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Abstract. Regional frequency analysis (RFA) is often used to reduce3

the uncertainty in the estimation of distribution parameters and quan-4

tiles. In this paper a regional peaks-over-threshold (POT) model is intro-5

duced that can be used to analyze precipitation extremes in a changing6

climate. We use a temporally varying threshold, which is determined by7

quantile regression for each site separately. The marginal distributions8

of the excesses are described by generalized Pareto (GP) distributions.9

The parameters of these distributions may vary over time and their spa-10

tial variation is modeled by the index flood (IF) approach. We consider11

different models for the temporal dependence of the GP parameters. Pa-12

rameter estimation is based on the framework of composite likelihood.13

Composite likelihood ratio tests that account for spatial dependence are14

used to test the significance of temporal trends in the model parameters15

and to test the IF assumption.16

We apply the method to gridded, observed daily precipitation data from17

the Netherlands for the winter season. A general increase of the thresh-18

old is observed, especially along the west coast and northern parts of the19

country. This implies, that moderate extremes have increased over the20

observed time period. Moreover, the positive trend in the threshold in-21

duces an increase in the scale parameter of the GP distribution owing to22

the IF assumption. There is no additional trend in the scale parameter23

and the trend in the shape parameter is not significant.24
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1. Introduction

Design values for infrastructure are often based on characteristics of extreme precipi-25

tation. These characteristics may have changed over time owing to climate change, see26

e.g. Klein Tank and Können [2003] and Milly et al. [2008], which contradicts the station-27

arity assumption, that is usually made in hydrologic and hydraulic design. Wrongly28

assuming stationarity generally leads to systematic errors in design values and might29

have a considerable impact on the risk of failure of hydraulic structures, as shown by30

Wigley [2009]. Climate scientists have analyzed trends in moderate extremes, that oc-31

cur once or several times per year, based on annual indices. Examples are the empirical32

annual 90% quantile of the precipitation amounts on wet days or the 1-day or 5-day33

maximum precipitation amount in each year, see e.g. Klein Tank and Können [2003] and34

Turco and Llasat [2011].35

In this study we focus on rare extremes which occur less frequently than once per36

year. These are frequently assessed by extreme value (EV) models. To account for the37

temporal trend in the distribution, the parameters of the EV model are often selected38

to be time dependent [Smith, 1986; Kharin and Zwiers, 2005; Brown et al., 2008; Hanel et39

al., 2009; Kyselý et al., 2010; Beguerı́a et al., 2011]. Because of the rarity of the extremes,40

the parameters in these EV models and, especially, large quantiles of the precipitation41

amounts have wide confidence intervals. To reduce the uncertainty in the estimates42

the use of data sets over a long period and/or regional frequency analysis (RFA), have43

been recommended e.g. by Hosking and Wallis [1997]. Data sets over a long period are44

often only available for a few stations, whereas we have multiple stations that cover a45
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relatively short time period. The idea behind RFA is to exploit the similarities between46

the sites in a certain region, so that all data in the region can be used to obtain quantile47

estimates for a particular site. The index flood (IF) approach is a popular method in48

RFA. It assumes that the distributions of the extreme precipitation amounts are identi-49

cal after scaling with a site-specific factor (the index flood).50

The IF approach has frequently been applied to describe the distribution of block51

maxima (BM), i.e. the largest value in a year or season. Considering only BM discards52

useful data in the case of multiple extremes in a block, see e.g. Madsen et al. [1997a]53

and Kyselý et al. [2010]. An alternative method to analyze extremes is to consider all54

values that exceed a certain high threshold, which is known as peaks-over-threshold55

(POT) modeling. A potential advantage of POT modeling is the possibility to include56

more data in the analysis than in the BM approach, which may reduce the estimation57

variance. The use of the IF assumption together with the POT approach has been stud-58

ied in Madsen and Rosbjerg [1997] for stationary data. Here we develop a different POT59

model with time-varying parameters, that satisfies the IF assumption.60

In section 2 we describe the proposed model. We explain the basic methods used61

to deal with high quantile estimation in the case of stationary data with emphasis on62

the POT approach. After that, we present our model for the nonstationary climate. In63

section 3 we outline the estimation procedure. The choice between different models is64

addressed in section 4 and in section 5 the application of the model to observed daily65

precipitation data in the Netherlands is discussed.66

2. Model description
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The data we describe with our model consist of measurements at S sites over a period67

of T time points. The data can be represented in an S× T space-time matrix68

X := (Xs(t))s∈S ,t∈T ,69

where Xs(t) is the random variable representing the value at site s and time t, S :=70

{1, ..., S} and T := {1, ..., T}.71

In POT modeling exceedances over a high threshold us(t) are considered, s ∈ S ,72

t ∈ T . This threshold is generally site specific and may depend on time. In the case of73

temporal clustering of the exceedances the largest value in a cluster (peak) is consid-74

ered only. These peaks will then generally be approximately independent. We assume75

that the Xs(t) have been declustered and we define Ys(t) as the difference between the76

daily value at site s and time t and the corresponding value of the threshold, i.e.77

