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Abstract

We consider a network of deterministic non-linear oscillators with non-
identical parameters. Interactions between the different oscillators are
linear, but the coupling coefficients for each interaction may differ. We
consider the case where coupling coefficients are sufficiently large, so that
the different oscillators will have their state variables strongly tied to-
gether and variables of the different oscillators will rapidly become (al-
most) synchronized. We will argue that the dynamics of the network is
approximated by the dynamics of weighted averages of the vector fields
of the different oscillators. Our focus of application will be on so-called
supermodeling, a recently proposed model combination approach in which
different existing models are dynamically coupled together aiming to im-
proved performance. With large coupling theory, we are able to analyze
and better understand earlier reported supermodeling results. Further-
more, we explore the behavior in partially coupled networks, in particular
supermodeling with incomplete models, each modeling a different aspect
of the truth. Result are illustrated numerically for the Lorenz 63 model.

1 Introduction

Synchronization is the phenomenon that coupled oscillating systems fall
into the same rhythm. Examples include clocks, singing crickets, fir-
ing neurons and applauding audiences [10]. Similar phenomena occur
in multi-agent systems where synchronization mechanisms can be used to
describe consensus and cooperation [8, 16].
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Recently, synchronization mechanisms have been proposed as model-
ing tools, in particular for data assimilation [15, 4] and for performance
improvement by model combination [3]. These proposals were made in the
context of atmospheric modeling and climate science. In climate research,
there are nowadays about a dozen comprehensive climate models in the
world. Despite the improvements in the quality of the model simulations,
the models are still far from perfect, and models differ substantially in
their climate predictions. The current practice to deal with these differ-
ent models is to take some form of a ensemble average of the individual
outcomes [13]. The proposal using the synchronisation mechanism is to
dynamically connect the models and so construct one “supermodel”. With
sufficient coupling strength, the models in the supermodel will synchro-
nize. The idea is that when coupling strengths are learned from data, the
dynamics of the synchronized state may provide a better representation
of the climate statistics and dynamics than the conventional ensemble
approach would do.

In [1], experiments have been performed with low dimensional systems
such as the Lorenz 63 [6], the Rössler [11], and the Lorenz 84 model [7].
As a sort of proxy for climatology, the attractors of the different mod-
els and model combinations are assessed. It is found that an optimized
supermodel can have an attractor that is a good approximation of the
attractor of the assumed ground truth, even when the attractors of the
different models are very different. Furthermore, the remarkable result
has been found that the supermodel was able to accurately follow the
change of the attractor after doubling of one of the system parameters in
both the ground truth and models, without the need of a further adap-
tation of the connections. However, it has also been found that there are
many local optima, i.e., about equally good solutions of the connected
model with very different connection coefficients. All of these solutions
have relatively large connections.

In this chapter, we will further investigate the dynamics and long
term behavior of supermodels, i.e. networks of linearly coupled nonlinear
oscillators. In the supermodeling context, the couplings differ for each pair
of oscillators, and they differ per coupled variable. The behavior is studied
in the regime of large supermodel coefficients. Here we find results that
generalize on earlier work on synchronization and consensus forming of
coupled nonlinear oscillators with large coupling coefficients [5, 12, 8, 16].
We will apply the theoretical results to understand the findings in [1].
The networks considered in [1] are fully connected. In more complex
supermodels it is likely that not all variables can be coupled, e.g. due to
complexity restrictions, or because different models have variables that
describe different aspects of the observable reality. In the latter case,
each of the models is an incomplete description. In the supermodel they
can complement each other. These are motivations to consider partially
connected networks as well.

The chapter is organized as follows. We will first provide a review of
supermodeling in section 2). We show in section 3 that in networks of
oscillators with large coupling, the individual states synchronize and that
the synchronized state will follow a certain weighted averaged dynam-
ics, in which the weights follow from eigenvector analyses of the so-called
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Laplacian matrices. In section 4, we will analyze the local optima re-
ported in [1], and show that results can be understood from the weighted
averaged dynamics predicted from the theory. In section 5, we general-
ize on the earlier coupling scheme to partially coupled systems and argue
that the system follows a similar partially weighted averaged dynamics.
In section 6, we consider a situation where each of imperfect models is
incomplete and models different aspects of the ground truth. The in-
complete models are coupled by their common variable. In the resulting
supermodel the different aspects are now combined in one dynamical sys-
tem. Finally, we end with a discussion in section 7. All the numerical
results in this chapter are in the context of the Lorenz 63 system.

