectively. Reanalysis data do not fully fulfill the budget
in Eq. 2.1. An imbalance between the terms is introduced during the assimilation
process where an analysis is obtained as a weighted average between observations
and first-guess model estimates. This step does not necessarily conserve energy as
well as mass.
The total atmospheric energy (Ev) is calculated from the sum of the internal en-
ergy (cvT), potential energy (Φ), latent energy (Lvq) and kinetic energy [(u2 +
v2)/2] as

Ev = cvT + Φ + Lvq +
1

2
(u2 + v2) . (2.3)

Atmospheric energy is hence computed from the temperature (T ), geo-potential
(Φ = gz), specific humidity (q) and wind velocity (u, v) fields. The quantities cv
and Lv correspond to the specific heat capacity of air at constant volume and the
latent heat of vaporization, respectively. Ep in the first term on the right in Eq. 2.1
is calculated as Ev in Eq. 2.3 by substituting cv with cp, the specific heat capacity
of air at constant pressure, in order to cater for the pressure-work term. Both cv
and cp vary as a function of atmospheric moisture content.
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Mass-flux inconsistencies have been encountered in a previous ECMWF reanalysis
(Graversen et al., 2007). Such inconsistencies introduce errors in the fluxes of en-
ergy and its divergence (Trenberth et al., 2002). Therefore, a mass-flux correction
has been performed following Trenberth (1991). Basically, a mass-flux correction
involves a removal of a wind residual so that the continuity constraint of dry air is
not violated. Graversen (2006) provides a brief description of the procedure used
for the mass-flux correction in this study.

2.3.2 Atmospheric energy transport

The vertically integrated energy-transport vector (F) is given by

F = 〈~vEp〉 . (2.4)

The convergence of energy transport per unit area within the domain is obtained
for each time step from the differences in the normal components of the energy-
transport vector [F = (Fλ,Fφ)] across the longitudinal and latitudinal walls en-
compassing the European study domain (i.e. λW = 10◦ W; λE = 20◦ E; φS =
40◦ N; φN = 60◦ N):

1

A

∫ φN

φS

∫ λE

λW

(∇ · F) R2 cosφdλ dφ =
1

A

[∫ φN

φS

(Fλ |λ = λW
− Fλ |λ = λE

)Rdφ

+

∫ λE

λW

(Fφ |φ = φS
− Fφ |φ = φN

)R cosφdλ

]
,

(2.5)

where R is the earth’s radius and

A =

∫ φN

φS

∫ λW

λE

R2 cosφdλ dφ (2.6)

is the area enclosed by the study domain.
The seasonal mean convergence field (−∇ · 〈ṽEp〉) is computed at each grid point
followed by a nine-grid-point smoother. The energy-transport vector is then de-
composed into its divergent and non-divergent components, which are derived
from the potential (χ) and streamfunction (ψ) fields, respectively. Energy trans-
port divergence, which equals the Laplacian of the potential, balances the atmo-
spheric energy sources and sinks. Since the objective of this study is to identify
the sources of energy during SON06, only results for the divergent component of
the energy-transport vector are shown.
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2.4 SON06 energy balance and anomalies

In addition to the energy-budget terms shown in Eq. 2.1, another combination of
radiation terms is more fruitful for this study. Instead of combining all fluxes at
the surface (and at the top of the atmosphere), all long-wave fluxes are combined.
This combination enables a derivation of an atmospheric net long-wave radia-
tive feedback (AnLWRF). Following the same approach as Raval and Ramanathan
(1989), the AnLWRF is defined as the emitted surface upward long-wave radia-
tion (SuLWR) not escaping to space as top net long-wave radiation (TnLWR), i.e.,
AnLWRF = SuLWR − TnLWR. Raval and Ramanathan (1989) refer to AnLWRF
as the greenhouse effect. Using AnLWRF is preferred here to avoid confusion with
the anthropogenic greenhouse effect, which is not directly estimated.
Downwelling long-wave radiation (DLWR) is the energy reaching the earth’s sur-
face from the atmosphere. It varies as a function of atmospheric temperature. This
field is available on the ERA-Interim archive. As conventional, DLWR is related to
the other surface infrared fluxes through DLWR = SuLWR − SnLWR.
The individual terms in the energy budget (Eq. 2.1) and the derived variables,
averaged in space (over Europe) and time are presented in Table 2.1. The en-
ergy acronyms used in this paper are defined in this table. Also shown are the
corresponding climatological values calculated over the 1989–2005 period, and
the temporal correlation between the anomalies of the energy-budget terms, and
those of the near-surface and vertically-averaged air temperature during SON06.
Detailed discussions of these results are deferred to the next sections. The imbal-
ance (error) in the budget adds up to +7.9 Wm−2 (+11.5 Wm−2) during SON06
(SON 1989–2005). In terms of absolute magnitude, the error is smaller than all
terms except the energy tendency and surface sensible-heat flux.
SON06 anomalies (deviation from the 1989–2005 climatology) of energy-budget
terms are shown schematically in Fig. 2.2. These anomalies, derived directly from
Table 2.1 are spatially and temporally averaged. According to the sign conven-
tion adopted throughout this paper (except when otherwise noted), all fluxes are
counted positive into the atmosphere. Using this convention, TOA fluxes are pos-
itive downward and surface fluxes are positive upward. An anomaly in TnSWR
of ∼ 3.4Wm−2 is approximately compensated by an anomaly (∼ 3.6Wm−2) in
radiative loss by TnLWR.
Noteworthy, a large anomaly (∼ 16.5Wm−2) of horizontal energy-transport con-
vergence is found. This result, which shows an excess energy transport across the
lateral boundaries into Europe (i.e. a smaller than normal advective energy loss),
is in qualitative agreement with previous findings (GJvO07; Luterbacher et al.,
2007; Cattiaux et al., 2009). Associated with this anomaly in energy-transport
convergence is anomalous DLWR, which is ∼ 8.9Wm−2 above its long-term mean.
Yiou et al. (2007) noted that energy transported by atmospheric circulation is not
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Tab. 2.1: Summary of the budget terms over Europe.

Budget component Notation SON06

Mean¶

SON Clim.§ Corr£[T2m] Corr£[Ta]

(Wm−2) (Wm−2) (%) (%)

Energy tendency ∂Ev

∂t −7.4 −12.1 (3.9)

Energy transport di-
vergence

∇ · ~V Ep −49.8 −33.3 (9.4) −24†
−21†

Top net short-wave
radiation

TnSWR +137.7 +134.3 (2.6) −06 +20

Top net long-wave
radiation

TnLWR −229.9 −226.3 (2.3) −02 −31†

Surface net short-
wave radiation

SnSWR −84.8 −82.1 (2.7) +15 −11

Surface net long-
wave radiation

SnLWR +56.0 +55.7 (1.7) −56‡
−35‡

Surface latent-heat
flux

LH +51.3 +52.7 (2.1) −68‡
−71‡

Surface sensible-
heat flux

SH +4.6† +8.7 (1.3) −78‡
−68‡

Error +7.9 +11.5

Downwelling long-
wave radiation

DLWR +312.2‡ +303.3 (2.3) +82‡ +57‡

Atmospheric net
long-wave radiation
feedback

AnLWRF +138.3† +132.8 (2.2) +47‡ +01

¶ SON06 mean values falling outside the 90% confidence interval of the SON
climatology (X) are printed in bold. Those that fall outside the 95% (99%) confi-
dence interval are shown by † (‡).
§ SON climatology (X) is defined using the 1989–2005 period. The standard de-
viation (σ) of the individual SON means, computed over the climatological pe-
riod is enclosed in parentheses. The 100(1 − α)% confidence interval of X is then
X ± Zα/2σ, where Zα/2 is the (1 − α/2)% quantile of the standard Gaussian dis-
tribution and α is the significance level.
£ Simultaneous correlations between each component, and 2m temperature (fifth
column) and vertically-averaged air temperature (sixth column) are expressed as
percentages. Significant correlations at the 5% (1%) level, obtained from a t-test,
are shown by † (‡) .
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sufficient to explain the fact that the SON06 extreme event was unprecedented.
Figure 2.2 indicates a large anomaly (∼ 5.5Wm−2) in AnLWRF. In Sec. 2.5.3, it is
shown that the AnLWRF is linked to an anomalously large water-vapour content
and the authors argue that it played a major role for the SON06 extreme event. At
the earth’s surface, most fluxes are negative indicating a downward anomaly. The
spatial and temporal variations of the anomalies in energy-budget terms presented
in Fig. 2.2 are discussed in Sec. 2.5 below.
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Fig. 2.2: SON06 atmospheric energy-budget anomalies over Europe. The arrows show
energy-flux anomalies at the earth’s surface (bottom arrow), within the atmo-
sphere (left arrow) and at the TOA (top arrow). Acronyms are as defined in Ta-
ble 2.1.

2.5 Temporal and spatial details of the anomalies

In Table 2.1 and Fig. 2.2, it has been shown that energy-transport convergence,
and the AnLWRF deviated significantly from their long-term (1989–2005) ERA-
Interim climatolology during SON06. The authors argue that these are fundamen-
tal factors responsible for the SON06 extreme event. In this section, some evidence
supporting this argument is presented. Before proceeding with a discussion of the
energy terms, some relevant aspects of the SON06 season are shown.
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2.5.1 SON06 air temperature time series

Daily fluctuations of SON06 air-temperature (at 2 metres and vertically averaged)
anomalies are shown in Fig. 2.3b. In this plot, anomalies are defined relative to
the first harmonic of the annual cycle (Fig. 2.3a). It is evident that the warm
anomaly was roughly persistent, with only a few cold episodes during the first
week of November. A cold spell was preceded by pronounced energy divergence
within the domain (cf. Fig. 2.6a). Despite the large amplitude of this cold anomaly,
the seasonal-mean anomaly was highly positive due to persistent warm-than-usual
conditions during the rest of the season. The vertically averaged air-temperature
anomalies vary in phase with the near-surface temperatures (correlation = 0.78).
This confirms that the SON06 temperature anomalies had a quasi-barotropic struc-
ture over Europe.
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Fig. 2.3: a) Annual cycle of daily 2m temperature (T2m) over Europe (black dots) and the
first harmonic (solid gray line). b) Anomalies of SON06 daily 2m temperature
(black line) and vertically-averaged air temperature (gray line). The anomalies in
b) are departures from the first harmonic of the mean annual cycle, which cap-
tures ∼98% (∼97%) of the 2m temperature (vertically-averaged air temperature)
variance. The correlation between the two series in b) is 0.78 (displayed).

2.5.2 Sea-surface temperatures and wind

Owing to their importance in determining net energy exchange at the surface,
North-Atlantic sea-surface-temperature (SST) anomalies and near-surface (10m)
wind anomalies are shown in Fig. 2.4. Figure 2.4a shows warmer SSTs in the
eastern North-Atlantic boundary, the Mediterranean, and the high latitude Atlantic
seas between New Foundland and Norway. The anomalies exceed 1◦ C over the
seas bordering Africa, Europe and eastern Canada. The eastern North-Atlantic-
boundary SST anomalies have been estimated to explain ∼30% of the SON06
warming by Cattiaux et al. (2009).
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A near-surface cyclonic anomaly, centred south of Iceland, is found above the
North-Atlantic Ocean (Fig 2.4b). This anomaly has an equivalent barotropic struc-
ture (not shown) and is generally similar to the zonal regime mentioned by Yiou
et al. (2007) at 500-hPa, which occurred most frequently (∼38%) during the ex-
tended period September–February 2006/07. Winds are anomalously strong over
the North-Atlantic north of ∼ 40◦ N but weaker than normal close to the African
coast.

Fig. 2.4: SON06 a) North-Atlantic-Ocean SST anomalies (◦ C) and b) 10m wind anomalies.
Arrows in b) display the direction of the anomalous winds whereas the shading
indicates their speed (ms−1).

2.5.3 Energy budget terms

The anomalies for the energy components are placed in a large scale context by
examining geographical distributions of time-averaged quantities. The main goal
is to show sources and sinks of energy. In order to allow for a visualization of
the temporal distribution of the temperature and energy components in time, the
SON06 un-smoothed daily time series are also presented. The time-series pre-
sented in this section are spatially averaged over the Europe study area. Both
temperature and energy-budget terms undergo an annual cycle which is taken to
be the first harmonic of the 1989–2005 ERA-Interim climatology. Departures from
this annual cycle form the basis of the time-series results presented in ensuing
subsections.

Energy transport

The total energy-flux anomalies have been decomposed into a dry-static and a
latent part in order to allow for a visual comparison of their relative importance.
Flux-divergence anomalies for these two energy components are shown in Fig. 2.5.
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Superimposed on the divergence anomalies is the divergent component of the
energy transport vector.
Anomalous dry-static energy-flux convergence is found over Europe with minima
≤ −40Wm−2 located to the southeast closer to the Mediterranean Sea (Fig. 2.5a).
Strong flux-divergence anomalies are found in the North-Atlantic Ocean north
of ∼35◦ N. The divergent energy-transport vectors show that the energy gained
by the atmosphere over the North Atlantic flows into Europe. Along the eastern
boundary (20◦ E), eastward transport of energy is smaller than usual. A continen-
tal source of dry-static energy is centred around the Caucasus (∼45◦ E, 43◦ N).
Overall, the North-Atlantic Ocean was a source of dry-static energy during SON06,
while Europe was a sink.
The North-Atlantic Ocean area, lying between 50◦ W and 30◦ W, acted as a source
of latent energy during SON06. This is contrary to earlier speculations that the
warmer ocean surface close to the African coast (Fig. 2.4a) provided the excess
moist-static energy for the atmosphere over Europe (GJvO07). As indicated by
the divergent latent-energy-transport vectors, the energy sink is located along the
eastern Atlantic region extending into the United Kingdom and its neighbouring
sea areas. Latent-energy-transport diverges in the southeastern parts close to the
Adriatic Sea (Fig. 2.5b). This latent-energy-divergence exceeding 20Wm−2 in this
region is associated with a local drying. Drier air (and clear skies) over this re-
gion is associated with increased long-wave radiative cooling (not shown), which
offsets the gain by dry-static-energy convergence. Within Europe, the divergence
maxima found in the southeast are almost completely canceled by the conver-
gence in the west and north, leading to only a small (∼0.31 Wm−2) area-average
latent-energy divergence.

Fig. 2.5: SON06 a) dry-static energy and b) latent energy-divergence anomalies (Wm−2).
Positive (negative) shading correspond to areas of anomalous energy-flux diver-
gence (convergence). The divergent component of energy-transport vectors are
shown (Units: Wm−1). The area enclosed by the dashed rectangle is that defined
in Fig. 2.1.
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In SON06, net lateral energy influx acted as a precursor to temperature anomalies:
The anti-correlations between total energy-transport divergence and temperature
time-series, with the near-surface (vertically-averaged) temperature lagging be-
hind, are 0.24 (0.21), 0.50 (0.57), 0.54 (0.54) and 0.42 (0.47) at lag zero, one,
two, and three days, respectively. Hence, convergence (divergence) of energy
transport leads to a temperature rise (fall), with a lag of one to three days. More-
over, energy-transport divergence induces radiative responses such as anomalies
of downwelling long-wave radiation, which correlate strongly with those of near-
surface temperature (Fig. 2.6b). Thus the authors conclude that, averaged over
the box, there was a large anomalous flux from the atmosphere to the surface.
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Fig. 2.6: SON06 anomalies of a) energy-transport divergence and b) downwelling long-
wave radiation at the surface. Units are Wm−2. The annual cycle of
energy-transport convergence (downwelling long-wave radiation) captures ∼46%
(∼ 97%) of the total variance and the correlation with near-surface temperature
anomalies is -0.24 (0.82). These numbers are displayed in the plots.

Turbulent surface fluxes

Anomalous latent heat release into the atmosphere exceeding 10 Wm−2 is found
upstream of the study area in the central North-Atlantic Ocean (Fig. 2.7a). Note-
worthy, the region of highest evaporation anomalies roughly correspond to the
pattern of the latent energy-divergence shown in Fig. 2.5b. Surface latent-heat flux
is dependent on the wind speed (|v|) and the vertical gradient of specific humidity
(∆q/∆z) between the earth’s surface and the overlying air (i.e. LH ∝ |v|∆q/∆z).
The anomalies are hence related to a combination of warmer SSTs and stronger
low-level (10 m) wind speeds (Fig. 2.4). In the mid-latitudes, the predominantly
zonal (westerly) flow became more northerly (Fig. 2.4b), thus advecting dry high-
latitude air further enhancing evaporation over the central Atlantic. A combi-
nation of anomalously high specific humidity near the surface and anomalously
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weak winds result in less evaporation off the north African coast. A quick glance
at Fig. 2.4a may suggest that the warm SSTs off the north African coast provided
a source of upstream moist-static energy. Figure 2.7 provide compelling evidence
that this was not the case. Negative specific humidity gradient anomalies near the
surface (not shown but can be inferred from Fig. 2.10a) result in weak evapora-
tion despite the stronger winds and warmer SSTs close to the European coast. The
small positive anomalies of surface latent heat flux (≤ 5Wm−2) found in conti-
nental Europe (Fig. 2.7a) are cancelled by the stronger anomalies over the ocean
area leading to a negative area-averaged anomaly as presented in Fig. 2.2.
The anomalously weak turbulent flux of sensible heat found in Europe and over
the eastern Atlantic boundary (Fig. 2.7b) is consistent with a simple flux–gradient
relationship (i.e. SH ∝ |v|∆T/∆z). Even though the eastern Atlantic bound-
ary was anomalously warm (cf. Fig. 2.4a), the air-sea temperature differences
(∆T/∆z) were anomalously low (not shown). Using a similar argument (flux–
gradient relationship), it is not surprising that anomalous upward sensible flux is
found in the central North-Atlantic ocean. In this area, which acted as the major
source of energy for the atmosphere during SON06, a northerly anomaly of the
low-level flow advected cold air over the warmer ocean.

Fig. 2.7: SON06 surface a) latent and b) sensible turbulent heat flux anomalies (Wm−2).
The area enclosed by the dashed rectangle is as defined in Fig. 2.1.

Upward transfer of latent heat is anomalously low during the first two months of
SON06 (Fig. 2.8a). The first week of November was characterised by anomalously
high latent heat release (max ≥ 60Wm−2), which partly compensated for the
energy deficit in the atmosphere associated with the energy-transport divergence
(cf. Fig. 2.6a). SON06 latent heat release is highly anti-correlated with near-
surface temperature. Sensible heat flux from the surface is likewise anomalously
low for much of the season except early in November−the air heated the surface
during most of SON06 (see Table 2.1 and Fig. 2.2). It appears that the surface
turbulent-flux anomalies are a consequence of the atmospheric thermodynamical
state: they are part of a surface response rather than a key driver of the SON06
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extreme event.
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Fig. 2.8: SON06 anomalies of a) surface latent heat flux and b) surface sensible heat flux.
Units are Wm−2. The anomalies are computed by subtracting the first harmonic
of the annual cycle, which captures the inserted percentage of the variance (i.e.
93% and 95% for latent and sensible heat flux, respectively). The correlation (r)
between each time series with near-surface temperature (black line in Fig. 2.3b)
is also inserted in each panel.

Atmospheric net long-wave radiative feedback

Surface upward long-wave radiation (SuLWR) anomalies are displayed in Fig. 2.9a.
Consistent with Stefan Boltzmann’s law, the maxima of SuLWR occur over the
area of highest near-surface temperature anomalies (cf. Fig. 2.1). However, the
increases in the back-radiation from the atmosphere to the surface are larger, lead-
ing to the net negative correlation with the temperature shown in Table 2.1.
The bulk of the SuLWR was intercepted by the atmosphere and re-radiated back to
the surface as shown in Fig. 2.9b. The similarity in the areal extent and structure
of the AnLWRF anomalies with those of the near-surface temperatures is strik-
ing. This suggests that the AnLWRF played a vital role in enhancing the SON06
temperature to the extreme values found in Europe.
Figure 2.10a shows that the atmospheric column contained anomalously high
amounts of precipitable water during SON06 in the area extending from the east-
ern Atlantic Ocean across Europe. This figure provides the reason why the AnL-
WRF was anomalously strong. Only precipitable water anomalies are shown here
because, in the absence of clouds (Fig. 2.10b), water vapour is the most significant
atmospheric greenhouse gas, contributing about 60% to the natural greenhouse
effect (Kiehl and Trenberth, 1997). Although an upward trend in Autumn CO2

concentration in response to a decline in carbon uptake by northern ecosystems
has been found (Piao et al., 2008), water vapour exhibits the highest interannual
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variance of all greenhouse gases. Therefore, it follows from Fig. 2.10a, that the en-
hanced SON06 greenhouse effect was a direct response to abundant water vapour
within the atmosphere. The similarity with the spatial extent and structure of hor-
izontal moisture- (or latent heat-) transport convergence presented in Fig. 2.5b
provides some insight into the source of the high amounts of water vapour found
here. The higher temperatures increased the water holding capacity of the air,
preventing the water-vapour loss by condensation and precipitation.

Fig. 2.9: SON06 a) surface upward long-wave radiation (SuLWR) and b) atmospheric net
long-wave radiative forcing (AnLWRF; Wm−2). The area enclosed by the dashed
rectangle is that defined in Fig. 2.1.

Fig. 2.10: SON06 a) total column precipitable water (kgm−2) and b) cloud fraction anoma-
lies (%). The area enclosed by the dashed rectangle is that defined in Fig. 2.1.

The time series of SuLWR and AnLWRF are shown in Fig. 2.11. As expected, of
these two, SuLWR anomalies have the strongest temporal correlation with those
of near-surface-air temperature (Fig. 2.11a). Figure 2.11b indicates that the at-
mosphere over Europe was anomalously opaque to outgoing infrared radiation
during much of SON06.
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Fig. 2.11: Same as Fig. 2.8 but for a) SuLWR and b) AnLWRF.