Ys(t) := Xs(t)− us(t),78

and Y is defined analogously to X. The excesses are the nonnegative part of Y. Note,79

that due to the declustering Ys(t) is only non-negative if there is a peak. By T̃ we80

denote the subset of days which exhibit at least one exceedance of the threshold, i.e.81

T̃ := {t ∈ T |∃s ∈ S : Ys(t) ≥ 0} .82

2.1. Stationary climate

2.1.1. Site specific approach83

The BM approach for a stationary climate relies on the Fisher-Tippet-Gnedenko the-84

orem for maxima of independent and identically distributed (i.i.d.) random variables.85

This theorem allows, under certain regularity conditions, to approximate the distribu-86

tion of the BM by an extreme value distribution, see e.g. Embrechts et al. [1997]. The87
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three types of extreme value distributions can be summarized in the generalized ex-88

treme value (GEV) distribution, i.e.89

Hξ∗,σ∗,µ∗(x) =

exp
{
−
[
1 + ξ∗

(
x−µ∗

σ∗

)]−1/ξ∗
}

, ξ∗ 6= 0,

exp
[
− exp(− x−µ∗

σ∗ )
]

, ξ∗ = 0,
90

for 1 + ξ∗(x − µ∗)/σ∗ > 0, where µ∗, σ∗ and ξ∗ are the location, scale and shape pa-91

rameter. ξ∗ > 0 corresponds to the Fréchet family, ξ∗ < 0 to the Weibull family and92

ξ∗ = 0 to the Gumbel family.93

When we consider the POT approach rather than block maxima, we have to model94

the process of exceedance times and the distribution of the excesses separately. In a95

stationary climate the the threshold u is constant and the times of exceedance are usu-96

ally modeled by a homogeneous Poisson process. This implies, that the mean number97

λ of exceedances in a block (i.e., year or a particular season) is constant over time.98

The Balkema-de Haan-Pickands theorem states, that the distribution of i.i.d. excesses99

can be approximated by a generalized Pareto (GP) distribution, if the threshold u is100

sufficiently high and certain regularity conditions hold, see e.g. Reiss and Thomas [2007]:101

P(Y ≤ y|Y ≥ 0) = Gξ, σ(y)102

=

1−
(

1 + ξy
σ

)−1/ξ
, ξ 6= 0,

1− exp
(
− y

σ

)
, ξ = 0,

103

104

for y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ if ξ < 0, where σ and ξ are the scale and the shape105

parameter. For ξ = 0 the GP distribution reduces to the exponential distribution.106

We are interested in the level qα which is exceeded on average α times in a block.107

Since there are on average λ peaks in a block, the probability that an arbitrary peak108

exceeds this level equals α/λ. To obtain qα we first determine the (1− α/λ)-quantile109
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of the excess distribution:110

q̃α = G−1
ξ,σ(1− α/λ),111

and then add the threshold u, i.e.112

qα = u + q̃α =

{
u + σ

ξ [1− ( α
λ )
−ξ ], ξ 6= 0,

u + σ ln(λ
α ), ξ = 0.

(1)113

We will sometimes indicate the quantile qα as the 1/α return level to make the com-114

parison with studies for a stationary climate easier.115

If one assumes that the exceedance times originate from a homogeneous Poisson pro-116

cess and the excesses are independent and follow a GP distribution, it can be shown117

that the subsequent relationship between the parameters of the GEV and the GP distri-118

bution holds [Buishand, 1989; Wang, 1991; Madsen et al., 1997b]:119

µ∗ =

{
u− σ

ξ (1− λξ), ξ 6= 0,
u + σ ln(λ), ξ = 0,

σ∗ = σλξ

ξ∗ = ξ

(2)120

Note, that the derived GEV distribution is defined only for BM greater than u.121

2.1.2. Regional approach122

The IF method was originally developed for annual maxima of river discharges by123

Dalrymple [1960]. It assumes that the annual maxima at different sites, after being124

scaled by a site specific factor, the ’index flood’, have a common distribution [e.g. Dal-125

rymple, 1960; Hosking and Wallis, 1997; Robinson and Sivapalan, 1997]:126

P
(

Ms

ηs
≤ x

)
= φ(x) ∀s ∈ S (3)127

where Ms represents a typical block maximum at site s, ηs is the index flood at site128

s for s ∈ S and the common distribution function φ does not depend on the site s.129
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From equation (3) we see, that the site specific quantile function can be written in the130

following product form:131

qα(s) := QMs(α) = ηsφ
−1(τ), (4)132

where QMs is the quantile function of Ms and τ is the non-exceedance probability.133

