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Abstract. This study evaluates the effects of the large 2007 Peloponnese (Greece) wildfires on changes in broadband
surface albedo (o), daytime land surface temperature (LSTd) and night-time LST (LSTn) using a 2-year post-fire time
series of Moderate Resolution Imaging Spectroradiometer satellite data. In addition, it assesses the potential of remotely
sensed o and LST as indicators for fire—burn severity. Immediately after the fire event, mean « dropped up to 0.039
(standard deviation =0.012) (P < 0.001), mean LSTd increased up to 8.4 (3.0) K (P < 0.001), and mean LSTn decreased
up to —1.2 (1.5) K (P <0.001) for high-severity plots (P <<0.001). After this initial alteration, fire-induced changes
become clearly smaller and seasonality starts governing the o« and LST time series. Compared with the fire-induced
changes in o and LST, the post-fire NDVI drop was more persistent in time. This temporal constraint restricts the utility of
remotely sensed oz and LST as indicators for fire—burn severity. For the times when changes in « and LST were significant,
the magnitude of changes was related to fire—burn severity, revealing the importance of vegetation as a regulator of land
surface energy fluxes.
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Introduction

Biomass burning is a major disturbance in almost all terrestrial
ecosystems (Dwyer et al. 2000; Pausas 2004; Riafio et al. 2007),
partially or completely removing the vegetation layer and
affecting post-fire vegetation composition (Epting and Verbyla
2005; Lentile ef al. 2005). The fire-induced vegetation depletion
causes abrupt changes in carbon, energy and water fluxes at
local scale (Bremer and Ham 1999; Amiro et al. 2006a; Montes-
Helu et al. 2009), thereby influencing species richness, habitats
and community composition (Moretti ez al. 2002; Capitanio and
Carcaillet 2008). Understanding these local-scale changes in
fluxes is therefore essential for management practices as they
will have a strong effects on the water and energy balances
(Bremer and Ham 1999; Amiro et al. 2006a), and may cause
changes in circulation and regional heating patterns (Beringer
et al. 2003; Wendt et al. 2007).

A key parameter in post-fire management is fire-burn
severity. Fire-burn severity relates to the degree of
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environmental change caused by a fire (Key and Benson
2005). Although the terms fire and burn severity are often
interchangeably used (Boer et al. 2008; Keeley 2009), some
authors suggest clearly differentiating between them (Lentile
et al. 2006; Veraverbeke et al. 2010a). By doing so, fire severity
gauges the effect of fire in pre-recovery recovery phase, ac-
counting solely for direct fire effects. Burn severity, in contrast,
combines both the immediate effect of fire with ecosystems
responses (mainly vegetation regeneration). The main driver for
the terminological difference thus relies on the temporal dy-
namics of the post-fire environment (Key 2006; Veraverbeke
et al. 2010a). Remote sensing has proved to be a time- and cost-
effective means for mapping wildfire effects (among others
Viedma et al. 1997; Stroppiana et al. 2002; Lentile et al. 2006;
Riano et al. 2007; van Leeuwen 2008). The remote sensing of
burned area, fire—burn severity and vegetation regeneration
mapping has a long tradition in the use of vegetation indices
(VIs) (among others Cahoon ef al. 1994; Barbosa et al. 1999;
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Chafer et al. 2004; Chuvieco et al. 2008; French et al. 2008;
Hernandez Clemente ef al. 2009). Although the ubiquitous
Normalised Difference Vegetation Index (NDVI) relates
reasonably well to fire—burn severity (Chafer et al. 2004;
Hammill and Bradstock 2006; Veraverbeke et al. 2010b;
Lhermitte et al. 2011), the Normalised Burn Ratio (NBR) has
become increasingly popular as it consistently outperforms the
NDVI for assessing immediate post-fire effects (Epting et al.
2005; French et al. 2008; Veraverbeke et al. 2010b). For
monitoring post-fire vegetation recovery, however, the NDVI
still is by far the most widely used index (among others Viedma
et al. 1997; van Leeuwen 2008; Hernandez Clemente et al.
2009; Lhermitte et al. 2010; van Leeuwen et al. 2010). Hitherto,
few studies have assessed the potential of remotely sensed
bioclimatic variables other than VIs with regards to post-fire
effects. A suggestion on this topic originates from Lyons ef al.
(2008). In their study of the post-fire albedo changes in forested
ecotypes in Alaska, they saw some potential in the use of a
bi-temporally differenced metric based on surface albedo as a
complementary index to the NBR for estimating fire-burn
severity. To date, the majority of the post-fire effects studies
have been conducted based on Landsat imagery because of
its good spatial resolution for regional-scale studies (French
et al. 2008). The use of Landsat imagery, however, can be
constrained owing to cloud cover (Ju and Roy 2008) and
image-to-image normalisation problems (Verbyla et al. 2008;
Veraverbeke et al. 2010c). Owing to limited image availability,
Landsat studies cannot fully account for the temporal dynamics
of a post-fire environment. At the expense of spatial detail,
low-resolution imagery with high temporal frequency presents
a solution for this issue (Lhermitte ef al. 2011; Veraverbeke
etal 2011).

Several field studies have assessed these effects of fire on
bioclimatic variables. In this context, the surface blackening
due to charring causes a clear albedo decrease immediately after
the fire event (Bremer and Ham 1999; Beringer et al. 2003;
Amiro et al. 2006b; Wendt et al. 2007; Tsuyuzaki et al. 2009).
This decrease is up to half the prefire values (Bremer and Ham
1999) and the magnitude of change is dependent on the plot’s
fire severity (Beringer et al. 2003). This effect, however, is
short-lived because albedo quickly recovers to prefire values
when char materials are removed by weathering and vegetation
starts to regenerate (Bremer and Ham 1999; Tsuyuzaki et al.
2009). After the initial short drop, albedo tends to increase
during the next post-fire years, especially during the summer
season, and the persistency of this increase is a function of the
rate of vegetation regeneration (Amiro et al. 1999). Albedo
values are subject to seasonality and as consequence dissim-
ilarities between evergreen and deciduous ecotypes are evident.
Summertime albedo is higher for deciduous ecosystems,
whereas in winter differences are minor (Amiro et al. 2006b),
although in winter snow cover often significantly affects the
surface albedo (Betts and Ball 1997). Another typical post-fire
change is an increase in Bowen ratio, which is defined as the
ratio between sensible and latent heat fluxes (Bowen 1926;
Beringer et al. 2003; Amiro et al. 2006b; Wendt et al. 2007).
This is due to the decrease in latent heat flux and the consequent
decrease in cooling by evapotranspiration (Wendt et al. 2007).
The energy partitioning is, however, also subject to seasonal
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changes; the evaporative fraction, for example, will be higher
during the wet season after the fire than immediately post-fire
(Montes-Helu et al. 2009). It has also been demonstrated that
evapotranspiration is considerably higher for regenerating
deciduous forest stands compared with evergreens (Amiro
et al. 2006a). Conversely, sensible and ground heat fluxes
reveal a sharp increase shortly after the fire event. Con-
sequently, soil and air temperatures are markedly higher after
fire occurrence (Wendt ef al. 2007). The measured temperature
differences between burned and unburned control plots are
generally up to 2-8 K (Amiro et al. 1999; Bremer and Ham
1999; Wendt et al. 2007; Montes-Helu et al. 2009). Persistency
of these fire-induced microclimatic changes depends on fire
severity (Beringer et al. 2003) and ecosystem type, ranging
from ~1 year in grasslands (Bremer and Ham 1999) to up to
several decades in forests (Amiro et al. 2006b). From a remote-
sensing perspective, few studies have analysed spatiotemporal
patterns of post-fire albedo and surface temperature. The studies
that examined the effect of fire on surface heating all reported
the expected temperature increase in the immediate post-fire
environment (Lopez Garcia and Caselles 1991; Cahoon et al.
1994; Eva and Lambin 1998; Lambin er al. 2003), whereas
albedo values were halved immediately after the fire (Jin and
Roy 2005; Lyons et al. 2008).

