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For a sample of independent and identically distributed observations, the parameters of the Generalized
Pareto Distribution (GPD) can be estimated by the Maximum Likelihood (ML) method. In this paper, we
drop the assumption of identically distributed random variables. We consider independent observations
from GPD distributions having a common shape parameter but possibly an increasing trend in the scale
parameter. Such a model, with increasing scale parameter, can be used to describe a trend in the observed
extremes as time progresses. Estimating an increasing trend in a distribution parameter is common in the
field of isotonic regression. We use ideas and tools from that area to compute ML estimates of the GPD
parameters. We also study these estimates in a simulation experiment. Moreover, we apply the approach
to the Central England Temperature (CET) data.
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1. Introduction

Modeling extremes is crucial in many branches of modern society. Examples include
finance, insurance, and the planning of critical infrastructure such as dikes or sewer
systems. Often the Generalized Pareto Distribution (GPD) is used to model the tail of
the distribution, which is justified by the Pickands–Balkema–De Haan theorem. It states
that, under certain regularity conditions, the distribution of independent and inden-
tically distributed excesses over a threshold u can be approximated by a GPD, if u is
sufficiently high [19]. We consider the two-parameter GPD with ξ ∈ R and σ > 0 de-
noting the shape and scale parameter, respectively. Its cumulative distribution function
is given by

Gξ,σ(y) = 1−
(

1 + ξ
y
σ

)−1/ξ
, (1)

with support y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ for ξ < 0. For ξ = 0 the GPD reduces
to the exponential distribution with scale parameter σ. The density of the GPD in the
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case ξ 6= 0 is given by

gξ,σ(y) =
1
σ

(
1 +

ξy
σ

)− 1
ξ−1

(2)

on its support.
For ξ > −0.5 , parameter estimates can be obtained using the Maximum Likeli-

hood (ML) approach [7]. The restriction ξ > −0.5 does not pose a severe restriction
in our setting, as applications in hydrology and more generally in environmental stud-
ies usually exhibit shape parameters in the interval (−0.5, 0.5) [11]. Therefore, we re-
strict ourselves to the case ξ > −0.5. The likelihood equations can only be solved nu-
merically, which is usually done by the Newton-Raphson approach or variants includ-
ing gradient descent steps [7]. [11] shows that for small sample sizes, the probability
weighted moment estimators and moment estimators have generally smaller root mean
squared error than the ML estimators for ξ ∈ [0, 0.4] and ξ ∈ [−0.2, 0.2], respectively. A
drawback of these approaches is their lack of flexibility compared to the ML method,
which is necessary when it comes to the inclusion of trends.

In many applications, there are reasons to expect a monotone trend in the behavior of
extremes. For insurance and infrastructure planning, climate change may lead to such
a monotone trend. The change can be described using a monotone function of time,
other covariates might be considered as well. In this paper we consider the problem of
estimating a nondecreasing trend in the scale parameter of independent observations
from GPD distributions. The proposed approach is applied to the daily maxima of the
Central England Temperature (CET) data, which are available from 1878 onwards.

2. Maximum Likelihood estimation

Suppose that Y1, . . . , Yn are independent random variables, such that Yi ∼ Gξ,σi for
some common shape parameter ξ > −0.5 and 0 < σ1 ≤ · · · ≤ σn. We want to estimate
the parameter ξ and the vector of scale parameters σ ∈ C, where

C = {σ = (σ1, . . . , σn) ∈ (0, ∞)n : σ1 ≤ · · · ≤ σn} . (3)

Thus, for this purpose we consider the ML approach. Based on observed values y =
(y1, y2, . . . , yn), the log likelihood for ξ and σ is given by

`(ξ, σ) =
n

∑
i=1

ln
[
gξ,σi(yi)

]
, (4)

where gξ,σ is the density of the GPD as given in (2). Note that

ln
[
gξ,σ(y)

]
= ln

[
1
σ

(
1 +

ξy
σ

)(− 1
ξ−1)

]

=
1
ξ

[
ln(σ)− ln(σ + ξy)

]
− ln(σ + ξy), (5)
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yielding (for ξ 6= 0)

`(ξ, σ) =
n

∑
i=1

(
1
ξ
[ln(σi)− ln(σi + ξyi)]− ln(σi + ξyi)

)
.

The maximizing argument (ξ̂, σ̂) of the log likelihood in Eq. (4) is the ML estimator for
ξ and σ.

One way to maximize ` over (−0.5, ∞)× C is using the profile (log) likelihood in a
two-step procedure. In this approach, for a fine grid of possible ξ-values, the profile
likelihood is constructed, i.e.

