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A hurdle in the peaks-over-threshold approach for analyzing extreme values is the selection of the thresh-
old. A method is developed to reduce this obstacle in the presence of multiple, similar data samples. This
is for instance the case in many environmental applications. The idea is to combine threshold selection
methods into a regional method. Regionalized versions of the threshold stability and the mean excess plot
are presented as graphical tools for threshold selection. Moreover, quantitative approaches based on the
bootstrap distribution of the spatially averaged Kolmogorov–Smirnov and Anderson–Darling test statis-
tics are introduced. It is demonstrated that the proposed regional method leads to an increased sensitivity
for too low thresholds, compared to methods that do not take into account the regional information. The
approach can be used for a wide range of univariate threshold selection methods. We test the methods
using simulated data and present an application to rainfall data from the Dutch water board Vallei en
Veluwe.

Keywords: peaks-over-threshold; regional frequency analysis; threshold selection; GPD; precipitation

1. Introduction

Extreme events, like financial shocks, storms or floods, often affect society disastrously. In order
to take the right measures for their regulation, for example, by building a dyke of appropriate
height, statistical inference about these extremes is crucial. In particular it might be important to
predict which level of future extremes is to be expected. This can be analyzed by extreme value
theory, which allows extrapolation beyond the range of observed data, based on asymptotically
justified models [6,38].

Two common approaches for the study of extremes of independent and identically distributed
(i.i.d.) random variables X (t) (t = 1, . . . , T) are the block maxima (BM) and the peaks-over-
threshold (POT) approach, see, for example, [6]. The BM approach considers the maxima
of disjoint, equally sized blocks of the data, which are then usually modeled by a generalized
extreme value (GEV) distribution. This is justified by the Fisher–Tippet–Gnedenko Theorem,
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2 M. Roth et al.

see, for example, [12]. The POT approach on the other hand considers all excesses Y(t) =
X (t) − u over a previously chosen (high) threshold u. For x ≥ u we have, writing y = x − u,

P(X > x) = P(X > y + u) = P(X > u) · P(X > y + u | X > u)

= P(X > u) · P(Y > y | Y > 0).

The Balkema-de Haan-Pickands theorem states that the conditional distribution of the excesses Y
can be approximated by a generalized Pareto distribution (GPD), if the threshold u is sufficiently
high and certain regularity conditions hold, see, for example, [27]:

P(Y ≤ y | Y ≥ 0) ≈ Gξ ,σ (y) =

⎧⎪⎪⎨
⎪⎪⎩

1 −
(

1 + ξy

σ

)−1/ξ

, ξ �= 0,

1 − exp
(
− y

σ

)
, ξ = 0,

for y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ if ξ < 0, where σ and ξ are the scale and the shape
parameter. For ξ = 0 the GPD reduces to an exponential distribution.

From a theoretical point of view, the POT approach is often preferred over the BM approach,
owing to the possibility to consider multiple extremes in a block, and the corresponding reduc-
tion in estimation uncertainty. However, in practice where i.i.d. data are the exception, the POT
approach is less common than the BM approach. A reason for this is that the choice of the block
size in the BM approach is often quite natural, for example, a year in many environmental appli-
cations, and block maxima are likely to be independent. For the POT approach the choice of the
threshold u requires judgment and expertise. In fact, there is no single threshold choice technique
that has been shown to work well in all applications. Further, declustering methods have been
used to achieve that peaks are independent.

Threshold selection constitutes a trade-off situation between bias and variance. If the selected
threshold is too low, the GPD approximation is poor. This causes bias in the estimated return
level. However, with increasing thresholds the variance in the estimated GPD parameters
increases, due to the small number of observations effectively used.

The aim of the present study is to guide threshold selection in the presence of multiple similar
data samples. In this context regional frequency analysis (RFA) has been applied to reduce the
variance in the parameter estimates. One commonly used variant of RFA is the index-variable
method (or index-flood method, because it was introduced for flood data), which assumes that
all site-specific distributions of the quantity of interest, that is, maxima or exceedances, are the
same after scaling by an index variable [19]. The index-variable method has been applied mostly
in combination with BM [13,16, 35], but there are several studies in combination with POT data
[23,29,40] as well. However, to the knowledge of the authors, Roth et al. [30] were the first to
propose combining multiple similar sites for the threshold selection itself.

The paper is organized in the following way. In Section 2 we explain the underlying assump-
tions of the regional POT model. In Section 3 we present a number of the available univariate
threshold selection procedures. Based on these, new regional threshold selection approaches are
introduced in Section 4. These approaches are tested in a simulation setting in Section 5, using
smooth mixture densities with GPD tail. In Section 6 we apply the proposed methods to high
quality precipitation measurements over the area of the Vallei en Veluwe water board in the
Netherlands. The paper ends with the conclusions in Section 7.