Because of using more data than those from the site of interest alone, the IF can134

provide quantile estimates, which are superior to at-site estimates, even if spatial ho-135

mogeneity is not entirely achieved after scaling [Cunnane, 1988]. The IF approach was136

developed for river discharges but can be applied, whenever multiple samples of simi-137

lar data are available, see Hosking and Wallis [1997]. In particular, for precipitation data138

the IF assumption has often been used combined with the GEV family, see e.g. Hosking139

and Wallis [1997]; Fowler el al. [2005] and Hanel et al. [2009]. To further enhance the us-140

age of the available data, Madsen and Rosbjerg [1997] propose the combination of the IF141

assumption with the POT approach.142

A natural analogue of relation (3) in the POT setting is that the site-specific ex-143

ceedances, properly scaled by their index floods, have a common distribution. More144

formally:145

P
(

Xs

ηs
≤ x|Xs ≥ us

)
= ψ(x) ∀s ∈ S , (5)146

where Xs represents the values at site s, ηs is the site-dependent scaling factor (index147

flood) and ψ does not depend on site s. Note that because of ψ(us/ηs) = 0, ∀s ∈ S and148

because ψ has a density with mass immediately to the right of us/ηs, it follows that149

us/ηs has to be the lower endpoint of the support of ψ for every s ∈ S , i.e.150

ui

ηi
=

uj

ηj
∀i, j ∈ S . (6)151
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This can be only true, if the index flood is a multiple of the threshold, i.e.152

ηs = cus ∀s ∈ S ,153

for some positive constant c. Without loss of generality we can take c = 1. This choice154

of ηs also satisfies the IF equation for the excesses, i.e.155

P
(

Ys

ηs
≤ y|Ys ≥ 0

)
= ψ̃(y) ∀s ∈ S , (7)156

where ψ̃(y) := ψ(y + 1) is independent of site s.157

A natural choice for a site specific threshold is a high empirical quantile of the at-site158

data [see also Smith, 1989a]. An important consequence of this choice is that the mean159

number of exceedances per block λs will be approximately constant over the region,160

i.e.161

λs ≡ λ.162

Under the previous assumptions the distribution of the scaled excesses has the fol-163

lowing form:164

P
(

Ys

us
≤ y|Ys ≥ 0

)
= Gξs, σs

us
(y). (8)165

Equation (7) then implies, that we have the following restrictions on the parameters of166

the GP distribution167

σs

us
≡ γ, ξs ≡ ξ ∀s ∈ S , (9)168

for a common dispersion coefficient γ and a common shape parameter ξ.169

We would like to obtain an IF model in the BM setting, if we transfer the parame-170

ters from the IF model in the POT setting, using relationship (2). If the block maxima171

follow a GEV distribution, it can be shown that the IF assumption is satisfied if the172
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dispersion coefficient γ∗s := σ∗s /µ∗s and the shape parameter ξ∗s of the GEV distribution173

are constant over the region, see e.g. Hanel et al. [2009], i.e.174

γ∗s ≡ γ∗, ξ∗s ≡ ξ∗, ∀s ∈ S . (10)175

If we transform the conditions (9) according to relationship (2) and use that λ is con-176

stant over the region, we obtain the following conditions on the GEV distribution pa-177

rameters:178

ξ∗s ≡ ξ, (11)179

γ∗s =


λξ

γ−1− 1
ξ (1−λξ)

, ξ 6= 0
1

γ−1−log(λ) , ξ = 0.
(12)180

181

That is the conditions in (10) are fullfilled.182

Summarizing we have developed an IF model with only one spatially varying pa-183

rameter, the threshold us and the other parameters ξ, γ, λ constant over the region.184

Note, that we choose λ to be constant in the first place and therefore, obtain a site-185

specific threshold. This is different from the model proposed by Madsen and Rosbjerg186

[1997], where us is a priori fixed and only the shape parameter ξ is constant over the187

region, whereas σ and λ vary over the region, which violates relationship (2). More-188

over, the model is only an IF model for the excesses, whereas our model is an IF model189

for both the excesses and the exceedances.190

We get the following GP model for the excesses:191

P (Ys ≤ y|Ys ≥ 0) = Gξ,γus(y). (13)192

Now we can rewrite equation (1) for the 1/α return level at site s, as193

qα(s) =

us

(
1 + γ ln(λ/α)

)
, ξ = 0,

us

(
1− γ

ξ [1− ( α
λ )
−ξ ]
)

, ξ 6= 0.
(14)194
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As in equation (4), we see the factorization in a site specific index flood and a site195

independent general quantile function.196

2.2. Nonstationary climate

There is no general theory for the estimation of extreme quantiles of nonstationary197

data. Approaches to account for long term trends in extremes are mostly ad hoc Coles198