`p(ξ) = max
σ∈C

`(ξ, σ). (6)

For each ξ, the log likelihood ` is maximized over σ. As ξ is one-dimensional, this
profile likelihood can be visualized naturally. In the second step, one searches for the ξ

maximizing `p(ξ). Together, with the corresponding σ, this defines the ML estimate. Of
course, in order for this to be applicable, a method is needed to actually compute the
profile likelihood, i.e., to maximize ` over C for fixed ξ.

LEMMA 2.1 For each ξ > −0.5, there exists a σξ ∈ C such that

`(σξ , ξ) ≥ `(σ, ξ) for all σ ∈ C.

Consequently, `p given in (6) is well defined.

Proof. Fix ξ > 0 and note that σ 7→ `(ξ, σ) is continuous on C. Moreover, note that by
(5), for y > 0 fixed and σ ↓ 0,

ln
[
gξ,σ(y)

]
∼ 1

ξ
ln(σ)→ −∞

and for σ→ ∞,

ln
[
gξ,σ(y)

]
∼ − ln(σ)→ −∞.

Therefore, in maximizing σ 7→ `(ξ, σ) over C, attention can be restricted to a compact
subset of C, namely σ ∈ C for which δ ≤ σ1 ≤ σn ≤ 1/δ for some small δ > 0. This
ensures the existence of σξ .

For ξ = 0, ln [g0,σ(y)] = − ln(σ)− y/σ, leading to the same conclusion. In the case
ξ ∈ (−0.5, 0), the restriction y ≤ −σ/ξ implies that σ ≥ −ξy. For σ ↓ −ξy we obtain

ln
[
gξ,σ(y)

]
∼ (−1

ξ
− 1) ln(σ + ξy)→ −∞,

due to the fact that (− 1
ξ − 1) > 0 for ξ ∈ (−0.5, 0). For σ→ ∞ we obtain as before

ln
[
gξ,σ(y)

]
∼ − ln(σ)→ −∞.

3



December 24, 2016 Journal of Applied Statistics Roth_MonotoneScale

Thus, attention can be restricted again to a compact subset of C, namely for some small
δ > 0

∪n
i=1{σ ∈ C : −ξyi + δ ≤ σi ≤ 1/δ}.

On this set, σ 7→ `(ξ, σ) is continuous and hence `p(ξ) is well defined. �

It is interesting to note that for ξ 6= 0, the function σ 7→ `(ξ, σ) is not concave, see
the appendix to this article. Therefore, optimization algorithms that need this property
cannot be used. In the next section, we will address the problem of computing the
function `p and maximizing this in ξ to maximize the full log likelihood `.

3. Computing the profile log likelihood

In this section two methods are presented to compute `p. Rather than maximizing the
log likelihood over the cone C in Rn, defined in (3), the negative log likelihood is min-
imized. The case ξ = 0 is special in this respect. As can be seen in Section 1.5 in [20],
the optimization problem for ξ = 0 is a special case of the so-called Gamma extremum
problem. The solution of this problem is given by

σ̂ = pr(y),

where pr is the projection operator from Rn onto C, defined by

pr(y) = arg min{||x− y||2 : x ∈ C} = arg min
x∈C

1
2

n

∑
i=1

(yi − xi)
2. (7)

An elegant way to obtain the projection pr(y) explicitly is via the derivative of the
greatest convex minorant of a diagram of points. More specifically, defining P0 = (0, 0)
and

Pj =

(
j,

j

∑
i=1

yi

)
, 1 ≤ j ≤ n, (8)

one can construct the greatest convex function lying entirely below the diagram of
points. Then taking the left derivative of this function at j, gives σ̂j. By construction,
the vector σ̂ = (σ̂1, . . . , σ̂n) is in C. The projection gives the (un-weighted) least squares
isotonic regression of y = (y1, . . . , yn) [20, Lemma 1.2.1].