2. Preliminaries

We represent the spatio-temporal data by the matrix (Xs(t))s,t, where s ∈ {1, . . . , S} denotes the
site and t ∈ {1, . . . , T} the time. For each site s the data Xs(t), 1 ≤ t ≤ T are distributed according
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Journal of Applied Statistics 3

to an unknown marginal distribution function Fs. We assume that for all sites s and for some
small common exceedance probability ζ 0 = 1 − τ 0, the distribution of the excesses over the
associated quantile u0

s = F−1
s (τ 0) can be approximated by a GPD with scale parameter σs and

shape parameter ξs, that is,

P(Xs − u0
s ≤ y | Xs ≥ u0

s ) ≈ Gξs,σs(y), ∀s ∈ {1, . . . , S}. (H1)

Moreover, the following assumptions will be used regularly:

ξs ≡ ξ , (H2)

σs

u0
s

≡ γ , (H3)

where γ denotes the dispersion coefficient. The assumption (H1) ensures that about the same
amount of data is used for each location, which is always fulfilled in RFA of BM data. A common
exceedance probability has often been considered in studies of multiple POT series, see, for
example, [2,22,28].

The variance of the estimated shape parameter is in general very large, therefore assump-
tion (H2) is often used in RFA, see, for example, [19]. Hanel et al. [16] introduce an
index-variable model for BM based on the corresponding assumptions (H2), (H3) for the GEV
distributions, that is, a constant shape parameter and dispersion coefficient over the region.
Roth et al. [29] deduce from this a regional index-variable POT model relying on assumptions
(H1)–(H3). This model will be used also in the simulation setting, yet most of the methods
developed in the following rely only on assumption (H1).

Spatial data usually exhibit dependence. Therefore, spatial dependence should be taken into
account for the quantitative approaches to threshold selection. As for the marginal distributions,
we assume that the dependence structure does not change over time, that is, each row of the
matrix (Xs(t))s,t has the same dependency structure. To strictly formulate this we rely on the
notion of copulas, which are multivariate distributions with standard uniform margins. Sklar’s
theorem, see, for example, [24], ensures, that every multivariate distribution function can be
disentangled into its marginal distributions and a copula. Therefore, we assume, that there exists
a copula C, such that ∀t ∈ {1, . . . , T}:

P(X1(t) ≤ x1, . . . , XS(t) ≤ xS) = C(F1(x1), . . . , FS(xS)). (1)

3. Threshold selection

Scarrott and MacDonald [31] provide a review of existing threshold selection methods, here we
focus only on two types of commonly used approaches.

3.1 Approaches based on visual inspection

The threshold stability (TS) plot and the mean excess (ME) plot (also referred to as mean residual
life plot) are widely used graphical tools for the selection of the threshold in POT analyses, see,
for example, [6,12]. The TS plot is based on the fact that once the GPD model holds at grid
point s for some threshold u0

s , it holds for every threshold u ≥ u0
s . In particular we have that the

associated shape parameter ξs(u) is the same for u and u0
s . This property is called TS. The TS can

be exploited by estimating the shape parameter for a range of high thresholds and plotting

(u, ξ̂s(u))u≥0,

where ξ̂s(u) denotes the estimated shape parameter based on the excesses over threshold u. If
the GPD model holds for u0

s the graph should be (approximately) constant for u ≥ u0
s . However,
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4 M. Roth et al.

owing to the decreasing number of excesses above higher thresholds, the plot becomes unstable
and the constant behavior is difficult to see. In the following we will use a slightly modified
version of the TS plot, that is,

(τ , ξ̂s(τ ))τ∈[0,1),

where ξ̂s(τ ) is a short notation for ξ̂s(F̂−1
s (τ )) and F̂−1

s (τ ) denotes the empirical τ -quantile.
In order to support proper selection of the threshold, it is recommended to also consider other

available diagnostic plots. The ME plot relies on a similar consideration but utilizes the mean
excess function

es(u) := 1

1 − Fs(u)

∫ ∞

u
(x − u) dFs(x).

The empirical version of the ME function is given by

ês(u) =
∑T

t=1(xs(t) − u)I(u,∞)(xs(t))∑T
t=1 I(u,∞)(xs(t))

,

where IA is the indicator function for set A, that is, IA(x) = 1 if x ∈ A and otherwise zero. If
the GPD model holds, es(u) is linear in the threshold u, with the slope being determined by the
shape parameter ξ , see, for example, [12], and ês(u) becomes approximately linear. However, as
described in greater detail in [14], there are some problems associated with the use of the ME
plot. These are in particular that the ME function is only well defined for ξ < 1, and – as for the
TS plot – the empirical ME function becomes unstable for high values of the threshold. In many
applications only values of ξ < 1 are found, in which case the ME plot is well defined.

