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Abstract

TROPOMI’s Aerosol Layer Height algorithm currently assumes a simplified aerosol pro-

file in the form of a single layer of homogeneously distributed aerosols. The height of this

layer is retrieved by using height information from the O2 A band. It is not straightfor-

ward to interpret the retrieved height parameter, since true aerosol profiles are typically

complex and heterogeneous.

We used radiative transfer theory to better understand the retrieved parameter. In

addition to an available multiple scattering description of the radiation field, a single

scattering approximation was developed as well. Comparing the single scattering approx-

imation to the full multiple scattering radiative transfer revealed that the approximation

is accurate inside strong absorption parts of the O2 A band for realistic aerosol profiles.

Retrieval simulations for realistic aerosol scenes suggested that the retrieved height pa-

rameter can be interpreted as a centroid of the aerosol profile, if the surface albedo is

not fitted.

The retrieved height parameter was compared to three different centroids of the aerosol

extinction profile, which are constructed using weighted averages. Two of these methods

take into account the sensitivity of the measured top of atmosphere radiance with respect

to aerosol at different altitudes. This sensitivity was obtained by taking a directional

derivative of a functional, which maps the aerosol extinction profile to a measured top of

atmosphere radiance. This yields semi-analytic derivatives. The two methods differ in

the way the derivatives are determined. The first uses a multiple scattering description

and the other uses the single scattering approximation. All centroid methods showed

good agreement with the retrieved height parameter.

In additional retrieval experiments we also fitted the surface albedo. These experiments

showed that, as soon as the standard error of the surface albedo exceeds 10−3, a bifurca-

tion occurs, which results in unrealistic results. These unrealistic results can no longer

be interpreted as centroids of aerosol extinction profiles.
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Chapter 1

Introduction

Aerosols are tiny solid particles or droplets suspended in the atmosphere, e.g. dust,

soot, volcanic ash and air pollutants. They are typically smaller than a micrometer.

Aerosols are interesting in many different fields, like climate studies, meteorological

models, remote sensing and air quality.

In the Earth’s radiation balance, aerosols play a large role. Aerosols can cool the at-

mosphere by scattering radiation outwards. They can affect the radiation by locally

warming the atmosphere through absorption. Furthermore, they play an important role

in cloud formation, as they often function as cloud forming nuclei. Therefore, they play

a fundamental role in climate and meteorology. For the same reasons, they are also a

key parameter in the inversion of satellite data, as they affect the radiation measured at

the top of the atmosphere.

Furthermore, aerosols are a large subset of the Earth’s air pollutants. The World Health

Organization recently reported that in 2012 around 7 million people died as a result of

air pollution exposure, see [1]. This means that air pollution is the world’s largest single

environmental health risk.

Because of the volcanic ash that was injected into the atmosphere during the eruption

of the Icelandic volcano Eyjafjallajökull between April and May 2010, a large part of

Europe’s air space was closed for over six days. The International Air Transport Associ-

ation reports that the loss due to this event totals over $2.5 billion, see [2]. Maybe, if we

had known the vertical distribution of the aerosol, we could have allowed the aircrafts

to fly at different altitudes, avoiding the aerosol. This vertical distribution was indeed

investigated later, see [3].

Various techniques are being developed to obtain information on the vertical distribution

of aerosols. Lidar is a remote sensing technology that measures atmospheric composition
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Introduction

by measuring the backscattered light of a narrow laser beam. By repeatedly sending out

laser pulses one can obtain information about the vertical structure of the atmosphere.

This technology is used extensively to obtain detailed knowledge of the vertical structure

of aerosol. The European Aerosol Research Lidar Network (EARLINET, [4]) provides a

network of ground-based lidars performing aerosol vertical distribution measurements.

However, we can only obtain local information using these techniques. Because aerosol

vertical distribution shows spatial variation and we are unable to obtain global coverage

with ground-based lidars, there is a clear need for other methods.

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

satellite is the first satellite to carry a lidar on-board dedicated to monitoring aerosol

and cloud distribution from space. This novel method of monitoring aerosols has led the

way to a large amount of new interesting research on the topic of aerosol distribution,

e.g. [5]. However, the lidar on-board this satellite can still only obtain very localized

data due to its narrow ground track.

Finally, methodologies are being developed to obtain information on the vertical distri-

bution of aerosol from satellite measurements of sunlight reflected by the atmosphere.

The spatial coverage of these methods is much larger than for methods based on lidar

technology. One passive remote sensing technique is the Aerosol Layer Height algorithm,

see [6] and [7]. This algorithm is being developed at KNMI for the Sentinel-5 Precursor

mission’s Tropospheric Monitoring Instrument (TROPOMI), see [8]. This spectrometer,

jointly developed by The Netherlands and ESA, has daily global coverage with spectral

bands in the ultraviolet, the visible, the near-infrared and the shortwave infrared. The

Aerosol Layer Height algorithm exploits absorption of radiation in the O2 A band in the

near-infrared to obtain height information.

In the Earth’s atmosphere, we observe numerous different cloud types. Take, for ex-

ample, the thin high cirrus, the thick low stratocumulus, or the extremely large dense

cumulonimbus clouds. Furthermore, several of these cloud species can be present at the

same time. For aerosols, we observe similar behavior. Aerosols can be near the surface

if they are close to their source, but they can also be elevated if they are emitted by a

volcano or carried by wind. Furthermore, the structure of aerosol clouds can vary due

to the various aerosol species that form these clouds. Thus, the vertical distribution of

both clouds and aerosol is complex and can be very heterogeneous.

Due to the similarity of the retrieval problems, and the experience in cloud retrievals,

aerosol research is often inspired by work already done for clouds. Operational cloud

products typically assume a simplified cloud profile. A common parameterization is a

single reflecting layer (e.g. [9], [10] and [11]). Building on the experiences with the cloud

products, the Aerosol Layer Height algorithm also assumes a single layer. For this single
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layer of homogeneously distributed aerosol, atmospheric properties are fitted. Assuming

such a simplified parameterization of a profile has consequences for the interpretation of

the retrieval results, as there is a fundamental difference between the assumed layer and

the actual profile. One immediately wonders how the retrieved height of a single layer

relates to a (complex) true profile. Thus, research is needed to understand and interpret

the retrieved height properly.

Experience has shown that the (operational) cloud products can often be interpreted

as the centroid of a cloud profile. Aerosol Layer Height retrieval simulations suggest

(see chapter 3) that we might interpret the Aerosol Layer Height as some centroid of an

aerosol profile as well. Again, we turn to cloud retrievals to better understand this.

Knowledge of the light field in cloudy atmospheres can be used to gain a better un-

derstanding of retrieved cloud height. In [12], centroids of cloud profiles are derived by

computing a particular weighted average of these cloud profiles. This weighted average

takes into account properties of the light field for cloudy atmospheres (diffusion limit).

These computed centroids can then be compared to operational (remote sensing) cloud

products. Indeed, there is agreement between the computed centroids and the retrieved

cloud heights of the cloud height products.

Since aerosol layers tend to be much less dense than cloud layers, their impact on the

radiation field is significantly different from that of normal clouds. Thus, the weighted

averaging scheme for cloud profiles is not appropriate for aerosol profiles. Instead, we

turn back to radiative transfer to understand how aerosols impact the measured radiance.

It seems suitable, see [13], that the single scattering of light is the most important effect

for aerosols (single scattering limit).

Of course, the actual retrieved height parameter is the ”true” centroid of a profile, and

centroids based on simplified weighted averaging schemes may differ from this retrieved

height. However, computing centroids from a simplified weighted averaging scheme

has the advantage that it does not require complex radiative transfer computations.

Furthermore, they can easily be computed for lidar measurements. This makes these

methods ideal for large scale validation studies of the operational products (as seen in

[12]).

In this thesis, we investigate how we should interpret retrieved Aerosol Layer Height

from TROPOMI’s Aerosol Layer Height algorithm. We also develop a single scattering

approximation to the radiative transfer equation. Not only can this approximation be

used to develop a simplified weighted averaging scheme for aerosol profiles, but it is

also useful to better understand the radiation field for aerosol, which helps to further

optimize the Aerosol Layer Height algorithm.

3



Introduction

This thesis is structured as follows: First, we discuss how we can obtain aerosol height

information from passive remote sensing observations in chapter 2. There, we also

introduce the Aerosol Layer Height algorithm. In chapter 3, we construct realistic aerosol

profiles for which we perform Aerosol Layer Height retrieval simulations. We introduce

the radiative transfer equation and related concepts in chapters 4 and 5. Then, in chapter

6, we derive a single scattering approximation to the radiative transfer equation. For

this approximation we derive an analytic solution, and semi-analytic derivatives, which

we use for the construction of a weighted averaging scheme in chapter 7. Finally, in

chapter 8, we perform additional retrieval experiments to investigate the effect of fitting

the surface albedo as well. We conclude with a summary of our findings in chapter 9.
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Chapter 2

Retrieving Aerosol Height

2.1 Physical Basis

When sunlight enters the atmosphere, photons get scattered and absorbed by atmo-

spheric constituents, such as particles, trace gases, molecules and clouds. Of course, light

also gets reflected by our planet’s surface. Subsequently, after being exposed to these

extinction processes, radiation can leave the atmosphere again. By carefully modeling

the radiative transfer in the atmosphere, and comparing simulated top of atmosphere

radiance signals against satellite measurements, we can retrieve atmospheric properties

such as the height distribution of aerosol.

