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Toward Scatterometer Winds Assimilation in the
Mesoscale HARMONIE Model

1

2

Gert-Jan Marseille and Ad Stoffelen3

Abstract—Data assimilation (DA) experiments have been con-4
ducted with the high-resolution limited-area model HirLAM Al-5
adin Regional Mesoscale Operational NWP In Euromed (HAR-6
MONIE), which is operational at most weather centers, which7
are part of the European HirLAM consortium. Recently, the as-8
similation of scatterometer ocean surface winds was introduced,

Q1

Q2

9
showing limited forecast skill improvement. Possible explanations10
are discussed. These include model bias and the time mismatch11
between observation and analysis time, which introduces nonneg-12
ligible correlated errors in a three-dimensional (3-D) variational13
assimilation system. Also, ignoring the time mismatch increases the14
innovation, i.e., the observation minus background (model short-15
term forecast), by about 20% for scatterometer winds. The use of16
observations as point observations in most DA systems needs recon-17
sideration for mesoscale DA. The introduction of observation oper-18
ators, taking into account the instrument footprint, would improve19
the innovation by about 5% for scatterometer winds. Additional20
directions for improved use of observations in HARMONIE are21
discussed based on the notice that DA is an inherent deterministic22
concept. Hence, the selection of the spatial scale for determinis-23
tic DA should depend primarily on the 4-D observation coverage

Q3

24
rather than the effective model resolution.25

Index Terms—HirLAM Aladin Regional Mesoscale Opera-26
tional NWP In Euromed (HARMONIE) model, mesoscale data27
assimilation (DA), representativeness error, scatterometer winds.28

I. INTRODUCTION29

DATA assimilation (DA) has proven to be beneficial for nu-30

merical weather prediction (NWP) in global and limited-31

area hydrostatic models for many years [1]. However, demon-32

strating additional value from assimilating observations (both33

conventional and from satellites) in nonhydrostatic mesoscale34

models appears quite a challenge. For simplicity, we discrim-35

inate between mesoscale (nonhydrostatic) and global (hydro-36

static) models in the remainder of this paper. There is a long37

history on how to exploit observational information for global38

models. Apparently, applying the same paradigms to mesoscale39

models is less effective, i.e., forecasts from mesoscale models40

profit less from adapting the forecast initial state through ob-41

servations. Understanding the fundamental differences between42

mesoscale and global NWP is still in its infancy. Here, we aim43
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to elaborate on growing ideas and possible strategies to better 44

exploit observational information for mesoscale models. 45

Mesoscale models use much smaller grid sizes than global 46

models and explicitly resolve atmospheric convective processes, 47

which evolve more rapidly and on much smaller spatial scales 48

than those resolved by global models. Correct initialization of 49

small-scale weather phenomena requires a dense network of 50

observations in all four dimensions. Data sparsity can induce 51

phase errors, i.e., incorrect positioning of weather systems (akin 52

to aliasing in the field of signal processing). 53

The main objective of this paper is to discuss strategies on how 54

to optimally exploit observational information for convection- 55

permitting mesoscale models, with focus on satellite winds from 56

scatterometer instruments. An important aspect is that current 57

DA systems treat all observations as point observations. This as- 58

sumption may be valid for global models, which do not resolve 59

scales typically below 100–150 km [2], [3]. However, when 60

moving to smaller grid sizes and explicitly resolving convective 61

processes on scales smaller than the observation footprint, this 62

assumption needs reconsideration and more advanced observa- 63

tion operators may be needed to make optimal use of observa- 64

tional information. 65

Sections II and III provide the status of mesoscale DA 66

with the preoperational version of the HirLAM Aladin Re- 67

gional Mesoscale Operational NWP In Euromed (HARMONIE) 68

model at KNMI. This includes the assimilation of satel- 69

lite 10-m ocean surface winds from scatterometer instru- 70

ments. The scatterometer impact on model forecasts appears 71

marginal on lead times beyond 2 h, while winds are ex- 72

pected to effectively add mesoscale NWP skill [4] and good 73

impacts are reported in global models [5]. This is a gen- 74

eral trend observed for all observing systems and not spe- 75

cific for scatterometer winds. Aspects that may explain the 76

limited observational impact are discussed. In Section IV, 77

we discuss the mismatch between observation and analysis time 78

and argue that the implementation of more advanced observa- 79

tion operators, taking into account instrument footprints, and 80

effective deterministic model resolution improves the represen- 81

tativeness of observational information to the model state in 82

DA. Section V discusses the possible directions to improve on 83

mesoscale DA. Section VI concludes the paper. 84

II. DATA 85

A. HARMONIE Model 86

European meteorological institutes as part of the high- 87

resolution limited-area model (HirLAM) consortium are 88
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Fig. 1. HARMONIE mesoscale model domain, used operationally by KNMI.
The domain is centered at 51◦ latitude, 3◦ longitude and is composed of 800
× 800 grid points covering a 2000 × 2000 km area, i.e., the model grid size is
2.5 km.

currently in the transition phase of moving from the operational89

hydrostatic model HirLAM to the nonhydrostatic convection-90

permitting HARMONIE model. HARMONIE is developed in91

cooperation with Météo-France and ALADIN,1 and builds92

upon model components that have largely initially been devel-93

oped in these two communities. At default horizontal grid size94

≤2.5 km, the forecast model and analysis system are basically95

those of the AROME model from Météo-France [6]. In this pa-96

per, HARMONIE model cycle 38h1.2 was used with a grid size97

of 2.5 km for the model domain displayed in Fig. 1. The model98

top is at 10 hPa (∼26 km) and the number of model levels equals99

65. The lateral boundaries are obtained from the global model100

of the European Centre for Medium-Range Weather Forecasts101

(ECMWF).102

B. Scatterometer Ocean Surface Winds103

A scatterometer is a satellite radar instrument, which provides104

a measure of wind speed and direction near the sea surface. Scat-105

terometers measure the electromagnetic microwave backscatter106

by the wind-roughened ocean surface. Scatterometer wind in-107

formation is organized on a grid of wind vector cells (WVCs)108

projected on the earth swath of the instrument. The number of109

across-swath WVCs determine the sampling resolution of the110

surface wind field and the wind information is considered to be111

Nyquist sampled, with modest correlation between neighboring112

1ALADIN is the acronym for Aire Limitée Adaptation dynamique
Développement InterNational, a collaboration of national meteorological ser-
vices of Central and Eastern Europe on limited-area NWP.

