EUMETSAT

NWP SAF

NUMERICAL WEATHER PREDICTION

Document NWPSAF-KN-DS-004
Version 3.0.01
February 2017

AWDP Top Level Design

Anton Verhoef, Jur Vogelzang, Jeroen Verspeek and Ad Stoffelen

KNMI, De Bilt, the Netherlands

< ECMWF

% P9 Royal Netherlands

43 Meteorological Institute
Ministry of Infrastructure and the
Environment

Met Office

METEO FRANCE
Toujours un temps d'avance

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.0.01
Date . February 2017

AWDP Top Level Design

KNMI, De Bilt, the Netherlands

This documentation was developed within the context of the EUMETSAT Satellite Application
Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated
29 June, 2011, between EUMETSAT and the Met Office, UK, by one or more partners within the
NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo France.

Copyright 2017, EUMETSAT, All Rights Reserved.

Change record

Version | Date Author / changed by | Remarks

1.0j Jun 2007 | Anton Verhoef First draft

1.0k Oct 2007 | Anton Verhoef Adapted for AWDP version 1.0k

1.0.13 Mar 2008 | Anton Verhoef Adapted for AWDP version 1.0.13

1.0.14 Oct 2008 | Anton Verhoef First version for external review

1.0.16 Dec 2008 | Anton Verhoef Modified according to DRI comments

1.1 Jan 2010 | Anton Verhoef Removed a few typo’s and corrected some of the

diagrams in the appendices for AWDP v1.1

2.0 Aug 2010 | Anton Verhoef Modified for AWDP v2.0; added section 3.5.3,
changed sections 2.3, 2.3.4, 2.4, Chapter 9 and
Appendix B4

2.0.01 Nov 2010 | Anton Verhoef Modified according to DRI comments

2.2 Jun 2013 Anton Verhoef Version for AWDP v2.2

2.3 Feb 2014 | Anton Verhoef Version for AWDP v2.3

2.4 Jun 2016 Anton Verhoef, Jur | Version for AWDP v2.4, split original UM into

Vogelzang UM, PS and TLD docs

3.0 Feb 2017 | Jur Vogelzang Version for AWDP v3.0

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.0.01
Date . February 2017

Contents
(010]\l I =1 (N 1T 1
1 INTRODUCTIONoiii ittt ettt ettt st sttt sb e et e et e e bt e et b e st e e s b e et beeaeeaeesaeesbessbeebeenbeantearee e 3
1.1 DESIGN DRIVERS ...oiiiiittiieietie e e iitteee s ittt e e aattteeesabaeaeabeeeeaasseeesasbeeaaasteeeeasseeesabbeeeaastseeesnseeaesbbeeeaasteeessnres 3
B 0] AV = Nt 1 (0] N J S OO PO OPPPRRRO 4
2 PROGRAM DESIGN ..ottt ettt ettt ettt e sttt sb e te e ts s assbe s sbe s ebe st e enbesbtesbaesreesaeesee s 5
2.1 TOP LEVEL DESIGN ...cciittiieiiiie ettt ettt e e ettt e ettt e e et e e e e ett e e e e sabe e e e s bbeeeastaeeesaaaeaeasbbeeeaseseeeasbaeeeanteeeens 5
22 0 R Y oY [o 0o | Ly ST 5
2.1.2 Layered MOEl SEIUCLUIEcveieiee et e sttt esaenaestesrennenneaneas 6
0 R T B T - U £ (0 (1 (=TSR 7
2.1.4 Quality flagging and error handling........ccccveoverereiiniesie e enes 8
T £ 4 oo T | 2SRRI 8
2.2 MODULE DESIGN FOR GENSCAT LAYER ...ccutiiiiiitiieeiitteeeeetteeestteeesatbeeeaassaeeesnsaeasasteeeesasssesssnsasessnseseesns 9
% N Y To T[] L= Ta V=Y 57T) o IO SO O PRSP 9
A Y (oL V] L0 1111 o] =1 21 RSSO O PRSP 9
2.2.3 MOAUIE ICEBMOUEL......viiiiii ittt be e st e e e be e s beeebe e e sbeeebeeesbeeebeeebeas 9
2.2.4 MOAUIE BUFIIMOMuveiiiiii ettt et ettt e et et a e e be e e be e e beeesbaeebeeesteas 9
2.2.5 Module gribio_ MOAUIE.........cooiie e e 10
P T U] o] oo o 1o Lo LU =TSP 10
2.3 MODULE DESIGN FOR PROCESS LAYERu0cittiitieiteetesstesteestesiteeitesisesssesssessesssssssesssesssesssessesssesssesssens 11
P22 T0 R Y oo (0] F== 1o [o = - S 11
2.3.2 Module @aWdp BUTT ..o e 17
P72 T T Y oo (0] F== 1o [R o S 18
P2 B Y oo (0] F= = 1o | 4 RSP 18
2.3.5 MOUUIE QWP _PIEPOSL.ttt bttt e bbbttt e st b et ebeebeene e 19
2.3.6 Module awdp_CalIDIALecoiieie e 20
2.3.7 MOCUIE @WAP_GFID .ttt e bbb e 21
2.3.8 Module @WdP_INVEISIONciiiiiiiiie ettt bbbttt sbe bbb be e 21
2.3.9 Module aWdp_amBIem.........oi o 22
2.3.10 Module awdp_ICEMOUENcciiiiiie e 22
pZ2C T8 T Y oo [0 = 1 | o RS 23
3 INVERSION MODULEooootiiiiieie ettt ettt sbe et st ae e sbe e sbeenbeenbestbesbaesbeesbeerens 24
3.1 BACKGROUND......ccttitiitieiteeiteeiteeiteeiteseeateeabeeabeabeasbesssesbeesbaesbeebessbesaseabesabeeabeeabeenbesssesbsesbeesbeesbenseeas 24
3.2 ROUTINES ..utiittiiteeteeteetteeteesteesteetaesaesaeesbeeabeeabeeabeesbesabesbeesbeesba e beesbesaeeateeabeeabeenbeenbeeasesbbesbeesbeesbenseenn 24
3.3 ANTENNA DIRECTIONutiitieiteeiteeiteetesseeaseeaseesseeseassesssesssesssssssessesssssssssssssesssssssesssesssesssessesssesssessenns 26
4 AMBIGUITY REMOVAL MODULEcci ittt sttt 27
4.1 AMBIGUITY REMOVALuviiiiiiiii ettt e ettt e ettt e e et e e et e e e e tte e e e sabe e e e s bbeeeeaateeeesabeeeessbbeeesnseeeeennes 27
4.2 IMIODULE AMBREM......uiiiiittiie e ettt e e eettteeesateeeeatteeeaesteeeasabeeeeabbeeeaaseseeesabeeaeasbbeeeaassseessabeeaessteeeeansseeeesnnns 27
4.3 MODULE BATCHMODottt ettt ettt ettt ettt e et e e e s abe e e e s bbe e e e eateeeesabeeaessbbeeeaanteeeesnnns 28
4.4 THE KNMI 2DVAR SCHEMEcciiitiiiiittee e ettt e eettte e e et e e s itte e e aetta e e e sabeeaeatbeeeaastseesaabseeesteeeeaasseeesannns 31
o 101 4 oo [V T £ o o [PPSR RRRPRRRUP 31
4.4.2 Data structure, interface and initialiSation.............cccoceeiiiii i 31
4,43 Reformulation and transformation...........cccceeieiii i 33
4,44 MOAUIE COSTFUNCLION.ccviiiti ittt ettt sttt ebe b e e eab e st e e st e e sbeesbeebesnresneesbeeebeeanas 34
Y X | o1 o 11 120 T SRR 34

T 1 U ot (U= LU Tox ([TR 34

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

447 IMINIMIZATION ...ttt ettt e e e et e e s et e e s sab e e e s sabbe e e sabaseessbbeeesssbbesesabensessbbanssasbbnsens 35

4.4.8 SINGIEtONFFT _IMOUUIE ..ottt bbb 35

T I o = =07 W STo =1V | =S 36

5 MODULE ICEMODELMOD ...ttt ettt ettt e sae e s s evae e s s eatas s s savaee e s enaee s 37
LT R = 7N o1 (]2 (0 11 N o R 37
ST = (o T 1N =SS 38
5.3 DATA STRUCTURES ..ot itteeeeitie e e ittee e s itteeesasteesesaaeeesssaesesasteesessseessssbeeesasseseesbaeeessbbeeesasteesesrenessssrens 38

6 MODULE BUFRMOND ...ttt ettt e e ettee s et e s et e s e sbte s e s saaeeessbbeesssaesessnbenessneeeas 40
L N = 7Y 120 U] N o S OO 40
LI = (01U 1 [N =TT 40
5.3 DATA STRUCTUREScciiiittttittiee s ieitbttie e s e e st e ib b e et s e e st e sbb b e e s s e s e s s s bbb bt eeeessssasb bbb e s e sesssasbbbbaeseeessabbbbaseseeas 42
L I 1 =1 7Y = | =SSR 43
6.5 BUFR TABLE ROUTINES .. .uttiiiiiiiiiiiitiittieesiiistbesssesssesistbssssessssissbbssssessssisssbssssssessiassbssesseessssssssresssess 44
6.6 CENTRE SPECIFIC MODULEScictviieiitteieeetteeeseteeeesstaeeesssteessssssessssseeesassessssbesssssssesesassessssreeesssssenes 44

7 MODULE GRIBIO_IMODULEcoiiiiiieieeeese ettt te s ettt ae e sneenneennas 45
A R = 7N o1 (]2 (0 11N o R 45
A = (o T 1NN 45
7.3 DATA STRUCTURES ..ot itteeeeitie e e ettee e s etteeesasteesesaaeessssaesesasteesesbseeesasbeeesasbeesesbaeeessbbeeesasteesesreeessssrens 47
A TN [=1 7 = | =1 R 48
REFERENGCESottt ettt e e ettt e s ettt e e e e et e e s eb b e e e s abta e s s sabae e s s b baeessbaesssabeeaesabbaessbeasessarns 49
APPENDIX A: CALLING TREE FOR AWDP.......ooo ittt ettt 51
APPENDIX B1l: CALLING TREE FOR INVERSION ROUTINES.......cooi i 62
APPENDIX B2: CALLING TREE FOR AR ROUTINES ..ottt 64
APPENDIX B3: CALLING TREE FOR BUFR ROUTINESoooiie ettt 68
APPENDIX B4: CALLING TREE FOR GRIB ROUTINESooiiiie et 70
APPENDIX B5: CALLING TREE FOR PFS ROUTINES. ...ttt 72
APPENDIX B6: CALLING TREE FOR ASCAT-5.6 ROUTINES ..o 75
APPENDIX B7: CALLING TREE FOR ICE MODEL ROUTINES.......cccc oo 76
APPENDIX C: ACRONYMS ...ttt ettt e ettt e e e e e e s sab e e s st e e s saba e e e s sabeeessatteeeenreeessnres 77

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

1 Introduction

The ASCAT Wind Data Processor (AWDP) is a software package mainly written in Fortran 90
with some parts in C for handling data from the Advanced Scatterometer (ASCAT) and European
Remote Sensing satellite (ERS) scatterometer instruments. This document is the Top Level Design
(TLD) of the AWDP software package and it also contains the Module Design. Section 2 provides
information on the general design of the AWDP software. Section 3 and further provide
information on the individual modules that are part of AWDP.

More information about AWDP can be found in several other documents. The User Manual and
Reference Guide (UM) [1] contains more details about the installation and use of the AWDP
package. The Product Specification (PS) [2] provides information on the purpose, outputs, inputs,
system requirements and functionality of the AWDP software. Reading the UM and the PS should
provide sufficient information to the user who wants to apply the AWDP program as a black box.
This TLD document is of interest to developers and users who need more specific information on
how the processing is done.

Please note that any questions or problems regarding the installation or use of AWDP can be
addressed at the NWP SAF helpdesk at http://nwpsaf.eu/.

1.1 Design drivers

A user requirements assessment is performed to verify the user requirement for the improvements
available in the new version. AWDP users from NOAA, MetNo, IPMA, the OSI SAF and many
others require optimised spatial resolution for depicting mesoscale flow characteristics in
dynamical conditions, such as near moist convection, polar lows, tropical hurricanes, or low-level
coastal jets. Moreover, through the OSI SAF and CMEMS products, these improvements allow
ocean forcing (studies) on the ocean eddy scale. The improved ASCAT spatial resolution product
(true spatial resolution 19 km), posted at an irregular grid of 5.6 km has been brought forward
from CDOP-3 planned work on spatial resolution improvements. The improvement in spatial
representation of the AWDP furthermore includes better 2D Variational Ambiguity Removal
(2DVAR) by exploiting Numerical Structure Functions in 2DVAR. This follows results of an
Associate Scientist mission by Wenming Lin, ICM, which shows NSF to be more valuable than
originally anticipated.

AWDP users from ECMWF (also C3S), NOAA, NASA and others stressed the relevance and
appreciation of the improvements to AWDP for their requirements on the intercalibration with
other scatterometers, notably the ESA ERS scatterometers, which AWDP now supports. This
allows the production of consistent long-term Climate Data Records (CDR) since 1991 of ocean
vector winds and wind stresses, an Essential Climate Variable (ECV), which is a high user
priority. A consistent ocean wind vector climatology is essential in depicting any changes in air-
sea interaction over 71% of the earth’s surface.

http://nwpsaf.eu/

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Another high user priority is an improved coastal processing, but this depends on the provision of
the EUMETSAT L1B land contributions flag, and has not been made available yet. This
development is being incorporated into spatial resolution improvements planned for CDOP-3.

1.2 Conventions

Names of physical quantities (e.g., wind speed components u and v), modules (e.g. BufrMod),
subroutines and identifiers are printed italic.

Names of directories and subdirectories (e.g. awdp/src), files (e.g. awdp.F90), and
commands (e.g. awdp -F input) are printed in Courier. Software systems in general are
addressed using the normal font (e.g. AWDP, genscat).

Hyperlinks are printed in blue and underlined (e.g. http://www.knmi.nl/scatterometer/).

Numbers between square brackets refer to references (e.g. [3]).

http://www.knmi.nl/scatterometer/

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

2 Program Design

In this chapter, the design of the AWDP software package is described in detail. Readers to whom
only a summary will suffice are referred to the Top Level Design (TLD) in section 4.1. Readers
who really want to know the very detail should not only read the complete chapter, but also the
documentation within the code. Some more detailed information is also given in the NWPSAF
Technical Reports listed in the references.

2.1 Top Level Design

211 Main program

The main program, AWDP, (file awdp in the awdp/src directory) is a Unix (Linux) executable
which processes ASCAT BUFR, ASCAT PFS, or ERS BUFR input files. The main output
consists of BUFR files. The output BUFR messages are always in the ASCAT BUFR format, for a
list of descriptors see appendix A in the Product Specification [2]. The user may provide
arguments and parameters according to Unix command line standards. The purpose of the different
options is described in the User Manual [1].

When executed, AWDP logs information on the standard output. The detail of this information
may be set with the verbosity flag. The baseline of processing is shown in Figure 2.1, but note that
not all of these steps are always invoked. Some of them may be skipped, depending on the
command line options supplied to AWDP. A more detailed representation of the AWDP structure
is given in Appendices A and B.

The first step is to process the arguments given at the command line using the genscat
Compiler_Features module. Next, AWDP reads the input file specified in the arguments. The
BUFR messages or PFS records are read and mapped onto the AWDP data structure, see
subsection 2.1.3. As part of the pre-processing a similar AWDP data structure is created for the
output. Subsequently, the input data are sorted with respect to data acquisition time, duplicate rows
are merged and the output data structure is filled with level 1b (¢° related) data. Then, the NWP
GRIB data (wind forecasts, land-sea mask and sea surface temperature) are read and the data are
collocated with the Wind Vector Cells. The next steps are the inversion and the ambiguity
removal. These steps are performed on the output data. The program ends with the post-processing
step (which includes some conversions and the monitoring) and the mapping of the output data
structure onto BUFR messages of the BUFR output file. The different stages in the processing
correspond directly to specific modules of the code. These modules form the process layer, see
section 2.3.

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Process arguments

v

Read input data

v

Pre-processing

v

Read full resolution data

v

Read/collocate GRIB data

v

Inversion

v

Ice screening

v

Ambiguity Removal

v

Post-processing

Figure 2.1 Baseline of the ASCAT Wind Data Processor

2.1.2 Layered model structure

AWDP is a Fortran 90 software package consisting of several Fortran 90 modules which are linked
after their individual compilation. The AWDP software is set up from two layers of software
modules. The purpose of the layer structure is to divide the code into generic scatterometer
processing software and ASCAT specific software. Details on the individual modules can be found
in sections 2.2 and 2.3.

The first layer (the process layer) consists of modules which serve the main steps of the process.
Each module contains code for performing one or more of the specific tasks. These tasks are
briefly described in table 2.1. A more elaborate description is given in section 2.3. The first
module listed, awdp_data is a general support module. This module is used by the other modules
of the process layer for the inclusion of definitions of the data structures and the support routines.