For ξ 6= 0 such a connection between the ML estimator of ordered scale parameters in
a GPD model and plain isotonic regression does not exist. In order to compute `p(ξ) for
values ξ 6= 0, an iterative algorithm is needed. A possible algorithm that can be used
in this setting, is the Projected Gradient (PG) algorithm, developed independently by
[9, 13] for minimizing a continuously differentiable function on a convex subset of Rn.
For f (σ) = −`(ξ, σ) and a given initial starting value σ0 the PG algorithm is defined
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by

σk+1 = pr [σk − αk∇ f (σk)] , (9)

where ak > 0 is the step size. At each step it has to be ensured, that the new iterate lies
within the support of the GPD. The following Goldstein-Armijo type choice for the step
size is considered:

αk = βmk s, (10)

with mk the smallest integer, such that

f (σk+1) ≤ f (σk)− µ· < ∇ f (σk), σk+1 − σk >, (11)

where s > 0, β ∈ (0, 1), and µ ∈ (0, 1) are given scalars and < ·, · > denotes the
standard scalar product. In our implementation we set s = 1, β = 0.5, and µ = 1e−4.
[1, 8] showed that in this setting every limit point of {σk} is stationary. If such a limit
point exist we take this as the scale estimate σ̂.

An alternative algorithm that can be used to compute `p(ξ), under the monotonicity
constraint, is the Iterative Convex Minorant (ICM) algorithm studied by [12] and for
instance used in [21] to estimate monotone trends in high daily precipitation quantiles.
The ICM algorithm can incorporate positive weights, using the weighted projection

prW (y) = arg min
x∈C

1
2

n

∑
i=1

(yi − xi)
2wi,

where W is a diagonal matrix with positive diagonal entries wi. This projection can be
obtained explicitly as before from the following point diagram, P0 = (0, 0) and

Pj =

(
j

∑
i=1

wi,
j

∑
i=1

yi · wi

)
.

For a weight matrix W k with positive weights wk
i , one can define one step in the ICM

algorithm by:

σk+1 = σk + αk

(
prW k

[
σk − (W k)−1∇ f (σk)

]
− σk

)
. (12)

The scaling constant αk can again be chosen as in (11). If the Hessian H has positive
diagonal entries, these are a natural choice for the weight matrix W at each step.
However, in our case this condition is not fulfilled. After experimenting with differ-
ent weights, setting W = diag(|H |), i.e. the diagonal matrix consisting of the absolute
values of the diagonal entries of the Hessian, worked quite well [2].

The name of the ICM algorithm stems from the computation of iterative projections
via the greatest convex minorant of a point diagram. Note the geometric difference be-
tween the PG algorithm and the ICM algorithm. In the PG algorithm, in principle a
whole line segment connecting the current iterate σk and σk −∇ f (σk) is projected (us-
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Figure 1. The scale parameter vector σ∗ used in the simulation.

-0.2 0.2

1e-10

1e-06

1e-02

0 10 20 30 0 10 20 30
iterations

∆
ξ

Figure 2. Trace of the deviance ∆ξ based on the ICM algorithm (red dots) and the PG algorithm (blue triangles) for
ξ = −0.2 (left) and ξ = 0.2 (right).

ing multiple projections), leaving a trace on the cone C that is in general not a line seg-
ment, but a ‘broken line’. The ICM algorithm just takes the point σk − (Wk)−1∇ f (σk)
and projects it on C. Then a new iterate is chosen from the line segment connecting σk
and this projection, a line that lies completely within C due to convexity of C. There-
fore, one can assume that one iteration of the ICM algorithm is faster than one of the
PG algorithm.

Having two algorithms that can be used to compute the profile (log) likelihood func-
tion `p on a grid of ξ-values, the next step is to plot it on such a grid and find its maxi-
mum.

4. Simulation study

We carried out a small simulation experiment using the values -0.2 and 0.2 for the shape
parameter. The used scale parameter vector σ∗ is shown in Figure 1. For the implemen-
tation of the algorithms we use the expressions for the needed partial derivatives as
given in the Appendix.
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Figure 3. Density of the ratio between the computation time of the PG and the ICM approach for ξ = −0.2 and ξ = 0.2
based on 1100 simulations. The vertical line indicates the median (dashed red) and mean (dotted blue) ratio.

First we compare the speed of the two algorithms. Because we use a profile likeli-
hood approach we assume that the shape parameter is known. Moreover, we use σ∗ as
the starting value for the two algorithms. The ICM algorithm needs less iterations to
converge. This can be visualized by plotting the deviance measure

∆ξ := 2
(
`p(ξ)− `(ξ, σk)

)
,

where `p(ξ) is the profile log likelihood for shape parameter ξ and `(ξ, σk) the log like-
lihood for the k-th iterate. Figure 2 shows an example of such a plot for both shape pa-
rameters. The ICM algorithm needs only 13 (18) iterations, while the PG algorithm uses
286 (90) for ξ = −0.2 (0.2). In our simulations the standard number of maximal repeti-
tions, i.e. 105, is sometimes not enough for the PG algorithm to converge. With the ICM
algorithm no problems were observed as the typically needed number of simulations
is well below. Although the PG algorithm is fully implemented in C++ and the ICM al-
gorithm mostly in R, the fact that the ICM algorithm uses less and faster iterations has
a drastic effect on the computation time, as shown in Figure 3. Only simulations where
both approaches converge are shown. In less than 0.5% of the simulations the PG al-
gorithm is faster. In all other simulations the ICM algorithm is considerably faster, the
median of the ratio of the computation time is about 8 and the average is larger than
100.