2 Supermodels

In this section we review the supermodeling approach and the findings
as reported in [1]. The assumption is that there is a ground truth with
an observable state ~xgt(t) that is driven by a nonlinear chaotic dynamics
that is not exactly known. It is further assumed that there are M good,
but imperfect models of this ground truth dynamics. These models are
labeled by µ. Each of them describes the dynamics of the model state
vector ~xµ according to

ẋi
µ = f i

µ(~xµ) (1)

in which i labels the vector components, and dot-notation is used for time
derivatives. Here it is assumed that each model is in the same represen-
tation as the ground truth, i.e. vector components of each of the models
can be compared to each other and with the ground truth. Then, the
proposal is to combine the individual models µ into one supermodel by
inserting nonnegative connections between the model equations,

ẋi
µ = f i

µ(~xµ) +
∑
ν

Ci
µν(x

i
ν − xi

µ) . (2)

The idea is that with sufficient connectivity, the individual models will
synchronize and get a kind of consensus with each other [9]. The solution
of the supermodel is defined to be the average of the coupled imperfect
models,

~xsumo( ~C, t) ≡ 1

M

∑
µ

~xµ(~C, t). (3)

The connection coefficients ~C = {Ci
µν} are to be inferred from a train-

ing set of historical observations. The goal of the supermodel is to do
climate simulation, i.e. the supermodel should converge to an attractor
that is similar to the attractor of the ground truth. However, since direct
attractor learning is difficult, a proxy cost function has been proposed,
which basically consists of a sum of short term prediction errors. This
cost function is parametrized by a training set, being a time series of ob-
servations of the truth {~xgt(t)}. To construct the cost function, K runs
of the supermodel are performed. The runs are initialized at times ti,
i = 1, . . . ,K, by setting each of the imperfect model states equal to the
ground truth state ~xµ(ti) = ~xgt(ti). Then at each run, the supermodel is
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integrated during a (short) period ∆. The cost function is now defined by
the accumulated error of these runs,

E( ~C) =
1

K∆

K∑
i=1

∫ ti+∆

ti

|~xsumo(~C, t)− ~xgt(t)|2γtdt , (4)

where γt is a discount factor, with 0 < γ < 1 a constant. The idea behind
this cost function is that free runs of the supermodel should follow the
ground truth trajectories as long as possible. However, the system dis-
plays sensitive dependence on initial conditions. Trajectories diverge not
only due to model imperfections, but also due to internal error growth:
even a perfect model deviates from the truth if started from slightly differ-
ent initial conditions and leads to a non-zero cost function due to chaos.
This implies that the cost function measures a mixture of model errors
and internal error growth. Model errors dominate the initial divergence
between model and truth, but at later times in the short term integra-
tions the internal error growth dominates. The factor γt is included to
discount the errors at later times to decrease the contribution of internal
error growth.

To demonstrate the supermodeling approach, a number of simple chaotic
systems has been studied such as the Lorenz 63 model [6]. The equations
for the Lorenz 63 model are

ẋ = σ(y − x) (5)

ẏ = x(ρ− z)− y (6)

ż = xy − βz . (7)

This model is used as a metaphor for the atmosphere, because of its regime
changes and unstable nature. The model with standard parameter values
( σ = 10, ρ = 28, β = 8/3) is used as ground truth. Imperfect models are
assumed to be in the same model class with perturbed parameter values.
These imperfect models are connected and combined into a supermodel.
Training data is generated from the assumed ground truth and used to
tune the connections in the supermodel. By inspecting plots of the attrac-
tor, as well as by considering means, variances, covariances and autocor-
relations, it is concluded that the supermodeling approach is a promising
modeling approach in the case of complex modeling where good, but still
imperfect models are available and a machine learning method starting
from scratch is infeasible.

One of the issues that the paper addressed is whether the supermodel
approach is also able to deal with climate change, for instance the response
of the truth to a parameter perturbation. The question is whether the
supermodel would generalize well in such a situation. To study this, the
parameter ρ in the true system as well as the corresponding parameters in
the imperfect models in the supermodel have been doubled. The doubling
of the parameter in the ground truth has been found to yield an increase
of size of the ground truth’s attractor. It has been remarked that although
the connection coefficients in the supermodel have been learned from data
generated with ground truth parameter ρ = 28, the supermodel with
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doubled ρ actually quite accurately reproduces the enlarged attractor of
the ground truth with ρ = 56.