Throughout the light spectrum, the processes involved with extinction vary both quali-

tatively and quantitatively, and thus different processes may be used to obtain informa-

tion about different quantities of interest. The Aerosol Layer Height algorithm exploits

the absorption of radiation by oxygen in the A band (759 - 770 nm) to obtain height

information for aerosol.

Consider an atmosphere with scattering aerosols between 900 and 800 hPa, or between

500 and 400 hPa. The measured spectra for these atmospheres are simulated in Figure

2.1. We clearly observe a decrease in absorption when the aerosol layer is more elevated.

When only considering single scattering (light that is scattered only once), the previous

example can be explained as follows. Obviously, the more elevated aerosol layer reflects

sunlight closer to the top of the atmosphere. Thus, a photon’s path through the atmo-

sphere is typically shorter, compared to light reflected by the lower layer. Because of the

shorter path length, there is less absorption due to interaction with oxygen molecules,

and a stronger radiance signal is observed inside the absorption band. Thus, there is

information about the height distribution of aerosol inside the absorption band.
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Figure 2.1: Simulated measured radiance spectra for an atmosphere with aerosol
layers at different altitudes. The atmosphere with the high-altitude (low-pressure)
aerosol layer yields a stronger radiance signal inside the absorption band, since light is

typically reflected higher in the atmosphere and thus there is less absorption.

However, besides single scattering, many other complex processes influence the top of

atmosphere radiance. For example, we also need to account for multiple scattering,

aerosol absorption, and interactions with the surface. Therefore, sophisticated radiative

transfer models have been developed to calculate the radiance field. The transfer models

are based on the Radiative Transfer Equation (see chapter 4).

Using such a radiative transfer model, we can develop a Forward Model, which maps

atmospheric parameters to a measured signal. To be precise, consider some state vector

x containing atmospheric parameters. Then, the forward model F maps the state to

a measured radiance y. To retrieve atmospheric properties from the measurement, the

forward model has to be inverted.

2.2 Aerosol Layer Height Algorithm

The Aerosol Layer Height algorithm is an algorithm developed at KNMI. Its main

goal is the retrieval of aerosol height information from radiance spectra measured by

TROPOMI. See [6] and [7] for a detailed description of this algorithm. It has the fol-

lowing key features:

• A forward model with full multiple scattering radiative transfer computations in

the O2 A band using the DISAMAR software package. Computations are made for

an atmospheric model describing an atmosphere with scattering and absorption by

molecules and aerosols, and which is bounded by a reflecting Lambertian surface.
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• Regularized inversion of the forward model through means of Optimal Estimation,

which exploits prior knowledge of the physical quantities involved.

• A simple aerosol profile parameterization, where we assume that the aerosol is

homogeneously contained in a single layer with a fixed pressure thickness.

• Retrieval of the following main fit parameters: aerosol layer height (mid pressure),

the aerosol layer’s optical thickness, and the surface albedo (wavelength depen-

dent).

In the following, we will briefly elaborate on these key features.

2.2.1 DISAMAR

The Determining Instrument Specifications and Analyzing Methods for Atmospheric

Retrieval program (DISAMAR), is a computer program developed at KNMI. See [14]

for a detailed description of the program. DISAMAR is the science code, which functions

as the basis for the operational TROPOMI Aerosol Layer Height algorithm. The version

of DISAMAR we use is V3.5.3.

DISAMAR can be used for radiative transfer simulations to compute spectra. Radiative

transfer simulations are performed with the approximation method called Layer Based

Orders of Scattering (LABOS), which is an efficient variant of the adding/doubling

method (see [15]). The LABOS approximation method accounts for multiple scattering

by molecules and aerosol, absorption by aerosol, absorption by oxygen, and also accounts

for a reflecting surface. Instrument properties, like spectral resolution, are also accounted

for.

In DISAMAR we distinguish two simulation modes appropriate to our application:

• The first mode simulates spectra for a simplified aerosol model. This simplified

model is the same as used in the Aerosol Layer Height algorithm. We call it the

forward model for retrieval. Spectra that are computed from this model can be

compared to (a simulation of) real measured spectra. By changing the parameters

of the aerosol model, we can fit the spectra, and therefore also the parameters.

With this mode we can simulate retrievals of the Aerosol Layer Height algorithm

if we fit the parameters according to the same inversion method as the Aerosol

Layer Height algorithm.

• The second mode’s primary function is the simulation of radiance measurements.

By carefully specifying the composition of the atmosphere, we can approximate

7
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a realistic atmosphere. For example, large amounts of homogeneously distributed

aerosol layers can be used to approximate an aerosol profile. We can use this

mode to obtain measured radiance spectra without actually doing any real mea-

surements. We call this the forward model for simulation.

These simulation modes are valuable for exploratory research of the Aerosol Layer Height

algorithm, since it is very important to have a thoroughly tested algorithm before launch.

2.2.2 Optimal Estimation

The inversion of the forward model is typically an underdetermined problem. We can

constrain the problem using a priori information of the state atmospheric state. For

example, we know that aerosols are usually only found between 0 and 8 km and not

in the rest of the atmosphere. The regularization method we use is called optimal

estimation, and is based on Bayes’ Theorem. Here, we briefly describe the basic idea of

optimal estimation.

Suppose that we have prior information (before doing a measurement) on the distribu-

tions of the measurements and the state. Denoting P(Y |X) and P(X) for the prior

measurement and prior state distributions, and writing P(X|Y ) for the posterior (after

the measurement) distribution of the state, then Bayes’ Theorem states that

P(X|Y ) ∝ P(Y |X)P(X). (2.1)

The forward model F maps an atmospheric state x to a radiance measurement y. That

is,

y = F (x; b) + ε, (2.2)

where b are model parameters and ε are random measurement errors.

Furthermore, assume that the measurement errors are Gaussian with zero mean and

covariance Σε, then P(y|x) is also Gaussian:

P(y|x) =
1

(2π)m/2|Σε|1/2
exp

(
−1

2
(y − F (x))TΣ−1

ε (y − F (x))

)
. (2.3)

Next, assume that the prior state is also Gaussian distributed, with mean xa and co-

variance matrix Σa, i.e.

P(X) =
1

(2π)n/2|Σa|1/2
exp

(
−1

2
(x− xa)TΣ−1

a (x− xa)
)
. (2.4)
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Figure 2.2: Schematic drawing of a realistic aerosol extinction profile (gray) and the
parameterization used in the Aerosol Layer Height algorithm (red). Here, P is the
pressure, k(P ) is the aerosol extinction at pressure P , ∆P is the pressure thickness of

the aerosol layer, and Pmid is the mid pressure of the aerosol layer.

Then, the posterior distribution, P(x|y), is also Gaussian distributed:

P(x|y) ∝ exp

(
−1

2

[
(y − F (x))TΣ−1

ε (y − F (x)) + (x− xa)TΣ−1
a (x− xa)

])
. (2.5)

Now, since we know the distribution for the posterior state, we can find the value of the

posterior state that is most likely, given the measurement. The Maximum A Posteriori

Probability estimate x̂ for the state x, which we will call the retrieval solution is given

by

x̂ = arg minχ2, (2.6)

where

χ2 = (y − F (x))TΣ−1
ε (y − F (x))︸ ︷︷ ︸

weighted least-squares

+ (x− xa)TΣ−1
a (x− xa)︸ ︷︷ ︸

prior state deviation penalization

. (2.7)

Basically, this is a weighted least-squares fit for the measurement, with an additional

penalization term for deviations from the prior state.

Due to the non-linearity of the forward model, we employ a Newton iteration scheme to

minimize χ2. This Newton iteration scheme is described in [16].

2.2.3 Parameterization of the Aerosol Vertical Profile

Aerosols have a certain vertical distribution, which is often characterized by an extinction

profile, i.e. the amount of extinction (scattering plus absorption) due to aerosols at

some altitude or pressure level at a particular wavelength (often 550 nm). Based on

the experiences with cloud height retrievals, a different parameterization of the aerosol

profile is assumed in the retrieval of aerosol height.
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We assume that the aerosol profile consists of one layer of a fixed pressure thickness ∆P

with homogeneously distributed aerosol. This aerosol layer’s mid pressure is located at

the pressure Pmid. See Figure 2.2 for a schematic overview of the parameterization versus

a realistic aerosol profile. For this parameterized aerosol profile, we fit the layer’s mid

pressure and its optical thickness (a measure for the amount of aerosol). Furthermore,

we also fit the reflectivity of the surface.

Of course, the simplified parameterization of the aerosol profile is a modeling error and

has important consequences. What these consequences are and how we should interpret

the retrieved parameters, will be the topic of this research.

10



Chapter 3

Retrieval Simulations

3.1 Introduction

In this chapter, we perform Aerosol Layer Height retrieval simulations for spectra sim-

ulated for atmospheres with realistic aerosol profiles. We do this to investigate the

behavior of the Aerosol Layer Height algorithm in realistic situations. First, we collect

aerosol profile data that is representative of profiles that we expect to observe in nature.

Then, we perform the actual retrieval experiment.

3.2 Aerosol Profiles

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Lidar, aboard the

CALIPSO satellite, has been acquiring aerosol extinction profiles from all over the world

for six years now. This data has been aggregated into a climatology, in which monthly

mean profiles of aerosol extinction coefficients (at 532 nm) are reported on a 2◦ × 5◦

lat-long global grid, see [5].

From this climatology, we select eight different regions for which we derive generic aerosol

profiles. Four regions are located at sea and four are continental regions. Of course, there

is a seasonal dependence, so we also need to distinguish a time period of interest. We

pick the months of highest aerosol load. The regions are as follows:

• Central Atlantic (CAT), to the west of North Africa. Desert dust from the Sahara

is advected over the ocean. This often leads to elevated aerosol. This aerosol is

observed year-round, with peak loads in July.
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• South Atlantic (SAT), to the west of South Africa. Aerosol from biomass burning

(forest fires) is advected from the continent to the ocean. In this region, most

aerosol is observed in September.