2.5.4 Cloud radiative effect

Clouds have two effects. Firstly, clouds absorb and emit infrared radiation. The
back-radiation from clouds warms the earth’s surface. Cloud greenhouse effect,
also referred to as cloud warming effect here, is estimated from the difference
between clear- and cloudy-sky net thermal radiation at TOA. Secondly, clouds
increase the planetary albedo and thus cool the earth’s surface. This cloud cooling
effect is here estimated as the difference between net surface solar radiation for
cloudy- and clear-sky conditions.
The long-wave effects of clouds were large-than-usual in the second half of Octo-
ber and in November, when above-normal cloud cover caused some warming near
the surface (Fig. 2.12a). However, the net effect is very modest, at 0.9±0.1Wm−2.
The cloud cooling (i.e. short-wave) effects were smallest in early September
(Fig. 2.12b), when sunny conditions prevailed. This was compensated by the
cooling effect of above-average cloud cover later in the season. Averaged over the
whole season, the cloud cooling anomaly is even weaker (0.2± 1.0Wm−2). Note-
worthy, the time series of these two opposing effects are generally out of phase (c.f.
Figs. 2.12a,b). On the time mean, the two opposing cloud effects on short-wave
and long-wave radiation almost cancel each other out.
An increase of cloudiness accounted for roughly 50% of the AnLWRF anomaly,
which is evident from a comparison of Figs. 2.11b and 2.12a. The net effect of
clouds is however small due to the compensating effects of changes in short- and
long-wave radiation.



28 Energy budget of the extreme Autumn 2006 in Europe

 

 

Sep Oct Nov

−10

0

10

var = 49% ; r = 0.21

Month

E
ne

rg
y 

(W
m

   
)

−2

a. SON06 cloud warming effect anomalies

 

 

Sep Oct Nov

−20

−10

0

10

20

var = 99% ; r = −0.1

Month

E
ne

rg
y 

(W
m

   
)

−2

b. SON06 cloud cooling effect anomalies

Fig. 2.12: Same as Fig. 2.8 but for a) cloud warming effect, and b) cloud cooling effect
(Wm−2).

2.6 Discussion and conclusions

This study is an extension to that of GJvO07 who used a simple linear model to
show that circulation anomalies accounted for about half of the extreme SON06
temperature anomalies. While it is true that advection of warm tropical air or
warm maritime air plays a crucial role, it is also necessary to take into account
other competing or reinforcing factors. The aim of this paper is to give a more
comprehensive analysis based on reanalysis data in an endeavour to diagnose the
factors underlying the SON06 event.
Global warming has become a topical issue in recent years. GJvO07 shows that
global warming explains part of the SON06 surface-temperature anomalies while
a large part is unaccounted for by this long-term change. The slow increase of
global temperature has been attributed to an anthropogenic increase in atmo-
spheric greenhouse gases (IPCC, 2007). At a regional spatial scale and at a sea-
sonal time scale, it has been shown here that the total atmospheric greenhouse
effect (referred to here as AnLWRF) contributed strongly to the anomaly. In combi-
nation with favourable atmospheric thermodynamics it forced the extreme SON06
in Europe. The results show that latent heat and short-wave radiation fluxes,
which were at first suspected to play a major role (GJvO07), did not contribute
significantly to the anomaly. The heat was mainly advected as dry-static energy
from the North-Atlantic Ocean. The anomaly was strongly enhanced by the water-
vapour feedback.
Anomalous divergence of dry-static energy over the North-Atlantic Ocean and a
westerly transport vector suggests that this is a major source of energy input into
the European atmosphere during SON06. Diabatic heating over the Atlantic Ocean
is further enhanced by conversion of latent energy into dry-static energy over the
eastern North Atlantic. This excess of energy was transported the mid-latitude
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atmospheric flow into Europe where convergence of dry-static energy is found.
Maximum dry-static energy convergence occurred in the south-east of the domain.
Over the same area, anomalous divergence of latent energy is found. The weaker
correspondence in space between the maxima of anomalous dry-static energy con-
vergence and temperature suggests that other physical mechanisms were in play.
This notion is in qualitative agreement with Yiou et al. (2007).
A local feedback loop involving infrared radiative forcing has been revealed. A
positive anomaly of precipitable water, which increased the atmospheric opacity
to outgoing infrared radiation, is found. This induced a positive anomaly in atmo-
spheric back radiation, which warmed the earth’s surface. The anomalous warm-
ing at the surface results in higher outgoing terrestrial infrared radiation, which
is partly absorbed by the atmosphere, hereby increasing the air temperature. The
warmer atmosphere has a higher water-vapour holding capacity. This, in turn,
create favourable conditions for more precipitable water. This water-vapour feed-
back has been found to play an important role in climate change (Soden and Held,
2006; Hallegatte et al., 2006). The main conclusion from this study is that this
mechanism also played a vital role in forcing the SON06 extreme event. Atmo-
spheric circulation sustained the water-vapour feedback by advecting heat into
Europe. The negative anomaly in cloud fraction over land implied lower precipi-
tation, which in turn led to a longer residence time of atmospheric water vapour
due to higher temperatures. The relative humidity was close to normal.
Local exchange of sensible and latent heat between the earth’s surface and the
atmosphere through boundary-layer processes can contribute to a warm anomaly
such as SON06. Intuitively, heat flux into the atmosphere causes warming within
and immediately downwind of the source of diabatic heating (after condensation
in the case of latent energy). However, surface fluxes are sensitive to conditions
prevailing in the overlying air. Of the necessary conditions, the air-sea (or air-land)
vertical gradients of either temperature or water vapour are of primary importance
in determining their relative contributions to the atmospheric energy budget. It
has been shown here that in response to weak vertical temperature gradients, the
upward sensible heat flux is suppressed over Europe and the eastern Atlantic Coast
where the ocean surface is anomalously warm. The findings that diabatic heating
of the atmosphere, induced by warm SST anomalies within the domain is weak
seem to contradict those of Cattiaux et al. (2009), who argue that warmer SSTs
were responsible for ∼30% of the SON06 European surface temperature anoma-
lies. A more detailed explanation of these seemingly contradictory results, which
is outside the scope of this paper, would certainly be desirable. Weak positive
anomalies of latent-heat flux have been found in Europe. Over these areas, latent
heat release by condensation was however anomalously low. Since the surface
turbulent fluxes are small, the authors conclude that local feedback processes in-



30 Energy budget of the extreme Autumn 2006 in Europe

volving atmospheric vertical mass redistribution such as convection and turbulent
mixing mainly respond to the atmospheric thermodynamic state rather than being
a fundamental cause of the SON06 extreme event.
GJvO07 shows that climate models used in the IPCC fourth assessment report
(AR4) do not show a clear increase in the frequency of the SON06 kind of extremes
in the future climate. These models have reliable water-vapour feedbacks. The
absence of a clear trend in the frequency of autumn extremes certainly deserves
research attention.



3. PREDICTABILITY OF COLD SPRING SEASONS IN EUROPE

The seasonal predictability of cold spring seasons (March-May) in Europe from
hindcasts/forecasts of three operational coupled general circulation models (CGCMs)
is investigated. The models used in the investigation are the Met Office Global
Seasonal Forecast System (GloSea), the ECMWF System-2 (S2), and the NCEP
Climate Forecast System (CFS). Using the relative operating characteristic score
and the Brier skill score the long-term prediction skill for spring 2-m temperature
in the lower quintile (20%) is assessed. Over much of central and eastern Europe
the predictive skill is found to be high. The skill of the Met Office GloSea and
ECMWF S2 models significantly surpasses that of damped persistence over much
of Europe but the NCEP CFS model outperforms this reference forecast only over
a small area. The higher potential predictability of cold spring seasons in eastern
relative to southwestern Europe can be attributed to snow effects as areas of high
skill closely correspond with the climatological snow line, and snow is shown in
this paper to be linked to cold spring 2-m temperatures in eastern Europe.
The ability of the models to represent snow cover during the melt season is also
investigated. The Met Office GloSea and the ECMWF S2 models are able to accu-
rately mimic the observed pattern of monthly snow-cover interannual variability,
but the NCEP CFS model predicts too short a snow season. Improvements in the
snow analysis and land surface parameterizations could increase the skill of sea-
sonal forecasts for cold spring temperatures.

3.1 Introduction

The seasonal prediction of near-surface temperatures over many parts of the globe
has received considerable attention. In fact, together with precipitation, seasonal
prediction of 2-m temperature has a wide application. Considerable effort has
gone into predictions of mean temperatures over many parts of the globe including
Europe (e.g. Barnston and Smith, 1996). However, it is extreme temperatures

This chapter is based on the article “Predictability of Cold Spring Seasons in Europe” by Mx-
olisi E. Shongwe, Christopher A. T. Ferro, Caio A. S. Coelho, and Geert Jan van Oldenborgh, 2007, pub-
lished in Monthly Weather Review, 135, 4185−4201.
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such as heat waves and cold outbreaks that have a larger effect on human society.
Despite the worldwide notion of global warming and its impacts, the absence
of a clear trend toward fewer extreme cold events in Europe (Klein Tank et al.,
2002) has prompted an investigation of their potential predictability in this study.
These extreme events typically occur in winter and spring possibly due to snow
effects, and have huge impacts on transportation systems, energy supply, ecology,
agriculture, winter tourism, the clothing industry, etc.
The predictable component of atmospheric variability at seasonal to interannual
time scales is that forced by changes in boundary conditions (e.g. Barnston et al.,
2005). Walsh et al. (2001) related extreme winter and spring cold outbreaks to
negative North Atlantic Oscillation (NAO) signatures consistent with a ”blocking”
of westerly airflow into Europe. However, at smaller spatial scales the influence of
large-scale circulation anomalies such as those related to SST variability is modu-
lated by interactions and feedbacks between the atmosphere and the land surface.
Among other land surface processes, observational and modeling studies have
revealed that snow impacts near-surface temperature variability in the Northern
Hemisphere extra-tropics during the cold season (Walsh et al., 1982, 1985; Yang
et al., 2001; Kumar and Yang, 2003).
In Europe near-surface temperature variability has been attributed to three main
factors: large-scale flow, which determines the origin and tracks of air masses
(e.g. van Oldenborgh and van Ulden, 2003), radiation balance (as determined by
cloudiness amongst other factors; Lenderink et al., 2006), and local lower bound-
ary conditions (Ferranti and Viterbo, 2006). Palmer et al. (2004) have shown that
seasonal predictability of large-scale flow in Europe is low. The effect of cloudiness
offers some limited predictability. Skill from SST persistence has been shown to
be confined mainly along coastal areas (van den Dool and Nap, 1985).
This paper aims to investigate the predictability of cold spring seasons in Europe.
We investigate the hypothesis of snow accumulated during the preceding winter
being a source of skill in predicting cold spring seasons in Europe. Snow increases
the surface albedo, thereby altering the terrestrial heat balance and providing
a positive feedback mechanism that modulates atmospheric variability. In the
first part of the paper, we assess the coupled general circulation models (CGCMs)
below-median, lower-, and upper-quintile (i.e., coldest and warmest 20% of the
climatological records) 2-m temperature seasonal predictive skill over Europe in
spring [March-May (MAM)]. Near-surface temperature forecasts obtained from
damped persistence of low temperatures from the previous winter and early Febru-
ary snow depth are used as a baseline to judge the performance of the CGCMs. We
then relate the 2-m temperature to snow water equivalent (SWE) and snow cover
to explain the physical basis of the model skill.
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3.2 Data and Methods

3.2.1 CGCM predictions

The CGCMs used in this study are the Met Office Global Seasonal Forecast Sys-
tem (GloSea), the European Centre for Medium-Range Weather Forecasts System-
2 (ECMWF S2), and the National Centers for Environmental Prediction Climate
Forecast System (NCEP CFS). For more details on these models see Table3.1. The
model data are accessible through the Royal Netherlands Meteorological Insti-
tute (KNMI) Climate Explorer (see online at climexp.knmi.nl; van Oldenborgh and
Burgers, 2005). The ECMWF S2 consists of five members in each ensemble for the
hindcast period (1987-2001) and 40 members thereafter. Only five members in
the forecast period have been used to match the hindcast period. The NCEP CFS
and GloSea models have 15 ensemble members each in hindcast mode, which are
used in this study. However, since 2004, the NCEP CFS model produces twice-daily
operational forecasts resulting in about 60 ensemble members. GloSea produces
40 ensemble members for the operational forecasts since 2004. The February-start
hindcasts/forecasts have been verified against MAM 2-m temperature, implying a
1-month lead time (but half-month from dissemination time, usually the 15th of
each month). An extreme event is defined whenever 2-m temperatures fall within
the lower quintile of the climatological records, otherwise it is a nonevent. Events
were defined for model predictions and observations independently (i.e., based
on their own model predictions and observed distributions). When using this ap-
proach model biases are inherently corrected. Model ensemble predictions are
converted into probabilistic forecasts by expressing, as a percentage, the fraction
of the ensemble predicting the extreme event. For instance if 9 members out of
15 are fall into the lowest quintile, and the rest fall outside this category, then the
probability for the event occurring (not occurring) is 60% (40%).

3.2.2 Observations

The snow-depth data (expressed as SWE) used in this study are a combination of
data from the 40-yr ECMWF Re-Analysis (ERA-40) project (Uppala et al., 2005)
up to 2002, and the ECMWF snow analysis (White, 2003) from 2003 to present.
Weekly snow-cover data spanning the 1972-2006 period, obtained from National
Oceanic and Atmospheric Administration/National Environmental Satellite Data
and Information Service (NOAA/NESDIS) datasets (Robinson et al., 1993), are
also used. The weekly snow cover has been averaged into monthly data. To
compare these two datasets, snow extent has been generated for each grid by as-
signing a one if the ECMWF SWE on a given day is at least 3 mm, and 0 otherwise.
The 3-mm SWE threshold yielded the best agreement with the NOAA/NESDIS
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dataset. Monthly averages are generated based on these derived variables. Given
that the effect of the extent of snow cover on 2-m temperature is felt during and
after its existence (e.g. Groisman et al., 1994) and because the atmosphere ad-
justs rapidly in response to anomalous land surface forcing, only short (1 month)
lead-lag relationships are considered whereby February-April (FMA) mean snow is
related to MAM mean 2-m temperature. The 2-m temperature data have been ob-
tained from the recently developed high-resolution (0.5◦ x 0.5◦ latitude-longitude
grid) gridded monthly dataset of Fan and van den Dool (2008), which combines
the Global Historical Climatology Network (GHCN), version 2, and the Climate
Anomaly Monitoring System (CAMS) datasets.
Pointwise correlations between FMA NOAA/NESDIS and ERA-40-derived FMA
mean snow cover calculated over the period 1972-2005 are shown in Fig. 3.1. Sta-
tistical significance at the 5% (1%) level (as obtained from a one-sided two-sample
t-test with 32 degrees of freedom) corresponds to a correlation coefficient of 0.34
(0.44). The high correspondence between the two datasets is evident over a wide
area extending eastward from 10◦ E. Areas with zero standard deviation during
FMA (e.g., northern Scandinavia and Africa in or close to the Sahara Desert) are
masked out in the plot. Biases in remotely sensed data such as NOAA/NESDIS
satellite data exist (Robinson et al., 1993; Foster et al., 1996). The ERA-40 snow-
depth analysis assimilates some observations, otherwise it relies completely on the
model snow precipitation and melt parameterizations, which are known to have
biases. These limitations notwithstanding, the high correlation between the re-
motely sensed and reanalysis data over Europe is encouraging. Because it is quite
unlikely that both datasets would have the same biases, both snow datasets should
be reliable enough for our purposes.

3.2.3 Forecast verification

Skill measures used to assess the CGCMs probabilistic temperature forecasts are
the relative operating characteristic (ROC) score and the Brier skill score (BSS).
These metrics and other forecast verification measures are computed by the KNMI
Climate Explorer using statistical software developed by the R Software for Cli-
mate Analysis (RCLIM) initiative (see online at http://www1.secam.ex.ac.uk/?nav
=696). The ROC score measures the ability of the forecast system to correctly de-
tect events or non-events. The reference ROC score of 0.5 implies no skill in the
forecasts, and the score increases to a maximum of 1.0 for perfect forecasts. Scores
less than 0.5 are indicative of negative skill (i.e., worse than chance). The numer-
ical formulation and comprehensive discussion of the ROC score can be found in
Mason and Graham (1999, 2002). For a set of n forecasts, if n1(n2) is the number
of cases in which the event occurs (does not occur), Mason and Graham (2002)
define the ROC score for probabilistic forecasts from an ensemble of size m as



D
a
ta

a
n

d
M

e
th

o
d

s
3
5

Tab. 3.1: Coupled GCMs used in this studya

Model Atmospheric
Resolution

Initialization Hindcasts
from, #/mon

Forecasts
from, #/mon

References

Anderson et al. (2003)
ECMWF S2 T95L40 ERA15 1987 5 2001 40 van Oldenborgh et al.

(2005a,b)

NCEP CFS T62L64 NCEP 1981 15 2004 60 Saha et al. (2006)

UKMO GloSea 3.75◦
×2.5◦ L19 ERA40 1987 15 2004 40 Graham et al. (2005)

aModel resolution is given as T (wavenumber of spectral truncation) and L (number of vertical layers). The UKMO GloSea
model horizontal resolution is given as lon x lat grid.
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Fig. 3.1: Correlation plot between FMA NOAA/NESDIS and ERA40-derived snow cover. A
correlation of 0.34 (0.44) is found to be statistically significant at the 5% (1%)
level, and the corresponding contours are plotted.
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where P1i(P2j) are the forecasts issued prior to an event (nonevent), and I(B) = 1
if condition B holds, 0 otherwise. Suppose a subset K1i(K2j) of the ensemble
predict the event (nonevent). Given an ensemble of size m, C. A. T. Ferro (2007,
unpublished manuscript) has shown that an unbiased estimator for the expected
ROC score that would be obtained by an ensemble of size M ≤ m is
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where Lij is the subset of {(k, l) : 0 ≤ l < k ≤ M}, such that the combinations
in the first summation exist, and κij is the subset of {0, . . .,M} such that the
combinations in the second summation exist.
Aware of the effect of ensemble size on ROC scores across the three CGCMs used
in this research, the expected ROC scores have been estimated for each model for
50% (for below-median 2-m temperature predictions) and 20% (lower quintile)
thresholds using M = 5 corresponding to the ECMWF S2 ensemble size before
2002 (see Table 3.1). This gives us confidence that the intermodel-ROC-score dif-
ferences shown below reflect true CGGMs’ individual strengths and weaknesses.
Critical values are calculated from a normal approximation to the distribution of
the ROC score under a null hypothesis of random forecasts, with issued probabili-
ties distributed uniformly on M + 1 distinct values. Differences in the ROC scores
have been computed and their statistical significance tested using the method dis-
cussed by C. A. T. Ferro (2007, unpublished manuscript).
The relative improvement of numerical model predictions of cold seasons over an
empirical approach is assessed using Brier skill scores with reference to forecasts
from a simple statistical model. The BSS measures the forecast system’s improve-
ment over a reference forecast strategy (Wilks, 1995).
The reference empirical model for spring temperature (T ′

MAM) is a linear model
based on three predictors: global warming, temperature persistence from winter
into spring (T ′

NDJ), and snow depth at analysis time (H1Feb):
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T ′
MAM(y) = α(y)T ′

NDJ(y − 1) + β(y)H1Feb(y) + η(y), (3.3)

T ′
s(y) = Ts(y) −

1

10

y−1∑

y′=y−11

Ts(y
′), (3.4)

with y the year being forecast. Global warming is taken into account as a running
mean of the local observed temperature 10 yr prior to the forecast time as shown
in Eq. 3.4 for a given season. In many areas this ”optimal normal correction” gives
most skill to seasonal forecasts (Huang et al., 1996). The persistence predictor
is the November-January-averaged temperature anomaly relative to this climatol-
ogy. Temperature persistence from winter into spring is known to be significant in
Europe. The third predictor is the ERA-40 snow-depth analysis at analysis time,
1 February. The coefficients α(y) and β(y) are determined by linear regression of
all years except the ones being forecast (jackknife). Winter temperature and snow
depth are correlated (r ≈ 0.5 in eastern Europe) as a thick snow layer in eastern
Europe on 1 February is often produced by a cold winter preceding it. Because
of this, statistical forecast models based on persistence only (β = 0), snow depth
only (α = 0), and a combination of the two have very similar skill in forecasting
the spring temperature.
To compute probabilistic skill scores for the empirical forecast model, an ensemble
of forecasts is required. This ensemble, of equal size N as the CGCM ensemble,
is generated by sampling the distribution of the residuals η(y) at the quantiles
i/(N + 1), (i = 1. . .N).

3.2.4 Near-surface temperature – snow relationships

Scatter diagrams are plotted to show relationships between spatial averages of
observed FMA mean snow and MAM mean 2-m temperature over the 1972-2005
period. Canonical correlation analysis (CCA) is then used to diagnose the spatial
extent of the linear relationship between the two fields. CCA is a multivariate
statistical technique that seeks to identify a sequence of pairs of patterns in the
data whose time evolution is optimally correlated. This technique has been widely
applied in seasonal climate prediction studies (e.g. Landman and Mason, 2001;
Shongwe et al., 2006), and its procedure in the context of climate data analysis
can be found in Wilks (1995) and von Storch and Zwiers (1999). Prior to the CCA,
the spatial degrees of freedom were reduced by projecting original data onto their
empirical orthogonal functions (EOFs; Barnett and Preisendorfer, 1987). Perform-
ing the CCA on the EOF space minimizes large sampling errors (Bretherton et al.,
1992) at the expense of possible losses of useful information in the original data



Skill of MAM 2-m temperature forecasts 39

from EOF truncation. The EOF space is truncated at 70% of the average charac-
teristic root, which is the Guttman–Kaiser criterion (Jackson, 1991) modified after
Jolliffe (1972). The length of the sequence of successive pairs of canonical variates
(CCA modes) is limited to be the minimum of the number of principal components
(EOF modes) retained in the EOF analysis. The optimal combination of EOF and
CCA modes producing the best fit are then determined from cross-validated sensi-
tivity tests.