WVCs. Each WVC contains between two and four ambiguous 113

local wind vector solutions that are the result of the inversion 114

of the wind geophysical model function (GMF), for a given set 115

of backscatter values at a given scanning geometry [7], [8]. The 116

ambiguity is mainly related to the double harmonic dependency 117

of the GMF on wind direction. Each wind ambiguity is charac- 118

terized by a solution probability that is determined based on the 119

distance-to-GMF residual after the inversion. 120

The wind ambiguities, solution probabilities, and prior in- 121

formation from the ECMWF model 10-m background wind 122

are used in a two-dimensional variational (2D-Var) ambiguity 123

removal procedure [3] to produce an analyzed surface wind 124

field, fitting one of the ambiguities at each WVC. This wind 125

field is then used to select the wind vector ambiguity in each 126

WVC that is closest to the analysis, based on vector differ- 127

ence, as the solution for the observed surface wind. A wind 128

vector solution flag is set to the index of the selected wind am- 129

biguity in each WVC. Finally, the backscatter measurements, 130

wind ambiguities, scanning geometry, and wind vector solu- 131

tion flag, among others, are made available as a scatterom- 132

eter wind product. A detailed overview of past and current 133

operational scatterometers is provided in [9]. Here, we sum- 134

marize the main characteristics of the scatterometers used in 135

this study. 136

1) ASCAT: European C-band (rain insensitive [10]) scat- 137

terometers onboard the Metop-A and Metop-B satellites, which 138

were launched into a sun-synchronous orbit on October 19, 2006 139

and September 17, 2012, respectively [11]. The satellite over- 140

pass time, expressed as local (equator crossing) time of ascend- 141

ing node (LTAN) is 10:30 UTC. The ASCAT coastal product 142

that has 12.5-km sampling [9] is used in this study. Observations 143

from these satellites are described in the remainder of this paper 144

denoted as ASCAT-A and ASCAT-B. Both are still operational. 145

2) OSCAT: Indian Ku-band (rain sensitive) scatterometer 146

on the OceanSat-2 satellite (en.wikipedia.org/wiki/Oceansat-2). 147

Launched in June 2011 into a sun-synchronous orbit at 12:00 148

LTAN and operational until February 2014. The OSCAT product 149

with 50 km sampling is used in this study [12]. 150

3) HSCAT: Chinese Ku-band scatterometer on the Haiyang- 151

2A satellite. Launched in August 2011 into a sun-synchronous 152

orbit at 06:00 LTAN and still operational. The HSCAT product 153

with 25 km sampling is used in this study, as processed by the 154

Pencil-Beam Wind Data Processor (PenWP2). 155

It should be stressed that sampling is generally not the same 156

as resolution. Sampling denotes the separation between adja- 157

cent observations, whereas resolution refers to the spatial scales 158

resolved by the observations. In general, the resolution is cho- 159

sen lower than the sampling distance. For instance, for ASCAT 160

the cumulative spatial response function, which is a measure 161

of the averaging in spatial domain, provides an estimate of the 162

effective observation resolution, which is about 28 km for the 163

ASCAT coastal product [13]. 164

2http://nwpsaf.eu/site/software/scatterometer/penwp/
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C. 3D-Var DA165

HARMONIE operates a 3D-Var DA system [14] with a 3-h166

cycling, i.e., eight analyses are performed each day. The ob-167

servations operationally used by HARMONIE include surface168

pressure from SYNOP ground stations over land and sea (from169

ships) and buoys, wind observations from buoys, radiosonde and170

aircraft meteorological data relay (AMDAR), and temperature171

observations from radiosondes and AMDAR. In the remainder172

of this paper, these observing systems are called the conven-173

tional observing systems. The goal of DA is to find the best lin-174

ear unbiased estimate (called analysis), which is a compromise175

between a model simulation (called background or first guess)176

and observations. Model simulations tend to diverge from the177

true atmospheric state when evolving in time. Observations are178

used to keep the model on track with the true atmospheric state.179

However, observations are imperfect too due to instrument im-180

perfections and they are generally not fully representative of the181

model state variables. Tuning of a DA system, i.e., giving cor-182

rect relative weight to the background and observations in the183

analysis and spreading the observational information in space,184

is a continuous challenge in NWP.185

In general, the analysis equations in DA read, following [15]186

for the notational convention [16], [17]:187

xa = xb + K′[yo − Hxb ] (1)

K′ = B′HT [HB′HT + R′]−1 (2)

yo = Hxt + εεε (3)