• North West Pacific (NWP), to the east of China. Aerosol from industrial pollution

is advected eastward from China to the ocean. Most aerosol is observed during

springtime, so we pick April as the month of interest.

• South Pacific (SPA). In this remote region we only observe sea salt aerosol. This

region does not have any months of extraordinary aerosol production, so we arbi-

trarily pick July.

• Central Europe (CEU). In this region we observe industrial pollution, but only a

little relative to, say, the industrial parts of China. The aerosol loading in Europe

is very small year-round, so we again pick July arbitrarily.

• North African desert (NAD), the Sahara. The desert dust that is observed over

this region has highest loads in July.

• South African land (SAL). Forest fires leading to biomass burning aerosols are

most frequent in July. Obviously, we also observe the highest load then.

• East China industry (ECI). High loads of industrial pollution are observed in this

industrial part of China year-round. However, there is a small peak in production

during spring, so we pick April as our month of interest for the China region.

Figure 3.1 displays these regions on a map, and Table 3.1 shows a more detailed descrip-

tion of the exact latitudes and longitudes of the regions and their month of interest.

We also attribute an appropriate aerosol model to each region. Such an aerosol model

defines the optical properties of the aerosol, which typically vary for different types

of aerosol. For example, sea salt and ash from biomass burning exhibit significantly

different interactions with light, since sea salt only scatters light, while ash from biomass

burning also absorbs. We choose between four aerosol models, i.e. desert dust (DD),

sea salt (SS), strongly absorbing (SA) and weakly absorbing (WA). The details of the

aerosol models are discussed in section 5.5. The regions where desert dust is found,

CAT and NAD, use the DD model. The SPA region uses the SS model. We use the WA

aerosol model for the regions exhibiting industrial pollution, i.e. ECI, NWP and CEU.

The biomass burning regions, SAT and SAL use the SA model.

For every region, we collect the CALIOP extinction profiles for the month of interest

in the year 2012, and take the average over these profiles to obtain a mean profile, see
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Figure 3.1: Global map displaying the regions used to select aerosol extinction profiles
from the CALIOP data.

Scene Latitudes Longitudes Month Aer. Mdl.

CAT 8◦N−30◦N 52.5◦W− 22.5◦W July DD
SAT 20◦S − 2◦N 17.5◦W− 7.5◦E Sept SA
NWP 20◦N−40◦N 152.5◦E −172.5◦E April WA
SPA 46◦S −18◦S 142.5◦W−102.5◦W July SS
CEU 44◦N−54◦N 2.5◦W− 17.5◦E July WA
NAD 16◦N−28◦N 7.5◦W− 27.5◦E July DD
SAL 14◦S − 0◦ 12.5◦E − 37.5◦E Sept SA
ECI 22◦N−42◦N 102.5◦E −122.5◦E April WA

Table 3.1: Data defining the selection regions for the CALIOP data. For an explana-
tion of the abbreviations, see the text.

Figure 3.2. Each of the eight average profiles is used as the typical profile for each region

in our simulations.

For implementation of our aerosol profiles in DISAMAR, we need to discretize the pro-

files. Since we can only define layers with homogeneously distributed aerosol, we cover

the extinction profile with layers of constant extinction, see Figure 3.3.

3.3 Aerosol Layer Height Retrieval Simulations for Real-

istic Aerosol Profiles

We simulate measured spectra with DISAMAR using the discretizations of our extinction

profiles, as discussed in the previous section. Then, we perform Aerosol Layer Height

retrievals on these simulated spectra assuming a single elevated layer in the retrieval.
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Figure 3.2: Mean aerosol extinction profiles for all typical aerosol scenes (red), and the
CALIOP extinction profiles from which the mean profiles are calculated (transparent

black).

14



Retrieval Simulations

Figure 3.3: Mean-Extinction profiles (black) for the CAT (left) and SAT (right) scenes
and their corresponding discretizations for DISAMAR (red). The wavelength nodes for
the surface albedo, As, are at 758 and 770 nm. The optical thickness of the aerosol

profile is denoted by τ .

Figure 3.4: Retrieval results when not fitting the surface albedo for all scenes. Top:
Mean retrieved mid pressure. Bottom: Mean retrieved optical thickness. The colors
represent the results for different pressure thicknesses, ∆P . For easy comparison, the
true extinction profiles, and true optical thicknesses are shown in gray. Missing bars

indicate that the retrievals did not converge.

In this initial investigation, we do not fit the surface albedo, as opposed to the default

Aerosol Layer Height algorithm setup. Thus, the fit parameters are the aerosol layer

optical thickness and the aerosol layer mid pressure.

We vary the a priori mid pressure from 400 to about 900 hPa to investigate whether we

obtain a global minimum. If we have multiple minima, the solution probably depends

on the starting value of the aerosol layer’s mid pressure. The step size of the prior mid

pressures is 10 hPa. The a priori optical thickness is given by the total optical thickness

of the aerosol profile. Furthermore, we do the same experiment for four different values
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of the pressure thickness of the aerosol layer, i.e. ∆P = 50, 100, 200, and 300. All other

model parameters (e.g. the aerosol microphysical properties) are assumed to be known.

The a priori standard deviation for the optical thickness is given by 1, and for the mid

pressure it is given by 500 hPa, effectively giving both parameters the freedom to move

throughout the entire parameter space. The maximum number of Newton iterations we

allow is 12.

As the retrieval results are very stable, we show the mean retrieval results in Figure 3.4.

The following observations can be made:

• The retrievals show good convergence. Only in three settings we see no conver-

gence. The settings that do show convergence have a 100% convergence ratio.

• For the cases where we do not have convergence, we observe that the algorithm

stopped because the aerosol layer was repeatedly placed partly below the surface.

This happened with a 200 hPa layer for the SPA scene and with a 300 hPa layer

for both the CAT and SPA scene. Indeed, these scenes have aerosols close to the

surface.

• Very stable retrieved parameters are found. When looking at each scene’s largest

deviation from the mean, the largest of these deviations is smaller than 1 hPa for

the mid-pressure and less than 5 · 10−4 for the optical thickness.

• A small variation in retrieved parameter values is found for different pressure

thicknesses. For the NAD scene we see variations of about 80 hPa, and 0.05 in the

optical thickness. The variations in the other scenes are much smaller.

• The retrieved optical thickness tends to be equal or very close to the true optical

thickness of the aerosol extinction profile.

• The retrieved mid-pressures all lie somewhere inside the aerosol profile. It seems

reasonable that this height is some centroid of the aerosol extinction profile.

Summarizing, we generally find very stable results with good convergence. The optical

thickness we retrieve tends to match the true optical thickness of the aerosol extinction

profile. Furthermore, the retrieved Aerosol Layer Height can probably be interpreted

as some kind of centroid of the aerosol extinction profile. We treat this interpretation

in more detail in chapter 7. Before we can do this, however, we first need to develop a

thorough understanding of the radiative transfer, and its modeling, which is the subject

of the following chapters.
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Chapter 4

Radiative Transfer Equation

4.1 General Radiative Transfer Equation

The forward model needed in retrieval calculates the TOA radiance for a model at-

mosphere. Basically, it does so by solving the radiative transfer equation. Here, we

introduce the radiative transfer equation.

Consider a beam of radiation traversing some medium. The beam of radiation will be

weakened (extinguished) by its interaction with matter inside the medium: photons get

absorbed or scattered out of the beam. Additionally, radiation may also be strengthened

by scattering of photons into the beam.

Denote Iλ(s) for the intensity of the radiation of wavelength λ at a distance s along

the beam. This quantity is measured in photons/m2/nm/s/sr. The intensity after

traversing a slab of the medium with thickness ds in the direction of propagation becomes

Iλ(s+ ds) = I(s) + dIλ(s). See Figure 4.1.

Figure 4.1: Schematic drawing of a beam of radiation propagating through a medium
(light gray), containing a slab of thickness ds (dark gray).
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The Lambert-Beer law (e.g. [17] or [18]) states that, the loss in radiation is proportional

to the thickness of the slab, and the initial intensity, i.e.

dIλ(s) = −kext
λ (s)Iλ(s)ds, (4.1)

where the extinction coefficient kext
λ (s) is a proportionality constant, which is measured

in inverse unit length.

Now, define the extinction cross section σext
λ such that

kext
λ (s) = σext

λ (s)n(s), (4.2)

where n(s) is the number density of the particles responsible for extinction, measured

in molecules per unit volume. Thus, the extinction cross section, measured in unit area

per molecule, can be interpreted as an effective area of extinction for a single molecule.

The extinction cross section can be written as the sum of the absorption cross section

σabs
λ and the scattering cross section σsca

λ , i.e.

σext
λ = σabs

λ + σsca
λ . (4.3)

This decomposition in absorption and scattering also leads to the definition of the ab-

sorption coefficient kabs
λ = σabs

λ (s)n(s) and the scattering coefficient ksca
λ = σsca

λ (s)n(s).

We define the positive contribution to the beam of radiation as

dIλ = jλ(s)n(s)ds, (4.4)

where jλ(s) is the source function coefficient.

The negative and positive effects, (4.1) and (4.4), can be combined to obtain the radiative

transfer equation
dIλ
kext
λ ds

= −Iλ + Jλ, (4.5)

where Jλ = jλ/σ
ext
λ is the source function.