3.2 Approaches based on GoF tests

A more quantitative way to select the threshold is to use a goodness of fit (GoF) test. Classi-
cal tests are the Kolmogorov–Smirnov (KS) test and the Anderson–Darling (AD) test, see, for
example, [5,9,11,26]. Both tests can be used to test the composite hypothesis, that the n excesses
over a fixed threshold u follow a GPD. The KS statistic is defined as

Dn = sup
y

|Fn(y) − Ĝ(y)|, (2)

where Ĝ is the estimated GPD from the n excesses, and Fn the empirical distribution of the n
excesses. The AD statistic is defined by

An = n
∫ ∞

−∞

(Fn(y) − Ĝ(y))2

[Ĝ(y)(1 − Ĝ(y))]
dG(y). (3)

Because there is typically only a limited amount of data and the sample size n decreases even
further with increasing threshold, threshold selection is a real challenge. For the univariate case
there exist tables with the critical values, which depend on the (estimated) shape parameter, see,
for example, [5]. Notice that their critical values for finite samples were obtained by Monte
Carlo experiments. We will also obtain critical values via simulation using two slightly different
simulation approaches:

(1) Fix τ 0 and the corresponding threshold u.
(2) Estimate the parameters based on the n excesses above u.

(3a) Simulate n independent random variables from the GPD distribution with the parameters
estimated in step 2.
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Journal of Applied Statistics 5

Figure 1. KS statistic for daily rainfall at Putten in the Netherlands (see Figure 11) as a function of the
probability τ (solid line). The critical values (dashed line) are obtained as the 95 percentage point of the
simulated KS test statistic from step 3b in the simulation algorithm.

(3b) Sample ñ from a binomial distribution of size T and success probability (1 − τ 0). Simulate
ñ GPD random variables with the estimated parameters.

(4) Calculate for the simulated data the KS and AD statistic as before.
(5) Repeat steps 3 and 4 a thousand times and take the 0.95-quantile of the bootstrapped

statistic as critical value for Dn (or An) at τ 0.
(6) The procedure can be repeated for every τ in a reasonable range.

In step 3a, we simulate conditional on the observed number of excesses. However, if we would
have different samples from the same population the proportion above the threshold would prob-
ably be different. This is accounted for in step 3b, which is equivalent to generating T standard
uniform random variables and transforming the values exceeding τ 0 to GPD data. In the regional
setting this approach is generalized for multiple dimensions. Figure 1 shows a typical plot of
the KS statistic. It illustrates the difficulties in the selection of the threshold, owing to the low
statistical power of the test given the broad alternative [9]. For instance, the 0.9-quantile is not
rejected, but slightly higher quantiles are. The 0.925-quantile might be considered, because no
higher quantile is rejected.

4. Threshold selection in the regional POT model

The general idea behind the proposed regional approach is to use spatial averaging in the selec-
tion process. Although we demonstrate the regionalization only with the threshold selection
methods, described in Section 3, it can be applied to a variety of other threshold selection
approaches, for example, the approach proposed in [37].

4.1 Approaches based on visual inspection

The following version of the TS plot only assumes (H1). For τ ∈ [0, 1) we estimate the cor-
responding site-specific shape parameters ξs(τ ), s ∈ {1, . . . , S} based on the excesses over the
threshold us(τ ) := F̂−1

s (τ ). Then, we can consider the spatially averaged TS plot

(τ , ξ̂avg(τ ))τ∈[0,1), (4)

where ξ̂avg(τ ) = S−1 ∑S
s=1 ξ̂s(τ ). Due to the fact that the individual plots (τ , ξ̂s(τ )) should be

roughly constant for τ ≥ τ 0, we have that the averaged TS plot in Equation (4) is approximately
constant too. Moreover, due to the averaging, small-sample size effects are reduced and the
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6 M. Roth et al.

constant behavior becomes more apparent. Assuming also (H2) leads to a variant by considering
a common estimate for the shape parameter instead of ξ̂avg, see [29]. In the case of unequal
sample sizes weighting the ξ̂s(τ ) proportionally to the sample sizes could be considered [19].

The empirical ME function is linear in the threshold itself and not in the corresponding prob-
ability τ . Therefore, we average not only the excesses but also the thresholds for a common τ .
Here the assumption (H2), which implies that the slopes in the single ME plots are the same, is
critical, for the following reason. Consider the two linear functions:

y(1)
i = aui + b and y(2)

i = cvi + d.

Then we can not say much about their average as function of the average argument, because

(y(1)
i + y(2)

i )

2
= (aui + cvi)

2
+ (b + d)

2
.

However, with a = c we have that the average is again linear with the same slope:

(y(1)
i + y(2)

i )

2
= a(ui + vi)

2
+ (b + d)

2
.