The second module layer is the genscat layer. The genscat module classes (i.e., groups of modules)
used in the AWDP software package are listed in table 2.2. The genscat package is a set of generic
modules which can be used to assemble processors as well as pre, and post-processing tools for
different scatterometer instruments available to the user community. A short description of the
main (interface) modules is given in section 2.2. The most important classes of modules are related
to the inversion processing step (chapter 3), the Ambiguity Removal step (chapter 4), the BUFR
file handling (chapter 6), and the GRIB file handling (chapter 7). The genscat modules are located
in subdirectory genscat.

NWP SAF

AWDP Top Level Design

Doc ID : NWPSAF-KN-DS-004
Version : 3.0.01
Date . February 2017

Comments

Module name Tasks

awdp_data Definition of data structures
awdp_bufr BUFR file handling
awdp_pfs PFS file handling

awdp_szf Grid generation and PFS file

handling for ASCAT-5.6
Sorting of input

Quality control

Post processing
Monitoring

Clean up

Backscatter calibration
GRIB file handling
Collocation of GRIB data
Inversion

Ambiguity Removal

Ice screening

awdp_prepost

awdp_calibrate
awdp_grib

awdp_inversion
awdp_ambrem
awdp_icemodel

Interface to genscat/support/bufr
Interface to genscat/support/pfs
Interface to genscat/support/pfs

Duplicate rows are merged
Usability of input data is determined
Setting of flags

Deallocation of used memory

Interface to genscat/support/grib

NWP data are interpolated w.r.t. time and location
Interface to genscat/inversion

Interface to genscat/ambrem

Interface to genscat/icemodel

Table 2.1 AWDP process modules.

In addition, genscat contains a large support class to convert and transform meteorological,
geographical, and time data, to handle file access and error messages, sorting, and to perform more
complex numerical calculations on minimization and Fourier transformation. Many routines are
co-developed for ERS, ASCAT and SeaWinds data processing.

Module class Tasks Description
Ambrem Ambiguity Removal ~ 2DVAR and other schemes, see 4
Inversion Wind retrieval Inversion in one cell, see 3
IceModel Ice screening Uses ice line and wind cone for ice discrimination
Support BUFR support BufrMod, based on ECMWF library
PFS support Reading of PFS files; grid generation and ¢°

aggregation for ASCAT-5.6; reading of full
resolution data

gribio_module, based on ECMWEF library
Support for 2DVAR

Print error messages

GRIB support
FFT, minimization
Error handling

File handling Finding, opening and closing free file units
Conversion Conversion of meteorological quantities
Sorting Sorting of ambiguities to their probability

Date and time General purpose

Table 2.2 genscat module classes.

2.1.3 Data Structure

Along track, the ASCAT swath is divided into rows. Within a row (across track), the ASCAT orbit
is divided into cells, also called Wind Vector Cells (WVCs) or nodes. This division in rows and
cells forms the basis of the main data structures within the AWDP package. In fact, both the input
and the output structure are one dimensional arrays of the row data structure, row_type. These
arrays represent just a part of the swath. Reading and writing (decoding and encoding) ASCAT
BUFR files corresponds to the mapping of a BUFR message to an instance of the row_type and

] DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.0.01
Date . February 2017
vice versa.

The main constituent of the row_type is the cell data structure, cell_type, see figure 2.2. Since most
of the processing is done on a cell-by-cell basis the cell_type is the pivot data structure of the
processor.

row_type

cell_type

beam_type

ambiguity_type

Figure 2.2 Schematic representation of the nested data definitions in the row_type data structure.

The o related level 1b data of a cell are stored in a data structure called beam_type. Every cell
contains three instances of the beam_type, corresponding to the fore, middle and aft beams.

A cell may also contain an array of instances of the ambiguity type data structure. This array
stores the results of a successful wind retrieval step, the wind ambiguities (level 2 data). Details of
all the data structures and methods working on them are described in the next sections.

214 Quality flagging and error handling

Important aspects of the data processing are to check the validity of the data and to check the data
guality. In AWDP two flags are set for every WVC, see table 2.3. The flags themselves do not
address a single aspect of the data, but the flags are composed of several bits each addressing a
specific aspect of the data. A bit is set to 0 (1) in case the data is valid (not valid) with respect to
the corresponding aspect. In order to enhance the readability of the code, each flag is translated to
a data type consisting of only booleans (false = valid, true = invalid). On input and output these
data types are converted to integer values by set and get routines.

Flag Tasks Description
wvc_quality Quality checking In BUFR output
process_flag Range checking Not in BUFR output

Table 2.3 Flags for every WVC (attributes of cell_type).

Apart from the flags on WVC level, also the beams contain quality indicators. Most of them are
implemented as real values ranging from 0 to 1, where 0 stands for good quality and 1 for
degraded quality. See section 2.3.1 for more information on this.

2.1.5 Verbosity

Every routine in a module may produce some data and statements for the log of the processor. To
control the size the log, several modules contain parameters for the level of verbosity. The
verbosity of AWDP may be controlled by the verbosity command line option -verbosity. In

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

general, there are three levels of verbosity specified:
<-1: be as quiet as possible;

0: only report top level processing information;
>1: report additional information.

Of course, errors are logged in any case. Table 2.4 gives a (incomplete) list of verbosity
parameters. They are not all set by the command line option as some of them serve testing and
debugging purposes.

Module Verbosity parameter
Ambrem2Dvar TDVverbosity
AmbremBGclosest BGverbosity
BatchMod BatchVerbosity
Ambrem AmbremVerbosity
awdp_bufr BufrVerbosity
awdp_grib GribVerbosity
awdp_icemodel dbgLevel

Table 2.4 Verbosity parameters.

2.2 Module design for genscat layer

2.2.1 Module inversion

The module inversion contains the genscat inversion code. Module post-inversion contains some
routines specific for ERS and ASCAT inversion and quality control. The modules are located in
subdirectory genscat/inversion. Details of this module are described in 3. In AWDP, the
inversion module is only used in the awdp_inversion module, see section 2.3.8.

2.2.2 Module ambrem

The module ambrem is the main module of the genscat Ambiguity Removal code. It is located in
subdirectory genscat/ambrem. Details of this module are described in 4. In AWDP, the
ambrem module is only used in the awdp_ambrem module, see section 2.3.9.

2.2.3 Module icemodel

The module icemodel contains the genscat ice screening code. It is located in subdirectory
genscat/icemodel. In AWDP, the icemodel module is only used in the awdp_icemodel
module, see section 2.3.10.

2.2.4 Module Bufrmod

Genscat contains several support modules. In particular, the BufrMod module is the Fortran 90
wrapper around the BUFR library used for BUFR input and output. It is located in subdirectory
genscat/support/bufr. Details of this module are described in 6. In AWDP, the BufrMod
module is only used in the awdp_bufr module, see subsection 2.3.2.

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

2.25 Module gribio_module

The gribio_module module is the Fortran 90 wrapper around the GRIB library used for GRIB
input and collocation of the NWP data with the scatterometer data. It is located in subdirectory
genscat/support/grib. Details of this module are described in 7. In AWDP, the
gribio_module module is used in the awdp_grib and awdp_pfs modules, see subsection 2.3.7.

2.2.6 Support modules

Subdirectory genscat/support contains more support modules besides Bufrmod and
gribio_module. The KNMI 2DVAR Ambiguity Removal method requires minimization of a cost
function and numerical Fourier transformation. These routines are located in subdirectories BFGS
and singletonfft, respectively, and are discussed in more detail in section 4.4.

Subdirectory Compi ler_Features contains module Compiler_Features for handling some
compiler specific issues, mainly with respect to command line argument handling. The
Makefi le in this directory compiles on of the available source files, depending on the Fortran
compiler used.

Subdirectory constants contains a small module constants with some mathematical and
physical constants.

Subdirectory convert contains module convert for the conversion of meteorological and
geographical quantities, e.g. the conversion of wind speed and direction into u and v components
and vice versa.

Subdirectory datetime contains module DateTimeMod for date and time conversions. AWDP
only uses routines GetElapsedSystemTime (for calculating the running time of the various
processing steps), and julian2ymd and ymd2julian (for conversion between Julian day number and
day, month and year). Module DateTimeMod needs modules ErrorHandler and numerics.

Subdirectory ErrorHandler contains module ErrorHandler for error management. This
module is needed by module DateTimeMod.

Subdirectory file contains module LunManager for finding, opening and closing free logical
units in Fortran. AWDP uses only routines get lun and free_lun for opening and closing of a
logical unit, respectively.

Subdirectory num contains module numerics for defining data types and handling missing values,
for instance in the BUFR library. This module is needed by many other modules.

Subdirectory pfs contains modules pfs_ascat and szf_ascat for opening, reading and closing of
files in PFS format. Further, szf_ascat contains routines for generating a grid of wind vector cells
synchronised to the ASCAT mid beam pulse pattern and calculating the average radar cross
sections (aggregation) for the ASCAT-5.6 product [3].

Subdirectory sort, contains module SortMod for sorting the rows according to their acquisition
date and time, or the wind vector solutions according to their probability.

Subdirectory stringtools, finally, contains module StringTools for handling character strings.

10

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

2.3 Module design for process layer

The process layer consists of the modules awdp data, awdp_bufr, awdp_pfs, awdp_szf,
awdp_prepost, awdp_calibrate, awdp_grib, awdp_inversion, awdp_icemodel and awdp_ambrem.
The routines present in these modules are described in the next sections.

2.3.1 Module awdp_data

The module awdp_data contains all the important data types relevant for the processing.
Elementary data types are introduced for the most basic data structures of the processing. These
are e.g. wind_type and time_type. Using these data types (and of course the standard types as
integer, real etc.), more complex (composed) data types are derived. Examples are beam_type,
ambiguity_type, cell_type, and row_type. A complete description of all types is given below. The
attributes of all these types have intentionally self-documenting names.

Ambiguity data: The ambiguity type data type contains information on an individual ambiguity
(wind vector solution). The attributes are listed in table 2.5. The routine init_ambiguity() sets all
ambiguity data to missing. The routine print_ambiguity() may be used to print all ambiguity data.

Attribute Type Description

wind wind_type Wind vector solution

prob real Probability of wind vector solution
conedistance real Distance of solution to the GMF

Table 2.5 Ambiguity data structure.

Beam data: Every WVC contains three beams. The information of every beam is stored in the
data type beam_type. The attributes are listed in table 2.6. Most of the attributes are explained in
detail in [4]. The routine init_beam() sets all beam data to missing and the routine test_beam
checks if the data in the beam are within valid ranges. The routine print_beam() may be used to
print all beam data.

Attribute Type Description

identifier integer Beam number: 1 = fore, 2 = mid, 3 = aft

incidence real Incidence angle (degrees, 0 is vertical, 90 is horizontal)
azimuth real Radar look angle (degrees, counted clockwise from the south)
sigma0 real Radar backscatter (¢°) in dB

noise_val real Noise value in %

kp_estim_qual kp_estim_qual_type Flag related to the quality of the Kp estimate
s0_usability integer Usability of ¢ 0 = good, 1 = usable, 2 = bad
synt_data_quantity real Amount of synthetic data in o° (0..1)

synt_data_quality real Quality of used synthetic data in ¢° (0..1)

orbit_quality real Satellite orbit and attitude quality (0..1)

solar_reflec real Solar array reflection contamination in ¢° (0..1)
telemetry real Telemetry quality (0..1)

land_frac real Land fraction in ¢ (0..1)

sigma0_corr real Correction applied to o° from NOC or other corrections

Table 2.6 Beam data structure.

11

_ DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.0.01
Date . February 2017

Cell Data: The cell_type data type is a key data type in AWDP, because many processing steps are
done on a cell by cell basis. The attributes are listed in table 2.7. The routine init_cell() sets the cell
data to missing values. Also the flags are set to missing. The routine test_cell() tests the validity of
data. This routine sets the cell process flag. The routine print_cell() may be used to print the cell
data.

Attribute Type Description

centre_id integer Identification of originating/generating centre
sub_centre_id integer Identification of originating/generating sub-centre
software_id_I1b integer Software identification of level 1 processor
satellite_id integer Satellite identifier

sat_instruments integer Satellite instrument identifier

sat_motion real Direction of motion of satellite

time time_type Date and time of data acquisition

lat real Latitude of WVC

lon real Longitude of WVC

pixel_size_hor real Distance between WV Cs (meters)

orbit_nr integer Orbit number

node_nr integer Across track cell number

height_atmosphere real Height of atmosphere used

loss_unit_lenght real Loss per unit length of atmosphere

beam_collocation

beam_collocation_type

Beam collocation flag

beam (3) beam_type Beam data

full_res full_res_type Averaged full resolution data
software_id_sm integer Soil moisture information

database_id integer Soil moisture information

surface_sm real Soil moisture information
surface_sm_err real Soil moisture information

sigma0_40 real Soil moisture information

sigma0_40_err real Soil moisture information

slope_40 real Soil moisture information

slope_40_err real Soil moisture information

sm_sensitivity real Soil moisture information
dry_backscatter real Soil moisture information
wet_backscatter real Soil moisture information
mean_surface_sm real Soil moisture information
rain_fall_detect real Soil moisture information

sm_corr_flag integer Soil moisture information

sm_proc_flag integer Soil moisture information

sm_quality real Soil moisture information

snow_cov_frac real Soil moisture information

froz_land_frac real Soil moisture information

inund_wet frac real Soil moisture information
topo_complexity real Soil moisture information
software_id_wind integer Software identification of level 2 wind processor
generating_app integer Generating application of model information
model_wind wind_type Model wind used for Ambiguity Removal
ice_prob real Probability of ice

ice_age real Ice age A-parameter

wvc_quality wvc_quality type WVC quality flag

num_ambigs integer Number of ambiguities present in WVC
selection integer Index of selected wind vector

skill real Parameter used for PreScat Ambiguity Removal

ambig (0..144)
ice

ambiguity_type
icemodel_type

Array of wind ambiguities
Ice information

12

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Attribute Type Description
stress_param nwp_stress param_type Wind stress information
process_flag process_flag_type Processing flag
level of input integer Level of input data (1 or 2)

Table 2.7 Cell data structure.

All soil moisture information is read from the input BUFR file into the cell data structure and not
used within the program. It is written to the output BUFR file at the end of the processing.

Full resolution data: The full_res_type contains average full resolution data, read from a PFS file,
which are used to replace the 25-km or 12.5-km beam data. The attributes are listed in table 2.8.
The routine init_full_res() sets the full resolution averaged data to zero. The routine
print_full_res() may be used to print the full resolution data.

Attribute Type Description

count_tot integer Number of full res measurements used
lat real Mean value of full res lats

lon real Mean value of full res lons
count_fore integer Number of full res fore beams used
incidence_fore real Mean value of full res values
azimuth_fore real Mean value of full res values
sigma0_fore real Mean value of full res values
sigma0_sq_fore real Sum of squares

land_frac fore real Mean value of full res values
count_mid integer Number of full res mid beams used
incidence_mid real Mean value of full res values
azimuth_mid real Mean value of full res values
sigma0_mid real Mean value of full res values
sigma0_sq_mid real Sum of squares

land_frac_mid real Mean value of full res values
count_aft integer Number of full res aft beams used
incidence_aft real Mean value of full res values
azimuth_aft real Mean value of full res values
sigma0_aft real Mean value of full res values
sigma0_sq_aft real Sum of squares

land_frac_aft real Mean value of full res values

Table 2.8 Full res data structure.

Ice model data: The icemodel_type contains information related to the ice screening. The
attributes are listed in table 2.9. The routine init_icemodel() sets the ice model data to missing
values. The routine print_icemodel() may be used to print the ice data.

Attribute Type Description
class integer Code for WVC being ice or wind
ii integer Coordinate on the ice map

il integer Coordinate on the ice map
a real Ice coordinate
b real Ice coordinate
c real Ice coordinate

13

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Attribute Type Description
dice real Distance to the ice line
wind_sol integer Wind solution to be used

Table 2.9 Ice model data structure.

NWP stress parameter data: The nwp_stress_param_type data type contains information
relevant for the ice screening and wind stress calculations (stress calculation is not yet
implemented in AWDP). The attributes are listed in table 2.10. The routine
init_nwp_stress_param() sets the NWP stress parameter data to missing values. The routine
print_nwp_stress_param () may be used to print the stress data.

Attribute Type Description

u real Eastward (zonal) wind component

v real Northward (meridional) wind component
t real Air temperature

q real Specific humidity

sst real Sea surface temperature

chnk real Charnok parameter

sp real Surface pressure

Table 2.10 NWP stress parameter data structure.

Row data: The data of a complete row of the swath is stored in the data type row_type, see table
2.11. A complete row corresponds to a single BUFR message in the AWDP output. The level 1
BUFR data may contain more than one row per BUFR message.

Attribute Type Description

time_stamp integer Time stamp of row data in seconds, used for sorting
num_cells integer Actual number of WVC’s

Cell(82) cell type Array of Wind Vector Cells

Table 2.11 Row data structure.