where xb is the n-dimensional background state vector, i.e., a188

short-term forecast initiated from the state analysis, xa is the189

previous cycle, yo is the m-dimensional vector with observa-190

tions, xt is the true (but unknown) state vector, and H is the191

m × n linearized observation operator matrix, which maps the192

model state space to the observed quantity. The latter may be a193

simple interpolation operator for some observing systems, but194

may be more complex, e.g., a linearized radiative transfer model195

for measured satellite radiances. The total observation error εεε196

equals the sum of the instrument error and representativeness197

error, which are discussed in detail below. Superscript T denotes198

matrix transpose. The spatial spread of the observational infor-199

mation on the analysis state is determined by the prescribed200

background error covariance matrix, in the remainder of this201

paper also denoted as B′, and the prescribed observation error202

covariance matrix, hereafter also denoted as R′. If both describe203

well the true background and observation error covariances (de-204

noted without primes, but which are generally unknown), then205

the resulting gain matrix, K′ in (2), yields the best compro-206

mise, in statistical sense, of background and observations in the207

analysis, as in (1).208

In practice, it is not trivial to correctly specify the B′ and R′209

matrices. Ideally, B′ should reflect the short-term model forecast210

errors. Currently, HARMONIE uses a climatological B′ derived211

from downscaling (i.e., a 6-h forecast) four members of the212

ECMWF global ensemble over a six-week period and assuming213

homogeneity and isotropy. R′ is taken as a diagonal matrix. The214

realism of this choice is further discussed in Section IV. For215

scatterometer winds, the prescribed observation error standard 216

deviation of both wind components equals 1.47 m/s for ASCAT 217

A and B and 1.45 m/s for OSCAT. It should be noted that 218

further optimization of these values may be achieved following 219

the procedure in [18]. 220

In 3D-Var, it is assumed that all observations within the as- 221

similation window have been measured at analysis time, i.e., 222

typically the DA window center time. This is generally true for 223

observations from radiosondes, SYNOP stations, and buoys. 224

However, aircraft and satellite overpasses are asynoptic, intro- 225

ducing a time shift between observation and model background 226

state. This timing issue can be partially resolved by using 3D- 227

Var + first guess at appropriate time [19], which produces more 228

accurate increments but still applied at the wrong time. This 229

is resolved by more advanced assimilation schemes such as a 230

4D-Var DA scheme, which, however, is not available yet for 231

HARMONIE. Alternatively, a 3D-Var-rapid update cycle [20] 232

implementation is available, which employs a 1-h assimilation 233

cycle. 234

D. Experimental Period 235

A number of observing system experiments (OSE) have been 236

conducted with HARMONIE for the period November 15– 237

December 31, 2013. This period was characterized by a pre- 238

dominant zonal flow and includes the December 5/6 “Mandela 239

storm,” which hit Northern Europe with at least ten casualties. 240

Extreme winds in combination with spring tide caused extreme 241

water levels at the Western European coast, the largest in the 242

Netherlands since the 1953 flood disaster. The following exper- 243

iments were conducted. 244

1) NO-OBS: No observations used in DA. 245

2) CONV-3h: Conventional observations used in 3D-Var 246

with 3-h cycling. 247

3) CONV+SCAT-3h: Same as above but in addition the as- 248

similation of all available ocean surface winds from AS- 249

CAT and OSCAT. 250

4) CONV+SCAT-THINN-3h: Same as above but including 251

data thinning to 100 km observation spacing for ASCAT 252

winds (currently, the default setting in HARMONIE). 253

5) CONV+SCAT-THINN-1h: Same as above but using a 1-h 254

cycling. 255

III. RESULTS 256

In OSE, one aims to assess the additional value of an observ- 257

ing system by comparing the skill of model forecasts from two 258

different experiments, one denying, and the other adding the new 259

observing system under investigation. A widely adopted skill 260

score is from statistics of observations minus model forecast, 261

hereafter shortly denoted (o-f). Here, we focus on model scores 262

for 10-m ocean surface wind. Ideally, observations (o) used for 263

verification are from an observing system not used in DA. A 264

potential candidate for 10-m model wind scores over oceans 265

is 10-m wind observations from masts, e.g., on oil platforms. 266

However, the coverage is too coarse for significant statistics over 267

a six-week experimental period for the complete domain. Alter- 268

natively, one could use measurements from buoys, but these are 269
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too coarse. Scatterometer winds from HSCAT could be used,270

but these are available only twice per day in the HARMONIE271

domain. To assess the quality of 10-m model winds, it was272

therefore decided to use all observations from all the available273

scatterometers for verification, i.e., ASCAT-A, ASCAT-B, OS-274

CAT, and HSCAT. The range of different overpass times of these275

satellites over the HARMONIE domain enables the verification276

of 10-m model winds for all forecast lead times although the277

number of available observations for verification may differ for278

different lead times. For 3-h cycling, analyses and subsequent279

forecasts are produced at 00, 03,..., 21 UTC. For the verification280

of scatterometer impact, only forecasts initiated from analyses281

in which scatterometer data were assimilated were used. Given282

the overpass times in Section II-B, it is inferred that observations283

from ASCAT can be used to verify forecasts with lead times: 0–284

4, 7–11, 15–17, 19–23 h; for OSCAT: 0–2, 4–5, 10–12, 17–19,285

23–24 h, and for HSCAT: 0, 4–8, 12–14, 16–20, 22–24 h. As an286

example, ASCAT observations measured around 11 UTC have287

been used to verify the 2-h forecast initiated at 09 UTC. Clearly,288

verification scores differ for these other instruments, because289

of different instrument error characteristics and footprint size.290

To produce skill scores for all lead times with a single metric,291

one instrument was selected as reference. Matching lead times292

with other instruments were used to calibrate skill scores from293

different instruments. Next, missing lead times from the refer-294

ence instrument were filled. ASCAT was selected as reference295

instrument because of the maximum availability of forecast lead296

times. The resulting skill scores are displayed in Fig. 2. Here,297

model forecast values were obtained through spatial and tempo-298

ral interpolation of model fields to the observation location and299

measurement time. As such, observations are assumed point ob-300

servations, in agreement with current treatment of observations301

in DA. This is further elaborated in Section IV.302

The negative bias of the zonal wind component in the top left303

panel of Fig. 2 suggests an overestimation of the wind speed by304

the model relative to scatterometer winds given the predominant305

zonal flow during the experimental period. This is confirmed306

from Fig. 3 showing that HARMONIE ocean surface winds are307

too strong relative to scatterometer observations in particular for308

strong winds. Apparently, sea surface roughness increases not309

enough with friction velocity for high winds in HARMONIE.310

These results suggest that the formulation could be optimized.311

In addition, a coupled wave model could be used to improve the312

representation of high wind speeds above sea. This is part of313

further investigation and beyond the scope of this paper.314

The center plots of Fig. 2 show that assimilation of obser-315

vations improves the model simulations, i.e., the curve with316

crosses (no DA) is generally on top of the other curves. At317

analysis time (fc=0), model simulations using scatterometer in318

DA compare best to scatterometer observations. This is by de-319

sign and is not very indicative on the performance of the DA320

system; a well-tuned DA system pulls the model state toward321

the true atmospheric state not only at observation locations, but322

also in nonobserved regions. Then, resulting model forecasts323

are also expected to be closer to the true atmospheric state. The324

CONV+SCAT-3h experiment shows the best scores at analysis325

time, which is not surprising since all available scatterometer326

Fig. 2. Forecast skill scores for 10-m model wind over oceans; observation-
minus-forecast (o-f) bias (top row) and standard deviation (center row) for the
zonal (left panels) and meridional (right panels) wind components as a function
of forecast range. Forecast (f) is obtained through spatial and temporal inter-
polation to the observation (o) location and measurement time. Observations
include scatterometer ocean surface 10-meter winds from ASCAT on Metop-A
and Metop-B, OSCAT, and HSCAT. Experiments included have been described
in Section II-D: NO-OBS (crosses), CONV-3h (circles), CONV+SCAT-3h
(squares), CONV+SCAT-THINN-3h (diamonds), and CONV+SCAT-THINN-
1h (triangles). Scores are obtained from the six-week experimental period, see
Section II-D, with the total number of used observations for verification in the
bottom row.