3.3 Skill of MAM 2-m temperature forecasts

3.3.1 Model ROC scores

Maps of ROC scores calculated for CGCM probabilistic predictions of MAM 2-m
temperatures over the region 30◦ –75◦ N, 30◦ W–60◦ E are shown in Figs. 3.2–
3.3. Figure 3.2 compares the ROC scores for the GloSea model for median (3.2a)
and lower-quintile (3.2b) 2-m temperature. Differences between scores for model
predictions of cold springs and below-median temperatures (representing normal
seasons) are shown in Fig. 3.2c. Areas where the null hypothesis of no difference
in ROC scores for the different thresholds (here, 20% and 50%) could be rejected
at the 10% error level are shaded in Fig. 3.2c. Corresponding comparisons are
made for the ECMWF S2 (Fig. 3.2d–f) and NCEP CFS (Figs. 3.2g–i) systems.
ROC scores in excess of 0.6 for below-median 2-m temperature are confined to
the area around the Baltic Sea extending from Poland northward into Scandinavia
in GloSea (Fig. 3.2a) and ECMWF S2 (Fig. 3.2d) systems. At the 10% signifi-
cance level, the critical ROC scores for rejection of the null hypothesis of unskillful
forecasts are 0.7 for GloSea and ECMWF S2, and 0.68 for the NCEP CFS models.
For below-median forecasts the models’ ROC scores are not statistically significant
over much of Europe. The NCEP CFS forecasts show little or no skill (Fig. 3.2g).
ECMWF S2 and GloSea models show elevated ROC scores (> 0.7) for predictions
of 2-m temperature in the lowest quintile. This is particularly the case over eastern
Europe east of 10◦ E. GloSea and ECMWF S2 attain ROC scores in excess of 0.8
for the cold extremes (Figs. 3.2b,e). Widespread positive differences between
scores for the 20% and 50% thresholds are evident over much of Europe except
the southwest, although only statistically significant differences are shaded in the
figures. Remarkably, for GloSea and ECMWF S2 systems, statistically significant
differences at the 10% level are found over a wide area extending from the North
Sea through central toward eastern Europe (Figs. 3.2c,f). The CGCMs show either
no skill or negative skill over southwestern Europe. Albeit least skillful overall, the
NCEP CFS model also can provide skilful forecasts over eastern Scandinavia and
western Russia.
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The high ROC scores and differences for below-median and lower-quintile 2-m
temperature over much of central and eastern Europe warrants an investigation
of their physical basis. Interestingly, the lowest-quintile 2-m temperature forecasts
are more skillful than those of the upper quintile ( ≥ 80% of the distribution),
notably in the ECMWF S2 model (Fig. 3). We hypothesize that elevated ROC
scores could be due to a successful representation of snow persisting in spring and
influencing near-surface temperatures (Cohen and Rind, 1991). This mechanism
naturally gives rise to higher skill for cold extreme forecasts than below-median
or upper-quintile 2-m temperature forecasts.

Fig. 3.2: Geographical distribution of ROC scores for GloSea predictions of MAM 2-m tem-
perature. ROC scores are for (a) below-median and (b) lower-quintile 2-m tem-
perature predictions. ROC scores in excess of 0.7 are statistically significant at the
10% level. (c) Differences in the ROC scores (i.e. ROC20-ROC50). Areas where
the differences are statistically significant at the 10% level are colored. (d), (e),
(f) Same as in (a), (b), (c), but for ECMWF S2. (g), (h), (i) Same as in (a), (b),
(c), but for NCEP CFS. ROC scores greater than 0.68 are statistically significant at
the 10% level.
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Fig. 3.3: Geographical distribution of ROC scores for CGCMs predictions of MAM 2-m tem-
peratures in the upper quintile: (a) GloSea , (b) ECMWF S2, and (c) NCEP CFS.

3.3.2 Model Brier skill scores

The CGCMs advantage over a statistical model assessed using BSS are shown
in Fig. 3.4. For below-median 2-m temperature predictions GloSea outscores
the statistical model forecasts over much of Europe west of 40◦ E (Fig. 3.4a).
The ECMWF S2 and NCEP models perform slightly better than damped persis-
tence forecasts only over patchy areas in Europe, otherwise the models attain skill
equal to or less than that of the reference forecast over a wide area in Europe
(Figs. 3.4b,c).
For lower-quintile 2-m temperature forecasts, GloSea and ECMWF S2 models sur-
pass damped persistence over a wide area extending from the North and Baltic
Seas through central Europe toward the Mediterranean area. Negative skill scores
are confined to a narrow area from about 15◦ –20◦ E in GloSea. The BSS provide
further evidence that there is more potential for forecasting cold spring seasons
than below-median seasons; this is particularly noticeable in the case of ECMWF
S2, which attains more widespread positive skill scores in Europe (Fig. 3.4e).
However, in southwestern Europe, the models perform worse than damped per-
sistence. The NCEP CFS outperforms the reference forecasts over isolated areas
(Fig. 3.4f). At the short lead time considered in this paper, Brier skill scores show
that statistical models provide competitive predictions of lower-quintile 2-m tem-
peratures over certain regions (e.g., southwestern Europe and western Russia).

3.3.3 Ensemble 2-m temperature predictions in eastern Europe

Bias-corrected ensemble model predictions for March and spring 2-m temperature,
spatially averaged over eastern Europe (45◦ –55◦ N, 20◦ –30◦ E) for the period
1987–2005 (common to all models) are shown in Fig. 3.5. The number of mem-
bers in each model ensemble are as shown in Table 3.1. The spatial averages are
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Fig. 3.4: Evaluation of the CGCM MAM 2-m temperature forecasts’ BSS with reference to
damped persistence. Skill scores for (a), (b), (c) below-median 2-m temperature
forecasts and (d), (e), (f) lower-quintile scores. Skill scores are for (a), (d) GloSea;
(b), (e) ECMWF S2; and (c), (f) NCEP CFS.

taken over the area characterized by high skill for lowest-quintile 2-m temperature
forecasts in spring (as shown in Figs. 3.2 and 3.4). Prior to the area averaging, the
CGCM predictions were bias corrected for the mean in a cross-validation mode.
Anomalies are defined as departures from the 1971–2000 climatology. Observed
2-m temperature anomalies for the month and season in a given year are de-
noted by squares. The climatological lower-quintile category is shown by the gray
shaded region. SWE anomalies for February, March, and April averaged over the
same area are plotted in Fig. 3.6.
In Fig. 3.5b, years characterized by cold spring 2-m temperatures common to all
models are 1987, 1996, 2005, and 1997, although in some cases not all 3 months
in each season fell in the lowest quintile. Noting that March exhibits the highest
skill of all spring months (mainly from snow signal; map not shown), attention
is placed on the distribution of the ensemble members during March of each cold
spring (leaving out the warmer March 1997; Fig. 3.5a). As shown in Fig. 3.6, a
thick snowpack occurred from February to March preceding each coldest event, an
exception being 1997.
In the prediction for March 1987, GloSea had 12 ensemble members (80%) falling
within the lowest quintile, while 9 NCEP CFS model members (60%) predicted the
extreme event. The ECMWF S2 model predicted the event with 40% probability
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(two members). In 1996, GloSea had seven of its members (∼47%) correctly
predicting the event. ECMWF S2 anticipated the event with 40% probability, while
the NCEP CFS model indicated about 27% (four members) chance. March 2005
cold event was predicted with 60% probability (nine members) by GloSea, NCEP
CFS with about 27% while the ECMWF S2 system indicated only a 5% chance of
2-m temperatures falling within the lowest quintile.
Considering all spring months (MAM), the 1987 cold event was predicted very well
by the GloSea and ECMWF S2 systems with each indicating at least 80% proba-
bility (12 and 4 members, respectively) of lowest-quintile 2-m temperatures. The
NCEP CFS model predicted this event with about 53% probability. The ECMWF S2
system predicted the 1996 cold event with high probability (60%), with GloSea
and NCEP CFS models indicating a 47% and 27% likelihood, respectively. The
1997 and 2005 events were least skillfully predicted with all models predicting the
1997 cold spring with 20% probability, equivalent to the lower-quintile prior prob-
ability or climatological forecasts. The 2005 event was predicted with low proba-
bility of about 33% and 20% by GloSea and NCEP CFS models, respectively, while
the ECMWF S2 model almost completely missed ( ∼3% probability) the 2005 cold
spring season in eastern Europe. As shown in Fig. 3.6, the 1997 cold event was
preceded by negative SWE anomalies from February to March. It is therefore not
surprising that this ”atypical” event was either underforecast or completely missed
by the CGCMs.

3.4 Snow influence

Snow-cover variability for FMA expressed as standard deviations of the extent of
snow cover on the ground is shown in Fig. 3.7. The figure shows that areas in cen-
tral and eastern Europe are characterized by the greatest interannual fluctuations
of early spring snow cover. The other neighboring regions (e.g., southwest Europe
and parts of Scandinavia) have a high frequency of either 0% or 100% snow cover
during early spring months. There is a close correspondence in geographical area
between the regions where this land surface condition is most variable from year
to year, and where ROC scores for cold springs are highest (in GloSea and ECMWF
S2 models; Fig. 3.2).

3.4.1 2-m temperature – snow relationships in observations

Snow and near-surface temperature relationships in eastern Europe

To illustrate the influence of changes in local land surface forcing associated with
snow on near-surface temperature, spatial averages of SWE, snow cover, and 2-m
temperature were calculated for a rectangular area (45◦ –55◦ N,20◦ –30◦ E) and
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Fig. 3.5: CGCM ensemble predictions for (a) March and (b) spring. In both (a) and (b)
and for a given year (left) the squares show the observed anomalies, (middle left)
the circles show the ECMWF S2 ensemble predictions, (middle right) the triangles
show the GloSea ensemble predictions, and (right) the diamonds show the NCEP
CFS ensemble predictions. The observations/predictions have been averaged over
eastern Europe (45◦ –55◦ N, 20◦ –30◦ E). The gray shaded region shows the lower-
quintile category defined from the 1971–2000 climatology.
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Fig. 3.6: Area-averaged FMA SWE in eastern Europe (same geographical area as in
Fig. 3.5). Boxplots show the climatological range based on the 1971-2000 pe-
riod, while the black squares indicate the observed SWE in a given month. For
each year, the first series shows February SWE, the second series shows March,
and the third series shows April SWE.

Fig. 3.7: FMA snow-cover variability in Europe expressed as standard deviations of the ex-
tent of snow on the ground.
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plotted in Fig. 3.8. As shown in Fig. 3.7, the area averages are taken over a region
with highest interannual snow-cover variability in FMA and highest skill for cold
spring forecasts (Fig. 3.2). In Fig. 3.8a, MAM 2-m temperature is plotted against
February SWE. The plot shows that very cold temperatures occurred often follow-
ing high SWE at the beginning of February, and vice versa for the warm extreme.
The correlation is 0.57 (statistical significance at the 1% level). The plot for MAM
2-m temperature against FMA snow-cover extent (Fig. 3.8b) is consistent with the
results from SWE (obtained from ERA-40), despite the fact that the snow datasets
are obtained from independent sources. The plot shows that the coldest MAMs
over eastern Europe have occurred following extensive snow cover from February
to April (correlation = -0.63). The plots make physical sense. Snow influences
near-surface temperatures through its high reflectivity to incident radiation, low
thermal conductivity, which inhibits sensible heat flux from the ground into the
overlying air, and by acting as a latent heat sink during the melting process. Even
after melting, the resulting soil moisture influence near-surface air temperature
through its effect on the surface heat balance in the form of alterations in partition
of latent and sensible heat fluxes. These results are in qualitative agreement with
Groisman et al. (1994), who classified eastern Europe as a temperature-sensitive
zone from December to March. The scatterplot for FMA fractional snow extent
against February SWE is presented in Fig. 3.8c. The strong correlation of 0.74
indicates that a thick snowpack on 1 February on average translates into longer
lingering snow in spring, despite the well-known observations that a snowpack
can be melted in surprisingly short times by, for example, heavy precipitation at
high temperatures.
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Fig. 3.8: Scatterplots of spatially averaged (i.e., averaged from 45◦ –55◦ N, 20◦ –30◦ E)(a)
MAM 2-m temperature (◦ C) vs 1 February SWE (mm), (b) MAM 2-m tempera-
ture (◦ C) vs FMA fractional snow cover, and (c) FMA fractional snow cover vs 1
February SWE (mm).
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CCA diagnostics

To the extent that there exists some linear relationship between snow cover and
2-m temperature as suggested by the scatterplots, the use of a linear statistical
technique such as CCA to diagnose the spatial patterns of covariability between
the two fields is justified. Cross-validated sensitivity tests suggested that a sub-
space consisting of 11 observed snow-cover EOFs (70% cumulative variance) and
six 2-m temperature EOFs (72% cumulative variance) could optimally be used in
conjuction with four CCA modes (successive pairs of canonical variates). The spa-
tial patterns for the first canonical mode (whose canonical correlation is highest)
and the corresponding time series are shown in Fig. 3.9. In Fig. 3.9a, the first
canonical eigenvectors of the snow-cover field leading spring 2-m temperature by
1 month are plotted. The corresponding canonical eigenvectors for spring 2-m
temperature are presented in Fig. 3.9b. The magnitude of the loadings (elements
of the canonical eigenvectors) indicate the relative contribution of each grid to
the corresponding canonical pattern. The time series for this pattern is shown in
Fig. 3.9c.
The first canonical mode represents a pattern of covariability that is located in
eastern Europe and western Russia. The snow cover and 2-m temperature pat-
terns for this mode explain about 15% and 24% of the total variance of each field,
respectively. This mode shows that years with excessive (deficient) snow cover
over eastern Europe from February to March are those with anomalously cold
(warm) spring 2-m temperature over the area stretching from about 15◦ E in east-
ern Europe, western Russia, and parts of Scandinavia. Indeed there is close corre-
spondence between the geographical area of anomalous land surface forcing from
snow (highest loadings in Fig. 3.9a) on the lowest atmosphere as suggested by this
CCA mode and the area exhibiting highest FMA snow-cover interannual variability
(Fig. 3.7). In addition to providing some empirical evidence in support of snow-
radiation (e.g., increasing ground reflectance) and snow-hydrological (e.g., energy
used for melting snow and evaporating the resulting water) effects on 2-m tem-
perature, the maps also show the spatial extent of the snow influence. The results
show that the impact of anomalous snow-cover forcing could occur through local
feedback mechanisms and possible changes in atmospheric circulation. The ef-
fect of snow-albedo-temperature feedbacks is more localized (e.g., Dewey, 1977),
which explains the eastern Europe case. The impact of snow on atmospheric cir-
culation can extend much deeper into the middle or even the upper troposphere
(e.g., Zhang et al., 2004) thus exerting a remote influence on the weather/short-
term climate.
The canonical component time series for this mode whose correlation is 0.91 show
that this pattern of anomalously extensive snow cover and the associated colder
2-m temperatures in eastern Europe occurred more frequently from the 1970s to



48 Predictability of Cold Spring Seasons in Europe

the late 1980s (Fig. 3.9c). The frequency declined since the 1990s. Possible mech-
anisms forcing this pattern of temporal variation have not been investigated in this
paper. A statistically significant reduction in western Eurasia (40◦ –60◦ N, 20◦ –
90◦ E) spring (particularly April) snow-cover extent (SCE) has been shown else-
where (Brown, 2000) using reconstructed snow-cover data. Superimposed to the
significant downward SCE trend shown in Brown (2000) are decadal-multidecadal
fluctuations. Consistent with our findings, the decade from the late 1970s to the
late 1980s fell above the trend line (Brown’s Fig. 14) with a more rapid decline in
the early 1990s. A link between snow cover and concurrent NAO cannot be ruled
out. The correlation between the snow-cover canonical time series for this mode
and the FMA-averaged NAO-Gibraltar index (Jones et al., 1997) is 0.34 (statistical
significance at the 5% level).

3.4.2 Model snow predictions

Forecast – observed snow correlation

To determine the performance of the CGCMs in terms of snow extent predictions,
the FMA model snow predictions are validated against NOAA/NESDIS snow data
using correlation analysis. The FMA CGCMs snow predictions issued in February
are considered, implying zero lead time. Snow extent is defined as the area cov-
ered by at least 3-mm thickness of SWE for the model data, which have been inter-
polated to a 2◦ x 2◦ latitude-longitude grid consistent with the validation dataset.
The spatial pattern of correlation between model FMA snow conditions and ob-
served snow cover is shown in Fig. 3.10. At the 5% (1%) level, a correlation
coefficient of 0.44 (0.54) is found to be statistically significant. Remarkably, in
agreement with results from 2-m temperature forecast verification, statistically sig-
nificant correlations are found over much of central and eastern Europe in GloSea
and ECMWF S2 systems (Figs. 3.10a,b). For the NCEP CFS system, statistically
significant correlations are only confined to a limited area in eastern Europe and
around the Caucasus (Fig. 3.10c).

Model representation of monthly snow variation

To assess the discrepancies that exist between modeled and observed SWE interan-
nual variations, a normalized standard deviation is calculated for February to April
based on the 1987–2005 period and shown in Fig. 3.11. Assessing the models’ abil-
ity to capture the snow migration at monthly time scales reveal more information
than would have been obtained from the seasonal (FMA) patterns considered in
foregoing sections. The dimensionless coefficient used to make the assessment is
the ratio of the standard deviation to the monthly mean SWE. In the figure, each
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Fig. 3.9: CCA diagnostics: (a) FMA snow-cover CCA loadings for mode 1, (b) the corre-
sponding CCA loadings for MAM 2-m temperature, and (c) the canonical compo-
nent time series for snow (gray bars) and 2-m temperature (line).
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column shows the spatial distribution of the statistic in the same month. These
plots allow a visual comparison of the ability of the models to capture the year-to-
year monthly snow variations expressed as a proportion of average monthly snow
depletion. The monthly snow line can be inferred from the plots.
In February, the observed snow line stretches from the Alps in southeastern France
(about 5◦ E) southward into Bulgaria and northward through Germany toward
Scandinavia (Fig. 3.11a). The year-to-year February SWE variation is highest in
eastern Europe where the standard deviation either equals or exceeds the mean.
All the models satisfactorily capture the broad pattern of February SWE variability.
GloSea and ECMWF S2 also capture the mean SWE amounts adequately (map
not shown). The NCEP CFS model, while locating the snow boundary close to
the observed, underestimates the thickness of the snowpack over eastern Europe.
Such an underestimate in snow depth would result in a subsequent underestimate
of snow properties such as its albedo, which is one factor that influences the short-
term climate, particularly near-surface temperatures.
By March the snow line in the observations does not retreat significantly with
the westmost boundary still located over the French and Swiss Alps (Fig. 3.11b).
Remarkably, year-to-year SWE in eastern Europe exhibits the highest variation
during this month. In this snow-transient region, interannual standard deviations
as high as twice the monthly mean are found. Indeed, the thickness and area
extent of the snowpack during this month has a direct impact on spring near-
surface temperature in the lowest quintile. The observed magnitude of March SWE
variability in eastern Europe is adequately represented in the GloSea and ECMWF
S2 models (Figs. 3.11e,h). This accuracy shows that in years when snow occurred
in eastern Europe in March, GloSea and ECMWF S2 hindcasted/predicted the
thickness of the snowpack successfully. As noted in Slater et al. (2001), snow
albedo changes in models’ snow-albedo schemes as a function of its age and depth
(up to a certain limit after which is becomes constant). In their discussion, most
models attain a maximum albedo of about 85% for the visible, and about 65%
for the near-infrared portions of the spectrum at SWE values less than 50 mm.
Climate models that predict snow thickness at these ”crucial” levels with some
skill should commensurately represent the magnitude of the land surface forcing
on the lower atmosphere reasonably well, thereby predicting cold spring seasons
with some degree of accuracy. As shown in Fig. 3.11k, the NCEP CFS system hardly
predicts any snow in eastern Europe in March. In this model the snow boundary
migrates too rapidly so it is situated much farther east (western Russia) than the
climatological snow line. This serves as a clear illustration of differences in model
snow simulation during the melt season. Discrepancies in model snow simulations
during transition seasons have been noted elsewhere (e.g., Foster et al., 1996) and
are in part attributable to differences in parameterization of snow processes in the
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Fig. 3.10: Spatial pattern of correlation between modelled FMA snow cover and
NOAA/NESDIS observations: the correlation for the (a) for the GloSea model,
(b) ECMWF S2, and (c) NCEP CFS. The critical values for statistical significance
at the 5% (1%) error level are 0.44 (0.54), and are shown by contours in the
figure.
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models’ land surface schemes (Slater et al., 2001).
Except for patches of snow over the Swiss Alps and the Caucasus, there is no ob-
served or modeled snow over Europe in April (Figs. 3.11c,f,i,l). This is in response
to the seasonal increase in available solar energy that forces a rapid migration of
the climatological snow line. The snow patches in the Swiss Alps and the Caucasus
are well predicted in the ECMWF S2 and GloSea models. In extreme cases (e.g.,
April 1996) some remnants of seasonal snow still survive during this month over
much of eastern Europe and western Russia resulting in a delayed onset of sea-
sonal warming. During this extreme case, the GloSea model accurately captured
the delayed migration of the seasonal snow line (map not shown). The ECMWF
S2 and NCEP CFS models on the other hand located the snow boundary much
farther east along the western Russian border.