Another issue are local minima. With different starting conditions,
solutions with completely different values for ~C have been found. The
supermodels with these different solutions, however, all produce similar
attractors that are all close to the ground truth, and all have about the
same performance quality.

3 Large coupling limit

To understand why this approach worked so well, and also to understand
the relation between the different but somehow apparently equivalent so-
lutions, we now further analyze the dynamics of the supermodel. In [1],
the values of the ~C parameters from two optimizations with different ini-
tial condition have been reported (see table 1 later in this chapter). The
first thing that can be noticed is that for all i, some of the values Ci

µν are
quite large, which means that component i of model µ’s state is attracted
to the component of model ν’s state. This is to be expected since the idea
behind the coupling is that the models come into a consensus state.

To analyze this further we rewrite the supermodel equations a bit,

ẋi
µ = f i

µ(~xµ) +
∑
ν

Li
µνx

i
ν (8)

where
Li

µν = Ci
µν − δµν

∑
κ

Ci
µκ . (9)

is the so-called Laplacian matrix, which is known to play an important role
in the analysis of synchronization of coupled systems [12]. Now, following
e.g. [8] we remark that the matrix Li is a ”transition rate matrix”, known
from stochastic processes. That is to say, with such a Li the equation
Ṗν =

∑
µ
PµL

i
µν is a continuous time Markov process. If Li is mixing then

P converges to an equilibrium distribution, which is the normalized left
eigenvector ~w i of Li with eigenvalue 0. Normalization means

∑
µ
wi

µ = 1.
Its right eigenvector is the vector with all components equal, i.e., a vector
of the form xi(1, . . . , 1)T , which can be interpreted as a fully synchronized
state xi. Now if Li is mixing then the other eigenvalues have a negative
real part, which means that the other modes will vanish and states of the
different models will synchronize into a joint state, xi

µ(t) = xi
ν(t) = xi(t).

By multiplying the supermodel (8) from the left by ~w i, we obtain the
synchronized state dynamics

ẋi =
∑
µ

wi
µf

i
µ(~x) . (10)

This equation states that for large ~C, the supermodel dynamics is ba-
sically described by a vector field of which the components are convex
combinations, i.e., weighted averages of the imperfect model components.
The weights are given by the left eigenvectors of the Laplacians Li of the
component-wise coupling matrices ~Ci.
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Sumo 1 Sumo 2
Cx

12 -0.01 1.52
Cx

13 4.81 0.03
Cx

21 5.69 13.28
Cx

23 13.75 14.99
Cx

31 17.64 21.51
Cx

32 -0.01 1.09

Sumo 1 Sumo 2
Cy

12 7.67 3.53
Cy

13 18.14 27.36
Cy

21 3.64 0.00
Cy

23 10.06 6.50
Cy

31 2.71 3.89
Cy

32 9.79 6.93

Sumo 1 Sumo 2
Cz

12 5.47 3.95
Cz

13 4.03 12.24
Cz

21 10.72 3.50
Cz

23 13.54 2.20
Cz

31 8.70 2.89
Cz

32 1.50 3.85

Table 1: The connection coefficients of two super-model solutions of the Lorenz
63 system as found in [1].

From this result, one can directly predict when the coupled models are
able to reproduce the ground truth. In [1] both the ground truth system
and the perturbed imperfect systems are linear in the parameters (i.e. σ,
ρ, and β in (7), see next section, but also the other models described in
[1]). So, if we take the weighted average of the imperfect model equations,
we obtain a model that is again in that model class, with parameters that
are weighted averages of the perturbed parameters. If there are weights
such that the ground truth parameters can be recovered, then it is in
principle possible to find a supermodel that reproduces the ground truth.

4 Case study: Lorenz 63 supermodel

To what extend does the large coupling theory of the previous section
apply to supermodeling and does it help to understand its results, or are
other mechanisms more important? In this section, we investigate this
by applying the theory of the previous section to analyze the connection
coefficients for the Lorenz 63 supermodel that have been reported in [1].
Table 1 shows the results of two independent coupling parameters opti-
mizations with different initializations as reported in [1]. These values
are used for analysis in this section, except that small negative values
have been set equal to zero. The question here is what these seemingly
different solutions have in common. To answer this question, we do the
eigenvalue/eigenvector computation of the Laplacians of the two super-
models. For each of the Laplacians, one eigenvalue is λ0 = 0. The other
eigenvalues have negative values. They are listed in table 2. The more
negative the eigenvalue, the better the weighted average approximation.