observations were used both in the analysis and for verification. 327

The thinning experiments (diamonds and triangles) only use 328

about 1.6% of all available scatterometer observations in DA. 329

Yet, the resulting analyses were drawn to the true state (repre- 330

sented by all scatterometer observations) substantially also some 331

distance away from assimilated observations, i.e., the bias and 332

standard deviation at analysis time have reduced substantially: 333

the standard deviation of (o-f) at fc=0 for curves with diamonds 334

and triangles is about halfway between the curves with circles 335

(no scatterometer) and squares (all scatterometer). This shows 336

the inherent redundancy in DA systems, that reducing the num- 337

ber of observations generally only marginally reduces the im- 338

pact, due to the spatial filtering properties. For increasing fore- 339

cast lead times, statistics of the experiments using scatterometer 340

in DA (curves with squares, triangles, and diamonds) converge 341

quickly to those of the experiment not using scatterometer (cir- 342

cles). At fc+3 and beyond the curves largely overlap, which is 343

disappointing when comparing to global model skill scores. On 344

the other hand, the experiment using all scatterometer obser- 345

vations tends to show the best scores, i.e., the squares curve is 346
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Fig. 3. Density scatter plots of 10-m wind speed (m/s) over sea, with scat-
terometer winds from ASCAT on Metop-B along the x-axis and HARMONIE
model winds, averaged over the observation footprint, along the y-axis. Results
are based on collocations over the complete six-week experimental period.

generally below the other lines over the complete forecast range,347

which is encouraging. Some additional remarks should be made.348

At fc+01, statistics of the experiment with 1-h sampling (trian-349

gles) are worse compared to the corresponding experiment with350

3-h sampling (diamonds), despite the similar performance at351

fc+0. The better statistics for the 3-h cycling experiment (obser-352

vations are used when measured within ±1.5 h from analysis353

time) is because (some) observations used for verification of354

fc+01 have also been used in DA, which is not the case for355

the 1-h cycling experiment (where observations are used only356

when measured within ±0.5 h from analysis time). It is thus357

encouraging that the 1-h cycling experiment scores better than358

the no scatterometer experiment at fc+01, indicating that the359

scatterometer has added value for the model on this term. This360

is further confirmed by the better scores at fc+02 for experi-361

ments using all scatterometer winds. Lack of skill for fc+03 and362

beyond is not typical only for scatterometer assimilation, but363

also for all observing systems (not shown). This seems to be364

fundamentally related to mesoscale DA and is currently under365

investigation. Possible explanations include the following.366

1) The addition of nondeterministic small-scale model vari-367

ance, which is weather dependent, but not well accounted368

for in B′, R′, and H.369

2) Model biases, of which Fig. 3 shows one example and the370

model tendency to quickly return to its (biased) climatol-371

ogy.372

3) The time mismatch between analysis time and observation373

time for some observing systems, which is inherent for374

3D-Var and further elaborated in Section IV.375

4) Too much weight has been given to observations in the376

analysis, see [18].377

5) Nonoptimal use of observations in mesoscale DA, e.g.,378

(v-1) radiosondes drift from their launch location, which is379

ignored in DA, and (v-2) all observations are used as point 380

observations, which may not be adequate for mesoscale 381

DA. 382

Taking into account, the observation footprint and nondeter- 383

ministic model variance (noise) in the observation operator are 384

also discussed in Section IV. 385

IV. OBSERVATION MINUS BACKGROUND DIAGNOSTIC 386

Statistics of observation minus background, in the remainder 387

shortly denoted as (o-b), is an important diagnostic for opera- 388

tional NWP centers, e.g., to check for model and/or observation 389

biases. Here, we follow [17] who defines xt as “the vector of 390

coefficients obtained by projecting the true state of the atmo- 391

sphere onto the model basis.” Current NWP models yield a 392

smooth simulation of the true atmospheric state and thus, from 393

the above definition, xt does only include spatial scales, which 394

can be resolved by the NWP model. 395

Hence, when the NWP model state does not resolve all scales 396

in the observation, the first term on the right-hand side of (3) 397

cannot deliver the observation equivalent without error due to 398

the missing spatial scales. This mismatch is called the observa- 399

tion representativeness error, denoted as εεεr . The smallest spatial 400

scale resolved by a model is called the effective model resolu- 401

tion, which differs for different models. Model and observation 402

power density spectra spatial analyses and triple-collocation 403

techniques [21], [22] provide estimates for the effective resolu- 404

tion of the model under investigation and the variance of the re- 405

sulting observation representativeness error. As a rule of thumb, 406

nowadays NWP models effective resolution equals seven to ten 407

times the model grid size [2]. 408

In addition, the instrument error, denoted as εεεi , accounts for 409

instrument imperfections. Here, we ignore errors in the obser- 410

vation operator, i.e., from mapping from model to observation 411

space. From (3) we may write for the background departures, 412

also denoted innovation 413

yo − Hxb = εεεi + εεεr − Hεεεb (4)

where xb is the background state vector, i.e., a short-term fore- 414

cast initiated with the previous analysis and the background 415

error εεεb = xb − xt . The background departure covariance ma- 416

trix, denoted in short < (o − b)2 >, with < . > denoting the 417

expectation operator equals 418

< (o − b)2 > := < (yo − Hxb)(yo − Hxb)T >

= < [εεεi + εεεr − Hεεεb ][εεεi + εεεr − Hεεεb ]T >

= Ri + Rr + HBHT (5)

where B is the background error covariance matrix defined as 419

B =< εεεbεεεbT
>, Ri =< εεεiεεεi

T > is the instrument error covari- 420

ance matrix, and Rr =< εεεrεεεr
T > is the observation represen- 421

tativeness error covariance matrix. The expression “:=” denotes 422

”by definition.” Here, it is as assumed that the cross correlations 423

of the error terms vanish: < εεεrεεε
bT

>= 0 by definition since 424

the errors terms represent different spatial scales by construc- 425

tion; < εεεiεεε
bT

>= 0 is plausible because correlations of uncer- 426

tainties in the NWP model and instrument readings are often 427
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physically unreasonable; and < εεεrεεεi
T >= 0 because correla-428