Time data: The time_type data type contains a set of 6 integers representing both the date and the
time, see table 2.12. The routine init_time() sets the time entries to missing values. The routine
test_time() tests the validity of the date and time specification (see also the cell process flag). The
routine print_time() can be used to print the time information.

Attribute Type Description

year integer 19XX or 20XX
month integer 1-12
day integer 1-31
hour integer 0-23
minute integer 0-59
second integer 0-59

Table 2.12 Time data structure.

14

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Wind Data: The wind_type data type contains the wind speed and wind direction, see table 2.13.
The routine init_wind() sets the wind vector to missing. The routine print_wind() may be used to
print the wind vector. The routine test_wind() tests the validity of the wind specification, see also
the cell process flag.

Attribute Type Description
speed real Wind speed
dir real Wind direction

Table 2.13 Wind data structure.

Some special data types are introduced for the data (quality) flags. These are discussed below.

Beam collocation flag: The beam_collocation_type data type is used to indicate whether data of
the three beams is originating from a single ground station or from multiple ground stations
(collocated data). This is relevant for so-called direct readout data from different ground stations
which maybe merged into one single product. In a WVC, e.g. the fore beam information from one
ground station may be combined with the mid and aft beam information from another ground
station, in order to make a complete WVC. The attributes are listed in table 2.14. The routine
get_beam_collocation() converts an integer value to the logical beam collocation structure. The
routine set_beam_collocation () converts a logical beam collocation structure to an integer value.

Attribute Bit 2°" Description
missing Flag not set (all bits on)
collocation 0 1 Beam information originates from different ground stations

Table 2.14 Beam collocation flag bits.

K, estimate quality flag: The kp_estim_qual_type data type contains the flag indicating the
quality of the K, estimate. Each one of the three beams in a WVC contain an instance of this flag.
The attributes are listed in table 2.15. The function get_kp_estim_qual() interprets an integer flag
(BUFR input) to an instance of kp_estim_qual_type. The function set_kp_estim_qual() transforms
an instance of kp_estim_qual_type to an integer flag.

Attribute Bit 2°" Description
missing Flag not set (all bits on)
estim_qual 0 1 Inferior quality of K, estimate

Table 2.15 K, estimate quality flag bits (Fortran).

Wind Vector Cell quality flag: Every WVC contains a flag for its quality. Therefore the cell_type
contains an instance of the wvc_quality_type. Table 2.16 gives an overview of its attributes. The
function get wvc_quality() interprets an integer flag (BUFR input) to an instance of
wvc_quality_type. The function get_wvc_quality() transforms an instance of wvc_quality_type to
an integer flag. The routine print_wvc_quality() may be used to print the bit values of the flag.

15

Doc ID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design Version : 3.0.01
Date . February 2017
Attribute Bit 25" Description
missing Flag not set (all bits on)
qual_sigma0 22 4194304 Not enough good ¢ ° available for wind retrieval
azimuth 21 2097152 Poor azimuth diversity among ¢°
kp 20 1048576 Any beam noise content above threshold
monflag 19 524288 Product monitoring not used
monvalue 18 262144 Product monitoring flag
knmi_qc 17 131072 KNMI quality control fails
var_qc 16 65536 Variational quality control fails
land 15 32768 Some portion of wind vector cell is over land
ice 14 16384 Some portion of wind vector cell is over ice
inversion 13 8192 Wind inversion not successful
large 12 4096 Reported wind speed is greater than 30 m/s
small 11 2048 Reported wind speed is less than or equal to 3 m/s
rain_fail 10 1024 Rain flag not calculated
rain_detect 9 512 Rain detected
no_background 8 256 No meteorological background used
redundant 7 128 Data are redundant
gmf distance 6 64 Distance to GMF too large

Table 2.16 Wind Vector Cell quality flag bits (Fortran).

Cell process flag: Besides a cell quality flag, every WV C contains a process flag. The process flag
checks on aspects that are important for a proper processing, but are not available as a check in the
cell quality flag. The cell process flag is set by the routine test_cell, which calls routines test_time,
test_beam and test_wind.

Table 2.17 lists the attributes of the process_flag_type. The process flag is only available internally
in AWDP. The routine print_process_flag() may be used to print the bit values of the flag.

Attribute

Description

satellite_id

sat_instruments

sat_motion
time
latlon

pixel_size_hor

node_nr
beam (3)
model_wind
ambiguity
selection

Invalid satellite id

Invalid satellite instrument id
Invalid satellite direction of motion
Invalid date or time specification
Invalid latitude or longitude
Invalid cell spacing

Invalid across track cell number
Invalid data in one of the beams
Invalid background wind

Invalid ambiguities

Invalid wind selection

Table 2.17 Cell process flag bits (Fortran).

Table 2.18 provides an overview of all routines and their calls in module awdp_data.

Routine Call Description

copy_cell Copy all information from one cell into another
get_beam_collocation init_cell Convert integer beam collocation to logical structure
get_kp_estim_qual init_beam Convert integer K, estimate quality to logical structure
get wvc_quality init_cell Convert integer WVC quality to logical structure

16

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design Version : 3.0.01
Date . February 2017
Routine Call Description
init_ambiguity Initialise ambiguity structure
init_beam init_cell Initialise beam structure
init_cell Initialise cell structure
init_full_res init_cell Initialise full resolution structure
init_icemodel init_cell Initialise ice model structure
init_nwp_stress_param init_cell Initialise NWP stress parameters structure
init_process_flag init_cell Initialise process flag structure
init_time init_cell Initialise time structure
init_wind init_cell Initialise wind structure
print_ambiguity Print ambiguity structure
print_beam Print beam structure
print_cell Print cell structure
print_full_res Print full resolution structure
print_icemodel Print ice model structure
print_nwp_stress_param Print NWP stress parameters structure
print_process_flag Print process flag structure
print_time Print time structure
print_wind Print wind structure
print_wvc_quality Print quality flag structure
set_beam_collocation Convert logical beam collocation to integer
set_knmi_flag Sets/unsets KNMI QC flag depending on other flag settings
set_kp_estim_qual Convert logical K, estimate quality to integer
set_ wvc_quality Convert logical WVC quality to integer
test_beam test cell Test validity of beam data
test_cell Test validity of cell data
test_time test cell Test validity of time data
test wind test cell Test validity of wind data
Table 2.18 Routines in module awdp_data
2.3.2 Module awdp_bufr

The module awdp_bufr maps the AWDP data structure on BUFR messages and vice versa. A list
of the BUFR data descriptors can be found in appendix C. Satellite and instrument identifiers are
listed in tables 2.19 and 2.20. Note that the first Metop mission is Metop 2, which is also known as
Metop A. The awdp_bufr module uses the genscat module BufrMod, see subsection 2.2.3 for the
interface with the BUFR routine library.

Satellite Value
ERS-1 1
ERS-2 2
Metop 1 = Metop B 3
Metop 2 = Metop A 4
Metop 3 = Metop C 5

Table 2.19 BUFR satellite identifiers.

Instrument Parameter Value
AMI/scatt sat_instr_ers 142
ASCAT sat_instr_ascat 190

Table 2.20 BUFR instrument identifiers.

17

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Table 2.21 provides an overview of the different routines and their calls in this module. The
genscat support routines ymd2julian() and julian2ymd() are used to provide each row in AWDP
with a date/time stamp that can be used for sorting easily.

Routine Call Description
ascat_bufr_to_row_data read_bufr_file ASCAT BUFR message into one or more row_types
ers_bufr_to_row_data read_bufr_file ERS BUFR message into 19 row_types
init_bufr_processing read_bufr_file, Initialise module

write_bufr_file
read_bufr_file AWDP Read a complete BUFR file into row_types
row_to_bufr_data write_bufr_file AWDP row_type into ASCAT BUFR message
write_bufr_file AWDP Write all row_types into a complete BUFR file

Table 2.21 Routines in module awdp_bufr

Note that the acquisition date and time of ERS data are modified when they are read in routine
ers_bufr_to_row_data. An ERS BUFR message contains 19 rows of data which all have the same
date and time of acquisition. This would cause problems in AWDP when the rows are sorted with
respect to the acquisition date and time. Therefore, the date and time of each ERS row are
recalculated assuming that the 10" (middle) row of the ERS BUFR message contains the ‘true’
acquisition time and that subsequent rows are 3.766 seconds apart. The time corrections are
rounded to an integer number of seconds. Hence, in the first row, 34 seconds are subtracted from
the acquisition time, in the second row 30 seconds, et cetera, until in the last (19™) row, 34 seconds
are added to the acquisition time.

2.3.3 Module awdp_pfs

The module awdp_pfs maps the records in a PFS file on the AWDP data structure. It also contains
a routine to read in a full resolution PFS file and use the data to calculate averaged beam data
which are used to replace 25/12.5/6.25-km row data.

Table 2.22 provides an overview of the different routines and their calls in this module. Several
routines from the pfs_ascat module in genscat are called from this module to handle the PFS data.
Appendix B5 shows the calling trees of the routines in module pfs_ascat that are used in AWDP.

Routine Call Description

ascat_pfs to row data read pfs file ~ ASCAT PFS record into one row_type
read_full_res data AWDP Read full resolution PFS data and replace beam data
read pfs file AWDP Read a complete PFS level 1b file into row_types

Table 2.22 Routines in module awdp_pfs

2.34 Module awdp_szf

The module awdp_szf is needed for processing on a 5.65 km grid (ASCAT-5.6 product). It
reads the records in a PFS file into an instance of the SZF_Type struct which is defined
in the genscat module szf_ascat. It also reads from file an aggregation table containing the
information which full resolution measurements contribute to a certain WVC. The module
calculates the average radar cross sections very efficiently and stores them in the AWDP

18

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

data structure.

Table 2.23 provides an overview of the different routines and their calls in this module. Several
routines from the szf_ascat module in genscat are called from this module to handle the PFS data.
Appendix B6 shows the calling trees of the routines in module szf_ascat that are used in AWDP.

Routine Call Description

read_and_aggregate szf data ~ AWDP Read PFS data and aggregation table;
generate grid and calculate average
o°.

find_szf files read_and_aggregate szf data Find full resolution files needed

set GRIB_land_sea mask read_and_aggregate szf data Set land/sea mask as long as this is
not included in the PFS data.

init_cell_data read_and_aggregate_szf data Set some other data in AWDP data
structure

get_offsets read_and_aggregate_szf data Calculate libration correction

aggregate read_and_aggregate_szf data Perform ¢° aggregation

update_szf_correlation_sum aggregate Update K, calculation

Table 2.23 Routines in module awdp_szf

2.35 Module awdp_prepost

Module awdp_prepost contains the routines to do all the pre and post processing. Pre processing
consists of the procedures between the reading of the BUFR input and the wind retrieval for the
output product. This includes sorting and merging, and assessments of the quality of the input data.
Post processing consists of the procedure between the ambiguity removal step and the BUFR
encoding of the output. The post processing includes the monitoring of the wind data and the
setting of some of the flags in the output product.

Routine Call Description

merge_rows preprocess Merge the data of two input rows

monitoring postprocess Monitoring

postprocess AWDP Main routine of the post processing
pre_inversion_gc preprocess Perform quality checks on input data
preprocess AWDP Main routine of the pre processing
process_cleanup AWDP Memory management

write_binary_output postprocess Write WVC data to a binary output file
write_properties postprocess Write some properties of the data into a text file

Table 2.24 Routines of module awdp_prepost.

Table 2.24 lists the tasks of the individual routines. AWDP calls preprocess() to sort the rows with
respect to the acquisition data and time. It also checks on the appearance of double rows, that is,
rows which are less than half the nominal cell distance (pixel size on horizontal in the input data)
apart. If preprocess() finds a double row it merges the two rows into one row. In that case the
number of input rows will be reduced. Once the input rows are sorted and merged, an output row
structure is allocated ant the input data are copied into the output rows.

The routine pre_inversion_qc() which is called by preprocess() performs land flagging and checks

19

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

the setting of flags in the level 1b beam information. If the input data is of inferior quality, the
qual_sigmaoO flag in the wvc_quality is set, which prevents further processing of this WVC. Also
the land fractions present in the beam information in the level 1b product are considered: if any
land fraction in the fore, mid or aft beam exceeds 0.02, the qual_sigmaO flag in wvc_quality is set,
as well. The land flag in wvc_quality is set whenever any level 1b land fraction is above zero.

Parameter Description

observation Number of Wind Vector Cells in output = N1

land Fraction of WVCs with land flag set

ice Fraction of WVCs with ice flag set

background Fraction of WVCs containing model winds

backscatter_info Fraction of WVCs containing sufficient valid ¢°’s for inversion =N2
knmi_flag Ratio number of WVCs with KNMI QC flag set / N2

wind_retrieval Fraction of N2 that actually contains wind solutions = N3

wind_selection Fraction of N3 that actually contains a wind selection = N4

big_mle Number of WV Cs containing a wind solution but no MLE value

avg_mle Averaged (over N4) MLE value of 1% wind selection

var_qc Fraction of N4 that has the Variational QC flag set

rank_1_skill Fraction of N4 where the first wind solution is the chosen one
avg_wspd_diff Averaged (over N4) difference between observed and model wind speeds
rms_diff_wspd RMS (over N4) difference between observed and model wind speeds
wspd_ge 4 Fraction of N4 where the selected wind speed is > 4 m/s = N5

rms_diff_dir RMS (over N5) difference between observed and model wind directions
rms_diff u RMS (over N5) difference between observed and model wind u components
rms_diff v RMS (over N5) difference between observed and model wind v components
rms_diff vec_len RMS (over N5) vector length between observed and model winds
ambiguity Fraction of N5 where the chosen solution is not the one closest to the model wind

Table 2.25 Parameters in monitoring output.

The monitoring, which is performed as part of the post processing, calculates some statistics from
the wind product and writes them to an ASCII file called monitoring_report.txt. The monitoring
parameters are listed in table 2.25. They are calculated separately for three different regions of
each swath (left and right). Note that the monitoring is invoked only if the -mon command line
option is set.

2.3.6 Module awdp_calibrate

The module awdp_calibrate performs the calibration of the ¢”s in routine calibrate_sO.
Calibration coefficients for each level 1 processing version and instrument (ASCAT on Metop A
or Metop B) have been obtained using the so-called NWP Ocean Calibration (NOC). Note that the
calibration is done again in the reverse order after the post processing in order to write the ¢%’s to
output as plain copies of the input ¢%’s. More information about the calibration can be found in

[5].

Routine Call Description

calibrate_s0 AWDP Perform forward or backward backscatter calibration

correct_noc calibrate_sO Apply ocean calibration, depending on satellite and GMF
correct_I1b calibrate_sO Bring the calibration of historic ¢°’s back to the reference version

interpolate_corr 42 82 correct noc Interpolate a o° correction table for 42 WVCs into one for 82

20

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Routine Call Description

correct_I1b WVCs
interpolate_corr_82 162 correct_noc Interpolate a o° correction table for 82 WVCs into one for 162
correct_I1b WVCs

Table 2.26 Routines in module awdp_calibrate

2.3.7 Module awdp_grib

The module awdp_grib reads in ECMWF GRIB files and collocates the model data with the
scatterometer measurements. The awdp_grib module uses the genscat module gribio_module, see
subsection 2.2.5 for the interface with the GRIB routine library.

Table 2.27 provides an overview of the routines and their calls in this module. The genscat support
routines uv_to_speed() and uv_to_dir() are used to convert NWP wind components into wind
speed and direction.

Routine Call Description
get_grib_data AWDP Get land mask, ice mask and background winds using GRIB data
init_grib_processing get grib_data Initialise module

Table 2.27 Routines in module awdp_grib

NWP model sea surface temperature and land-sea mask data are used to provide information about
possible ice or land presence in the WVCs. WVCs with a sea surface temperature below 272.16 K
(-1.0 °C) are assumed to be covered with ice and the ice and qual_sigma0 flags in wvc_quality are
set. Note that this step is omitted if the Bayesian ice screening is used; see section 2.3.10. In this
case, sea surface temperature information from GRIB will still be used if it is present to support
the ice screening. When the sea surface temperature is above 278.15 K (+5.0 °C), the WVC will be
assumed to contain no ice.

Land presence within each WVC is determined using the land-sea mask available from the model
data. The weighted mean value of the land fractions of all model grid points within 80 km of the
WV C centre is calculated and if this mean value exceeds a threshold of 0.02, the qual_sigma0 flag
in wvc_quality is set. The land flag in wvc_quality is set if the calculated land fraction is above
zero.

NWP forecast wind data are necessary in the ambiguity removal step of the processing. Wind
forecasts with forecast time steps of +3h, +6h, ..., +36h can be read in. The model wind data are
linearly interpolated with respect to time and location and put into the model_wind part of each
WVC.

2.3.8 Module awdp_inversion

Module awdp_inversion serves the inversion step in the wind retrieval. The inversion step is done
cell by cell. The actual inversion algorithm is implemented in the genscat modules inversion and
post_inversion, see subsection 2.2.1. Table 2.28 provides an overview of the routines and their
calls in this module.