3.5 Discussion and conclusions

Predicting land temperatures more than 14 days ahead is a difficult task. One of
the few extratropical areas with high skill scores in the current generation of oper-
ational seasonal forecast models is central and eastern Europe in spring. Forecasts
started on 1 February show some skill as evidenced by ROC scores for the below-
median MAM-averaged temperature exceeding 0.6. The skill for forecasting cold
extremes is even higher (reaching 0.8) and statistically significant. The models’
skill surpasses that of damped persistence forecasts.
Comparisons of skill measures for below-median and colder spring (2-m tempera-
ture in the lower quintile) for each CGCM suggests that there could be more pre-
dictive potential for cold extremes than ”normal” seasons at the short lead time
considered here. This is indeed the case over snow transient regions in central
and eastern Europe. A notable difference in the skill of the CGCMs used in this
research is evident. The GloSea and ECMWF S2 models attain the highest overall
skill in predicting spring cold extremes during the verification period. The NCEP
CFS model on the other hand performs the least well.
Noting that cold spring forecasts have higher skill than below-median seasons
prompted a further investigation of the physical basis of the higher skill in predict-
ing 2-m temperatures in the lowest quintile. The correspondence in geographical
area between the high-skill area and the climatological snow line hinted at land
surface processes as a possible source. Both remotely sensed and model-generated
snow fields have been used to test our hypothesis. Both datasets inherently have
their own biases. However, the close agreement between the two datasets over
the study area suggested that they could reliably be used for the purpose of this
paper.
Correlation analysis has shown a statistically significant relationship between mod-
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Fig. 3.11: Snow-depth-normalized standard deviation (coefficient of variation) over Europe
from February to March: (a), (b), (c) the observed SWE variation; (d), (e), (f)
GloSea; (g), (h), (i) ECMWF S2; and (j), (k), (l) NCEP CFS. Coefficients are
shown for (a), (d), (g), (j) February; (b), (e), (h), (k) March; and (c), (f), (i), (l)
April.
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eled snow cover and the NOAA/NESDIS datasets over eastern Europe. The highest
correlations (> 0.5) were obtained for the GloSea system. Albeit of a lesser mag-
nitude, correlations attained by the ECMWF S2 model were statistically significant
over a large area. The NCEP CFS model had the lowest overall correlations. It is
remarkable that the snow predictions from GloSea and ECMWF S2 are in closer
agreement with observations and that the same models show higher skill in pre-
dicting cold spring seasons. This consistency provides evidence that the CGCMs’
different ability to accurately model snow cover is a physical basis for the skill
differences shown in the previous sections.
The abilities of the models to mimic the monthly migration of the climatological
snow line and interannual variability of monthly SWE during the melt season fur-
ther substantiates the snow-being-the-source hypothesis. Notable discrepancies in
the models’ ability to accurately locate the monthly climatological snow bound-
ary and the year-to-year variations in monthly snow thickness have been shown.
Again, the monthly snow line and the interannual variations of snow thickness in
the GloSea and ECMWF S2 CGCMs models are very close to what is observed. In
February, the NCEP CFS system predicts an almost realistic snow boundary but
underestimates the thickness of the snowpack in eastern Europe. As snow albedo
varies with snow depth (up to a certain limit) and age, underestimating the SWE in
February would imply lower-than-observed albedo, and higher surface heat fluxes
and hence warmer temperatures. In March, snow-depth variability is highest in
eastern Europe. The NCEP CFS model misses the pattern of the interannual vari-
ability in March because the snow line migrates too rapidly in this model. In April
all models faithfully represent the observed snow distribution.
The ability of GloSea and ECMWF S2 models to capture the observed pattern of
interannual variability of February-April snow thickness suggests that these mod-
els adequately represent snow processes during the melt season. The NCEP CFS
model on the other hand simulates a shorter snow season in eastern Europe, thus
underestimating the amount of snow on the ground in February and March. The
overall poorer performance shown by the NCEP CFS model in predicting cold
springs in Europe could be attributable to the earlier melting of snow.
Patterns of covariability between FMA snow cover and MAM 2-m temperature
have shown a link between snow cover in eastern Europe and western Russia
and 2-m temperature, with temperature lagging a month behind. The patterns
show that extensive snow cover from February to March has often preceded cold
temperatures in spring. The underlying physics has been discussed extensively in
the literature. Snow alters surface radiant energy fluxes through its high albedo
and low thermal conductivity. Energy is extracted from the air during the melting
process. Soil moisture from melted snow leads to a release of surface latent heat
flux from the wet ground.
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The initial snow conditions are important for cold spring season forecasts over Eu-
rope except over the western areas where temperatures are modulated by nearby
oceans. High snow depth in eastern Europe and western Russia at the beginning
of February (model initialization), persisting into early spring is closely related
to cold springs in eastern Europe. Strong correlation shows that a thick snow-
pack early in February generally precedes lingering snow in spring. However,
the dependence of snowpack duration on the ground on several factors compli-
cates modeling of the snow fields during late winter and/or early spring. Over
and above the seasonal increase in solar radiation, the frequency and strength of
ablation events determines the snow durability. For instance, a large (or a se-
quence of) rainstorm(s) would provide large amounts of energy for melting the
snowpack. Such rapid snowmelt would diminish the chances of an extremely cold
spring. Therefore snow initial conditions would lead to skillful cold spring seasons’
forecast if the CGCMs temperature and precipitation schemes were more realistic.
The skill of the Development of a European Multimodel Ensemble System for
Seasonal-to-Interannual Prediction (DEMETER) versions of the ECMWF S2 and
GloSea models (Palmer et al., 2004) in predicting lowest-quintile spring 2-m tem-
peratures over 1958/59–2001 has also been assessed. The Met Office model
attains higher ROC scores over a wide area in eastern Europe extending into
Scandinavia (map not shown). No attempt has been made to investigate the
strengths and weaknesses of the individual land parameterization schemes used in
the model. In a models’ land surface schemes intercomparison study (Slater et al.,
2001), it was noted that specific snow properties such as its albedo and thermal
conductivity vary from model to model. Also the ablation rates were found to
differ, which apparently is the case in the models used here as evidenced by the
differing lengths of the snow season. It is clear that the predictive skill of spring
cold spells in numerical models is tied to their accuracy in predicting snow fields.



4. PROJECTED CHANGES IN MEAN AND EXTREME
PRECIPITATION IN AFRICA UNDER GLOBAL WARMING. PART I:

SOUTHERN AFRICA

This study investigates likely changes in mean and extreme precipitation over
southern Africa in response to changes in radiative forcing using an ensemble
of global climate models prepared for the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4). Extreme seasonal precipitation
is defined in terms of 10-yr return levels obtained by inverting a generalized Pareto
distribution fitted to excesses above a predefined high threshold. Both present
(control) and future climate precipitation extremes are estimated. The future-to-
control climate ratio of 10-yr return levels is then used as an indicator for the likely
changes in extreme seasonal precipitation.
A Bayesian approach to multimodel ensembling is adopted. The relative weights
assigned to each of the model simulations is determined from bias, convergence,
and correlation. Using this method, the probable limits of the changes in mean
and extreme precipitation are estimated from their posterior distribution.
Over the western parts of southern Africa, an increase in the severity of dry ex-
tremes parallels a statistically significant decrease in mean precipitation during
austral summer months. A notable delay in the onset of the rainy season is found
in almost the entire region. An early cessation is found in many parts. This implies
a statistically significant shortening of the rainy season.
A substantial reduction in moisture influx from the southwestern Indian Ocean
during austral spring is projected. This and the pre-austral spring moisture deficits
are possible mechanisms delaying the rainfall onset in southern Africa. A possible
offshore (northeasterly) shift of the tropical−temperate cloud band is consistent
with more severe droughts in the southwest of southern Africa and enhanced pre-
cipitation farther north in Zambia, Malawi, and northern Mozambique.
This study shows that changes in the mean vary on relatively small spatial scales
in southern Africa and differ between seasons. Changes in extremes often, but not

This chapter is based on the article “Projected changes in mean and extreme precipitation in
Africa under global warming. Part 1: Southern Africa” by Mxolisi E. Shongwe, Geert Jan van Olden-
borgh, Bart J. J. M. van den Hurk, Bas de Boer, Caio A. S. Coelho, and Maarten K. van Aalst, 2009, pub-
lished in Journal of Climate, 22, 38195−3837.
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always, parallel changes in the mean precipitation.

4.1 Introduction

Changes in the mean state of the earth’s climate system due to anthropogenic
modifications in the chemical composition of the earth’s atmosphere have become
a topical issue in recent years (Houghton et al., 2001; IPCC, 2007). Direct con-
sequences of positive radiative forcing resulting from an enhanced greenhouse
effect are changes in global surface and atmospheric temperatures, precipitation
patterns, and other climate variables (IPCC, 2007).
Owing to their great impact on human activity and wide application, potential fu-
ture changes in precipitation deserve much attention. A number of studies have
sought the possible changes in long-term mean precipitation in many parts of
the globe (Giorgi and Mearns, 2002, 2003; Trenberth et al., 2003; Tebaldi et al.,
2004). Less attention has been paid to changes in extreme precipitation. Pro-
nounced increases in heavy precipitation events might be expected to occur where
mean total seasonal or annual precipitation increases. On the other hand, dry ex-
tremes might be expected to become severe where mean precipitation decreases.
However, in cases where the interannual rainfall variance increases, it is possible
that changes in the probability of extreme precipitation events may not paral-
lel that of mean seasonal or annual precipitation. For instance, the severity of
heavy precipitation events may increase in regions where the total precipitation
decreases or remains constant. Since precipitation extremes often have bigger im-
pacts on society than small changes in average precipitation, an investigation of
extremes’ behavior under changing climatic conditions is warranted.
Several studies have investigated the likely changes in mean and extreme pre-
cipitation in many parts of the globe, including Africa (Kharin and Zwiers, 2000;
Groisman et al., 2005; Meehl et al., 2005; Kharin et al., 2007). Most of these stud-
ies have focused on likely patterns of change over large regions of Africa despite
the high degree of spatial variability exhibited by precipitation. Regionally specific
studies have been carried out in other parts of the globe (e.g., van Ulden and van
Oldenborgh, 2006; van den Hurk et al., 2006), but few for Africa and even fewer
for southern Africa.
Hulme et al. (2001) reviewed previous African climate change studies and report
on observed (twentieth century) and likely future (twenty-first century) mean an-
nual temperature and precipitation patterns in Africa. Using seven global climate
models (GCMs), significant decreases in mean December–February (DJF) precip-
itation were found in the interior southern Africa south of about 10◦ S (most of
South Africa, Botswana, and Namibia) in the A2-high scenario. These projected
decreases are substantial after 2050 (their Fig. 10). Sources of uncertainty in
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African climate change scenario studies are also discussed (Hulme et al., 2001).
Previous southern African climate change studies investigating extreme events
(e.g., Joubert et al., 1996; Mason et al., 1999) used either simulations by a sin-
gle climate model or earlier version(s) of a few climate models. Using an ear-
lier version of the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) coupled general circulation model (CGCM), Joubert et al. (1996) found
an increase in the probability of dry years over the southwestern parts of southern
Africa and southern Mozambique under 2 x CO2 experiments. However, southern
African mean annual precipitation was not found to change significantly. Mason
et al. (1999) found an increase in the frequency of extremely wet daily events.
Consistent with Joubert et al. (1996), no significant trend in mean annual precip-
itation was reported. Here, we conduct a detailed regional analysis by combining
results from an ensemble of objectively selected state-of-the-art climate models to
investigate likely long-term (up to 2200) changes in mean and extreme precipita-
tion.
Over the past decades, climate-related extremes have been the dominant trigger of
natural disasters in southern Africa (here defined as Botswana, Lesotho, Malawi,
Mozambique, Namibia, South Africa, Swaziland, Zambia, and Zimbabwe). New
et al. (2006) identified significant trends in southern Africa temperature extremes
and some precipitation indices. In particular, a spatially coherent increase in con-
secutive dry days was found over much of southern Africa in the last decades of
the twentieth century. Upward trends in intense precipitation were found to the
southeast with trends of the opposite sign in northern Namibia, Botswana, and
Zambia.
Concurrently, the number of disasters is on the rise. According to the International
Emergency Disasters Database (EM-DAT; http://www.em-dat.net/), the average
annual number of reported natural disasters in the region has risen from about
5 reported disasters a year in the 1980s to over 18 a year from 2000 to 2006.
Hydrometeorological disasters make up the bulk of those (the others are mostly
epidemics such as malaria, cholera, and meningitis, which are also affected by cli-
matic conditions). Reported drought-related disasters have risen from an average
of about 1.5 per year in the 1980s to about 2 per year since 2000, while those
related to floods have risen from 1.2 a year to almost 7 per year since 2000 (the
rest of the reported increase is mainly due to wind storms). In the past years,
these events have affected the lives and livelihoods of over six million people an-
nually and had severe impacts on economic performance and poverty alleviation
(e.g., Hellmuth et al., 2007). While part of the trend is due to better reporting, it
also reflects a rising vulnerability to natural hazards, and potentially an underly-
ing trend in climate variability and extremes. Operational disaster managers, for
instance from the Red Cross and Red Crescent, also report an increasing pressure
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on humanitarian assistance and express concern that trends in weather extremes
due to climate change increasingly affect their work (e.g., van Aalst et al., 2007).
Among others, they are looking for better analyses on how extreme weather events
may be changing so as to enhance disaster preparedness among poor rural com-
munities and help integrate climate risk management into development planning.
These concerns and questions have provided the motivation for the present study.
Of particular interest is examining likely changes from the present to the late
twenty-first and twenty-second centuries (i.e., the 2051–2200 period) in the sever-
ity of droughts and floods in specific regions of Africa and a comparison with
changes in mean precipitation. With the vulnerable local communities and high
spatial variation of rainfall in mind, this study probes into simulated precipitation
changes at spatial scales smaller than the commonly used Giorgi regions (Giorgi
and Francisco, 2000). Here, we show that averaging over large areas can con-
ceal notable spatial variations in the modeled rainfall response to an enhanced
greenhouse effect. Likely changes in large-scale atmospheric hydrodynamics are
assessed and related to changes in precipitation patterns. Results obtained for
southern Africa are presented in this chapter. Chapter 5 presents the results for
East Africa. In spite of the associated uncertainties (e.g., Hulme et al., 2001),
the results presented below can inform adaptation strategies for governments, the
private sector, and communities in the regions covered in this study.

4.2 Data and Methods

4.2.1 Model simulations and observations

This study uses the World Climate Research Programme (WCRP) Coupled Model
Intercomparison Project phase 3 (CMIP3) multimodel dataset. The model dataset
formed input to the Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4)(IPCC, 2007). Correlation between modeled and Cli-
mate Research Unit (CRU) monthly precipitation and the rms error (RMSE) is
used to assess the degree of realism with which models available on the Program
for Climate Model Diagnosis and Intercomparison (PCMDI) archive simulate the
observed twentieth century precipitation (the 20c3m runs). With this first low-
threshold selection, 12 models were selected and are listed in Table 4.1. For de-
tails of each model formulation, the reader is referred to the references cited in the
table. The model spatial resolutions differ considerably. As the focus of this study
is on relatively small spatial scales, for ease of comparison, the model simulations
are linearly interpolated to a common T95 (1.25◦ × ∼1.24◦ latitude−longitude)
grid.
The availability of long integrations from the Special Report on Emissions Scenar-
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ios (SRES) A1B forced runs enable the assessment of possible long term climate
change signals. In this scenario, CO2 concentration doubles by 2100 and remains
constant thereafter. These SRESA1b model data are subdivided into two subsam-
ples: the 1901–2000 and the 2051–2200 periods, defining the control and future
climate, respectively. Considering the 2051–2200 period is sensible because, in
most cases, changes in model predictions before and after 2100 (CO2 doubling)
are smaller than the internal variability. For climate models with multiple integra-
tions (n20c3m and nSRESA1b; Table 4.1), each ensemble member is considered
an independent realization. The ensemble members are then concatenated to form
a larger sample for each model from which further analyses (see section 4.2.3) are
carried out.
To identify the atmospheric anomalies and/or moisture attributes associated with
precipitation changes, other fields (e.g., wind and specific humidity) from the
model simulations are also used. The computation of moisture transport, for ex-
ample, requires data on finer temporal resolution than the monthly simulations
used to estimate precipitation changes. Daily simulations from the same CGCMs
listed in Table 4.1 are used, except for the third climate configuration of the Met
Office Unified Model (HadCM3) and Hadley Centre Global Environmental Model
version 1 (HadGEM1), whose data are not available on the PCMDI archive. The
PCMDI archive contains only daily data for shorter time slices (e.g., 1961−2000,
2046−65, and 2081−2100) and, therefore, the analysis of these quantities will be
based on these shorter periods.
Observed twentieth-century precipitation data used in this study comprise station
observations obtained from the Global Historical Climatology Network (GHCN)
(Peterson et al., 1997) and gridded data from the Climate Research Unit (CRU
TS2.1) (New et al. 2000) datasets. The former is only used to define homogeneous
rainfall regions (see section 4.2.2). The latter is used in all analyses described in
sections 4.2.3 and 4.2.4. The biases inherent in these datasets notwithstanding,
their quality is sufficient for the present study.
Prior to the analysis of precipitation changes, the data have been screened for
possible trends. Except for clear patterns of low-frequency precipitation variabil-
ity in some regions, significant twentieth-century precipitation trends are not dis-
cernible. Detrending the series prior to the analysis is therefore deemed unneces-
sary. The mean seasonal precipitation rates used here are separated by 12 months.
Clusters of extremes may only reflect interdecadal variability rather than serial
dependence. For this reason, declustering the time series has also been deemed
unnecessary.
Because of its geographical diversity, Africa is divided into four subregions: south-
ern Africa, East Africa, northeast Africa, and West Africa. As aforementioned, this
paper present results obtained for southern Africa (defined here as the area ly-
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Tab. 4.1: Global coupled climate models used in this study. Model resolution is given as T (wavenumber of spectral truncation)
and L (number of vertical layers). The number of ensemble integrations by each model in the twentieth century and
future climate (2051−2200) are shown in the columns with headings n20c3m and nSRESA1b, respectively.

Contributing Centre Model Atmospheric

Resolution

n20c3m nSRESA1b References

Canadian Centre for Climate
Modelling and Analysis

(CCCMA)

General Circulation
Model version 3.1
(GCM3.1)(T47)

T47L31 5 5 Flato (2005)

Météo-France CNRM-CM3 T42L45 1 1 Salas-Mélia et al. (2005)

CSIRO CSIRO Mark version 3.0
(Mk3.0)

T63L18 3 1 Gordon et al. (2002)

Max Planck Institute (MPI) ECHAM5/MPI Ocean
Model (OM)

T63L31 3 3 Roeckner et al. (2003)

Meteorological Institute of the
University of Bonn (MIUB)

ECHO-G T30L19 3 3 Min et al. (2005)

GFDL GFDL CM2.0 2◦
×2.5◦ L24 3 1 Delworth et al. (2006)

GFDL GFDL CM2.1 2◦
×2.5◦ L24 3 1 Delworth et al. (2006)

L’Instituut Pierre-Simon
Laplace (IPSL)

IPSL Coupled Model
version 4 (CM4)

2.5◦
×3.75◦ L30 1 1 Le Clainche et al. (2001)

Center for Climate System
Research/National Institute

for Environmental
Studies/Frontier Research
Center for Global Change

(CCSR/NIES/FRCGC)

Model for Interdisci-
plinary Research on
Climate 3.2, medium
resolution version
[MIROC3.2 (medres)]

T42L20 3 1 Hasumi et al. (2004)

MRI MRI-CGCM2.3.2 T42L30 5 1 Yukimoto and Noda (2001)

Met-Office (UKMO) UKMO-HadCM3 2.5◦
×3.75◦ L19 2 1 Gordon et al. (2000)

UKMO UKMO-HadGEM1 1.25◦
×1.875◦ L38 2 1 Johns et al. (2004)
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ing between ∼35◦ and 10◦ S, 20◦ –42◦ E; Fig. 4.1). Results for other regions are
presented online at http://www.knmi.nl/africa scenarios/. Because of sparsity of
reliable observations in certain parts of southern Africa (e.g., Angola and Demo-
cratic Republic of Congo), these areas have been omitted from the analysis.
Much of southern Africa has a well-defined rainy season during austral summer
months and is characterized by distinct atmospheric dynamics (Tyson and Preston-
Whyte, 2000). In this study, future patterns of southern Africa mean precipita-
tion change in austral spring [September–November (SON)], summer [December–
February (DJF)], autumn [March–May (MAM)], and winter [June–August (JJA)]
are investigated. Extreme precipitation change analysis is only carried out for the
peak of summer (DJF), when most precipitation and extreme events typically oc-
cur (Tyson and Preston-Whyte, 2000). Monthly CRU and CMIP3 precipitation is
accumulated into seasonal (3 month) totals from which mean precipitation rates
(mm day−1) are calculated by dividing by the number of days in that season. The
climatologically wettest seasons have the highest mean precipitation rates-from
either a few very intense rainfall events or prolonged wet spells within that sea-
son. On the other hand, the driest seasons (drought events) have the lowest mean
precipitation rates.

4.2.2 Clustering stations

Mean precipitation and return levels (section 4.2.3) exhibit pronounced spatial
variabilities. This is largely in response to inhomogeneities in land surface features
(e.g., topography and land-sea-lake contrasts). Such localized forcing features are
expected to modulate the precipitation response to changes in radiative forcing.
For this reason, using the GHCN data, homogeneous rainfall regions are identified
within southern Africa using cluster analysis (Mimmack et al., 2001). Rainfall
homogeneity is defined on the basis of the spatial coherence of interannual rainfall
variations.
Prior to the clustering, annual precipitation totals are first calculated using the
July–June year. The annual totals are then clustered using single linkage, aver-
age linkage, complete linkage, and Ward’s agglomerative hierarchical algorithms
(Johnson and Wichern, 2002). Each hierarchical procedure is based on Euclidean
distances between station rainfall data, standardized by removing the mean and
dividing by the mean absolute deviations.
Of the clustering methods used, the Ward minimum error sum of squares proce-
dure yielded the most sensible results. The results from average linkage and com-
plete linkage methods are broadly similar to those from Ward’s method. Poorly
separated clusters representing less distinct regions are merged if the regions are
contiguous. In addition, transitions between regions have been smoothed and
straight lines used to delineate region boundaries. For these reasons, the resulting
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Fig. 4.1: Location map of southern Africa climatic zones identified using Ward’s minimum
variance clustering method.

climate regions shown in Fig. 4.1 differ from those identified by Shongwe et al.
(2006). Here we used 212 stations spanning the period 1941–97 in contrast to
the 255 stations and shorter period (1961–2000) used previously (Shongwe et al.,
2006). Furthermore, in Shongwe et al. (2006), the clustering was based on Eu-
clidean distances calculated from unstandardized principal component scores of
individual monthly rainfall data, as recommended by Mimmack et al. (2001).
Observed seasonal precipitation for each homogeneous zone is calculated from
the CRU datasets by averaging grid points that fall within it. Gridded CRU pre-
cipitation data, which is based on the GHCN station data and automatically gives
equal weight to equal areas, is preferred for further analysis (see sections 4.2.3
and 4.2.4 below). CGCM grids falling within each climatic zone were similarly
averaged. In this way, the spatial noise inherent in precipitation has been filtered
out.
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4.2.3 Extreme value analysis

The analysis of changes of extreme precipitation events is based on the peak-
over-threshold method or generalized Pareto distribution (GPD). In contrast to
using the raw (model) data, fitting a GPD allows interpolation, extrapolation, and
intermodel comparison. A comprehensive introduction to GPD and its applications
can be found in Coles (2001). Details of the extreme value model applied here are
presented in appendix A.
Conventionally, most extreme value studies in climate science (e.g., Kharin and
Zwiers, 2000; Meehl et al., 2005; Kharin et al., 2007) evaluate return levels or
quantiles of a GPD. In this study, 10-, 20-, 50-, and 100-yr return levels have been
estimated. However, given the small sample size of threshold excesses, only the
10-yr return levels are shown. These estimates are interpolated from the data,
rather than extrapolated, and hence are least biased. Results for longer return lev-
els are available online at http://www.knmi.nl/africa scenarios/. Ten-year return
levels (mm day−1) are computed in both control and future climate. These levels
express the average intensity of precipitation in an extremely wet or dry season
that occurs on average once every 10 years (corresponding to 10% probability that
a given season is wetter or drier than this).
Anderson-Darling goodness-of-fit tests (Laio, 2004) have been used to assess the
suitability of the GPD as a model of excesses above the predefined threshold. The
mathematical formulation of this test is shown in appendix B. The test statistics
and critical values are determined from the National Institute of Standards and
Technology software available online at http://www.itl.nist.gov/div898/software/
dataplot.html.