Traditional pre- and post-fire image differencing is impeded
by temporal constraints (Key 2006; Verbyla et al. 2008;
Veraverbeke et al. 2010a, 20105, 2010c¢). Difficulties arise from
both lag timing, i.e. time since fire, and seasonal timing. Even
small interannual phenological differences can result in the
detection of false trends (Key 2006; Verbyla et al. 2008;
Lhermitte et al. 2011). To anticipate these false trends, Diaz-
Delgado and Pons (2001) proposed comparing burned plots with
unburned control plots within the same image. In this way,
external and meteorological variations are minimised among the
compared areas. Lhermitte et al. (2010) extended this rationale
by making the control plot selection method spatially explicit. In
contrast to the reference plot procedure of Diaz-Delgado and
Pons (2001), the pixel-based method assigns a unique unburned
control plot time series to each burned pixel, and as such,
allowance is made for within-burn heterogeneity. This control
plot selection is based on the similarity between the time series
of the burned pixel and the time series of its surrounding
unburned pixels for a prefire year (Lhermitte et al. 2010). So
far, the pixel-based control plot selection procedure has only
been used to analyse fire-induced changes in vegetation
(Lhermitte et al. 2010; Veraverbeke et al. 2010a).

Hence, in this paper, post-fire changes in remotely sensed
bioclimatic variables are monitored based on the control plot
selection procedure. More specifically, we aim (i) to analyse
post-fire changes in surface albedo and land surface temperature
(LST), and (ii) to evaluate the potential of remotely sensed
albedo and LST as indicators for fire—burn severity. The first
objective aims to contribute to the understanding of how fire
alters the environment, whereas the second goal meets the
suggestion of Lyons et al. (2008) to test the potential of new
metrics for assessing post-fire effects. The case study was
conducted on the large 2007 Peloponnese (Greece) wildfires.
The study makes use of multitemporal Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery.



Post-fire changes in surface temperature and albedo

Data and study area
Study area

The study focuses on several large fires that burned on the
Peloponnese peninsula, in southern Greece (36°30'-38°30'N,
21-23°E) (Fig. 1). All the fires date from the 2007 summer.
These fires were the worst natural disaster of the last decades in
Greece, both in terms of human losses and the extent of the
burned area. Elevation ranges between 0 and 2404 m above sea
level. Limestone sediments cover most of the mountainous
inland. Also, significant outcrops of sediments occur (Institute
of Geology and Mineral Exploration 1983; Higgins and Higgins
1996). The hilly and mountainous inland is covered with shal-
low and gravelly soils (European Commission 2005). The
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climate is typically Mediterranean with hot, dry summers and
mild, wet winters. At the Kalamata meteorological station
(37°4'N, 22°1'E), the average annual temperature is 17.8°C and
mean annual precipitation equals 780 mm (Fig. 2). The fires
consumed more than 175 000 ha, which consisted of 57% shrub
land, 21% coniferous forest, 20% olive groves and 2% decid-
uous forest (Veraverbeke et al. 2010a). A prefire land-cover
map of the burned areas is given in Fig. 1. Black pine (Pinus
nigra) is the dominant conifer species. The shrub layer is
characterised by e.g. Quercus coccifera, Q. frainetto, Pistacia
lentiscus, Cistus salvifolius, C. incanus, Erica arborea, Sarco-
poterum spinosum. The olive groves consist of Olea europaea
trees, whereas oaks are the dominant deciduous species.
Mediterranean-type shrub lands are highly resilient to burning
owing to both obligate seeder and resprouter fire-adapted
strategies. They regenerate as a rule in a couple of years
(Trabaud 1981; Capitanio and Carcaillet 2008) in a so-called
autosuccession process (Hanes 1971). Conversely, the recovery
of the forests is considerably slower and can take up to several
decades (Viedma et al. 1997; van Leeuwen et al. 2010).

Data

MODIS satellite time series were used in this study. The MODIS
sensor is on board the Terra and Aqua satellites and provides
daily observations at 0130 hours (Aqua ascending node), 1030
hours (Terra descending node), 1330 hours (Aqua descending
node) and 2230 hours (Terra ascending node) local time (Justice
et al. 2002). Terra MODIS 16-day vegetation indices (1 km)
(MOD13A2) (Huete et al. 2002), combined Terra and Aqua
MODIS 16-day albedo (1 km) (MCD43B3) (Schaafet al. 2002),
Terra MODIS 8-day LST (1km) (MODI11A2) and Aqua
MODIS 8-day LST (1km) (MYDI1A2) with 1-K accuracy
(Wan 2008) tiles covering the study area were acquired from the
NASA Warehouse Inventory Search Tool (WIST) ( https://wist.
echo.nasa.gov, accessed 6 August 2011) for the period 1 January
2006 to 31 December 2009. NDVI, broadband (0.3-5.0 um)
white-sky albedo («), daytime LST (LSTd), night-time LST
(LSTn) and associated Quality Assurance (QA) layers were
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Fig. 2. Ombrothermic diagram of the Kalamata (Peloponnese, Greece) meteorological station (37°4'1"N
22°1'1"E) 1956-97 (Hellenic National Meteorological Service, www.hnms.gr, 6 August 2011).
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subsequently extracted. We are aware that by using low-
resolution imagery, spatial heterogeneity is sacrificed to some
degree (Key 2006); however, recent research has highlighted the
importance of the temporal dimension of post-fire effects
(Veraverbeke et al. 2010a, 2011; Lhermitte et al. 2010). This
explains our choice of low-resolution MODIS imagery, which is
characterised by its high temporal frequency. The preprocessing
steps included subsetting, reprojecting, compositing and creat-
ing continuous time series. The study area was clipped and the
NDVI, o, LST and QA layers were reprojected into the Uni-
versal Transverse Mercator (UTM) with the World Geodetic
System 84 (WGS 84) as geodetic datum. Subsequently, the
8-day LST layers were composited in 16-day composites using
the Maximum Value Composite (MVC) criterion (Holben
1986). As such, the temporal resolution of the LST composites
matches the NDVI and o composites temporal resolution. By
applying the MVC criterion, high LST values are favoured. This
is justified as previous research just indicated the importance of
the post-fire temperature increase (Lopez Garcia and Caselles
1991; Cahoon et al. 1994; Eva and Lambin 1998; Amiro ef al.
1999; Bremer and Ham 1999; Lambin ef al. 2003; Wendt et al.
2007; Montes-Helu et al. 2009). After compositing, a local
second-order polynomial function, also known as an adaptive
Savitzky—Golay filter (Savitzky and Golay 1964), was applied
to the time series as implemented in the TIMESAT software
(Jonsson and Eklundh 2004) to replace invalid observations.
The TIMESAT program allows the inclusion of preprocessing.
These masks are translated into weights, zero and one, that
determine the uncertainty of the data values. Obscured obser-
vations were identified using the cloud, aerosol and snow
algorithm flags of the QA layers. These flags consist of binary
layers that permit a zero-weight value to be assigned to disturbed
observations. Consequently these data do not influence the filter
procedure. Owing to the low altitude (0—1000 m) of the burned
areas, these locations do not experience permanent snow cover
in the Mediterranean winter. In our study region, snow cover
thus does not heavily affect ecosystem functioning. For this
reason, we totally excluded snow effects from the analysis. Only
the values of the masked observations were replaced to retain the
original NDVI, o and LST values as much as possible.