This gives rise to the spatially averaged ME plot

(uavg(τ ), êavg(τ ))τ∈[0,1), (5)

where uavg(τ ) = S−1 ∑S
s=1 us(τ ), êavg(τ ) = S−1 ∑S

s=1 ês(τ ) and ês(τ ) is the ME at site s evalu-
ated at level us(τ ). The averaged ME plot should be approximately linear for τ ≥ τ 0, and the
slope is determined by the common shape parameter ξ . The strength of the spatially averaged
plots lies in the increased detection probability of non-constant behavior in the TS plot and
non-linear behavior in the ME plot, when the threshold is too low.

4.2 Approaches based on GoF tests

We want to test the hypothesis (H1), that is, that the GPD behavior sets in at F−1
s (τ 0) for all sites

s ∈ {1, . . . , S}. Douglas et al. [10] evaluate the significance of trends in flood data across the USA
by averaging the test statistic regionally. We follow this idea and average the KS statistic, respec-
tively the AD statistic, computed as in Section 3.2, over the available sites. Also here, weighting
could be considered in the case of unequal sample sizes. Averaging reduces the variance, which
leads to an increased sensitivity for too low thresholds. However, there is no standard way to
obtain critical values for the averaged test statistic and one has to rely on simulation.

For the simulation of the spatial dependence we use copulas. Assume the data-generating
copula C from Equation (1) is known, then one can use this copula for the computation of the
critical values without knowing the full marginal distribution. Say we want to compute critical
values for the exceedance probability ζ 0 = 1 − τ 0 = 0.05. First we generate marginally uniform
data from the copula C, for example, for 4 sites and 5 days

⎛
⎜⎜⎜⎜⎝

0.11 0.23 0.45 0.96
0.97 0.98 0.11 0.05
0.02 0.45 0.23 0.61
0.89 0.92 0.96 0.95
0.93 0.96 0.98 0.76

⎞
⎟⎟⎟⎟⎠
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Journal of Applied Statistics 7

and keep only those entries exceeding τ 0, that is, in our example

⎛
⎜⎜⎜⎜⎝

− − − 0.96
0.97 0.98 − −
− − − −
− − 0.96 −
− 0.96 0.98 −

⎞
⎟⎟⎟⎟⎠ .

These are then transformed to GPD data using the marginal distribution function with the esti-
mated parameters. For each site s this is equivalent to the unconditioned simulation of GPD
random variables in Section 3.2. Note that owing to the construction process, we are only
interested in events, where at least one component exceeds the at-site τ 0-quantile, that is,

1 − C(τ 0, . . . , τ 0) = P(F1(X1) > τ 0 or · · · or FS(XS) > τ 0). (6)

Finally, we determine for each site the test statistic and compute the average over all sites.
Repeating the procedure, for example, 1000 times, leads to critical values for the averaged test
statistic that take the spatial dependence into account. In general the copula is not known and
has to be estimated. Because copula estimation lies outside the focus of the present study, we use
fixed copulas in the simulation section and use a heuristic estimate in the application section, to
describe the dependence at high quantiles.

5. Simulation study

The evaluation of a threshold selection method is challenging. If the bulk distribution and the
GPD tail are quite different the threshold can easily be detected, maybe also with univariate
methods [39]. In most cases, however, a simple discrimination between bulk and tail distribution
is not possible. Using daily rainfall data from 15,029 stations around the world, Papalexiou and
Koutsoyiannis [25] showed that the GPD generally described the tail of the distribution better
than the Weibull and Gamma distributions. However, in a subsequent study [33], it was observed
that the fit of the GPD becomes worse if non-extreme values are progressively incorporated in
the POT sample. Several extreme value mixture models have been proposed in the literature,
which combine the GPD with a component to capture the non-extreme part of the distribution
[31]. To explore the ability to detect a theoretical threshold, we simulate data from a mixture
distribution with differentiable density. Differentiability is imposed to get a smooth transition
between the bulk of the distribution and the GPD tail.

5.1 Marginal model

Any continuous probability distribution function F on [0, ∞) can be written as

F(x) = 1 − exp(−H(x)) = 1 − exp

(
−

∫ x

0
h(u) du

)
, (7)

where (H) h is the (cumulative) hazard rate. The density is given by

f (x) = h(x) exp(−H(x)),

which is of (differentiability) class Ck , whenever h is of class Ck .
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8 M. Roth et al.

A distribution with differentiable density and GPD tail above threshold u can be obtained by
defining the following hazard rate

h(x) := η

(
x − u

ε

)
h1(x) +

(
1 − η

(
x − u

ε

))
h2(x), (8)

where ε > 0 is the length of the transition interval, h1 the hazard rate of a general bulk distri-
bution with differentiable density, and h2 the hazard rate of a GPD with shape parameter ξ and
scale parameter σ , given by

h2(x) = 1

σ + ξ(x − u)
, x ≥ u, (9)

and h2(x) = 0 otherwise. The use of the transition function

η(x) =

⎧⎪⎨
⎪⎩

1, x ≤ 0,

2x3 − 3x2 + 1, 0 < x < 1,

0, x ≥ 1,

(10)

see Figure 2, with η(0) = 1 and η′(0) = η′(1) = η(1) = 0, yields a hazard function h with con-
tinuous derivative h′. Using a linear transition function would yield only a continuous hazard
function. Note that the tail, the part of the distribution to the right of u, is contaminated over the
interval (u, u + ε). This construction of a mixture GPD distribution is similar to that proposed
by Holden and Haug [18], based on truncated distribution functions.