4.2.4 Multi-model ensembling

Uncertainties in long-term climate model simulations can be classified as those
due to natural climate variability, model different responses to a given forcing
(such as increases in greenhouse gas concentration), model imperfections under
the control forcing, and those associated with the emission scenarios used to force
the climate models. For these reasons, no single model is considered accurate.
Many climate studies utilize results from a range of climate models (e.g., Kharin
et al., 2007).
Considerable research is devoted to methods for combining simulations from cli-
mate models (e.g., Giorgi and Mearns, 2002, 2003; Tebaldi et al., 2004, 2005).
This paper adopts the Bayesian method defined by Tebaldi et al. (2005). The in-
herent advantage of this method is that uncertainties of the measures of interest
can be inferred from their posterior distributions, which combines simulation in-
formation from all climate models. This method uses model bias, convergence be-
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tween model projections, and correlation to determine the relative weights given
to each member in the multimodel ensemble. Model bias is defined with respect to
the twentieth-century climate, whereas convergence measures the distance of the
individual model projection from the location of the multimodel ensemble. Models
that simulate the observed climate with some skill and agree with the rest in their
future projections receive more weight. On the other hand, outliers, which show
large biases with respect to the observed climate, are weighted least. Correlation
between the individual model’s deviations from the multimodel ensemble mean
in the present and future climate is also incorporated in the weighting criteria. In
this way, models with systematic biases are further downweighted. The bias and
convergence criteria for determining weights assigned to each member in the en-
semble has been applied previously (Giorgi and Mearns, 2002, 2003). No specific
criteria for assigning weights to model predictions can be considered optimal. For
instance, it is quite possible that several models that exhibit similar performance
in simulating the observed twentieth-century climate still produce quite different
projections for the future climate. The risk of discounting the best model when it
is an outlier with respect to the rest is inevitable from the convergence criterion.
Notwithstanding, these weighting criteria bear enough theoretical and statistical
basis to justify their use.
Fuller details of the statistical treatment of the problem may be found in Tebaldi
et al. (2005). Here, adopting their notation, it suffices to show the measure of
percentage precipitation change as

∆P = 100(
ν

µ
− 1), (4.1)

where ν and µ are used to designate the mean of the multimodel ensemble in the
future and control climate, respectively. For mean precipitation rates and 10-yr
wettest events, ∆P > 0 is indicative of an increase in their intensity, while an
increase in the severity of 10-yr driest events is indicated by ∆P < 0.

4.3 Projected precipitation changes

Mean precipitation in each month computed from the twentieth-century (1901–
2000) CRU gridded data, spatially averaged over each zone, is shown in Fig. 4.2.
Almost everywhere in the region, seasonal rainfall commences around austral
spring months (SON) and ceases around autumn months (MAM). DJF is the peak
of the rainfall season, while JJA is typically dry (less than 1 mm day−1).
This section begins by presenting likely changes in mean precipitation during tran-
sition seasons. We then discuss the projected changes in mean and extreme pre-
cipitation during the peak summer months (DJF). Projected changes in winter
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Fig. 4.2: Annual cycle of southern Africa precipitation derived from the 1901−2000 CRU
gridded data. Zone labels are as indicated in Fig. 4.1.

precipitation, which are of little social and economical significance, are shown in
section 4.4.1.
To allow a concise visual interpretation, we present the results for the percentage
change in precipitation [∆P ; Eq. 4.1] for each climatic zone (Fig. 4.1) as the mean
change with the corresponding 95% confidence interval derived from the Bayesian
method. In each case, statistical significance at the 5% level (i.e., p < 0.05) is
found whenever the 95% confidence region excludes zero (i.e., the null hypothesis
of no change). Significance at the 1% level (p < 0.01) is also tested. Whenever
statistical significance in the projected changes is achieved, the number of CGCMs
(out of the 12) projecting a change of the same sign as the mean change is shown.
This is to demonstrate that the Bayesian weighting procedure is not doing anything
weird.

4.3.1 Changes in transition season mean precipitation

A spatially coherent and significant reduction (p < 0.05) in austral spring (SON)
mean precipitation is found everywhere in southern Africa (Fig. 4.3a). Reduc-
tions in SON precipitation have implications for seasonal rainfall onset in south-
ern Africa. To the west (zone I) and over Zimbabwe and central Mozambique, a
reduction exceeding 20% is simulated with the lower bound of the 95% posterior
interval of ∆P < −35%. Almost everywhere in the region, the entire range of per-
centage reduction in SON precipitation excludes zero, indicative of a considerable
consensus across the models. This, together with spatial coherence of this pat-
tern of change, strengthens the belief that this is a consistently modeled climate
change signal. Tadross et al. (2005) present the climatology of rainfall onset in
southern Africa. Areas to the south experience an earlier rainfall onset from extra-
tropical circulation systems such as frontal depressions and cold-core cutoff lows
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(Tyson and Preston-Whyte, 2000). Albeit relatively small (∼10%), the simulated
SON precipitation decrease over eastern South Africa (zone II) is significant. To
the north and west, where precipitation is predominantly of tropical origin (Tyson
and Preston-Whyte, 2000), reduction in spring precipitation attains significance at
the 1% level.
Projected changes in mean autumn (MAM) precipitation rates are displayed in
Fig. 4.3b. Over zones I and III (much of Botswana and southern Zimbabwe), the
simulated mean reduction of ∼15% attains statistical significance at the 1% level.
In zone IV (northern Zimbabwe and central Mozambique), the mean reduction
(∼10%) is barely significant at the 5% level. Considering that a notable delay
in rainfall onset is simulated in these areas, projections for an early cessation of
seasonal rains suggest a contraction of the rainfall season. Farther north, in zone V
(northern Mozambique, Zambia, and Malawi), MAM precipitation is expected to
increase by ∼10%. A shift in the rainfall season to later months is implied. Little
or no change in MAM precipitation is projected in eastern South Africa, which
implies a shortening of the rainy season.

4.3.2 Changes in mean and extreme summer precipitation rates

Figure 4.4 displays probable changes in summer (DJF) precipitation rates. There
is evidence for a dipole pattern of change in mean precipitation rates (Fig. 4.4a).
The negative pole is found to the western parts featuring the arid Kalahari and
its boundaries (zone I). Here, the projected reduction in DJF mean precipitation
rates (∼ 11%) is significant at the 1% level. Farther north, in the positive pole
(zone V), the simulated changes, albeit subtle (∼ 4%), are significant at the 5%
level. Separating the dipole is a large area to the east (zones II, III, and IV) with no
significant changes in mean DJF precipitation rates. The presence of a dipole pre-
cipitation response to large-scale forcing (e.g., El Niño; Ropelewski and Halpert,
1987) has been found at interannual time scales. Its appearance here suggests that
the climate change signal propagates into the southern Africa precipitation field
through similar pathways (e.g., the tropical Indian Ocean SST pathway; Goddard
and Graham, 1999; Washington and Preston, 2006).
Over the western parts of the subregion, 10-yr driest seasons are projected to
increase their severity by more than 10% (Fig. 4.4b). These projections are sig-
nificant at the 5% level. More severe droughts are also projected to the south of
Zimbabwe and Mozambique. Albeit high in magnitude (averaging ∼20%), these
projections are not statistically significant. Elsewhere in the region, the models
give little or no indications for a possible change in 10-yr driest events. Anomalous
westerly circulations over the southeast Atlantic Ocean have been blamed for past
droughts in much of southwestern Africa (Mulenga et al., 2003). The anomalous
circulation patterns are related to the structure of the tropical-temperate cloud
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Fig. 4.3: Projected changes (%) in austral (a) Spring (Sep–Nov) and (b) Autumn (March–
May) mean precipitation rates in each climatic zone. In each case, three values
are plotted. The middle number gives the mean projected change preceded by its
sign (+ve for increase and -ve for decrease). The number above (below) the mean
change, preceded by a +ve (-ve) sign gives the distance to the upper (lower) crit-
ical value at the 5% level of significance. Projected changes significant at the 5%
(1%) level are shaded in gray (shown by two asterisks). For statistically significant
changes, the number of CGCMs (out of 12) projecting a change of the same sign
as the mean change is enclosed in parenthesis.
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Fig. 4.4: Same as Fig. 4.3 but for austral summer (Dec−Feb): (a) mean precipitation rates,
(b) 10-yr driest events, and (c) 10-yr wettest events.

bands (Todd and Washington, 1999). We postulate that these mechanisms might
be present with similar consequences in the future climate. We shall return to this
point in section 4.4.2.
Subtle but generally significant increases in 10-yr wettest events are found in east-
ern South Africa and farther north in northern Zambia, Malawi, and Mozambique
(Fig. 4.4c). In the north, the magnitude of these changes average ∼10%. A slight
and insignificant decrease in the intensity of 10-yr wettest events is projected in
the western parts of southern Africa (Botswana and western South Africa: zone
I). Elsewhere in the east (zones III and IV), subtle and insignificant increases are
found. In the southern and eastern parts of the study area, flooding has often
occurred from short-duration meso-scale events such as depressions (e.g., Rouault
et al., 2002) and cutoff lows and by landfalling west Indian Ocean tropical cy-
clones (e.g., Reason and Keibel, 2004; Reason, 2007). While there are indications
of possible changes in the intensity of the 10-yr wettest events, poor representa-
tion of small-scale systems (e.g., tropical cyclone activity) in CGCMs limit the con-
fidence we have in these projected changes. The northern areas (zone V) are least
affected by west Indian Ocean tropical storms. In these regions, wettest seasons
are associated with prolonged sequences of wet days, which are dependent on the
mean location and strength of large-scale convection. The projected changes in
these regions are therefore more reliable.
The observed (1901–2000) and simulated (1901–2100) DJF precipitation time
series for each zone are displayed in Fig. 4.5. In these plots, high frequency vari-
ability has been filtered out using a 10-yr running mean. Without exception, low
frequency modes of variability have dominated southern African rainfall during
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the last century. Such low-frequency rainfall fluctuations characterized by ∼18 yr
cycle have long been noted in southern African climate variability (Tyson et al.,
1975). Decadal variability is seen to continue in the future although the spread
in the model projections increases. Unlike here, where the models are equally
weighted, the outliers [e.g., the GCM3.1 (T47) and Centre National de Recherches
Meteorologiques Coupled Global Climate Model, version 3 (CNRM-CM3) models
for DJF] causing the observed large spread are downweighted by the Bayesian
method in Figs. 4.3, 4.4 and 4.7. In most cases, the Bayesian weighting reduces
the spread by more than a factor 2. Notwithstanding the large spread, some fu-
ture patterns emerge. A notable upward trend is projected by a large fraction
of the multimodel ensemble over northern Zambia, Mozambique, and Malawi
(Fig. 4.5e). This upward trend is steeper after 2050. A similar albeit weaker trend
is simulated in eastern South Africa (Fig. 4.5b). On the other hand, a tendency
for drier seasons is projected in western Botswana and South Africa (Fig. 4.5a),
particularly toward the end of the present century. In this subregion, the drying is
stronger in the twenty-second century (not shown).
Apart from the late onset and early cessation signals (Fig. 4.3), internal decadal
variability of rainfall in southern Africa remains large and is likely to mask any
systematic changes in the total rainfall up to at least 2050.

4.4 Projected changes in atmospheric large-scale features

Given the statistical significance of the projected precipitation changes presented
in foregoing sections, an important question is whether associated atmospheric
anomalies can be identified. Previous studies have reported on atmospheric (Mu-
lenga et al., 2003) and oceanic anomalies (e.g., Rocha and Simmonds, 1997a)
associated with southern African precipitation anomalies. Motivated by these find-
ings, we expect that atmospheric adjustments to perturbed radiative forcing will
set up anomalous circulation, hence precipitation, patterns.
In a vast majority of studies, sea surface temperature (SST) anomalies in the tropi-
cal oceans (remote and adjacent) have been blamed for southern African seasonal
rainfall anomalies by generally locking atmospheric flow patterns into particular
regimes (Rocha and Simmonds, 1997b; Cook, 2000a). SST anomalies in the sub-
tropical oceans are also very important for southern Africa (Reason and Mulenga,
1999; Behera and Yamagata, 2001; Reason, 2002). However, the correlation of
African rainfall with SST is less than 0.4 almost everywhere, implying that a large
percentage of rainfall variance is due to other sources. There is growing evidence
that the land surface can also exert an influence (opposing or reinforcing), mainly
through feedback mechanisms (Douville et al., 2000; Douville, 2000a; Cook et al.,
2006).
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Fig. 4.5: Southern Africa 10-yr running mean filtered DJF precipitation anomalies (stan-
dard deviations; σ), based on the 1961−1990 observed and individual model
climatologies. The series spans the 1901−2100 period. Vertical lines termi-
nated by circles show the observed twentieth-century anomalies calculated from
CRU datasets. The white line shows the multimodel ensemble mean simulation,
with the darker and lighter grey shadings indicating 50% ([q0.25, q0.75]) and 95%
([q0.025, q0.975]) of the distribution, respectively.
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We postulate that the climate change signal will be communicated to the precipita-
tion field through other components of the climate system (e.g., the ocean or land
surface) and/or through an alteration in spatial structure and strength of atmo-
spheric circulation regimes. These would in turn influence atmospheric moisture
characteristics. Our hypothesis therefore is that future climate shifts will resem-
ble interannual and decadal variability. On these premises, model results of flow
patterns that would potentially influence rainfall anomalies in southern Africa are
discussed. Smaller samples than in the foregoing sections are dictated by avail-
ability and/or quality of reanalysis fields used to make comparisons with model
output. For daily model output, only shorter time slices (of about 20 years) are
available on the PCMDI archive.

4.4.1 Future moisture characteristics in spring

The reduction in spring precipitation is indicative of a delay in the rainfall onset
over almost the entire southern African region. A trend toward a later onset has
been found in the late twentieth century over parts of southern Africa (Tadross
et al., 2005). Our results show that these decreases are likely to continue in the
future climate (2051−2200). We have shown here that an early cessation is likely
in many parts of the study region. Motivated by the spatial coherence in the
simulated changes, and by similar reasons as Tadross et al. (2005), the focus will
be placed only on the SON season.
SON lower-tropospheric (below 500-mb pressure level) horizontal moisture flux
anomalies, Q′, across southern Africa and the adjacent oceans have been calcu-
lated using daily CGCM simulations of specific humidity and the wind vector. This
quantity is defined as

Q′ =
1

g

∫ pb

pt

〈qV〉f − 〈qV〉c dp, (4.2)

where g is acceleration due to gravity, q is specific humidity, and V the wind vec-
tor. The integral is taken from the 1000-mb (pb) to the 500-mb (pt) pressure level.
Angle brackets denote the time mean for future (f) and current (c) climate, here
defined as the 1961−80 period. Positive SON precipitation anomalies (implying
an early onset) occur more frequently around the latter years of the 1961−80 pe-
riod, consistent with Tadross et al. (2005). Using this reference period should give
an insight on the likely change in water vapor transport across southern Africa.
We also compute anomalous moisture divergence, that is, ∇ · Q′.
Composite moisture transport fields for the driest minus wettest SON seasons are
computed for each CGCM 1961−2000 simulation and displayed in the first column
of Fig. 4.6. A dry (wet) season is defined whenever the amplitude of the first prin-
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cipal component standardized time score is less than (exceeds) one standard devi-
ation. The composites are compared with the future (2046−65 and 2081−2100)
moisture flux anomalies (second and third column of Fig. 4.6, respectively).
Evident in the composites are strong anomalous fluxes whereby moisture trans-
ported along the trades from the west Indian Ocean (north of ∼20◦ S) is diverted
north toward East Africa or is divergent (gray shading). To the south, the cli-
matological onshore moisture transport is weakened or reversed. The CGCM dry
anomalies are broadly similar with those computed from National Centers for En-
vironmental Prediction-National Center for Atmospheric Research (NCEP-NCAR)
reanalysis fields (not shown).
A selection of projected moisture flux anomalies is displayed in the last two columns
of Fig. 4.6. The results from other models are broadly similar. A pattern of anoma-
lous moisture divergence is found over a large part of the study region in most
models. Furthermore, the anomaly patterns are characterized by well-organized
anticyclonic anomalies over much of southeastern Africa. Strong anomalous north-
westerly moisture fluxes are found over the southwestern flank of the subtropical
Indian Ocean anticyclone. This is indicative of a substantial weakening of mois-
ture advection from the Indian Ocean into the subcontinent along the southeastern
coast in future austral spring seasons, consistent with reduced precipitation. West-
erlies from the southeast Atlantic are known to be cold and dry (due to cold waters
and less evaporation; Mulenga et al., 2003). These are similar to the ones in the
first column, showing that, indeed, the patterns of climate change resemble those
of interannual and decadal variability in this respect.
It is quite likely that lower-tropospheric westerly anomalies along the southern
latitudes in the models are dynamically coupled to a significant strengthening and
equatorward expansion of the climatological upper-tropospheric westerlies associ-
ated with the Southern Hemisphere subtropical jet (SHSTJ). A striking similarity
in the pattern of change in strength and latitudinal extent of the spring SHSTJ
across the models used here has been found (not shown). Our results show that
the boundary of the climatological westerly flux is likely to shift equatorward in
future springs. In the western Indian Ocean north of ∼10◦ S, the easterly mon-
soonal circulation carrying moisture gains a southerly component that diverts
moisture into East Africa close to the equator. These are similar to the ones in
the first column, showing that climate change patterns resemble those of inter-
annual and decadal variability. From this one may draw two conclusions: First,
dry spring seasons in the models (and in observations) are unambiguously gener-
ated by weaker lower-tropospheric moisture transport inland. Second, large-scale
circulation changes, whereby moisture influx into southern Africa is substantially
reduced (i.e., a decrease in moisture flux convergence), are a possible cause for
the late rainfall onset in the future.
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Fig. 4.6: SON lower-tropospheric horizontal moisture flux anomalies (kg m−1 s−1). For
each model (name given in the title), the first column displays composites of the
driest minus wettest SON seasons during the 1961−2000 period. The middle
and right columns show the 2046−2065 and 2081−2100 moisture flux anomalies
with respect to the 1961−1980 period. Areas of anomalous moisture divergence
are shaded gray. Southern Africa (Fig. 4.1) is the land area in the dashed rectan-
gular box.
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Fig. 4.7: Same as Fig. 4.3 but for austral winter (Jun−Aug) mean precipitation rates.

Surface and boundary layer processes would be another potential forcing mech-
anism for delayed rainfall onset. Evidence in support of drier winters in south-
ern Africa in the future climate is presented in Fig. 4.7, consistent with previous
findings (IPCC, 2007). Everywhere in the southern African domain, a statistically
significant (at the 1% level everywhere but 5% level to the north) reduction in win-
ter precipitation is simulated. The mean reduction in winter precipitation ranges
from just under 20% to ∼45%. Based on these projections, the delay in rainfall
onset could in part be attributable to a drier land surface from the previous win-
ter. Preseason anomalously wet soils have been identified to be a precursor to
early seasonal rainfall onset (Reason et al., 2005). Reduced local evaporation and
weaker lower-tropospheric moisture advection would possibly work in concert to
delay the rainfall onset in southern Africa. However, moisture advection is a more
significant source over most of southern Africa in spring as recycling ratios have
been found to be low (Trenberth, 1999). We note that a negative feedback mech-
anism whereby wetter soils would result in a concurrent net reduction in summer
precipitation over southern Africa has been presented (Cook et al., 2006). A simi-
lar argument (negative feedback) whereby reduced local moisture recycling led to
enhanced moisture advection and precipitation in some parts of southern Africa
has been presented for the summer (November−February) 1998/99 season (New
et al., 2003).



76
Projected changes in mean and extreme precipitation in Africa under global

warming. Part I: Southern Africa

4.4.2 The tropical-temperate trough (TTT) system

A seasonal northwest-southeast-oriented cloud band across southern Africa, stretch-
ing from the southeast Atlantic to the southwest Indian Ocean, has been identi-
fied as the major rainfall-bearing system during austral summer months (Kuhnel,
1989). This feature, associated with a tropical-temperate trough (TTT) coupling
system (Washington and Todd, 1999), links tropical convection to midlatitude
transient eddies and provides a mechanism for energy and moisture transport
across the southern African middle troposphere (Todd et al., 2004). Owing to
the important implications for southern Africa summer precipitation, using the
daily model precipitation simulations for the 2046–65 and 2081–2100 time slices,
the likely behavior of this system is investigated.
The principal spatial mode of southern African DJF precipitation variability in the
model simulations is identified from their empirical orthogonal functions (EOFs)(van
den Dool, 2007). The correlation matrix forms input into the EOF analysis. Consis-
tent with Washington and Todd (1999), the spatial modes, while broadly similar
in each summer month, are not identical. In the interest of brevity, we present
the results for the leading January (center of the principal rainy season) unro-
tated EOFs and for a selection of models. Varimax-rotated EOFs have also been
calculated. However, contrary to what one would expect from Buel patterns, the
unrotated EOFs do not show uniform centered loadings of the same sign.
The first EOF loadings, expressed as the correlation (× 100) between their coeffi-
cient time series and the CGCM time series for each grid, are shown in Fig. 4.8. The
EOF spatial fields are characterized by a northwest-southeast orientated dipole or
tripole pattern. Evident in the spatial fields are loadings of opposite signs between
locations south of the latitudinal band about 15◦ S−20◦ S, and those farther north
and the southwest Indian Ocean. As expected, intermodel differences in the spa-
tial extent and magnitudes of the EOF weights exist. Notwithstanding, the spa-
tial patterns of simulated rainfall variability are broadly similar to those found in
observations and coincide with preferred locations of the TTT (Washington and
Todd, 1999). The location of TTT, related to the south Indian Ocean convergence
zone (SICZ), has been found to respond to ENSO-related SST anomalies (Cook,
2000b), particularly to west Indian Ocean SST forcing (Goddard and Graham,
1999). The presence of this pattern of rainfall variability in the CGCM simulations
suggests that the climate change signal might propagate into southern African
precipitation through similar pathways as those communicating the interannual
variability forcing.
Having realized that the models adequately capture the major rain-bearing system
across southern Africa, the most relevant question for the present study is how fre-
quent and persistent would the TTT be over the band of preferred locations? This
would attempt to explain the dipole response in mean and extreme DJF precipi-
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tation (cf. Fig. 4.4) between the southwestern and northern areas of the domain
(zones I and V, respectively). We endeavor to answer this question using the first
EOF temporal coefficients displayed in Fig. 4.9. Positive standardized scores are
indicative of periods when the TTT relocates northeastward (positive EOF weights
in Fig. 4.8), and vice versa for negative scores (i.e., south-westward relocation).
In a majority of cases, within each given January, the TTT propagates from the
western pole northeastward into the southwest Indian Ocean. In a number of
cases, the tropical-temperate rainband maintains its eastern locations throughout
the month and in consecutive years. The presence of low frequency variability
notwithstanding, there are indications for a higher frequency of positive scores in
the Meteorological Research Institute (MRI) Coupled General Circulation Model,
version 2.3.2 (CGCM2.3.2a) and Geophysical Fluid Dynamics Laboratory (GFDL)
Climate Model version 2.1 (CM2.1) CGCMs (histograms not shown). However,
the absence of a notably higher frequency in the other models inhibits us from
drawing firm conclusions from our analysis.