tions of the representativeness error and instrument error are429

physically implausible as well.430

For well-characterized instruments, the instrument error431

statistics are generally well known with a diagonal covariance432

matrix for observations with uncorrelated errors but a dense433

matrix, e.g., for data from satellite sounders [23]. Also, the rep-434

resentativeness error of observations separated by less than the435

model effective resolution are correlated and the corresponding436

covariance matrix is nondiagonal. Also, the true representative-437

ness error is nonconstant and a function of local atmospheric438

turbulence [24]. It is thus likely that the total observation error439

covariance matrix R = Ri + Rr is a dense matrix for dense440

observations. However, for computational efficiency and also441

because of imperfect knowledge of these error sources, the total442

observation error covariance matrix is specified as a diagonal443

matrix in most operational DA systems, including HARMONIE,444

thus ignoring correlation of observation errors. In addition, the445

so-called superobbing or data thinning is employed to avoid446

overfitting due to misspecification of R′.447

Hence, observation preprocessing to reduce error correlations448

in R makes R′ in better agreement with the exact matrix and449

the resulting gain matrix will be a better representation of the450

optimal Kalman gain. Reducing observation error correlations451

is therefore expected to yield an improved gain matrix and sub-452

sequent improved analyses and forecasts.453

A. Observation Representativeness Error454

Frehlich [25] introduces a spatial filter function gm
j to simu-455

late the projection of the continuous true state variable tj onto456

the model basis. Then, the discrete representation of the true457

state variable in model space tm
j can be written as a convolution458

of the true atmosphere and the filter function459

tm
j (r) =

∫
gm

j (r − s)tj (s)ds (6)

where r and s denote 3-D spatial coordinates, i.e., (6) denotes a460

3-D spatial integration at a fixed time instant. This representation461

of the true state is in agreement with [17]. It is noted that the462

filter function is model dependent and an explicit expression is463

generally not known. Yet, some of its properties may be obtained464

from observation power density spectra or triple-collocation465

techniques [21]. For instance, in case that the model spectrum466

has a cutoff frequency with reduced energy on scales smaller467

than a certain threshold value, then gm
j acts as a low-pass filter468

in spectral domain.469

Similarly, the instrument footprint can be modeled through a470

spatial filter function go
j such that the discrete representation of471

the true atmosphere as observed by the instrument to
j may be472

written as a convolution of the continuous true atmosphere and473

the instrument filter function474

to
j (r) =

∫
go

j (r − s)tj (s) ds. (7)

For observing systems providing point measurements such as475

radiosondes or airplane reports, the instrument filter function is476

a delta-Dirac function and the mean atmospheric state within477

the observation sampling footprint simply equals the true atmo- 478

spheric state at the observation location: to
j (ri) = tj (ri), with ri 479

denoting the observation location. For ASCAT, measuring 10-m 480

wind components, denoted by subscript 10 m, over the ocean, 481

tj ∈ {u10m, v10m} the footprint function is related to the 2-D 482

cumulative spatial response function, mentioned in Section II-B. 483

Rewriting (7) in scalar form and selecting either u10 m or 484

v10 m for the true state variable tj , then scatterometer observa- 485

tion o, with instrument error εi , is related to the true atmospheric 486

state averaged over the instrument footprint to through 487

o = to + εi . (8)

Similarly, the model background state b with background error 488

εb is related to the true state in model space tm through 489

b = tm + εb (9)

and for the background departure 490

o − b = (o − to) + (to − tm ) − (b − tm ) (10)

= εi + εr − εb . (11)

Comparing with (5), the three error terms on the right-hand 491

side of (11) are the instrument error, representativeness error, 492

and background error in 1-D, respectively. For the unlikely 493

situation that the instrument footprint filter function equals 494

the NWP model filter function, i.e., go
j = gm

j , and from (6) 495

and (7), the second term on the right-hand side of (10) and 496

(11) vanishes, i.e., the observation is fully representative of 497

the model state variable. Otherwise, there are two remaining 498

alternatives. 499

1) Observation Effective Resolution is Higher Than the 500

Model Effective Resolution: For current global models, the 501

width of the NWP model filter function (in spectral space) is 502

generally smaller than of the instrument footprint filter [21], i.e., 503

the representativeness error (to − tm ) describes the atmosphere 504

on scales between the observation footprint and model effective 505

resolution. Averaging in observation space, also denoted super- 506

obbing, acts as a filter operation and thus reduces the represen- 507

tativeness error. The scatterometer sampling is very well suited 508

for superobbing, through the application of a 2-D averaging 509

window, such that the representativeness error of the resulting 510

observation is close to the model effective resolution. To mini- 511

mize the error correlations of neighboring observations, overlap- 512

ping of adjacent nodes when performing superobbing should be 513

avoided. Locations for superobbed observations are assigned to 514

the center of the averaging window. Because locations are more 515

remote after superobbing than of the standard product, both the 516

correlation and variance of the representativeness error have re- 517

duced. In addition, averaging in observation space reduces the 518

instrument noise, as given in (8). Overall, superobbing reduces 519

(o-b) on average by reducing the first and second term on the 520

right-hand side of (11). Alternatively, data thinning reduces the 521

correlation of observation representativeness errors even more 522

effectively when the footprint filter functions of selected obser- 523

vations have no or negligible overlap. Some data thinning thus 524

seems effective for DA purposes because the assumption of 525

uncorrelated observation error (diagonal R) is better achieved, 526
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potentially yielding a closer to optimal gain matrix. However,527