Methodology
Control pixel selection

To minimise external and phenological variations, a pixel-based
control plot selection method (Lhermitte et al. 2010) was
implemented. This control pixel selection makes use of time
series similarity and spatial context. The selection is based on
the similarity of NDVI, o, and LST time series between burned
pixels and their surrounding unburned pixels during the prefire
year 2006, and the averaged Euclidian distance D was used as
dissimilarity measure:

S (SNDVE, — sNDVIY)? + (sef, — soF)?

t=1
+(sLSTd] — sLSTd¥)? 4 (sLSTn] — sLSTn})?
n

(1)
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where sNDVY, is the burned focal pixel standardised NDVI time
series, sSNDVI; is the unburned candidate control pixel standar-
dised NDVI time series, so/ is the focal pixel standardised o time
series, so; is the candidate control pixel standardised o time
series, sLSTd! is the focal pixel standardised daytime LST
time series, sSLSTd; is the candidate control pixel standardised
daytime LST time series, sLSTn/ is the focal pixel standar-
dised night-time LST time series, sLSTn; is the candidate
control pixel standardised night-time LST time series, and 7 is
the number of observations in the prefire year (n = 23). The time
series were standardised to provide equal weight to all data
layers during the control pixel selection procedure. This stan-
dardisation was accomplished by the following formula:

_ X — Xmean
de

sX (2)

where sX is the standardised NDVI, « or LST, X is the original
NDVI, o or LST, X, is the spatiotemporal mean NDVI, o« or
LST of all pixels, and X, represents the spatiotemporal NDVI,
o or LST standard deviation of all pixels.

For valid control plot estimates, control pixels must corre-
spond to the focal pixel if the fire had not occurred. First, this
implies identical prefire characteristics for both control and
focal pixels. Second, it means similar post-fire environmental
conditions. To determine the appropriate control pixel selection
criteria, the method of Lhermitte ef al. (2010) was calibrated to
our dataset based on post-fire similarity, because we wished to
estimate how the NDVI, o and LST would have behaved in case
ofno fire occurrence. In this context, the accuracy of the control
pixel selection is assessed by looking at the pre- and post-fire
similarity of simulated burned pixels. This approach allows one
to effectively assess how parameters c, the number of control
pixels, and w x w, the window size around the focal pixel, affect
the post-fire similarity. In this context, 500 unburned pixels
were randomly selected and a simulated burning date was set for
these pixels at the same composite date the real fire event took
place. Subsequently, the sensitivity of dissimilarity criterion D
to ¢ and wxw was assessed for each of these pixels by
comparing the outcome for varying numbers of control pixels
(c=1, 2,..., 15) and varying window sizes (3 x 3, 5x 5,...,
25 x 25). The most similar control pixel was not the only one
considered because a beneficial averaging that removes random
noise in the time series has been noted in previous research
(Lhermitte ef al. 2010). As a result, the averaged time series of
the two (or more) most similar pixels potentially provides better
results. Evaluation consisted of measuring the temporal dissim-
ilarity D for the 500 simulated burned sample pixels 1 year
prefire and 1 year post-fire. This allows one to determine how
well prefire similarity is maintained after a simulated burning
date and how pre- and post-fire changes in similarity are related
to the number of control pixels (¢) and window size (W X W).
More information on the control pixel selection procedure can
be found in Lhermitte et al. (2010) and Veraverbeke et al
(2010a).

Analysis method

The control plot selection procedure allowed generation of
2-year post-fire time series of NDVI, o and LST (at 0130, 1030,
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Fig.3. Median dissimilarity D of the 500 sample pixels in function of varying number of control pixels and window size for (a) a
prefire year, and for (b) a post-fire year. For the post-fire year, the same control pixels setting as in the prefire year is preserved. The
grey scale reflects the temporal similarity, whereas the white areas in the upper-left corner represent impossible combinations

(number of control pixels >8, for 3 x 3 window size).

1330 and 2230 hours local time) as best estimates of how these
variables would have behaved without fire occurrence. We
aimed to quantify the fire-induced changes in « and LST
between focal and control pixels and to investigate their rela-
tionship with the changes in NDVI produced by fire. The
mathematical formulation of these changes is:

dax, = x| - X; (3)

where X/ is the NDVI, o or LST value of the focal burned pixels
attime 7, X7 isthe NDVI, o or LST of the control pixels and dX, is
the difference in NDVI, o or LST between focal and control
pixels. The statistical significance of this difference is assessed
by performing a z-test of the null hypothesis that dX, follows a
normal distribution with mean 0. Results are separately analysed
for different land cover and fire—burn severity classes. Land-
cover types were determined based on the classification of
Veraverbeke et al. (2010a) resampled to a 1-km resolution
(Fig. 1). As a proxy for fire—burn severity, we used a three-class
equal interval differenced NDVI (dNDVI) stratification. For
assessing immediate post-fire effects, the NBR generally results
in a stronger correlation with field data than the NDVI (Epting
et al. 2005; French et al. 2008); however, the NDVTI’s ability to
capture the severity of fire-induced changes has been proved in a
multitude of studies (among others Isaev et al. 2002; Diaz-
Delgado et al. 2003; Chafer et al. 2004; Hammill and Bradstock
2006; Lhermitte e al. 2011). Specifically for the Peloponnese
burns, Landsat ANDVI data related reasonably well with field
data of severity (R?>=0.46, Veraverbeke et al. 2010b). To
account for both immediate fire effects and vegetation recovery,
which is prominent in a Mediterranean ecosystem over a 2-year
post-fire period, we considered the NDVI appropriate. Although
we recognise the spatial generalisation of low-resolution
MODIS imagery compared with Landsat, previous research in
the study area has demonstrated a relatively high correlation
between Landsat spectral indices resampled to the MODIS
resolution and MODIS spectral indices (R*=0.45-0.59,
Veraverbeke et al. 2010a,2011). The choice of MODIS imagery