Now assuming that the connections are large enough that the approx-
imations described the previous section hold, the supermodels will effec-
tively follow the dynamics described by the weighted sum of the vector
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λ1 λ2

Lx -19.4400 -22.4500
Ly -23.9185 -28.0915
Lz -17.2569 -26.7031

λ1 λ2

Lx -23.6834 -28.7366
Ly -12.8275 -35.3825
Lz -9.5436 -19.0864

Table 2: Second and third largest eigenvalues of the Laplacian matrices of both
supermodels. Left table supermodel 1. Right table: supermodel 2. Note that
the largest eigenvalue in both supermodels is λ0 = 0.

Eigenvector w1 w2 w3

~wx 0.7857 0 0.2143
~wy 0.1083 0.4070 0.4847
~wz 0.4929 0.1342 0.3729

Eigenvector w1 w2 w3

~wx 0.9148 0.0505 0.0347
~wy 0.0557 0.5019 0.4424
~wz 0.1644 0.4049 0.4307

Table 3: Left eigenvectors with eigenvalue zero of the Laplacian matrices. Left
table supermodel 1. Right table: supermodel 2.

fields of the imperfect models, where the weights are given by the left
eigenvectors of the zero eigenvalue. Since the imperfect models in this
example are all Lorenz 63 models, and since their vector fields are linear
in the parameters (σ, ρ, β), the resulting weighted average will also follow
the dynamics of a Lorenz 63 vector field, with the weighted average of
the parameters. These parameters could be considered as the effective su-
permodel parameters. In table 4, the parameters for the assumed ground
truth and the imperfect models are listed as well as the effective param-
eters of the two supermodels. We see that for both supermodels, the
effective parameters are closer to the ground truth than any of the imper-
fect model parameters. However, there is still a considerable discrepancy
between the effective parameters and the parameters of the ground truth.

To get an idea of the quality of the approximation, we plot the trajec-
tories of the original supermodels as well as their approximations using
the effective supermodel parameters against runs of the ground truth, see
figure 1. Here we observe that there is indeed a small discrepancy between
the trajectories of the supermodels and the approximations based on their
effective parameters. In general, the supermodels seem to be slightly closer
to the ground truth. This makes sense because their connections are opti-
mized with respect to the ground truth, whereas the effective supermodel
parameters are only derived from the (optimized) connections under a
large C limit approximations. A further remark here is that with finite
C values, the corresponding effective parameters of the optimal model do
not have to match the ground truth parameters exactly, since the C’s are
tuned in the presence of the nonlinear imperfect model vectorfields ~fµ in
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σ ρ β

Truth 10 28 2.667
Model 1 13.25 19 3.5
Model 2 7 18 3.7
Model 3 6.5 38 1.7
Supermodel 1 11.8038 27.8024 2.8556
Supermodel 2 12.6998 26.9034 2.8057

Table 4: Ground truth and imperfect model parameters for the Lorenz 63 sys-
tem as used in [1] as well as the effective supermodel parameters computed by
weighting the model parameters according to the eigenvectors for both super-
models.

the supermodel (2). Note finally, that even nearly identical systems will
show discrepancies in their trajectories due to chaos.

In [1], the issue of local minima in optimization of the connection co-
efficients has been addressed. In particular, the shape of the cost function
(4) as function of the connections ~C was studied by taking cross sections
of the cost function around the optimized value of ~C. The cross sections
were created by changing one connection coefficient and keeping the oth-
ers fixed at their values at the minimum. In particular the cross sections
of coefficients Cy

23 and Cz
21 in supermodel 1 were reported as being typical

examples. These two connections both have about the same value C ≈ 10
(see table 1). However the cross section for coefficient Cy

23 showed a clear
minimum, whereas the cross section for Cz

21 is almost a constant function
(see [1] for details).

With the large coupling eigenvector analysis, the differences in the
shape of the cross sections can be understood. To illustrate this, we
perturbed coefficients Cy

23 and Cz
21 respectively by multiplying/dividing

by 5 while keeping the other constant (see tables 6 and 5). Then the
eigenvectors as well as the effective parameters were recomputed. Note
that coefficient Cy

23 has only influence on eigenvector ~wy and effective
parameter ρ, whereas the coefficient Cz

21 only influences ~wz and β. In
table 5, the resulting perturbed eigenvectors are displayed, and in table 6
the resulting perturbed effective parameters. In particular one can see
that a factor 5 perturbation in Cy

23 results in a relative perturbation of
about 20% in ρ, whereas a factor 5 perturbation in Cz

21 results in a relative
perturbation of about only 2% in β. In figure 2 trajectories of models with
the effective supermodel parameters of supermodel 1, perturbed according
to table 6 are plotted, confirming the much greater impact of the 20%
perturbation in ρ than the 2% perturbation in β.