21

Doc ID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.0.01
Date . February 2017
Routine Call Description
init_inversion invert_wvcs Initialisation
invert_node invert wvcs Call to the genscat inversion routines
invert_wvcs AWDP Loop over all WVCs and perform inversion

Table 2.28 Routines of module awdp_inversion.

2.3.9 Module awdp_ambrem

Module awdp_ambrem controls the ambiguity removal step of AWDP. The actual ambiguity
removal schemes are implemented in the genscat module ambrem, see section 2.2.2. The default
method is the KNMI 2DVAR scheme. Table 2.29 lists the tasks of the individual routines.

Routine Call Description

fill_batch remove_ambiguities Fill a batch with observations
remove_ambiguities ~ AWDP Main routine of ambiguity removal
select wind remove_ambiguities Final wind selection

Table 2.29 Routines of module awdp_ambrem.

The ambiguity removal scheme works on a so-called batch. The batch is defined in the fill_batch()
routine. For AWDP a batch is just a set of rows. The size of the batch is determined by the
resolution of the structure functions and the number of FFT. The genscat routine
remove_ambiguities() performs the actual ambiguity removal. Finally select_wind() passes the
selection to the output WVCs.

2.3.10 Module awdp_icemodel

Module awdp_icemodel performs the ice screening of the wind product. The ice screening works
on the principle that WVCs over water yield wind solutions which are close to the GMF (‘cone’).
If a WVC is over ice, the ¢° triplets from fore, mid and aft beam will be close to the so-called ice
line. Hence, there is a possibility to discriminate between water (wind) and ice WVCs. The
implementation of this principle is described in more detail in [6]. The ice screening is done
directly after the ambiguity removal step. Table 2.30 provides an overview of the routines and
their calls in this module.

Routine Call Description

bayesianlcemodel ice_mode Implementation of the Bayesian ice model

calc_aAve bayesianlcemodel Calculate space-time averaged A-parameter

calc_aSd bayesianlcemodel Calculate standard deviation of A-parameter

calclceCoord bayesianlcemodel Calculate ice coordinates and distance to ice line

calclcelineParms nonbayesianlceModel ~ Calculate distance to ice line from given ¢%’s
calclceCoord

calc_plceGivenX bayesianlcemodel Calculate a posteriori ice probability

calcSubClass bayesianlcemodel Determine the sub class of the ice pixel

getPx updatelcePixel Calculate a priori ice probability

iceGMF not used Calculate the ¢° values from the ice coordinates

iceLine iceGMF (not used) Calculate the ice line origin and slope

iceMap2scat bayesianlcemodel Update cell data structure with information in ice map

ice_model AWDP Main routine of ice screening

22

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
nonbayesianliceModel ice_mode Implementation of the basic ice model without history
scat2iceMap bayesianlcemodel Update the ice map with the information in cell data
setCmix bayesianlcemodel Compute geophysical ice model tolerance parameter
smooth bayesianlcemodel Spatial smoothing of the a posteriori probability
updatelcePixel scat2iceMap Update one ice pixel

Table 2.30 Routines of module awdp_icemodel.

2.3.11 Module awdp

Module awdp is the main program of AWDP. It processes the command line options and controls
the flow of the wind processing by calling the subroutines performing the subsequent processing
steps. If any process step returns with an error code, the processing will be terminated.

23

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

3 Inversion module

3.1 Background

In the inversion step of the wind retrieval, the radar backscatter observations in terms of the
normalized radar cross-sections (c*'s) are converted into a set of ambiguous wind vector solutions.
In fact, a Geophysical Model Function (GMF) is used to map a wind vector (specified in terms of
wind speed and wind direction) to the ° values. The GMF further depends not only on wind speed
and wind direction, but also on the measurement geometry (relative azimuth and incidence angle),
and beam parameters (frequency, polarisation). A maximum likelihood estimator (MLE) is used to
select a set of wind vector solutions that optimally match the observed ¢%s. The wind vector
solutions correspond to local minima of the MLE function

18 (65, () - 0% 0))
MLE_W%: <.0) (3.1)

With N the number of independent o° measurements available within the wind vector cell, and K,
the covariance of the measurement error. Following a Bayesian approach, K, is a constant
representing the noise in all three ERS or ASCAT beams together [7]. This selection depends on
the number of independent ¢° values available within the wind vector cell. The MLE can be
regarded upon as the distance between an actual scatterometer measurement and the GMF in N-
dimensional measurement space. The MLE is related to the probability P that the GMF at a certain
wind speed and direction represents the measurement by

Poce ™ | 3.2)

Therefore, wind vectors with low MLE have a high probability of being the correct solution. On
the other hand, wind vectors with high MLE are not likely represented by any point on the GMF.

Details on the inversion problem can be found in [7] and [8]. AWDP includes the Multiple
Solution Scheme (MSS), see [9].

3.2 Routines

The inversion module class contains two modules named inversion and post_inversion. They are
located in subdirectory genscat/inversion. Tables 3.1 and 3.2 list all routines in the
modules. Appendix B.1 shows the calling tree for the inversion routines.

To establish the MLE function (1), the radar cross section according to the GMF, o cue, must be
calculated. This is done in routine calc_sigma0. The GMF used is read as a Look Up Table (LUT)
from a binary file. The value for o ue is obtained from interpolation of this table. The
interpolation is done via symbolic routine INTERPOLATE which is set to interpolateld,

24

NWP SAF

AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

interpolate2d, interpolate2dv, or interpolate3d, depending on the type of interpolation needed.

Routine Call Routine Call
invert_one_wvc AWDP INTERPOLATE generic
fill_wind_quality_code invert_one_wvc interpolateld calc_sigma0
save_inv_input not used interpolated2d calc_sigma0
read_inv_input not used interpolate2dv calc_sigma0
save_inv_output not used interpolate3d calc_sigma0
do_parabolic_winddir_search invert_one_wvc read LUT calc_sigma0
calc_normalisation invert_one_wvc create LUT C_VV calc_sigma0
calc_sign_MLE invert_one_wvc test_for_identical _LUTs calc_sigma0
print_message see B.1 my_mod not used
init_inv_input AWDP my_min see B.1
init_inv_output invert_one_wvc my_max see B.1
init_inv_settings_to_default AWDP my_average see B.1
write_inv_settings_to_file not used get_indices_lowest local_minimum invert_one_wvc
get_inv_settings AWDP my_index_max see B.1
set_inv_settings AWDP my_exit see B.1
check_input_data invert_one_wvc print_wind_quality code see B.1
find_minimum_cone_dist invert_one_wvc print_input_data_of inversion check_input_data
get_parabolic_minimum do_parabolic_winddir_search | print_output data_of inversion see B.1
calc_cone_distance find_minimum_cone_dist print_in_out data_of inversion not used

calc_dist_to_cone_center
convert_sigma_to_zspace
get_ers_noise_estimate
calc_var_sO
get_dynamic_range

get GMF_version_used
calc_sigma0

not used
invert_one_wvc
calc_var_sO
calc_normalisation
not used

not used

see B.1

calc_sigmaO_cmod4
fl

calc_sigma0_cmod5

calc_sigma0_cmod6

Get_Br_from_Look Up_Table

calc_sigma0_cmod5_5
calc_sigma0_cmod5_n

create LUT_C VWV
calc_sigmaO_cmod4
calc_sigmaO_cmod4
create LUT_C VWV
create LUT_C VWV
create LUT_C VWV
create LUT C VWV

Table 3.1 Routines in module inversion.

Routine

Call

AWDP

normalise_conedist_ers_ascat
calc_kp_ers_ascat
calc_geoph_noise_ers_ascat
check _ers_ascat_inversion_data
check_wind_solutions_ers_ascat
remove_one_solution

normalise_conedist_ers_ascat
calc_kp_ers_ascat

see B.1

AWDP

check _wind_solutions_ers_ascat

calc_probabilities

AWDP

Table 3.2 Routines of module post_inversion.

For C-band at VV polarization the GMF (CMODX, see [10]) is given in analytical form (routines
calc_sigma0_cmodxxx) for versions from 4 up to and including 6. If a C-band LUT is not present
it will be created by routine create_ LUT_C_VV. This routine calls one of the routines
calc_sigma0_cmodxxx that contain the analytical expressions of the CMOD4, CMOD5, CMOD5N
or CMODG functions. There is a parameter in the inversion settings type that is used to determine
which CMOD function is to be used. Routines get_lun and free_lun from module LunManager in
subdirectory genscat/support/fTile are needed when reading and creating the LUTs. Note
that for CMOD?7, an analytical form is not available and the GMF table (gmFf_cmod7_vv.dat)

25

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

needs to be read from awdp/data/Zlittle_endian or awdp/datasbig_endian.

Note that module post_inversion uses some tables for the normalisation of MLEs and noise values.
These tables are read from ASCII files which are present in direction genscat/inversion.
The environment variable $INVERSION_LUTSDIR should contain the proper directory name.

3.3 Antenna direction

The output wind direction of inversion routines are generally given in the meteorological
convention, see table 3.3. The inversion routine uses a wind direction that is relative to the antenna
direction. The convention is that if the wind blows towards the antenna then this relative wind
direction equals to 0. Therefore, it is important to be certain about the convention of your antenna
(azimuth) angle.

For ERS and ASCAT, the radar look angle (antenna angle or simply azimuth) equals O if the
antenna is orientated towards the south. The radar look angle increases clockwise. Therefore, the
antenna angle needs a correction of 180 degrees.

Meteorological Oceanographic Mathematical u v Description
0 180 270 0 -1 Wind blowing from the north
90 270 180 -1 0 Wind blowing from the east
180 0 90 0 1 Wind blowing from the south
270 90 0 1 0 Wind blowing from the west

Table 3.3 Conventions for the wind direction.

26

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

4 Ambiguity Removal module

4.1 Ambiguity Removal

Ambiguity Removal (AR) schemes select a surface wind vector among the different surface wind
vector solutions per cell for the set of wind vector cells in consideration. The goal is to set a
unique, meteorological consistent surface wind field. The surface wind vector solutions per cell,
simply called ambiguities, result from the wind retrieval process step.

Whenever the ambiguities are ranked, a naive scheme would be to select the ambiguity with the
first rank (e.g., the highest probability, the lowest distance to the wind cone). In general, such a
persistent first rank selection will not suffice to create a realistic surface wind vector field:
scatterometer measurements tend to generate ambiguous wind solutions with approximately equal
likelihood (mainly due to the ~180° invariance of stand alone scatterometer measurements).
Therefore one needs additional spatial constraints and/or additional (external) information in order
to make sensible selections.

A common way to add external information to a WVC is to provide a background surface wind
vector. The background wind acts as a first approximation for the expected mean wind over the
cell. In general, a NWP model wind is interpolated for this purpose. Whenever a background wind
is set for the WVC, a second naive Ambiguity Removal scheme is at hand: the Background
Closest (BC) scheme. The selected wind vector is just the minimizer of the distance (e.g., in the
least squares sense) to the background wind vector. This scheme may produce far more realistic
wind vector fields than the first rank selection, since the background surface wind field is
meteorologically consistent.

However, background surface winds have their own uncertainty. Therefore, sophisticated schemes
for Ambiguity Removal take both the likelihood of the ambiguities and the uncertainty of the
background surface wind into account. Examples are the KNMI Two-Dimensional Variational
(2DVAR) scheme and the PreScat scheme.

The implementation of these schemes is described in sections 4.4 and 4.5.

4.2 Module ambrem

Module Ambrem is the interface module between the various ambiguity removal methods and the
different scatterometer data processors. Table 4.1 provides an overview of the different routines
and their calls. A dummy method and the first rank selection method are implemented as part of
ambrem. More elaborate Ambiguity Removal methods have an interface module, see table 4.2.
Figure 4.1 shows schematically the interdependence of the various modules for Ambiguity
Removal.

27

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
InitAmbremModule ~ AWDP Initialization of module Ambrem
InitAmbremMethod ~ AWDP Initialization of specified AR scheme
DoAmbrem AWDP Execution of specified AR scheme
Ambrem1stRank DoAmbrem First rank selection method
DoDummyMeth DoAmbrem Dummy AR scheme for testing
SetDummyMeth DoAmbrem Batch definition of dummy method
InitDummyMeth DoAmbrem Initialization of dummy method
InitDummyBatch not used
ExitAmbremMethod =~ AWDP Deallocation of memory

Table 4.1 Routines of module Ambrem.

Routine Description Documentation
Ambrem2DVAR Interface to KNMI 2DV AR method Section 4.4
AmbremBGClosest Interface to Background Closest method ~ Section 4.1
AmbremPrescat Interface to Prescat method Section 4.5

Table 4.2 Interface modules for different Ambiguity Removal schemes.

ambrem
y A y
Ambrem2DVAR AmbremPreScat » AmbremBGclosest
\ 4
BatchMod <
\ 4 v
TwoDvar convert
v v
CostFunction StrucFunc
y A4 A
TwoDvarData BFGSMod SingletonFFT

Figure 4.1 Interdependence of the modules for Ambiguity Removal. The connections from module
ambrem to module BatchMod and from module Ambrem2DVAR to convert are not drawn.

4.3 Module BatchMod

After the wind retrieval step, the Ambiguity Removal step is performed on selections of the
available data. In general, these selections are just a compact part of the swath or a compact part of

28

NWP SAF

AWDP Top Level Design

Doc ID : NWPSAF-KN-DS-004
Version : 3.0.01
Date . February 2017

BatchRowType

the world ocean. The batch module BatchMod facilitates these selections of data. In fact, a batch
data structure is introduced to create an interface between the swath related data and the data
structures of the different AR methods. Consequently, the attributes of the batch data structures are
a mixture of swath items and AR scheme items. Figure 4.2 gives a schematic overview of the
batch data structure. Descriptions of the attributes of the individual batch data components are
given in table 4.3.

BatchCellType

BatchQualFlagType

BatchAmbiType

Figure 4.2 Schematic representation of the batch data structure.

BatchType

Attribute Type Description
NrRows Integer Number of rows in batch
Row BatchRowType Array of rows

BatchRowType
Attribute Type Description
RowNr Integer Row number within orbit
NrCells Integer Number of cells in batch (max 76)
Cell BatchCellType Array of cells within row

BatchCellType
Attribute Type Description
NodeNr Integer Node number within orbit row
lat Real Latitude
lon Real Longitude
ubg Real u-component of background wind
vbg Real v-component of background wind
SkipForAnalysis Logical Skip this cell in cost function calculation
NrAmbiguities Integer Number of ambiguities
ambi BatchAmbiType Array of ambiguities
selection Integer Index of selected ambiguity
uana/vana Real u/v-component of analysis wind
Attribute Type Description
f Real Contribution of this cell to cost function
gu/gv Real Derivatives of f to u/v
err_bgu/errbgv Real Background error in u/v

29

NWP SAF

AWDP Top Level Design

Doc ID : NWPSAF-KN-DS-004
Version : 3.0.01
Date . February 2017

err_obu/err_obv Real

Observation error in u/v

qualflag BatchQualFlagType Quality control flag
BatchAmbiType

Attribute Type Description

ulv Real Analysis increments

prob Real A-priori probability

Table 4.3 Batch data structures.

To check the quality of the batch a quality flag is introduced for instances of the BatchCellType.
The flag is set by routine TestBatchCell(). The attributes of this flag of type BatchQualFlagType

are listed in table 4.4.

Attribute

Description

Missing
Node
Lat

Lon

Quality flag not set

Incorrect node number specification
Incorrect latitude specification
Incorrect longitude specification

Ambiguities
Selection

Invalid ambiguities
Invalid selection indicator

Background
Analysis

Incorrect background wind specification

Incorrect analysis

Threshold
Cost
Gradient

Threshold overflow
Invalid cost function value
Invalid gradient value

Table 4.4 Batch quality flag attributes.

Routine

Call

Description

AllocRowsAndCellsAndInitBatch
AllocAndInitBatchRow
AllocAndInitBatchCell

Processor
AllocRowsAndCellsAndInitBatch
AllocAndInitBatchRow

Allocation of batch
Allocation of batch rows
Allocation of batch cells

AllocRowsOnlyAndInitBatch not used

InitBatchModule Ambrem Initialization module

InitBatch AllocRowsAndCellsAndInitBatch Initialization of batch
InitBatchRow InitBatch Initialization of batch rows
InitBatchCell InitBatchRow Initialization of batch cells
InitbatchAmbi InitBatchCell Initialization of batch ambiguities
DeallocBatch Processor Deallocation of batch

DeallocBatchRows
DeallocBatchCells
DeallocBatchAmbis

DeallocBatch
DeallocBatchRows
DeallocBatchCells

Deallocation of batch rows
Deallocation of batch cells
Deallocation of batch ambiguities

TestBatch Processor Test complete batch
TestBatchRow TestBatch Test complete batch row
TestBatchCell TestBatchRow Test batch cell
TestBatchQualFlag Processor Print the quality flag
getBatchQualFlag not used

setBatchQualFlag not used

PrnBatchQualFlag not used

Table 4.5 Routines of module BatchMod.