is governed by its repeated temporal sampling, which is benefi-
cial for considering the temporal dynamics of the post-fire
environment (Veraverbeke ef al. 2010a, 2011; Lhermitte et al.
2011). We considered a dynamic dNDVT stratification with
three classes (LS, low severity; MS, moderate severity; HS, high
severity) for the dates of composite images separately as reliable
means of presenting and summarising results (White ez al. 1996;
Chafer et al. 2004; Hammill and Bradstock 2006; Escuin ef al.
2008). By applying a separate stratification for each time step,
we took into account the temporal component of post-fire effects
(Key 2000; Lentile et al. 2006; Veraverbeke e al. 2010a). As we
conducted a distinct analysis for each land-cover type, we did
not use the relative version of a differenced spectral index as
proposed by Miller and Thode (2007) to account for heteroge-
neity in prefire cover when assessing fire effects.

Results
Control pixel selection

Fig. 3a reflects D in function of varying numbers of control
pixels and window size for a prefire year. It shows the median
temporal similarity of the 500 unburned sample pixels. The
median is used instead of the mean as it is more robust in
the presence of outlier values. Two main effects are observed in
the figure. First, the number of control pixels chosen influenced
the dissimilarity measure owing to an averaging effect. The
strength of this averaging effect was dependent on window size:
the averaging effect became more important for larger window
sizes. Second, there was a consistently decreasing trend in
prefire D when window size increased. This feature appeared
regardless of the number of control pixels chosen. This finding
contrasts with what is visible in Fig. 3b, which represents the
post-fire D in function of varying number of control pixels and
window size. Here, one can see that D was at an optimum for
intermediate window sizes. For the large window sizes,
D started increasing again. As a result, differences between pre-
and post-fire similarity increase for large windows. This effect
originates from the possible selection of distant pixels that have
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Fig. 4. Post-fire similarity D in function of prefire similarity D for the
approach with the seven most similar pixels out of 120 candidate pixels.

a higher probability of showing different post-fire environ-
mental conditions in larger windows (Lhermitte ez al. 2010). As
we wish to estimate the post-fire behaviour of NDVI, o and LST,
post-fire similarity is the decision criterion to determine the
control plot selection setting (Veraverbeke et al. 2010a). Based
on Fig. 3a-b, the control pixel selection was calibrated by taking
the average of the seven most similar pixels out of 120 candidate
pixels (11 x 11 — 1), which corroborates findings of Lhermitte
et al. (2010) and Veraverbeke et al. (2010a).

Fig. 4 shows the relationship between the pre- and post-fire
similarity D for the approach with the seven most similar pixels
out of 120 candidate pixels. It reflects how prefire D provides an
indicator for post-fire D. The majority of the pixels exhibit a
linear relationship; however, two types of outliers occur. The
first type of outliers represents data with relatively high prefire
D. For these points, the selection results in a suboptimal control
pixel. The second type of outliers has relatively elevated post-
fire D values. These are pixels for which changes occurred after
the simulated burning date. Fig. 4 shows that the outliers only
represent a small fraction of the data cloud. As such, prefire D
can be considered as a good indicator for post-fire D for the
majority of the pixels.

Post-fire NDVI changes

The following sections summarise results of the post-fire
changes in NDVI, « and LST. To avoid listing numbers in the
text, Tables 1 and 2 tabulate some absolute values of changes for
exemplary dates. In this respect, Tables 1-2 are complementary
to Figs 5-8.

Fig. 5a—d shows the post-fire development of focal and
control pixels mean NDVI per land-cover type. One can clearly
infer the immediate post-fire drop. This drop was more explicit
for forests than for shrub land and olive groves. After this initial
decrease, the effects of both vegetation regeneration and sea-
sonality became apparent. Fig. Se—h displays the post-fire
dNDVI values per land-cover type. For all land-cover types,
the magnitude of the dNDVI change decreases when time
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passes; however, interannual differences remain visible. The
crosses in the figure indicate when the mean value significantly
deviates from zero (P < 0.001). Except from some observations
in the deciduous forest class, all post-fire NDVI changes are
statistically significant.

Post-fire o. changes

In Fig. 6a—d, the post-fire trends in o for control and focal pixels
are plotted per land-cover type. One can see an immediate post-
fire o drop for all covers. During the 1-year post-fire summer, the
focal pixels o of evergreen covers (shrub land, olive groves and
coniferous forest) exceeded the control pixels values. This o
increase was even more evident during the second post-fire
summer. During winter periods, o changes were small. In
Fig. 6e—h, one can see the temporal development and signifi-
cance of differenced o (do) values per land-cover type. In con-
trast with the majority of the summer observations, winter
changes in o are not significant for most of the observations.
Post-fire o changes per severity class are presented in Fig. 6i—/.
The magnitude of the post-fire drop was related to fire severity
and land-cover class. For forested covers, the o« decrease was
larger. For deciduous forest, for example, the o drop was up to
0.039 (0.012) for the HS class (P < 0.001). For the evergreen
land-cover types, the o change of the HS class had already
become positive during the first post-fire winter. In two sum-
mers post-fire this resulted in an increased o of, e.g. 0.016
(0.009) for coniferous forest (P <<0.001). The o changes in LS
and MS classes were minor. Except for the immediate post-fire
drop, differences in o changes between the severity classes are
less obvious for deciduous forest.

Post-fire LSTd changes

Results of the MODIS Terra and Aqua LST analyses revealed
very similar trends. As a consequence, only the Aqua LST
analysis is presented. Fig. 7a—d depicts the mean LSTd of the
control and focal pixels per land-cover class. In all land covers,
the fire caused a clear LSTd increase immediately post-fire and
during the subsequent summer periods, whereas in winter,
changes were minor. The magnitude of the LSTd increase dur-
ing subsequent summers became smaller as time elapsed. In
Fig. 7e—h, the mean differenced LSTd (dLSTd) is plotted for the
2-year post-fire period. Regardless of land-cover type, one can
see that the post-fire LSTd changes are significant during
summer periods, whereas during winter periods, many obser-
vations did not reveal a significant difference. Fig. 7i—/ presents
the dLSTd changes per severity class. It is clear that the mag-
nitude of the dLSTd change depends on land cover and severity
class. For the HS class of coniferous forest, for example, the
immediate post-fire dLSTd increase equalled 8.4 (3.0) K,
whereas during the first and second post-fire summers, dLSTd
values of 5.4 (2.3) Kand 1.7 (1.2) K were obtained (P < 0.001).
During winter, changes were minor and even sporadically
negative, although these observations were not significant.