Finally, we remark that the observation that the supermodel was able
to reproduce the ground truth’s attractor when the parameter ρ was dou-
bled in both the ground truth and imperfect models can be understood
with the large coupling theory: a doubling of all model parameters ρµ,
while ~wx is unchanged (because ~Cx did not change) results in a doubling
of the effective parameter ρeff =

∑
µ
wx

µρµ.
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Figure 1: Trajectories for the two supermodels (left figures) and trajectories
according to their effective parameters (right figures). Top row: supermodel 1.
Bottom row: supermodel 2. Grey: trajectories of the ground truth.

5 Partially coupled systems

In this section we consider partially coupled systems, i.e., systems where
only subsets of variables are connected. Again we will study the behavior
with large connections. We consider for simplicity only the case where for
each model variable i, the graph contains only one connected component
and singletons. The set of oscillators µ that have their variables i con-
nected is denoted as S(i). The partially connected system dynamics then
reads

ẋi
µ = f i

µ(~xµ)) +
∑

ν∈S(i)

Ci
µν(x

i
ν − xi

µ) µ ∈ S(i) (11)

ẋi
µ = f i

µ(~xµ)) µ 6∈ S(i) . (12)

Now in the limit of large connection coefficients ~C, the couplings dominate
the oscillators within S(i), so that we can still apply the earlier theory
to the i’th component of the oscillators in S(i). For all these oscillators
we have the left eigenvectors ~wi with components wi

µ’s, as well as right
eigenvectors with synchronized state components

xi
µ(t) = xi

ν(t) µ, ν ∈ S(i) . (13)

In the i-th components of these oscillators we can drop the oscillator index:

xi
µ(t) = xi(t) µ ∈ S(i) . (14)
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wy
1 wy

2 wy
3

Supermodel 1 0.108 0.407 0.485
0.2Cy

23 0.115 0.618 0.267
5Cy

23 0.100 0.150 0.750

wz
1 wz

2 wz
3

Supermodel 1 0.493 0.134 0.373
0.2Cz

21 0.412 0.183 0.405
5Cz

21 ∗ 5 0.620 0.058 0.322

Table 5: Perturbed eigenvectors due to perturbation of supermodel coefficients.
Left: perturbed vector ~wy due to perturbations in Cy

23. Right: perturbed vector
~wz due to perturbations in Cz

21.

ρ β
Supermodel 1 27.8024 2.8556

0.2Cy
23 23.448151 2.8556

5Cy
23 33.095626 2.8556

0.2Cz
21 27.8024 2.807157

5Cz
21 27.8024 2.932322

Table 6: Perturbed effective parameters due to perturbation of supermodel
coefficients.

By defining S(µ) = {i : µ ∈ S(i)} and Sc(µ) its complement, and us-
ing subset notation ~x(a1,...,an) = (xa1 , . . . , xan), the state vectors of each
oscillator is written as

~xµ(t) = (~xS(µ)(t), ~xSc(µ)
µ (t)) (15)

Multiplying (11), i.e., the connected components of the full system (11)
and (12) from the left with their left eigenvectors, the dynamics of the full
system in the limit of large couplings is described by the following set of
equations, which we call the partially weighted system,

ẋi =
∑

µ∈S(i)

wi
µf

i
µ(~x

S(µ), ~xSc(µ)
µ ) (16)

ẋi
µ = f i

µ(~x
S(µ), ~xSc(µ)

µ ) µ 6∈ S(i) . (17)

As an illustration, we simulated 10 Lorenz 63 oscillators, each with
their own perturbed σ, ρ and β parameters. All these parameters where
generated by perturbing the standard values by 10% standard zero mean
unit variance Gaussian noise ξ, i.e., σµ = σ(1+ ξ/10), etc. The oscillators
were partially coupled as follows. The x variables of oscillator 1 to 6 and
the y variables of oscillator 5 to 10 were coupled. The z variables were
not coupled. See figure 3. Couplings where generated randomly according
to a uniform distribution between 0 and 100. For the associated partially
weighted model the weights were computed using the eigenvector method.
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Figure 2: Trajectories for the models with parameters that result from perturb-
ing the connection components of supermodel 1 by a factor 5 . The perturbed
parameters are: upper left 0.2Cy

23, upper right 5Cy
23, lower left 0.2Cz

21, lower
right 5Cz

21. Grey: trajectories of the effective parameter version of the unper-
turbed supermodel 1.

The variables x1(t), . . . , x6(t) were replaced by a single model variable
x(t), and y5(t), . . . , y10(t) by the single model variable y(t). Note that
the partially connected is 30 dimensional whereas the partially weighted
model is 20 dimensional.