4.5 Discussion and conclusions

The present study uses monthly data from the CMIP3 multimodel dataset to es-
timate likely changes in southern Africa precipitation. We have chosen model
projections driven by the intermediate SRES A1b scenario, a standard emission
scenario in which no drastic reduction of CO2 emissions up to 2100 exists, after
which the levels stay constant. This scenario has been chosen because it is realistic
and offers 100 or 200 years of integrations with constant greenhouse gas levels
at twice the preindustrial values. Based on the model projections, we have been
able to estimate the likely change in intensity of mean and extreme precipitation
at much smaller spatial scales than in previous studies. Within southern Africa,
spatial inhomogeneities in the projected changes exist. The inhomogeneities are
explained by the highly variable local forcing, modulating the large-scale signal.
This is despite the fact that accurate representation of land surface features in the
low-resolution models used here has not been achieved yet.
The uncertainty associated with these projections has been presented. Regions
where and periods during which the modeled changes in precipitation show no-
table similarities between the GCMs have been identified, as well as regions where
(and seasons when) marked differences are found. The similarity and spatial co-
herence of the modeled response to enhanced greenhouse gas forcing suggest a
realistic and robust climate change signal. On the other hand, uncertainties char-
acterize those regions where divergences in the modeled precipitation response
are found as well as where systematic biases in the modeled twentieth-century
climate exist. Such cases manifest in the form of a wide range of the projected
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Fig. 4.8: January CGCM simulated precipitation EOF weights for the leading mode. For
each model (name given in the title), the EOF weights for the 2046–2065 and
2081–2100 January precipitation are given in the first and second columns, re-
spectively.
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Fig. 4.9: Standardized principal component scores for each model simulated January daily
precipitation. Each figure displays the 5-day running mean filtered scores for the
2046−2065 (top row) and 2081−2100 (bottom row) time slice.
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changes.
A delay in rainy season onset has been found in southern Africa. We have iden-
tified two factors that are likely to contribute to this: First, a reduction in mois-
ture influx into southern Africa. We have shown here that projected patterns of
moisture transport are anomalously divergent over much of southern Africa. To
the north flank of the south Indian Ocean anticyclone moisture is transported
northwestward into East Africa. Over the southeastern parts, a reduction in mois-
ture flux from the southwest Indian Ocean is found. Climate features forcing the
large-scale circulation, and hence water vapor transport changes, deserve further
research attention. Second, preseason soil moisture deficits resulting in reduced
local evaporation. Despite the low spring moisture recycling found in observa-
tions and modeling results showing a negative feedback from the land surface
(soil moisture anomalies) in summer, drier soils would potentially reinforce lack
of moisture for precipitation in future austral spring seasons.
In many parts of southern Africa, an early cessation of the rainy season is found.
Possible causes of the earlier withdrawal of seasonal rains have not been investi-
gated in this paper. This is a subject for future research. Our results point to a
possible contraction in the rainfall season in locations south of about 15◦ S. To the
north, the rainy season is projected to shift to later months (i.e., a late start and a
delayed cessation).
Mean summer precipitation rates are projected to decrease near the hyperarid and
semiarid areas of southern Africa (zone I). Over these areas, the severity of future
droughts is projected to increase. North of about 15◦ S, mean summer precipi-
tation is projected to increase. Although no causal relationship is implied, more
frequent west Indian Ocean positioned tropical-temperate cloud bands are consis-
tent with a reduction in summer precipitation rates and more severe droughts to
the southwest.
Wet events are projected to become more intense to the north and southeast. To
the north, this is consistent with more prolonged wet spells from persistent con-
vective activity related to the TTT. The increase in the intensity of wettest events to
the southeast is in qualitative agreement with Hewitson and Crane (2006). These
increases in wet extremes may exacerbate the rise in reported flood disasters in
the region. We note, however, that future projections of wettest events are less
trustworthy owing to the inability to accurately simulate small-scale disturbances
such as west Indian Ocean tropical cyclone activity in most models.
In general, the pattern of summer precipitation change, in particular coupled with
increasing temperatures, may result in an eastward extension of desert areas in
southern Africa, water scarcity, reduced agricultural productivity, and increased
risks of food insecurity and famine. Not only is desertification a potential impact
of global warming in southern Africa, but shorter growing seasons are possible
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consequences in a large area.



5. PROJECTED CHANGES IN MEAN AND EXTREME
PRECIPITATION IN AFRICA UNDER GLOBAL WARMING. PART II:

EAST AFRICA

Probable changes in mean and extreme precipitation in East Africa are estimated
from global climate models (GCMs) prepared for the IPCC Fourth Assessment Re-
port (AR4). Bayesian statistics are used to derive the relative weights assigned
to each member in the multi-model ensemble. There is substantial evidence in
support of a positive shift of the whole rainfall distribution in East Africa during
the wet seasons. The models give indications for an increase in mean precipita-
tion rates and intensity of high rainfall events, but less severe droughts. Upward
precipitation trends are projected from early this (twenty-first) century.
As in the observations, a statistically significant link between sea-surface tem-
perature (SST) gradients in the tropical Indian Ocean and short-rains (October–
December) in East Africa is simulated in the GCMs. Furthermore, most models
project a differential warming of the Indian Ocean during boreal autumn. This is
favourable for an increase in the probability of positive Indian Ocean zonal mode
(IOZM) events, which have been associated with anomalously strong short-rains
in East Africa.
On top of the general increase in rainfall in the tropics due to thermodynamic
effects, a change in the structure of the Eastern Hemisphere Walker circulation is
consistent with an increase in East Africa precipitation relative to other regions
within the same latitudinal belt. A notable feature of this change is a weakening
of the climatological subsidence over eastern Kenya.
East Africa is shown to be a region in which a coherent projection of future precip-
itation change can be made, supported by physical arguments. Although the rate
of change is still uncertain, almost all results point to a wetter climate with more
intense wet seasons and less severe droughts.

This chapter is based on the article “Projected changes in mean and extreme precipitation in
Africa under global warming. Part II: East Africa” by Mxolisi E. Shongwe, Geert Jan van Olden-
borgh, Bart J. J. M. van den Hurk, and Maarten K. van Aalst, 2008, submitted to Journal of Climate.
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5.1 Introduction

The chemical composition of the atmosphere is changing due to human activi-
ties, triggering numerous studies aimed at understanding the sensitivity of the
climate system to rising greenhouse gas concentrations (Houghton et al., 2001;
IPCC, 2007, and references therein). Although the increase in greenhouse gases
is relatively uniform around the globe, the response in a myriad of climate vari-
ables inevitably exhibits spatial inhomogeneities. For this reason, many studies
have focused on possible impacts of climate change on selected climate variables
in specific regions of the globe, especially those variables considered economically
and socially significant (e.g., Gillett et al., 2004a; Karoly and Braganza, 2005;
Hegerl et al., 2006; van Ulden and van Oldenborgh, 2006; van den Hurk et al.,
2006; Beniston et al., 2007).
Considerable effort has been devoted to investigating possible changes in mean
climate, and increasingly also to changes in variability and extremes, in the North-
ern Hemisphere continental areas. This is related to the availability of expertise
and reliable data in these areas. By comparison, many of the least developed coun-
tries, especially in Africa, suffer from both a lack of high-quality data and lack of
research attention and capacity. Hence, there are far fewer climate analyses for
these regions, especially in relation to variability and extremes. Impact analyses
show that such variability and extremes disproportionally affect the poorest coun-
tries and the poorest people (e.g. African Development Bank (AfDB) et al., 2003).
Trying to address that gap, Chapter 4 (hereafter SHO09) presents an analysis of
projected precipitation changes for southern Africa. In this paper, a similar ap-
proach is applied to East Africa, defined as the area lying between 10◦ S–4◦ N,
28◦ –42◦ E. The region experiences a semi-annual rainfall cycle with two major
rainfall peaks in boreal spring [March–May (MAM); also known as long-rains] and
autumn [September–December (SOND); also known as the short-rains]. During
the latter season (short-rains), atmospheric dynamics in the first month (Septem-
ber) differ from the rest of the season (October–December). Also, teleconnections
with large-scale features such as the El-Niño/Southern-Oscillation (ENSO) are dif-
ferent between September and OND (Mutai and Ward, 2000). It is common prac-
tice therefore to omit September when referring to the short-rains in East Africa
(e.g. Clark et al., 2003; Anyah and Semazzi, 2007). We adopt the same conven-
tion in this paper. Some portion of the selected area has one rainfall maximum
during boreal winter–spring months (November–April).
Traditionally, climate change studies in which Africa features have tended to focus
on likely precipitation changes during boreal summer and winter (IPCC, 2007).
Much less is known about the transition seasons (i.e. boreal autumn and spring),
which are the rainy seasons in East Africa. Furthermore, there has been a tendency
to focus at large regions within Africa or in some cases on the Giorgi regions
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(Giorgi and Francisco, 2000). While this approach is useful in diagnosing the
climate change signal on rainfall as a first step, it tends to overlook the effect of
local features such as East Africa’s varied topography (e.g. mountain ranges and
rift valleys) and large water bodies (e.g. Lake Victoria) on the large scale signal.
Although most of these local controls are not yet adequately represented in low-
resolution climate models such as those used here, the homogenous subregions
identified by Indeje et al. (2000) are used to show that rainfall response to global
warming is not uniform across the region.
In recent years, East Africa has suffered frequent episodes of both excessive (e.g.
Webster et al., 1999; Latif et al., 1999) and deficient rainfall (e.g. Hastenrath et al.,
2007). In particular, the frequency of anomalously strong rainfall causing floods
has increased. Our analysis of data from the International Disaster Database EM-
DAT (http://www.em-dat.net/), reveals that there has also been an increase in the
number of reported hydrometeorological disasters in the region, from an average
of less than 3 events/year in the 1980s, to over 7 events/year in the 1990s, and
almost 10 events/year from 2000 to 2006, with a particular increase in floods:
from an average of less than 1 event/year in the 1980s to 7 events/year between
2000 and 2006. In the period 2000–2006, these hydrometeorological disasters
affected on average almost two million people per year. In addition, they have
severe impacts on economic performance and poverty alleviation (e.g., Hellmuth
et al., 2007).
Furthermore, we note that many of the region’s epidemics, which dominate the
remainder of the reported disasters in the EM-DAT database, are also affected by
climatic conditions. While part of the trend is due to better reporting, it also re-
flects a rising vulnerability to natural hazards, and potentially an underlying trend
in climate variability and extremes. These rising risks are receiving increasing
attention from policy makers, for example, in the Decision and Declaration on
Climate Change and Development adopted by the African Union Head of State
Summit in January 2007, and in new efforts by East African governments to bet-
ter manage climate risks. In Kenya for instance, the Kenya Adaptation to Climate
Change in Arid Lands (KACCAL) project aims to address the increasing risk of both
floods and droughts (World Bank, 2006).
In this context, there is an obvious need for better analyses of the likely response
of extreme climate events in this region to global warming, to inform disaster
preparedness and development planning. Such demands provided the motivation
for the present study. The primary aim is to assess how the intensity of seasonal
precipitation extremes is likely to change in the region, against the backdrop of
probable changes in mean precipitation. A secondary aim is to assess the spatial
inhomogeneities in the model projections. We also present physical mechanisms
that may explain the simulated changes in the precipitation probability distribu-
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tion.

5.2 Data and Methods

5.2.1 Model simulations and observations

A brief description of the datasets used and the analysis methods applied are given
below. Further details can be found in SHO09. The models used in the Inter-
governmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4;
IPCC, 2007) form the major input to the analysis of changes in precipitation pat-
terns. From these models, the output of which has been made available as part
of the World Climate Research Program (WCRP) Coupled Model Intercomparison
Project Phase 3 (CMIP3) datasets, a subset consisting of 12 coupled general cir-
culation model (CGCM) simulations has been selected. We have chosen model
projections driven by the intermediate SRES A1B scenario, a standard emission
scenario currently roughly corresponding to observed CO2 concentrations. In this
scenario, there is no drastic reduction of CO2 emissions up to 2100, when concen-
trations reach twice their pre-industrial levels. After 2100, experiments have been
continued with constant CO2 concentrations at this level.
Compared to the Climate Research Unit (CRU TS2.1; New et al., 2000) grid-
ded precipitation, the 12 selected CGCMs had the highest correlation and small-
est root-mean-squared-error (RMSE) over much of sub-Saharan Africa. Results
from the CGCM selection process are relevant for this larger domain (sub-Saharan
Africa). For this reason, they are not included in this study, which focuses on a
smaller sub-domain. The selected CGCMs, their spatial resolutions, ensemble sizes
and references are given in Table 1 of SHO09. The model simulations are linearly
interpolated to a common 1.25◦ × ∼1.24◦ lat/lon grid, corresponding roughly to
T95 resolution. As in SHO09, two subsamples have been selected from the model
simulations. The 1901–2000 and 2051–2200 periods define the present (20c3m)
and future climate, respectively.
In addition to monthly CMIP3 precipitation, the horizontal wind vector and pres-
sure vertical velocity (ω) fields are used. These variables are used to estimate the
strength and structure of the Eastern Hemisphere zonal (Walker) circulation and
their projected changes. Three of the models∗ used in the precipitation change
analysis have been omitted in the analysis of the zonal circulation. The CGCM
background Walker circulation is compared with that obtained from the Euro-

∗ The ECHO-G model has been omitted because horizontal wind and pressure velocity fields are not
available on the IPCC-AR4 archive in both their 20c3m and SRESA1b runs. For the CSIRO Mk3.0,
the vertical velocity fields are not available. For the UKMO HadCM3, SRESA1b horizontal wind and
vertical velocity fields are not available.
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pean Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis
(ERA40; Uppala et al., 2005).
Observed twentieth century precipitation used in this study was taken from the
CRU TS2.1 gridded station data. Unlike in SHO09, dearth of station observations
in the Global Historical Climatology Network (GHCN) data precluded delineating
homogenous rainfall zones. For this reason, the climate zones defined by Indeje
et al. (2000) have been adopted in this study. These zones are shown in Fig. 5.1.
The western zones of Indeje et al. (2000) are combined into one zone (Zone III;
Fig. 5.1) to allow a larger spatial sampling. In most models used here, precipita-
tion in these areas have a similar probability density functions (PDFs; not shown).
The CRU TS2.1 grid points falling within each zone are averaged. All the zones
except much of Tanzania (Zone IV) have a semi–annual cycle. In Zone IV, the an-
nual cycle of area-averaged precipitation showed a peak during austral summer–
autumn months (November–April). The CMIP3 simulated precipitation is spatially
averaged analogous to the CRU TS2.1 data. The coastal region, the central region
of Kenya and the Lake Victoria area are small to be adequately resolved by some
low-resolution CGCMs. These regions have therefore been omitted in the analysis.
Monthly precipitation from the CRU TS2.1 gridded station and CMIP3 data are
accumulated into seasonal totals for each rainfall season of East Africa. Mean
precipitation rates (mmday−1) in a given season are calculated by dividing the
seasonal totals by the number of days within that season. Climatologically wettest
seasons are defined as those with the highest mean precipitation rates. On the
other hand, driest seasons, characterizing meteorological droughts, have the low-
est mean precipitation rates.

5.2.2 Extreme value analysis

The peak over threshold or Generalised Pareto Distribution (GPD) is used in this
study to represent the distribution of observed and simulated extreme seasonal
precipitation rates. A description of GPD and its applications is found in Coles
(2001). The quality of the GPD fit is then assessed using Anderson-Darling goodness-
of-fit tests (Laio, 2004). Details of how the GPD has been applied in our work
including statistical tests is discussed by SHO09.
Return levels are estimated from the fitted GPD. Return levels are frequently used
in extreme precipitation studies in climate research (e.g., Kharin and Zwiers, 2000;
Meehl et al., 2005; Kharin et al., 2007) because of the simplicity of their interpre-
tation. The return level (zp) is the threshold likely to be exceeded in a given year
with probability p, or the level likely to be exceeded once in every 1/p years. In
this study 10-, 20-, 50- and 100-year return levels have been estimated. The return
values are computed for each homogenous zone (Fig. 5.1) in both the OND and
MAM seasons. Owing to the small sample size of threshold excesses, only results
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Fig. 5.1: Location map of East Africa’s climatic zones adopted from Indeje et al. (2000).
Region III on the west is a combination of two of the Indeje et al. (2000) original
zones. Regions that are not large enough to be adequately resolved by the lowest
resolution AR4 CGCMs (shown by XX) have been omitted in our analyses.
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based on the least biased 10-year return levels are presented in this paper. These
GPD quantiles (10-year return levels) are obtained from an interpolation rather
than an extrapolation. Results obtained using 100-year return levels are available
on the KNMI Africa scenarios web-site (http://www.knmi.nl/africa scenarios/).
When modelling dry extremes following the approach discussed by SHO09, a
problem is encountered during extrapolation to much longer return periods be-
cause these extremes are by definition constrained by zero above (i.e. dry ex-
tremes have a finite upper bound). However, mean precipitation rates during the
driest seasons are typically greater than zero. Also, the results presented in this
paper are based on shorter 10-year return levels, which are obtained through an
interpolation rather than an extrapolation. The limitation imposed by the upper
finite bound of dry extremes is therefore not a concern in this study.

5.2.3 Multi-model ensembling

Uncertainties are inherent in long-term climate model simulations. These can
be attributed to natural climate variability, different model responses to a given
forcing (such as increases in greenhouse gas concentration) and those associated
with the emission scenarios used to force the climate models. In climate change
studies devoted to precipitation extremes and their possible future changes, it has
become common practice to use simulations from a range of climate models (e.g.,
Kharin et al., 2007). Research on how best to combine simulations from several
climate models through objective weighting is ongoing (e.g. Giorgi and Mearns,
2002, 2003; Tebaldi et al., 2004, 2005).
Using Bayes theorem and making certain assumptions, it is possible to objectively
assign weights to different climate models leading to a probability distribution of
future climate change. These assumptions detailed by Tebaldi et al. (2005) relate
to model bias, model independence and the similarity of physical mechanisms
determining the unforced and future climate. This method has been adopted in
the present study. We note here that equal weighting of the models yields similar
results to the Bayesian weighing method used to obtain the results presented in
Section 5.3. The Bayesian method offered an additional value by, amongst other
things, downweighting obvious outliers.
For comprehensive details of this method, the reader is referred to Tebaldi et al.
(2005). The Bayesian method requires that the input variables have Gaussian like-
lihoods. Mean precipitation taken over sufficiently long periods (100 or 150 years
in this study) meet this requirement from the central limit theorem. To fulfill this
requirement in the case of extreme quantiles, the first step involved estimating
the GPD parameters from maximum likelihood. After checking for model qual-
ity and inverting the GPD to obtain the 10-year return levels, we then use the
delta method described by Coles (2001) to estimate the uncertainty on the return
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levels. Using a profile likelihood function (Coles, 2001) has been deemed un-
necessary when estimating the shorter 10-year return levels. More details of the
methodology used to obtain the GPD quantiles can be found in Appendix A.
To summarize, in the Bayesian framework used, the ratio of the conditional poste-
rior mean of future climate (ν) to control climate (µ) simulations is used to define
the relative precipitation change (∆P ) as

∆P = 100(
ν

µ
− 1) . (5.1)

For mean precipitation rates and 10-year wettest events, ∆P > 0 is indicative of
an increase in their intensity. An increase in the severity of 10-year driest events is
indicated by ∆P < 0. As previously mentioned, these changes compare statistics
computed using data for the 1901–2000 (present) period with their counterparts
in the 2051–2200 (future) period.

5.3 Changes in mean and extreme precipitation

In the following sub-sections, we present the 95% confidence interval of ∆P as
obtained from the Bayesian method for each zone and rainy season of East Africa.
We present the results on maps to allow a concise visual interpretation and an easy
assessment of the spatial pattern of the projected changes. Statistical significance
at the α% significance level (i.e. p < α/100) is found whenever the (100–α)%
confidence interval of ∆P excludes zero (i.e. the null hypothesis of no precipita-
tion change). Statistical significance at the α% level is achieved whenever there
is strong evidence from the Bayesian weighted model simulations in support of a
(100–α)% chance that ∆P falls on one side of the zero line although some models
can still give projections of the opposite sign. Using this convention, changes that
are statistically significant at the 5% level (1% level) are shaded gray (shown by
two asterisks) in the maps.

5.3.1 Short-rains season (October–December; OND)

Mean OND precipitation increases are simulated almost everywhere in East Africa
(Fig. 5.2a). Over the semi-arid areas in northern Kenya (Zones I and II; Fig. 5.1),
the western parts, which include Rwanda and Burundi (Zone III), mean precipi-
tation is projected to increase by more than ∼10%. These increases achieve sta-
tistical significance at the 5% level almost everywhere, and are even significant
at the 1% level to the north. Over much of Tanzania (Zone IV), the model pro-
jections provide evidence in support of an increase in precipitation rates during
austral summer–autumn months (November–April). While most models show an
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Fig. 5.2: Projected changes (%) in October–December (OND; short–rains) a) mean pre-
cipitation rates, b) 10–year driest events, and c) 10–year wettest events in each
climatic zone. In much of Tanzania (Zone IV; Fig. 5.1), the displayed precipita-
tion changes are for the austral summer−autumn (November–April) season. In
each case, three values are plotted. The middle number gives the mean projected
change preceded by its sign (+ve for increase and -ve for decrease). The number
above (below) the mean change, preceded by a +ve (-ve) sign gives the distance to
the upper (lower) critical value at the 5% level of significance. Projected changes
that are significant at the 5% (1%) level are shaded in grey (shown by two aster-
isks).

increase in mean OND precipitation, the HadGEM1 model shows decreases in rain-
fall almost everywhere in the area. The convergence criterion used in the Bayesian
weighting (Tebaldi et al., 2005) treats this model as an outlier and downweighs it.
A reduction of the severity of 10-year driest seasons are found over almost the
entire East African region (Fig. 5.2b). The magnitudes of the simulated reduction
in the severity of these OND dry extremes are comparable with those of the mean
precipitation rates. Larger reductions (∼32%), significant at the 1% level, are
found in northern Kenya and Uganda (Zone II). Elsewhere in the north, the pro-
jected lessening of 10-year droughts’ severity is not statistically significant. Austral
summer–autumn 10-year droughts are becoming less severe in much of Tanzania
by about 14%.
In common with changes in the mean precipitation rates, widespread increases in
the intensity of 10-year wettest OND seasons are simulated (Fig. 5.2c). Significant
increases exceeding ≥10% are found in Kenya, Uganda and the western parts. In
northeastern Democratic Republic of Congo (DRC) and much of Tanzania (Zone
IV), increases in the 10-year wettest austral summer seasons average ∼15%.
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Fig. 5.3: Same as Fig. 5.2 but for the March–May (long-rains) season.

