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Abstract 
 

Thunderstorms can be a serious threat to society. In the Netherlands, the Royal Netherlands 
Meteorological Institute (KNMI) is responsible for issuing an extreme weather warning for severe 
thunderstorms, based on high total lightning intensity. To help forecasters decide whether they should 
issue an extreme weather warning, a Model Output Statistics (MOS) system was developed. This 
system uses logistic regression equations to predict both the probability of thunderstorms and the 
conditional probability of severe thunderstorms for twelve regions of 90 by 80 km2 over the 
Netherlands, and makes forecasts for 6-h periods up to 2 days ahead. Predictors are obtained from 
ECMWF and HIRLAM model output and from ensembles of advected radar and lightning data, the 
latter only for the 0-6 h forecasts. The system has been operational since 2006 and runs during the 
warm half year, from mid-April to mid-October.  

In this study we investigate an ensemble of Meteosat Second Generation (MSG) data as an additional 
predictor source for the 0–6 h projections of the MOS thunderstorm forecasting system. Cloud 
Physical Properties (CPPs), which are derived from MSG data, are advected using vectors derived 
from previous MSG images. Varying the magnitude and direction of these vectors creates the 
ensemble. A description is given of the relations between CPP and lightning intensity. Predictors are 
created based on these relations and investigated as additional potential predictors in the system, 
besides those used in the current system. CPP predictors are included in 4 of the 8 severe thunderstorm 
forecast equations. Equations including these predictors generally improve the forecast skill of the 
system compared to forecast equations without CPP predictors and the (updated) operational system. 
Another advantage of the new severe thunderstorm forecast equations arises due to their derivation 
using extended logistic regression. Forecasts can be made using the new system for any arbitrarily 
chosen lighting intensity threshold. The forecasts prove to be skillful up to very high lightning 
intensities, much higher than those used in the currently operational forecasting system. The new MOS 
system currently runs experimentally at KNMI and will become operational if it improves forecast 
skill over the coming year.  
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1. Introduction 
 

In the Netherlands thunderstorms appear quite frequently during the late spring, summer and early 
autumn. Lightning, associated with thunderstorms, can be a threat to society.  It may cause damage to 
property, electric utilities, endanger humans and livestock and is a threat to aviation. Thunderstorms 
are associated with deep moist convection. General ingredients for the initiation of thunderstorms are 
known to be: potential instability, high levels of moisture in the atmospheric boundary layer and a 
source of lift to initiate convection (Johns and Doswell, 1992). The interaction between these 
conditions on different scales causes the formation of thunderstorms.  
 
Forecasting thunderstorms is however one of the most difficult tasks for meteorologists, mainly due to 
the fact that lightning or lightning intensity is not available as direct Numerical Weather Prediction 
model output (Lilly, 1990). Meteorologists have however tried to assess thunderstorm risk since the 
late 1940’s using parameters deduced from vertical temperature, moisture and wind profiles 
(Haklander and Van Delden, 2003). Initially these parameters have been calculated from rawinsonde 
data and were later derived from NWP model output. At KNMI, automated probabilistic forecasts 
have been developed from the beginning of the 1980’sto predict the occurrence of a thunderstorm. The 
technique used to develop these forecast equations is referred to as Model Output Statistics (MOS) 
(Glahn and Lowry, 1972).  
 
MOS improves on aspects of conventional NWP forecasts by post-processing raw NWP output 
(Wilks, 2006). The technique is based on multiple linear or logistic regression equations. Past values 
of a predictand to be forecast and a matching collection of potential predictors, which have to be 
known prior to the forecast time are required for the development of the equations. These predictors 
may come from historical observations, besides data from historical NWP forecasts. The predictand is 
a dichotomous event stating either ‘yes’ or ‘no’ whether the forecasted event has occurred. A 
forecasting procedure is developed using the set of historical data and can be used to forecast future 
values of the predictand on the basis of future predictor values.  
 
As lightning intensity is not available as direct output from NWP models, MOS is considered to be a 
very useful technique to assess thunderstorm risk. The first MOS system developed at KNMI was used 
to predict the occurrence of a thunderstorm at one of ten observational stations in the Netherlands for a 
period of 0000-2400 UTC (Lemcke and Kruizinga, 1988). MOS forecast equations were derived using 
potential predictors form archived model forecasts of the European Centre for Medium-Range 
Weather Forecasts (ECMWF). A thunderstorm was said to have occurred if it had been reported 
within the period 0000 – 2400 UTC by at least one of ten stations in the Netherlands (the predictand).  
 
As interest from society grew, a more sophisticated system was developed in 2004, referred to as 
INDECS (Schmeits et al., 2005). Remote sensor lightning observations had been operational for a 
number of years and it was now possible to use lightning data from the Surveillance etd’Alerte Foudre 
par Interférométrie (SAFIR) network as predictand (Wessels, 1998). This made it possible to make 
thunderstorm probability forecasts for regions of 90 km x 80 km over the Netherlands. Two 
predictands were defined for each region and time period: the probability of a thunderstorm event (≥2 
detected lightning discharges) and the conditional probability of a severe thunderstorm event (≥500 
detected lightning discharges), under the condition of a thunderstorm event. The potential predictor set 
consisted of indices computed from ECMWF model and High Resolution Local Area Modelling 
(HIRLAM) model data, the (co)sine of the day of the year and so called P27 scores (Kruizinga, 
1979).The system increased temporal resolution to periods of 6 hours and made forecasts out to 48 
hours in advance. 
 
In 2006, an additional system was introduced, referred to as ‘Kansverwachting Onweer ten behoeve 
van Uitgifte Weeralarm’ (KOUW). In this new system, an 18-memberensemble of advected radar and 
lightning data was included as additional predictor sources for the 0-6 hour projections (Schmeits et 
al., 2008). Because of the addition of advected observations to the system, the runtime frequency of 
the system could be increased to 8 times a day. It was further different from the 2004 version in the 
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definition of severe thunderstorms. A severe thunderstorm was defined in KOUW under the condition 
of a thunderstorm event and included thresholds of 50, 100 and 200 detected lightning discharges in 5 
minutes. KOUW runs out to 12 hours in advance at 6 hour time periods. INDECS and KOUW are 
currently operational at KNMI during the summer half year, from mid-April to mid-October.  
 
For further development of KOUW, Schmeits et al. (2008) recommended to include Meteosat Second 
Generation (MSG) satellite data as an additional predictor source. MSG data could not be included 
during the initial development of KOUW as the MSG satellite has only been operational since 2004. 
MSG data has to date been available and archived for 7 years. This study addresses the 
recommendation made by Schmeits et al. (2008) and aims to improve the 0-6 hour projections of 
KOUW by including MSG data as an additional predictor source.  
 
MSG products of interest to this study are Cloud Physical Properties (CPPs) derived from the 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board the MSG satellite (Roebeling, 
2008). Cloud physical properties are retrieved using visible and near-infrared cloud reflectances and 
infrared cloud top temperatures, with Radiative Transfer Model (RTM) simulations and a CPP 
algorithm (Roebeling, 2008).  The retrieval is done by the Satellite Application Facility on Climate 
Monitoring (SAF-CM), which was initiated by the EUropean organisation for the exploitation of 
METeorological SATellites (EU-METSAT).  
 
In 2009, a study at KNMI was devoted to the detection of Cb clouds, associated with thunderstorms, 
using CPPs (Carbajal et al., 2009). The results of this study were promising and show support to the 
idea of including MSG data for thunderstorm forecasting. In addition, previous studies have found 
strong relations between ice water content in clouds and thunderstorms (Petersen et al., 2006; 
Deierling et al., 2006). Ice water content can be derived from, or is associated with, several CPPs and 
it is thus expected that advected MSG data can improve the 0-6 h projections of KOUW. Furthermore, 
the range of MSG data around the Netherlands is substantially larger compared to lightning or radar 
data, making it possible to advect observations over longer distances. The main research question in 
this study is:  
 
Can predictors derived from an ensemble of advected MSG data improve the forecasting skill of the 0-
6 hour thunderstorm forecasts of the current MOS system, operational at KNMI?  
 
New forecast equations are derived using data from the years 2008 – 2010. Verification is however 
done over a totally independent dataset of 2011. The forecast equations are compared to the 
operational forecast equations and forecast equations derived excluding MSG data to give an 
indication of the increase in forecast skill. Supplementary to the main research question, the following 
sub questions are addressed:  
 

• What is the relation between different cloud physical properties derived from MSG data and 
thunderstorms?  

• How can advected cloud physical properties be used to forecast thunderstorms?  
• Do thunderstorm forecasts including advected cloud physical properties have more skill 

compared to equations excluding advected cloud physical properties?  
 
The structure of this thesis is as follows. Chapter 2 provides important background information, 
needed to understand the formation and characteristics of thunderstorms. In chapter 3, the relevant 
remote sensing techniques are explained; the chapter presents useful background information on 
observational data used in this study. Remote sensing of clouds using satellite data is discussed but 
also remote sensing using weather radars and a lightning detection network. Chapter 4 presents how 
the data is used to create statistical thunderstorm forecasts, it explains the advection techniques and 
how the final equations are validated. In chapter 5 the verification of the system is presented and a 
summary and conclusion of the thesis is presented in chapter 6. 
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2. Theoretical background 
 
Thunderstorms are characterized by the presence of lightning and its associated acoustic effect known 
as thunder. They are associated with deep, moist convection and strong vertical air motion. The type 
of cloud that gives rise to thunderstorms is referred to as a cumulonimbus cloud (Cb cloud). They are 
observed at low heights (0-2 km) and extend all the way to the top of the troposphere, up to heights of 
about 15 km.  
 
This chapter provides the fundamental concepts necessary to understand thunderstorm development 
(2.1), explains the development of ordinary thunderstorms (2.2) and gives a description of lightning 
and storm electricity (2.3). A basic classification scheme of thunderstorm types is given in paragraph 
2.4 and the final paragraph discusses thunderstorm climatology (2.5).  
 
2.1 Fundamental concepts 
 
2.1.1 Cloud formation 
 
Before considering large thunderstorm systems, it is important to understand the fundamental concepts 
of cloud formation. Clouds form when water vapor, which is present in air parcels, condenses. This 
happens when air is cooled to the temperature where it becomes saturated, the dew point temperature 
(Cotton, 1990).  
 
A standard measure for the amount of water vapour that an air parcel contains is water vapour partial 
pressure (e). It refers to the pressure exerted by only the water vapour part of the air parcel and is 
expressed in hPa. The maximum amount of water vapour that air parcels can hold is referred to as the 
saturation vapour pressure (es). A parcel becomes saturated when e = es. Air parcels are subsaturated 
when e < es and supersaturated when e > es. The ratio of e to es can be expressed as Relative Humidity 
(RH) in percent:  
 

%100*
se

e
RH =

 (2.1) 

 
When air parcels cool, e remains constant and es decreases. The decrease of es with temperature is 
expresses by the Claussius-Clayperon relation (Iribarne and Godson, 1973). A graphical representation 
of the Claussius-Clayperon relation is presented in figure 2.1. es decreases with temperature, so that 
cooling air parcels experience an increasing relative humidity. Relative humidity increases until air 
parcels reach their dew point temperature and RH reaches 100%.  
 

 
Figure 2.1 Claussius-Clayperon relation in graphical form. Water vapor pressure (mb) is plotted against temperature; 
saturation vapor pressure (es) is indicated by a solid line. Source: Roelofs, 2010.  
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From RH levels of 100 % onward, water vapour is allowed to condense into water drops. It is not said 
however that water vapour condenses precisely at the dew point temperature.  For the homogenous 
nucleation of water droplets, relative humidity levels of several hundred percents would be needed 
(Houze, 1993). Super saturation levels are rarely over 1% however. This is caused by Cloud 
Condensation Nuclei (CCN) on which cloud drops in the atmosphere grow, a process referred to as 
heterogeneous nucleation (Jacob, 1999). CCN are small (~0.02 mm), water attracting aerosol particles 
in the atmosphere. They originate from the condensation of gasses and action of the wind on the 
earth’s surface and may have a natural or anthropogenic cause. Examples of CCN are: sea salt, soil 
dust, vegetation debris, organic carbon and sulphate. Because of the abundant presence of CCN in the 
atmosphere we can assume that clouds appear when air is cooled to the point where RH exceeds 
100%. 
 
The cooling of air particles in the atmosphere may happen in several different ways: by advection of 
warm air over a cold surface, by mixing of air parcels with different temperatures or by lifting of air to 
greater heights. Especially this latter mechanism is important for the formation of thunderstorms. 
 
2.1.2 Convection 
 
Air parcels can be lifted to greater heights through mechanical or buoyant forces. Mechanical forces 
include orographic lifting or low-level wind shear. Buoyant forces arise in an unstable atmosphere, 
when air becomes warmer than its environment. Convection is a term describing rising air motion due 
to buoyant forces. Below we illustrate the process of convection, but first we need to understand how 
particles move vertically through the atmosphere.  
 
When air parcels rise, they cool due to decreasing atmospheric pressure, which occurs at a certain rate 
of temperature decrease with height (Houze, 1993). The process is called adiabatic if air parcels 
exchange no heat with their environment. An unsaturated ascending air parcel experiences no heating 
or cooling within the system and follows a dry adiabatic lapse rate. The rate of temperature decrease 
with height of the dry adiabatic lapse rate is about 9.8 K/km, which remains approximately constant 
throughout the atmosphere. When an air parcel that follows the dry adiabatic lapse rate is cooled to its 
dew point temperature, it condenses. The level in the atmosphere at which air parcels start 
condensation is referred to as the Lifting Condensation Level (LCL). Beyond this level, phase changes 
occur and water vapour changes into liquid water. Phase changes are always accompanied by the 
release or absorption of heat within the system, which is caused by the fact that different phases of 
water contain different energy amounts. Heat is released in phase changes from water vapour to liquid 
water, called latent heat release. This causes condensating rising air parcels to cool at lower rate. 
Beyond the LCL, air parcels cool at the moist adiabatic lapse rate, which is about 4 - 6 K/km 
depending on moisture content.  
 
As long as an air parcel is subsaturated it rises according to the dry adiabatic lapse rate and after it 
becomes saturated, rising air parcels follow the moist adiabatic lapse rate. Whether an ascending air 
parcel becomes or remains buoyant during its ascent can be understood by assessing the stability of the 
atmosphere. Atmospheric stability depends on environmental temperature decrease with respect to dry 
or moist adiabatic motion (Holton, 2004), shown in figure 2.2a. When the environmental lapse rate 
exceeds the dry adiabatic lapse rate, the atmosphere is absolutely unstable. An upward displaced air 
parcel is warmer than its environment, continues to be buoyant and accelerates away from its 
equilibrium position. In absolutely stable conditions on the other hand, the environmental temperature 
decrease is less than the moist adiabatic lapse rate. An upward displace air parcel is cooler than its 
environment and will return to its original position. The atmosphere is referred to as conditionally 
unstable when it is stable with respect to dry adiabatic displacements but unstable with respect to 
moist adiabatic displacements. In conditionally unstable environments, saturated air parcels are able to 
rise as a convective cloud when they follow the moist adiabatic lapse rate.  
 