4.2 Plane-Parallel Coordinates

In the previous, we worked with coordinates along some arbitrary path. Here, we define

appropriate atmospheric coordinates.
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Figure 4.2: Graphic displaying the geometry of the plane-parallel coordinate system.
The altitude relative to the surface is given by z. The azimuthal angle is given by φ.
The zenith angle is given by θ. The distance along a beam of radiation is given by the

(path) coordinate s.

We assume that we have a planar atmosphere, which consists of stacked horizontally

homogeneous slabs. Writing z for the distance normal to the surface, θ for the inclination

to the upward normal, and φ for the (counter-clockwise) azimuthal angle, we obtain so-

called Plane-Parallel Coordinates. The geometry is shown in Figure 4.2.

Using plane-parallel coordinates, we rewrite the radiative transfer equation (4.5) as

cos θ
dI(z, θ, φ)

kext(z)dz
= −I(z, θ, φ) + J(z, θ, φ), (4.6)

since ds = 1
cos θdz.

Next, we define the height variable optical depth τ(z) as

τ(z) =

∫ ∞
z

kext(z′)dz′. (4.7)

Then, dτ = −kext(z)dz, and (4.6) simplifies to

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)− J(τ, u, φ), (4.8)

where u = cos θ is the direction cosine.

The optical thickness of the atmosphere, τ∗, is defined as

τ∗ =

∫ ∞
0

kext(z′)dz′, (4.9)

such that τ = τ∗ corresponds to the surface, and τ = 0 corresponds to the top of the

atmosphere.
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Figure 4.3: Schematic drawing of the half-range-quantities. The upward and down-
ward radiance are given by I↑ and I↓, respectively. The atmosphere is bounded by the

top of the atmosphere τ = 0 and the surface τ = τ∗.

We can distinguish the two cases u > 0 and u < 0 in the radiative transfer equation

(4.8). The case where u > 0 corresponds to upward radiation, and u < 0 corresponds to

downward radiation. A useful convention is to define µ = |u|, such that I↑(µ) and I↓(−µ)

correspond to the upward and downward radiance, respectively (we include the arrows

for easier reading). Figure 4.3 gives a schematic overview of these so-called half-range

quantities.

4.3 General Solution

In this section, we derive the general form of the solution to the radiative transfer

equation for plane-parallel atmospheres, (4.8). We do this by using the concept of

integrating factors.

Consider the radiative transfer equation (4.8) for the upward intensity I↑(µ). Multiply-

ing both sides with the integrating factor e−τ/µ, and rewriting the equation yields[
dI↑(τ, µ, φ)

dτ
− 1

µ
I↑(τ, µ, φ)

]
e−τ/µ = − 1

µ
J(τ, µ, φ). (4.10)

We recognize a derivative on the left hand side[
dI↑(τ, µ, φ)

dτ
− 1

µ
I↑(τ, µ, φ)

]
e−τ/µ =

d

dτ
I↑(τ, µ, φ)e−τ/µ, (4.11)

such that
d

dτ
I↑(τ, µ, φ)e−τ/µ = − 1

µ
J(τ, µ, φ). (4.12)

Integrating both sides over τ ′ ∈ [τ, τ∗] yields

∫ τ∗

τ

d

dτ ′
I↑(τ ′, µ, φ)e−τ

′/µdτ ′ = − 1

µ

∫ τ∗

τ
J(τ ′, µ, φ)dτ ′. (4.13)
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Using the Fundamental Theorem of Calculus we can now rewrite this as

I↑(τ, µ, φ) = I↑(τ∗, µ, φ)e−(τ∗−τ)/µ +
1

µ

∫ τ∗

τ
J(τ ′, µ, φ)e−(τ ′−τ)/µdτ ′. (4.14)

Similarly, we can solve for the downward intensity I↓(−µ) to obtain

I↓(τ,−µ, φ) = I↓(0,−µ, φ)e−τ/µ +
1

µ

∫ τ

0
J(τ ′,−µ, φ)e−(τ−τ ′)/µdτ ′. (4.15)

We see that in order to find the solution, we need to integrate over the source function J

and apply boundary conditions. We specify both the source function and the boundary

conditions in the following two sections.

4.4 The Source Function

The source function describes how a beam of radiation gets strengthened through scat-

tering of photons into the beam. In general, it also describes a positive contribution

through thermal emission, but we neglect thermal emission, since this contribution is

negligible in the near-infrared wavelength range.

Radiation at a certain optical depth τ can be scattered into the direction (u, φ) through

scattering from any incoming direction (u′, φ′), where u′ ∈ [−1, 1] and φ ∈ [0, 2π]. The

scattering distribution describing the probability of scattering from (u′, φ′) to (u, φ) is

defined by the Phase Function P (τ, u, φ, u′, φ′).

Define the Single Scattering Albedo, ω(τ), as the fraction of available photons that are

involved in a scattering process, i.e.

ω(τ) =
ksca(τ)

kext(τ)
, (4.16)

then we write the source function J as (see [17])

J(τ, u, φ) =
ω(τ)

4π

∫ 2π

0

∫ 1

−1
I(τ, u′, φ′)P (τ, u, φ, u′, φ′)du′dφ′, (4.17)

where the factor 1
4π is a normalization constant of the phase function.
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4.5 Boundary Conditions

We next specify boundary conditions for the radiative transfer equation. First, we define

the boundary condition for the top of the atmosphere (τ = 0) and second we define two

possible boundary conditions for the surface (τ = τ∗).

We model the sunlight as collimated light, because the Sun is a light source which is

extremely far away from the Earth. We can do so by posing the boundary condition

I↓(0,−µ, φ) = E0δ(µ− µ0)δ(φ− φ0), (4.18)

where E0 is the solar irradiance (measured in photons/m2/nm/s), (−µ0, φ0) are the

angular properties of the sunlight, and δ is the Dirac delta distribution. The solar

zenith angle −µ0 is strictly negative because sunlight always points downwards.

The upward radiance at the top of the atmosphere I↑(0, µ, φ) is unconstrained, since

this is what we want to calculate.

The first boundary condition for the surface we consider is that of a black surface. For

a black, non-reflecting boundary, we set I↑(τ∗, µ, φ) = 0 for all µ and φ. In this case,

the radiative transfer equation greatly simplifies and we can often solve it analytically.

The second surface boundary condition is that of a surface that is reflecting. For our

application, we assume a Lambertian surface, which means that the surface reflects the

incoming light isotropically. Defining the Surface Albedo, As, as the fraction of upward

to downward radiation at the surface, we obtain the boundary condition (see [17])

I↑(τ∗) =
As
π

∫ 2π

0

∫ 1

0
I↓(τ∗,−µ, φ)µdµdφ. (4.19)

Unfortunately, this boundary condition depends on the unknown quantity I↓(τ∗,−µ, φ),

which prevents us from easily solving the transfer equation.

4.6 Direct and Diffuse Component

We split the radiation field into two components; a direct, Idir, and a diffuse component,

Idif, such that

I(τ, u, φ) = Idir(τ, u, φ) + Idif(τ, u, φ). (4.20)

The direct component is that part of the incoming solar light that has not yet been

scattered or absorbed, whereas the diffuse part has been scattered at least once. Light

that has been reflected by the surface, and has not yet been scattered afterwards is also
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called direct, regardless of the amount of scattering before reflection. In the following,

we specify the direct part, and derive a new transfer equation for the diffuse part.

The direct downward component of radiation is given by

I↓dir(τ,−µ, φ) = E0e
−τ/µδ(µ− µ0)δ(φ− φ0), (4.21)

where the factor e−τ/µ0 accounts for the extinction of the boundary condition (4.18)

along the direction of the sunlight.

For the direct upward component, we distinguish two cases. First, when the surface

is black, there is no direct upward component, since any light going upward has to be

scattered at least once. Thus,

I↑dir(τ, µ, φ) = 0. (4.22)

Second, for a reflecting surface, we have

I↑dir(τ, µ, φ) = I↑(τ∗)e−(τ∗−τ)/µ. (4.23)

This is the light that is reflected by the surface according to the boundary condition

(4.19), while accounting for the extinction along its path after reflection (now we have

τ∗ − τ as optical depth because the light is traveling in the upward direction).

The radiative transfer equation for the direct and diffuse components separated is found

by combining (4.8), (4.17) and (4.20):

u
dIdir

dτ
+ u

dIdif

dτ
= Idir + Idif

− ω(τ)

4π

∫ 2π

0

∫ 1

0
I↑dir(τ, µ

′, φ′)P (τ, u, φ, µ′, φ′)dµ′dφ′

− ω(τ)

4π

∫ 2π

0

∫ 1

0
I↓dir(τ,−µ

′, φ′)P (τ, u, φ,−µ′, φ′)dµ′dφ′

− ω(τ)

4π

∫ 2π

0

∫ 1

0
I↑dif(τ, µ

′, φ′)P (τ, u, φ, µ′, φ′)dµ′dφ′

− ω(τ)

4π

∫ 2π

0

∫ 1

0
I↓dif(τ,−µ

′, φ′)P (τ, u, φ,−µ′, φ′)dµ′dφ′. (4.24)

Now, since

u
dIdir

dτ
= Idir (4.25)

by definition, these terms cancel in (4.24).
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Then, for the black surface case, substituting (4.21), (4.22) and (4.25) in (4.24) yields

the radiative transfer equation for the diffuse radiation

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)− ω(τ)

4π

∫ 2π

0

∫ 1

−1
I(τ, u′, φ′)P (τ, u, φ, u′, φ′)du′dφ′ − Sa(τ, u, φ),

(4.26)

where we have dropped the diffuse subscript, and Sa is the single scattering source term

Sa(τ, u, φ) =
ω(τ)

4π
E0e

−τ/µ0P (τ, u, φ,−µ0, φ0). (4.27)

For the reflecting surface case, we substitute (4.21), (4.23) and (4.25) to obtain

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)− Sa(τ, u, φ)− Sb(τ, u, φ)

− ω(τ)

4π

∫ 2π

0

∫ 1

−1
I(τ, u′, φ′)P (τ, u, φ, u′, φ′)du′dφ′, (4.28)

where Sb is the single scattering boundary source term

Sb(τ, u, φ) =
ω

4π

∫ 2π

0

∫ 1

0
P (u, φ, µ′, φ′)e−(τ∗−τ)/µ′I↑(τ∗)dµ′dφ′, (4.29)

and I↑(τ∗) satisfies the reflecting surface boundary condition (4.19), where I↓(τ∗, µ′, φ′)

is indeed the total (both diffuse and direct) downward penetrating radiance.