We simulated both the partially connected model and the partially
weighted model. All the oscillators were initiated in the same random
state. Then the systems were iterated for 100 time units. The first 50
units were discarded from the simulation, the last 50 time units were
plotted. For the partially connected model, we plotted the (x1, z1) and the
(x1, z10) component of the partially connected model and the (x, z1) and
the (x, z10) component of the partially weighted model. See figure 4. The
figures suggest a quite strong similarity between the partially connected
and the partially weighted model, as expected from the theory.

6 Coupling incomplete systems

In the supermodeling paradigm, an example of incomplete subsystems
that are to be coupled would occur in the following hypothetical and
overly simplified climate modeling case. Assume that the ground truth
of the real climate system is governed, among others, by pressure fields,
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Figure 3: Partially connected network topology. Each vertical set of three
interconnected nodes labeled x,y, and z represents a Lorenz 63 oscillator. The
variables within a box are fully connected via Ci

µν coefficients. In the partially
weighted model, the variables within a box are identified.

clouds and oceans. Suppose we have two imperfect models, model A and
model B. Model A has variables for pressure fields and for clouds but
not for the oceans. The effect of the oceans and other variables on the
pressure fields and the clouds may be parametrized. This is to say that
the effect of the ocean is modeled via additional terms in the pressure and
cloud dynamics rather than being modeled by its own dynamics. Model B
has variables for the pressure fields and for oceans, but not for the clouds.
The effect of the clouds may again somehow be parametrized in model
B. Now, since model A is modeled as a dynamical system with pressure
fields and clouds, it is based on pressure field and cloud data. Data from
the oceans is not taken into account. In the same way, model B is based
on data of pressure fields and oceans. Now data from clouds is not taken
into account. The supermodel should then combine these independently
modeled imperfect models. The parameters of the supermodel are then
to be estimated based on combined data of pressure fields, clouds and
oceans.

To study this further we simulate an assumed ground truth system.
We construct two incomplete models, model A and model B. The effect of
the missing variable is modeled by a parametrization. Then we combine
these incomplete models into a single supermodel. We tune the couplings
using the full (training) data and see if this supermodel gives better results
on test data. Here we explore this approach in the context of the Lorenz
63 system. The ground truth is given by equations for (x, y, z).

ẋ = σ(y − x) (18)

ẏ = x(ρ− z)− y (19)

ż = xy − βz (20)

with standard parameters ρ = 28, σ = 10, and β = 8/3.
We assume model A models only dynamics in x and y. Assuming some

insight from the designers, their dynamics according to model A is given
by

ẋa = σ(ya − xa) (21)

ẏa = xa(ρ− Z(xa, ya))− ya (22)

where we used the label a to emphasize that these are variables in model
A. The function Z(xa, ya) is a parametrization of z. We model the
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Figure 4: Projections of trajectories from the partially connected models to the
(x1, z1) (top left) and (x1, z10) (top right) plane and from the partially weighted
model to the (x, z1) (bottom left) and (x, z10) (bottom right) plane.

parametrization Z(x, y) by a linear combination of radial basis func-
tions [2],

Z(x, y) =
∑
i

αiφi(x, y) (23)

where the radial basis functions are

φi(x, y) = exp(− (x− µi)
2

2σ2
x

− (y − νi)
2

2σ2
y

) (24)

and φ0(x, y) = 1. To determine the parameters αi, a simulation of the
ground truth has been performed, and data has been collected from the
x, y components (x(t), y(t). The short term squared prediction error Ea

between the predictions according to model A and the ground truth data
is defined as

Ea(~α) =
∑
t

(
(x(t+ dt)− xa(t+ dt|x(t), y(t); ~α))2

+ (y(t+ dt)− ya(t+ dt|x(t), y(t); ~α))2
)