Figure 2.2b illustrates a conditionally unstable atmospheric situation. An air parcel is heated at the 
earth’s surface by the sun, it rises and cools dry adiabatically. When the air parcel has enough 
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momentum to reach the LCL, latent heat is released, which results in a warming of the air parcel. The 
air parcel follows the moist adiabatic lapse rate from here on and may ascend up to the level where the 
atmosphere becomes conditionally unstable, the Level of Free Convection (LFC). From here on, air 
parcels can rise freely as a convective cloud. The air parcel’s ascent continues until it reaches a stable 
atmospheric level, called the Level of Neutral Buoyancy (LNB). At the LNB, the environmental lapse 
rate becomes stable with respect to the moist adiabatic lapse rate, vertical motion ceases and the cloud 
top height is attained.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Left: atmospheric stability for different environmental lapse rates with respect to dry or moist adiabatic motion. 
Right: Example of a conditionally unstable atmospheric situation (Adapted from Cotton, 1990). 
 
There is another form of atmospheric instability however that is associated with convective 
environments, called potential instability. In a potentially unstable atmosphere, equivalent potential 
temperature decreases with height. Potential temperature is the temperature that an air parcel would 
have it was adiabatically brought down to a reference pressure (usually 1000 hPa). Equivalent 
potential temperature is the potential temperature that an air parcel would have if all its moisture were 
condensed and if the latent heat released during the process was used to warm the air parcel (Holton, 
2004). If a layer with decreasing equivalent potential temperature is lifted, the bottom of that layer, 
given sufficiently large relative humidity, becomes saturated before the top of the layer. The bottom of 
the layer would thus cool at the moist adiabatic lapse rate while the top cools at the dry adiabatic lapse 
rate. The top cools faster than the bottom, making the layer unstable and creating a convective 
environment.  
 
2.1.3 Buoyancy and cloud particles 
 
Atmospheric instability causes air particles to become buoyant and initiates convection. Beyond the 
LCL, buoyancy of air particles is however affected by more than just temperature. Two other effects 
play an important role, which are the presence of hydrometeors and the pressure gradient force 
(Houze, 1993).  
 
As cloud droplets increase in size from the LCL, they grow to eventually become precipitation 
particles and, when cooled enough, ice particles. Precipitation and ice particles in a cloud are called 
hydrometeors. They influence the buoyancy of air by producing a downward directed drag on cloud 
parcels, which is transmitted by the weight of hydrometeors on upward moving air. The greater the 
mass of condensed water in a cloud, the greater the drag exerted on upward moving air parcels.  
 
Another important force affecting buoyancy is the pressure gradient force. The pressure gradient force 
is directed from high to low pressure. As pressure decreases with height in the atmosphere, an upward 
directed vertical pressure gradient force is always present. This force is nearly balanced by gravity 
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however (the hydrostatic balance), which explains why the atmosphere does not ‘overturn’. But 
acceleration of rising air parcels can have an influence on pressure distribution within a cloud. Non-
hydrostatic pressures are observed when slow moving air parcels collide with faster moving air parcels 
and vice versa. This way, rising air in a cloud causes high pressures to develop at the top, when it 
encounters environmental air. In a similar way, a relatively low non-hydrostatic pressure develops at 
the bottom. This low pressure causes air to rush into the cloud.  
 
Including hydrometers and the pressure gradient force, buoyancy of air can be approximated by 
(Houze, 1993):  
 

]61.0
**

[ *
0

00
Hqq

P

P

T

T
gB −+−= , (2.2) 

 
T* / To And P* / P0 are temperature and pressure perturbations with respect to their reference 

environmental values. *
0q
 Is the mixing ratio of water vapour and qh is the mixing ratio of the 

hydrometeors. Temperature and pressure perturbations can both increase and decrease the value of 
buoyancy. Increasing water vapour mixing ratio value has a positive effect on buoyancy and an 
increasing hydrometer mixing ratio has a negative effect on buoyancy.  
 
A third positive effect on buoyancy may also be mentioned, which is caused by the freezing process of 
water droplets (Doswell, 2001). As thunderstorm clouds extend high into the atmosphere, they 
inevitably encounter temperatures below 0 °C. Homogeneous ‘super-cooled’ water drops remain 
unfrozen until they reach temperatures below -40 °C. The freezing process is however speeded up, like 
in water droplet condensation, by the presence of CCN that bring freezing temperatures to just below 0 
°C. Important to the droplet freezing process and ice crystal growth is the additional latent heat that is 
released. This latent heat contributes to the buoyancy of the cloud and gives the air parcels an 
additional ‘boost’ in their ascent. Consequently, cumulonimbus clouds often show a very fast vertical 
development once ice is observed within the cloud. Generally parcels will overshoot the LNB, from 
unstable regions into the stable regions of the atmosphere above the LNB. Beyond the LNB the air 
parcel experiences negative buoyancy and undergoes a damped oscillation. 
 
2.1.4 Favourable conditions for thunderstorm development 
 
The development of thunderstorms depends on the presence of atmospheric conditions favourable for 
deep moist convection. Deep moist convection refers to strong updrafts that lift air parcels to the point 
of saturation, beyond which they remain positively buoyant. There are three main atmospheric 
conditions that are necessary for the initiation of this process. They are known to be the following 
(Johns and Doswell, 1992). Significant conditional or potential instability through a deep layer of the 
atmosphere, which causes parcels to be accelerated to great heights once they reach the LFC. A force 
of lift to accelerate parcels up to the LFC, so instability can be released. And a high moisture content 
of the air, which lowers the LFC and makes the air more buoyant by releasing latent heat.  
 
Several indices have been developed to measure the susceptibility for deep moist convection given 
temperature and moisture content. One most frequently used measure is the Convective Available 
Potential Energy (CAPE), which is given by (Moncrieff and Miller, 1976):  
 

CAPE = g (
Tvparcel −Tvenvironment

TvenvironmentLFC

LNB

 )dz
. (2.3)

 

 
CAPE is calculated by integrating the buoyancy (B) from the LFC to the LNB and indicates the 
maximum kinetic energy available to an air parcel. Virtual temperature (Tv) of a moist air parcel is the 
temperature that a dry air parcel would have if its pressure and density were equal to that of the moist 
air parcel. CAPE and other indices will be used in this research and are discussed in chapter 4. 
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2.2 Ordinary thunderstorms  
 
Ordinary thunderstorms or single cell thunderstorms are distinguished by a well defined life cycle that 
lasts about an hour and consists of 3 stages: the cumulus stage, the mature stage and the dissipating 
stage (Kessler, 1986), shown in figure 2.3.  
 

 
Figure 2.3 Illustration of 3 thunderstorm stages: the cumulus stage, the mature stage and the dissipating stage (From 
www.earthsci.org). 
 
The cumulus stage is characterized by the development of towering cumulus clouds in a region with 
low level convergence of warm and moist air. Updrafts dominate the system and different clouds may 
merge to form larger cloud systems. The merger often causes explosive growth of one of the merging 
clouds and precipitation may start to form in upper levels of the cloud.  
 
The mature stage of a thunderstorm cloud begins with rain that settles in the lower layers of the cloud. 
The large Liquid Water Content (LWC), the mass of water within a cloud, causes the storm to create 
downdrafts in the interior. When precipitation particles reach lower levels, they partially evaporate, 
which cools the air and further enhances downdrafts. Downdraft air spreads horizontally at the earth’s 
surface and lifts warm moist air from lower levels back into the cloud system. This way, the system 
can sustain itself. Latent heat release decreases the pressure in the mid levels of the cloud and helps 
create a pressure gradient force directed upward. This helps to draw warm moist air to the LFC and 
thus further helps sustain the system. At the interface between the downdraft air and the updraft air, a 
gust front forms. The winds at the earth’s surface change rapidly in speed and direction, which can 
give extra fuel to the updraft of warm, moist air. At the top of the cloud system, updrafts spread 
horizontally as they enter the LNB, where ice crystals form an anvil cloud.  
 
Precipitation intensity reaches a maximum during the mature stage of the thunderstorm. During this 
stage the thunderstorm is characterized by heavy rainfall and wind gusts, especially at the gust front. 
As the depth of the downdraft increases and the temperature of the downdraft air decreases, the gust 
front gets further away from the storm. At a certain point, when the gust front has moved to far ahead 
of the thunderstorm system, the air lifted at the front does not enter the system anymore. This is when 
the thunderstorm starts its dissipating stage. During the dissipating stage, updrafts weaken and 
downdrafts dominate the system. At the end of the lifecycle only light precipitation from the cloud top 
remains.  



 13

2.3 Classification of thunderstorms 
 
The number, type and distribution of cells from which thunderstorms are built determines their types. 
Some storms contain only one kind of cell; others may contain a combination of different types of 
cells. An explanation is given below of the different thunderstorm types (Kessler, 1986). Figure 2.4 
shows a classification of several thunderstorm categories, where non-severe thunderstorm types are 
indicated by green and severe thunderstorms by red. 
 

 
Figure 2.4 A simple classification of thunderstorm types. The primary classification relates to basic cell type, the secondary 
classification to entire storm complex (adapted from Kessler, 1986) 
 
Unicellular storms occur in two different forms, ordinary thunderstorms and supercells. Ordinary 
thunderstorms, described in the previous section, have a single, isolated cell structure and go through a 
relatively short lifecycle. A much more violent and rare thunderstorm is the supercell thunderstorm. 
They are rotational storms that last up to days and are known for producing damaging hail and 
tornadoes. For a supercell to form, warm moist air is needed at lower levels with an inversion at 
greater heights. This so called capping inversion allows air above the inversion to cool and air below 
to warm making the atmosphere increasingly unstable. When the capping inversion finally weakens or 
moves, the supercell develops. Their rotation is derived through tilting of horizontal vorticity (local, 
instantaneous rotation) caused by wind shear. Strong updrafts lift rotating air and thereby, a deep 
rotating updraft is formed capable of producing the largest and most persisting tornadoes and the 
largest hailstones.  
 
Multicellular storms and line storms consist of multiple cells that each undergo a lifecycle. In a 
multicellular storm, the systems organize as a cluster, whereas in a line storm, cells are laterally 
aligned. They may both have lifetimes of several hours and the damage produced by these storms may 
be significant, especially when supercells are embedded in the system. Line storms usually exhibit a 
bow shape, where thunderstorms align parallel to the front of the bow. They usually develop ahead or 
along a cold front which is associated with a mid latitude storm, often in the warm sector of the 
cyclone just ahead of the cold front. The region contains warm, moist air with strong vertical wind 
shear, which helps to organise thunderstorms into a line. In multicellular storms convection is 
organized in a random configuration. Multicellular storms experience ascending air in a broad region 
around the main convective cores. It requires sustained forcing from the environment to trigger 
formation, which is usually provided by low level convergence and moist air. When multicellular 
storms or line storms get large enough they are referred to as Mesoscale Convective Systems (MCS).  
 
 
 
 
 
 
 
 
 
 
 

THUNDERSTORM TYPE

UNICELLULAR STORM MULTICELLULAR STORM

SINGLE ISOLATED; 
ORDINARY CELL; 

SHORT LIVED 

LINE STORM 

SINGLE ISOLATED; 
SUPERCELL; 
LONG LIVED 

MULTIPLE CELLS;
ALL ORDINARY; 

PERSISTANT 

SOME ORIDINARY  
CELLS AND SOME  

SUPERCELLS 

ALL SUPERCELLS
(VERY RARE) 
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2.4 Lightning and storm electricity 
 
What thunderstorms are best known for is the lightning and thunder that they produce. Any type of 
thunderstorm produces lightning, which is the result of build-up of electrical charge difference 
between the top and the bottom of a cloud. There is still debate over which process causes the division 
of the charge within a thunderstorm cloud. Two main theories are adopted to give an explanation for 
the electrification of thunderstorms: 1) attributes charge division to convection and 2) relates charge 
division to collision between cloud particles (Cotton, 1990).  
 

 
Figure 2.5 Illustration of charge separation within a cloud, responsible for lightning (From www.earthsci.org).  
 
In theory 1, a normal fair weather electrical field is assumed with positively charged ions at the earth’s 
surface. The atmosphere on the other hand is assumed to have negatively charged ions under the 
influence of cosmic radiation. When updrafts associated with the convective cloud system carry 
positively charged ions from the surface into the cloud, they attract negatively charged ions in the 
atmosphere to the cloud edges. Negatively charged ions become attached to water droplets and ice 
crystals at the edge of the cloud forming a negatively charged layer at the cloud boundaries. 
Downdrafts near the cloud edges are then said to carry negatively charged particles downward, 
causing charge division within the cloud. The theory however only relies on particle motions within 
the cloud and cannot account for observations showing that lightning initiates at the onset of 
precipitation or that the centre of negative charge is at -15 °C in a thunderstorm.  
 
In theory 2, it is thought that the precipitation forming processes are responsible for charge separation 
within the cloud. The graupel-ice collision mechanism is most widely accepted. Graupel is 
precipitation that forms when super cooled water droplets condense on a snowflake (Rakov and Uman, 
2003). The theory is based on experimental data that show the occurrence of charge transfer during 
collisions between ice crystals and graupel particles. The sign and magnitude of this charge transfer 
was found to be a function of LWC and temperature. Experiments show that the sign of charging of 
the graupel particle reverses between -10 °C and -20 °C. At temperatures Above this reversal 
temperature, graupel particles become negatively charged when they collide with ice crystals. This can 
explain the centre of negatively charged particles that is located around -15 °C. Below the reversal 
temperature, graupel particles get positively charged, which may account for the vertical division of 
charge in the cloud.  
 
Once the charge separation reaches a certain strength, lightning attempts to neutralize the separated 
charge. Lightning can occur between clouds (cloud-to-cloud), between the cloud and the ground 
(cloud-to-ground), or inside the cloud (intra-cloud). The heated channel of this lightning stroke may 
reach temperatures up to 30,000 K, which causes expansion of the heated gasses and gives rise to a 
shock wave heard as thunder.  
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2.5 Thunderstorm climatology of the Netherlands 
 
The Netherlands has a maritime environment with no significant orography. Convective instability is 
usually weak in such regions and a capping inversion is needed for the outbreak of deep, moist 
convection (Browning et al., 2007). Such an inversion can be present in the lower or middle 
troposphere and traps air underneath. In the summertime, the trapped air continues to be heated and a 
layer of warm moist air builds up beneath the inversion. If it becomes buoyant enough to penetrate the 
capping inversion, convective environments form, potentially turning into thunderstorms. This process 
can be stimulated by low-level convergence that causes the LCL to rise and the inversion to become 
thinner. Thunderstorms may furthermore develop in the Netherlands due to forced lifting of air along 
fronts or in cold air behind a cold front when it moves over a warm surface.  
 
The total number of detected lightning discharges over the years indicates thunderstorm variability in 
the Netherlands. Such a plot is presented in figure 2.6 and shows data for the years 2004 – 2010. Most 
lightning is detected during the summer half year. The exact amount of detected discharges does 
however vary over the years, as they are largely dependant on the type of weather systems that are 
present.  
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Figure 2.6 Total number of discharges per 10-day period over the years 2004 – 2010. Adapted from Bosatlas van het klimaat 
(2011).  
 
Figure 2.7 shows the diurnal cycle of thunderstorms (2.7a) and severe thunderstorms (2.7b), where 
climatological thunderstorm probability is plotted versus time. A well-defined daily cycle is present; 
climatological probability increases throughout the day, reaches a maximum in the late afternoon and 
decreases again towards the night. This is a result of the mechanism described above that causes low 
level air to heat throughout the day and most thunderstorms to develop in the late afternoon.  
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Figure 2.7 a: Climatological probability of thunderstorms versus central verification time from data of the summer half years 
of 2008 – 2010, averaged over 12 regions of the Netherlands.  B: climatological probability of severe thunderstorms for 
thresholds of maximum 5 minute lightning intensity, equal to 50 (green), 100 (purple), 200 (turquoise), 300 (blue), 400 (pink) 
and 500 (red) versus central verification time from data of the summer half years of 2008 – 2010, averaged over 12 regions 
of the Netherlands.  
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3. Remote sensing of clouds, precipitation and lightning 
 
Remote sensing refers to the acquisition of information about an object or phenomena from a distance.  
In meteorology one can use satellite to detect clouds and cloud physical properties, weather radars are 
used to detect precipitation areas and lightning detection networks have been developed to detect 
lightning. All these instruments use radiation either actively or passively. It is therefore important to 
address the basics of radiation, which is done in paragraph 3.1. Paragraph 3.2 discusses satellite 
measurements, paragraph 3.3 introduces radar measurements and paragraph 3.4 explains lightning 
detection.  
 