[2001]. The classical way to incorporate this nonstationarity in the POT approach, is199

to keep the threshold constant and model the changing exceedance frequency by an200

inhomogeneous Poisson process and the excessses by a GP distribution with time de-201

pendent parameters [Smith, 1989b; Coles, 2001; Yiou et al., 2006; Bengtsson and Nilsson,202

2007].203

We follow a different route, which circumvents the inhomogeneous Poisson process204

by considering a time dependent threshold, see e.g. Coehlho et al. [2008] and Kyselý et205

al. [2010]. A natural way to determine this varying threshold is quantile regression,206

which can be described as a way to identify the temporal evolution of a given quantile207

in a smooth parametric way, see e.g. Koenker [2005]; Friederichs [2010] and Kyselý et al.208

[2010]. Quantile regression is further discussed in section 3.1. When we take a time de-209

pendent high quantile, given by quantile regression, instead of a constant quantile, we210

can assume that λ is constant over space and time. The time dependent GP distribution211

is used to describe the excesses of the time varying threshold.212

Hanel et al. [2009] generalize the IF assumption to the nonstationary block maxima213

setting. Following them we generalize (5) in a similar way, which means that, after scal-214

ing by a time dependent index flood, for every time point the site specific distribution215
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functions are constant over the region, i.e. ∀s ∈ S , ∀t ∈ T216

P
(

Xs(t)
ηs(t)

≤ x|Xs(t) ≥ us(t)
)
= ψt(x), (15)217

where ψt is independent of the site s. As in the stationary case we take the threshold as218

index flood:219

ηs(t) = us(t).220

Now we can generalize (9) in view of (15) to221

ξs(t) ≡ ξ(t),
σs(t)
us(t)

≡ γ(t), (16)222

and equation (14) can be generalized to the non-stationary setting:223

qα(s, t) =

us(t)
(

1− γ(t)
ξ(t)

[
1− ( α

λ )
−ξ(t)]), ξ(t) 6= 0,

us(t)
(

1 + γ(t) ln(λ/α)
)

, ξ(t) = 0.
(17)224

225

As in the stationary case, we can see the factorization into a time and site dependent226

index flood and a quantile function, which depends on time only.227

3. Estimation of the model parameters

We have chosen the threshold as a time dependent high quantile. For the estimation228

of this quantile we use quantile regression, which is outlined in section 3.1. Section229

3.2 illustrates the composite likelihood framework for estimating the time-dependent230

parameters of the excess distribution.231

3.1. Threshold estimation

Quantile regression relies on the fact that a sample quantile can be viewed as a solu-232

tion of an optimization problem, which can be solved efficiently using linear program-233

ming, as shown in Koenker and Bassett [1978]. When we fix s ∈ S , we can obtain the234
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τ-th sample quantile of the observations xs = (xs,1, . . . , xs,T) at site s as235

arg min
β∈R

T

∑
t=1

ρτ(xs,t − β), (18)236

where237

ρτ(v) =

{
v(τ − 1), v < 0,
vτ, v ≥ 0.

238

In linear quantile regression it is assumed, that the τ-th conditional quantile function239

for given covariates z has a linear structure, i.e.240

Qxs(τ|z) = zTβ(τ), (19)241

e.g. a linear trend in time would be given by242

Qxs(τ|t) = β0(τ) + t · β1(τ).243

In view of (18) Koenker and Bassett [1978] propose244

arg min
β0,β1∈R

T

∑
t=1

ρτ(xs,t − β0 − tβ1)245

as estimator for β(τ). For details of the transformation of this optimization problem246

into a linear program, see Koenker [2005].247

Note, that λ was defined as the mean number of exceedances in a block. If the linear248

quantile function (19) holds, we have in fact the following relationship between τ and249

λ,250

(1− τ) · T/#NB = λ,251

where #NB is the number of blocks.252

3.2. Excess distribution estimation

Maximum likelihood (ML) estimation is a common approach to estimate the param-253

eters in a statistical model. The ML framework has attractive asymptotic properties.254
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Moreover, it is very flexible, e.g. it is convenient to incorporate covariates. For these255

reasons several authors recommend it for the estimation of extreme quantiles, espe-256

cially when trends occur, see e.g. Coles [2001].257

In order to apply the ML method, one needs the full likelihood function of the pre-258

cipitation extremes, over all times and sites. Because of the spatial dependence, this259

requires the joint distribution of the excesses at all sites, which is difficult to describe260

because of the large dimensionality and estimation would be virtually impossible. One261

interesting way to proceed without the knowledge of the full dependence structure is262

to use a simplified likelihood. A class of such simplified likelihoods is summarized in263

the framework of composite likelihood, see e.g. Varin et al. [2011]. In this study we264

focus in particular on the independence likelihood, see also Chandler and Bate [2007].265