Post-fire LSTn changes

Fig. 8a—d depicts the 2-year post-fire temporal evolution of
mean LSTn of the control and focal pixels per land-cover class.
In these plots, it is very difficult to discriminate between the
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Post-fire mean (s.d.) Normalised Difference Vegetation Index (NDVI), surface albedo « daytime land surface temperature (LSTd)

and night-time land surface temperature (LSTn) changes of control and focal pixels per land cover type for some exemplary moments
Some exemplary moments are: 29-Aug-07, first post-fire observation; 19-Dec-07, post-fire winter; 27-Jun-08, 1-year post-fire summer; 20-Dec-08, 1-year
post-fire winter; 26-Jun-09, 2-year post-fire summer; and 19-Dec-09, 2-year post-fire winter

29-Aug-07 19-Dec-07 27-Jun-08 20-Dec-08 26-Jun-09 19-Dec-09
Shrub land
Mean NDVI control (s.d.) 0.46 (0.06) 0.60 (0.05) 0.50 (0.06) 0.62 (0.06) 0.52 (0.06) 0.69 (0.05)
Mean NDVI focal (s.d.) 0.30 (0.06) 0.47 (0.10) 0.38 (0.06) 0.53 (0.07) 0.44 (0.07) 0.65 (0.07)

Mean o control (s.d.)

Mean o focal (s.d.)

Mean LSTd control (s.d.) (K)
Mean LSTd focal (s.d.) (K)
Mean LSTn control (s.d.) (K)
Mean LSTn focal (s.d.) (K)

Olive groves

Mean NDVI control (s.d.)
Mean NDVI focal (s.d.)
Mean o control (s.d.)

Mean o focal (s.d.)

Mean LSTd control (s.d.) (K)
Mean LSTd focal (s.d.) (K)
Mean LSTn control (s.d.) (K)
Mean LSTn focal (s.d.) (K)

Coniferous forest

Mean NDVI control (s.d.)
Mean NDVI focal (s.d.)
Mean o control (s.d.)

Mean o focal (s.d.)

Mean LSTd control (s.d.) (K)
Mean LSTd focal (s.d.) (K)
Mean LSTn control (s.d.) (K)
Mean LSTn focal (s.d.) (K)

Deciduous forest

Mean NDVI control (s.d.)
Mean NDVI focal (s.d.)
Mean o control (s.d.)

Mean o focal (s.d.)

Mean LSTd control (s.d.) (K)
Mean LSTd focal (s.d.) (K)
Mean LSTn control (s.d.) (K)
Mean LSTn focal (s.d.) (K)

0.140 (0.012)
0.117 (0.018)
312.1 (2.1
316.6 (2.9)
291.4 (1.6)
2913 (1.9)

0.48 (0.04)
0.32 (0.05)
0.137 (0.014)
0.115 (0.017)
311.5 (1.6)
315.9 (2.6)
292.6 (1.0)
292.6 (1.1)

0.60 (0.06)
0.36 (0.09)
0.124 (0.011)
0.093 (0.014)

309.5 (1.9)

314.8 (3.9)

291.7 (1.1)

2912 (1.6)

0.56 (0.06)
0.37 (0.08)
0.137 (0.009)
0.109 (0.016)

310.1 (2.4)

316.0 (3.7)

289.6 (1.0)

289.0 (1.0)

0.120 (0.011)
0.114 (0.020)
285.3 (1.7)
285.7(1.9)
275.0 (1.7)
274.8 (1.8)

0.67 (0.04)
0.53 (0.09)
0.114 (0.011)
0.109 (0.019)

286.2 (1.2)

286.7 (1.3)

277.1 (1.5)

276.8 (1.6)

0.67 (0.04)
0.41 (0.10)
0.100 (0.012)
0.088 (0.020)

283.9(1.6)

284.4 (2.1)

2754 (1.7)

274.9 (1.8)

0.55 (0.04)
0.44 (0.07)
0.112 (0.008)
0.091 (0.012)

283.8 (1.3)

284.1 (1.4)

273.4(0.5)

274.0 (0.6)

0.149 (0.012)
0.154 (0.014)
313.1 (2.5)
3152 (2.6)
292.6 (1.6)
292.7(1.7)

0.50 (0.05)
0.40 (0.05)
0.146 (0.010)
0.149 (0.012)

313.1(1.9)

315.0 (2.0)

293.9(0.9)

294.1 (1.0)

0.63 (0.06)
0.41 (0.08)
0.134 (0.009)
0.135 (0.013)

310.1 (2.2)

313.4 (2.8)

292.9(1.2)

292.7 (1.6)

0.65 (0.07)
0.48 (0.08)
0.142 (0.007)
0.140 (0.009)

310.6 (2.4)

313.4(2.7)

290.8 (0.8)

290.8 (0.9)

0.122 (0.012)
0.124 (0.021)
283.6 (2.0)
283.7(1.7)
274.0 (1.3)
273.9 (1.5)

0.71 (0.03)
0.61 (0.06)
0.119 (0.010)
0.123 (0.019)
284.3 (1.5)
284.6 (1.6)
275.5(1.2)
275.4 (1.4)

0.71 (0.03)
0.55 (0.08)
0.102 (0.012)
0.102 (0.021)

281.9 (1.6)

283.2(2.0)

274.5(1.2)

274.0 (1.0)

0.53 (0.06)
0.49 (0.05)
0.112 (0.010)
0.104 (0.019)

283.0 (1.9)

283.3(2.3)

272.9 (0.6)

272.7(0.7)

0.142 (0.011)
0.151 (0.014)
310.0 (2.5)
311.2 (2.6)
290.5 (1.8)
290.5 (1.9)

0.54 (0.04)
0.47 (0.05)
0.138 (0.008)
0.146 (0.010)

309.2 (2.2)

3103 (2.3)

291.3 (1.2)

2913 (1.3)

0.63 (0.05)
0.51(0.07)
0.127 (0.008)
0.134 (0.011)

307.0 (1.5)

308.8 (2.1)

290.5 (1.0)

2902 (1.2)

0.65 (0.06)
0.56 (0.08)
0.135 (0.005)
0.133 (0.007)

3073 (1.9)

308.5 (2.0)

288.9 (0.8)

288.5 (0.9)

0.127 (0.015)
0.135 (0.020)
290.4 (1.5)
290.0 (2.1)
282.0 (1.5)
281.5 (2.0)

0.75 (0.03)
0.71 (0.06)
0.126 (0.012)
0.137 (0.020)

2914 (2.3)

291.5(1.9)

283.2(1.2)
282.9(1.9)

0.77 (0.05)
0.69 (0.08)
0.102 (0.014)
0.108 (0.021)

289.9 (1.8)

289.6 (2.2)

282.4 (1.5)

281.9 (2.0)

0.64 (0.06)
0.64 (0.06)
0.110 (0.007)
0.111 (0.010)

289.7 (1.6)

289.1 (1.9)

280.8 (0.6)

280.2 (1.3)

control and focal pixels. Thus, changes in LSTn were very small.
This is also illustrated in Fig. 8¢—h, which show the mean dLSTn
values per land-cover type. Results show a tendency of post-fire
LSTn decrease. Except for the persistent significance of the
post-fire LSTn decrease over coniferous forest, most changes
were insignificant. Fig. 8i—/ presents the mean dLSTn per
severity class. The relationship between severity class and
dLSTn was also only clear for coniferous forest. For the HS class
of coniferous forest, for example, a consistent LSTn decrease
was observed up to values of —1.4 (1.0) K during the 1-year
post-fire winter.