3.1 Radiation  
 
3.1.1 Radiation basics*  
 
All substances with a temperature above absolute zero emit radiation. The higher the temperature of a 
substance, the more radiative energy it can emit and the lower the wavelength of the emitted radiation. 
Wavelengths are defined as the difference between the crests of an electromagnetic field and are often 
used to specify radiative energy. Radiation can also be thought of as a particle that represents the 
movement of energy through space.  
 
When a beam of radiation encounters a substance (such as a molecule), several interactions between 
the radiation and the substance are possible. Radiation can pass through the substance unchanged, 
which is referred to as perfect transmission. Radiation can be reflected and change direction, called 
scattering. Or radiation can be absorbed, which causes the energy to be transferred to the substance. 
Whether radiation passes through, is reflected or scattered by a substance depends on the wavelength 
of radiation and the physical properties of the substance.  
 
Some substances are good absorbers and emitters at a certain wavelength while others are not. The 
absorption coefficient α (λ) is defined as part of the radiation with wavelength λ that is absorbed by a 
substance. The emission coefficient ε (λ) is the ratio between radiation that is actually emitted and the 
maximum emitted radiation at a wavelength. Both can vary between 0 and 1.  
 
Kirchoff’s law of thermodynamics states that at thermal equilibrium, the emissivity of a substance is 
equal to its absorptivity, α (λ) = ε (λ). A perfect blackbody is defined as an object that absorbs all 
radiation: an object that has an absorptivity α = 1 for all wavelengths. According to Kirchoff’s law, a 
perfect blackbody would have an emissivity of ε = 1 at all wavelengths as well.  
 
Plank’s law describes the amount of energy emitted by a perfect blackbody at a certain wavelength: 
 

E(λ,T) = C1λ
−5

exp(
C2

λT
) −1

.   (3.1) 

 
Where C1 and C2 are constants with the values: C1= 3.7417*10-16 Wm2 and C2=1.4388*10-2. T is 
temperature [K] and E is expressed in [kW/m2]. Plank’s law shows that as the temperature of a body 
rises, the peak of radiative energy shifts toward shorter wavelengths. Several spectra relating 
transmitted wavelength to radiative energy, using Plank’s formula, are shown in figure 3.1a for 
different temperatures. Note that the scale for both temperature and spectral radiant energy is 
logarithmic.  
 
*This section is largely based on Roelofs (2010) 
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Figure 3.1 a) Blackbody spectrum that shows radiative energy over wavelength for different temperatures. The yellow line 
indicates the temperature of the sun; the red line indicates the temperature of the earth. b) the electromagnetic spectrum with 
names given to the various wavelength bands (From Laboratory for Atmospheric and Space Physics (LASP), Colorado, USA: 
lasp.colorado.edu).  
 
The yellow line in figure 3.1a indicates the temperature of the sun (5777 K) and the red line 
temperatures of the earth (300 K). Most radiative energy of the sun is between wavelengths of 0.1 and 
4 μm, referred to as short wave radiation. Most radiative energy of the earth is between wavelengths of 
4 and 100 μm, referred to as long wave radiation. Figure 3.1b shows the electromagnetic spectrum 
with names given to the various wavelength bands. Shortwave radiation that the sun emits is in the 
ultraviolet, visible light and near infrared part of the electromagnetic spectrum. The earth emits 
infrared radiation.  
 
The theory of blackbodies is important to understand, as it provides the wavelength band that a 
substance with a certain temperature emits. In nature perfect blackbodies do not occur however. To 
retrieve the actual radiant energy of a substance, blackbody radiance needs to be multiplied by the 
emissivity coefficient of the substance: Eemitted(λ) = ε (λ) * EBB (λ). Most surfaces on earth have an 
emission coefficient close to 1 for the long wave radiative part of the spectrum. This is however 
different for short wave radiation. Snow is an example of a perfect blackbody for emitted long wave 
radiation, while almost all shortwave radiation is reflected.  
 
3.1.2 The global radiation balance 
 
The earth’s global mean radiation budget is shown in figure 3.2, values are given in W m-2. In the 
earth’s climate system, the sun is the most primary source of energy (Kiehl and Trenberth, 1997). 
Most of the sun’s energy consists of wavelengths in the ultraviolet, visible and near infrared part of the 
electromagnetic spectrum, referred to as short wave radiation, as mentioned above.  The average solar 
energy that is available at the top of the atmosphere is 342 W m-2. This radiation is redistributed 
throughout the climate system and about half of the short wave radiation is absorbed by the earth’s 
surface. This energy is transferred back to the atmosphere by warming the air in contact with the 
surface (thermals), by evapotranspiration and by long wave radiation. In the long term, incoming 
shortwave radiation from the sun is balanced by outgoing long wave radiation. Greenhouse gasses and 
clouds absorb part of the outgoing long wave radiation by behaving as blackbodies in the infrared 
spectral region. They absorb and re-emit infrared radiation and thereby, they warm the earth’s surface. 
The effect of clouds is counteracted by the fact that they reflect shortwave radiation from the sun back 
to space.  
 

a) b)
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Figure 3.2 Energy balance at the earth, values are given in W m-2 (Kiehl and Trenberth, 1997).  

 
3.1.3 The effect of clouds on radiation  
 
Clouds have an important effect on the earth energy budget because they reflect, absorb and re-emit 
radiative energy, as stated above. The effects of an individual cloud are determined by its optical 
properties, such as their optical thickness, scattering albedo and emissivity. These can in turn be 
related to a cloud’s micro- and macro physical properties (Roebeling, 2008). Micro physical properties 
include thermodynamic phase, particle size, droplet concentration and liquid water path. Macro 
physical properties include geometrical thickness, cloud base height, cloud top height and cloud 
fraction. Clouds physical properties determine how much shortwave radiation from the sun is reflected 
and how much long wave radiation is absorbed and emitted.  
 
The cloud reflective properties have a cooling effect on the earth. This is referred to as cloud albedo 
forcing. When clouds have water droplets with high droplet number concentrations (low clouds), their 
albedo forcing is high and they have a large cooling effect. However, if clouds consist mostly of ice 
particle (high clouds), they have low droplet number concentrations and their cooling effect is 
reduced. Thunderstorm, or cumulonimbus clouds extend high into the atmosphere; they have high 
droplet number concentrations especially at the cloud base.  
 
The warming effect of clouds by absorbing and re-emitting long wave radiation depends primarily on 
their position and blackbody behaviour (Roebeling, 2008). Low clouds that are present in the bottom 2 
km of the atmosphere have temperatures close to those of the earth’s surface. Therefore they emit 
comparable amounts of energy to outer space and have little effect on warming. High clouds, on the 
other hand, are a lot colder and emit significantly lower amounts of energy to outer space. They have a 
warming effect because they absorb radiation emitted by the earth, but emit substantially less to outer 
space. The effect that thunderstorm clouds have on long wave radiation depends on their cloud top 
heights. Colder cloud tops emit less radiation to outer space; they have a larger warming effect.  
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3.2 Remote sensing of clouds using satellites 
 
Since the 1960’s meteorologists have been able to use meteorological satellites for cloud observational 
studies. Meteorological satellites have passive sensors that measure radiation, which is naturally 
emitted by the earth’s surface, the atmosphere and clouds. The instruments measure reflected, 
scattered and emitted radiation at different wavelengths throughout the day. Clouds are detected 
because they reflect shortwave radiation and absorb and re-emit long wave radiation based on their 
micro- and macro physical properties. This allows meteorologists to continuously survey clouds over 
large regions, even the whole globe. 
 
3.2.1Meteosat Second Generation 
 
Several countries operate meteorological satellites either independently or in collaboration. In this 
study we use data from Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the 
Meteosat Second Generation (MSG) satellite. The European Space Agency (ESA) operates MSG in 
collaboration with European Organisation for the Exploitation of Meteorological Satellites 
(EUMETSAT). MSG was launched in 2002 and has a geosynchronous orbit, which means that the 
orbit has a fixed position relative to the earth. The satellite is situated over the equator and revolves 
around the earth at the same speed that the earth rotates around its axis. The position of the MSG 
satellite is chosen in such a way that it captures both Africa and Europe in its measurements (figure 
3.3).  
 

 
Figure 3.3 MSG – SEVIRI full disk image, 10.8 µm channel. Source: http://www.eumetsat.int 
 
The SEVIRI instrument is an imaging radiometer and has been employed on the MSG satellite to 
secure continuous observations of the earth’s full disk (EUMETSAT, 2009).  It builds up images from 
the Earth’s surface and atmosphere at 12 different wavelengths and sends information back to the 
Earth every 15 minutes. The image sampling distance is 3 km at nadir view, except for the High 
Resolution Visible (HRV) channel, which measures at a 1 km resolution at nadir view. In larger, off 
nadir viewing angles the resolution gets coarser. A complete image of the Earth’s full disk consists of 
3712 x 3712 pixels, which are measured from south to north and east to west. 
 
SEVIRI measures eight thermal infrared channels and four visible channels. The visible channels 
indicate the reflectance of sunlight from the Earth’s surface and clouds. The remaining 8 channels 
monitor emitted thermal infrared wavelengths. The channels have been selected such that they provide 
good information on clouds, water vapour, carbon dioxide and ozone. 
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3.2.2 Cloud Physical Properties derived from satellite data  
 
Because Cloud Physical Properties (CPPs) have such a profound effect on the radiation in the 
atmosphere, they can be estimated from SEVIRI measurements using an algorithm (Roebeling, 2008). 
CPPs are derived using a CPP algorithm of the Satellite Application Facility on Climate Monitoring 
(CM-SAF). The CPP algorithm is a two-step approach. In the first step, cloudy pixels are separated 
from non-cloudy pixels in a satellite image; cloud pixels are pixels that are (partly) filled with clouds 
and non-cloudy pixels represent clear skies. The separation of cloudy pixels from non-cloudy pixels is 
subsequently used to generate a cloud mask with 4 confidence intervals: clear certain, clear uncertain, 
cloud uncertain and cloud certain.  
 
In the second step, reflectances of cloudy pixels are related to cloud physical properties using a 
Radiative Transfer Model (RTM). Several RTM models have been developed but the Doubling-
Adding KNMI (DAK) RTM is used at KNMI (Stammes, 2001). An RTM models the effect that CPPs 
have on the path of radiation through the atmosphere. They are used to determine the expected satellite 
reflectances in the different channels for many different cloud situations. The result are databases of 
expected reflected light in the direction of the satellite, which are referred to as Look Up Tables 
(LUTs). CPPs be can derived from satellite information by comparing information in the LUTs to 
observed reflectances from the SEVIRI instrument. 
 
The CPP algorithm retrieves several CPPs from different wavelength channels measured by the MSG 
satellite. The derived CPPs include the following: Cloud Optical Thickness (COT), Cloud Phase 
(CPH), Particle Effective Radius (REFF), Precipitation (Precip), Cloud Top Temperature (CTT), 
Cloud Column Height (CCH), Cloud Water Path (CWP), Cloud Depth (DCLD), Cloud Droplet 
Density (DNDV) and Downwelling Solar Radiation (SDS). Below the derivation of several CPPs is 
described.  
 
Cloud Optical Thickness (COT) and particle size, defined as Effective Radius (REFF),are retrieved 
from visible (0.6 µm) and near-infrared (1.6 µm) wavelengths. The basis of these methods is that 
reflectances of clouds in the visible region (0.6 – 0.8 µm) are strongly dependent on COT, whereas 
reflectances in the near-infrared region (1.6 – 3.9 µm) are strongly dependant on particle size. 
Comparing the satellite observed reflectances at both wavelengths to LUTs for predefined COT and 
REFF values gives the observed values of COT and REFF (Jolivet and Feijt 2003). During the 
process, the retrieval of COT at the 0.6 µm channel is used to update the retrieval of REFF at the 1.6 
µm channel. This process continues until the CPPs reach stable values. In the LUTs, interpolation for 
COT is done using polynomial interpolation and for REFF using linear interpolation.  
 
Cloud Top Temperature (CTT) is derived in the CPP algorithm from the 10.6 µm brightness 
temperature. The brightness temperature is the observed temperature assuming an emissivity of 1. For 
optically thick clouds the emissivity does approach 1 and brightness temperature can be regarded as 
the thermodynamic temperature of the upper part of the cloud. For optically thin clouds brightness 
temperatures also have a contribution from upwelling radiation from the surface below. This is 
corrected for using cloud absorbing optical thickness, which is related to COT.  
 
Cloud Thermodynamic Phase (CPH) is determined using a consistency test of the observed difference 
in cloud reflection at 0.6 µm and 1.6 µm, and a threshold test of the 10.6 µm brightness temperature. 
The consistency test compares the observed and simulated differences in cloud reflectance at 0.6 and 
1.6 µm wavelengths. This difference is mostly caused by the stronger absorption of ice particles over 
water particles at the 1.6 µm wavelength. Pixels that are identified as ice clouds with CTTs lower than 
265 K are then given the CPH ‘ice’, all others are considered to be water clouds.  
 
From the CPPs above, different CPPs can be calculated using subsequent algorithms. An example is 
the Precipitation Properties (PP) algorithm. It uses CWP, REFF and CPH to detect precipitating 
clouds, while LWP and CTT are used to estimate precipitation rates. The detection of precipitating 
clouds is done in a three-step procedure (Roebeling et al., 2009), where clouds with CWP values 
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above a certain threshold value are considered as potentially precipitating clouds. Information from 
CPH is then used to separate ice and water clouds. All ice clouds are considered precipitating. For the 
remaining water clouds, information on droplet radius is used to differentiate between precipitating 
and non-precipitating clouds. Precipitation rates are derived using a parameterization proposed by 
Wentz and Spencer in 1988.  
 
CPP retrievals are limited to solar zenith angles under 72°. Retrievals at larger angles are excluded 
because they show more inaccurate RTM simulations, a lower signal to noise ratio of the radiation 
observations and three dimensional cloud effects (Roebeling et al., 2009). CTTs can however be 
derived at higher zenith angles, as they are exclusively determined by the 10.8 µm brightness 
temperature.  
 
3.3 Remote sensing using weather radars 
 
Another remote sensing instrument used for routine observations is the weather radar, which measures 
reflectivity from raindrops. The weather radar is an active system, unlike satellite remote sensing 
systems, which are passive. It sends out a pulse of electromagnetic radiation and then senses the 
radiative energy that is reflected back to the radar (Cotton, 1990). This can be accomplished when the 
radar switches alternately between emitting and receiving pulses of radiation using an antenna.  
 
Weather radars operate in a microwave region at wavelengths between 5 and 10 cm. Radiation at these 
wavelengths is hardly effected by the presence of clear air or even small cloud droplets. Raindrops, 
hailstones and larger snow particles reflect the radiation quite strongly however (Rinehart, 2006). The 
more particles in the air and larger their size, the stronger this reflection will be. As electromagnetic 
radiation travels at a nearly constant speed (3 x 108 m/s), the position of the reflecting precipitation 
particles can be estimated from the time it takes the signal to move from the transmitter and back. This 
way, a weather radar can sense the presence of precipitation 300 km away from its location. Scanning 
in a circle around the radar and raising the elevation angle of the antenna at different intervals can 
sample entire volumes of the atmosphere. 
 