The independence likelihood is the likelihood, as the name suggests, that would be266

obtained if the excesses at different sites were independent. We want to emphasize,267

that we focus on local quantiles and their spatial variation over a region, in which case268

the independence likelihood gives reasonable results, compare Cooley et al. [2007] and269

Blanchet and Lehning [2010]. This is, however, not the case if dependence parameters270

are of interest, as in Padoan et al. [2010], where a pairwise composite likelihood is used.271

In the nonstationary IF model, the parameters γ and ξ of the excess distribution272

depend on time. We postulate a certain structure for these parameters, e.g.273

γ(t) = γ1 + γ2 · (t− t̄), ξ(t) = ξ1,274

where t̄ is the mean of the time points, so that γ1 is the average ofγ(t) over t. Let275

θ = (γ1, γ2, ξ1) be the vector of parameters, that has to be estimated. The independence276
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likelihood is then given by:277

LI(θ, Y) = ∏
t∈T

∏
s∈S

ys(t)≥0

1
γ(t)us(t)

·
[
1 +

ξ(t)ys(t)
γ(t)us(t)

](−1/ξ(t)−1)
,278

where the condition on ys(t) ≥ 0 reflects that we only consider peaks over the thresh-279

old. Note, that by the choice of the quantile the threshold has been fixed beforehand.280

The maximum independence likelihood estimator (MILE) is the parameter θ̂I which281

maximizes LI(θ, Y) or equivalently the independence log likelihood282

`I(θ, Y) = −∑
t∈T

∑
s∈S

ys(t)≥0

[
ln(γ(t)us(t))+283

+
1 + ξ(t)

ξ(t)
ln(1 +

ξ(t)ys(t)
γ(t)us(t)

)
]
. (20)284

285

We have to optimize this function, with respect to the elements of θ. This can be done286

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method as implemented in the287

optim-function of GNU R [R Development Core Team, 2011].288

For testing the adequacy of the IF model, it is necessary to consider more general289

models with a spatially dependent dispersion coefficient, e.g. γs(t) = γs and ξs(t) = ξ.290

The independence log likelihood for this model is obtained by replacing γ(t) by γs and291

ξ(t) by ξ in equation (20). The direct optimization of this likelihood with respect to the292

(S + 1) parameters is in the case of a large number of sites computationally very de-293

manding. Therefore we exploit the structure of the independence likelihood by using294

a profile likelihood approach. In the example above we can split, for a given shape pa-295

rameter, the optimization over an S-dimensional space into S optimization problems in296

one dimension, i.e. the maximization of the log likelihood for the excesses at site s with297

respect to ξs. This is usually much faster. If one does this on a grid of potential values298
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for the shape parameter one can see the structure of the profile likelihood. Moreover299

we can construct a convergent procedure, leading to the estimator for the shape param-300

eter. We recommend as initial value for this procedure the mean of the estimated shape301

parameters ξ̂s of a site specific model. Another problem with the direct optimization302

might be the existence of local maxima in the likelihood; with the proposed approach303

we did not experience any problems with this issue.304

The MILE θ̂I is asymptotically normal, see e.g. Varin et al. [2011]:305

√
#T̃ (θ̂I − θ)

d→ N
(

0, G−1(θ)
)

,306

where #T̃ is the number of days with one or more threshold exceedances and G is the307

Godambe information:308

G(θ) = H(θ)J−1(θ)H(θ), (21)309

where H(θ) is minus the expected Hessian of `I at θ, also referred to as sensitivity310

matrix, and J is the variability matrix, i.e. the covariance matrix of the score u(θ, Y) =311

Oθ`I(θ, Y). In the case of spatial independence, we have H(θ) = J(θ) and the Godambe312

information reduces to the Fisher information, i.e. G(θ) = H(θ). Here H is estimated313

as its observed value at θ̂I , and J as314

J =
1

#T̃ ∑
t∈T̃

u
(
θ̂I , y(t)

)
u
(
θ̂I , y(t)

)′
,315

where y(t) = (y1(t), . . . , yS(t))′ and u(θ̂I , y(t)) is the contribution of day t to u(θ̂, Y).316

The latter estimate makes use of the fact that the excesses on different days are in-317

dependent, see e.g. Chandler and Bate [2007] and Varin et al. [2011]. An estimate of318

the Godambe information Ĝ(θ) is obtained by plugging in the estimates Ĥ and Ĵ in319
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equation (21). This estimate Ĝ is used to assess the uncertainty of the parameters (and320

quantiles) of the excess distribution, see section 4321

4. Model selection for the excess distribution

In this section we describe the methods used, to investigate the temporal behavior322

of the dispersion coefficient and the shape parameter as well as the adequacy of the IF323

model.324

Information criteria are used as indication of the suitability of a specific model. Varin325

et al. [2011] present composite likelihood adaptations of the Akaike information crite-326

rion (AIC) and the Bayesian information criterion (BIC), which are defined in the usual327

way328

AIC = −2`I(θ̂I , Y) + 2 dim(θ),329

BIC = −2`I(θ̂I , Y) + log(#T̃ )dim(θ),330
331

where dim(θ) is an effective number of parameters, which can be estimated as332

dim(θ) = tr
(

H(θ)G(θ)−1
)