We now drop the assumption of a known shape parameter. For the computation of
the profile likelihood we start at ξ = 0, where pr(y) as defined in (7) is the solution.
Then, we compute `p(ξ) for ξ ∈ (0, 0.5) incrementally moving from 0 towards 0.5,
at each step taking the solution of the previous step as starting value. The interval
(0,−0.5) is treated correspondingly. The overall restriction to the interval (−0.5, 0.5)
is due to the restriction on the ML approach and the typical value of the shape param-
eter in environmental applications, see Section 1.

Figure 4 shows the point-wise median of the scale estimates from 1100 simulations,
together with the area between the point-wise 5 and 95 percentiles. The sampling dis-
tribution of the estimate is getting more biased at both ends. At the start the bias is
negative and at the end the bias is positive. This phenomenon is quite common in the
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Figure 4. Median (black line) of the scale estimates and 95% confidence band (grey area) for the scale parameter based
on 1100 bootstrap samples with scale parameter vector σ∗ (dashed red line) and shape parameter ξ = −0.2 (left) or 0.2
(right).

isotonic setting and known as the spiking problem [23]. Figure 5 shows the correspond-
ing bootstrap density of the estimated shape parameter. There is apparently a negative
bias, which is in line with the literature on the classical setting of extreme value theory,
e.g. [24].

Using the profile likelihood approach, one obtains immediately asymptotic profile
likelihood confidence intervals for the shape parameter, which are often assumed to
be more accurate than bootstrap confidence intervals [15, 22] and those based on the
asymptotic normality of ξ̂ [4]. [14] justify the use of the profile likelihood confidence
interval for semiparametric models. The profile likelihood confidence interval is based
on the fact, that the profile deviance

Dp(ξ) = 2
(
`(ξ̂, σ̂)− `p(ξ)

)
converges to a χ2

1 distribution. Hence, by this it can be deduced that

Cα =
{

ξ : Dp(ξ) ≤ cα

}
,

with cα being the (1− α) quantile of the χ2
1 distribution, constitutes a (1− α) asymptotic

confidence interval for the shape parameter. Figure 6 shows the 95% profile likelihood
asymptotic confidence interval for one realization of the simulation.

5. Application

In the following we consider the daily maximum temperatures of the CET data
set, which are available from 1878 onwards from the Hadley Centre (http://www.
metoffice.gov.uk/hadobs/hadcet/). The CET series is a constructed data set, repre-
sentative of the temperature in Central England, i.e. the area beteen the Lancashire
plains, London and Herefordshire in the West Midlands [17, 18]. In the context of ex-
treme value analysis of non-stationary time series, [16] examined the annual maxima
of this data set. [6] considered an r-largest values approach, but for the daily mean
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Figure 5. Density of the estimated shape parameter based on a parametric bootstap. The dashed red line marks the true
shape parameter, the blue dotted line the mean estimate, and the black dotted lines mark the 95% bootstrap percentile
confidence interval.
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Figure 6. Profile likelihood with 95% confidence interval for the shape parameter for the simulated data. The dashed
red line marks the true shape parameter, the blue dotted line the estimate, and the black dotted lines mark the asymptotic
95% confidence interval.

temperatures of the CET series, which is available from 1772.
Figure 7 shows the annual maxima of the series for the period 1878 to 2015. The

smooth trend in this figure is obtained using loess [3]. Apart from a small trough around
1960, the mean annual maximum seems to increase throughout the series. Therefore, a
monotone estimation approach looks promising.