KNMI operates two weather radars in the Netherlands; in De Bilt and Den Helder. Figure 3.4 indicates 
the observation range of both radars. They measure every 5 min at 14 elevation levels between 0.3 and 
25 degrees at a resolution of 1x1 km2.  
 

 
Figure 3.4 Location of KNMI weather radars of De Bilt and Den Helder. The open circles represent the observation range of 
both radars (Roebeling, 2009). 
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3.4 Lightning detection 
 
Aleksandr Popov developed the first lightning detection network at the end of the 19th century. The 
system worked using devices to detect very low frequency waves, which are emitted by lightning. It 
counts disturbances that exceed a certain threshold and with multiple of these devices, a detection 
network can be formed (Wessels, 1998).  
 
KNMI uses the Surveillance et d’Alerte Foudre par Interférométrie Radioélectrique (SAFIR) lightning 
detection network. This system works using interferometry. The phase differences between signals 
detected by 7 antennas (figure 3.5) are associated with the direction of a signal. The exact location of 
the signal is determined using a triangular calculation from the signal direction at several stations. Two 
wavebands are measured; one for signal localization (around 110 MHz) and one for the distinction 
between Cloud-to-Ground (CG) and Cloud-to-Cloud (CC) lightning (around 4 MHz). Discrimination 
between CGs and CCs is achieved mainly by analysing the difference in disturbance length between 
the detected low frequency wave. CGs have a relatively long length of disturbance with respect to 
CCs. There are however CCs that can have longer disturbance lengths and they may wrongly be seen 
as CG’s (Holle and Lopez, 1993).  Raw data from the system is processed at KNMI. Signals are 
divided into ‘traces’, which refers to a bundle of signals that all belong to a certain lightning event. 
The data is saved every 5 minutes in an archive.  
 

 
Figure 3.5 Lightning detection network used by KNMI. Detection stations (marked with a circle and cross) are located in De 
Kooy, Valkenburg, Deelen, Hoogeveen, Oelegem, Mourcourt and La Gileppe. The colours show the accuracy of the location 
determination (from: KNMI handboek H20).  
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4. Data and Methods 
 
In this study we investigate an ensemble of Meteosat Second Generation (MSG) data as an additional 
predictor source to the 0–6 h projections of the MOS thunderstorm forecasting system, operational at 
KNMI. New forecast equations are derived, many aspect of the system remain similar to those used in 
Schmeits et al. (2008) however.  
 
In this chapter we discuss the data and methods used in this study. Paragraph 4.1 describes the 
technique used to derive new forecast equations. The following paragraph 4.2 explains the different 
data sources and will discuss how satellite data is advected. In the final paragraph, paragraph 4.3, the 
verification techniques used in the study are presented.  
 
4.1 Model Output Statistics 
 
Model Output Statistics (MOS) is the technique that is used in this study to derive forecast equations 
for thunderstorms. It is a post-processing technique that describes the statistical relationship between 
predictors from observed or forecasted weather elements and a predictand (Wilks, 2006). Using a 
logistic regression model, archived records of the predictors and predictand are used to develop 
probabilistic forecast equations for the occurrence of a certain event. These events (the predictand) can 
take on only two values (dichotomous), while a predictor can be of any type. The output of the logistic 
regression model is the probability of the occurrence of an event and provides a measure of forecast 
uncertainty.  
 
Figure 4.1 contains an overview of the MOS technique and data used in this study. We use predictors 
from ECMWF and HIRLAM forecasts and predictors from ensembles of advected radar, lightning and 
MSG data. Logistic regression is used to derive MOS forecast equations for a thunderstorm event, 
defined as > 1 detected lightning discharge by the SAFIR network. Extended logistic regression is 
used to derive forecast equations for a severe thunderstorm event, defined for Maximum 5-Minute 
lightning Intensity (M5MI) thresholds of 50, 100 or 200 discharges under the condition of a 
thunderstorm event. The used archive of predictors and the predictand is 3 years long, from 2008 to 
2010. We use the summer half year only, defined as a period between April 16th and October 15th. 
From this dataset, ⅔ is used for the derivation of MOS equations and ⅓ is used for verification. 
 

Figure 4.1 MOS system used to create (severe) thunderstorm forecast equations in this study. 
 
Equations are derived for twelve regions of 90 by 80 km2over the Netherlands, shown in figure 4.2. In 
this study, we derive thunderstorm and severe thunderstorm equations for 0 – 6 h projections only. 
Equations are derived for 8 time intervals: 00 – 06, 03 – 09, 06 – 12, 09 – 15, 12 – 18, 15 – 21, 18 – 24 
and 21 – 03 UTC. They are from here on referred to by their central verification time: as 03, 06, 09, 
12, 15, 18, 21 and 00 UTC, respectively. 
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Figure 4.2a The Netherlands subdivided in twelve regions [west (W), middle (M), east (E), north (N), south (S) and extreme 
(X)]. Province boundaries are also indicated. The black dots represent Hirlam grid points with 22-km horizontal resolution. 
4.2b Subdivisions as in a but in a different coordinate system, dotted rectangles, that show the ECMWF grid at a horizontal 
resolution of 1/2° (from Schmeits et al., 2008). 
 
Logistic regression is used to derive MOS forecast equations for thunderstorm events. Extended 
logistic regression is however used for the derivation of severe thunderstorm forecast equations. 
Extended logistic regression has many advantages (Wilks, 2009) that will become apparent further on 
in this paragraph. The ordinary logistic regression technique is explained first; thereafter we will 
explain extended logistic regression.  
 
Logistic regression gives the probability (Pr) that a dichotomous event (y) occurs using the formula 
(Wilks, 2006):  
 

Pr{y} = 
)]...(exp[1

1

22110 nn xaxaxaa ++++−+ .      (4.1)
 

 
Where ),...,2,1( nixi =  are the predictors and ),...,2,1( niai =  the regression coefficients. Predictors 

are chosen using forward stepwise selection. In each step, a predictor is chosen that produces the best 
regression together with previously chosen predictors, but excluded from the equation if significance > 
0.1. Predictors are added until none have a significance < 0.05. Regression coefficients are determined 
using the maximum likelihood method, in which residuals are assumed to be Bernoulli variables 
instead of constants (Wilks, 2006). An example of a logistic regression function is shown in figure 4.3. 
The example shows one predictor, X, used to forecast the probability of the predictand, P. The 
predictor can take on any value, the probability P is always between 0 and 1.  
 
In the derivation of the MOS equations, data from all regions is pooled. Logistic regression is 
performed on ⅔ of the dataset, which is referred to as the training dataset. From the training dataset, 
predictors are chosen that create the most skilful thunderstorm forecast. The resulting equations are 
used for verification by calculating the predicted probabilities for the remaining ⅓ of the dataset. 
Because the forward stepwise selection procedure overfits greatly on the training dataset, predictors 
are entered separately afterwards until they show no further improvement of the forecasts on the 
verification dataset. The final equations consist of no more than 5 predictors.  
 
In the currently operational MOS thunderstorm forecasting system, equations were derived using 
logistic regression for thunderstorms and severe thunderstorms events. There are some difficulties 
with this technique however as severe thunderstorms are defined as multiple thresholds of M5MI. 
Different equations have to be derived for separate threshold values, even though the same predictors 
are used for different thresholds. Forecasts for intermediate threshold values (e.g. M5MI ≥ 150) would 
have to be interpolated from the finite collection of MOS equations. In addition, fitting equations to  
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Figure 4.3 Example of a logistic regression function. Observations as a function of the predictor are  indicated by red circles.  
 

separate thresholds means that you are left with a relatively small number of yes-events, especially for 
higher thresholds. But the most severe deficiency of the technique is that the equations derived are not 
mutually consistent. Higher thresholds could in theory have higher probabilities for some forecasts.  
 
These problems do not apply to thunderstorm forecasts as only one predictand threshold is used 
(detection of > 1 lightning discharge). The problems do however apply to severe thunderstorm 
forecasts and may be solved using extended logistic regression, as it gives forecasts for all possible 
thresholds using only one forecast equation (Wilks, 2009). This is achieved by including a function of 
the threshold as a predictor. Using extended logistic regression we make sure that forecasts are 
mutually consistent and all threshold values can be included to obtain forecast probabilities. 
Furthermore, the technique requires substantially fewer forecast equations and allows for fitting over a 
larger dataset.  
 
The extended logistic regression formula has the form (Wilks, 2009):  
 

Pr(q) = 
)](..(exp[1

1

110 qgxaxaa nn ++++−+ .  (4.2)
 

 
Where )(qg indicates the addition of a function of the threshold, q, as a predictor. All predictors 
derived using extended logistic regression are selected similar to logistic regression, except for the fact 
that )(qg  is included as a potential predictor. In extended logistic regression, severe thunderstorm 

datasets with different M5MI thresholds are added together. )(qg  is usually an important predictor in 
the system as it is the only predictor that explains variance in the dataset due to different M5MI 
thresholds.  
 
The final MOS system thus consist of two equations for each of the 8 forecast times. Thunderstorm 
forecasts are derived using ordinary logistic regression and severe thunderstorm forecasts are derived 
using extended logistic regression. The absolute probability of a severe thunderstorm event is obtained 
by multiplying the conditional probability of a severe thunderstorm by the thunderstorm probability.  
 
4.2 The predictand 
 
As a source of predictands, total lightning data from the SAFIR lightning detection network is used. 
Both cloud-cloud and cloud-ground lightning discharges have been included. The dataset includes the 
total amount of lightning flashes in 6 hours and M5MI for twelve previously mentioned regions and 
for 6 hour time periods.  
 
The predictand for a thunderstorm event is given a value of 0 for ‘no thunderstorm’ (detection of ≤ 1 
lightning discharge) and a value of 1 for a ‘thunderstorm’ event (detection of  > 1 lightning discharge).  
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A severe thunderstorm event is defined under the condition of a thunderstorm event. A value of 0 is 
given for M5MI below a certain threshold and a value of 1 for M5MI over that threshold. To derive 
severe thunderstorm forecast equations for the 15, 18, 21 and 00 UTC forecasts, we combine datasets 
including M5MI thresholds of 50, 100 and 200 discharges. This choice is based on the relatively high 
thunderstorm climatology during these times as shown in figure 2.7. During the forecast times of 03, 
06, 09 and 12 UTC, severe thunderstorms are observed less frequently and severe thunderstorm 
forecast equations are derived using a dataset including M5MI thresholds of 25, 75 and 125 
discharges.  
 
4.3 Potential predictors  
 
This section discusses the data used as potential predictors in the MOS thunderstorm forecasting 
system. As mentioned above, this data consists of indices calculated from numerical weather 
prediction model output and ensembles of advected radar, lightning and MSG data. This section 
explains how the data is used to create potential predictors for the MOS system.  
 
4.3.1 Numerical Weather Prediction model data  
 
Numerical Weather Prediction (NWP) model output is one source of data that we use as potential 
predictors for the MOS system. NWP models do not contain thunderstorms or lightning as direct 
output. We do know however that thunderstorms are associated with an unstable atmosphere, high 
moisture levels and a source of lift. Therefore, indices have been developed from NWP data that may 
indicate these atmospheric conditions.  
 
As in Schmeits et al. (2008) we use ECMWF NWP model output and thunderstorm indices from 
HIRLAM. Every 3 hours minimum, maximum and mean values of these potential predictors are 
calculated for each of the 12 regions. The ECMWF data has a resolution of ½ °, with 91 vertical 
levels. We use the 12 UTC run, from which we use output between 12 and 33 h forecasts. HIRLAM 
output has a resolution of 11 km with 60 vertical levels. Every 6 h new output is available and we use 
data from the 6 and 9 h forecast.  
 
Thunderstorm indices that have been selected most frequently are described below. References are 
given to the original papers in which they were documented. Peppler and Lamb (1986) can be 
consulted for a summary of the different indices.  
 
Boyden Index (Boyden, 1963) 
BOYD = 0.1 (Z700 - Z1000) - T700 - 200 

The Boyden Index describes the vertical temperature profile between 1000 and 700 hPa. Z700 

and Z1000 are the geopotential heights of the 700 and 1000 hPa pressure level, respectively and 
T700 is the temperature (°C) at 700 hPa. The Boyden Index does not take moisture into 
account.  

 
Bradbury Index (Bradbury, 1977) 
BRAD = θW500 - θW850 

The Bradbury Index is also referred to as the potential instability index, as it describes the 
 potential instability between the layers of 850 and 500 hPa. θW500 and θW850 are the wet-bulb
 potential temperature values at 500 and 850 hPa, respectively. Wet bulb temperature is defined 
 as the lowest temperature that can be reached by an air parcel after adiabatic evaporation of 
water.  
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Convective Available Potential Energy (Moncrieff & Miller, 1976) 

CAPE = g (
Tvparcel −Tvenvironment

TvenvironmentLFC

LNB

 )dz 

CAPE is calculated by integrating the buoyancy from the LFC to the LNB and indicates the 
maximum kinetic energy available to an air parcel that rises from the LFC to the LNB. 
Buoyancy is indicated by the part between brackets, where Tvparcel is the virtual temperature of 
the air parcel and Tvenvironment is the virtual temperature of the environment.   

 

Modified Jefferson Index (Jefferson, 1966) 
JEFF = 1.6 * θW925 – T500 – 0.5 (T-Td)700– 8 

The Jefferson index assesses the latent instability in the 925 – 500 hPa layer. It uses the wet-
bulb potential temperature at 925 hPa and includes the dew point temperature at 700 hPa, 
which is the temperature to which an air parcel must be cooled to condense to water and 
increases with decreasing relative humidity.  

 
Showalter Index (Showalter, 1953) 
SHOW = θWS500 - θW850  

The showalter index is defined as the difference between the wet-bulb potential temperature at 
850 hPa (θW850)  and the wet-bulb pseudopotential temperature at 500 hPa (θWS500).  

 
4.3.2 Ensemble of advected radar and lightning data  
 
A second source of predictors consists of ensembles of advected radar and lightning data. Weather 
radar and lightning provide good areal coverage and high-resolution data. It is therefore very well 
suited for nowcasting. Nowcasting is a technique used by meteorologists where forecasts up to 6 hours 
ahead are developed by extrapolation of observed images. In this time range, extrapolation of 
observations is usually superior to NWP forecasts.  
 
For the extrapolation of radar and lightning data, the speed and direction of specific weather systems is 
computed from previous radar images and HIRLAM 700 hPa wind vectors. The calculated vectors are 
used with initial images 20 minutes before a forecast time and extrapolated over the 6 hour time 
period. Vectors are varied 25 % in magnitude and 10° in direction to create a total ensemble of 18 
members (Schmeits et al., 2008).  
 
Individual ensemble members and characteristics of the whole ensemble are used as potential 
predictors. Predictors can describe a fraction of the ensemble showing over a certain threshold value. 
Lightning and radar ensemble predictors that were most frequently selected in the current MOS 
forecasting system are described below. 
 
From the lightning ensemble data, the percentage of the ensemble members that show ≥ 4 lightning 
discharges in the 6 hour time period was a frequently selected predictor. This predictor can include the 
total ensemble, but may also be a binary predictor, stating ‘yes’ or ‘no’ whether at least one ensemble 
member shows ≥ 4 lightning discharges in 6 hours. Another frequently selected predictor was the 
M5MI from the total ensemble or from the HIRLAM advection ensemble.  
 