For a fixed exceedance probability ζ 0 = 1 − τ 0, for example, 5%, the corresponding threshold
is defined via the following relation:

ζ 0 = exp(−H1(u)) ⇐⇒ u = H−1
1 (− ln(ζ 0)). (11)

The transition can be smoothed further by considering the following restriction on Mill’s ratio
φ(x) = 1/h(x) at x = u:

φ′(u) = − h′
1(u)

(h1(u))2
= ξ . (12)

This is motivated by the theory of penultimate approximations [34,38].

Figure 2. Smooth transition function.
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Journal of Applied Statistics 9

Figure 3. Left: Cumulative distribution function for the hybrid Weibull GPD model. The dotted horizontal
line indicates the probability τ 0 where the GPD tail sets in. Right: zoom into the transition part of the density
(ξ = 0.15, γ = 0.5, ζ 0 = 0.05, ε = 0.25, κ = 0.7/0.8 (red/blue), β = 2

4 (solid/dashed)) [colour online].

As bulk distribution we consider the Weibull distribution

Wκ ,β(x) = 1 − e−(x/β)κ , (13)

with shape parameter κ and scale parameter β. The hazard rate h1 of the Weibull distribution is
given by

h1(x) = κ

β

(
x

β

)κ−1

.

For this distribution u = β(− ln(ζ 0))1/κ . Restriction (12) implies then the following relationship
between the Weibull and GPD shape parameters:

ξ = 1 − κ

κ

(
u

β

)−κ

= 1 − κ

κ
(− ln(ζ 0))−1.

Figure 3 shows the cumulative distribution and a zoom into the transition part of the density
for one set of GPD parameters and varying Weibull parameters. The GPD shape parameter is
here 0.15, which is a representative value for daily rainfall extremes [20]. We observe that the
transition is much smoother for κ = 0.7, than for κ = 0.8. The reason is, that for κ = 0.7 and
ξ = 0.15 Equation (12) is approximately true, which is not the case for κ = 0.8 and the same ξ .

5.2 Spatially independent data

After defining the marginal model we first investigate the influence of the number of considered
locations on the selected threshold. Therefore, we simulate spatially and serially independent
data for 16 locations and 4600 days, for example, 50 summer seasons. We took for all sites
τ 0 = 1 − ζ 0 = 0.95, ε = 0.25, γ = 0.5, and ξ = 0.15. The Weibull scale parameters βs were
obtained as a random sample from the uniform distribution between 2 and 4 and the Weibull
shape parameters κs as a random sample from the beta distribution, with parameters 2 and 5,
shifted by 0.5 (mode at 0.7). We denote this parameter set by I.

Figure 4 shows the TS plot for one site and the spatially averaged version for 8 and 16 sites
for the simulated data. The individual TS plot shows no stabilization, it increases sharply after an
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10 M. Roth et al.

Figure 4. TS plot for one site (blue), 8 sites (green) and 16 sites (red) for simulated data from the hybrid
Weibull GPD distribution (parameter set I, no spatial dependence) [colour online].

Figure 5. ME plot for one site (blue), 8 sites (green) and 16 sites (red) for simulated data from the hybrid
Weibull GPD distribution (parameter set I, no spatial dependence). The dashed vertical lines indicate the
corresponding (mean) 0.95-quantile. The dotted lines show the fitted linear regression above the (mean)
0.95-quantile [colour online].

almost linear decrease up to τ = 0.98. The averaged at-site estimate stabilizes around τ = 0.96
for 8 sites and slightly earlier for 16 sites. Moreover, we observe that the variation in the averaged
shape parameter estimate reduces substantially from 8 to 16 sites.

Figure 5 shows the (spatially averaged) ME plot for the same data. Here, the reduced variance
of the averaged at-site estimates for 8 and in particular for 16 sites becomes even more apparent.
One observes only a small change in the slope of the spatially averaged ME plot for 16 sites
around the averaged 0.95-quantile, that is, it decreases from 0.25 to 0.19.