5.3.2 Long-rains season (March–May)

Changes in mean precipitation during the long-rains season (MAM) have generally
the same sign and magnitudes as those simulated for the short-rains (Fig. 5.3a).
The Bayesian weighted model simulations project more than ∼15% increase in
mean precipitation rates over much of East Africa. The upper confidence limit
exceeds ∼25% over a large area to the north and west. However, in contrast to
the short-rains, the models perform poorly in simulating the twentieth century cli-
mate during this season. During the model pre-selection process, relative to the
OND season, correlation between the monthly CRU and model simulated MAM
precipitation was found to be low while the RMSE scores were found to be higher
(not shown). The difficulty in modelling precipitation during the long-rains has
been found in seasonal climate predictability studies, and is due to a dominance
of internal atmospheric variations (not provably connected to other components
of the climate system; Mutai et al., 1998). Despite the statistical significance in
the simulated patterns of change, the uncertainty associated with these patterns
is higher. The models show a reduction in the severity of 10-year droughts al-
most everywhere except over eastern Kenya (Fig. 5.3b). In eastern Kenya, where
changes in dry and wet extremes have opposite signs, an increase in interannual
rainfall variance is implied. Changes in 10-year wettest seasons are of the same
sign as those of mean precipitation rates implying that floods are likely to become
more intense (Fig. 5.3c). However, we place less emphasis on these projections
owing to their lower reliability.

5.3.3 Time series analysis

Time series plots for East Africa precipitation during the twentieth (observed and
simulated) and twenty-first centuries (simulated) and in each rainy season are
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Fig. 5.4: Time series of observed and simulated precipitation anomalies (standard devia-
tion; σ) with reference to the 1961–1990 climatology. Panels a), b) and c) display
the time-series for OND rainfall. Panel d) show the series for much of Tanzania
(Zone IV; Fig. 5.1) during austral summer–autumn (November–April; NDJFMA),
while the bottom two panels (e and f) display the series for MAM precipitation in
eastern Kenya (Zone I), and northern Kenya and Uganda (Zone II), respectively.
The black vertical lines terminated by circles display the observed twentieth cen-
tury precipitation from CRU data. The white line show the ensemble average, with
the darker grey shadings indicating 50% ([q0.25, q0.75]) and 95% ([q0.025, q0.975])
of the distribution, respectively.
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shown in Fig. 5.4. Unlike in Figs. 5.2 and 5.3, where the CGCMs are subjected
to a Bayesian weighting, the models are equally weighted in these plots. Despite
the wider inter-model dispersion in their twenty-first century projections [caused
mainly by the outlying HadGEM1 (dry) and MIROC3.2 (wet) CGCMs], there is
substantial evidence in support of an increase in the amount of rainfall. The sharp
precipitation increase in East Africa emerges from the early part of the twenty-
first century and in most cases is a reversal of drier conditions experienced during
much of last century. A trend toward predominantly positive precipitation anoma-
lies is also present in the long-rains twenty-first century time series (Fig. 5.4e–f).
However, the signal-to-noise ratio in these projections is low.
Noteworthy, the results from the Bayesian weighted and unweighted simulations
are broadly similar. By down-weighing outlying CGCMs, the Bayesian procedure
offered the additional value of reducing the model dispersion by about a factor
two, particularly in the twenty-second century simulations when the model spread
is largest.

5.4 Projected changes in large-scale forcing

The robust climate change signal on East Africa precipitation presented above
prompts us to endeavor to diagnose likely physical mechanisms and forcings.
There is considerable consensus between observational, theoretical and modelling
studies with regard to an increase in vertically-integrated atmospheric water vapour
as the climate warms (Zveryaev and Chu, 2003; Trenberth et al., 2005; Zveryaev
and Allan, 2005). Related to this is a robust projection of precipitation increase
in the deep tropics, which has been detected in the current climate (Zhang et al.,
2007). The zonal mean precipitation in the tropics increases because the 7%/◦ C
increase in precipitable water, which follows the Clausius-Clapeyron relationship,
is not completely compensated by a slow-down of the tropical circulation (Held
and Soden, 2006; Vecchi and Soden, 2007).
The increase in precipitation in the tropics is not zonally uniform, with East Africa
precipitation projected to increase more than the zonal mean. These zonal asym-
metries in tropical precipitation response to global warming suggest that other
mechanisms also exert a significant influence. These partly stem from the atmo-
spheric dynamic response, which is not zonally symmetric and leads to a horizon-
tal redistribution of water vapor.
To understand this we turn to the well understood interannual variability in the
region. Our hypothesis is that the climate change signal will be communicated to
the rainfall field partly through the same factors which control interannual rain-
fall variability in the present climate. At interannual timescales, Hastenrath et al.
(1993) discussed atmospheric forcing on the Indian Ocean hydrosphere. A num-
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ber of papers documenting atmosphere-ocean coupling have appeared in literature
(e.g. Webster et al., 1999; Saji et al., 1999; Goddard and Graham, 1999). It has
been found that atmospheric anomalies of pressure and wind typically precede
sea-surface temperature (SST) anomalies (Hastenrath and Polzin, 2005). Subse-
quent SST anomalies, in part forced by wind-stress anomalies, feed back to the
atmosphere, further reinforcing atmospheric anomalies (Goddard and Graham,
1999), which often result in precipitation anomalies. Against this background,
modelled changes in SST and atmospheric circulation during the short-rains sea-
son are examined in this section.

5.4.1 Projected OND Indian Ocean SST pattern and rainfall relationship

Observational and modelling studies have linked East African high-frequency rain-
fall variability during boreal autumn to SST anomalies (Goddard and Graham,
1999; Black et al., 2003). Earlier studies aimed at understanding the link between
East Africa precipitation and equatorial Pacific Ocean SSTs associated with the
El Niño-Southern Oscillation (ENSO; e.g., Hastenrath et al., 1993; Indeje et al.,
2000). It was found that ENSO exerts some influence on East Africa short-rains
such that rainfall is enhanced (suppressed) during warm (cold) events in the east-
ern equatorial Pacific Ocean.
It has been shown that the Indian Ocean is one of the pathways through which
the ENSO signal propagates into East Africa precipitation. Often, the west Indian
Ocean warming lags that of the eastern equatorial Pacific by a few months (Klein
et al., 1999). However, evidence has been presented supporting the existence of
an Indian Ocean mode of SST variability independent of ENSO (Saji et al., 1999;
Webster et al., 1999). In fact OND 1961, one of the wettest in the twentieth cen-
tury, was not related to ENSO (figure not shown). The models used in this study
do not give a robust signal with respect to changes in the mean state of ENSO
(not shown). Based on these findings and the fact that changes in ENSO prop-
erties are unlikely to exceed natural variability (van Oldenborgh et al., 2005c),
possible changes in Indian Ocean SST patterns are investigated in this paper. This
is motivated by results from studies which found Indian Ocean SST anomalies to
be the dominant factor controlling East Africa short-rains (Latif et al., 1999; God-
dard and Graham, 1999; Black et al., 2003; Clark et al., 2003; Behera et al., 2005;
Washington and Preston, 2006).
In this study, the 1901–2000 CGCM simulated East Africa short- and long-rains
were subjected to a standard empirical orthogonal function (EOF) analysis (see
e.g. van den Dool, 2007). The first EOFs are a monopole patterns describing
the largest source of interannual variability in this region, particularly during the
short-rains. The corresponding principal component series are then regressed on
simultaneous Indian Ocean SSTs from each model. The regression of the first
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principal components (PC 1) on Indian Ocean SSTs are displayed in the first and
last columns of Fig. 5.5. Areas with significant regression at the 5% level (from a
two-sided local t-test ) are shaded.
A statistically significant positive link is found with SSTs in the western tropical
Indian Ocean (WTIO), west of ∼80◦ E in most models. In some models (e.g.
CSIRO-Mk3.0, ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1 and ECHO-G) the
ocean area with significant positive association with precipitation extends into the
Bay of Bengal. Negative regression coefficients are found in the southeastern In-
dian Ocean off the coast of Sumatra in almost all models. The figures demonstrate
that wetter conditions in East Africa in the CGCMs during boreal autumn often
occur when SSTs are warmer in the western Indian Ocean and cooler close to
the Maritime Continent. These results are broadly similar to previous findings
on Indian Ocean–East Africa rainfall relationships in observational and modelling
research work (Black et al., 2003; Clark et al., 2003). The major atmospheric re-
sponse to the anomalous zonal SST gradients relevant for East Africa short-rains
is a perturbed Indian Ocean Walker cell (Behera et al., 2005). Low-level easterly
anomalies south and close to the equator are a prominent feature in this perturbed
local Walker circulation. These moisture-laden winds feed the diabatic heating-
induced anomalous convection close to the warm SST anomaly, with the obvious
consequence of enhanced precipitation.
There is no similarly significant link between the long-rains (MAM) and simulta-
neous Indian Ocean SSTs in the models (last column of Fig. 5.5). Even in models
which show some association (e.g. CNRM-CM3, MIROC3.2, ECHAM5/MPI–OM,
ECHO–G and GFDL-CM2.0), the remarkable rainfall link to tropical Indian Ocean
SST gradients found during the OND season is not present. We do not know of
any documented external control (from other components of the climate system)
for the long-rains interannual variability. For this reason, our discussion will focus
on SST patterns likely to influence OND rainfall.
Having established the existence of the Indian Ocean SST signal on rainfall, the
model simulated SST differences (2051–2200 minus 1901–2000) are examined.
Boreal autumn (OND) Indian Ocean SST differences are displayed in the middle
column of Fig. 5.5. Statistically significant (at the 1% level) basin-wide warming
is found. Although SSTs warm throughout the tropical Indian Ocean basin, zonal
asymmetries in the warming are evident in most models. The western part of
the basin is generally projected to warm more than the eastern. These results
are in qualitative agreement with Vecchi and Soden (2007) who show a tendency
towards upwelling (downwelling) along the eastern (western) equatorial Indian
Ocean in the twenty-first century (their Fig. 15).
A similar differential warming is observed in interannual variability. It stems from
wind-evaporation-SST and wind-thermocline-SST feedbacks which cool the ocean
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Figure 5: Regression [ + ve (solid lines) and -ve (dashed lines)] of model simulated 1901–

2 000 OND precipitation E OF 1 on simultaneous I ndian Ocean S S Ts (fi rst column). For

e simulated OND S S T
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statistics as column 1, but for MAM season. I n each case regression coeffi cients that are

statistically signifi cant at the 5% level are shaded grey. Th

to defi ne the I ndian Ocean Zonal Mode index (I OZMI ).

Fig. 5.5: Regression [+ve (solid lines) and -ve (dashed lines)] of model simulated 1901–
2000 OND precipitation EOF 1 on simultaneous Indian Ocean SSTs (first column).
For each model (name in the title), the second column displays the simulated OND
SST difference (i.e. 2051–2200 minus 1901–2000; ◦ C). The third column shows
the same statistics as column 1, but for MAM season. In each case, regression
coefficients that are statistically significant at the 5% level are shaded grey. The
rectangles show areas used to define the Indian Ocean Zonal Mode index (IOZMI).
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37

Fig. 5.5: continued. . .
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surface in the south-east Indian Ocean (SEIO) from boreal summer to fall before
giving way to basin wide warming from around December (Shinoda et al., 2004).
Vecchi and Soden (2007) argue that atmospheric anomalies drive changes in trop-
ical ocean dynamics, and hence the ocean thermal structure in the twenty-first
century. The simulated differential warming and associated anomalous zonal SST
gradients have implications for the east-west Indian SST dipole that occasionally
peaks during boreal fall months (Behera et al., 2005). As demonstrated above,
enhanced rainfall in East Africa is often associated with anomalously warm (cold)
SSTs in the WTIO (SEIO).
We proceed by defining an index WTI expressed as average SST in the rectangular
domain to the west (50◦ –70◦ E, 10◦ N–10◦ S) and another index SEI for the box
in the eastern extremity (90◦ –100◦ E, 0◦ –15◦ S). The Indian Ocean zonal mode
index (IOZMI), which represents zonal SST gradients across the near-equatorial
Indian Ocean is then defined as IOZMI = WTI−SEI. These boxes are indicated in
the first two columns of Figure 5.5.

Fig. 5.6: Probability density functions (PDFs) of the IOZM simulated by the selected CGCMs
(name given in the title) in the twentieth century (solid line) and future climate
(2051–2200; dashed line).

Probability density functions (PDFs) of IOZMI are shown in Fig. 5.6. Almost all
the models displayed in the figure show a clear shift in the PDFs towards a higher
probability of positive IOZM phases. This enhanced probability translates to a
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higher probability of excessive short-rains in East Africa in the future climate.
These findings are consistent with the results presented in Section 5.3.1. On aver-
age, IOZM-shift contributes to ∼30% (95% confidence interval is [12,49]) of the
overall precipitation change (results not shown).

5.4.2 Changes in Eastern Hemisphere Walker circulation

In this section, we investigate the circulation changes that give rise to the corre-
lation between the OND Indian Ocean zonal SST gradient and simultaneous pre-
cipitation in East Africa. The main changes are in the Walker circulation, which
are shown for much of the eastern Hemisphere stretching from 20◦ W – 160◦ E. To
define the Walker circulation, we employ the approach used by Chen (2005), and
many others, to define atmospheric overturning circulations. In this approach, the
first step involves decomposing the horizontal wind vector into its divergent and
rotational components. A zonal (meridional) cell is then defined from the zonal
(meridional) component of the divergent wind and the vertical velocity.
The tropical zonal circulation plotted in Fig. 5.7a show three overturning cells: 1)
A narrow cell featuring strong ascending motion to the west and subsidence to
the east is found in East Africa extending towards the western Indian Ocean. The
descending branch of this cell coincides with the semi-arid areas in East Africa. The
ascending branch correspond to the major source of diabatic heating over Congo.
We refer to this as the East African Walker cell. 2) A shallower East Atlantic cell
is found on the west flank of the East African Walker cell. 3) To the east, the East
African cell is flanked by a broader Indian Ocean cell. In most models used here,
the background zonal circulation is broadly similar to that found in the ERA40
reanalysis despite the differences in the analysis period considered (1901–2000
and 1958–2000 for the PCMDI and ERA40 data, respectively).
A dominant feature in projected changes in atmospheric upward vertical velocity
is a weakening of the ascending branch of the East Atlantic Walker cell over central
Africa. A reduction in ω exceeding 2×10−4 mbs−1 is found in most models in the
middle to upper troposphere. Almost all the CGCMs, show positive differences in
the omega velocities over the descending branch of the narrow East African Walker
cell. Although not statistically significant in some of the models, these changes
imply a weakening of the climatological subsidence over the eastern semi-arid
regions. These results are in qualitative agreement with Vecchi and Soden (2007),
who used different metrics to measure the intensity of the zonal circulation than
are used here.
The future behavior of the eastern Hemisphere Walker circulation show a ten-
dency towards positive IOZM-like state, consistent with the results presented in
Sec. 5.4.1 suggesting that the IPCC-AR4 models have physical parameterizations
of convective processes that respond realistically to the changes in forcings found
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here. Vecchi and Soden (2007) argue that atmospheric thermodynamics are the
principal drivers behind the weakening of the Indo-Pacific Walker circulation. In-
vestigating the cause of the weakening is not the objective of the present study.
The aim of our analysis has been to diagnose physical factors underlying the mod-
elled precipitation changes.

5.5 Discussion and Conclusions

In this study, we investigated possible changes in the intensity of mean and ex-
treme precipitation rates in East Africa from the CMIP3 multi-model dataset. Evi-
dence in support of a future positive shift in the rainfall distribution under global
warming has been presented. Increases in both mean precipitation rates and the
intensity of 10-year wettest events are simulated almost throughout the region,
while dry extremes are becoming less severe. This is the case even in the semi-
arid climate in northern Kenya and southern Somalia. The presence of a dipole
between southern Africa (cf. SHO09) and East Africa in the precipitation response,
a robust feature of interannual rainfall variability in the climate system (e.g. God-
dard and Graham, 1999), is particularly reassuring. A prime example of this fea-
ture is the 2006–2007 austral summer season. Unprecedented wet conditions in
East Africa (Kenya) in November preceded one of the worst droughts in much of
southern Africa. The qualitative agreement with previous findings (Kharin and
Zwiers, 2000; Giorgi and Mearns, 2002, 2003; Tebaldi et al., 2004) provides an
additional reassurance.
A robust feature across the CGCMs is an increase in atmospheric column integrated
water vapour during the transition seasons (autumn and spring), particularly in
the tropical region. Despite discrepancies in the magnitudes of the linear trends,
all models show upward trends in precipitable water in the future climate (not
shown). Although the increase in water vapor in a warmer atmosphere is offset to
some extent by a slowdown of the tropical circulation (Vecchi and Soden, 2007),
this trend alone is favourable for an increase in the precipitation almost every-
where in the tropics by about 3% (Held and Soden, 2006). Dynamical effects how-
ever force spatial inhomogeneities in the global warming-induced tropical rainfall
increases. For instance, projections for rainfall in East Africa are higher than the
zonal mean. This is in part caused by anomalous moisture flux convergence over
East Africa (discussed in the KNMI Africa scenarios web-site).
Most models show a stronger boreal autumn warming in the western tropical In-
dian Ocean relative to the south-eastern part of the ocean. This is favourable for
a higher probability of positive IOZM events. An important attribute of the pos-
itive phase of the IOZM is that it forces excessive short-rains in East Africa. It
is physically reasonable, therefore, to conclude from this ocean-atmosphere cou-
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Fig. 5.7: October–December (OND) meridionally averaged (10◦ S–4◦ N) divergent zonal
wind (uD; m s−1) and negatively transformed pressure vertical velocity [-omega
(ω); mb s−1] in the ERA40 reanalysis 1958–2000 (a) and the selected IPCC-AR4
models (b–h). The model names are shown in the titles. Future (2051–2200)
minus present (1901–2000) differences in −ω are superimposed; contour interval
1× 10−4mb s−1. Positive (negative) differences are shown by the solid (dashed)
lines. Statistically significant differences at the 5% level (from a z-test) are shaded
(color bar units are × 10−4mb s−1). The approximate location of the East Africa
(EAF) and the Maritime continent are indicated at the bottom of each figure.
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pling pattern that global warming could enhance the likelihood of anomalously
strong short-rains. In most subregions of East Africa, dynamically-driven rainfall
increases, which contribute up to about 30%, are likely to work in concert with
other mechanisms to force an overall increase in mean precipitation.
Related to changes in the tropical Indian Ocean zonal SST gradients are changes
in the structure of the Eastern Hemisphere Walker circulation. Climatological sub-
sidence over East Africa and the neighboring ocean area is projected to weaken.
Boreal fall ascent over the Congo Basin is projected to become either shallower
or slower. These features resemble a positive IOZM-like state of the Walker cell,
which has been found to communicate the IOZM signal to East Africa precipita-
tion. The presence of such a pattern in the future climate suggest that climate
change will to a large extent resemble interannual variability in this regard.
The higher frequency of wetter conditions resulting in floods observed in recent
years could give indications that the CGCM simulated precipitation responses are
already occurring. Indeed, the time series of the simulated precipitation show up-
ward trends from early in the present century. Nevertheless, from an applications
perspective, there have also been reports of continued decline in stream flow and
water levels in e.g. Lake Victoria, which may seem paradoxical given the recent
dominance of wetter conditions in East Africa. However, we note that river/dam
levels are also determined by other factors (e.g. water use, drainage and evapora-
tion), which have not been considered in this paper. Despite the overall positive
shift in the rainfall distribution projected in East Africa, the implications of cli-
mate change for water resources in this region can only be assessed on the basis of
the pattern of precipitation minus evaporation (P–E), and its possible spatial and
temporal variance, all of which deserve further investigation.
The increase in the intensity of 10-year wettest events translates into rising flood
risks for the region, with implications for disaster management, development plan-
ning and local livelihoods. In addition, both the rising temperatures and the
higher risk of excessive rainfall have implications for the health sector, for instance
by shifting and/or extending the areas affected by vector-borne diseases such as
malaria or the Rift Valley fever.
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Figure 7 : continued. . .
Fig. 5.7: continued. . .