30

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Module BatchMod contains a number of routines to control the batch structure. The calls and tasks
of the various routines are listed in table 4.5. The batch structure is allocatable because it is only
active between the wind retrieval and the ambiguity removal step.

44 The KNMI 2DVAR scheme

44.1 Introduction

The purpose of the KNMI 2DVAR scheme is to make an optimal selection provided the
(modelled) likelihood of the ambiguities and the (modelled) uncertainty of the background surface
wind field. First, an optimal estimated surface wind vector field (analysis) is determined based on
variational principles. This is a very common method originating from the broad discipline of Data
Assimilation. The optimal surface wind vector field is called the analysis. Second, the selected
wind vector field (the result of the 2DVAR scheme) consists of the wind vector solutions that are
closest to the analysis wind vector. For details on the KNMI 2DVAR scheme formulation the
reader is referred to [11]. Information on 2DVAR can also be found in [12], [13] and [14].

From AWDP version 3.0 onwards, the 2DVAR scheme has been extended with empirical
background error correlations, invoked by the —nbec command line option. More information on
this feature can be found in [15] and references therein.

The calculation of the cost function and its gradient is a rather complex matter. The reader who is
only interested in how the 2DV AR scheme is assembled into the genscat module class ambrem is
referred to subsection 4.4.2. Readers interested in the details of the cost function calculations and
the minimization should also read the subsequent subsections. Subsection 4.4.3 forms an
introduction to the cost function. It is recommended to first read this section, because it provides
necessary background information to understand the code. Subsections 4.4.7 on the actual
minimization and 4.4.8 on Fast Fourier Transforms are in fact independent of the cost function
itself. The reader might skip these subsections.

442 Data structure, interface and initialisation

The main module of the 2DVAR scheme is TwoDvar. Within the genscat ambiguity removal
module class, the interface with the 2DV AR scheme is set by module Ambrem2DVAR. Table 4.6
lists its routines that serve the interface with TwoDvar.

These routines are sufficient to couple the 2DVAR scheme to the processor. The actual 2DVAR
processing is done by the routines of module TwoDvar itself. These routines are listed in table 4.7.
Figures B2.1-B2.6 show the complete calling tree of the AR routines.

Routine Call Description
Do2DVARonBatch DoAmbrem Apply 2DV AR scheme on batch
Batchlnput2DVAR Do2DVARonBatch Fills the 2DV AR data structure with input

BatchOutput2DVAR Do2DVARonBatch Fills the batch data structure with output
Set WVC_Orientations Batchinput2DVAR Sets the observation orientation
GetBatchSize2DVAR Determine maximum size of batch

Table 4.6 Routines of module Ambrem2DVAR.

31

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
InitTwodvarModule Initialization of module TwoDvar
Do2DVAR Do2DVARonBatch Cost function minimization
PrintObs2DVAR Batchlnput2DVAR Print a single 2DV AR observation

ExitTwodvarModule ExitAmbremMethod Deallocation of module TwoDvar

Table 4.7 Routines of module TwoDvar.

The Obs2dvarType data type is the main data structure for the observed winds. Its attributes are
listed in table 4.8. The TDV_Type data type contains all parameters that have to do with the
2DVAR batch grid: dimensions, sizes, and coordinates. These data structures are defined in
module TwoDvarData and the routines in this module are listed in table 4.10.

Attribute Type Description

alpha Real Rotation angle

cell/row Integer Batch cell/row numbers
igrid/jgrid Integer Row/Node indices

lat/lon Real Observation coordinates
WII/WIr Real Weights lower left/right
Wul/Wur Real Weights upper left/right
ubg/vbg Real Background EW/NS wind components
NrAmbiguities Integer Number of ambiguities
incr() AmbilncrType Ambiguity increments
uAnalncr Real Analysis increment
vAnalncr Real Analysis increment
selection Integer Selection flag

QualFlag TwoDvarQualFlagType Quality control flag

f Real Cost function at observation
gu/gv Real Cost function gradient to u/v

Table 4.8 The Obs2dvarType data structure.

Attribute Type Description

delta Real 2DVAR grid size in position domain

delta_p/delta_q Real 2DVAR grid sizes in frequency domain

N1/N2 Integer Dimension 1/2 of 2DVAR grid

H1/H2 Integer Half of N1/N2

K1/K2 Integer H1+1/H2+1;number of nonnegative
frequencies

GridExtent Integer Number of free cells around 2DVAR grid

lat/lon Real Latitude/longitude

Ncontrol Integer Size of control vector

VarQC_Type Integer Type of Variational Quality Control

GEP Real Gross Error Probabilities

Action Character Action to be taken by TDV_ Init

Verbosity Integer Verbosity parameter

Table 4.9 The TDV_Type data structure.

32

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
TDV_Init InitTwodvarModule Initialization of 2DV AR grid and preparations
Set_HelmholzCoefficients TDV_Init Set Helmholz transformation coefficients
Set CFW TDV_Init Set cost function weights
TDV_Exit ExitTwodvarmodule Deallocate memory
InitObs2dvar Batchlnput2DVAR, Allocation of observations array

BatchOutput2DVAR

DeallocObs2dvar BatchOutput2DVAR Deallocation of observations array
InitOneObs2dvar InitObs2dvar Initialization of single observation
TestObs2dvar Do2DVAR Test single observation
Prn2DVARQualFlag Do2DVAR Print observation quality flag
set2DVARQualFlag TestObs2DVAR Convert observation quality flag to integer
get2DVARQualFlag not used Convert integer to observation quality flag

Table 4.10 Routines in module TwoDvarData.

The quality status of an instance of Obs2dvarType is indicated by the attribute QualFlag which is
an instance of TwoDvarQualFlagType. The attributes of this flag are listed in table 4.11.

Attribute Description

missing Flag values not set

wrong Invalid 2DV AR process

Lat Invalid latitude

Background Invalid background wind increment
Ambiguities Invalid ambiguity increments
Selection Invalid selection

Analyse Invalid analysis wind increment
Cost Invalid cost function specification
gradient Invalid gradient specification
weights Invalid interpolation weights

grid Invalid grid indices

Table 4.11 Attributes of 2DVAR observation quality flag.

443 Reformulation and transformation

The minimization problem to find the analysis surface wind field (the 2D Variational Data
Assimilation problem) may be formulated as

mvin JV) IV = (V) + 3y (v), (4.1)

where v is the surface wind field in consideration and J the total cost function consisting of the
observational term Jgs and the background term Jug. The solution, the analysis surface wind field,
may be denoted as v,. Being just a weighted least squares term, the background term may be
further specified as

Jog W) =[v—-v,, ' B [v—-v,]1, (4.2)

where B is the background error covariance matrix. The Jo,s term of the 2DVAR scheme is not
simply a weighted least squares term.

33

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

The background error covariance is split into standard deviations and a correlation. By default,
AWDP takes a Gaussian form for the background error correlations. This can be overridden by the
-nbec command line argument, which invokes a tabulated empirical background error
correlation.

The formulation above does not closely match the code of the 2DVAR scheme. In fact, for
technical reasons several transformations are applied to reformulate the minimization problem.
Understanding of these transformations is essential to understand the different procedures within
the code. The interested reader is referred to [11].

444 Module CostFunction

Module CostFunction contains the main procedure for the calculation of the cost function and its
gradient. It also contains the minimization procedure. Table 4.12 provides an overview of the
routines.

Routine Call Description

Jt Minimise Total cost function and gradient

Jb Jt Background term of cost function

Jo Jt Observational term of cost function
JoScat Jo Single observation contribution to the cost function
Unpack_ControlVector Jo Unpack of control vector
Pack_ControlVector Jo Pack of control vector (or its gradient)
Uncondition Jo Several transformations of control vector
Uncondition_adj Jo Adjoint of Uncondition.

Minimise D02DVAR (TwoDvar) Minimization

DumpAnalysisField Do2DVAR Write analysis field to file

Table 4.12 Routines of module CostFunction.

445 Adjoint method

The minimization of cost function is done with a quasi-Newton method. Such a method requires
an accurate approximation of the gradient of the cost function. The adjoint method is just a very
economical manner to calculate this gradient. For introductory texts on the adjoint method and
adjoint coding, see, e.g., [15] and [17]. For detailed information on the adjoint model in 2DVAR
see [11].

4.4.6 Structure Functions

Module StrucFunc contains the routines to calculate the covariance matrices for the stream
function, y, and the velocity potential, y. Its routines are listed in table 4.13.

Routine Call Description

SetCovMat Do2DVAR Calculate the covariance matrices
InitStrucFunc SetCovMat Initialize the structure functions
StrucFuncPsi SetCovMat Calculate v

StrucFuncChi SetCovMat Calculate y

Table 4.13 Routines of module StrucFunc.

34

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

447 Minimization

The minimization routine used is LBFGS. This is a quasi-Newton method with a variable rank for
the approximation of the Hessian written by J. Nocedal. A detailed description of this method is
given by [18]. Routine LBFGS is freeware and can be obtained from web page
http://www.netlib.org/opt/index.html, file Ibfgs_um.shar. The original Fortran 77 code has
been adjusted to compile under Fortran 90 compilers. Routine LBFGS and its dependencies are
located in module BFGSMod . F9O0 in directory genscat/support/BFGS. Table 4.14 provides
an overview of the routines in this module.

Routine LBFGS uses reverse communication. This means that the routine returns to the calling
routine not only if the minimization process has converged or when an error has occurred, but also
when a new evaluation of the function and the gradient is needed. This has the advantage that no
restrictions are imposed on the form of routine Jt calculating the cost function and its gradient.

The formal parameters of LBFGS have been extended to include all work space arrays needed by
the routine. The work space is allocated in the calling routine minimise. The rank of LBFGS affects
the size of the work space. It has been fixed to 3 in routine minimise, because this value gave the
best results (lowest values for the cost function at the final solution).

Routine Call Description

LBFGS minimise Main routine

LB1 LBFGS Printing of output (switched off)

daxpy LBFGS Sum of a vector times a constant plus another vector with loop unrolling.
ddot LBFGS Dot product of two vectors using loop unrolling.

MCSRCH LBFGS Line search routine.

MCSTEP MCSRCH Calculation of step size in line search.

Table 4.14 Routines in module BFGSMod.

Some of the error returns of the line search routine MCSRCH have been relaxed and are treated as
a normal return. Further details can be found in the comment in the code itself.

Routines daxpy and ddot were rewritten in Fortran 90. These routines, originally written by J.
Dongarra for the Linpack library, perform simple operations but are highly optimized using loop
unrolling. Routine ddot, for instance, is faster than the equivalent Fortran 90 intrinsic function
dot_product.

4.4.8 SingletonFFT_Module

Module SingletonFFT_Module in directory genscat/support/singletonfft contains the
multi-variate complex Fourier routines needed in the 2DVAR scheme. A mixed-radix Fast Fourier
Transform algorithm based on the work of R.C. Singleton is implemented.

Routine Call Description

SingletonFFT2d SetCovMat, Uncondition, 2D Fourier transform
Uncondition_adj

fft SingletonFFT2d Main FFT routine

SFT_Permute fft Permute the results

SFT_PermuteSinglevariate ~ SFT_Permute Support routine

35

http://www.netlib.org/opt/index.html

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
SFT_PermuteMultivariate SFT_Permute Support routine
SFT_PrimeFactors fft Get the factors making up N
SFT_Base2 fft Base 2 FFT
SFT_Base3 fft Base 3 FFT
SFT_Base4 fft Base 4 FFT
SFT_Baseb fft Base 5 FFT
SFT_BaseQdd fft General odd-base FFT
SFT_Rotate fft Apply rotation factor

Table 4.15 Fourier transform routines.
Table 4.15 gives an overview of the available routines. The figures in Appendix B2 shows the
calling tree of the FT routines relevant for 2DVAR.

Remark: the 2DVAR implementation can be made more efficient by using a real-to-real FFT
routine rather than a complex-to-complex one as implemented now. Since AWDP satisfies the
requirements in terms of computational speed, this has low priority.

45 The PreScat scheme

The PreScat ambiguity removal scheme can be invoked within AWDP by the use of command line
option —armeth prescat. More information on this scheme can be found in [12]. Currently,
the PreScat scheme can be used only in combination with ERS data.

36

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

5 Module iceModelMod

Module iceModelMod is part of the genscat support modules. It contains all the routines for
initialising, reading, writing and printing of the SSM/I grids for the North Pole and South Pole
region.

51 Background

The -1cemodel option in AWDP basically fills the fields Ice Probability (BUFR item 87) and
Ice Age (BUFR item 88). Also it can output graphical maps of ice model related parameters on an
SSM/I grid for the North Pole and for the South Pole region.

Each time the Metop satellite passes over the pole region the corresponding ice map is updated
with the new ASCAT data. A spatial and temporal averaging is performed in order to digest the
new information. After the overpass, at the end of processing an entire BUFR file, the updated
information on the ice map is put back into the BUFR structure. Optionally graphical maps are
plotted, which can be controlled by optional input parameters for routine printiceMap. The
graphical filenames have encoded the North Pole/South Pole, the date/time as well as the
parameter name. The most important ones are:

print_a: file [N]S][yyyymmddhhmmss] . ppm contains the ice subclass and the a-ice parameter
on a grey-scale for points classified as ice.

print_t: file [N]S][yyyymmddhhmmss]t. ppm contains the ice class.
print_sst: file [N]S] Lyyyymmddhhmmss]sst.ppm contains the sea surface temparature

print_postprob: file [N]|S]Lyyyymmddhhmmss]postprob.ppm contains the a-posteriori ice
probability.

Typically at least two days of ASCAT data are needed to entirely fill the ice map with data and
give meaningful ice model output. Because AWDP handles only one BUFR file at a time, a script
is needed that calls AWDP several times. After each AWDP-run a binary restart file is written to
disk containing the information of an icemap (latestlceMapN.rst for the North Pole and
latestlceMapS.rst for the South Pole). With the next call of awdp, these restart files are
read in again. Environment variable $SRESTARTDIR contains the directory for the ice model
restart files.

Optionally sea surface temperature (SST) data from GRIB files can be used to further improve the
quality of the ice algorithm (the use_sst logical must be turned on).

Processing 11b input with the use of NWP data and SST data can be done with the following
command line options:

awdp —f <bufr Tile> -nwpfl <gribfilelist> -icemodel 2 -mon -
handleall

37

NWP SAF

AWDP Top Level Design

Doc ID : NWPSAF-KN-DS-004
Version : 3.0.01
Date . February 2017

Reprocessing of level 2 input with only running the ice model on top of it can be done with the
following command line options:

awdp —F <bufr file> -icemodel 2 —noinv —noamb —mon -handleall

The SSM/I grids are widely used for representation of ice related parameters. A good description
as well as some software routines can be found on the website of the National Snow and Ice Data
Centre (NSIDC): http://www.nsidc.org/data/docs/daac/ae_si25_25km_tb_and_sea_ice.gd.html.

A more detailed description of the Bayesian statistics method and ice model is given in [6].

5.2

Routines

Table 5.1 provides an overview of the routines in module iceModelMod.

Routine Call Description

calcPoly3 AWDP Calculate a 3 order polynomial

ExpandDateTime AWDP Converts a date/time to a real

ij2latlon not used Calculate lat lon values from SSM/I grid coordinates
initiceMap AWDP Initialise ice map

inv_logit not used Calculate the inverse of the logit of p: 1/(1+exp(-p))
latlon2ij AWDP Calculate SSM/I grid coordinates from lat lon values
logit not used Calculate the logit of p: In(p/(1-p))

MAPLL latlon2ij Convert from lat/lon to polar stereographic coordinates
MAPXY ij2latlon (not used) Convert from polar stereographic to lat/lon coordinates
printClass not used Print the ice class (sea or ice)

print_ice_age_ascat
printlceAscat

not used
printlceMap

Print ice age map to graphical .ppm file
Print ASCAT ice map to graphical .ppm file

printlceMap bayesianlcemodel Print one or more ice map variables to graphical .ppm files
printlcePixel AWDP Print contents of an ice pixel
printlceQscat printlceMap Print QuikSCAT ice map to graphical .ppm file
printppm_gc not used Print WVC quality flag contents to graphical .ppm file
printppmvar printlceMap Print variable to .ppm file, mapped on gray scale
printppmvars not used Print three variables to .ppm file, mapped to an RGB scale
printSubclass printlceMap Print the ice subclass to a .ppm file
RW_IceMap AWDP Read or write an ice map from/to a binary restart file
wT AWDP Calculate the moving time average function

Table 5.1 Routines of module iceModelMod.
5.3 Data structures

There are two important data structures defined in this module. The first contains all relevant data
of one pixel on the ice map (IcePixel). The second one contains basically a two-dimensional array
of ice pixels and represents an entire ice map (IlceMapType). This could be either an ice map of the
North Pole region or the South Pole region.