Finally, we note that the equations for the diffuse radiation still have the same form

as the radiative transfer equation for the total radiation (4.8). Hence, the method for

finding the solution, as described in section 4.3, is still valid.

4.7 Multiple Atmospheric Constituents

When there are multiple atmospheric constituents that scatter, absorb or both, we need

to adapt the radiative transfer equation.

Consider a set of atmospheric constituents, say Λ. For each atmospheric constituent,

i ∈ Λ, we expect to see different cross sections, phase functions, and number densities,

and thus we need to define σext
i = σabs

i + σext
i , Pi, and ni for each species i ∈ Λ.

Define the species specific extinction coefficient kext
i and similarly the species specific

absorption and scattering coefficients as

kext
i (z) = σext

i (z)ni(z) = σabs
i (z)ni(z) + σsca

i (z)ni(z) = kabs
i (z) + ksca

i (z). (4.30)
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Then, the single scattering albedo of an atmospheric constituent i, ωi(z), is defined as

the fraction of available photons scattered by constituent i in the entire mixture:

ωi(z) =
ksca
i (z)

kext(z)
, (4.31)

where kext(z) =
∑

i∈Λ k
ext
i (z). This definition may be somewhat unusual for a reader

familiar with radiative transfer, but it is consistent with the following, and leads to

elegant notation.

Finally, we incorporate the multiple atmospheric constituents in the radiative transfer

equation in a straightforward manner as we write

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)−

∑
i∈Λ

Ji(τ, u, φ), (4.32)

where Ji, the species specific source function, is of course defined as

Ji(τ, u, φ) = Sa,i(τ, u, φ) + Sb,i(τ, u, φ) +
ωi(τ)

4π

∫ 2π

0

∫ 1

−1
I(τ, u′, φ′)Pi(τ, u, φ, u

′, φ′)du′dφ′,

(4.33)

with

Sa,i(τ, u, φ) =
ωi(τ)

4π
E0e

−τ/µ0Pi(τ, µ, φ,−µ0, φ0), (4.34)

and

Sb,i(τ, u, φ) =
ωi(τ)

4π

∫ 2π

0

∫ 1

0
Pi(τ, u, φ, µ

′, φ′)e−(τ∗−τ)/µ′I↑(τ∗)dµ′dφ′. (4.35)

In conclusion, to account for multiple atmospheric constituents involved with extinction,

we only need to give each constituent its own separate source term, and account for

species specific scattering behavior.
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Chapter 5

Model Atmosphere and

Instrument Model

5.1 Introduction

In chapter 4 we formulated the radiative transfer equation in a general form. Here, we

specify quantities required to perform computations.

5.2 Solar Irradiance

A high-resolution solar spectrum E0 is required for the calculation of the radiance field.

We use the reference solar irradiance spectrum according to [19].

5.3 Surface Albedo

The surface albedo As typically depends on wavelength. In our fit window (758-770

nm), this wavelength dependence can be approximated by a linear dependence, see [20].

We specify the surface albedo at two wavelength nodes, 758 and 770 nm, and perform

linear interpolation for any wavelength in between these nodes. For simulating a mea-

surement above a sea surface, we use the values 0.02 and 0.025, respectively. Land

exhibits a much stronger surface reflection. There, the values are given by 0.2 and 0.25

for vegetated land and 0.3 and 0.35 for desert regions. These values are based on the

findings in [20].
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5.4 Molecules

Molecular scattering is modeled by Rayleigh scattering, a term that gets its name from

Lord Rayleigh, who first derived the wavelength dependence of this particular scattering

process, see e.g. [21].

In the years after Rayleigh’s initial research, Rayleigh scattering remained a popular

subject of study and many improvements have been made to Rayleigh’s original findings.

One, somewhat modern, formula for the Rayleigh scattering cross section is given by

(see [22], [23] and [24])

σsca
mol =

24π3

λ4n2
ref

(N2 − 1)2

(N2 + 2)2

6 + 3δ(λ)

6− 7δ(λ)
, (5.1)

where δ is the depolarization factor, nref is the number density of air molecules at some

reference altitude and N is the refractive index of air.

The Rayleigh scattering phase function is given by

Pmol(µ, φ, µ
′, φ′) =

3(45 + ε)(1 + cos2 Θ) + 36ε

180 + 40ε
, (5.2)

where Θ is the single scattering angle (see [18], Appendix F, for a derivation)

Θ = cos−1
(
sin(θ) sin(θ′) cos(φ− φ′)− cos(θ) cos(θ′)

)
, (5.3)

and

ε(λ) =
45δ(λ)

6− 7δ(λ)
. (5.4)

Molecules can also absorb radiation. The strongest absorption process in the O2 A

band is line absorption by oxygen. The absorption cross section corresponding to this

absorption process, σabs
O2

, is carefully studied, and can be obtained from online databases,

like the Jet Propulsion Laboratory database1. This cross section exhibits strong spectral

variations, see Figure 5.1 for the absorption optical thickness.

For computations based on the single scattering approximation discussed in chapter 6,

we only consider Rayleigh scattering and absorption by oxygen. Only the line parameters

from the most abundant isotopes are used, and are also taken from the Jet Propulsion

Laboratory database. For simulations with DISAMAR, we accidentally also included

first-order line mixing and collision-induced absorption by O2−O2 and O2−N2 according

to [25] and [26]. We expect that this error does not have a significant effect on the results.

1http://spec.jpl.nasa.gov/
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Figure 5.1: Absorption optical thickness of oxygen, as a function of wavelength, in
the O2 A band for some reference atmosphere. Note the logarithmic y-axis.

To fully specify scattering and absorption by molecules, the vertical distribution, or

the height-dependent number densities, of the molecules are needed. We do this via a

standard atmospheric model, the Mid-Latitude Summer atmospheric model, [27] Table

1b.

The standard atmospheric model determines an altitude, pressure and temperature grid,

which we use to determine the density of air using the ideal gas law

ρair(z) =
P (z)

RspecificT (z)
, (5.5)

where ρair(z) is the mass density of air at altitude z, P (z) is the pressure at altitude z,

Rspecific is the specific gas constant of air and T (z) is the temperature at altitude z.

Once the mass density of air is known we determine its number density, nmol(z) as

follows:

nmol(z) = NA
ρair(z)

mair
, (5.6)

where NA is Avogadro’s constant, and mair is the molar mass of air.

Next, we assume that throughout the atmosphere the part of air that consist of oxygen

is determined by a fixed mixing ratio (which is a valid assumption for all practical

purposes, see [28] Table 1.2), and thus

nO2(z) = rmixnmol(z), (5.7)

where rmix is the mixing ratio of oxygen in air.

The exact values of the atmospheric constants and the mid-latitude summer profile are

given in appendix C.
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Model σext
aer (µm2) σsca

aer/σ
ext
aer g

WA 1.079 ·10−2 0.9703 0.5793
SA 1.831 ·10−2 0.7605 0.5669
SS 9.927 1 0.7547
DD 11.08 0.970 0.712

Table 5.1: Aerosol properties at the O2 A band for the four standard aerosol models
as proposed by the Aerosol-CCI project: Weakly Absorbing (WA), Strongly Absorb-
ing (SA), Sea Salt (SS) and Desert Dust (DD). Reported aerosol properties are the

extinction cross section, σext
aer , the ratio σsca

aer/σ
ext
aer , and the assymetry parameter g.

5.5 Aerosol

The scattering and absorption properties of aerosol are determined by particle size,

particle shape, and other optical properties like the bulk material’s refractive index.

These properties show strong spatial variations, as different processes play a role in the

formation of aerosol all around the planet. These properties are carefully studied, see,

for example, [29] and [30].

The Aerosol-CCI project, [31], proposes the use of four generic aerosol types to be used

in modeling, which should be sufficient to cover natural variability in aerosol proper-

ties. These standard types are called Weakly Absorbing (WA), Strongly Absorbing (SA),

Sea Salt (SS) and Desert Dust (DD). The Aerosol-CCI project reports all necessary

properties to derive cross sections and phase functions. For (approximately) spherical

particles, we can perform Mie calculations, [32], to achieve this and for particles that

are non-spherical, we need to turn to other methods, like T-matrix calculations, [33].

The phase function for aerosol is often approximated by the Henyey-Greenstein phase

function (HG phase function)

Paer(µ, φ, µ
′, φ′) =

1− g2

(1 + g2 − 2g cos Θ)3/2
, (5.8)

where g is the asymmetry parameter. An easy calculation reveals that g is the first mo-

ment of the HG phase function and thus determines the expected direction of scattering.