.333

Moreover, we will test our assumptions using nested models. This means, that we334

consider subsets M0 of the full model M1 by constraining q components of the param-335

eter vector θ. For instance we may partition θ = (ψ, φ) such that the q-dimensional336

component ψ is zero under M0. To test this hypothesis, we use the independent likeli-337

hood ratio statistic, which is a special case of a composite likelihood ratio (CLR) statistic338

[Chandler and Bate, 2007; Varin et al., 2011]:339

W = 2
[
`I
(
θ̂M1 ; y

)
− `I

(
θ̂M0 ; y

)]
, (22)340
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where θ̂M1 (θ̂M0) denotes the MILE of model M1 (M0). Varin et al. [2011] present the341

following asymptotic result for W under the null hypothesis342

W d→
q

∑
j=1

λjZ2
j , (23)343

where the Zj are independent, standard normal variates and λ1, . . . , λq are the eigen-344

values of345

(G−1
M1

)ψ

(
(H−1

M1
)ψ

)−1
.346

Here (G−1
M1

)ψ denotes the submatrix of the inverse Godambe information for the full347

model M1 pertaining to the parameter vector ψ and (H−1
M1

)ψ is defined analogously.348

In order to obtain the information criteria and the asymptotic distribution of W under349

the null hypothesis, we need to estimate the Godambe information, which is difficult350

when the number of parameters is large. Hence it is not feasible to examine the ap-351

propriateness of the IF assumption for regions with many sites, based on the Godambe352

information.353

One possibility to obtain p-values for the test statistic W, without estimating the Go-354

dambe information, is to apply a bootstrap procedure, see e.g. Varin et al. [2011]. We355

follow Hanel et al. [2009] and use a semiparametric bootstrap approach, to take the de-356

pendence structure into account, without explicitly modeling this. The challenge is to357

produce bootstrap samples according to the null hypothesis, which exhibit approxi-358

mately the same spatial dependence structure as the original data set. We assume that359

the underlying spatial dependence is not changing over time, i.e. only the marginal360

distributions are changing. One could think of a constant copula generating the de-361
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pendence structure, that is for fixed t362

P(Ys(t) ≤ ys,t∀s) = C
(
G1,t(y1,t), . . . , GS,t(yS,t)

)
,363

where Gs,t = Gσs(t),ξs(t), and C a copula, for details on copula see e.g. Nelson [2006]. We364

generate the bootstrap samples in three steps. In the first step we transform the sample365

of the excesses Ys(t) into a sample that follows approximately the standard exponential366

distribution367

Zs(t) =


1

ξ̂1
s (t)

ln
(
1 + ξ̂1

s (t)Ys(t)
σ̂1

s (t)

)
, ξ̂1

s (t) 6= 0,
Ys(t)
σ̂1

s (t)
, ξ̂1

s (t) = 0,
(24)368

where σ̂1
s (t) and ξ̂1

s (t) are the estimated scale and shape parameters under the full369

model M1. In the second step, we sample with replacement monthly blocks of the370

whole spatial domain from Zs(t) to obtain a new sample Z̃s(t) with approximately371

standard exponential margins and the same spatial dependence structure as that of372

Zs(t). In the third step we use the estimated scale and shape parameter under the null373

hypothesis, denoted as σ̂0
s (t) and ξ̂0

s (t), respectively, to transform the sample Z̃s(t) to a374

bootstrap sample of the excesses375

Ỹs(t) =

{
σ̂0

s (t)
ξ̂0

s (t)

[
exp

(
ξ̂0

s (t)Z̃s(t)
)
− 1
]
, ξ̂0

s (t) 6= 0,

Z̃s(t)σ̂0
s (t), ξ̂0

s (t) = 0.
(25)376

The Ỹs(t) follow approximately the GP model M0 and mimic the spatial dependence377

structure of the original excesses.378

From a number of Monte Carlo experiments, Kyselý [2007, 2009] concluded that the379

(non-parametric) bootstrap generally resulted in too narrow confidence intervals for380

large quantiles of the distributions, that are commonly used to describe the distribution381

of precipitation extremes. This has been attributed to the skewness of the estimators of382

the model parameters in the case of small and moderate sample sizes. This objection383

D R A F T April 3, 2012, 11:36am D R A F T



X - 20 ROTH ET AL.: REGIONAL PEAKS-OVER-THRESHOLD MODEL

might be weakened, when using RFA methods, because then the estimation is based384

on much more data.385

5. Application to precipitation data

We applied the regional peaks-over-threshold method to observed precipitation data386

from the Netherlands. We used the daily, gridded E-OBS data (version 5.0), which387

were made available by the European funded project ENSEMBLES [Haylock et al., 2008].388