Attribute Type Description

alce real A ice parameter

alceAves real Average of the A ice parameter
asd real A ice parameter standard deviation
class integer Ice class

38

http://www.nsidc.org/data/docs/daac/ae_si25_25km_tb_and_sea_ice.gd.html

Doc ID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design Version : 3.0.01
Date . February 2017
Attribute Type Description
subClass integer Ice subclass
sst real Sea surface temperature (K)
pXgivenlce real
pXgivenOce real
pYgivenice real
pYgivenOce real
Pice real A-priori ice probability
plceGivenX real A-posteriori ice probability
plceGivenXave real Average of a-posteriori ice probability
sumWeightST real Sum of weight factors
landmask logical land/sea indicator

timePixelNow DateTime Date/time of measurement
timePixelPrev DateTime Date/time of previous measurement

Table 5.2 Attributes for the IcePixel data type.

Attribute Type Description

nPixels integer Number of pixels for the ice map
nLines integer Number of lines for the ice map

pole integer Indicator for Northpole or Southpole
use_sst integer Use SST value in ice screening
timeMapNow DateTime Date/time of latest ice map update
timeMapPrev DateTime Date/time of previous ice map update
Xy IcePixel(nPixels, nLines) Pointer to the ice map contents

Table 5.3 Attributes for the IceMapType data type.

39

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

6 Module BufrMod

Module BufrMod is part of the genscat support modules. The current version is a Fortran 90
wrapper around the ECMWF BUFR library (see http://www.ecmwf.int/). The goal of this support
module is to provide a comprehensive interface to BUFR data for every Fortran 90 program using
it. In particular, BufrMod provides all the BUFR functionality required for the scatterometer
processor based on genscat. Special attention has been paid to testing and error handling.

6.1 Background

The acronym BUFR stands for Binary Universal Form for the Representation of data. BUFR is
maintained by the World Meteorological Organization WMO and other meteorological centres. In
brief, the WMO FM-94 BUFR definition is a binary code designed to represent, employing a
continuous binary stream, any meteorological data. It is a self defining, table driven and very
flexible data representation system. It is beyond the scope of this document to describe BUFR in
detail. Complete descriptions are distributed via the websites of WMO (http://www.wmo.int/) and
of the European Centre for Medium-range Weather Forecasts ECMWF (http://www.ecmwf.int/).

Module BufrMod is in fact an interface. On the one hand it contains (temporary) definitions to set
the arguments of the ECMWF library functions. On the other hand, it provides self explaining
routines to be incorporated in the wider Fortran 90 program. Section 6.2 describes the routines in
module BufrMod. The public available data structures are described in section 6.3. BufrMod uses
two libraries: the BUFR software library of ECMWF and bufrio, a small library in C for file
handling at the lowest level. These libraries are discussed in some more detail in section 6.4.

6.2 Routines

Table 6.1 provides an overview of the routines in module BufrMod. The most important ones are
described below.

Routine Call Description

InitAndSetNrOfSubsets AWDP Initialization routine

set BUFR_fileattributes AWDP Initialization routine

open_BUFR file AWDP Opens a BUFR file

get BUFR_nr_of messages AWDP Inquiry of BUFR file

get BUFR_message AWDP Reads instance of BufrDataType from file

get_expected BUFR_msg_size
ExpandBufrMessage

get_BUFR_message
get_BUFR_message

Inquiry of BUFR file
Convert from BufrMessageType to BufrSectionsType

PrintBufrErrorCode ExpandBufrMessage,
EncodeBufrData
CheckBufrTables ExpandBufrMessage Data check
get file_size CheckBufrTables Determine size of BUFR file
get_bufrfile_size ¢ get file_size Support routine in C

encode_table b

CheckBufrTables

40

http://www.ecmwf.int/
http://www.wmo.int/
http://www.ecmwf.int/

Doc ID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design Version : 3.0.01
Date . February 2017
Routine Call Description
encode_table d CheckBufrTables
FillBufrSecData ExpandBufrMessage Convert from BufrSectionsType to BufrDataType
close BUFR file AWDP Closes a BUFR file
BufrReal2Int AWDP Type conversion
Bufrint2Real AWDP Type conversion
save_ BUFR_message AWDP Saves instance of BufrDataType to file
EncodeBufrData save_ BUFR_message Convert from BufrSectionsType to BufrMessageType
CheckBufrData EncodeBufrData Data check
FillBufrData EncodeBufrData Convert from BufrDataType to BufrSectionsType
bufr_msg_is_valid not used
set_bufr_msg_to_invalid not used
PrintBufrData not used
GetPosBufrData not used
GetRealBufrData not used
GetIntBufrData not used
GetRealBufrDataArr not used
GetIntBufrDataArr not used
GetRealAllBufrDataArr not used
CloseBufrHelpers not used
missing_real not used
missing_int not used
int2real not used
do_range_check int not used
do_range_check real not used
AddRealDataToBufrMsg not used
AddIntDataToBufrMsg not used
PrintBufrModErrorCode not used

GetFreeUnit

encode_table b,
encode_table d

Get free file unit

Table 6.1 Routines of module BufrMod.

Reading (decoding): Routine get BUFR_message() reads a single BUFR message from the
BUFR file and creates an instance of BufrDataType.

Writing (encoding): Routine save_ BUFR_message() saves a single BUFR message to the BUFR
file. The data should be provided as an instance of BufrDataType.

Checking and Printing: The integer parameter BufrVerbosity controls the extent of the log
statements while processing the BUFR file. The routines PrintBufrData() and CheckBufrData()
can be used to respectively print and check instances of BufrDataType.

Open and Close BUFR files: The routine open_BUFR_file() opens the BUFR file for either
reading (writemode=.false.) or writing (writemode=.true.). Routine set BUFR_fileattributes()
determines several aspects of the BUFR file and saves these data in an instance of
bufr_file_attr_data, see table 6.5. Routine get BUFR_nr_of _messages() is used to determine the
number of BUFR messages in the file. Finally, routine close_ BUFR_file() closes the BUFR file.

As said before, the underlying encoding and decoding routines originate from the ECMWF BUFR
library. Appendix B3 shows the calling trees of the routines in module BufrMod that are used in
AWDP.

41

NWP SAF

DocID : NWPSAF-KN-DS-004

AWDP Top Level Design | Version : 3.0.01

Date . February 2017

Data structures

The data type closest to the actual BUFR messages in the BUFR files is the BufrMessageType, see
table 6.2. These are still encoded data. Every BUFR message consists of 5 sections and one
supplementary section. After decoding (expanding) the BUFR messages, the data are transferred
into an instance of BufrSectionsType, see table 6.3, which contains the data and meta data in
integer values subdivided in these sections.

Attribute Type Description

buff integer array BUFR message, all sections
size integer Size in bytes of BUFR message
nr_of words integer Idem, now size in words

Table 6.2 Attributes for the BufrMessageType data type.

Attribute Type

Description

ksup(9) integer
ksec(3) integer
ksec1(40) integer
ksec2(4096) integer
ksec3(4) integer
ksec4(2) integer

Supplementary info and items selected from the other sections
Expanded section 0 (indicator)

Expanded section 1 (identification)

Expanded section 2 (optional)

Expanded section 3 (data description)

Expanded section 4 (data)

Table 6.3 Attributes for the BufrSectionsType data type.

Attribute Type Description

NsecO integer ksup (9) dimension section 0
nsecOsize integer ksecO(1) size section O
nBufrLength integer ksecO(2) length BUFR
nBufrEditionNumber integer ksecO(3)

Nsecl integer ksup (1) dimension section 1
nseclsize integer ksec1(1) size section 1
kEditionNumber integer ksecl(2)

Kcenter integer ksec1(3)

kUpdateNumber integer ksecl(4)

kOptional integer ksec1(5)

ktype integer ksecl(6)

ksubtype integer ksec1(7) local use
kLocalVersion integer ksec1(8)

kyear integer ksec1(9) century year
kmonth integer ksec1(10)

kday integer ksec1(11)

khour integer ksec1(12)

kminute integer ksec1(13)
kMasterTableNumber integer ksec1(14)
kMasterTableVersion integer ksec1(15)

ksubcenter integer ksec1(16)

klocalinfo() integer ksec1(17:40)

Nsec2 integer ksup (2) dimension section 2
nsec2size integer ksec2(1) size section 2

42

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Attribute Type Description
key(46) integer ksec2(2:) key
Nsec3 integer ksup (3) dimension section 3
nsec3size integer ksec3(1) size section 3
Kreserved3 integer ksec3(2) reserved
ksubsets integer ksec3(3) number of reserved subsets
kDataFlag integer ksec3(4) compressed (0,1) observed (0,1)
Nsec4 integer ksup (4) dimension section 4
nsec4size integer ksec4(1) size section 4
kReserved4 integer ksec4(2) reserved
nelements integer ksup (5) actual number of elements
nsubsets integer ksup (6) actual number of subsets
nvals integer ksup (7) actual number of values
nbufrsize integer ksup (8) actual size of BUFR message
ktdlen integer Actual number of data descriptors
ktdexI| integer Actual number of expanded data descriptors
ktdlst() integer array List of data descriptors
ktdexp() integer array List of expanded data descriptors
values() real array List of values
cvals() character array List of CCITT IA no. 5 elements
cnames() character array List of expanded element names
cunits() character array List of expanded element units

Table 6.4 Attributes of the BUFR message data type BufrDataType.

The next step is to bring the section data to actual dimensions, descriptions and values of data
which can be interpreted as physical parameters. Therefore, instances of BufrSectionsType are
transferred to instances of BufrDataType, see table 6.4. The actual data for input or output in a
BUFR message should be an instance of the BufrDataType data type. Some meta information on
the BUFR file is contained in the self explaining bufr_file_attr_data data type, see table 6.5.

Attribute Type Description

nr_of BUFR_mesasges integer Number of BUFR messages
bufr_filename character BUFR file

bufr_fileunit integer Fortran unit of BUFR file

file_size integer Size of BUFR file

file_open logical Open status of BUFR file

writemode logical Reading or writing mode of BUFR file
is_cray_blocked integer Cray system blocked?

list_of BUFR_startpointers() integer Pointers to BUFR messages
message_is_valid() logical Validity of BUFR messages

Table 6.5 Attributes of the bufr_file_attr_data data type for BUFR files.

6.4 Libraries

Module BufrMod uses two libraries: the BUFR software library of ECMWEF and bufrio, a small
library in C for file handling at the lowest level.

The BUFR software library of ECMWEF is used as a basis to encode and decode BUFR data. This
software library is explained in [19].

Library bufrio contains routines for BUFR file handling at the lowest level. Since this is quite hard

43

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

to achieve in Fortran, these routines are coded in C. The routines of bufrio are listed in table 6.6.
The source file (bufrio.c) is located in subdirectory genscat/support/bufr.

Routine Call Description

bufr_open open_BUFR_file Open file

bufr_split open_BUFR_file Find position of start of messages in file
bufr_read_allsections get BUFR_message Read BufrMessageType from BUFR file

bufr_get_section_sizes get BUFR_message
bufr_swap_allsections get BUFR_message, save_ BUFR_message Optional byte swapping

bufr_write_allsections save BUFR_message Write BufrMessageType to BUFR file
bufr_close close_ BUFR_file
bufr_error see appendix B.3 Error handling

Table 6.6 Routines in library bufrio.

6.5 BUFR table routines

BUFR tables are used to define the data descriptors. The presence of the proper BUFR tables is
checked before calling the reading and writing routines. If absent, it is tried to create the needed
BUFR tables from the text version, available in genscat.

6.6 Centre specific modules

BUFR data descriptors are integers. These integers consist of class numbers and numbers for the
described parameter itself. These numbers are arbitrary. To establish self documenting names for
the BUFR data descriptors for a Fortran 90 code several centre specific modules are created. These
modules are listed in table 6.7. Note that these modules are just cosmetic and not essential for the
encoding or decoding of the BUFR data. They are not used in AWDP.

Module Description

WmoBufrMod WMO standard BUFR data description
KnmiBufrMod KNMI BUFR data description
EcmwfBufrMod ECMWF BUFR data description

Table 6.7 Fortran 90 BUFR modules.

44

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

7 Module gribio_module

Module gribio_module is part of the genscat support modules. The current version is a Fortran 90
wrapper around the ECMWEF GRIB API library (see http://www.ecmwf.int/). The goal of this
support module is to provide a comprehensive interface to GRIB data for every Fortran 90
program using it. In particular, gribio_module provides all the GRIB functionality required for the
scatterometer processor based on genscat. Special attention has been paid to testing and error
handling.

7.1 Background

The acronym GRIB stands for GRIdded Binary. GRIB is maintained by the World Meteorological
Organization WMO and other meteorological centres. In brief, the WMO FM-92 GRIB definition
is a binary format for efficiently transmitting gridded meteorological data. It is beyond the scope
of this document to describe GRIB in detail. Complete descriptions are distributed via the websites
of WMO (http://www.wmo.int/) and of the European Centre for Medium-range Weather Forecasts
ECMWEF (http://www.ecmwf.int/).

Module gribio_module is in fact an interface. On the one hand it contains (temporary) definitions
to set the arguments of the ECMWEF library functions. On the other hand, it provides self
explaining routines to be incorporated in the wider Fortran 90 program. Section 7.2 describes the
routines in module gribio_module. The available data structures are described in section 7.3. The
gribio_module uses two libraries: from the GRIB software library of ECMWEF. This is discussed in
some more detail in section 7.4.

7.2 Routines

Table 7.1 provides an overview of the routines in module gribio_module. The most important ones
are described below.

Routine Call Description

init. GRIB_module AWDP Initialization routine

dealloc_all_GRIB_messages AWDP Clear all GRIB info from memory and

close GRIB files

set_GRIB_filelist AWDP Open all necessary GRIB files

get_from_GRIB filelist AWDP, Retrieve GRIB data for a given lat and lon
get_colloc_from_GRIB _filelist

inquire_GRIB filelist AWDP, Inquiry of GRIB file list

get_colloc_from_GRIB _filelist

get_GRIB_msgnr

get_analyse dates_and_times,
get_colloc_from_GRIB _filelist

AWDP Retrieve time interpolated GRIB data for a
given lat and lon
get field from_GRIB _file, Inquiry of GRIB file list

get_from_GRIB file,

45

http://www.ecmwf.int/
http://www.wmo.int/
http://www.ecmwf.int/

DocID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017
Routine Call Description
get_from_GRIB filelist,
inquire_GRIB filelist
display_req_GRIB_msg_properties get GRIB_msgnr, Prints GRIB message info
get_from_GRIB filelist
display_GRIB_message properties get GRIB_msgnr, Prints GRIB message info
get_from_GRIB filelist
open_GRIB file get field_from_GRIB _file, Open GRIB file and get some header
get_from_GRIB file, information from all messages in this file
set GRIB_filelist,
add_to_GRIB filelist
read_GRIB_header_info open_GRIB file Read header part of a GRIB message
extract_data_from_GRIB_message get from_GRIB file, Interpolate data from four surrounding
get_from_GRIB filelist points for a given lat and lon
get GRIB_data_values get field_from_GRIB _file, Read all data from GRIB message

get_from_GRIB file,
get_from_GRIB filelist
dealloc_GRIB_message open_GRIB file, Clear GRIB message from memory
dealloc_all_GRIB_messages,
get_field_from_GRIB_file

get_analyse dates_and_times get_colloc_from_GRIB_filelist Helper routine
check_proximity_to_analyse get_colloc_from_GRIB_filelist Helper routine
get field from_GRIB file not used
get_from_GRIB_file not used
add_to GRIB filelist not used

Table 7.1 Routines of module gribio_module.

Reading: Routine set_ GRIB_filelist reads GRIB messages from a list of files, decodes them and
makes the data accessible in a list of GRIB messages in memory.

Retrieving: Routine get_from_GRIB_filelist() returns an interpolated value (four surrounding grid
points) from the GRIB data in the list of files/messages for a given GRIB parameter, latitude and
longitude. It is also possible to get a weighted value of all grid points lying within a circle around
the latitude and longitude of interest. This is used in the land fraction calculation in AWDP. The
land fraction is calculated by scanning all grid points of the land-sea mask lying within 80 km
from the centre of the WVC. Every grid point found yields a land fraction (between 0 and 1). The
land fraction of the WVC is calculated as the average of the grid land fractions, where each grid
land fraction has a weight of 1/r* , r being the distance between the WVC centre and the model
grid point.

Routine get_colloc_from_GRIB_filelist() returns an interpolated value (four surrounding grid
points) from the GRIB data in the list of files/messages for a given GRIB parameter, latitude,
longitude, and time. The list of messages must contain a sequence of forecasts with constant time
intervals (e.g. +3 hrs, +6 hrs, +9 hrs, et cetera or +4 hrs, +5 hrs, +6 hrs, +7 hrs, et cetera). At least
three forecasts need to be provided; ideally two lying before the sensing time and one after.

In this diagram, the 1, 2, and 3 mean the three forecast steps with intervals of three hours between
them. The ~ is the sensing time. The software will perform a cubic time interpolation. Note that

46

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

the 1, 2 and 3 in the diagram may correspond to +3, +6 and +9 forecasts, but also e.g. to +9, +12
and +15. If more forecasts are provided, e.g. like this:

el B B B P Ee
1 2 3 N 4 5

the software will use forecast steps 2, 3, and 4, i.e., it will pick the optimal values by itself. If one
forecast before, and two after are provided:

et B B
i ~ 2 3
the software will still work, and use all three forecasts.