Discussion
Control pixel selection

The strength of the control pixel selection procedure is its ability
to mimic a burned pixel’s behaviour as if there had not been a

fire. The method therefore assesses the similarity in the temporal
profiles of a burned pixel and its closest unburned neighbour
pixels. By doing so, the procedure implicitly tends to select
control pixels that exhibit similar vegetation (e.g. type, density)
and environmental (e.g. topography, geology, climatology)
conditions. The actual selection relies on prefire similarity, as
post-fire similarity information is unavailable after the burning
date. However, only considering prefire time series would not
account for interannual meteorological variations. For this rea-
son, a calibration was set up based on 500 simulated burned
pixels. This calibration allows assessment of the relationship
between pre- and post-fire similarity. As inferred from Fig. 35,
in contrast with Fig. 3a, the most optimal setting tends to select
control pixels relatively close to the burned pixels. This effect
arises from the selection of distant pixels with different post-fire
meteorological conditions for larger window sizes (Lhermitte
et al. 2010; Veraverbeke et al. 2010a). Fig. 4 demonstrates that
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Table 2. Post-fire mean (s.d.) differenced albedo (da), daytime land surface temperature (LSTd) and night-time land surface temperature (LSTn)
values per land cover type and fire-burn severity class for some exemplary moments
Burn severity classes are: LS, low severity; MS, moderate severity; and HS, high severity. Some exemplary moments are: 29-Aug-07, first post-fire
observation; 19-Dec-07, post-fire winter; 27-Jun-08, 1-year post-fire summer; 20-Dec-08, 1-year post-fire winter; 26-Jun-09, 2-year post-fire summer; and
19-Dec-09, 2-year post-fire winter. Values that significantly differ from zero (P < 0.001) are italicised

29-Aug-07 19-Dec-07 27-Jun-08 20-Dec-08 26-Jun-09 19-Dec-09
Shrub land
Mean do LS (s.d.) —0.013 (0.012) —0.009 (0.013) 0.000 (0.007) 0.000 (0.014) 0.005 (0.008) 0.006 (0.016)
Mean do MS (s.d.) —0.024 (0.014) —0.006 (0.016) 0.005 (0.010) 0.002 (0.018) 0.009 (0.010) 0.008 (0.017)
Mean do HS (s.d.) —0.032 (0.011) 0.000 (0.020) 0.012 (0.011) 0.016 (0.025) 0.012 (0.012) 0.013 (0.023)
Mean dLSTd LS (s.d.) (K) 1.8(1.7) 0.2 (0.8) 0.5(1.2) 0.0 (1.1) 0.7 (1.1) —0.3 (2.0)
Mean dLSTd MS (s.d.) (K) 4.5(2.5) 0.4 (1.1) 2.1(1.9) 0.1(1.2) 1.2(1.3) —0.3(2.0)
Mean dLSTd HS (s.d.) (K) 6.6 (2.3) 0.8 (1.5) 4.3(1.9) —0.4(1.1) 1.9(1.9) —0.8(2.5)
Mean dLSTn LS (s.d.) (K) 0.0 (0.8) —0.1(0.8) 0.2 (0.8) —0.1(0.7) 0.1 (0.7) —0.3(1.6)
Mean dLSTn MS (s.d.) (K) —0.1(1.1) —0.2(0.8) 0.1(0.8) —0.2(0.9) 0.0 (0.8) —0.5(1.6)
Mean dLSTn HS (s.d.) (K) —0.4(1.2) —0.3(0.9) —0.1(0.9) —0.3(1.5) —0.3(1.4) —1.4(2.3)
Olive groves
Mean do LS —0.015(0.011) —0.007 (0.014) 0.002 (0.007) 0.001 (0.015) 0.007 (0.007) 0.011 (0.017)
Mean do MS —0.022 (0.012) —0.005 (0.015) 0.003 (0.009) 0.004 (0.016) 0.009 (0.008) 0.011 (0.018)
Mean do HS —0.029 (0.011) 0.000 (0.015) 0.007 (0.012) 0.030 (0.019) 0.019 (0.014) 0.014 (0.028)
Mean dLSTd LS (s.d.) (K) 2.8 (1.6) 0.3(0.9) 1.0 (1.0) 0.2 (0.9) 0.8 (0.9) —0.1(1.7)
Mean dLSTd MS (s.d.) (K) 4.4 (2.1) 0.5 (1.0) 1.8 (1.5) 0.3 (1.0) 1.2(1.1) 0.0 (1.8)
Mean dLSTd HS (s.d.) (K) 6.5 (1.4) 0.6 (1.3) 3521 —0.9 (1.0) 2.1(1.7) 0.0 (1.1)
Mean dLSTn LS (s.d.) (K) 0.0 (0.5) —0.1(0.7) 0.0 (0.5) —0.1(0.7) 0.0 (0.5) —0.1(1.4)
Mean dLSTn MS (s.d.) (K) 0.0 (0.6) —0.3(0.6) 0.2 (0.6) —0.1(0.8) 0.0 (0.7) —0.3 (1.4)
Mean dLSTn HS (s.d.) (K) —0.1(0.6) —0.6 (0.7) 0.2 (0.7) —-0.2(1.1) 0.0 (0.7) —0.7 (0.9)
Coniferous forest
Mean do LS —0.026 (0.014) —0.014 (0.018) —0.005 (0.011) —0.004 (0.019) 0.004 (0.009) 0.007 (0.019)
Mean do MS —0.030 (0.012) —0.011(0.018) 0.002 (0.012) 0.000 (0.020) 0.007 (0.010) 0.006 (0.019)
Mean do HS —0.036 (0.009) —0.004 (0.018) 0.006 (0.012) 0.003 (0.026) 0.016 (0.009) 0.006 (0.019)
Mean dLSTd LS (s.d.) (K) 2.9(2.3) 0.3 (1.3) 1.5(1.7) 0.3 (1.4) 1.1(1.3) —0.2 (2.1)
Mean dLSTd MS (s.d.) (K) 5.3(3.2) 0.5(1.5) 3322 0.2 (1.4) 1.7 (1.5) —0.4(2.1)
Mean dLSTd HS (s.d.) (K) 8.4(3.0) 0.6 (1.8) 54(2.3) —0.4 (1.6) 1.7 (1.2) —0.3(2.3)
Mean dLSTn LS (s.d.) (K) —0.2 (0.8) —0.2 (0.7) 0.1 (0.6) —0.1(0.7) —0.1(0.5) —0.3(1.4)
Mean dLSTn MS (s.d.) (K) —0.6 (1.1) —0.5(0.9) —0.2(0.9) —0.5(0.9) —0.3(0.7) —0.4(1.5)
Mean dLSTn HS (s.d.) (K) —1.2(1.5) —1.0(1.0) —0.9(1.1) —1.4(1.0) —0.8(0.8) —0.8 (1.6)
Deciduous forest
Mean do LS —0.016 (0.011) —0.018 (0.013) 0.000 (0.009) —0.013 (0.010) 0.006 (0.006) 0.000 (0.008)
Mean do MS —0.030 (0.012) —0.021 (0.015) —0.002 (0.008) —0.008 (0.022) —0.002 (0.008) 0.000 (0.009)
Mean do HS —0.039 (0.012) —0.026 (0.024) —0.006 (0.007) 0.002 (0.034) —0.004 (0.007) 0.002 (0.012)
Mean dLSTd LS (s.d.) (K) 2.8(2.4) 0.4 (0.6) 0.3(1.4) 0.7 (0.8) 0.4 (0.6) —0.6 (2.2)
Mean dLSTd MS (s.d.) (K) 5.3(3.2) 0.4 (0.8) 2.8(2.1) 0.3(1.2) 0.8 (1.2) —0.7 (2.0)
Mean dLSTd HS (s.d.) (K) 8.1(2.0) 0.0(1.2) 5.0(1.2) 0.2 (1.1) 2.1(1.6) 0.2 (2.0)
Mean dLSTn LS (s.d.) (K) —0.2(0.5) 0.8 (0.6) 0.5(0.4) —0.3(0.6) 0.0 (0.5) —0.6 (1.7)
Mean dLSTn MS (s.d.) (K) —0.6 (0.8) 0.5(0.7) —0.1(0.8) —0.2 (0.6) —0.2(0.5) —0.6 (1.4)
Mean dLSTn HS (s.d.) (K) —1.0(0.9) —0.2 (0.5) —0.5(0.9) 0.0 (0.4) —0.8(0.7) —0.3(1.0)