We consider winter (DJF) precipitation for 25 km×25 km grid squares centered in the389

Netherlands, for the period December 1, 1950 to February 28, 2010. In total we have 69390

grid boxes and 60 winter seasons of daily measurements for each grid box.391

The Netherlands has a maritime climate with relatively mild and humid winters.392

Figure 1 shows the mean over the considered period of the largest daily precipitation393

value in winter (winter maximum) for each grid box. The spatial variation in Figure 1394

is small, 80% of the values lie between 18.2 and 20.4 mm. Previous studies propose to395

view the Netherlands as a homogeneous region for which the IF assumption applies,396

see e.g. Overeem el al. [2008] and Hanel et al. [2009].397

Daily precipitation in the winter season exhibits some temporal dependence, also at398

high levels. The relation between the GEV and GP distribution parameters (Equation399

(2)) relies on the independence assumption as does the estimation of the variability400

matrix J, therefore, it is necessary to select a subset of independent events. This is401

usually achieved by specifying a minimum separation time between exceedances over402

the threshold [e.g. Kyselý et al., 2010].403

We decluster the original data rather than the exceedances, i.e. we look at blocks404

of length one plus the minimum separation time and replace all but the maximum405
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values of these blocks by zero and determine the threshold for these declustered data,406

as described in section 3.1. It follows that the exceedances are declustered with the407

same minimum separation time. The advantage of this procedure over declustering408

the exceedances directly, is that the expected number of exceedances per block will be409

approximately constant over the region, which is a basic assumption of our model. As410

the persistence of rain events is rather short, we specify the minimum separation time411

to be one day.412

We choose the threshold to be the 96% linear regression quantile. Hence, we expect413

on average 3.61 exceedances per grid box and winter season. Figure 2 shows for each414

grid box the mean of this threshold for the 1950–2010 period. The trend in the threshold415

for the 1950–2010 period is positive over the whole domain, see Figure 3, but is rela-416

tively small in the southeastern part of the country and large (up to 40%) in the west417

and northern parts. Buishand et al. [2012] found a significant positive trend in the mean418

precipitation for the winter half year (October – March) in the Netherlands during the419

period 1951 – 2009. A clear spatial gradient was, however, not observed in the trend of420

the mean winter precipitation.421

We test the hypothesis that the event times come from a Poisson process individually422

for each grid box by the dispersion index (DI) test. The DI test exploits the fact, that423

the variance and the mean of the Poisson distribution are the same, see Cunnane [1979]424

for details. The Poisson assumption is rejected at the 5% significance level in two of425

the 69 grid boxes, which is in good agreement with the expected number of rejected426

grid boxes under the Poisson assumption. If the exceedance times come from a homo-427

geneous Poisson process, these should be distributed uniformly on any time interval,428
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see e.g. Cox and Lewis [1966]. The Kologorov-Smirnov test does not reject uniformity in429

any grid box.430

We exploit the fact that event times, coming from a Poisson process, are uniformly431

distributed over time. The resulting p-values of a Kolmogorov-Smirnov test on the432

uniformity are shown in Figure 4.433

We consider four different models for the excess distribution, three based on the IF434

approach, A – A” in Table 1, and one with a spatially varying dispersion coefficient and435

constant shape parameter, model B.436

In a first step we want to infer which of the IF models is the best to describe the data.437

For a first indication the information criteria are computed, as outlined in section 4, for438

each of the three IF models, see Table 2. We see from both the composite AIC and the439

composite BIC, that the incorporation of a trend in the dispersion coefficient γ (model440

A’) does not result in a better model. One can see on the other hand, that according to441

the AIC model A”, which has a (linear) trend in the shape parameter, is selected. That442

contrasts with the selection of the simplest model A, by means of the BIC.443

The shape parameter is crucial for the estimation of very high quantiles. Model A444

estimates the shape parameter to be 0.03, i.e. just in the Fréchet domain. Model A”445

estimates a large drop in the shape parameter from 0.10 to -0.09, which would mean446

a change from the Fréchet family to the Weibull family. In order to gain more insight447

in the temporal behavior of the shape parameter, we compute the shape parameter for448

overlapping 20 year subsamples of the data, using model A, which has no trend in449

the model parameters. It appears that a large part of the negative trend in the shape450

parameter in model A” is due to one specific event, namely the extreme rainfall of451
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December 3, 1960, compare also Buishand [1984] and Van den Brink and Können [2011],452

resulting in a large drop of the 20 year window estimates in the year 1971, as observed453

in Figure 5.454

The quantile estimates, obtained from model A, are increasing due to the positive455

trend in the threshold. Because of the connection of the scale parameter with the thresh-456