data thinning does neither reduce the instrument error nor the528

representativeness error variance and hence does not reduce the529

total observation error variance and (o-b) variance. In addition,530

potential useful observational information is neglected, which531

makes data thinning potentially less attractive than superobbing.532

2) Observation Effective Resolution is Lower Than the Model533

Effective Resolution: For mesoscale models with small grid534

sizes, the effective model resolution may be higher than the535

effective observation resolution or vice versa. For instance,536

HARMONIE with 2.5 km grid size has an effective resolu-537

tion of 15–25 km, which is slightly higher than the 28 km538

effective resolution of the ASCAT coastal product, but sub-539

stantially higher than for current Ku-band scatterometers (see540

Section II-B). Then, the model simulates scales not observed by541

the instrument. Currently, the observation footprint size is ig-542

nored in the observation operator, more precisely it is assumed543

to be a delta-Dirac function in (7). Similarly as described in544

Section IV-A1, averaging in model space will then reduce the545

correlation and variance of the representativeness error and in546

addition reduce the background error, as given in (9). Averaging547

in model space may be accomplished through the observation548

operator, using multiple grid points to simulate the observation,549

which will reduce (o-b) on average by reducing the second and550

third term in (11). Larger reductions of (o-b) may be expected for551

Ku-band scatterometers like QuikSCAT, OSCAT, and HSCAT552

because of their larger footprint size, hence increased filtering553

in model space, i.e., more effectively reducing the third term in554

(11) than for smaller footprints.555

Observation minus background statistics were calculated for556

HARMONIE for the six-week experimental period. Observa-557

tions of the various scatterometer instruments were compared558

with 10-m model winds from the CONV-3h experiment de-559

scribed in Section II-D, i.e., the experiment without assimilation560

of scatterometer winds. Three flavors of the model background561

were used that are as follows:562

1) b, denoting spatial interpolation to the observation loca-563

tion, which reflects the calculation of (o-b) in 3D-Var;564

2) (ii) bt , the index t denoting time interpolation in addition,565

which would reflect the calculation of (o-b) in a 4D-Var566

DA system; and567

3) (iii) b̄t , the overbar denoting averaging in model space,568

which reflects the application of an observation operator569

according to the instrument footprint, here eliminating the570

spatial representativeness error of observation and model.571

Table I shows a clear negative bias for the zonal wind compo-572

nent for all instruments, confirming the earlier finding in Fig. 3573

that HARMONIE overestimates the wind speed, in particular for574

strong winds. A strong reduction of the observation minus back-575

ground standard deviation in the order of 20%, but a maximum576

reduction of 33% was observed, is obtained through tempo-577

ral interpolation of model fields to the observation time, which578

confirms that the shift between observation time and analysis579

time is a substantial error source for 3D-Var. It is noted that for580

3D-Var with a 3-h assimilation window observations measured581

±1.5 h from analysis time are used in the analysis. For conven-582

tional observing systems, the observation time is very close to583

TABLE I
SCATTEROMETER OBSERVATION MINUS HARMONIE BACKGROUND

STATISTICS FOR THE 10-M ZONAL AND MERIDIONAL WIND COMPONENTS (IN

M/S) AND VARIOUS OPTIONS FOR INTERPOLATION AND AVERAGING IN MODEL

SPACE, SEE TEXT FOR DETAILS

(m/s) Bias u1 0 m Stdev u1 0 m Bias v1 0 m Stdev v1 0 m

ASCAT-A (184.508 collocations); Δt = −0.28; |Δt| = 0.74

(o − b) −0.62 1.84 −0.16 2.04
(o − bt ) −0.58 1.54 −0.18 1.65
(o − b̄ t ) −0.57 1.46 −0.18 1.57

ASCAT-B (193.917 collocations); Δt = −0.27; |Δt| = 0.73

(o − b) −0.60 1.77 −0.18 1.94
(o − bt ) −0.51 1.56 −0.19 1.63
(o − b̄ t ) −0.50 1.49 −0.19 1.56

OSCAT (4.888 collocations); Δt = −0.81; |Δt| = 0.99

(o − b) −0.80 2.00 −0.09 2.03
(o − bt ) −0.72 1.72 −0.16 1.52
(o − b̄ t ) −0.72 1.68 −0.16 1.47

HSCAT (23.961 collocations); Δt = −0.29; |Δt| = 0.85

(o − b) −0.46 1.61 −0.24 1.57
(o − bt ) −0.46 1.36 −0.22 1.29
(o − b̄ t ) −0.45 1.25 −0.22 1.18

In short: b spatial interpolation to observation location; bt temporal interpolation in addi-
tion; b̄ t temporal interpolation plus averaging in model space according to the instrument
footprint. Δt and |Δt| denote the mean time difference and the mean absolute time differ-
ence between observation and analysis time (in hours), respectively.

TABLE II
STATISTICS OF (o − ft ) FOR 10-M ZONAL AND MERIDIONAL WIND

COMPONENTS FROM ECMWF MODEL MODEL FIELDS AND FOUR

SCATTEROMETER INSTRUMENTS

tf Bias ur 1 0 m Stdev u1 0 m Bias v1 0 m Stdev v1 0 m

ASCAT-A 9.4 −0.22 1.52 0.34 1.67
ASCAT-B 9.5 −0.16 1.56 0.28 1.73
OSCAT 11.0 −0.31 1.41 0.41 1.41
HSCAT 5.6 −0.11 1.09 0.05 1.15

Collocated ECMWF data are obtained from the operational scatterometer products and
include spatial and temporal interpolation to observation location and measurement
time. The average lead time for collocation with ECMWF model forecasts is denoted
as tf (in hours). The number of collocations used in the statistics is given in Table I.

analysis time with no or negligible mismatch between obser- 584

vation time and the background from the 3-h model forecast. 585

However, scatterometer measurement times do not exactly coin- 586

cide with analysis times. For each scatterometer instrument, the 587

mean time difference between observation and analysis time, 588

denoted as Δt, and the mean absolute time difference, denoted 589

as |Δt| are displayed in the table. The former has values in be- 590

tween −1.5 and 1.5, and the latter between 0 and 1.5 for a 3-h 591

assimilation window. Ideally, both are close to zero. Worst case 592

would be that all observations are obtained at one of the assimi- 593

lation window boundaries, yielding Δt = ±1.5 and |Δt| = 1.5. 594

When all observations are at the assimilation window bound- 595

aries with half the amount on both sides yields Δt = 0, but 596

|Δt| = 1.5. From the numbers in the table, the time shift is 597

largest for OSCAT and smallest for ASCAT. 598
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TABLE III
INFERRED MODEL ERROR (RIGHTMOST COLUMN) OF HARMONIE (HA)

RELATIVE TO ECMWF (EC) FROM OBSERVATION MINUS FORECAST

STATISTICS IN TABLES I AND II AND EFFECTIVE RESOLUTION OF THE VARIOUS

SCATTEROMETER INSTRUMENTS

HA σ 2 (o − bt ) = σ 2 (εi ) + σ 2 (εr ) + σ 2 (εb t )

ASCAT ≈ = < >

HSCAT > = ≈ >

OSCAT > = > ?
EC σ 2 (o − ft ) = σ 2 (εi ) + σ 2 (εr ) + σ 2 (εf t )

The question mark denotes inconclusive. σ 2 (.) denotes the variance of the vari-
able between brackets. The top row is obtained from taking the variance of (11).
Similar for the bottom row but now using forecasts from ECMWF rather than
HARMONIE background.