This phase function has no physical basis, but is an analytic fit to actual phase func-

tions, which is very convenient for the use in computations. See Figure 5.2 for HG phase

function approximations to the phase functions of the Aerosol-CCI generic models.

For our purposes, we use the cross sections and asymmetry parameters from the pre-

viously described Aerosol-CCI standard models, and approximate their phase functions

with HG phase functions. These values are reported in table 5.1. Furthermore, we

assume that these properties are wavelength independent. This is sufficient to fully
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Figure 5.2: Mie Phase function (black) versus their fitted HG Phase functions (red) for
the Aerosol-CCI aerosol models WA (left), SA (middle), and WA (right). All functions
are given with the scattering angle Θ as independent variable. Note the logarithmic

y-axes.

characterize the aerosol in our simulations for the different aerosol scenes discussed in

section 3.2.

5.6 Instrument Response

Due to the measuring instrument’s limitations, it is not possible to measure the radiation

for each wavelength separately (monochromatic). Instead, the instrument observes the

signal from small ranges of wavelengths binned together. We can model this limitation

through means of the Instrument Spectral Response Function or the Slit Function.

When the high resolution radiance for some λ (and arbitrary µ and φ) is given by I(λ)

then the measured radiance Î is obtained as

Î(λ) = D(λ)

∫ λmax

λmin

S(λ, λ′)I(λ′)dλ′, (5.9)

where S(λ, λ′) is the instrument spectral response function, D is some calibration con-

stant and λmax = λ+ 2FWHM and λmin = λ− 2FWHM define the convolution domain.

Here, FWHM equals the Full Width at Half Maximum, i.e. the distance λ− λ′ required

to have S(λ, λ′) = 0.5 max{S}. Now, we model the IRF as a so-called flat-top function

S(λ, λ′) = c2
−2

(
λ−λ′
w

)4

, (5.10)

where c is a normalization constant (we normalize such that
∫ λmax

λmin
S(λ, λ′)dλ′ = 1) and

w defines the horizontal spread of the convolution window, and in our case is given by

w = 2−3/4FWHM, such that S(λ, λ± 1
2FWHM) = c/2 (i.e. half the maximum).
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Model Atmosphere and Instrument Model

Figure 5.3: Left: The instrument response function S(λ, λ′) for the TROPOMI sim-
ulation settings. Right: The measured radiance after convolution with the slit function
(red), plotted over the monochromatic radiance spectrum (gray) for some arbitrary

atmosphere.

For TROPOMI, the full width at half maximum is estimated as FWHM = 0.4 (Private

Communication). The instrument spectral response function belonging to this parame-

ter, along with its effect on a spectrum, is shown in Figure 5.3.
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Chapter 6

Single Scattering Approximation

6.1 Introduction

Here, we derive a single scattering approximation to the solution of the radiative trans-

fer equation. This approximation only accounts for photons that are scattered once.

Furthermore, we assume that the surface is black, i.e. non-reflecting. These approxima-

tions greatly simplify the source function, such that we can solve the radiative transfer

equation analytically. We also derive semi-analytic derivatives for the top of atmosphere

radiance.

6.2 Top of Atmosphere Radiance

Assume that the surface is black, i.e.

I↑(τ∗) = 0, (6.1)

and also assume that we only have single scattering, hence

Ji(τ, u, φ) =
ωi(τ)

4π
E0Pi(u, φ,−µ0, φ0)e−τ/µ0 , (6.2)

where the atmospheric constituents of interest are aerosol and molecules, i.e. i ∈ Λ =

{aer,mol}.

Solving the radiative transfer equation (4.32) for the upward radiance yields

I↑(τ, µ, φ) = I↑(τ∗, µ, φ)e−(τ∗−τ)/µ +
1

µ

∑
i∈Λ

∫ τ∗

τ
Ji(τ

′, µ, φ)e−(τ ′−τ)/µdτ ′, (6.3)
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Single Scattering Approximation

Figure 6.1: Schematic overview of how light paths contribute to the upward radiance
I↑(τ, µ, φ). To obtain the total contribution, we need to integrate over all paths, for all

optical depths τ ′ below τ , i.e. τ ′ ∈ [τ, τ∗].

which can be rewritten by substituting the expressions for the boundary condition (6.1)

and the source (6.2):

I↑(τ, µ, φ) =
E0

4πµ
eτ/µ

∑
i∈Λ

Pi(µ, φ,−µ0, φ0)

∫ τ∗

τ
ωi(τ

′)e
−µ+µ0

µµ0
τ ′

dτ ′. (6.4)

The previous result can also be explained more intuitively. We note that any radiance

at (τ, µ, φ) is a contribution of photons that have been scattered a single time at some

optical depth τ ′ > τ . Since we can explicitly write down the length of the individual light

paths, i.e. τ ′/µ0 +(τ ′− τ)/µ (see Figure 6.1), we can easily derive the attenuation along

that path. Weighing each light path with its probability of occurring, and integrating

over all optical depths τ ′ ∈ [τ, τ∗] yields the result.

To obtain the top of atmosphere radiance, I↑TOA, we simply substitute τ = 0, which

yields

I↑TOA(µ, φ) =
E0

4πµ

∑
i∈Λ

Pi(µ, φ,−µ0, φ0)

∫ τ∗

0
ωi(τ

′)e
−µ+µ0

µµ0
τ ′

dτ ′. (6.5)

We remind that τ(z) =
∫∞
z kext(z′)dz′, dτ = −kext(z)dz, and ωi(z)k

ext(z) = ksca
i (z).

Then, the top of atmosphere radiance in terms of the altitude variable z is given by

I↑TOA(µ, φ) =
E0

4πµ

∑
i∈Λ

Pi(µ, φ,−µ0, φ0)

∫ ∞
0

ksca
i (z)e

−µ+µ0
µµ0

τ(z)
dz. (6.6)

We can evaluate the error of the single scattering approximation by comparing the top

of atmosphere radiance of the approximation to the top of atmosphere radiance as sim-

ulated by DISAMAR. This comparison is shown in Figure 6.2 for the SPA and ECI
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Figure 6.2: Top of atmosphere radiance for the single scattering approximation (red)
and the full radiative transfer as computed by DISAMAR (black). The scenes shown

are SPA (above) and ECI (below).

scenes. These two scenes were picked because they show the best and worst approxima-

tion, respectively.

We see that the single scattering approximation improves as we look inside the strong

absorption regions (especially 760-762 nm). This is because photons with a longer

path through the atmosphere are more likely to become absorbed. Thus, the measuring

instrument is more likely to observe photons with a low order of scattering, since multiply

scattered photons tend to have longer paths through the atmosphere than photons with

low orders of scattering. Obviously, this effect is strongest in the strong absorption

regions.

Another notable fact is that the approximation performs better for the scenes with a

low aerosol optical thickness (not shown), because there is less chance of being scattered

multiple times.

In conclusion, the single scattering approximation works best in a situation of high

oxygen absorption and a low aerosol (scattering) optical thickness.
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6.3 Monochromatic Derivatives

We investigate how strongly some arbitrary aerosol layer in the atmosphere contributes

to the top of atmosphere radiance. We do this by perturbing the aerosol number density

of some aerosol profile at a fixed height (z0, z1), and investigating the corresponding

change in the top of atmosphere radiance, I↑TOA. Taking the limit of the perturbation

size of the number density to zero yields a semi-analytic derivative.

Consider the perturbed aerosol number density

n̄aer(z) = naer(z) + η1{z ∈ (z0, z1)}. (6.7)

Then, remembering the definition of the scattering/extinction coefficients k
sca/ext
aer (z) =

σ
sca/ext
aer naer(z), we also have perturbed aerosol scattering/extinction coefficients

k̄sca/ext
aer (z) = k(z) + σsca/ext

aer η1{z ∈ (z0, z1)}, (6.8)

while the scattering and extinction coefficients for the other constituents remain the

same.

The total extinction coefficient, being the sum of the individual extinction coefficients,

also changes. As a consequence, the optical depth also changes, i.e.

τ̄(z) =

∫ ∞
z

k̄ext(z′)dz′ =


τ(z) z ≥ z1,

τ(z) + η(z1 − z)σext
aer z ∈ (z0, z1),

τ(z) + η(z1 − z0)σext
aer z ≤ z0.

(6.9)

Now, write I(η) and I(0) for the top of atmosphere radiance corresponding to the per-

turbed and the unperturbed atmosphere, respectively. Then, we are interested in com-

puting the semi-analytic derivative of the top of atmosphere radiance δI
δn(z), given by

δ2I

δnδz
(z) :=

1

z1 − z0
lim
η→0

1

η
(I(η)− I(0)) , (6.10)

where z is the midpoint of (z0, z1). Here, we use the notation δ
δz to distinguish between

a real derivative and the following construction.

Remembering the single scattering approximation solution (6.6), we have

I(η) =
∑
i∈Λ

Ci

∫ ∞
0

k̄sca
i (z)e−Mτ̄(z)dz, (6.11)
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Figure 6.3: Schematic overview of the effect of a perturbation in aerosol number
density on the optical depth variable. The perturbation in aerosol number density
starts taking effect in domain B and this effect is exhausted starting from domain C,
after which the integrals only differ by a constant factor. Note that the profile of k(z)
has been taken arbitrarily, and the only thing that is important here is the cumulative

property of the corresponding integrals.

with

Ci =
E0

4πµ
Pi(µ, φ,−µ0, φ0) (6.12)

and

M =
µ+ µ0

µµ0
(6.13)

is the Geometric Airmass Factor. Thus, we consider

1

η
(I(η)− I(0)) =

∑
i∈Λ

Ci
η

[∫ ∞
0

k̄sca
i (z)e−Mτ̄(z)dz −

∫ ∞
0

ksca
i (z)e−Mτ(z)dz

]
. (6.14)

We split up the vertical profile into three domains over which we can distinguish different

behavior for τ̄ . These domains are given by A = (z1,∞), B = (z0, z1), and C = (0, z0)

(see Figure 6.3). The perturbation starts taking effect in domain B and this effect is

exhausted starting from domain C, but the perturbation still leaves its mark there, due

to the cumulative property of τ̄(z) =
∫∞
z k̄(z′)dz′.