old, see equation (16), the positive trend in the threshold leads to a positive linear trend457

in the scale parameter. In contrast to the previous model, we obtain from model A”,458

quantile estimates, that exhibit a phase transition. While the 2 year return level is still459

increasing due to the positive trend in the threshold, we have that the 25 year return460

level is decreasing due to the negative trend in the common shape parameter. The 5461

year return level is approximately constant, see Figure 6. An interpretation of this is462

much more complex, than for the quantile estimates, stemming from model A.463

When we carry out the composite likelihood ratio test, it turns out, that neither the464

trend in the dispersion coefficient nor the trend in the shape parameter are significant,465

although the p-values are quite different for these trends, see Table 3. We can also466

see from Table 3, that the bootstrap procedure gives similar results as the use of the467

asymptotic result in equation (23).468

In the second step we want to test the IF assumption. Therefore we compute the469

composite likelihood ratio test for the full model B and the nested model A. As earlier470

explained, we can not estimate the Godambe information well for model B. Hence,471

we proceed only with the bootstrap procedure. We obtain an p-value of 0.103 for 2500472

bootstrap samples. This means, that the IF assumption does not have to be rejected.473

Note, because of the large difference in the number of parameters between model B474
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and model A, the composite likelihood ratio test will not have much power due to the475

great number of alternatives. This can be considered as an intrinsic problem, when476

comparing regional models with site dependent parameters.477

Figure 7 compares for a particular site the estimated return levels of the excess distri-478

bution based on the site specific approach with those obtained from the IF assumption.479

Pointwise confidence bands for the return levels based on the asymptotic normality of480

the MILE are also given. The quantile estimates for the two methods are quite similar,481

but the IF approach reduces the uncertainty in the estimation to half the uncertainty of482

the site specific approach.483

6. Conclusions

An index flood approach for nonstationary peaks-over-threshold data has been de-484

veloped. The threshold is chosen to be a large quantile that varies over time, which485

is also taken as the index flood. The peaks exceeding the threshold are described by486

Generalized Pareto distributions. The index flood assumption implies that the ratio487

of the scale parameter to the threshold and the shape parameter are constant over the488

region but may vary over time.489

The approach was applied to gridded, observed daily precipitation data from the490

Netherlands for the winter season. A linear increase in the threshold was found, which491

was most pronounced in the western and northern parts of the country. This increase492

in the threshold leads to an increase in the scale parameter, because of the index flood493

assumption. No evidence was found for a change in the ratio of the scale parameter494

to the threshold. Though a large negative trend in the shape parameter was observed,495
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this trend turned out to be mainly due to one exceptional event. Therefore, the extreme496

quantiles increase in the same way as the threshold.497

Although the uncertainty in the estimation of the excess distribution was cut by498

half compared to a site specific estimation procedure, the remaining uncertainty is still499

substantial. The uncertainty could be possibly further reduced by considering longer500

records or by extending the region. For instance, one could think of including the501

neighboring part of North Germany in the analysis. The different trends in the index502

flood indicate, however, that one should be very careful with extending the region.503

Apart from analyzing more data, the estimation uncertainty might also be reduced by504

maximizing a pairwise likelihood that partly accounts for spatial dependence rather505

than the independent likelihood.506

The validity of the bootstrap might be questionable and should be assessed by a507

Monte Carlo experiment, which includes the spatial dependence. However, this is508

for peaks-over-threshold data much more computational demanding than for block509

maxima.510
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Figure 1. Mean of the winter maxima in mm

Figure 2. Mean of the threshold for the 1950–2010 period in mm
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Figure 3. Trend in the threshold for the 1950–2010 period in %. The trend was defined

as the difference between the last and the first value of the threshold divided by the

mean value of the threshold.

Figure 4. p-values of the uniformity for the event times
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Table 1. Overview of models used

Model dispersion shape

A γ ξ

A’ γ1 + γ2 ∗ (t− t̄) ξ

A” γ ξ1 + ξ2 ∗ (t− t̄)

B γ1, . . . , γS ξ

Table 2. Information criteria for the IF modelsa.

Model AIC BIC

A 78387.28 78715.59

A’ 78435.60 78880.41

A” 78333.28 78748.95
aThe lowest AIC and BIC values are printed in bold.

Figure 5. Evolution of the shape parameter over time (dotted - model A, dashed -

model A”, solid red line with points - 20 year window estimates for model A
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Figure 6. Trends of different return levels of daily precipitation for model A” (dashed

– 2 year, solid – 5 year, dotted – 25 year)

Table 3. p-values of the CLR-test against model A (2500 samples)

Model asymptotic bootstrap

A’ 82.9% 81.3%

A” 26.7% 12.2%

Figure 7. Estimated return levels of the excesses with 95% pointwise confidence bands

for the year 1980 at the grid box around De Bilt (black – site specific, red – IF)
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