From the radar ensemble data, the maximum percentage of the region occupied by more than 10 or 30 
mm per hour radar pixels from a particular radar ensemble member was selected most frequently. The 
maximum percentage of the region occupied by radar pixels that show more than 10 or 30 mm per 
hour for the total advection ensemble was another frequently selected predictor.  
 
4.3.3 Ensemble of advected MSG data 
 
In this research we add an ensemble of MSG derived CPPs as potential predictors to the MOS system. 
As mentioned in chapter 2, available CPPs are: Cloud Optical Thickness (COT), Cloud Phase (CPH), 
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Particle Effective Radius (REFF), Precipitation (Precip), Cloud Top Temperature (CTT), Cloud 
Column Height (CCH), Cloud Water Path (CWP), Cloud Depth (DCLD), Cloud Droplet Density 
(DNDV) and Downwelling Solar Radiation (SDS).  
 
During daylight hours, the visible light channels from the SEVIRI instrument can be used and all 
CPPs are available. Whenever zenith angles are over 72° however, only CTTs are available. For the 
12, 15 and 18 UTC forecast times, zenith angles are low enough and all CPPs can be used as potential 
predictors. For the forecast times 21, 00, 03, 06 and 09 UTC, zenith angles are too high and only CTTs 
are used as potential predictors. Initial images are available at 0815, 1115 and 1415 UTC for forecasts 
during the day and at 1730, 2030, 2330, 0230, 0530 UTC for forecasts during the night; these are the 
images used for extrapolation.  
 
For the advection of CPPs, vectors are calculated from subsequent images in the MSG IR 10.8 µm 
channel using a program called CINESAT (www.cinesat.com). CINESAT is a software package that 
is used for analysis and processing of satellite images. The software allows users to calculate 
Atmospheric Motion Fields (AMF) from the input of two subsequent MSG images (Figure 4.3). AMFs 
contain displacement vectors, which describe how cloud structures move. Displacement vectors are 
saved in text files that hold vector information at different point coordinates. AMFs are subsequently 
interpolated over all grid points available to CPP data.  
 
All CPPs have to be transformed to thunderstorm predictors for a region and time interval. For the 
parameters REFF, PRECIP, CCH, CWP, DCLD, DNDV the maximum is calculated per region, per 6 
hour time period. For COT the temporal maximum regional average value is calculated per 6 hour 
time period. For CPH maximum amount of pixels representing ice clouds are taken per region, per 6 
hour time period and for CTT and SDS minimum values are calculated per region, per 6 hour time 
period. From here on, the maximum values, maximum regional average value and minimum values 
will be referred to by CPP name.  
 
Spatially interpolated data is used to advect CPPs in time. Varying vectors in length and direction 
creates the ensemble. For MSG data, vectors are changed by ± 25 % in their x and y-direction and in 
length. A total ensemble of 9 members is created for each CPP parameter. Different ensemble 
members and statistics of the whole ensemble are used as potential predictors in the derivation of 
MOS equations. Maximum, minimum and mean values are calculated but the ensemble can be used in 
numerous different ways as a predictor source. Predictors for maximum CPP values indicate the 
fraction of the ensemble exceeding a certain threshold value (e.g. the fraction of the ensemble showing 
CCH over 10 km). Contrarily, predictors for minimum CPP values indicate the fraction of the 
ensemble below certain threshold values (for example the fraction of the ensemble with CTT under 
220 K). All predictors are also used in binary form. Different predictors may be combined and can for 
example indicate the fraction of the ensemble showing CTTs under 220 K and precipitation values 
over 20 mm/h.  
 

 
Figure 4.4 Atmospheric motion field calculated from subsequent IR 10.8 μm satellite images for September 10, 2011.  
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4.4 Verification techniques 
 
As indicated in section 3.2, ⅓ of the 2008 – 2010 dataset is used for verification purposes during the 
derivation of MOS forecast equations. Using the logistic regression function based on the training 
dataset, predicted probabilities are calculated for the verification dataset. These results are used to 
determine the final MOS equations. When the final MOS system is derived, it will subsequently be 
verified over a completely independent dataset of the year 2011. This section explains the verification 
techniques used in this study.  
 
4.4.1 The reliability diagram 
 
Predicted probabilities from the MOS equations can be plotted against observed frequencies in a 
reliability diagram. A reliability diagram provides a comprehensive appreciation of forecast quality, 
according to Wilks (2006). Figure 4.5 shows 5 characteristic forms of reliability diagrams, where 
calibration functions are plotted as black circles connected by a line. Comparing the calibration 
function to a perfectly reliable forecast, indicated by the 1:1 line, we can immediately recognize biases 
that are exhibited by a forecast.  
 

 
Figure 4.5 Example characteristic forms of reliability diagrams (Wilks, 2006). Y is the predicted probability, p the opbserved 
frequency of an event. The terms that are given to certain forecast patterns are shown on top.  
 
The centre panel of figure 4.5 shows a well-calibrated forecast. The predicted probabilities are 
essentially the same as observed frequencies and the calibration line falls along the dashed 1:1 line. 
Although deviations are still visible, they are consistent with sampling variability. The forecast in the 
centre panel is said to have excellent reliability. Reliability is the squared difference in vertical 
distances between the black circles and the 1:1 line, weighted by number. The reliability term of the 
forecast is small, because these distances are small. 
 
The top and bottom panel show forecasts that are overforecasting or underforecasting, respectively. In 
the top panel, the calibration line is completely to the right of the 1:1 line. This indicates that the 
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forecast consistently gives probabilities that are too high (overforecasting). The opposite of 
overforecasting is underforecasting, where forecasted probabilities are consistently too low. Both these 
forecasts are unreliable. The predicted probabilities do not correspond to the observed frequencies of 
the event.  
 
Deficiencies of the forecasts in the left and right panel are more subtle. The magnitudes of biases 
exhibited by the forecast depend on the forecast itself. In the left panel, lower observed frequencies are 
overforecasted and higher observed frequencies are underforecasted. The reverse is true for the panel 
on the right. Another difference between the left and right two panels is resolution. In a forecast with a 
poor resolution, the observed relative frequencies depend only weakly on the forecasts. All forecasted 
probabilities are close to the climatological probability of the predictand. The right plot shows a 
forecast with a poor resolution, the left plot shows a forecast with a good resolution.  
 
We can also indicate whether a forecast is underconfident or overconfident. This can be understood by 
introducing a forecast distribution, shown in figure 4.6. The left panel is an example of a forecast that 
deviates only little and rarely from its average value and reflects little confidence. A forecast reflecting 
high confidence is shown in the right panel. These forecasts are frequently extreme, having 
probabilities close to either 0 or 1. Whether a certain forecast confidence is justified, can be retrieved 
from the calibration function of the same forecast. In the right panel of figure 4.5, forecasts are too 
extreme. Forecast probabilities close to 1 suffer from overforecasting and forecast probabilities close 
to 0 suffer from underforecasting, making the forecast overconfident. Forecasted probabilities in the 
left panel of figure 4.5 are however not extreme enough and the forecast is classified as 
underconfident.  
 

 
Figure 4.6 Examples of forecast distributions, reflecting forecaster confidence (Wilks, 2006). 
 
4.4.2 The Brier (Skill) Score 
 
Besides the reliability diagram, it is convenient to introduce a scalar measure of forecast accuracy. The 
Brier score is such a measure and makes it easy to quickly verify how skilful a particular forecast 
system is. Essentially, the Brier score is just the mean squared error of a probability forecast system. It 
averages the squared differences between pairs of forecast probabilities and their observations, using 
the equation (Wilks, 2006):  
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=  (4.3)
 

 
Where k denotes the numbering of n forecast-observation pairs. Brier scores range from 0 to 1. Perfect 
forecasts have Brier scores of 0 and less accurate forecasts receive higher Brier scores. A Brier score 
close to 1 indicates an unskillful forecast. A decomposition of the Brier score gives scalar values of a 
forecast’s reliability, resolution and uncertainty. We consider a verification dataset with a discrete 
number, I, of forecast values yi, where Ni is the number of times each forecast yi is used. If, for each 
forecast sample in I, its observed frequency is given by oi  and overall sample climatology by o , a 

decomposition of the Brier score is given by (Wilks, 2006):  
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Where the terms on the right hand side represent reliability, resolution and uncertainty of the forecast, 
respectively. The reliability has to be as small as possible and the resolution term as large as possible, 
because low Brier scores indicate more accurate forecasts. The uncertainty term is not affected by the 
forecast and depends only on the overall sample climatology.  
 
From the Brier score a skill score can be computed, referred to as the Brier Skill Score (BSS): 

 

BSS=
BS− BSref

BSperfect − BSref

=
BS− BSref

0 − BSref

=1− BS

BSref . (4.5) 
 
The BSS compares Brier scores computed from forecasts to reference Brier scores, which are the 
climatological relative frequencies of the predictand. In this study, that reference is the climatological 
frequency of (severe) thunderstorm events for a specific forecast time. The higher the BSS the better 
the forecast is with respect to climatology. Scores of 0 mean that the forecast is equally skillful as 
climatology. The maximum BSS is 100%.  
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5. Results 
 
This chapter presents the results obtained in this study. The first paragraph gives a general overview of 
the relation between CPPs and detected M5MI. It is important to understand this relation to create the 
best possible predictors from advected CPP ensembles. Paragraph 5.2 presents predictors that were 
selected in the MOS (severe) thunderstorm forecast system from the 2008 – 2010 dataset. Predictors of 
MOS systems excluding CPP ensemble predictors will also be presented. They are required for the 
comparison of MOS systems in subsequent paragraphs. To illustrate the MOS forecasts that include 
CPP ensemble predictors, an example case of September 10, 2011 is presented in paragraph 5.3. The 
derived equations are verified over the summer half year of 2011 in paragraph 5.4. Brier Skill Scores 
(BSSs) for all MOS forecast systems are presented.  The forecasts for 03 – 09 UTC and 18 – 00 UTC 
are discussed in more detail by presenting associated reliability diagrams.  
 
5.1 Relation between cloud physical properties and lightning intensity  
 
To get a better understanding of how different CPPs relate to lightning intensity, we present 
correlation coefficients between non-advected CPP values and M5MI for 15 – 21 UTC in table 5.1. 
Table 5.1 illustrates that some CPPs have higher correlations with M5MI compared to others. Cloud 
Optical Thickness (COT), Precipitation (PRECIP), Cloud Top Temperature (CTT) and Cloud Column 
Height (CCH) have the highest correlations coefficients, with values of 0.359, 0.337, -0.329 and 
0.344, respectively. CCH, PRECIP and COT are positively correlated while CTT is negatively 
correlated.  

Table 5.1 Correlation coefficients between different cloud physical properties and M5MI for the 15 – 21 UTC time period. 
Cloud physical properties include: Cloud Optical Thickness (COT), Cloud Phase (CPH), Particle Effective Radius (REFF), 
Precipitation (PRECIP), Cloud Top Temperature (CTT), Cloud Column Height (CCH), Cloud Water Path (CWP), Cloud 
Depth (DCLD), Cloud Droplet Density (DNDV) and Downwelling Solar Radiation (SDS). 
 
Potential predictors have to be created from these variables for the MOS (severe) thunderstorm 
forecasting system. It is therefore desirable to get a more thorough understanding of the relation 
between CPPs and M5MI. For this purpose, scatter plots are presented between CPPs with the highest 
correlation coefficients and M5MI. Plots of CCH, PRECIP, CTT and COT versus M5MI are shown in 
figure 5.1 from the top left to bottom right, respectively.  
 
Figure 5.1a shows that only high CCH values give high lightning intensities. This is physically 
plausible as thicker clouds may produce more severe thunderstorms. A cut-off value, above which 
M5MI is allowed to reach values up to 1100 discharges per 5 minutes seems to be present around 
CCH values of 10000 m. CTT shows a similar but reverse relation to M5MI; the lowest CTT values 
show the highest lightning intensities. A cut-off is present around 230 K. PRECIP has a less 
pronounced relation to M5MI. Relatively high M5MI values occur at precipitation amounts of 0 mm, 
as the CPP algorithm may detect no precipitation while thunderstorms are present. It is however 
notable that overall, high precipitation amounts show higher M5MI values. A relation between Cloud 
Optical Thickness and M5MI is the least obvious from the scatter plots. High M5MI values seem to 
occur at lower values of COT, which is not expected. 
 
It is possible to create potential predictors for the MOS system using information from scatter plots. 
As we use ensembles of advected CPPs, predictors may for example describe the fraction of the 
ensemble with values above or below their cut-off values. For advected CCH ensembles, a predictor 
may indicate the fraction of the ensemble with CCH values over 10000 m. For advected CTT 
ensembles, a predictor may indicate the fraction of the ensemble with CTT values below 230 K. The 
chosen thresholds are arbitrary however and several different threshold values have been investigated. 
Combination predictors that use information of more than one CPP have also been created. 
 

 COT CPH REFF PRECIP CTT CCH CWP DCLD DNDV SDS 

M5MI 0.359 -0.139 0.054 0.337 -0.329 0.344 0.069 -0.063 -0.044 -0.138
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Figure 5.1 Scatter plots of M5MI versus cloud physical properties for the 15 – 21 UTC time period: cloud column height 
(CCH), precipitation (precip), cloud top temperature (CTT), cloud optical thickness (COT) are shown from top left to bottom 
right respectively.  
 
Figure 5.2 shows an example of the relation between advected CTT and M5MI for the same time 
period. Although the CPP is advected and is not an instantaneous value of the variable, it still shows a 
similar relation to M5MI.  
 

 
Figure 5.2 Scatter plot of M5MI versus advected CTT for the 15 – 21 UTC time period.  
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5.2 Selected Predictors 
 
Predictors for the MOS (severe) thunderstorm forecast system have been selected from ⅔ part of the 
2008 – 2010 dataset using forward stepwise selection. Thereafter, they were separately entered until 
the forecasting skill on the remaining part of the dataset no longer improved. The selected predictors 
that make up the final MOS system are presented in table 5.2. Predictors are sorted by system runtime 
(runtime 00 UTC indicates the forecast for 00 – 06 UTC) and are given in order of importance. 
Predictor coefficients have not been included, but can be found in appendix 2. The most important 
predictors are discussed in the text below. Definitions of all predictors can be found in appendix 1. 
Some similarities of predictors between different runtimes are found; they are presented below. 

Table 5.2 Selected predictors for the MOS thunderstorm and severe thunderstorm forecast  system, sorted by system runtime 
and presented in order of importance.  
 
In the MOS thunderstorm forecasting system, 14 different predictors have been selected overall. 
CAPE is the most selected predictor and appears in all but one equation in two different forms: 

• capmulma - maximum value of CAPE from the most unstable level of the atmosphere  
• capemax - maximum value of surface based CAPE 

Lightning ensemble predictors are chosen as most important predictor at 5 of the 8 forecast times; they 
are present in two different forms:  

• gt2tpr – percentage of total advection ensemble with ≥ 4 lightning discharges in 6 hours 
• gt2tprra – percentage of radar advection ensemble with ≥ 4 lightning discharges in 6 hours 

CAPE and lightning ensemble predictors are always accompanied by the Jefferson index (average 
(Jeffave) or maximum (Jeffmax) value in 6 hours) or by the average Boyden index (Boydave). 
Furthermore, convective precipitation predictors are frequently included in several different forms:  

• rtcp6ec – root of the maximum 6-h convective precipitation sum from the ECMWF model 
forecast 

• rtmaxcp6(3) – root of the maximum 6-h (3-h) convective sum precipitation from the Hirlam 
forecast 

• rtavecp6 – root of the average 6-h convective precipitation sum from the Hirlam forecast 
 
It is noteworthy that whenever a CAPE predictor is chosen as most important, the Jefferson index and 
a convective precipitation predictor follow directly after. This can be explained when considering the 
necessary ingredients for thunderstorm development. They include: sufficient instability in the 
atmosphere, high levels of moisture and a source of lift. A combination of CAPE, Jefferson index and 
convective precipitation indicates atmospheric conditions favourable to thunderstorm development.   
 