Instead of following the annual maximum approach [16] or the r-largest value ap-
proach [6] we consider in our application all peaks over a high threshold. In order
to ensure independent peaks, we consider the same declustering method as [6]. That
is, we first determine temporal blocks, which are separated by at least 4 days below
16 degrees. From these blocks we take the maximum. In the following we consider
only peaks exceeding 18 degrees, which yields on average 5.04 peaks per year. Figure
8 shows the number of peaks per year, together with the 0.25, 0.5, and 0.75 linear re-
gression quantile. It is apparent, that apart from the internal variation there is no trend
in the number of peaks per year. Figure 9 shows the peak values together with the 0.5,
0.75, and 0.975 linear regression quantiles. While the median shows a slight decrease,
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Figure 7. CET annual maxima.
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Figure 8. Number of peaks per year in the CET data. The blue lines indicate the linear 0.25, 0.5, and 0.75 regression
quantile.

the 0.75 regression quantile has a small positive trend. However, more interesting is the
clear positive trend in the 0.975 regression quantile. This seems to justify the use of a
constant threshold (which is more influential in the lower part of the distribution) and
a montonically increasing scale parameter (which is more influential in the upper part
of the distribution).

Figure 10 shows the obtained profile likelihood confidence interval for the shape pa-
rameter. The ML estimate of the shape parameter -0.38 is relatively small compared to
the estimate -0.11 given by [16]. The corresponding scale estimate is trimmed at the ends
in order to minimize the effect of the spiking. The trimming is achieved by replacing
the first (last) 1% of the scale vector entries by the lower (upper) first percentile of the
vector entries, see Figure 11. The estimate seems to be in line with the increased trend
in recent years detected by [16]. However, overall the trend might be still modeled lin-
early, in line with the conclusions of [6] for the extremes of the daily mean temperature.

Figure 12 shows the same quantiles as in Figure 9, but adds these quantiles as mod-
eled by the GPD distribution with isotonic scale parameter. Moreover, it shows the
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Figure 9. Peak values in the CET data with the linear 0.5, 0.75, and 0.975 regression quantile.
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Figure 10. Profile likelihood for the CET data with 95% confidence interval for the shape parameter. The dashed blue
line marks the final likelihood estimate of the shape parameter.

5.5

6.0

6.5

7.0

1900 1950 2000

◦
C

Figure 11. Trimmed scale estimate for the CET data.
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Figure 12. Same as Figure 9 with the 0.5, 0.75, and 0.975 quantile modelled by the GPD in red (dashed lines). The dotted
red line on top indicates the 100-year return level.
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Figure 13. QQ plot for the rescaled empirical quantiles of the CET data (solid black line) with a uniform 95% confidence
band.

100-year return level, which corresponds here with the 0.998 quantile and is exceeded
on average once in 100 years. This extrapolation is made simple by the GPD approach
and demonstrates the advantage over an ordinary quantile regression approach, where
these extreme quantiles are less reliable. Figure 13 shows a quantile-quantile plot after
rescaling the residuals to a standard exponential distribution with a uniform 95% con-
fidence band, obtained by a parametric bootstrap [5]. Overall the fit seems to be quite
good.

6. Conclusion and further directions

We have developed a two-stage procedure to find the ML for independent observations
from GPD distributions with common shape parameter ξ and an increasing trend in
the scale parameter vector σ. The first step is to compute the profile (log) likelihood
for fixed values of ξ. For ξ = 0, there is an exact algorithm to compute this. For ξ 6= 0
and ξ > −0.5, we describe and test two iterative algorithms, the PG algorithm and the
ICM algorithm. The ICM algorithm needs less iterations than the PG algorithm and the
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iterations are also faster in the ICM algorithm. In the second step the profile likelihood
is maximized over a grid of shape parameters in order to obtain the ML estimates. The
ICM algorithm is used to obtain the GPD parameters in a peaks-over-threshold model,
with increasing trend in the scale parameter, for the daily maximum temperatures in
the CET data set.

The algorithms are available via the R package gpdIcm. These make it possible to
perform significance tests for the null hypothesis that the scale parameters are equal
against the alternative that these are increasing. Moreover, testing the null hypothesis
that the scale parameter is linearly increasing against a montone alternative becomes
viable. In the present example, however, the use of linear modeling seems adequate.
Likelihood ratio tests, but also permutation-based tests can be studied using the algo-
rithms described in this paper.

Appendix

Consider the first (partial) derivative

∂ ln gξ,σ(y)
∂σ

=
y− σ

σ(σ + ξy)
.

This shows that σ 7→ ln gξ,σ(y) is unimodal with maximum σ = y for fixed ξ. The
second derivative is given by

∂2 ln gξ,σ(y)
∂σ2 =

(σ− y)2 − (ξ + 1)y2

σ2(σ + ξy)2 .

It follows that

∂2 ln gξ,σ(y)
∂σ2 = 0 ⇐⇒ σ = y(1±

√
1 + ξ).

This shows that the second derivative exhibits in general at least one change of sign.
Thus, the log likelihood is not concave for ξ 6= 0.
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