Averaging in model space was done over a square window599

area, centered at the observation location. For ASCAT-A and600

ASCAT-B, the window size was chosen 28 km, i.e., equal to601

the effective resolution, which is about double the sampling602

distance. Studies on the effective resolution of OSCAT and603

HSCAT are not available and the window size was chosen dou-604

ble the sampling distance, i.e., 100 km for OSCAT and 50 km605

for HSCAT. Averaging in model space indeed yields a further606

reduction of the observation minus background standard devi-607

ation of 3–8%. This suggests that reducing “model noise,” i.e.,608

reducing model variability on scales, which the observation does609

not resolve, makes the model state more representative to the610

observation, hence reducing (o-b).611

The operational scatterometer products disseminated by612

KNMI include winds from the ECMWF model for reference.613

This includes spatial and temporal interpolation from model614

winds to scatterometer wind locations and measurement times.615

The forecast fields available for time interpolation depend on616

the time schedule of the ECMWF forecasting system and dis-617

semination. Forecasts initiated at 00 and 12 UTC are available618

to ECMWF member states about 6 h later. Then, from the satel-619

lite overpass times the closest ECMWF model fields are used620

for time interpolation. The average forecast lead time for collo-621

cation with scatterometer observations is denoted as tf , which622

equals 9.4, 11.0, and 5.6 h for ASCAT, OSCAT, and HSCAT,623

respectively. Here, it is noted that HSCAT is currently not an op-624

erational product and processing can wait until the most recent625

forecasts from ECMWF are available. Table II shows the statis-626

tics of resulting observations minus ECMWF forecast including627

time interpolation, (o − ft), for the various scatterometers us-628

ing the November/December 2013 ECMWF operational model629

version. ECMWF shows smaller biases for the zonal wind com-630

ponent but larger biases for the meridional wind component631

when compared to HARMONIE in Table I. The best statistics632

for HSCAT may be partly explained by the smallest value for tf ,633

but we note that the position of HSCAT, OSCAT, and ASCAT634

in the 4D-Var assimilation window is systematically different635

due to different LTAN. It is further noted that tf is 2.2–2.7 h for636

HARMONIE against 5.6–11.0 h for ECMWF.637

For ASCAT-A and ASCAT-B standard deviations of (o − bt)638

for HARMONIE are similar to (o − ft) for ECMWF. From639

(11), noting that the instrument error irrespective of the model640

and the representativeness error of ASCAT is smaller for HAR- 641

MONIE than ECMWF, it is inferred that the model error must 642

be larger for HARMONIE. This is summarized in Table III, 643

which shows the inferred model error (rightmost column) of 644

HARMONIE (HA) relative to ECMWF (EC) from observation 645

minus forecast statistics in Tables I and II and the effective reso- 646

lution of the various scatterometer instruments. For OSCAT and 647

HSCAT (o − ft), statistics are generally better for ECMWF than 648

(o − bt) for HARMONIE, despite the substantially larger fore- 649

cast range needed for collocation with the ECMWF model. This 650

may be explained partly because the effective resolution of these 651

scatterometers is closer to the effective resolution of ECMWF, 652

yielding a smaller representativeness error, in particular for OS- 653

CAT. More likely is that the HARMONIE model errors are 654

substantially larger than for ECMWF. Assuming that both mod- 655

els perform equally well on the large scales, which has not been 656

verified according to the authors knowledge, it is concluded 657

that the additional energy of the HARMONIE model state on 658

the turbulent scales contributes to the model error substantially, 659

when quantified with standard root-mean-square-error (RMSE) 660

metrics. 661

Exact quantification of the model errors requires estimates 662

of the instrument and representativeness error, which may be 663

obtained from triple-collocation techniques in principle. Yet, 664

a rough estimate of HARMONIE model errors is obtained as 665

follows. From Table III with focus on ASCAT: HARMONIE 666

σ2(o − bt) ≈ECMWF σ2(o − ft). For HARMONIE, the back- 667

ground bt is a 3-h forecast and for ECMWF ft is a 9.4-h fore- 668

cast. For HARMONIE, substituting in the top row of Table III 669

yields: σ2
HA (o − f3h) = σ2(εi) + σ2

HA (εr ) + σ2
HA (εf3 h) and 670

for ECMWF in the bottom row: σ2
EC (o − f9.4h) = σ2(εi) + 671

σ2
EC (εr ) + σ2

EC (εf9 . 4 h). Subtracting both equations and noting 672

that 1) σ2
HA (o − f3h) ≈ σ2

EC (o − f9.4h), and 2) ASCAT and 673

HARMONIE effective resolution are similar, i.e., σ2
HA (εr ) ≈ 0 674

yields: σ2
HA (εf3 h) ≈ σ2

EC (εf9 . 4 h) + σ2
EC (εr ). If we further split 675

the HARMONIE model error in two independent parts, repre- 676

senting the spatial scales resolved by the ECMWF model and 677

remaining (small) spatial scales and assuming linear growth 678

of ECMWF model errors over the first 10 h [26], and assum- 679

ing that ECMWF and HARMONIE perform equally well on 680

scales that ECMWF resolves (note that HARMONIE starts 681

daily from ECMWF forecasts and uses ECMWF boundaries), 682

yields: σ2
HA(smallscales)(ε

f3 h) ≈ σ2
EC (εf6 . 4 h) + σ2

EC (εr ), i.e., 683

the HARMONIE model error on spatial scales not resolved by 684

the ECMWF model can be approximated as the sum of the 6.4-h 685

ECMWF model forecast error and the representativeness error 686

of ASCAT in the ECMWF model. We note that for OSCAT on 687

scales larger than 100 km, ECMWF has a better verification 688

than HARMONIE. This implies that the variance added over 689

the ocean by HARMONIE on these scales appears not to verify 690

deterministically with scatterometer observations. 691

V. DISCUSSION 692

Mesoscale DA is still in its infancy and the additional value 693

of observations for weather forecasting is currently limited 694

to the first couple of hours. In general, forecast skill scores 695



IEE
E P

ro
of

MARSEILLE AND STOFFELEN: TOWARD SCATTEROMETER WINDS ASSIMILATION IN THE MESOSCALE HARMONIE MODEL 9

of HARMONIE are worse than for ECMWF (not shown696

here). Further progress in mesoscale DA may be achieved697

through the following notions, with focus on the HARMONIE698

model.699

In general, one can only expect improvements on small scales700

when the large scales are correct. Therefore, one should ver-701

ify that the mesoscale model performance on the large scales702

is compatible with the model in which it is ingested and703

which provides the lateral boundary conditions. The latter is704

generally a lower resolution version of the same model or a705

lower resolution global model. For HARMONIE, this means706

that its performance should be compatible or better to that of707

ECMWF on the scales that the latter resolves. To the authors’708

knowledge, this has not been yet verified for HARMONIE.709

A first target for HARMONIE could be to improve relative710

to ECMWF on the large scales, from faster cycling, hence711

ingesting recent observations more quickly than is done by712

ECMWF.713

Correct specification of the background error covariance ma-714

trix B is a continuous challenge in DA, both for global and715

mesoscale models. For global models, B mainly imposes at-716

mospheric balances at synoptic scales (>100–200 km) such as717

geostrophy. This specification may not be optimal on scales718

resolved by nonhydrostatic models where strong interactions719

between wind, temperature, and humidity dominate. As men-720

tioned in Section II-C, as a pragmatic solution, HARMONIE721

uses a climatological B′ derived from downscaled ECMWF722

ensemble members and imposes the assumption of homo-723