Checking and Printing: The integer parameter GribVerbosity controls the extent of the log
statements while processing the GRIB data.

As said before, the underlying encoding and decoding routines originate from the ECMWF GRIB
library. Appendix B4 shows the calling trees of the routines in module gribio_module that are used
in AWDP.

7.3 Data structures

Some meta information on the GRIB file is contained in the self explaining grib_file_attr_data
data type, see table 7.2.

The decoded GRIB messages in the GRIB files, with their meta information, are contained in the
grib_message_data, see table 7.3.

Attribute Type Description

nr_of GRIB_messages integer Number of messages in this file
grib_filename character array ~ Name of GRIB file
grib_fileunit integer Unit number in file table
file_size integer Size of GRIB file in bytes
file_open logical Status flag

list_of GRIB_message_ids integer array Message ids assigned by GRIB API
list_of GRIB_level integer array Key to information in messages
list_of GRIB_level type integer array Key to information in messages
list_of GRIB_date integer array Key to information in messages
list_of GRIB_hour integer array Key to information in messages
list_of GRIB_analyse integer array Key to information in messages
list_of GRIB_derived_date integer array Key to information in messages
list_of GRIB_derived_hour integer array Key to information in messages
list_of GRIB_par_id integer array Key to information in messages
list of GRIB vals sizes integer array Size of data values arrays

Table 7.2 Attributes for the grib_file_attr_data data type.

Attribute Type Description
message_pos_in_file integer Position of message in GRIB file
message_id integer Message id assigned by GRIB API

47

Doc ID : NWPSAF-KN-DS-004
NWP SAF AWDP Top Level Design Version : 3.0.01
Date . February 2017
Attribute Type Description
date real Date when data are valid
time real Time when data are valid
derived_date real date + time/24
derived_time real mod(time/24)
total_message_size integer Size of message
vals_size integer Size of data values array
is_decoded logical Status flag
nr_lon_points integer Information about grid
nr_lat_points integer Information about grid
nr_grid_points integer Information about grid
lat_of first gridpoint real Information about grid
lat_of last_gridpoint real Information about grid
lon_of first_gridpoint real Information about grid
lon_of last_gridpoint real Information about grid
lat_step real Information about grid
lon_step real Information about grid
real_values real array, pointer Decoded real data values

Table 7.3 Attributes for the grib_message_data data type.

Attribute Type Description
grib_file_attributes grib_file_attr_data GRIB file attributes
list of GRIB_msgs grib_message_data array List of messages in file

Table 7.4 Attributes of the list_of_grib_files_type data type for GRIB files.

7.4 Libraries

Module gribio_module uses two libraries: from the GRIB API software library of ECMWEF:
libgrib_api.aand libgrib_api_¥90.a. The GRIB API software library of ECMWF is
used as a basis to decode GRIB data. This software library is explained on http://www.ecmwf.int/.

48

http://www.ecmwf.int/

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2017,
AWDP User Manual and Reference Guide, Report NWPSAF-KN-UD-005, EUMETSAT.

Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2017,
AWDP Product Specification, Report NWPSAF-KN-DS-003, EUMETSAT.

Vogelzang, J., Verspeek, J. and Stoffelen, A., 2016,
ASCAT winds on optimized grids, v1.0, Report NWPSAF-KN-TR-027 EUMETSAT.
(Available on https://nwpsaf.eu/deliverables/scatterometer/index.html).

Wilson, J.J.W, Figa-Saldafia, J., and O’Clerigh, E., 2004,
ASCAT Product Generation Function Specification, Issue 6, Rev 5, EUMETSAT,
EUM.EPS.SYS.SPE.990009 (Available on http://www.eumetsat.int/).

Verspeek, J., A. Stoffelen, A. Verhoef and M. Portabella, 2012,

Improved ASCAT Wind Retrieval Using NWP Ocean Calibration, IEEE Transactions on
Geoscience and Remote Sensing, 2012, 50, 7, 2488-2494,
doi:10.1109/TGRS.2011.2180730.

Belmonte, M., J. Verspeek, A. Verhoef and A. Stoffelen, 2012,

Bayesian sea ice detection with the Advanced Scatterometer, IEEE Transactions on
Geoscience and Remote Sensing, 2012, 50, 7, 2649-2657,
doi:10.1109/TGRS.2011.2182356.

Stoffelen, A. and M. Portabella, 2006,
On Bayesian Scatterometer Wind Inversion, IEEE Transactions on Geoscience and
Remote Sensing, 44, 6, 1523-1533, doi:10.1109/TGRS.2005.862502.

Portabella, M., 2002,
Wind field retrieval from satellite radar systems, PhD thesis, University of Barcelona.
(Available on http://www.knmi.nl/scatterometer/publications/).

Portabella, M. and Stoffelen, A., 2001,
Rain Detection and Quality Control of SeaWinds, Journal of Atm. Oceanic Technol., 18,
pp. 1171-1183.

Verspeek, J. and A. Stoffelen, 2015,
CMOD?7, OSI SAF report SAF/OSI/CDOP2/KNMI/TEC/RP/237.

Vogelzang, J., 2013,

Two dimensional variational ambiguity removal (2DVAR), v1.2. Report NWPSAF-KN-
TR-004, UKMO, UK. (Available on http://www.knmi.nl/scatterometer/publications/ or on
https://nwpsaf.eu/deliverables/scatterometer/index.html).

49

https://nwpsaf.eu/deliverables/scatterometer/index.html
http://www.eumetsat.int/
http://dx.doi.org/10.1109/TGRS.2005.862502
http://www.knmi.nl/scatterometer/publications/
http://www.knmi.nl/scatterometer/publications/
https://nwpsaf.eu/deliverables/scatterometer/index.html

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Stoffelen, A., de Haan, S., Quilfen, Y., and Schyberg, H., 2000,
ERS scatterometer ambiguity removal scheme comparison, OSI SAF report. (Available on
http://www.knmi.nl/scatterometer/publications/).

de Vries, J., Stoffelen, A., and Beysens, J., 2005,
Ambiguity Removal and Product Monitoring for SeaWinds. KNMI. (Available on
http://www.knmi.nl/scatterometer/publications/).

de Vries, J. and Stoffelen, A., 2000,
2D Variational Ambiguity Removal. KNMI, Feb 2000. (Available on
http://www.knmi.nl/scatterometer/publications/).

Vogelzang, J., and Stoffelen, A., 2016,
Developments in ASCAT wind ambiguity removal, v1.0. Report NWPSAF-KN-TR-026,
UKMO, UK. (Available on https://nwpsaf.eu/deliverables/scatterometer/index.html).

Talagrand, O., 1991,

The use of adjoint equations in numerical modeling of the atmospheric circulation. In:
Automatic Differentiation of Algorithms: Theory, Implementation and Application, A.
Griewank and G. Corliess Eds. pp. 169-180, Philadelphia, Penn: SIAM.

Giering, R., 1997,
Tangent linear and Adjoint Model Compiler, Users manual. Max-Planck- Institut fuer
Meteorologie.

Liu, D.C., and Nocedal, J., 1989
On the limited memory BFGS method for large scale optimization methods. Mathematical
Programming, 45, pp. 503-528.

Dragosavac, M., 1994,
BUFR User Guide and Reference Manual. ECMWF. (Available on
http://www.ecmwf.int/)

50

http://www.knmi.nl/scatterometer/publications/
http://www.knmi.nl/scatterometer/publications/
http://www.knmi.nl/scatterometer/publications/
https://nwpsaf.eu/deliverables/scatterometer/index.html
http://www.ecmwf.int/

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix A: Calling tree for AWDP

The figures in this appendix show the calling tree for the AWDP software package. Routines in
normal print are part of the AWDP process layer. Routines in italic print are part of genscat. An
arrow (—) before a routine name indicates that this part of the calling tree is a continuation of a
branch in a previous figure. The same arrow after a routine name indicates that this branch will be
continued in a following figure.

awdp

- idargc_genscat

- getarg_genscat

- write_usage

- read_and_aggregate_szf-data (-)
- read bufr file (-)

- read_pfs file (-)

- preprocess (-)

- read_full_res_data

- calibrate_sO0 (-)

- get grib data (-)

- invert wvcs (-)

- ice model (-)

- remove ambiguities (-)
- calibrate_sO

- postprocess (-)

- write bufr file (-)

—- process_cleanup

L GetElapsedSystemTime

Figure A.1 Calling tree for program awdp (top level). White boxes are cut here and will be continued in
one of the first level or second level calling trees in the next figures. Lines with italic text indicate genscat
routines.

o1

NWP SAF

Doc ID

AWDP Top Level Design \ée:sion
ate

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(») read bufr file

- ascat_|

- GetElapsedSystemTime

- init_bufr_processing

- set BUFR_fileattributes
- open BUFR file (-)

- get BUFR_nr_of_messages
- get BUFR message (-)

- ers_bufr_to_row_data

init cell (-)
get_wvc_quality
BufrReal2Int
get_beam_collocation
set_knmi_Tflag

test cell (-)
ymd2julian
Julian2ymd
bufr_to_row_data
init_cell (-)
get_wvc_quality
BufrReal2Int
get_beam_collocation
get_kp_estim_qual

test cell (-)

- close BUFR file (-)
- ymd2julian

Figure A.2 Calling tree for routine read_bufr_file (first level).

52

NWP SAF

AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(») read pfs_fFile

(=)

preprocess

[

- GetElapsedSystemTime
- get_lun
- open_pfs_ascat_file (-)

- ascat_pfs_to_row_data

read_pfs_ascat_data_record (-)
get_pfs_ascat_grid_node (-)
init cell (-)
get_beam_collocation
get_kp_estim_qual

test_beam

init_beam

WVC_Orientation

test cell (-)

- close_pfs_ascat_file (-)
- Tfree_lun

- ymd2julian

Figure A.3 Calling tree for routine read_pfs_file (first level).

- GetElapsedSystemTime
- GetSortlndex

- merge_rows

copy_cell

set_knmi_Tflag

- Init _cell (-)
- copy_cell
- pre_inversion_qc

- get_ers_orbit_numbers

Figure A.4 Calling tree for routine preprocess (first level).

53

Doc ID

NWP SAF AWDRP Top Level Design | Version

Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(=) read full_res_data

GetElapsedSystemTime
init_grib_processing

I: init_GRIB_module

set_GRIB_filelist (-)

inquire_GRIB_filelist (-)
get_lun
open_pfs_ascat_file (-)
read_pfs_ascat_data_record (-)
get_pfs_ascat_fres_node (-)
get_distance
get_from GRIB_filelist (-)
test cell (-)
close_pfs_ascat_file
free_lun
init_I12_sm
init_I12_wind (-)

get_wvc_quality

Figure A.5 Calling tree for routine read_full_res_data (first level).

54

Doc ID

NWP SAF AWDRP Top Level Design | Version

Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(») read and_aggregate_szf_data

GetElapsedSystemTime
init_grib_processing

t init_GRIB_module

set_GRIB_filelist (-)

inquire_GRIB_filelist (-)
find_szf files

L split_text
init_szf _data
read_szf data
- get_lun
- open_pfs_ascat_file (-)
- read_pfs_ascat _data_record (-)
- get pfs_ascat_fres_node (-)

- close_pfs_ascat_file

- Tfree_lun
set_GRIB_land_sea_mask
L get_from _GRIB_filelist (-)
read_aggregation_table
init_cell ()
init_cell_data
get_beam_collocation
get_kp_estim_qual
get_wvc_quality
get_beam_centers
get_offsets
aggregate
- check_szf _entry
- update_szf correlation_sum
- test_cell (-)

- test_beam

—- init_beam
WVC_Orientation
test_cell ()

exit_szf data
exit_aggregation_table
GetElapsedSystemTime

Figure A.6 Calling tree for routine read_and_aggregate_szf data .(first level)

55

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

(—)calibrate_sO

correct_noc
- interpolate_corr_82_162
- test cell (-)
correct_I1b
- interpolate_corr_42_82

- interpolate_corr_82_ 162

- test cell (-)

Figure A.7 Calling tree for routine calibrate_s0 (first level).

(-») get grib data
- GetElapsedSystemTime
- init_grib_processing

t init_GRIB_module

set GRIB filelist (-)

- inquire GRIB filelist (-)
- get from GRIB filelist (-)
- get_colloc_from _GRIB_filelist (-)

- test cell (-)

—~ dealloc_all GRIB messages (-)

Figure A.8 Calling tree for routine get_grib_data (first level).

(») invert wvcs

- GetElapsedSystemTime

- init_inversion

- init_inv_settings_to_default

- get_inv_settings

- set_inv_settings

- invert_node

- Init_inv_input

- invert one wvc (-)

- check wind_solutions_ers_ascat (-)
- normalise_conedist_ers_ascat (-)

- set_knmi_flag

—- calc_probabilities
L GetSortiIndex

- test cell (-)

Figure A.9 Calling tree for routine invert_wvcs (first level).

56

NWP SAF

Doc ID

AWDP Top Level Design \ée:sion
ate

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(=)

ice model

- GetElapsedSystemTime

- nonbayesianlcemodel

calclcelineParms

L

getClass

calcPoly3

set_knmi_Tflag
test_cell (-)

—- bayesianlceModel

initlceMap

RW_IlceMap

- get_lun

~- free_lun
scat2iceMap

- latlon2ij (-)

- calclceCoord

- sSpeeddir_to_u

- speeddir_to_v

- SetlntegerDate

- SetlntegerTime

- updatelcePixel (-)
- printIcePixel (-)
- print_icemodel

- print_wvc_quality

- print_cell (-)
calc_plceGivenX
- ExpandDateTime

- wT (—r)

calc_aAve

- ExpandDateTime

- wT (=)
calc_aSd

- ExpandDateTime
- wT (=)

calcSubClass
smooth
iceMap2scat

L

printIceMap (-)

set_knmi_flag

Figure A.10 Calling tree for routine ice_model (first level).

S7

NWP SAF

Doc ID

AWDP Top Level Design \ée:sion
ate

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(~) remove_ambiguities

L

[

L

L

- GetElapsedSystemTime

- InitAmbremModule

InitBatchModule

- InitAmbremMethod

InitAmbremBGclosest
InitTwodvarModule (-)
InitDummyMethod

GetMaxBatchSize
- fill_batch

get_distance
AllocRowsAndCel IsAndInitBatch
t InitBatch
AllocAndInitBatchRow
t InitBatchRow
InitBatchCell
AllocAndInitBatchCell
t InitBatchCell
InitBatchAmbi
speeddir_to_u
speeddir_to_v
TestBatch
L TestBatchRow
L TestBatchCell

- DoAmbrem (-)

select_wind

TestBatchCell
test_cell ()

Deal locBatch

Deal locBatchRows
L DeallocBatchCells
L Deal locBatchAmbis

ExitAmbremMethod

ExitTwodvarModule
L TDV_Exit

Figure A.11 Calling tree for routine remove_ambiguities (first level).

58

NWP SAF AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(-) postprocess

GetElapsedSystemTime
monitoring

- Speeddir_to_u
- sSpeeddir_to_v
- get_lun

—- free_lun
write_properties

- get_lun

—- free_lun
write_binary_output
- get_lun

—- free_lun

Figure A.12 Calling tree for routine postprocess (first level).

() write_bufr_file

GetElapsedSystemTime
init_bufr_processing
set_BUFR_Tfile_attributes
open BUFR file (-)
InitAndSetNrOfSubsets
row_to_bufr_data
Bufrint2Real
set_beam_collocation
set_kp_estim_qual
set_wvc_quality
save BUFR message (-)

close_BUFR_file (-)

Figure A.13 Calling tree for routine write_bufr_file (first level).

59

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001

Date . February 2017

() init_cell

init_time
get_beam_collocation
init_beam

L

init_full_res

get_kp_estim_qual

get_12_sm
init_12_wind (-)

Figure A.14 Calling tree for routine init_cell (second level).

() init_I12_wind

init_wind
get_wvc_quality
init_icemodel

init_process_flag

Figure A.15 Calling tree for routine init_I2_wind (second level).

(~) test_cell

test_time
test_beam

test_wind

Figure A.16 Calling tree for routine test_cell (second level).

() print_cell

print_time
print_beam
print_wind
print_wvc_quality
print_ambiguity

print_process_flag

Figure A.17 Calling tree for routine PrintCell (second level).

60

NWP SAF AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(-)calclceCoord
calclcelineParms

L calcPoly3

Figure A.18 Calling tree for routine calclceCoord (second level).

(~)updatelcePixel
ExpandDateTime
getClass
getPx

Figure A.19 Calling tree for routine updatelcePixel (second level).

61

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B1: Calling tree for inversion routines

The figures in this appendix show the calling tree for the inversion routines in genscat. All routines
are part of genscat, as indicated by the italic printing. An arrow (—) before a routine name
indicates that this part of the calling tree is a continuation of a branch in a previous figure. The
same arrow after a routine name indicates that this branch will be continued in a following figure.