Runtime 
(UTC) 

Thunderstorm Predictors Severe Thunderstorm Predictors  
 

00 gt2tpr, capmulma, boydave, rtcp6ec, 
jeffmax 

gt10at, sqrt_thresh, ctt_214bin, mjefmax 

03 gt2tpr, capmulma, jeffmax ctt_214bin, sqrt_thresh, gt10a7ra, showave, 
maxv300 

06 capmulma, jeffave, rtmaxcp6, gt10a7ra m5mitha, boydave, sqrt_thresh, shearave, 
jeffmin 

09 capmulma, jeffave, rtmaxcp6 bradmin, cos2dtg,  sqrt_thresh, jeffmin, 
m5mi7ra 

12 capmulma, jeffave, gt2tpr, rtavecp6 
 

boydmax, jeffave, sqrt_thresh 

15 gt2tpr, rtmaxcp6, jeffmax ctt_213precip_20bin, bradmin,  sqrt_thresh, 
capmulma 

18 gt2tpr, capmulma,  boydave, rtmaxcp3, 
ctotmax 

m5mitha,  ctt_214bin, sqrt_thresh, showave, 
gt10a7ra 

21 gt2tprra, boydave, capemax, showmin flima9ra, showmin, sqrt_thresh, gt2ib7ha 
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It is furthermore notable that lightning ensemble predictors are usually accompanied by (latent) 
instability indices (CAPE, Boyden index and / or Jefferson index). Advected lightning indicates that a 
thunderstorm is approaching, the atmosphere needs to remain unstable however for the thunderstorm 
to sustain itself. A combination of the previously mentioned predictors suggests that these conditions 
are present in the atmosphere. The fact that advected lightning ensemble predictors are most important 
between the 15 UTC and 03 UTC forecast can be explained by looking at thunderstorm climatology 
over the period of 2008 – 2010, presented in paragraph 2.5. The figure indicates the climatological 
probability of a thunderstorm at 8 central verification times (03 UTC belongs to the 00 – 06 UTC 
forecast). It shows that most thunderstorms have developed around 15 UTC. Afternoon thunderstorm 
may consist more often of multicell storms; they have a longer life cycle and extrapolated observations 
may be good indication of thunderstorm activity for forecasts between 15 and 03 UTC runtimes. Their 
predictive importance decreases however, as thunderstorm climatology decreases. Thunderstorms may 
consist mostly of single cells, which have a relatively short lifecycle and extrapolated observations 
become less important.  
 
The overall pattern of the thunderstorm and severe thunderstorm predictors is similar. The most 
obvious difference is the predictor sqrt_thresh, which is selected in all severe thunderstorm forecast 
equations. Sqrt_thresh indicates the square root of the M5MI threshold, which is included because of 
the derivation of severe thunderstorm equations using extended logistic regression.  
 
In most severe thunderstorm forecast equations, predictors from advected ensembles of observations 
are most important. These predictors come from lightning and radar ensembles, of which the following 
have not been defined above:  

• gt2ib7ha – binary predictor indicating whether a particular HIRLAM advection ensemble 
member shows ≥2 discharges in 5 minutes 

• m5mitha – M5MI from the HIRLAM advection ensemble 
• flima9ra – temporal M5MI from a particular radar advection ensemble member 
• gt10at – maximum percentage of the region covered by ≥ 10 mm h-1 radar pixels from the total 

advection ensemble  
CPP ensemble predictors have been selected in 4 of the 8 severe thunderstorm forecast equations. 
They are included in the MOS system in two different forms:  

• ctt_214bin – a particular ensemble member with Cloud Top Temperatures ≤ 214 K in binary 
form 

• ctt_213Precip_20bin – a particular ensemble member with Cloud Top Temperatures ≤ 213 K 
and precipitation ≥ 20 mm/h in binary form 

 
Ctt_214bin has been selected when only CTTs were available (when zenith angles were too high). 
Ctt_213Precip_20bin is a combined cloud physical property ensemble predictor and has been selected 
as most important predictor for the 15 UTC runtime of the severe thunderstorm forecast system.  
 
In the 09 and 12 UTC runs, advected observations are less important predictors. This is the time when 
convective systems have not developed thoroughly and instability indices become important 
predictors, as we have seen in the MOS thunderstorm forecasting system. At 09 UTC the minimum 
Bradbury index (bradmin) was selected, followed by cos2dtg. Cos2dtg indicates the cosine of the day 
in the year and states that more thunderstorms are predicted in summer and indicates a possibly less 
skilful forecast. The verification of different forecasts will be presented in the following paragraphs 
however.  
 
The MOS systems for which CPP predictors were selected are compared in the paragraphs below to 
forecasts with no CPP predictors. For this purpose, separate equations have been derived from the 
2008 – 2010 dataset for which CPP ensembles were excluded as a potential predictor source. Table 5.3 
shows the MOS severe thunderstorm system at runtimes for which CPP predictors were selected 
(MOS-CPP). It also shows the MOS system that was derived excluding advected CPP ensembles as a 
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potential predictor source (MOS-NoCPP) and shows predictors of the currently operational MOS 
system (Operational KOUW). 
 

Table 5.3 Selected predictors for the derived MOS severe thunderstorm forecasting system, including and excluding cloud 
physical property ensemble predictors and the currently operational system. Sorted by system runtime and presented in order 
of importance. 
 
In MOS-NoCPP, 3 out of 4 derived equations show advected observations as the most important 
predictor. Two have not previously been mentioned:  

• M5mit - M5MI from the total advection ensemble 
• Gt10a7ra - temporal maximum percentage of the region occupied by ≥ 10 radar pixels from a 

particular ensemble member  
In Operational KOUW, it is notable sqrt_thresh is not included as a predictor; the equations were 
derived using logistic regression instead of extended logistic regression. Two important predictors 
from operational KOUW have not been defined:  

• Nodis7ra - average amount of lightning discharges of a particular advected radar ensemble 
member 

• M5mi7ra - M5MI from a particular radar advection ensemble member 
 
It is remarkable that at 18 UTC runtime, where a CPP predictor was selected as non-primary predictor, 
MOS-NoCPP still contains a different primary predictor. A predictor indicating M5MI from the 
Hirlam advection ensemble is replaced by a predictor indicating the percentage of a region occupied 
by a certain precipitation threshold. This is caused by the fact that some cases are missing in the CPP 
dataset that are available in other predictor datasets. In the operational system all of the most important 
predictors were lightning ensemble predictors. It is therefore remarkable that at 15 UTC runtime, when 
thunderstorm climatology is high, CAPE is selected as primary predictor in the MOS-NoCPP system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Runtime 
(UTC) 

Severe Thunderstorm 
Predictors 
MOS-CPP 

Severe Thunderstorm 
Predictors  
MOS-NoCPP 

Severe Thunderstorm 
Predictors  
Operational KOUW 

00 gt10at, sqrt_thresh, 
ctt_214bin, mjefmax 

gt10at, sqrt_thresh, sc3 m5mi7ra, gt10at, vtotave, 
gt2tpr 

03 ctt_214bin, sqrt_thresh, 
gt10a7ra, showave, maxv300 

m5mit, sqrt_thresh, 
showave, maxv300 

m5mit, gt30at, LNBmulma, 
rtcp6ec6 

15 ctt_213precip_20bin, 
bradmin,  sqrt_thresh, 
capmulma 

capmulma, bradmin, 
sqrt_thresh, gt30at 

flima9ra, bradave, 
capmulave 

18 m5mitha,  ctt_214bin, 
sqrt_thresh, showave, 
gt10a7ra 

gt10a7ra, bradmin, 
sqrt_thresh 

nodis7ra, bradmax, 
gt2ib7ha 
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5.3 Example case September 10, 2011 
 
In this section we demonstrate the derived MOS-CPP system described above. For this purpose, an 
example case from an independent dataset of the year 2011 is discussed. The year 2011 was not 
included in the development of the forecast equations and the dataset is thus entirely independent. We 
choose to present results that belong to September 10, 2011. We use the example case only to illustrate 
the MOS forecast system; an objective verification over the summer half year of 2011 will be 
presented in the following paragraph.  
 
September 10, 2011 was a warm summer day with maximum temperatures up to 28 °C in the south of 
the Netherlands. The synoptic situation is shown in figure 5.3, which is dominated by a low-pressure 
system situated off the coast of Scotland. The associated flow caused air to be advected over the 
Netherlands from south / southwest during the entire day. An unstable atmosphere was initially 
present up to 4000 ft., which increased to further heights toward the end of the day. To release the 
associated energy, convection had to break through an inversion however. A trough, moving ahead of 
the cold front caused the inversion break and thunderstorms developed in the late afternoon near the 
French-Belgian border. KNMI issued a warning for severe weather at 18:32 UTC for the southwestern 
provinces of the Netherlands and later also for the central provinces. 
 

 
Figure 5.3 Synoptic situation on September 10, 2011.  
 
Figure 5.4 shows the detected lightning strikes on September 10, 2011; time of detection is indicated 
by colour. The first lightning was detected over the southwest of the Netherlands around 17 UTC and 
left the northwestern part of the country around 23 UTC. It is therefore interesting to consider MOS 
forecasts for 15 – 21 UTC and 18 – 00 UTC. Both of these forecast periods include CPP predictors 
and the newly derived system (MOS-CPP), they can be compared to the operational system that 
meteorologists had access to on that day (Operational-KOUW).  
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Figure 5.4 Detected lightning strikes over the Netherlands on September 10, 2011. Colours indicate the time of detection.  
 
The severe thunderstorm forecast for 15 – 21 UTC uses a combination predictor indicating a particular 
ensemble member with cloud top temperatures under 213 K and precipitation rates over 20 mm/h. 
Figure 5.5 shows the infrared satellite image, derived CTTs and precipitation rates of 14.15 UTC, the 
initial CPP images used for the 15 – 21 UTC forecast.  

   
Figure 5.5. Left, infrared satellite image at 14.15 UTC (from buienradar.com). Middle and right, calculated cloud top 
temperatures and precipitation rates from CPP algorithm at 14.15 UTC September 10, 2011.  
 
The low-pressure system off the coast of Scotland is clearly visible in the infrared satellite picture. The 
associated cold front shows up as a bright, white line running over western France, extending into 
Spain. Relatively cold clouds and precipitation are observed around the cold front, especially over the 
canal just south of England. Over the Netherlands no precipitation is calculated. The south-westerly 
flow used in the system does however cause the relatively low cloud top temperatures and 
precipitation values over the canal to be advected towards the Netherlands.   
 
The results of the MOS-CPP system for the 15 – 21 UTC forecast can be found in Figure 5.6a. It 
shows the probabilities of a thunderstorm event (left), the conditional probabilities for severe 
thunderstorm event with M5MI ≥ 200 (middle) and M5MI ≥ 400 (right).  Detected M5MI values can 
be found at the bottom right. The results show relatively high thunderstorm probabilities in the western 
and middle parts of the Netherlands. Conditional probabilities of severe thunderstorms are also high in 
the western regions. Most lightning discharges were detected in the southwestern and middle regions.  
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Figure 5.6b shows the results of the Operational KOUW system. If results of both systems are 
compared, we see that they both show high severe thunderstorm probabilities in areas where the 
highest M5MI values were detected. The probability of M5MI ≥ 400 is not high but high lightning 
intensities were detected in certain regions.  
 

  

 
Figure 5.6 a: MOS (severe) thunderstorm forecast system including a CPP predictor. b: Operational MOS (severe) 
thunderstorm forecast system. Probability forecast of ≥ 2 lightning discharges (left),  the conditional probability M5MI ≥ 200 
(middle), and the conditional probability M5MI ≥ 400 (right). On the right, bottom: Detected M5MI values. Forecasts and 
observations are for 15 – 21 UTC on September 10, 2011. 
 
The severe thunderstorm forecast for 18 – 00 UTC uses a CPP predictor that indicates a particular 
ensemble member with cloud top temperatures under 213 K. Figure 5.7 shows the initial infrared 
satellite image at 17.30 UTC used in the forecast. It also shows a magnification of the cloud top 
temperatures from the red rectangular region. In this region, very low cloud top temperatures were 
measured (indicated by a dark black colour). These are the CTT values that were advected and used in 
the forecast for this time period.  
 

        
Figure 5.7 Infrared satellite image at 17.30 UTC (from Buienradar.com) and cloud top temperatures calculated by the CPP 
algorithm from the area indicated by a  red rectangle.  

a)

b) 

≥ 2 ≥ 200

Detected 

≥ 400 
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The results of MOS-CPP for 18 – 00 UTC on September 10, 2011 are shown in figure 5.8a. Figure 
5.8b shows the results for Operational KOUW. MOS-CPP gives higher conditional probabilities of 
severe thunderstorms in most regions. In all of these areas, high values of M5MI were detected. Even 
the M5MI ≥ 400 forecast shows very high probabilities in areas where high lightning intensities were 
detected.  
 
 

  

 
Figure 5.8 a: MOS (severe) thunderstorm forecast system including a CPP predictor. b: Operational MOS (severe) 
thunderstorm forecast system. Probability forecast of ≥ 2 lightning discharges (left),  the conditional probability M5MI ≥ 200 
(middle), and the conditional probability M5MI ≥ 400 (right). On the right, bottom: Detected M5MI values. Forecasts and 
observations are for 18 – 00 UTC on September 10, 2011. 
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5.4 Verification over 2011  
 
In this section, the new MOS-CPP system is verified over the summer half year of 2011. First, the 
climatological probability of thunderstorms and climatological conditional probability of severe 
thunderstorms in 2011 is presented. Following are verification scores of MOS thunderstorm forecasts. 
These scores are discussed only briefly, as they did not include CPP predictors and is therefore of less 
interest for our research goals. Thunderstorm events do however form the condition for severe 
thunderstorm forecasts and therefore a brief verification is not left out. Subsequently, verification 
results for severe thunderstorm forecasts are presented. This MOS system includes CPP predictors in 
several forecast equations. The verification of these forecasts is of primary interest to this study and 
they will therefore be discussed thoroughly. MOS-CPP forecasts for which CPP predictors were 
selected are compared to MOS-NoCPP and Operational KOUW forecasts. They will furthermore be 
compared to an updated version of the KOUW system, introduced below. All systems are verified 
using Brier Skill Scores (BSSs). Reliability diagrams are presented for 06 UTC and 21 UTC central 
verification times.  
 
Climatological probabilities of thunderstorms and climatological conditional probabilities of severe 
thunderstorms for the different central verification times are presented in figure 5.9 for 2011.  
Climatological thunderstorm probability increases throughout the daytime and decreases in the 
evening. The peak of climatological thunderstorm probability is in the afternoon at 15 and the lowest 
thunderstorm probabilities are found at 03 and 06 UTC. Severe thunderstorms are indicated by M5MI 
≥ 50, 100 and 200. The plot looks slightly different compared to thunderstorm climatology. When 
climatological thunderstorm probability decreases at the end of the day, the conditional probability of 
severe thunderstorms still increases. This means that although less thunderstorms occur at the end of 
the day, they are more severe. The severity of thunderstorms does however quickly decrease after 00 
UTC, but increases again from 6 UTC onward.  
 