For the quantitative approach based on GoF tests, we first have to define a threshold selection
criterion. We select the smallest τ ∈ [0.9, 1), such that the test statistic is smaller than the 95
percentage point of the bootstrapped test statistic. For instance, for the precipitation data from
Putten in Figure 1 the selected probability τ would be 0.9, because the value of the KS test
statistic is below the corresponding 95 percentage point for τ = 0.9, as shown in Figure 1. The
adequacy of the proposed procedure is explored by simulating B = 1000 samples for the 16
locations of the same size from the same marginal distributions. For each simulated sample the
threshold was determined using the criterion above for single site data and for the averaged KS
statistic over 2, 4, 8, and 16 sites. The GPD parameters were estimated for each single site but
in the case of averaging over 16 sites, joint estimation was also considered, using the approach
described in [29].
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Journal of Applied Statistics 11

Figure 6. Violin plots [17] of the selected probability τ based on the 95% critical value of the KS test for the
simulated data from the hybrid Weibull GPD distribution (parameter set I, no spatial dependence). Plots are
shown for single site data and various groups of multiple sites. The right plot is based on joint estimation
of the GPD parameters. The dashed horizontal line indicates the true probability τ 0 [colour online].

Figure 6 shows the influence of the number of considered sites on the selected threshold.
The more sites are considered the closer the selected threshold is to the true one. This can be
explained by the increasing power of the GoF test, when using more data. Moreover, the figure
shows the advantage of using the regional similarity in the parameter estimation. In the case
of regional estimation the mean selected τ is 0.945, that is, the mean exceedance probability is
5.5%, which is a strong improvement compared to the mean exceedance probability obtained
for the univariate samples. Note that strong overestimation of the exceedance probability in
the univariate case is also reported for different threshold selection methods, see, for example
[15,31].

After looking at the influence of the number of locations, we investigate how the threshold
selection method performs, when bulk and tail distribution are alike near the threshold level.
Therefore, we simulate 1000 samples using the same marginal parameters as before except for
the Weibull shape parameter, which we specify such that Equation (12) holds, that is, κ = 0.69.
We denote this parameter set by II. For this parameter set, the 0.9-quantile is selected as threshold
in more than 90% of the simulated samples, even when considering all 16 sites. Due to the small
differences between bulk and tail distribution the method is not able to select the theoretical
threshold.

Focusing on the threshold may not be optimal in terms of bias and variance of estimated
parameters or return levels. The bias-variance trade-off was studied for return levels. Denote
the vector of the true return levels by r and the estimated return levels associated with non-
exceedance probability τ from sample i by r̂i(τ ). Then we compute for each τ the averaged
Euclidean error over the B simulated samples:

AEE(τ ) = 1

B

B∑
i=1

||r̂i(τ ) − r||2, (14)

where ||.||2 denotes the Euclidean (or l2) norm. Figure 7 shows AEE(τ ) for the 50-year return
level. For parameter set I AEE(τ ) reaches a minimum around τ = 0.95. This nicely demonstrates
the trade-off, if the threshold is too low a large bias is introduced, and if the threshold is too high
the variance dominates. However, for parameter set II the AEE is almost constant up to τ = 0.945
and it increases afterwards. This means there is hardly any bias introduced by selecting lower
thresholds, which highlights the effect of the restriction posed in Equation (12) on the smoothness
of the transition between bulk and tail distribution. Though, there is large uncertainty in the
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12 M. Roth et al.

Figure 7. Averaged Euclidean error in the 50-year return level as a function of the probability τ for the
simulated data from the hybrid Weibull GPD distribution (no spatial dependence, blue – parameter set I,
red – parameter set II). For both parameter sets the GPD parameters were jointly estimated for all 16 sites.
The dashed horizontal lines indicate the averaged Euclidean error using the selected threshold from the KS
test (AEE0) [colour online].

Figure 8. Same as Figure 7 but for the 5-year return level [colour online].

threshold level for parameter set II, the choice of the threshold will probably have not so much
influence on the return level estimate and its mean square error for this parameter set. A similar
picture, in particular for the AEE in the 5-year return level, is obtained if we generate data from
a Weibull distribution with common shape parameter κ = 0.7 and the same spatial variation of
the scale parameter as in parameter sets I and II. The 0.9-quantile is selected in more than 93%
of the samples in that case.

We are interested how the averaged Euclidean error AEE0 of the estimated return level, based
on the automatically chosen probability τ(i), compares to the minimal AEE over all τ . AEE0 can
be computed by replacing r̂i(τ ) by r̂i(τ (i)) in Equation (14). In Figure 7, we see that AEE0 is for
both parameter sets close to the minimum value of AEE(τ ). The situation for the 5-year return
level is very similar, see Figure 8. The results in Figures 7 and 8 apply to the KS test. The AD
test results in slightly smaller values of AEE0 as well as AEE(τ ) in general, but the observed
differences are smaller than 2%.