geneity and isotropy of forecast error statistics. The resulting724

B′ matrix structure functions produce large scale symmetric725

increments, which may be far from optimal for convective726

scale phenomena. The implementation of a flow-dependent B′727

matrix, better describing the atmospheric interactions on the728

mesoscale, is foreseen in the near future. However, there is729

a caveat here, related to the observation density as explained730

below.731

Perfect knowledge of background and observation error char-732

acteristics would allow ingestion of all available good qual-733

ity observations and contribute to an improved model state.734

Mesoscale models allow increasing variability on small spa-735

tial scales in their model state. As a consequence, the structure736

functions of the corresponding B matrix become smaller. In737

operational practice, B and R are not well known and prag-738

matic solutions applied to yield B′ as mentioned above and a739

diagonal R′. Marseille et al. [18] showed, using passive (in-740

dependent not assimilated) observations, that increments de-741

grade the model state further away from assimilated observa-742

tions when using pragmatic B′ and R′. Introducing increasingly743

smaller, but imperfect, structure functions in B′ is expected to744

degrade the model state increasingly closer to assimilated ob-745

servations. A high density observation network is then required746

to prevent the model state to degrade away from assimilated747

observations.748

However, the density of the observation network currently749

used in HARMONIE is too coarse, both spatial and temporal,750

to correctly initiate atmospheric processes on scales that the751

model can resolve. Hence, the 4-D observation density should752

be paramount on the model spatial scales to be adapted deter- 753

ministically in DA. This may be achieved by constructing the 754

structure functions of B′ such that its filtering properties allow 755

for a deterministic analysis on spatial scales prescribed by the 756

density of the observation network. This prevents the introduc- 757

tion of variability in the model state on scales that the DA system 758

cannot resolve deterministically and is therefore probably incor- 759

rect, which after evolution might also degrade the model state 760

large scales. Increased (o-b) statistics of HARMONIE versus 761

ECMWF, as discussed in Section IV, are an indication of in- 762

creased variance in the HARMONIE model state, which does 763

not verify deterministically. Spatial scales that cannot be ana- 764

lyzed deterministically should be treated in a probabilistic sense, 765

hence removed (temporary) before DA. Running HARMONIE 766

ensembles is foreseen in the near future. The ensemble mean 767

is a smooth representation of the model state and as such a po- 768

tential candidate to serve as input for DA. This needs further 769

research. Potential alternative candidates are averaging in spa- 770

tial domain or the application of a low-pass filter in spectral 771

domain. 772

The DA concept is based on the assumption of an unbiased 773

model and observations. HARMONIE shows an overestimate 774

of the 10-m wind speed over the oceans, in particular for strong 775

wind events. These biases should be removed for observations 776

to have consistent dynamical impact on forecasts. Implemen- 777

tation of a new turbulence scheme in HARMONIE already 778

shows better agreement of 10-m ocean winds with scatterom- 779

eter observations however it is questionable if the turbulence 780

scheme can be blamed for the overestimations during storm con- 781

ditions. More likely, the main cause can be found in the applied 782

surface stress roughness relationship. Nevertheless, reducing 783

model biases is crucial for the effective use of observations in 784

DA [27]. 785

Finally, profile observations from radiosondes are assumed 786

measured at launch location, ignoring drift from the launch loca- 787

tion. This simplification introduces errors that can be corrected 788

with relative ease. 789

VI. CONCLUSION 790

In a 3D-Var DA system, a shift between observation and 791

analysis time contributes to the total error in the background 792

departure, also denoted as innovation. This spatially correlated 793

error propagates in the analysis increment hence reducing the 794

quality of the resulting analysis. The current 3D-Var implemen- 795

tation of HARMONIE assumes that all observations are taken 796

at analysis time, not correcting for any time shifts. For conven- 797

tional (synoptic) observing systems such as radiosondes, synop 798

stations, and buoys, this time shift is generally small. However, 799

the time shift may be substantial for observations from asynoptic 800

observing systems such as aircrafts and satellites. For satellite 801

winds from scatterometer over the Atlantic, it was found that 802

the time shift is in the order of 0.7–1 h on average, depending on 803

the satellite orbit, for a 3-h assimilation window. Ignoring the 804

time shift increases the innovation standard deviation by about 805

20% for scatterometer, but can be up to 33%. 806
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Currently, all observations are used as point observations by807

HARMONIE. However, with continuously decreasing model808

grid sizes this assumption may no longer be adequate. A fur-809

ther reduction of innovation errors is obtained when taking into810

account the instrument footprint into the observation operator811

as part of the analysis equations. For scatterometer, a further812

reduction of 3–8% is achieved for the innovation standard devi-813

ation when introducing the observation operator in addition to814

resolving the time shift issue. These findings motivate the use of815

a 4D-Var assimilation system for HARMONIE and in addition816

the introduction of more advanced observation operators taking817

into account instrument footprints.818

Comparing statistics of observation minus model between819

the nonhydrostatic convection-resolving HARMONIE model820

and the hydrostatic, relatively smooth, ECMWF model showed821

that adding variability to the HARMONIE model state on con-822

vective scales contributes to the model error substantially. In823

other words, mesoscale models look realistic but they are not824

real. This is largely explained by the incorrect positioning of825

small-scale rapidly evolving atmospheric phenomena, which826

are explicitly resolved by mesoscale models. Incorrect posi-827

tioning of weather systems is strongly penalized when verified828

against observations using an RMSE-based metric. Nowadays829

DA in operational NWP is based on RMSE metrics and is in-830

herently deterministic. Correct positioning of rapidly evolving831

small-scale phenomena then requires a high density observation832

network in all four dimensions if one aims to correctly initialize833

these phenomena deterministically. These observations may be834

provided by satellites, but for example also by ground-based835

radars, kilometer-spaced airplane readings [28], solar or wind836

production information from energy providers, etc.837

Limitations of current mesoscale DA systems were discussed.838

Based on the notion that DA is inherently a deterministic ap-839

proach, it was concluded that correct initialization of small-840

scale weather phenomena requires a dense network of observa-841

tions in all four dimensions. Data sparsity then induces phase842

errors, i.e., incorrect positioning of weather systems through843

DA. This may be alleviated by constructing the structure func-844

tions of the prescribed background error covariance matrix such845

that its filtering properties allow for a deterministic analysis on846

model spatial scales prescribed by the density of the observation847

network.848
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