(25)

where xa(t+ dt|x(t), y(t); ~α) represents the prediction of x at time t+ dt
given the state (x(t), y(t)) at time t and parameter vector ~α. In the
simulations in this section, we used a naive Euler scheme x(t + dt) =
x(t)+ẋ(t)dt, so that the short term prediction of model A depends linearly
on ~α. Therefore the squared error is quadratic in ~α and can be minimized
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Figure 5: Model A: vector field and asymptotics. Black is model A. Grey is the
assumed ground truth, projected on the x, y plane. The small dots in the left
plot are points taken from the ground truth (x(t), y(t)) at some time intervals.
They served as starting points for short integrations in model A as a way to
illustrate the vector field. In the right plot, model A is run a number of times
for 20 time units- starting at different initial conditions, and then the last 2
time units were plotted. Data from runs that diverged are not plotted.

by standard linear algebra methods [2]. The result is displayed in figure 5.
The short term predictions, i.e., the vector field, match the ground truth
in general quite well. The asymptotic behavior, however, is completely
different: model A has two point attractors and a limit cycle. This is to be
expected, since two-dimensional continuous time systems cannot exhibit
chaotic behavior. Finally, we noted that model A is unstable outside a
small basin of attraction, i.e. model trajectories diverge. In a similar way,
we assume model B has only dynamics in yb and zb. The model dynamics
is assumed the form

ẏb = X(yb, zb)(ρ− zb)− yb (26)

żb = X(yb, zb)yb − βzb (27)

The function X is parametrized by a linear model and optimized for short
term predictions in y and z, in the same way as Z in model A. In figure 6
the short term predictions, i.e., the vector field, is displayed, as well as the
asymptotics. Again, we conclude that the vector field, match the ground
truth in general quite well. The asymptotics seem to consist of many
concentric limit cycles. In the plot, orbits seem to cross. This cannot
happen in a 2 dimensional ordinary differential equation. Here it is due
to the time discretization, dt = 0.01, combined with the Euler scheme for
integration. Outside a basin of attraction, model B is unstable.

So, now we have two models of two different subsystems. In the fol-
lowing we explore the behavior of a supermodel of the full system by
combining these two models. We considered a connecting model and a
weighted average model. Since the only variable that is common in model
A and model B is the variable y, the coupling is only in this variable.
Optimization of coupling parameters, being either the connection coeffi-
cients or the weights, has been done by hand, by optimizing the attractor
visually.

14



−30 −20 −10 0 10 20 30
0

10

20

30

40

50

y

z

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

y

z

Figure 6: Model B. Vector field and asymptotics. Black is model B. Grey is
ground truth, projected on the y, z plane. See previous figure for other expla-
nations.

The first supermodel is obtained by introducing interacting terms, with
connection coefficients Cab and Cba,

ẋa = σ(ya − xa) (28)

ẏa = xa(ρ− Z(xa, ya))− ya − Cab(yb − ya) (29)

ẏb = X(yb, zb)(ρ− zb)− yb − Cba(ya − yb) (30)

żb = X(yb, zb)yb − βzb (31)

the model output (xs(t), ys(t), zs(t)) is then obtained by setting

xs(t) = xa(t), ys(t) =
1

2
(ya(t) + yb(t)), zs(t) = zb(t) (32)

The optimal connection coefficients that visually optimizes the attractor
of (xs(t), ys(t), zs(t)) were found to be Cab = 6 and Cba = 10.

The alternative way of combining is via averaging.

ẋc = σ(yc − xc) (33)

ẏc = w(xc(ρ− Z(xc, yc))− yc) + (1− w)(X(yc, zc)(ρ− zc)− yc)(34)

żc = X(yc, zc)yc − βzc (35)

The weight w corresponding with the connection coefficients is w = 0.625.
This turned also out to be about optimal.

Both supermodels have 3-D behavior that looks like the ground truth
butterfly (figure 7). Interestingly, both models seem rather stable: after
about 20000 iterations, it is still on the attractor (with dt = 0.01, Euler
scheme). However, the connected supermodel looks more similar to the
ground truth butterfly dynamics in the way it jumps from one wing to
the other. It seems richer, more chaotic than in the weighted supermodel,
for example, the plots of the connected supermodel show filaments from
the outside of one wing to the inner wheel of the other which seem to be
absent in the weighted supermodel.

A possible explanation could be that a weighted supermodel could be
understood as a connected supermodel with infinite connections. This
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Figure 7: Trajectories of connected supermodel (left) and weighted supermodel
(right). Ground truth is plotted in grey.

gives the weighted supermodel less flexibility because the models are in
a way instantaneously synchronized and remain so over time. This may
hinder transitions between regimes in the attractor. In connected super-
models, where the connections have finite values, synchronization is not
immediate, and models can deviate from synchronization. In other words,
models are allowed to deviate from the consensus state and follow more
their own dynamics for a while. By doing so, the model could make an
transition to another other regimes, and by the couplings, other models
may follow, which then results in a regime transition of the consensus
state.