We compared several significance levels for both tests. The values of AEE0 are very similar
for significance levels between 5 % and 20 % , but increase outside this interval.
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Table 1. Gumbel copula parameter θ and normal copula parameter ρ

used in the simulation of spatially dependent data (only one data set
without spatial dependence was simulated).

lu(0.9) 0.1 0.25 0.5 0.75 0.9

θ 1 1.1514 1.5994 2.9254 6.8769
ρ 0 0.3686 0.7366 0.9358 0.9898

5.3 Spatially dependent data

The modeling of spatial dependence in general and in particular that in extremes is a very active
field of research, see, for example [8,32]. The dependence between small to medium values
should have no influence on the threshold selection. Therefore, classical dependence measures
like correlation and Kendall’s tau, that are usually estimated from all data, are not appropriate. In
extremes the notion of tail dependence arises. A bivariate random vector (X1, X2) with marginal
distributions F1 and F2, is said to be asymptotically dependent if [7]

lu := lim
v↑1

P(X1 > F−1
1 (v) | X2 > F−1

2 (v)) > 0. (15)

Similarly, we say that the bivariate vector is asymptotically independent if lu = 0. For many
copulas one can derive lu directly from the copula parameters. Consider, for example, the Gumbel
copula with parameter θ ∈ [1, ∞), given by

Cθ (u, v) = exp(−[(− ln(u))θ + (− ln(v))θ ]1/θ ), (16)

which can be easily generalized to d dimensions. Here, the tail dependence can be easily com-
puted as lu = 2 − 21/θ , which is greater than 0 if θ > 1 [24]. However, it is known that a
bivariate normal random vector is asymptotically independent for every correlation coefficient
ρ ∈ [−1, 1). Hence, we conclude that a quantile-dependent measure of dependence, for example,

lu(τ ) := P(X1 > F−1
1 (τ ) | X2 > F−1

2 (τ )) = P(X1 > F−1
1 (τ ), X2 > F−1

2 (τ ))

P(X1 > F−1
1 (τ ))

, (17)

might be more appropriate than a correlation coefficient to describe the influence of spatial
dependence on threshold selection. lu(τ ) can be simply estimated from the data by counting
the excesses over the sample τ -quantile.

We simulate spatially dependent data from the hybrid Weibull GPD distribution for 16 sites
using parameter set I. To determine the influence of the dependence structure and in particular of
tail dependence on the selection of the threshold, we choose to simulate from a 16-dimensional
Gumbel copula with parameter θ and a 16-dimensional normal copula with the same correlation
ρ for all pairs. To obtain a fair comparison between the two copulas we prescribe fixed values of
lu(τ ) for τ = 0.9, the lowest possible probability in our setting, and select the copula parameters
correspondingly. We fix the following values for lu(0.9): 0.1 (which corresponds to independent
data), 0.25, 0.5, 0.75, and 0.9. The corresponding parameters for the Gumbel and normal copula
are shown in Table 1.

Figure 9 shows violin plots of the selected non-exceedance probability τ for different levels
of dependence. We see that the method is quite able to select a threshold close to the true 0.95-
quantile. Moreover, we see that there is no clear dependence of the selected threshold on the
amount of spatial dependence in the data. In contrast to the selected threshold, AEE0 increases
strongly with lu(0.9) and is generally larger for the Gumbel copula than for the normal copula,
see Figure 10.
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14 M. Roth et al.

Figure 9. Selected probability τ for different dependence levels lu(0.9), based on the 95% critical value of
the KS test using joint parameter estimation, for simulated data from the hybrid Weibull GPD distribution
(red – Gumbel copula, blue – normal copula) [colour online].

Figure 10. AEE0 of the 5- (dots) and 50-year (triangles) return level for simulated data from the hybrid
Weibull GPD distribution (red – Gumbel copula, blue – normal copula) [colour online].

6. Application to rainfall data

Figure 11 shows the area of the Vallei en Veluwe water board in the Netherlands, together with the
locations of the 21 rainfall stations in this area. For each station we have summer (JJA) records of
daily precipitation available for the period 1951–2009, that were corrected for inhomogeneities
owing to changes in local measurement conditions [4]. Thus, we obtain a rainfall matrix (Xs(t))s,t

with s ∈ {1, . . . , 21} and t ∈ {1, . . . , 5428}.
In order to exclude temporal dependence, we apply first the declustering algorithm, described

in [30]. Owing to the weak temporal dependence in summer, a separation time of 1 day is taken
as sufficient [21]. Figure 12 shows the spatially averaged TS plot for the declustered data. The
shape parameter estimate is either determined as the average of the individual maximum like-
lihood estimates or as common estimate, using the estimation approach in [29]. For the latter
approach we rely on assumptions (H2, H3), introduced in Section 2. Both approaches show a
strong increase of the estimated shape parameter up to the 0.96-quantile, which indicates that
one should consider thresholds above the 0.96-quantile. The common estimate is more stable at
large τ than the average at-site estimate, thus allows for a better selection of τ 0. The smaller
value of the average at-site estimate of ξ is probably due to the bias in this estimate. At the
0.96-quantile, the at-site estimate is based on 217 excesses. For a sample size of 200 and a shape
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Figure 11. Left: Map of the Netherlands with the area of the Vallei en Veluwe water board surrounded by
a red line. Right: a zoom into the map, the pluses indicate the individual measurement locations. The blue
star is the measurement site Putten [colour online].
Source: The map is based on the watercolor map by Stamen Design (http://www.stamen.com).