(») invert one_wvc
F init_inv_settings_to_default
init_inv_output
print_message
check_input_data
F print_input_data of _inversion
F my_exit
L print_message
convert_sigma_to_zspace
calc_normalisation
L calc_var_sO
find minimum cone dist (-)

my_min

my_max
get_indices_lowest_local_minimum

F my_index_max

L print_message

do_parabolic_winddir_search

L get_parabolic_minimum

L

GetSortindex

my_exit

SortWithIndex

calc_sign_MLE

L calc_sigmalO (-)

|_
|_
|_
|
|
|
|_
I_
|_
|_
F my_average
|_
|_
|
|
|_
|
|
|_
|_
|_
'L

fill wind quality code (-)

Figure B1.1 Calling tree for inversion routine invert_one_wvc.

62

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

(-) find minimum cone dist
|— calc_cone_distance
| L
L get_parabolic_minimum
L

calc_sigmal (-)

my_exit

Figure B1.2 Calling tree for inversion routine find_minimum_cone_dist

(~) calc_sigma0

F read_LUT
| F get_lun
L free_lun

create_LUT_C VWV
|— get_lun
|— calc_sigmaO_cmod4
| I— Get_Br_from_Look Up_Table
| L
|— calc_sigma0O_cmod5 (5, _n)
L

|

|_

|

|

|

|

|

| free_lun
|— test_for_identical_LUTs
|— my_exit

L

INTERPOLATE

Figure B1.3 Calling tree for inversion routine calc_sigma0. Routine INTERPOLATE is an interface that
can have the values interpolateld, interpolate2d, interpolate2dv or interpolate3d. There are several
equivalent routines to calculate the CMOD backscatter, like calc_sigma0_cmod5, calc_sigma0_cmod5_5,
calc_sigma0_cmod5_n, calc_sigma0_cmodé.

(~)check_wind_solutions_ers_ascat
|— remove_one_solution

L calc_dist_to_cone_center

L calc_sigma0 (-)

Figure B1.4 Calling tree for inversion routine check_wind_solutions_ers_ascat.

(~)normalise_conedist_ers_ascat
|— check_ers_ascat_inversion_data

L

calc_kp_ers_ascat

L

calc_geoph_noise_ers_ascat

Figure B1.5 Calling tree for inversion routine normalize_conedist_ers_ascat.

63

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B2: Calling tree for AR routines

The figures in this appendix show the calling tree for the Ambiguity Removal routines in genscat.
All routines are part of genscat, as indicated by the italic printing. An arrow (—) before a routine
name indicates that this part of the calling tree is a continuation of a branch in a previous figure.
The same arrow after a routine name indicates that this branch will be continued in a following
figure.

(~) InitTwodvarModule
L 1ov_init
I set_crw
L Set_HelmholzCoefficients

Figure B2.1 Calling tree for AR routine InitTwodvarModule.

64

Doc ID
NWP SAF AWDRP Top Level Design | Version

Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(~) DoAmbrem
F TestBatch
| L TestBatchrow
L TestBatchcell
AmbRemlstRank
DoAmbremBGclosestOnBatch
L uv_to_dir

DoAmbremPreScatOnBatch

L

Do2DVARonBatch
| Batchinput2ovar
| F TestBatchCell

uv_to_dir

InitObs2DVAR ()
Set_WVC_Orientations
L WVC_Orientation

rotuv

r—T - T 1

|
|
|
|
| PrintObs2DVAR
I Do2ovar ()
L Batchoutput2DVAR
|_ rotuv
I initobs2ovar ()

|
|_
|_
|
|_
| L DoAmbremBGclosestOnBatch
|
|_
|
|
|
|
|
|
|
|
|
|
|
| L peallocObs2DVAR

L DoDummyMeth

Figure B2.2 Calling tree for AR routine DoAmbrem.

(~) InitObs2dvar
InitOneObs2dvar

L TestObs2dvar
L set2pvARQualFlag

Figure B2.3 Calling tree for AR routine InitObs2dvar.

65

NWP SAF

Doc ID
Version

AWDP Top Level Design
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(~) DO2DVAR

() Jt

R
|

|_
|_
|
|
|
|_
|_
|
|
|
|
|
|
|
|_
|
L

TestObs2dvar

L set2DVARQualFlag
Prn2DVARQualFlag
SetCovMat

F StrucFuncPsi

F StrucFuncChi

L SingletonFFT2d ()
Jt)
Minimise

F oot

L LsFes
daxpy
ddot
LB1
MCSRCH

L vcsTep

| i i i

TestObs2dvar
L set2DVARQualFlag
DumpAnalysisField

Figure B2.4 Calling tree for AR routine Do2DVAR.

Jb
Jo
Unpack_ControlVector
Uncondition

L SingletonFFT2d (-)
JoScat
Uncondition_adj

L SingletonFFT2d (-)

Pack_ControlVector

r— 1 1. - 1T 1

Figure B2.5 Calling tree for AR routine Jt (calculation of cost function).

66

NWP SAF

AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(~) SingletonFFT2d

L fre

rr——r 1 ‘11— T T

SFT_PrimeFactors

SFT_Permute
F SFT_PermuteSinglevariate
L SFT_PermuteMultivariate

SFT_Base2

SFT_Base3

SFT_Base4

SFT_Base5

SFT_Base0Odd

SFT_Rotate

Figure B2.6 Calling tree for AR routine SingletonFFT2D.

67

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B3: Calling tree for BUFR routines

The figures in this appendix show the calling tree for the BUFR file handling routines in genscat.
Routines in italic are part of genscat. Underlined routines followed by (E) belong to the ECMWF
BUFR library. Other underlined routines belong to the bufrio library (in C). An arrow (—) before
a routine name indicates that this part of the calling tree is a continuation of a branch in a previous
figure. The same arrow after a routine name indicates that this branch will be continued in a
following figure.

(~) open_BUFR_File

F bufr_open
F bufr error

L pufr_split

Figure B3.1 Calling tree for BUFR file handling routine open_BUFR_file.

(~) close_BUFR_file
F bufr close
L

bufr error

Figure B3.2 Calling tree for BUFR handling routine close_ BUFR file.

68

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

(-) get_BUFR_message
get_expected_BUFR_msg_size
bufr_read allsections

bufr error

bufr get section sizes

bufr swap allsections

T T T1T7TI

ExpandBufrMessage
I Buso12 (8)
PrintBufrErrorCode
CheckBufrTables
F get_file_size
F encode_table_ b
L encode_table_d

BUFREX (E)
FillBufrSecData

BUSEL (E)

rr—— 1 — - T T

Figure B3.3 Calling tree for BUFR handling routine get. BUFR_message.

(~) save_BUFR_message

F EncodeBufrData
CheckBufrData
FillBufrData
BUFREN (E)

PrintBufrErrorCode

r—r 1T 1

bufr swap allsections

bufr write allsections

rr——r—

bufr error

Figure B3.4 Calling tree for BUFR file handling routine save_ BUFR file.

69

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B4: Calling tree for GRIB routines

The figures in this appendix show the calling tree for the GRIB file handling routines in genscat.
Routines in italic are part of genscat. Underlined routines followed by (E) belong to the ECMWF
GRIB API library. An arrow (—) before a routine name indicates that this part of the calling tree is
a continuation of a branch in a previous figure. The same arrow after a routine name indicates that
this branch will be continued in a following figure.

(~) set_GRIB_filelist
L open_GRIB_file
grib open file (E)

grib multi support on (E)

grib new from file (E)

T T T

read_GRIB_header_info

L grib_get (B)
Figure B4.1 Calling tree for GRIB file handling routine set_ GRIB_filelist.

(~) inquire_GRIB_filelist
get_GRIB_msgnr
F display_req_GRIB_msg_properties

L display_GRIB_message_properties

Figure B4.2 Calling tree for GRIB file handling routine inquire_GRIB_filelist.

70

NWP SAF

AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(~) get_from_GRIB_Filelist

L

L

rr—r——TT T T

get_GRIB_msgnr

F display_req_GRIB_msg_properties
display_GRIB_message_properties
display_req_GRIB_msg_properties
display_GRIB_message_properties
get_GRIB_data_values

F grib_get (B)
F grib is missing (E)

grib_set (B)

get_angle_distance

extract_data_from_GRIB_message

Figure B4.3 Calling tree for GRIB file handling routine get_from_GRIB filelist.

(~) get_colloc_from_GRIB_filelist

L

L

L

T T T

convert_to_derived_datetime
conv_date_to_daycount
get_analyse_date_and_times
inquire_GRIB_Filelist ()
check_proximity_to_analyse
conv_date_to_daycount
inquire_GRIB_Filelist ()
get_from GRIB_filelist (-)

Figure B4.4 Calling tree for GRIB file handling routine get_colloc_from_GRIB_filelist.

(~) dealloc_all_GRIB_messages

F dealloc_GRIB_message
F grib release (E)

L grib close file (E)

Figure B4.5 Calling tree for GRIB file handling routine dealloc_all_GRIB_messages.

71

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B5: Calling tree for PFS routines

The figures in this appendix show the calling tree for the PFS (native Metop format) file handling
routines in genscat. All routines are part of genscat, as indicated by the italic printing. An arrow
(—) before a routine name indicates that this part of the calling tree is a continuation of a branch in
a previous figure. The same arrow after a routine name indicates that this branch will be continued
in a following figure.

(—)open_pfs_ascat_fFile
read_rec

| F read_string_from_file

| L get_uint

F get_str

F get_num

F strne

F skip_nrec

| L skip_rec

| F read_string_from_file

| L get_uint

L

streq

Figure B5.1 Calling tree for PFS file handling routine open_pfs_ascat_file.

(—)read_pfs_ascat_data_record
F read_string_from_file

L get_uint

Figure B5.2 Calling tree for PFS file handling routine read_pfs_ascat_data_record.

72

NWP SAF

Doc ID
Version

AWDP Top Level Design
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(-)get_pfs_ascat_grid_node

|_

r—r -+~ 1°r —T°rr-—_T°r - -

5 e [e L

get_szo_node

get_time

F get_ushort

F get_uint

F ymd2jutian

L Julian2ymd
get_ushortl

L get_ushort
get_intl

L get_int
get_uintl

L get_uint
get_int3

L get_int
get_ushort3

L get_ushort
get_short3

L get_short

get_uchar3

get_szr_node
get_smo_node
get_smr_node
get_szf grid_node
ymd2julian

calc_asc

Figure B5.3 Calling tree for PFS file handling routine get_pfs_ascat_grid_node. The calling tree for
get_szr_node, get_smo_node, get_smr_node and get_szf _grid_node is identical to to the one of

get_szo_node.

73

NWP SAF

AWDP Top Level Design

Doc ID
Version
Date

: NWPSAF-KN-DS-004
: 3.001
. February 2017

(-)get_pfs_ascat_fres_node

get_time

| i I B

get_ushort
get_uint

ymd2julian
jJulian2ymd

get_intl

L

get_int

get_ushortl

L

L

get_ushort

get_uint

get_ucharl

ymd2julian

|
|
|
|
|_
|
|_
|
F get_uintl
|
|_
|_
L

calc_asc

Figure B5.4 Calling tree for PFS file handling routine get_pfs_ascat_fres_node.

74

DocID : NWPSAF-KN-DS-004

NWP SAF AWDP Top Level Design | Version : 3.001
Date . February 2017

Appendix B6: Calling tree for ASCAT-5.6 routines

The figures in this appendix show the calling tree for the routines needed to generate the ASCAT-
5.6 product. This product is based on a different approach to generate the gridded ° values PFS
(native Metop format) file handling routines in genscat. All routines are part of genscat, as
indicated by the italic printing. An arrow (—) before a routine name indicates that this part of the
calling tree is a continuation of a branch in a previous figure. The same arrow after a routine name
indicates that this branch will be continued in a following figure.

(—)open_pfs_ascat_File
read_rec

| F read_string_from_file

| L get_uint

I get_str

F get_num

F strne

F skip_nrec

| L skip_rec

| F read_string_from_file

| L get_uint

L

streq

75

NWP SAF

DocID : NWPSAF-KN-DS-004

AWDP Top Level Design Version : 3.0.01
Date . February 2017

Appendix B7: Calling tree for ice model routines

The figures in this appendix show the calling tree for the ice model routines in genscat. All
routines are part of genscat, as indicated by the italic printing. An arrow (—) before a routine name
indicates that this part of the calling tree is a continuation of a branch in a previous figure. The
same arrow after a routine name indicates that this branch will be continued in a following figure.

() latlon2ij
mapll

) wT

Figure B7.1 Calling tree for routine latlon2ij.

ExpandIntegerDate

F ExpandIntegerTime

L

(~) printlceMap

ymd2julian

Figure B7.2 Calling tree for routine wT (second level).

printlceAscat

|_

L

get_lun

free_lun

printlceQscat

|_

L

|_

L

|
|
|_
|
|
F printSubclass
|
|
L

get_lun

free_lun

get_lun

free_lun

printppmvar

|_

L

get_lun

free_lun

Figure B6.3 Calling tree for routine printiceMap (second level).

76

NWP SAF

DocID : NWPSAF-KN-DS-004

AWDP Top Level Design Version : 3.0.01
Date . February 2017

Appendix C: Acronyms

Name Description

AMI Active Microwave Instrument, scatterometer on ERS-1 and ERS-2 satellites

AR Ambiguity Removal

ASCAT Advanced SCATterometer on Metop

BUFR Binary Universal Form for the Representation of data

C-band Radar wavelength at about 5 cm

ERS European Remote Sensing satellites

ECMWF European Centre for Medium-range Weather Forecasts

EUMETSAT European Organization for the Exploitation of Meteorological Satellites

genscat generic scatterometer software routines

GMF Geophysical model function

HIRLAM High resolution Local Area Model

KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological
Institute)

Ku-band Radar wavelength at about 2 cm

L1b Level 1b product

LSM Land Sea Mask

LUT Look up table

Metop Meteorological Operational Satellite

MLE Maximum Likelihood Estimator

MSS Multiple Solution Scheme

NCEP United States National Centers for Environmental Prediction

NRCS Normalized Radar Cross-Section (¢°)

NWP Numerical Weather Prediction

(O] Ocean and Sea Ice

PFS Product Format Specification (native Metop file format)

QC Quality Control

RFSCAT Rotating Fan beam Scatterometer

RMS Root Mean Square

SAF Satellite Application Facility

SSM Surface Soil Moisture

SST Sea Surface Temperature

wWVC Wind Vector Cell, also called node or cell

Table C.1 List of acronyms.

77

	Contents
	1 Introduction
	1.1 Design drivers
	1.2 Conventions

	2 Program Design
	2.1 Top Level Design
	2.1.1 Main program
	2.1.2 Layered model structure
	2.1.3 Data Structure
	2.1.4 Quality flagging and error handling
	2.1.5 Verbosity

	2.2 Module design for genscat layer
	2.2.1 Module inversion
	2.2.2 Module ambrem
	2.2.3 Module icemodel
	2.2.4 Module Bufrmod
	2.2.5 Module gribio_module
	2.2.6 Support modules

	2.3 Module design for process layer
	2.3.1 Module awdp_data
	2.3.2 Module awdp_bufr
	2.3.3 Module awdp_pfs
	2.3.4 Module awdp_szf
	2.3.5 Module awdp_prepost
	2.3.6 Module awdp_calibrate
	2.3.7 Module awdp_grib
	2.3.8 Module awdp_inversion
	2.3.9 Module awdp_ambrem
	2.3.10 Module awdp_icemodel
	2.3.11 Module awdp

	3 Inversion module
	3.1 Background
	3.2 Routines
	3.3 Antenna direction

	4 Ambiguity Removal module
	4.1 Ambiguity Removal
	4.2 Module ambrem
	4.3 Module BatchMod
	4.4 The KNMI 2DVAR scheme
	4.4.1 Introduction
	4.4.2 Data structure, interface and initialisation
	4.4.3 Reformulation and transformation
	4.4.4 Module CostFunction
	4.4.5 Adjoint method
	4.4.6 Structure Functions
	4.4.7 Minimization
	4.4.8 SingletonFFT_Module

	4.5 The PreScat scheme

	5 Module iceModelMod
	5.1 Background
	5.2 Routines
	5.3 Data structures

	6 Module BufrMod
	6.1 Background
	6.2 Routines
	6.3 Data structures
	6.4 Libraries
	6.5 BUFR table routines
	6.6 Centre specific modules

	7 Module gribio_module
	7.1 Background
	7.2 Routines
	7.3 Data structures
	7.4 Libraries

	References
	Appendix A: Calling tree for AWDP
	Appendix B1: Calling tree for inversion routines
	Appendix B2: Calling tree for AR routines
	Appendix B3: Calling tree for BUFR routines
	Appendix B4: Calling tree for GRIB routines
	Appendix B5: Calling tree for PFS routines
	Appendix B6: Calling tree for ASCAT-5.6 routines
	Appendix B7: Calling tree for ice model routines
	Appendix C: Acronyms