 

                                    
Figure 5.9 Thunderstorm and severe thunderstorm sample climatology. The climatological probability of thunderstorms and 
climatological conditional probability of severe thunderstorms is plotted against central verification time for the verification 
period of the summer half year of 2011. For severe thunderstorms, M5MI thresholds of 50 (green), 100 (purple) and 200 
(blue) were included.  
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5.4.1 Verification results of the MOS thunderstorm forecasting system 
 
BSSs of the MOS thunderstorm forecasts are plotted against central verification time in figure 5.10. 
All regions were pooled to get an overall indication of forecast skill. The skill of the thunderstorm 
forecasting system increases throughout the day and decreases again at night. It follows thunderstorm 
climatology quite clearly. Higher climatological probabilities mean that there are more ‘yes’ cases 
included in the verification of the system. Potential outliers may have less influence on the verification 
and BSSs are higher. 
 

 
Figure 5.10 Brier skill scores [%] of the MOS thunderstorm forecasts versus central verification time [UTC].  
 
Figure 5.11 shows the reliability diagrams that belong to the forecast of 06 UTC and 21 UTC central 
verification time, which showed BSSs of 18.8 % and 36.7 %, respectively. Forecast distributions have 
been added in the top left corner of both figures, for which predicted probabilities are divided into 
deciles. The desired U-shape of the distributions is however not visible, which is often the case when 
forecasting rare events. The 21 UTC forecast does however show higher values of predicted 
probabilities. In the 06 UTC forecast, a probability close to 1 is never issued.  
 
Most points in the calibration line of the 06 UTC forecast are above the perfect-reliability line. This 
indicates that the forecast probabilities are too low compared to observed frequency indicating 
underforecasting.  It is evident that the 21 UTC forecast is more reliable compared the 06 UTC 
forecast as most points for the 21 UTC forecast follow the perfect-reliability line closely. The  21 UTC 
MOS system is also better in terms of resolution.  
 
 
 



 43

 
Figure 5.11 Reliability diagrams belonging to the MOS thunderstorm forecasts with central verification times  06 UTC (left)  
and 21 UTC (right). Brier scores (Brs), Brier Skill Scores (Bss), Uncertainty (Unc), Reliability (Rel), Resolution (Res) and 
total number of cases (Ntot) are also indicated.  
 
5.4.2 Verification results of the MOS severe thunderstorm forecasting system 
 
The derived equations for the MOS-CPP system include CPP predictors at central verification times 
03, 06, 18 and 21 UTC. One of our goals in this research is to quantify if forecast equations including 
CPP predictors are better compared to forecast equations with no CPP predictors. For this reason we 
will compare the verification scores of equations including CPP predictors to forecast equations with 
no CPP predictors. As indicated in section 5.2, this comparison will be done against the MOS-NoCPP 
and Operational KOUW systems. However, as the coefficients of Operational KOUW have been 
derived on a dataset from 2002 – 2005, they may be outdated. Model parameters have changed 
through time and for this reason, we have updated the operational system and derived new coefficients 
over the 2008 – 2010 dataset. This system will be referred to as Updated KOUW. 
 
Verification results for the severe thunderstorm forecasts of M5MI ≥ 50 are shown for the central 
verification times of all MOS systems in figure 5.12. Operational KOUW is indicated by light grey, 
Updated KOUW by dark grey, MOS-NoCPP by blue and MOS-CPP by red. If we focus on the overall 
patterns of BSS in all MOS systems, it seems that BSS follows conditional severe thunderstorm 
sample climatology of the year 2011 quite closely. BSSs are high when the climatological probability 
of severe thunderstorms is high.  
 

Forecast 
distribution 

Forecast 
distribution
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Figure 5.12 Brier skill scores of 4 different MOS severe thunderstorm forecast systems verified for thresholds of M5MI ≥ 50 
discharges, over the summer half year of 2011. The operational MOS forecasting system at KNMI is indicated by light grey. 
The updated version of this system is indicated by dark grey. A MOS system derived over the years 2008 – 2010 excluding 
cloud physical properties is indicated by blue and a MOS system derived over the years 2008 – 2010 including cloud 
physical properties is indicated by red.  
 
Figure 5.12 shows that the updated version of KOUW provides more skilful forecasts at all but 2 
verification times; only at 12 and 15 UTC are the BSSs below Operational KOUW. If we compare 
MOS-NoCPP and MOS-CPP to Operational KOUW, we see that both new systems outperform 
operational KOUW at most verification times. MOS-NoCPP is more skilful than operational KOUW 
at 5 of 8 verification times. Only at 12, 15 and 18 UTC are the BSSs below the scores of the 
operational system. If MOS-CPP is compared to Operational KOUW, Updated KOUW and MOS -
NoCPP, it is more skilful at 3 out of 4 central verification times. MOS-CPP outperforms all other 
forecasts at 03, 06 and 21 UTC. It is however outperformed at 18 UTC by all systems, but the 
differences are generally not large. 
 
For the verification times of 15, 18, 21 and 00 UTC we present verification results not only at 
thresholds of M5MI ≥ 50 but also for the higher threshold of M5MI ≥ 200. BSSs belonging to 
forecasts for M5MI ≥ 200 are shown in figure 5.13. For 3 of the 4 forecasts verification times, the new 
equations derived from the 2008 – 2010 dataset are more skilful compared to Operational KOUW and 
Updated KOUW. CPP predictors are included in 2 of the 4 verification times, at 18 and 21 UTC. At 18 
UTC verification time, all systems excluding CPPs give better verification results compared to MOS-
CPP. At 21 UTC, MOS-CPP outperforms all systems. BSSs are only a scalar measure however and 
not a full representation of forecast quality. Reliability diagrams give a more complete image of 
forecast quality; they are presented below for 06 and 21 UTC. 06 UTC has a low climatological 
conditional probability and 21 UTC has a high climatological conditional probability of severe 
thunderstorms. Reliability diagrams that belong to the verification times of 03 and 18 UTC can be 
found in appendix 3.  
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Figure 5.13 Brier skill scores of 4 different MOS severe thunderstorm forecast systems for thresholds of M5MI ≥ 200 
discharges, verified over the year 2011. The operational MOS forecasting system at KNMI is indicated by light grey. The 
updated version of this system is indicated by dark grey. A MOS system derived over the years 2008 – 2010 excluding cloud 
physical properties is indicated by blue and a MOS system derived over the years 2008 – 2010 including cloud physical 
properties in indicated by red.  
 
Reliability diagrams of the different MOS systems for the 6 UTC central verification time and M5MI 
≥ 50 forecasts are shown in Figure 5.14. Forecast distributions are included in the figures as well as 
the scalar measures of the Brier score (Brs), Uncertainty (Unc), Reliability (Rel), Resolution (Res) and 
total number of cases (Ntot). MOS-CPP, MOS-NoCPP, Updated KOUW and Operational KOUW are 
shown from the top left to bottom right, respectively.  
 
The figures show that the Operational KOUW and Updated KOUW systems only issued forecast 
probabilities up to 0.4. Higher forecasted probabilities are favourable as they can increase the 
resolution of the system. The resolution of KOUW and Updated KOUW is quite weak, with values of 
only 0.001 and 0.003 respectively. The resolution of the system increases when predictors are selected 
from the 2008 -2010 dataset. The resolution of MOS-NoCPP is 0.013; the resolution of MOS-CPP is 
0.030. The higher resolution of the systems can be seen in the forecast distributions; they show that 
higher conditional probabilities are more often issued. MOS-CPP forecasts get up to probabilities of 
0.80, the highest observed. Although reliabilities of all systems are slightly better than for MOS-CPP; 
MOS-CPP is still most skilful because of its combination of resolution and reliability. MOS-CPP is 
thus the preferred forecast system for this time based on the 2011 verification. 
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Figure 5.14 Reliability diagrams belonging to the forecast of 03 – 09 UTC for the M5MI  ≥ 50 forecasts. MOS-CPP, MOS-
NoCPP, Updated KOUW and operational KOUW systems are shown from the top left to bottom right respectively. Brier 
scores (Brs), Brier Skill Scores (Bss), Uncertainty (Unc), Reliability (Rel), Resolution (Res) and total number of cases (Ntot) 
are also indicated.  
 
Figure 5.15 shows reliability diagrams of the 21 UTC central verification time for the M5MI ≥ 50 
forecasts. We can see that the updated version of KOUW improved in both resolution and reliability 
over the operational version. Especially the 0 to 0.4 probability forecasts of Updated KOUW verify 
well. The operational version shows more ‘jumpy’ behaviour at these lower forecast probabilities. 
MOS-CPP and MOS-NoCPP seem to perform even better though compared to the KOUW systems. 
This was already evident from the BSS plots and becomes more clear in the reliability diagrams. The 
resolution of the system increases substantially and the systems are also more reliable than the 
operational system. MOS-CPP performs better compared to MOS-NoCPP in terms of resolution. 
Although MOSS-NoCPP has a slightly better reliability, MOS-CPP still performs better overall.  
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Figure 5.15 Similar to 5.14 but for the M5MI ≥ 50 forecast for 18 – 00 UTC.  
 
Figure 5.16 shows the reliability diagrams for the 21 UTC verification time, for the M5MI ≥ 200 
forecasts. It is obvious that the operational system lacks resolution at this threshold. Resolution 
increases slightly for the updated system but it does not reach the relatively high resolutions of the 
newly derived MOS systems. Operational KOUW and MOS-CPP have the best reliability. The highest 
BSSs were found for the equation including the CPP predictor. It is clearly visible from the reliability 
diagrams that the MOS-CPP forecast performs best. It has the highest resolution and reliability. MOS-
NoCPP underforecasts at all forecast probabilities and including the CPP predictor in the forecast 
equations clearly makes the forecast better.  
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Figure 5.16 Similar to 5.14 but for the M5MI ≥ 200 forecast for 18 – 00 UTC.  
 
We end this chapter by showing a very important improvement of the newly derived MOS severe 
thunderstorm forecast system. The improvement arises due to the use of extended logistic regression 
in the derivation of the forecast equations. KOUW has only been derived for 3 separate threshold 
values of M5MI. The threshold of M5MI = 200 was used as the absolute maximum threshold and 
could only be used during half of the forecast times, because of the otherwise too low climatological 
conditional probability of such a severe thunderstorm event. Extended logistic regression however 
allows us to choose any arbitrary threshold of M5MI to make  a forecast.  
 
Figure 5.17 shows BSSs as a function of the M5MI threshold for the 8 central verification times of the 
new MOS system. BSSs are plotted versus M5MI threshold until BSSs becomes negative at more than 
one M5MI threshold or when no more cases were available to verify the forecast for the M5MI 
threshold. From the figure, it is evident that skilful forecasts are now possible for specific thresholds 
far over M5MI = 200 discharges. This characteristic of the new MOS system can be extremely useful 
to meteorologists, as their main interest is in forecasting very high lightning intensity thunderstorms. A 
severe weather warning is issued to the public when the subjective probability of over 500 discharges / 
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5 minutes is more than 60 % for a 50 x 50 km2 region in the Netherlands. The decision to issue a 
warning can be further objectified using the new MOS thunderstorm forecasting system.  
 
Overall, BSSs decrease with M5MI threshold. This is expected, as the events become more rare and 
more difficult to forecast. BSS increase for most systems over the first few M5MI thresholds, 
however. This might be caused by the choice of M5MI thresholds in the derivation of the MOS system 
(see paragraph 4.2). Intermediate values of the used threshold values show the highest BSSs. 
Reliability diagrams that belong to the forecasts of M5MI ≥ 300, 400 and 500 can be found in 
appendix 4.  
 

 
Figure 5.17 BSSs versus M5MI threshold  for the newly derived MOS system for 8 central verification times [UTC]. BSS 
values are excluded if more than 1 M5MI threshold forecast shows BSS < 0, or when no cases were available to verify the 
forecast  for the specific M5MI threshold. 
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6. Summary and Conclusions 
 
In this study, the addition of advected satellite data to the currently operational (severe) thunderstorm 
forecasting system at KNMI is investigated. The current system is operational during the summer half 
year from mid-April to mid-October and uses logistic regression equations to predict both the 
probability of thunderstorms and the conditional probability of severe thunderstorms for twelve 
regions of 90 by 80 km2 over the Netherlands. It makes forecasts for 6-h periods up to 2 days ahead 
and uses predictors from ECMWF and HIRLAM model output and from ensembles of advected radar 
and lightning data. The latter are used only in the 0-6 h projections. 

New forecast equations are derived on a more recent dataset from 2008 – 2010. MSG data is included 
as an additional potential predictor source for the 0 – 6 h projections. MOS is used to develop 
probabilistic forecast equations, in which thunderstorm forecast equations are derived using logistic 
regression and severe thunderstorm forecast equations are derived using extended logistic regression. 
A thunderstorm is defined as an event where > 1 lightning discharge is detected. A severe 
thunderstorm is defined as an event with ≥ 50, 100 or 200 discharges / 5 minutes. Conditional 
probabilities of severe thunderstorms are defined under the condition of a thunderstorm event.  
 
As a source of satellite data, cloud physical properties are used, which are derived form the SEVIRI 
instrument onboard the MSG satellite. They are advected using atmospheric motion fields, calculated 
from 30-minute subsequent IR 10.8 µm channel images as input in the CineSat program. Varying the 
motion vectors in length and direction creates an ensemble, from which potential predictors are 
created. Of the available advected cloud physical properties, cloud top temperature, cloud column 
height and precipitation show the best relation to lighting intensity. Cloud column height and 
precipitation have a positive correlation with lightning intensity; cloud top temperature has a negative 
correlation. 
 
In the MOS thunderstorm forecast system, no advected satellite predictors have been selected. CAPE 
was chosen as the most important predictor during runtimes of the system in the morning. Advected 
lightning ensemble data was chosen as the most important predictor during the afternoon and evening 
runtimes of the system. Both predictors are frequently accompanied by instability indices or 
convective precipitation predictors from models. 
 
In the MOS severe thunderstorm forecast system, lightning ensemble predictors are most important 
overall. Advected satellite data is included in 4 of 8 forecast runtimes (00, 03, 15 and 18 UTC). 
Advected satellite data yields the second most important predictor two of four times and the most 
important predictor at 15 and 03 UTC runtime. This indicates that advected satellite data adds value to 
the forecasts on the 2008 – 2010 dataset. 15 UTC runtime includes a combined predictor indicating a 
particular ensemble member with minimum cloud top temperatures under 213 K and maximum 
precipitation values over 20 mm/h. The remaining forecast times include a predictor indicating a 
particular ensemble member with minimum cloud top temperatures under 214 K. This value is close to 
218 K, a value that was found by Mäkelä (2006) as a threshold value, below which lightning intensity 
is very intense in Finland. The forecast equations change when advected satellite data is excluded in 
the derivation of the equations. It often includes an advected lightning ensemble predictor and 
instability indices.  
 
When equations are verified over the independent dataset of 2011, forecast skill of the thunderstorm 
forecast system increases when the climatological probability of thunderstorms increases. This same 
pattern is observed for severe thunderstorm forecasts; their skill increases when the conditional 
probability of severe thunderstorms increases. Verification scores of forecasts including advected 
satellite data are compared to the currently operational system and to the forecast equations derived 
excluding advected satellite data. The operational system is furthermore updated on the 2008 – 2010 
dataset and included in the analysis. For 00, 03, 15 and 18 UTC runtimes, verification scores of 
forecasts for M5MI ≥ 50 are compared and for 15 and 18 UTC the scores of forecasts for M5MI ≥ 200 
are compared as well.  
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Forecasts including advected satellite data are more skilful compared to all other systems at 3 of 4 
runtimes for the M5MI ≥ 50 forecast. It is only outperformed by the other systems in the forecast of 15 
– 21 UTC. The systems that include advected satellite data performs best in the forecast of M5MI ≥ 
200 for 18 - 00 UTC. For the 15 – 21 UTC forecast of M5MI ≥ 200 it is outperformed by all other 
systems.  
 