Figure 12. Spatially averaged TS plot for the rainfall data. The estimate of the shape parameter is obtained
by averaging maximum likelihood estimates of the GPD parameters for the individual sites (blue) or by
using joint estimation of the GPD parameters (red) [colour online].

parameter of 0.25, Zhang and Stephens [41] report a bias of − 0.013 for the maximum likelihood
estimate.

Using the criterion defined in Section 5.2 and the KS test individually for each site, we obtain
τ < 0.91 for all but one site. Figure 13 shows the 5-, 50-, and 500-year return levels based on
joint estimation of the parameters as a function of the non-exceedance probability τ . While the
5-year return level stays virtually constant, the 50- and 500-year return levels show an increase
up to τ = 0.96, which was chosen using the spatially averaged TS plot. Thus, there is a risk of
underestimating high return levels if local thresholds near τ = 0.9 are used.

To apply the quantitative approach to threshold selection in the regional setting, we have to
model the spatial dependence. Buishand [3] concludes that annual maximum rainfalls over the
Netherlands are asymptotically independent if the measurement locations are separated by more
than 30 km. Ancona-Navarrete and Tawn [1] confirm this for daily rainfall records in south-west
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16 M. Roth et al.

Figure 13. Average return level r of the rainfall data as a function of the non-exceedance probability τ for
return periods of 5 (red), 50 (green) and 500 (blue) years [colour online].

Figure 14. Estimated measure of dependence lu(0.9) versus distance for the rainfall data. The smooth line
is obtained by a loess smoother [colour online].

England, adding that there exists a quite strong association at high levels, which decays only
slightly with distance. Thibaud et al. [36] find that asymptotically independent models perform
better even at very small spatial scales for summer rainfall in Switzerland.

Figure 14 shows the estimated dependence measure lu(0.9) for each pair of sites versus their
distance. The mean of this measure is 0.6. For higher levels this decreases but stays above zero,
that is, 0.5 (0.35) at the 0.95(0.99)-quantile. This decay indicates that the normal copula is more
appropriate than a asymptotically dependent copula.

To study potential influences of the tail dependence, we model the spatial dependence in
three different ways. A multivariate Gumbel copula with parameter θ = 1.933 representing a
simple asymptotically dependent model on the one hand and a normal copula with parameter
ρ = 0.8336 for all pairs representing a simple asymptotically independent model on the other
hand. Both copula satisfy lu(0.9) = 0.6. Since, these models do not reproduce the decay of the
tail dependence with increasing distance, we also use a multivariate normal copula, with indi-
vidual correlation parameters ρs1,s2 for each pair of sites (s1, s2). The correlation parameter ρs1,s2

is derived from the loess-fit of lu(0.9), shown in Figure 14. Figure 15 presents the KS statistic
for the rainfall data based on the joint estimation of the GPD parameters, together with the 95
percentage points of the statistic based on three different dependence models: The differences
between these dependence models are remarkably small and overall point to a threshold above
the 0.96-quantile. In particular the choice to model the decrease of dependence with distance
does not seem to influence the selected threshold.
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Figure 15. The averaged KS statistic of the rainfall data as a function of τ (red), together with the 95% per-
centage points based on a Gumbel copula with θ = 1.933 (green), normal copula with ρ = 0.8336 (blue),
and normal copula with parameters corresponding to the fitted measure of dependence lu(0.9) (purple)
[colour online].

7. Conclusion

This paper has presented a method to incorporate similarity of multiple data samples into the
selection of a threshold for a subsequent POT analysis. This setting is often encountered in
environmental research but also different stock prices from a similar branch constitute a possible
example. We proposed spatially averaged versions of the TS and the ME plots. Moreover, we
have introduced spatially averaged KS and AD statistics for assessing the goodness of the GPD
fit for the threshold excesses. Our method of threshold selection was validated using a smooth
hybrid Weibull GPD distribution. Simulations from this distribution show that the use of common
GPD parameters reduces the (negative) bias of the selected threshold substantially. Moreover, the
averaged Euclidean distance of the 5- and 50-year return level for the selected threshold is close
to the optimal averaged Euclidean distance. The regional method was applied to a set of summer
precipitation records in the Netherlands. We found that the 0.96-quantile is a suitable threshold.
The choice of the threshold is not sensitive to assumptions regarding the spatial dependence of
this data set.
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