6. SUMMARY AND IMPLICATIONS

6.1 Summary

In this thesis, seasonal climate extremes have been investigated with emphasis di-
rected toward the mechanisms responsible for their occurrence, their predictabil-
ity, and their likely response to global warming. To meet our goal, observations,
reanalysis data, model simulations and predictions have been analyzed. Hitherto,
climate models’ ability to accurately mimic the behavior of the climate system in
many parts of the globe including Europe varies with the season. Also the perfor-
mance of the models depends on the meteorological variable. There is generally
higher skill for temperature predictions than for precipitation. Against this back-
ground, the central focus of this thesis has been on specific seasons when climate
extremes typically occur.
Owing to the non-stationarity of the climate and the recent occurrence of unprece-
dented seasonal climate extremes, numerical models have a clear advantage over
purely statistical models, particularly those that are linear, in long-range prediction
of the extremes. However, in order to make skilful seasonal predictions, adequate
representation of the physical processes and feedbacks underlying the occurrence
of climate extremes is necessary.
In Chapter 2 we have investigated and identified the main driving controls of
the extremely mild Autumn 2006 in Europe. We have provided a firm evidence
supporting that anomalous surface turbulent-heat fluxes over the central North
Atlantic Ocean, which previous studies overlooked, played an important role in
forcing the extreme event. In contrast, previous studies assume that the warm
ocean surface off the coast of north Africa provided the energy advected into Eu-
rope by the south-westerlies. Our results clearly invalidate this assumption. Within
Europe, the water vapor feedback, which resulted from anomalously high precip-
itable water contributed cooperatively to enhance the warming.
The persistence of the surface heat flux anomalies in the North-Atlantic Ocean
and their link to the unprecedented temperature anomalies are encouraging for
prospects of predictability of extreme seasons in Europe. Our results which sug-
gest some predictability of an extreme event such as Autumn 2006 from North At-
lantic sea-surface conditions validates previous findings (Czaja and Frankignoul,
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1999), who argued that the North-Atlantic Ocean exerts a discernible influence
on the European climate in Autumn. However, that this unprecedented extreme
season results mainly from atmospheric circulation and parameterized processes
such as surface energy fluxes, radiative energy transfer, convection and conden-
sation demonstrates that an inadequate representation of these processes places
fundamental limits on the predictability problem.
In Chapter 3 the predictability of extremely cold spring seasons in Europe has
been associated with land-surface energy and hydrological processes. Our find-
ings emphasize the importance of an accurate representation of snow processes
during the melt season for skilful forecasts of cold spring seasons in Europe to
be produced by numerical seasonal forecasting models. An observational analysis
shows that land-surface forcing from snow exerts a discernible lagged influence
on cold spring seasons. Hence this forcing can provide a predictable signal in east-
ern Europe. Seasons characterized by widespread snow from February to March
tend to be followed by cold spring seasons in the vicinity of the snow zone. The
mechanisms involved in this snow-forcing, which alter the surface energy balance,
have been extensively documented in literature (e.g., Cohen and Rind, 1991).
The areas where the highest forecast skill is found in the best performing mod-
els tend to have the strongest influence from snow during spring. The skill in
predicting the cold extreme seasons exceeds that of predicting near-average sea-
sons and warm extremes. We have shown that the best performing models have
a more realistic snow season, particularly during the crucial melting season. This
study demonstrates that an improved and a more comprehensive representation
of land-atmosphere processes involving snow in dynamical seasonal forecasting
models will likely result in more skilful forecasts of cold spring seasons in Europe.
In Chapter 4 we have presented climate change scenarios for southern Africa.
The associated uncertainties notwithstanding, some features agree relatively well
among the selected climate models. First, a contraction of the rainfall season in
southern Africa south of about 15◦ S is a consistent feature. This is due to the coex-
istence of a delayed rainfall onset and an early cessation found in the AR4 model
simulations. It is hypothesized that a change in the pattern of lower-tropospheric
moisture transported by the mean circulation is of central importance to limit pre-
cipitation formation during the onset season. Drier soils from the previous winter
may play a secondary role, because local moisture recycling in spring is found
to be weak. Second, a regional pattern similar to the ”rich-get-richer” mecha-
nism (Chou et al., 2009) featuring drying over the semi-arid areas close to the
Kalahari Desert and wettening north of ∼15◦ S is found during austral summer
months (i.e. the peak of the rainfall season). Close to the Kalahari, a significant
decrease in mean seasonal precipitation parallels a change towards more severe
10-yr droughts. The risk of an expansion of the desert area is therefore high.
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Third, low-frequency rainfall variability remains a prominent feature in the south-
ern Africa future time-series. In the drying areas, the downward trend becomes
notable after 2050. While not conclusive, our findings suggest that the future be-
havior of the tropical-temperate trough system is likely to play a role. However,
owing to the lack of agreement across the selected climate models, the real phys-
ical mechanisms responsible for the dipole pattern of summer (DJF) precipitation
change in southern Africa remain ambiguous.
An important finding in Chapter 5 is a robust increase of precipitation in East
Africa relative to other regions within the same latitudinal belt. A positive shift of
the entire rainfall probability-density function is projected almost everywhere in
East Africa. In the bimodal rainfall regime, precipitation increases are simulated
during both the short- and the long-rains. Similar rainfall changes are simulated
in the unimodal rainfall regime during the boreal winter–spring months. Mean
precipitation increases emerge very early in the twenty-first century in qualitative
agreement with observations over the last few years to a decade.
The selected IPCC AR4 models are able to reproduce the known empirical rela-
tionship between boreal autumn tropical Indian Ocean zonal SST gradients and
East Africa short rains. The simulated precipitation changes are to some extent de-
termined by a shift in the eastern Hemisphere Walker circulation and to changes
in SST gradients associated with the Indian Ocean zonal mode (IOZM). In boreal
autumn, during the positive IOZM phase which occurs with a higher probability
under global warming, surface heat flux anomalies induce anomalous convection
close to the warm pole and stronger low-level easterlies across the tropical In-
dian Ocean. This feature which is known from observational and model studies is
adequately captured in most of the selected IPCC AR4 models. Because this tele-
connection pattern influences interannual rainfall variability in East Africa, one
can conclude that to a considerable extent, climate change resembles interannual
variability in the present climate.

6.2 Implications of this research

Our findings are expected to contribute to current attempts to produce skilful fore-
casts of seasonal extremes and to improve our understanding of the mechanisms
contributing to precipitation changes in southern and East Africa. Furthermore,
our findings offer guidance into policy options and adaptation strategies for sus-
tainable development in southern and East Africa.
How could these research findings be made useful for the communities requiring
climate change adaptation strategies such as in southern and East Africa? This was
one of the key questions raised during the Kenya Meteorological Society (KMS)
workshop held in Kisumu, Kenya in September 2009. Based upon the discussions
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during the workshop, our results on future precipitation projections can find useful
applications. In Africa, cost-loss analyses that would help develop climate change
adaptation policies focusing on water management and regulation of water use
are required.
In East Africa, where an increase in precipitation is projected, the costs of devel-
oping and continuously maintaining water storage facilities need to be evaluated
against the losses due to water shortages during dry periods. Although droughts
are projected to become less probable in the future climate (cf. Chapter 5), when-
ever they occur, they still have devastating effects on humans, livestock and ter-
restrial ecosystems. The 2009 drought due to the failure of the long-rains is an
example of a severe drought in an otherwise wettening climate.
Costs of confining water flows to predetermined channels by constructing high
earthen walls along river banks in East Africa need to be evaluated against the
losses due to spilling of water to adjoining areas. Extending river banks can also
be a viable option.
Costs of improving drainage systems and maintainance of flood management struc-
tures in East Africa’s flood prone areas need to be evaluated against the losses due
to flash flooding and damages to infrastructure.
In those parts of southern Africa where precipitation is projected to decrease, the
costs of replacing water hungry plant species such as eucalyptus trees with water
friendly ones need to be considered. These can be compared against the effect
these plants have on the scarce terrestrial water resources by draining ground
water thereby leading to drying of stream and river flows.
Costs of human and wildlife resettlement should be considered in those areas
in southern Africa where our results (cf. Chapter 4) point to a high risk of an
extension of semi-arid climates such as in regions close to the Kalahari Desert.
The cost-benefit analyses recommended above should guide the decision making
process in the midst of large uncertainties associated with future precipitation
evolutions. The recommendations have been restricted to those regions where
our analyses suggest a robust and consistently modelled climate change signal.
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Appendix A: Methodology used in extreme value analysis

The peak-over-threshold method or generalized Pareto distribution (GPD) has
been used as the extreme value model in this study. We follow the approach
described by Coles (2001). In this approach, a threshold intensity u is determined
a priori. The data exceeding the threshold (z : z > u) are then fitted to a GPD,
defined as

G(z;σ, ξ, u) =

{
1 −

(
1 + ξ(z−u)

σ

)−1/ξ

ξ 6= 0

1 − e−(z−u)/σ ξ = 0,
(i)

where σ > 0 and ξ are the scale and shape parameters of the distribution, respec-
tively, such that

1 +
ξ(z − u)

σ
> 0. (ii)

This distribution gives the probability that a random variable z is higher than a
high value conditional on it exceeding the predefined threshold u.
In this study, we set the threshold to the 80th percentile for the wet extremes to
ensure an adequate number of excesses and a sufficiently small variance in the
estimated model parameters. For dry extremes, the data are subjected to a nega-
tive transformation, and the excesses are defined analogously. For climate models
with m integrations, each ensemble member is considered as an independent re-
alization. The ensemble members are then concatenated to form a larger sample.
This specification has allowed m× 20 (m× 30) exceedances in the control (future)
climate record of 100 (150) years. However, in certain cases, notably when m > 1,
the quality of the GPD fit, as assessed using an Anderson-Darling test (see below),
was poor. Guided by the mean residual life plot (Coles, 2001), the threshold was
then adjusted to improve the quality of the fit.
The GPD parameters (i.e., σ and ξ) have been estimated using maximum likeli-
hood. The estimated parameters are then used to in the quantile function used to
calculate the return level zp. The return level zp is that level which has probability
p of being exceeded in a given year, or, defined differently, the level likely to be
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exceeded once every 1/p years. Based on Eq. (i), it is given by

zp =

{
u+ σ

ξ

[
(pζu)

ξ
− 1

]
ξ 6= 0

u+ σ log(pζu) ξ = 0.
(iii)

The quantity ζu gives the probability of exceeding the predefined threshold and
has a variance approximately ζu(1 − ζu)/n. This follows from the argument that
in a sample of size n, the number of threshold exceedances (nu) has a binomial
distribution [i.e., nu ∼ Bin(n, ζu)]. The uncertainties in the estimates of ζu ≈
nu/n, σ and ξ are incorporated in estimating the uncertainty associated with the
estimate of zp. This is achieved using the variance-covariance matrix for (ζu, σ, ξ),
given by

V =




V ar(ζu) 0 0

0 ∂2ℓ(θ)
∂σ2

∂2ℓ(θ)
∂σ∂ξ

0 ∂2ℓ(θ)
∂σ∂ξ

∂2ℓ(θ)
∂ξ2



 (iv)

Here v12 = v21 = cov(ζu, σ); v31 = v13 = cov(ζu, ξ); v23 = v32 = cov(σ, ξ); v22 =
var(σ); v33 = var(ξ). In each case, the partial derivatives of the likelihood function
[ℓ(θ)] are evaluated at the estimated GPD parameters.
The standard error in the estimate of zp is obtained from the square root of var(zp),
given by

var(zp) =

[
∂zp

∂ζu
,
∂zp

∂σ
,
∂zp

∂ξ

]T




V ar(ζu) 0 0

0 ∂2ℓ(θ)
∂σ2

∂2ℓ(θ)
∂σ∂ξ

0 ∂2ℓ(θ)
∂σ∂ξ

∂2ℓ(θ)
∂ξ2




[
∂zp

∂ζu
,
∂zp

∂σ
,
∂zp

∂ξ

]
.

(v)
The 100(1 - α)% confidence interval of zp is then expressed as

zp ± Zα/2

√
V ar(zp) (vi)

Where, Zα/2 is the (1 - α/2)% point of the standard normal distribution. The
return levels estimated from this approach have Gaussian likelihoods, which con-
forms with the requirement of the Bayesian multimodel ensembling method used
in this study (see Tebaldi et al., 2005).

Appendix B: Goodness of fit tests

Prior to estimating the return level zp, Anderson-Darling goodness-of-fit tests have
been performed. In this test, a quadratic measure of the discrepancies between
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the fitted and empirical cumulative distribution functions (CDF), weighted by
[G(z)(1 −G(z))]−1 is expressed as

A2 = nu

∫ znu

z:z>u

[Gnu
(z) −G(z)]2[G(z)(1 −G(z))]−1dG(z). (vii)

In this way, discrepancies occurring at the tails are weighted more than those in
the central part of the distribution. The empirical CDF Gnu

(z) is calculated using

Gnu
(z) =






0, z < u
i

nu
, zi ≤ z < zi+1, i = 1, . . . , nu − 1

1, z = znu
,

(viii)

Conventionally, the test statistic is estimated by

A2 = −nu −

nu∑

i=1

2i− 1

nu
[logG(z) + log(1 −G(znu+1−i))]. (ix)

The null hypothesis−that the data exceeding the predefined threshold (u) has a
generalized Pareto distribution−is rejected whenever the test statistic value ex-
ceeds the critical value at the specified level of significance (i.e., one-sided test).
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Samenvatting

In dit proefschrift worden klimaatextremen onderzocht die een aantal maanden
duren. De focus ligt op de mechanismen die ze veroorzaken, hun voorspelbaarheid
en hun verwachte respons op de opwarming van de aarde. Om ons doel te
bereiken zijn waarnemingen, heranalyses, model simulaties en verwachtingen ge-
analyseerd. Klimaatmodellen zijn nog niet in staat het gedrag van het klimaat-
systeem voor elk seizoen even nauwkeurig te reproduceren. De prestaties van het
model hangen ook af van de meteorologische variabele waarin men geinteresseerd
is. Zo presteren modellen over het algemeen beter op temperatuurverwachtingen
dan op neerslagverwachtingen. De centrale focus van dit proefschrift is daarom
op de specifieke seizoenen waarin de klimaatextremen gewoonlijk plaatsvinden.
In het licht van de veranderingen in het klimaat en de recente ongekende seizoen-
sextremen hebben klimaatmodellen in principe een duidelijk voordeel boven puur
statistische methoden, met name de lineaire, in de lange-termijn verwachtingen
van extremen. Om echter waardevolle seizoensverwachtingen te maken is een
adequate weergave van de fysische processen en terugkoppelingen die aan de kli-
maatextremen ten grondslag liggen noodzakelijk.
In Hoofdstuk 2 hebben we de belangrijkste drijvende krachten achter de extreem
milde herfst in 2006 in Europa onderzocht en gëıdentificeerd. We hebben met een
degelijke onderbouwing aangetoond dat anomale turbulente warmtefluxen aan
de oppervlakte over het centrum van de Noord-Atlantische Oceaan een belangri-
jke rol hebben gespeeld in het forceren van deze extreme gebeurtenis, iets wat in
voorgaande studies niet aan de orde is gesteld. In deze studies was aangenomen
dat het warme oceaanoppervlak voor de kust van Noord-Afrika de energie ver-
schafte die door de zuidwestelijke stroming tot in Europa werd meegevoerd. Onze
resultaten laten echter duidelijk zien dat deze aanname onjuist is. Binnen Eu-
ropa droeg de waterdamp-feedback in de relatief vochtige lucht extra bij om de
verwarming te versterken.
De persistentie van de warmtefluxanomalieën aan de oppervlakte in de Noord-
Atlantische Oceaan en hun link met de ongekende termperatuuranomalieën lev-
eren een bemoedigend vooruitzicht op het gebied van de voorspelbaarheid van ex-
treme seizoenen in Europa. Wanneer enige voorspelbaarheid van extreme opper-
vlakte condities van het Noord-Atlantisch gebied (zoals tijden de herfst in 2006)
wordt verondersteld, valideren onze resultaten voorgaande bevindingen (Czaja
and Frankignoul, 1999). Deze stelden dat de Noord-Atlantische Oceaan een merk-
bare invloed uitoefent op het Europees klimaat in de herfst. Dat dit ongeëvenaard
extreme seizoen voornamelijk het resultaat is van de atmosferische circulatie en
geparameteriseerde processen (zoals energiefluxen aan het oppervlak, de over-
dracht van stralingsenergie, convectie en condensatie) laat zien dat een realistis-
che weergave van deze processen van groot belang is voor het voorspelbaarheid-
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sprobleem.
In Hoofdstuk 3 wordt een verband gelegd tussen de voorspelbaarheid van ex-
treem koude lentes in Europa enerzijds en hydrologische en energieprocessen aan
het oppervlak anderzijds. Onze bevindingen benadrukken het belang van een
nauwkeurige representatie van sneeuwprocessen gedurende het smeltseizoen voor
zinvolle verwachtingen van koude lentes in Europa door numerieke seizoensverwacht-
ingsmodellen. Een analyse van waarnemingen toont aan dat landoppervlakforcerin-
gen door sneeuw een merkbare, vertraagde invloed uitoefenen op de temperatuur
in het voorjaar. Deze forcering kan dus een voorspelbaarheidssignaal verschaf-
fen in het oosten van Europa. Jaren met wijdverbreide sneeuw in februari en
maart worden in de buurt van de sneeuwzone relatief vaak gevolgd door een koud
voorjaar. Deze sneeuwforcering, die de oppervlakte-energiebalans verandert, kent
een aantal mechanismen die uitvoerig in de literatuur zijn gedocumenteerd (bi-
jvoorbeeld Cohen and Rind, 1991). In de gebieden waar de hoogste voorspel-
lende waarde wordt gevonden in de best presterende modellen is de invloed van
sneeuw over het algemeen het grootst gedurende het voorjaar. De kwaliteit van
de verwachtingen voor koude seizoenen is beter dan de verwachtingen voor bijna
gemiddelde en warme seizoenen. We hebben aangetoond dat de best presterende
modellen een realistischer sneeuwseizoen hebben, vooral gedurende het cruciale
smeltseizoen. Deze studie laat zien dat een betere en uitgebreidere nabootsing
van de land-atmosfeer processen die betrekking hebben op sneeuw waarschijnlijk
resulteren in betere verwachtingen voor koude lentes in Europa.
In Hoofdstuk 4 presenteren we scenario’s voor klimaatverandering in zuidelijk
Afrika. Ondanks de inherente onzekerheden komen bepaalde kenmerken redelijk
overeen tussen de modellen onderling. Ten eerste vinden we een consistente
verkorting van het regenseizoen in zuidelijk Afrika, ten zuiden van ongeveer 15◦ Z.
Dit wordt zowel veroorzaakt door een verlate aanvang van de regenval alsook een
vroege beëindiging in de modelsimulaties die voor het vierde IPCC Assessment Re-
port gemaakt zijn. We veronderstellen dat een verandering in het vochtpatroon in
de lage troposfeer, dat wordt getransporteerd door de gemiddelde circulatie, van
cruciaal belang is in de beperkte neerslagvorming in het begin van het seizoen.
Een drogere bodem in de vorige winter speelt een ondergeschikte rol, omdat lokale
vochtrecycling in het voorjaar te zwak blijkt te zijn. In de tweede plaats is er een
regionaal patroon gevonden tijdens de zuidelijke zomermaanden (d.w.z. de piek
van het regenseizoen) dat vergelijkbaar is met het rijk-wordt-rijker-mechanisme
(Chou et al., 2009) en gekenmerkt wordt door uitdroging boven semi-aride ge-
bieden dichtbij de Kalahari woestijn en vernatting ten noorden van 15◦ Z. Dichtbij
de Kalahari valt een aanzienlijke daling in de gemiddelde seizoensgebonden neer-
slag samen met een verandering naar ernstigere één-in-tien-jaar droogtes. De kans
op uitbreiding van het woestijngebied is daarom hoog. Ten derde blijft de laagfre-
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quente neerslagvariabiliteit een prominent kenmerk in de toekomstige tijdreeksen
van zuidelijk Afrika. In de uitdrogende gebieden zal de neerwaartse trend pas na
2050 waarneembaar zijn boven de natuurlijke variaties.
Hoewel niet onweerlegbaar, suggereren onze bevindingen dat het toekomstige
gedrag van trogsystemen in de subtropen hierin waarschijnlijk een rol speelt. Om-
dat er tussen de geselecteerde klimaatmodellen echter onvoldoende overeenstem-
ming bestaat, blijft het vooralsnog onduidelijk welke fysische mechanismen ver-
antwoordelijk zijn voor de verandering van het dipoolpatroon in de zomerneerslag
(december tot februari) in zuidelijk Afrika.
Een belangrijke bevinding in Hoofdstuk 5 is een robuuste toename van de neer-
slag in Oost-Afrika ten opzichte van andere regio’s binnen dezelfde lengtegordel.
Bijna overal in Oost-Afrika wordt een positieve verschuiving van de gehele kans-
dichtheidsfunctie voor neerslag voorspeld. In de gebieden waar twee keer per jaar
meer regen valt door het overtrekken van de ITCZ (de regenzone in de tropen
die met de zon mee naar het noorden en zuiden trekt) zijn neerslagtoenames
berekend, zowel tijdens de korte als tijdens de lange regenperiodes. Soortgelijke
verandering in regenval worden gesimuleerd in het gebied waar het één keer per
jaar meer regent, in de lokale zomer. De toename is daar tijdens de zomer en
najaar (onze winter en lente). Gemiddelde neerslagtoenames worden heel vroeg
in de eenentwintigste eeuw zichtbaar, wat in kwalitatief opzicht overeenkomt met
de waarnemingen van de afgelopen jaren.
De geselecteerde IPCC AR4 modellen zijn in staat om de bekende empirische re-
latie in ons najaar tussen de oost-west SST gradiënten in de tropische Indische
Oceaan en de korte regens in Oost-Afrika te reproduceren: als het zeewater in
het westen van de Indische Oceaan warmer is regent het meestal meer in Oost-
Afrika in oktober–november. Dit wordt de IOZM genoemd, de Indische Oceaan
Zonale Modus (IOZM). De gesimuleerde neerslagveranderingen worden tot op
zekere hoogte door veranderingen in dezelfde SST gradiënten en dus de IOZM
bepaald. In ons najaar neemt de verschijningskans van de IOZM toe onder op-
warming van de aarde: de westelijke Indische Oceaan wordt vaker warm ten
opzichte van de oostelijke kant. In deze situatie veroorzaken afwijkingen in de
warmtestromen over het oppervlak meer regen boven het warme water in de
westelijke tropische Indische Oceaan en krachtigere lage oostelijke winden over
dit gebied. Dit fenomeen, dat bekend is uit observaties en modelstudies, wordt
op een adequate wijze gerepresenteerd door het merendeel van de geselecteerde
IPCC AR4 modellen. Omdat dit teleconnectiepatroon de interjaarlijkse variabiliteit
in regenval in Oost-Afrike bëınvloedt, kan men concluderen dat klimaatverander-
ing voor een aanzienlijk deel gelijkenis vertoont met de interjaarlijkse variabiliteit
in het huidige klimaat.
In de verschillende delen in dit proefschrift zijn we verder gegaan dan alleen
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een statistische analyse van seizoensextremen en hebben we er ook een fysis-
che verklaring van gegeven. We hebben laten zien dat de huidige numerieke
seizoensverwachtingsmodellen betere voorspellingen van deze extremen zouden
kunnen geven als de onderliggende fysische mechanismen beter gerepresenteerd
zouden worden in die modellen. Daarnaast zijn toekomstige veranderingen in de
stralingsforcering van de aarde gerelateerd aan veranderingen in de gemiddelde
en extreme neerslag in grote delen van Afrika ten zuiden van de Sahara. De pro-
jecties van het toekomstige regenklimaat in Afrika zijn bestudeerd als deel van
een onderzoeksproject in samenwerking met het Rode Kruis/ Rode Halve Maan
Klimaatcentrum. Andere resultaten van dit project zijn beschikbaar op de KNMI
web site (http://www.knmi.nl/africa scenarios/). We verwachten dit het begin is
van een proces van validatie met betere modellen en waarnemingen dat zal bij-
dragen aan de wereldwijde wetenschappelijk inspanningen om klimaatextremen
beter te voorspellen.
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