Overall it can be concluded that the system including advected satellite data increases forecast skill 
compared to the currently operational system, even if the system is updated. It is generally also more 
skilful than a system derived over the same dataset but excluding satellite data. A very important 
advantage of the new system arises due to the use of extended logistic regression in the derivation of 
the MOS equations. Forecasts can be made for any arbitrarily chosen M5MI threshold using the new 
MOS system, as a function of the threshold is included in the equations. The system shows skilful 
forecasts up to very high M5MI thresholds. This characteristic is very useful to meteorologists and is 
much more difficult to achieve using ordinary logistic regression.  
 
It would however be recommended to verify the system over more years. If the new system remains 
more skilful, it is recommended to change the currently operational system to the new system. For 
further development of the MOS thunderstorm forecast system, we recommend to include data from 
the new Harmonie model when a reforecasting dataset will be available. Harmonie is a non-hydrostatic 
model and may provide very valuable information to MOS thunderstorm forecasting, because of its 
very high resolution and because vertical air motion is resolved explicitly. Harmonie will replace 
Hirlam in the future as operational model at KNMI and Hirlam indices in MOS systems should 
therefore be replaced by Harmonie indices. Data from GLAMEPS may furthermore be included as 
potential predictors. GLAMEPS (Iversen et al., 2011) is a multi-model short range ensemble 
prediction system and may also yield valuable information for MOS thunderstorm forecasting.  
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Appendix 1 
Definitions of all predictors used in the MOS systems (alphabetical order) 

 
 

Boydave – average value Boyden index from the Hirlam forecast 
 
Bradave– minimum value of Bradbury index from the Hirlam forecast 
 
Bradmax – maximum value of Bradbury index from the Hirlam forecast 
 
Bradmin – minimum value of Bradbury index from the Hirlam forecast 
 
Capemax - maximum value of surface based CAPE 
 
Capmulave - average value of CAPE from the most unstable level of the atmosphere  
 
Capmulma - maximum value of CAPE from the most unstable level of the atmosphere  
 
Ctotmax – maximum value of Cross Totals index from the Hirlam forecast 
 
Ctt_213Precip_20bin – particular ensemble member with Cloud Top Temperatures ≤ 213 K and precipitation ≥ 20 mm/h in 
binary form 
 
Ctt_214bin – particular ensemble member with Cloud Top Temperatures ≤ 214 K in binary form 
 
Flima9ra – temporal Maximum 5-minute lightning intensity (M5MI) from a particular radar advection ensemble member 
 
Gt10a7(9)ra - temporal maximum percentage of the region occupied by ≥ 10 radar pixels from a particular ensemble member  
 
Gt10at – maximum percentage of the region occupied by ≥ 10 mm h-1 radar pixels from the total advection ensemble  
 
Gt2ib7ha – binary predictor indicating whether a particular HIRLAM advection ensemble member shows ≥2 discharges in 5 
minutes 
 
Gt2tpr – percentage of total advection ensemble with ≥ 4 lightning discharges in 6 hours 
 
Gt2tprra – percentage of radar advection ensemble with ≥ 4 lightning discharges in 6 hours 
 
Gt30a7ra - temporal maximum percentage of the region occupied by ≥ 30 radar pixels from a particular ensemble member  
 
Gt30at – maximum percentage of the region occupied by ≥ 30 mm h-1 radar pixels from the total advection ensemble  
 
Jeffave – average value of Jefferson index from the Hirlam forecast 
 
Jeffmax – maximum value of Jefferson index from the Hirlam forecast 
 
Jeffmin – minimum value of Jefferson index from the Hirlam forecast 
 
Lnbmulma – Maximum level of neutral buoyancy in the most unstable atmospheric level from the Hirlam forecast 
 
M5mit – M5MI from the total advection ensemble 
 
M5mitha – M5MI from the HIRLAM advection ensemble 
 
Maxv300 – maximum meridional air speed at 300 hPa from the ECMWF model 
 
Mjeffmax – maximum value of the modified Jefferson index from the Hirlam forecast 
 
Nodis7ra - average amount of lightning discharges of a particular advected radar ensemble member 
 
Rtavecp6 – root of the average convective precipitation from the Hirlam forecast 
 
Rtcp6ec(6) – root of the maximum convective precipitation from the ECMWF model forecast 
 
Rtmaxcp6(3) – root of the maximum convective precipitation from the Hirlam forecast 
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Sc3 – P27 score indicating the change in direction of air flow at 500 hPa in western Europe from the ECMWF model 
 
Showave – average value of the Showalter index from the Hirlam forecast 
 
Showmin – minimum value of the Showalter index from the Hirlam forecast 
 
Sqrt_thresh – square root of the M5MI threshold 
 
Vtotave – average vertical totals index from the Hirlam forecast 
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Appendix 2 
Predictor coefficients of the MOS (severe) thunderstorm forecasts 

 

Runtime  Thunderstorms  

(UTC)   

0 Constant -56.50099382779236 

 gt2tpr 3.1963064072331413 

 capmulma 4.896610301443581E-4 

 boydave 0.04651360364184928 

 rtcp6ec 0.0023368442714328526 

 jeffmax 0.02826693870093056 
 

3 constant -16.488756241728904 

 gt2tpr 0.045715324582763395 

 capmulma 7.204963547411438E-4 

 jeffmax 0.045715324582763395 

   

6 constant -16.624036806433825 

 capmulma 4.6115684512635307E-4 

 jeffave 0.048585156027153346 

 rtmaxcp6 0.0017871055887664323 

 gt10a7ra 0.3931867500321074 

   

9 constant -16.095044503802082 

 capmulma 5.269602024530871E-4 

 jeffave 0.04701578807782779 

 rtmaxcp6 0.0024440426334177926 

   

12 constant -15.964931775196177 

 capmulma 3.496048881593764E-4 

 jeffave 0.04752941444788049 

 gt2tpr 3.0347739857815967 

 rtavecp6 0.0033112750603929097 
 

15 constant -17.47246454217819 

 gt2tpr 0.050578417350702266 

 rtmaxcp6 0.002568705601129417 

 jeffmax 0.050578417350702266 

   

18 constant -83.35334190530673 

 gt2tpr 2.5251912043001403 

 capmulma 4.658246598500977E-4 

 boydave 0.07997946381087305 

 rtmaxcp3 0.0015694814875404997 

 ctotmax 0.016921290485116005 
 

21 constant -61.43971870239851 

 gt2tprra 3.5929076246154747 
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 boydave 0.06209492981019245 

 capemax 0.0011125121270877732 

 showmin -0.0545099090500864 

   

Runtime Severe Thunderstorms  

(UTC)   

0 constant -10.870188 

 gt10at 0.223176 

 sqrt_thresh -0.472886 

 ctt_214bin 1.634883 

 mjefmax 0.034910 

   

3 constant 1.207466 

 Ctt_214bin 1.304319 

 Sqrt_thesh -0.470841 

 Gt10a7ra 0.238481 

 Showave -0.079924 

 Maxv300 0.005026 

   

6 constant -93.566034346042 

 m5mitha 0.02322326500743422 

 boydave 0.08366014618787428 

 sqrt_thresh -0.296291423663039 

 shearave 0.015173105740487875 

 jeffmin 0.038727005428727236 

   

9 constant -12.971908221707283 

 bradmin -0.028138225620731986 

 cos2dtg 0.0017865218919963209 

 sqrt_thresh -0.3181992309612173 

 jeffmin 0.04331605957165632 

 M5mi7ra 0.021166129028484894 

   

12 constant -96.86531324148727 

 Boydmax 0.08379241294193356 

 jeffave 0.0518352479789672 

 sqrt_thresh -0.22402050180385547 

   

15 constant -0.232569 

 ctt_213precip_20bin 1.680819 

 Bradmin -0.092715 

 sqrt_thresh -0.311483 

 Capmulma 0.000507 

   

18 constant 1.135333 

 m5mitha 0.007547 
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 ctt_214bin 1.070882 

 Sqrt_thresh -0.356208 

 showave -0.073381 

 gt10a7ra 0.187906 
 

21 constant 0.5157381285710331 

 flima9ra 0.2266464127712116 

 showmin -0.11418138239379473 

 sqrt_thresh -0.41345055877164527 

 gt2ib7ha 1.5294397397036572 
 
 
 

Runtime 
Severe Thunderstorms 
ExcludingCPPs  

(UTC)   

0 constant 0.6295676645048837 

 gt10at 0.22011556094906845 

 sqrt_thresh -0.43948665853055524 

 sc3 -0.010184806766006306 

   

3 constant 1.703309718242742 

 m5mit 0.011560143125450912 

 sqrt_thresh -0.44564293337256405 

 showave -0.0818408711367755 

 maxv300 0.003522966649000837 
 

15 constant -0.20429556618736824 

 capmulma 4.8631652005625683E-4 

 bradmin -0.09629222523974193 

 sqrt_thresh -0.30517771998369775 

 gt30at 0.6041870883318963 

   

18 constant 0.6792941308051886 

 gt10a7ra 0.3275738646608713 

 bradmin -0.07876228655596608 

 sqrt_thresh -0.3241071075530411 
 
 

Runtime Severe Thunderstorms    

(UTC) Updated KOUW 50 100 200 

0 constant -12.194271613211134 -10.851264834291907 -13.18809996364548 

 m5mi7ra 0.016547675994604816 0.0033059956576232214 0.0022090211277578007 

 gt10at 0.09834612040391787 0.13280204993307076 0.3093738921193295 

 vtotave 0.033453571317185425 0.025277635858491982 0.030361363676639053 

 gt2tpr 0.9793421778448426 1.1281843241651877 -2.6522126882442696 

     

3 constant -5.163216250870481 -4.915194487524578 -6.27518682903541 

 m5mit 0.005981583856967592 0.006012542771149108 0.005480444441790681 

 gt30at 0.7985386935430917 0.48848342193241395 0.5057011762383355 
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 INBmulma 2.977503364605196E-5 1.397496163495065E-5 2.2342924086183703E-5 

 Rtcp6ec6 0.027988542367335802 0.02554583572475636 0.03147739558501591 

     

6 constant -0.9227122049482616 -1.4965970391786048 -3.213891862714462 

 gt30a7ra 0.9428562709734541 0.5465937195228614 0.797003130052802 

 bradmax -0.11246594371081663 -0.12192969957778452 -0.10463134940162662 

 rtcp3ec3 0.0014868183857709028 0.0014633225983113523 0.0034422462576819456 

     

9 constant -16.793154301046485 -22.98704898224909 -22.08042441540852 

 m5mitha 0.011982249700916664 0.016914019499406092 0.0162328556724491 

 rtcp3ec3 8.456532819766509E-4 0.0013683073899927783 0.0037126303858542936 

 mxt1000a 0.013760071128876792 0.024960476038148067 0.03337553093459597 

 cos2dtg 0.0026695223825692186 0.003679728173599178 0.004602132009981552 

 jeffmin 0.04174774571815981 0.05381212967928529 0.040292274967386056 

     

12 constant -6.492840556715094 -9.338507219871193 -12.170953935032754 

 bradmin -0.09477970374211551 -0.13512435277141052 -0.11763708091170967 

 gt2tbt 0.6779477675552168 0.5326911021789599 0.7713338078536461 

 maxtr850 -4.468401258308514E-4 -1.914888831550085E-4 4.074300400911714E-5 

 jeffmin 0.01765033073383006 0.024197702253046738 0.030790711104439844 

     

15 constant -1.0098375924146032 -2.08142856946431 -3.60146405646244 

 flima9ra 0.0673571164989937 0.06583924461089605 0.07137823331694435 

 bradave -0.09545628659979738 -0.1163520389306731 -0.12151362856195427 

 capmulav 5.773820834597198E-4 8.144542352494217E-4 0.0010903461550433784 

     

18 constant -1.0690952194381769 -1.5065362750458071 -3.2514526693020134 

 nodis7ra 0.028736951296633024 0.016088033574364797 0.020130308377987505 

 bradmax -0.05509820616928609 -0.0651636206405539 -0.0672876344103906 

 gt2ib7ha 1.032311358467471 0.7089340839671974 1.442597838902262 

     

21 constant -0.2863735628788512 0.556992534941945 -0.47552571716669056 

 bradmin -0.09696871728946521 -0.09282077794266426 -0.11903967458289179 

 LNBmax 1.018160045001136E-6 5.118916471080669E-6 2.834046546769096E-6 

 Rtff1000 -0.14640827839803527 -0.3569237163705342 -0.46239082188374153 
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Appendix 3 
Reliability diagrams of the MOS severe thunderstorm forecast systems at 

03 and 18 UTC central verification time 
 
 

00 – 06 UTC forecast for M5MI ≥ 50 
(MOS-CPP, MOS-NoCPP and Updated KOUW from top left to bottom left, respectively) 
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15 - 21 UTC forecast for M5MI ≥ 50 
(MOS-CPP, MOS-NoCPP, Updated KOUW and Operational KOUW from top left to bottom right, 

respectively) 
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15 - 21 UTC forecast for M5MI ≥ 200 
(MOS-CPP, MOS-NoCPP, Updated KOUW and Operational KOUW from top left to bottom right, 

respectively) 
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Appendix 4 
Reliability diagrams of the MOS severe thunderstorm forecast system for 

M5MI ≥ 300, 400, 500 forecasts 
 

M5MI ≥ 300 forecast for central verification timeswith BSS> 0 
 
    (18 UTC) BRS      UNC      REL      RES    ntott    BSSsc  (21 UTC) BRS      UNC      REL      RES    ntott    BSSsc 
        .036     .048     .014     .026      275     25.0         .028     .056     .008     .036      203     49.4 

 
(00 UTC) BRS      UNC      REL      RES    ntott    BSSsc         (09 UTC) BRS      UNC      REL      RES    ntott    BSSsc 
         .024     .026     .005     .008      149      9.3           .027     .045     .009     .027      128     40.2 

 
     (12 UTC) BRS      UNC      REL      RES    ntott    BSSsc (15 UTC) BRS      UNC      REL      RES    ntott    BSSsc 
      .016     .023     .002     .009      254     30.4       .030     .038     .005     .013      304     19.8 
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M5MI ≥ 400 forecast for central verification timeswith BSS> 0 
 
(18 UTC) BRS      UNC      REL      RES    ntott    BSSsc   (21UTC) BRS      UNC      REL      RES    ntott    BSSsc 
           .033     .038     .010     .015      275     12.9          .020     .038     .008     .026      203     47.7 

 
(09 UTC) BRS      UNC      REL      RES    ntott    BSSsc         (12 UTC) BRS      UNC      REL      RES    ntott    BSSsc 

          .015     .023     .008     .016      128     33.8             .012     .016     .002     .006      254     22.3 

 
    (15 UTC)  BRS      UNC      REL      RES    ntott    BSSsc 
          .024     .029     .004     .009      304     15.8
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M5MI ≥ 500 forecast for central verification timeswith BSS> 0 
 
    (18 UTC) BRS      UNC      REL      RES    ntott    BSSsc   (21 UTC) BRS      UNC      REL      RES    ntott    BSSsc 
              .027     .028     .004     .005      275      2.9           .018     .033     .008     .024      203     47.2 

  
(09 UTC) BRS      UNC      REL      RES    ntott    BSSsc          (15 UTC) BRS      UNC      REL      RES    ntott    BSSsc 
           .016     .023     .008     .015      128     31.4                        .013     .013     .001     .001      304       .2 
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