prefire similarity is a valid indicator of post-fire similarity for
the majority of the pixels. For some pixels, however, the selected
control pixel will be suboptimal. This is especially true for
control pixels that experienced considerable changes, such as
land-management practices, after the fire date. A comprehen-
sive discussion on the control pixel selection procedure can be
found in Lhermitte ez al. (2010) and Veraverbeke et al. (2010a).

Post-fire NDVI changes

Fig. 5 confirms the utility of the NDVI for monitoring fire-
induced changes. The NDVI time series, however, are also subject

to seasonal variations. The timing of image acquisition, both in
terms of lag and seasonal timing, thus affects the NDVIresponse
(Key 2006; Verbyla et al. 2008; Veraverbeke et al. 2010a;
Lhermitte et al. 2011). The seasonality of the NDVI response
also depends on land-cover type. In our study, deciduous forest
showed markedly higher seasonal variations than evergreen
species. Despite these temporal constraints, the fire-induced
changes in NDVI were clearly more persistent than changes in
o and LST (see Figs 6-8). Except for some winter observations
over deciduous forest, the NDVI appears to be a good dis-
criminator between control and focal pixels. In contrast, sea-
sonality dominates the temporal profiles of o and LST variables.
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(b), coniferous forest (c), and deciduous forest (d); 2-year post-fire temporal evolution of mean differenced LSTd (dLSTd) for shrub land (e), olive groves (1),
coniferous forest (g), and deciduous forest (/); 2-year post-fire temporal evolution of mean dLSTd per fire—burn severity classes for shrub land (7), olive groves
(7), coniferous forest (k), and deciduous forest (/). The crosses in (e—/) indicate that the mean significantly differs from zero (P < 0.001). In (g—#), standard
deviations are plotted with vertical bars. In (i—/), LS, MS and HS stand for low, moderate and high severity.

The usefulness of these variables to discriminate between fire-
affected areas, thus heavily depends on assessment timing.

Post-fire o. changes

The effects of fire on o are multiple. First, an immediate post-fire
decrease in o was observed. This decrease was up to 0.039
(0.012) for the HS class in deciduous forest. This outcome is in
line with previously published findings that report o drops in the
range of 0.01-0.05 (Beringer et al. 2003; Jin and Roy 2005;
Amiro et al. 2006a; Lyons et al. 2008). Two of these studies
were also based on MODIS imagery (Jin and Roy 2005; Lyons
et al. 2008). Lyons et al. (2008) observed a slight decrease of
0.012 (0.005), whereas the average o drop of 0.024 reported by
Jin and Roy (2005) more closely approximates our values. The
main reason for the immediate post-fire o decrease is the large-
scale replacement of living vegetation with black carbon on the
surface. Char materials strongly absorb the incoming sunlight
and as such, they cause a significant reduction of the reflection-
to-incoming sunlight ratio. However, this effect had a relatively
short duration, as during the first post-fire winter period, which
is a period of heavy rainfall in the Mediterranean, most of the
char materials are removed by fluvial and aeolian forces (Pereira
et al. 1999). In Fig. 6, one can see that the control pixel o values
reveal a typical seasonality, which is closely connected with
moisture conditions. The « values are clearly lower during wet
winter periods than during dry summer periods. However, as
shown in Fig. 6, o values of undisturbed plots do not

significantly differ from those of burned plots during winter.
This suggests, in contrast to findings of Tsuyuzaki et al. (2009),
that the seasonal variations in surface moisture and the removal
of’black carbon more strongly drive the o recovery than the early
regeneration of vegetation. It is, however, also recognised that
leaves and branches of regenerating species have a higher o than
mature species (Betts and Ball 1997; Amiro et al. 2006b). The
combination of char removal and regenerating species causes an
o increase during the post-fire summer periods. This increase
was even more evident for the second post-fire summer than for
the first. This can be explained by the fact that after the first
winter period, most surface char coating has been removed and
early vegetation regeneration has started, but after the second
winter period, even more of this char material is ablated and
vegetation continues regenerating. This implies the exposure of
highly reflective soil and rock combined with regenerating
species, which results in an o increase (Lyons et al. 2008).
These changes in post-fire summer o depend on fire—burn
severity. The magnitude of summer o change is proportionally
related to the degree of severity (see Fig. 5). In a long-term study
(30 years post-fire), Amiro et al. (2006a) ascertained that the
o increase progressively weakens as regenerating vegetation
matures. Thus, where the immediate fire effect results in an
increased absorption of radiative energy, the long-term effect
generally is an increased albedo (Amiro et al. 2006a; Randerson
et al. 2006). The quantification of these effects, together with an
accurate estimation of the amount of greenhouse gases emitted
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Fig.8. Two-year post-fire temporal evolution of mean night-time land surface temperature (LSTn) of control and focal pixels for shrub land (), olive groves
(b), coniferous forest (¢), and deciduous forest (d); 2-year post-fire temporal evolution of mean dLSTn for shrub land (e), olive groves (f), coniferous forest (g),
and deciduous forest (%); 2-year post-fire temporal evolution of mean differenced LSTn (dLSTn) per fire—burn severity classes for shrub land (i), olive groves
(j), coniferous forest (k), and deciduous forest (/). The crosses in (e—#) indicate that the mean significantly differs from zero (P < 0.001). In (g-4), standard
deviations are plotted with vertical bars. In (/)—(/), LS, MS and HS stand for low, moderate and high severity.

by the fire and the subsequent post-fire carbon sequestration of
regenerating vegetation, are necessary for holistic comprehen-
sion of the effect of wildfires on regional and global climate. In
this context, Randerson et al. (2006) comprehensively demon-
strated that, although the first post-fire year resulted in net
warming, the long-term balance was negative. As such, they
concluded that increasing fire activity in the boreal region would
not necessarily lead to net climate warming. However, these
findings were restricted to the boreal eco-region and a similar
net balance has not yet been formulated for more quickly
recovering ecosystems, such as in fire-prone (sub)tropical and
Mediterranean regions.