Splitting up the integrals over the three domains yields

1

η
(I(η)− I(0)) =

∑
i∈Λ

Ci
η

∑
D

[∫
D
k̄sca
i (z)e−Mτ̄(z)dz −

∫
D
ksca
i (z)e−Mτ(z)dz

]
, (6.15)

where D ∈ {A,B, C} for the second summation.

First, we treat the differences between brackets in (6.15) for the aerosol. Then, we deal

with the contribution of the molecules.
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For z ∈ A, the perturbation has not had any effect yet, and all differences cancel, i.e.∫
A
k̄sca

aer(z)e
−Mτ̄(z)dz −

∫
A
ksca

aer(z)e
−Mτ(z)dz = 0. (6.16)

Next, for z ∈ C we have that k̄sca
aer(z) = ksca

aer(z), and τ̄(z) = τ(z) + η(z1− z0)σext
aer . Hence,∫

C
k̄sca

aer(z)e
−Mτ̄(z)dz −

∫
C
ksca

aer(z)e
−Mτ(z)dz =

−
∫
C
ksca

aer(z)e
−Mτ(z)

(
1− e−ηM(z1−z0)σext

aer

)
dz, (6.17)

where we have put the minus sign in front to accentuate the sign of this difference.

Finally, when z ∈ B, we have k̄sca
aer(z) = ksca

aer(z) + ησsca
aer , and τ̄(z) = τ(z) + η(z1 − z)σext

aer .

Thus,∫
B
k̄sca

aer(z)e
−Mτ̄(z)dz −

∫
B
ksca

aer(z)e
−Mτ(z)dz =∫

B
ησsca

aere
−M(τ(z)+(z1−z)ησext

aer)dz −
∫
B
ksca

aer(z)e
−Mτ(z)

(
1− e−M(z1−z)ησext

aer

)
dz. (6.18)

For molecules, we note that the only thing that is different, is that for z ∈ B, we do not

have additional (non aerosol) molecules due to the perturbation. Thus, the Rayleigh

scattering coefficient remains unchanged in the perturbation, i.e. k̄sca
mol(z) = ksca

mol(z). As

a consequence, we do not have a positive contribution due to added Rayleigh scattering.

The negative contributions in domains B and C remain, though. These are terms that

follow from a decrease in scattering due to a shielding of added aerosol, which can be

traced back to the increase in the optical thickness, τ̄ . Thus, we get∫
C
k̄sca

mol(z)e
−Mτ̄(z)dz −

∫
C
ksca

mol(z)e
−Mτ(z)dz =

−
∫
C
ksca

mol(z)e
−Mτ(z)

(
1− e−ηM(z1−z0)σext

aer

)
dz, (6.19)

and∫
B
k̄sca

mol(z)e
−Mτ̄(z)dz −

∫
B
ksca

mol(z)e
−Mτ(z)dz =

−
∫
B
ksca

mol(z)e
−Mτ(z)

(
1− e−ηM(z1−z)σext

aer

)
dz, (6.20)

for the region C and B, respectively. Note that in both cases the final exponent contains

the aerosol extinction cross section because this is the constituent that is added, and

leads to extra extinction.
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Now that we have derived simple expressions for the difference quotients, we take the

limit η → 0. Naturally, we will treat this limit per domain A, B and C separately as

well.

For domain A, the integrals canceled. Therefore, this domain has no contribution to the

limit.

For domain C, we consider the limit

lim
η→0
−1

η

(
1− e−η(z1−z0)σext

aer

)∫ z0

0
ksca
i (z)e−Mτ(z)dz. (6.21)

Of course, the integral part is just some finite factor. If the integral was infinite there is

no point in even trying to compute the derivative, as that would imply that the top of

atmosphere radiance is infinite as well. Thus, we only need to compute

lim
η→0
−1

η

(
1− e−ηM(z1−z0)σext

aer

)
= −M(z1 − z0)σext

aer , (6.22)

such that the final contributions due to domain C are given by

−M(z1 − z0)σext
aer

∫ z0

0
ksca
i (z)e−Mτ(z)dz, (6.23)

for both the aerosol and the molecules.

For domain B, we need to treat two separate terms, which are given by

1

η

∫ z1

z0

ησsca
aere

−Mτ(z)e−ηa(z)dz =

∫ z1

z0

σsca
aere

−Mτ(z)e−ηa(z)dz, (6.24)

for the positive aerosol contribution and

− 1

η

∫ z1

z0

ksca
i (z)e−Mτ(z)

(
1− e−ηa(z)

)
dz, (6.25)

for the negative contributions from both aerosol and molecules, where

a(z) = M(z1 − z)σext
aer . (6.26)

Both terms will involve the interchange of the limit and integral operator, which we

justify by using convergence theorems from Lebesgue integration theory. We can use

these theorems provided that the Riemann integral that is obtained as a result exists

(in which case it is equal to the Lebesgue integral). These two theorems, the Monotone

Convergence Theorem (MCT) and the Dominated Convergence Theorem (DCT), are

given in appendix A. There, we also give the theorem stating that the Lebesgue interals

equal Riemann integrals if the Riemann integral exists.

39



Single Scattering Approximation

The first case is easy. We need to show that

lim
η→0

∫ z1

z0

σsca
aere

−Mτ(z)e−ηa(z)dz =

∫ z1

z0

lim
η→0

σsca
aere

−Mτ(z)e−ηa(z) = σsca
aer

∫ z1

z0

e−Mτ(z)dz.

(6.27)

We are allowed to take the limit inside because of the DCT:

Take as a dominating function

g(z) = σsca
aere

−Mτ(z). (6.28)

Then,

σsca
aere

−Mτ(z)e−a(z)/n ≤ g(z) (6.29)

for all z and n, because e−a(z)/n ≤ 1 for all n > 0, and a(z) > 0. Furthermore, we have

that ∫ z1

z0

g(z)dz <∞. (6.30)

Thus, the DCT holds and therefore (6.27) as well.

The second case is very similar to the case for domain C, except in this case we cannot

take the factor
(
1− e−ηa(z)

)
out of the integral, due to its dependence on z. However, if

we are allowed to bring the limit inside the integral, the approach is not much different,

and the resulting limit is given by

lim
η→0
−1

η

∫ z1

z0

ksca
i (z)e−Mτ(z)

(
1− e−ηa(z)

)
dz = −

∫ z1

z0

a(z)ksca
i (z)e−Mτ(z)dz, (6.31)

since

lim
η→0

1

η

(
1− e−ηa(z)

)
= a(z). (6.32)

To prove we are allowed to exchange the integral and the limit operator, we use the

MCT.

Consider the function

gn(z) = ksca
i (z)e−Mτ(z)fn(z), (6.33)

where

fn(z) = n
(

1− e−a(z)/n
)
. (6.34)

Note that these functions represent our integrands of interest modulo a minus sign, after

transforming n = 1/η, such that the MCT is applicable.
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Since 0 ≤ ksca
i (z)e−Mτ(z) < ∞, and n

(
1− e−a(z)/n

)
≥ 0, the MCT holds whenever

fn(z) ↑ f(z) pointwise, and

lim
n→∞

fn(z) = f(z) = a(z) (6.35)

exists, which it obviously does.

We show that fn(z) ↑ f(z) pointwise, or, since we know that the limit exists, that

fn+1(z) ≥ fn(z) for all z. Therefore, we compute

d

dn
fn(z) =

d

dn
n
(

1− e−a(z)/n
)

= 1− (1 + a(z)/n)e−a(z)/n. (6.36)

Now,

1− (1 + a(z)/n)e−a(z)/n ≥ 0⇔ ea(z)/n ≥ 1 + a(z)/n, (6.37)

and considering the Taylor expansion for ea(z)/n,

ea(z)/n = 1 + a(z)/n+
(a(z)/n)2

2!
+

(a(z)/n)3

3!
+ ..., (6.38)

this is certainly the case for a(z) > 0. This holds for all realistic parameter values.

Hence, d
dnfn(z) ≥ 0, which implies fn+1(z) ≥ fn(z). This completes the proof, and

indeed equation (6.31) holds.

Concluding, we have

lim
η→0

1

η
(I(η)− I(0)) = Caerσ

sca
aer

∫ z1

z0

e−Mτ(z)dz (6.39)

− CaerMσext
aer

∫ z1

z0

(z1 − z)ksca
aer(z)e

−Mτ(z)dz (6.40)

− CaerM(z1 − z0)σext
aer

∫ z0

0
ksca

aer(z)e
−Mτ(z)dz (6.41)

− CmolMσext
aer

∫ z1

z0

(z1 − z)ksca
mol(z)e

−Mτ(z)dz (6.42)

− CmolM(z1 − z0)σext
aer

∫ z0

0
ksca

mol(z)e
−Mτ(z)dz. (6.43)

This equation describes how much our top of atmosphere radiance, in direction (µ, φ),

changes given some infinitesimal change in aerosol number density in the interval (z0, z1).