7 Discussion

In this chapter we studied the networks of linearly coupled nonlinear os-
cillators in the limit of large connections. The motivation for this study
were findings in the recently proposed supermodels. Supermodels are dy-
namically coupled ensembles of models. The connections are optimized,
so that the supermodel fits to a data set of observations. Earlier work
demonstrated the viability of this approach on low dimensional systems.
The connections that were found with this procedure, were typically quite
large. This was the motivation to analyze its behaviour theoretically in the
large connection limit. Similar to earlier results in coupled systems, it was
theoretically argued that the the models in a supermodel synchronizes and
that the dynamics of the synchronized state is a weighted average of the
imperfect model dynamics. We verified numerically that the supermodel
solutions are indeed well approximated by the weighted average approxi-
mation. With this analysis, the multiple local optima in connection space
that has been found earlier can be better understood. Also the fact that
the Lorenz 63 supermodel reported in [1] was able to correctly simulate
the the response to parameter change without the need of retraining of
the connection coefficients has now a straightforward explanation.

One could consider doing weighted averages of model components from
the start. This leads to the weighted supermodel, which is described
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in [14] and elsewhere in this book. In practice, weighted supermodels
seem to have several advantages. The most important one is the avail-
ability of scalable learning schemes. Other advantages are interpretability
and transparency, the elimination of equivalent solutions, and possibly
performance guarantees (see e.g. ensemble methods in [2]).

In the first approaches to supermodeling, it has been assumed that all
models have the same dimension and that each variable in each model
is coupled to similar variables in other models. In reality, this may not
hold. Partial coupling could be an option if models are too complex for
a full coupling. For instance if real-world climate models are to be cou-
pled, the additional overhead to have all variables exchange information
will probably be infeasible. A second reason for partial coupling is that
different models may have variables that have different interpretations. In
this case, one may only want to couple variables with the same interpre-
tation. In this work we argued that also in partially coupled models, large
connections leads to averaging of the coupled variables. We verified with
simulations in a network of ten partially coupled Lorenz 63 oscillators.

We also simulated supermodels composed of incomplete models. In
these simulations, two 2-D models were constructed to model different
aspects of the assumed 3-D Lorenz 63 ground truth. By coupling, either
through connecting or weighting, the incomplete models were able to com-
plement each other. Both supermodels provided a much better description
of the assumed reality than any a posteriori average of the individual mod-
els could do. Both supermodels showed a rather complex chaotic butterfly
shaped attractor, while the 2-D models only showed simple periodic orbits
and point attractors.

In the case where models and ground truth had all the same dimen-
sion, there seemed hardly any difference in the performance of connected
and weighted supermodels. However, in the incomplete model case, the
connected supermodel seemed to be able to better reproduce the but-
terfly shaped attractor of the assumed Lorenz 63 ground truth than the
weighted supermodel. In particular, the dynamics of the weighted su-
permodel seemed to be a bit less chaotic than the connected supermodel
and the ground truth. A possible explanation could be that a weighted
supermodel could be understood as a connected supermodel with infinite
connections. This gives the weighted supermodel less flexibility because
the models are in a way instantaneously synchronized and remain so over
time. This may hinder transitions between regimes in the attractor. In
connected supermodels, where the connections have finite values, synchro-
nization is not immediate, and models can deviate from synchronization.
In other words, models are allowed to deviate from the consensus state
and follow more their own dynamics for a while. By doing so, the model
could make an transition to another other regimes, and by the couplings,
other models may follow, which then results in a regime transition of the
consensus state. It would be interesting to find out if this difference oc-
curs in general when incomplete models are coupled. Also it would be
interesting to have a more mathematical precise description of this pro-
cess, which may help to better understand the possible advantages and
disadvantages of having finite connections in a supermodel.

There are many subjects for future research. Most of the results pre-
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sented in this chapter are explorative and should be made mathemati-
cally more precise. The models addressed in this section were all three-
dimensional Lorenz 63 systems. For realistic supermodeling application,
systems of much higher dimension should be considered and the scalabil-
ity of the different aspects of the approach should be understood. This
chapter considered networks of nonlinear oscillators with large connections
with in particular the supermodel application in mind. It would also be
interesting to find other applications for the theory.
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