Post-fire LST changes

Besides assessing fire-induced changes in LST with respect to
lag and seasonal timing, MODIS imagery also permits a study of
diurnal differences. Immediately post-fire, LSTd increases. The
magnitude of this increase depends on land cover and fire—burn
severity class. For the HS class of coniferous forest, the focal
pixels mean exceeded the control pixels mean by 8.4 (3.0) K.
This is very similar to the 2-8 K immediate post-fire tempera-
ture daytime temperature increases reported by other studies
(Lopez Garcia and Caselles 1991; Cahoon ef al. 1994; Eva and
Lambin 1998; Amiro et al. 1999; Bremer and Ham 1999;
Lambin et al. 2003; Wendt et al. 2007; Montes-Helu ez al. 2009).
This effect has, however, only a very short duration, as by the

onset of the wet winter, LSTd differences are minor. These
findings corroborate an analogous study that assessed the
influence of deforestation on LSTd (Manoharan et al. 2009).
The latter authors reported that LSTd is 4 to 8 K higher during
the dry season for deforested regions compared with nearby
forests. However, during the wet season, LSTd of deforested and
forested plots reach similar values. One can infer the same trend
from Fig. 6. During the 1-year and subsequent post-fire summer
seasons, mean LSTd increases strongly decline. This attenuation
can be attributed to vegetation regeneration processes (see
Fig. 4) and char removal. The summer LSTd increase is the
driving force of the synchronous increase in sensible and ground
heat fluxes (Wendt et al. 2007). Little research has been
conducted so far to assess the post-fire changes in LSTn. The
range of changes in LSTn is relatively small. This makes it
difficult to infer post-fire trends for this variable. The fire-
induced changes in LSTn are only persistent over coniferous
forest. For this cover type, a clear relation between fire—burn
severity and dLSTn also exists. During the 1-year post-fire
winter, for example, LSTn drops —1.4 (1.0) K for the HS class
over coniferous forest. It is important to mention that the MVC
criterion favours the detection of post-fire LST increases,
whereas it diminishes the observation of cold extremes. This
potentially results in a slight underestimation of the post-fire
LSTn decrease. In general, fire, thus, creates a more extreme
environment with warmer days and colder nights. Another
striking result lies in the fact that both dLSTn and dLSTd
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observations of the last prefire composite of the evergreen
cover types are significantly higher than zero. This potentially
opens opportunities to use remotely sensed LST data as a real-
time fire risk indicator (Manzo-Delgado et al. 2009).

Relation between fire-induced changes in o, LST
and fire-burn severity

Fire-induced changes in o and LST show a marked seasonality.
This results in significant changes immediately post-fire and in
summer periods and insignificant differences during winter
periods. Changes in NDVI, in contrast, are clearly more
persistent. For o and LST, the magnitude of fire-induced
changes is smaller than seasonal amplitude, whereas for VIs, the
post-fire drop dominates the temporal profiles. This raises
questions about the proposal of Lyons et al. (2008) to use pre-
and post-fire differenced satellite-derived albedo data as an
indicator of fire—burn severity. Fire—burn severity assessment
timing is already a serious issue when working with VIs
(Key 2006; Verbyla et al. 2008; Veraverbeke et al. 2010a).
Introducing biophysical parameters with high seasonal ampli-
tude would only hamper this more, especially because fire—burn
severity is traditionally estimated based on Landsat imagery
(French et al. 2008), which is frequently affected by cloudy
observations (Ju and Roy 2008). Only the first post-fire obser-
vation of these variables shows some potential to be used a fire
severity indicator. Additionally, changes in LST are not only
dependent on a plot fire—burn severity but also on the meteo-
rological conditions of the acquisition period. This feature limits
the comparability of LST changes of different fires across space
and time. For the times when changes in « and LSTd are sig-
nificant, the magnitude of these changes indeed has a very close
relation with a plot’s fire—burn severity, as estimated by its
NDVI change (see Figs 6—8). This emphasises the importance of
vegetation as an important regulator of surface energy fluxes
(Xiao and Weng 2007; Amiri et al. 2009; Manoharan et al.
2009; Tsuyuzaki et al. 2009). Fire thus creates a more arid
environment with enhanced diurnal and seasonal temperature
fluctuations. Vegetation regeneration, however, progressively
tempers this effect and facilitates long-term ecosystem recovery
(Amiro et al. 2006a; Tsuyuzaki et al. 2009). Although the
immediate post-fire changes in o and LSTd observed in the
present study are consistent with results obtained in other
ecosystems (among others Jin and Roy 2005; Lyons et al. 2008;
Lopez Garcia and Caselles 1991; Cahoon ef al. 1994; Eva and
Lambin 1998; Amiro et al. 1999; Bremer and Ham 1999;
Lambin et al. 2003; Wendt et al. 2007; Montes-Helu et al. 2009),
our analysis also incorporated seasonal changes. To date, few
studies have assessed the interaction between fire-provoked
changes and seasonality. It is obviously recognised that this
seasonality depends on the regional climate. In regions
experiencing a prominent period of snow cover, this feature
will heavily influence seasonal cycles of energy fluxes
(Betts and Ball 1997).

Conclusions

In this study, the pixel-based control plot selection procedure
allowed a multitemporal assessment of the effects of the 2007
Peloponnese (Greece) wildfires on local climate during a 2-year
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post-fire period based on MODIS satellite imagery. Post-fire
changes in vegetation, o and LST were dependent on land-cover
type and fire-burn severity. Post-fire NDVI time series were
dominated by their post-fire NDVI drop, whereas changes in
o and LST were highly dependent on seasonality. Therefore,
VIs are more effective to detect burns and to distinguish
severity levels. Surface o sharply decreased immediately after
the fire event; however, during the subsequent summer period, o
increased, whereas during winter, o changes were minimal.
LSTd was higher after the fire. This increase was especially
obvious during summer periods. The temperature increase
became smaller as time elapsed as a consequence of regene-
rating vegetation. Changes in LSTn were very small and
almost not significant, except over coniferous forest, where
LSTn slightly decreased. The magnitude of these changes
is proportionally related to a plot’s fire—burn severity, as
assessed by the post-fire NDVI drop. This study provides
insights on the multitemporal changes in energy fluxes in a
fire-altered environment, which have important ecological
implications.
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