In this derivative, we can distinguish several effects. First, due to an increased amount

of aerosol at (z0, z1) there is an increase in scattering of photons towards the top of

the atmosphere, which is represented in (6.39). Second, because we only track singly

scattered photons, the extra photons that are scattered by the added aerosol are no

longer available for scattering at any lower altitude by aerosol ((6.40) and (6.41)) or

molecules ((6.42) and (6.43)).
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To obtain the semi-analytic derivative δ2I
δnδz , we only need to divide the expression above

by the width of the perturbation interval, z1 − z0.

In conclusion, note that in order to actually compute the derivatives, we need to carry out

numerical integrations over the altitude. Since all other quantities are already known,

this can be done once the full optical thickness profile, τ(z), is computed.

6.4 Derivative of Measured Radiance

Above, we determined monochromatic (for each wavelength) derivatives. Of course, we

are interested in the derivative for the measured radiance, i.e.

δÎ

δn
(z) =

1

z1 − z0
lim
η→0

1

η

(
Î(λ; η)− Î(λ; 0)

)
, (6.44)

where Î(λ; η) and I(λ; 0) are the measured radiances at wavelength λ (see section 5.6)

for the perturbed atmosphere and normal atmosphere, respectively.

We claim that

lim
η→0

1

η

(
Î(λ; η)− Î(λ; 0)

)
= D(λ)

∫ λmax

λmin

S(λ, λ′)

[
lim
η→0

1

η
(I(λ; η)− I(λ; 0))

]
dλ′, (6.45)

i.e. to obtain the derivative of the measured radiance, we can consider the monochro-

matic radiance’s derivative and perform the convolution with the instrument spectral

response function afterwards.

To prove (6.45), we first note that, due to the linearity of the integral, the following

holds:

lim
η→0

1

η

(
Î(λ; η)− Î(λ; 0)

)
= lim

η→0

1

η

(
D(λ)

∫ λmax

λmin

S(λ, λ′)
(
I(λ′; η)− I(λ′; 0)

)
dλ′
)
, (6.46)

since I(λ′; η) and I(λ′; 0) are integrable.

Now, we need to show that

lim
η→0

∫ λmax

λmin

S(λ, λ′)
1

η

(
I(λ′; η)− I(λ′; 0)

)
dλ′ =

∫ λmax

λmin

S(λ, λ′)

[
lim
η→0

1

η

(
I(λ′; η)− I(λ′; 0)

)]
dλ′.

(6.47)

This proof concerns taking the limit inside the integral over the wavelength as well.

Thus, we need to extend the arguments made in the previous section, such that they

also incorporate the integral over the wavelength. Again, we can separate the arguments

42



Single Scattering Approximation

per region. We can also separate the arguments per atmospheric constituent, but we

will only prove it for aerosol, as the arguments for molecules are identical.

First, for the C region, we note that the factor the limit considers can also be taken out

of the outer integral (since σext
aer is assumed to be independent of λ). So for the C region,

the argument is sound.

Second, for the first B part, we can use the DCT again. Consider the dominating

function

g(λ, λ′) = σsca
aerS(λ, λ′)Caer(λ

′)

∫ z1

z0

e−Mτ(z,λ′)dz. (6.48)

This function dominates the integrand because e−Mσext
aer(z1−z)/n ≤ 1. Furthermore, it is

obvious that
∫
g(λ, λ′)dλ′ is finite. Thus, the DCT holds.

Finally, for the second B part, we note that we can use the same MCT, but we need to

be a bit more careful: We need to prove that

lim
n→∞

∫ λmax

λmin

hn(λ, λ′)dλ′ =

∫ λmax

λmin

lim
n→∞

hn(λ, λ′)dλ′, (6.49)

where

hn(λ, λ′) = S(λ, λ′)Caer(λ
′)

∫ z1

z0

ksca
aer(z)e

−Mτ(z,λ′)fn(z, λ′)dz, (6.50)

where fn(z) is the monotone sequence of functions from the previous section.

Note that we already know that limn→∞ hn(λ, λ′) exists, because of our work for the

monochromatic derivative.

Next, it is very easy to show that hn+1 ≥ hn. We already showed that

fn+1(z, λ′)− fn(z, λ′) ≥ 0. (6.51)

Hence,

hn+1−hn = S(λ, λ′)Caer(λ
′)

∫ z1

z0

ksca
aer(z)e

−Mτ(z,λ′)
(
fn+1(z, λ′)− fn(z, λ′)

)
dz ≥ 0, (6.52)

since all other factors are positive as well. Therefore, hn+1 ≥ hn, and we can use the

MCT and take the limit inside.

In conclusion, we have shown that we can find the derivative of the measured radiance

by first computing the derivative of the monochromatic radiance, and then convolving

the monochromatic derivatives with the instrument spectral response function.
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Figure 6.4: Monochromatic derivatives for the SAT region at wavelengths λ = 759.56
nm (top left), λ = 760.61 nm (top right), λ = 763.32 nm (bottom left), and λ = 763.42
nm (bottom right). The corresponding O2 absorption optical thicknesses, τ∗O2

, are
0.05, 1.12, 11.83, and 175.49, respectively. The derivatives are shown for two different
perturbation thicknesses ∆z = 30m (black) and ∆z = 300m (red). Note that for the

wavelength with highest optical thickness (bottom right), the axes are different.

6.5 Computing Derivatives

The semi-analytic derivatives hold for the particular atmospheric layer in which we

perturb the aerosol number density, i.e. the layer located at (z0, z1). To obtain the

derivative for the entire atmosphere, we need to compute derivatives for a sequence of

layers.

The thinner the perturbation layer, the more accurate the derivative. Furthermore,

derivatives based on small perturbation thicknesses (∆z = z1 − z0) are also able to

reveal more detail. However, decreasing the thickness also increases the amount of layers

required to cover the atmosphere, and thus computation time. We decide to investigate

the dependency on the perturbation thickness in more detail.

Figure 6.4 shows the computed derivatives for the SAT region at three wavelengths for

two different thicknesses of the perturbation layer, ∆z = 30m and ∆z = 300m, and

for increasing O2 absorption optical thickness. We see that the general behavior of the

derivatives are consistent for both thicknesses.

We conclude that there is no strong dependence on the perturbation thickness ∆z. How-

ever, detail is lost when the thickness is increased. Since we do not care for computation
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Figure 6.5: Monochromatic derivatives for the SPA region at wavelengths λ = 759.56
nm (left), λ = 760.61 nm (center), and λ = 763.32 nm (right). The corresponding
O2 absorption optical thicknesses, τ∗O2

, are 0.05, 1.12, and 11.83, respectively. The
derivatives are shown for the single scattering (black) and for multiple scattering (red).

time during this research, we decide to work with a small perturbation thickness. Thus,

in the following we only use ∆z = 30m. Whenever computation time does become an

issue, this thickness can always be increased at the cost of a decrease in detail.

Next, we compare the derivatives of the single scattering approximation to multiple

scattering derivatives as computed by DISAMAR. In appendix B we describe how we

obtain these multiple scattering derivatives.

Figure 6.5 shows the derivatives for the SPA scene for three wavelengths, with increasing

O2 absorption optical thickness. The fourth wavelength that was also shown in 6.4 was

left out this time, because the derivatives were extremely small (10−180) at the altitudes

where we can obtain a derivative with DISAMAR (i.e. an altitude where we still have

aerosol). We picked the SPA scene because this scene showed the best approximation in

section 6.2, so this can be seen as a best case scenario. However, we got similar results

for the other scenes, except for a few continental scenes where the multiple scattering

derivatives became negative due to shielding effects (not shown).

For the low absorption case, we see that the derivatives of the approximation have an

error up to 50%, which is quite large. For the higher absorption cases, we see that

the approximation performs much better. We see that the approximation increases in

accuracy as we increase the O2 absorption optical thickness. This is in correspondence

with was observed in section 6.2.

Finally, we compute, and show, the derivatives of the measured top of atmosphere

radiance for two representative scenes as a function of wavelength and altitude of the

perturbation layer in Figure 6.6.

We see a strong dependence on the O2 absorption optical thickness. The derivatives

are relatively small in the strong absorption parts at low altitudes. Furthermore, inside

the strong absorption parts, the derivatives are strictly increasing with altitude. We
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Figure 6.6: Measured top of atmosphere radiance derivatives as a function of wave-
length and altitude of the perturbation layer. A darker color means that the derivative

is smaller. The depicted scenes are SAT (left) and ECI (right).

conclude that, inside the absorption band, the top of atmosphere radiance is less sensitive

to aerosol in the lower part of the atmosphere. This insensitivity gets progressively

worse as we increase the strength of the O2 absorption. However, although the top of

atmosphere radiance can become insensitive when absorption is too strong, especially

these wavelengths are very valuable as their derivatives also vary strongly with altitude,

which we need to be able to obtain height information.

6.6 Extensions

We can attempt to extend the single scattering approximation to also incorporate the

surface, or include second or higher orders of scattering. First we discuss including the

surface, and then we discuss additional orders of scattering.

When we attempt to incorporate the surface, we get the additional source term Sb, see

(4.29). This source term depends on the solution at the surface, I↓(τ∗, µ, φ), which is

problematic. One can try to avoid this problem by making an approximation of the

downward radiance at the surface.

An obvious approximation to the solution at the surface, would be to ignore the scattered

contribution, which is reasonable under a low scattering optical thickness, and consider

only the direct part of the solution, i.e.

I↓(τ∗, µ, φ) ≈ E0e
−τ∗/µ0δ(µ− µ0)δ(φ− φ0). (6.53)
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This then yields the approximated surface source term

Sb(τ, µ, φ) ≈ ω(τ)

4π

AsE0

π
e−τ

∗/µ0

∫ 2π

0

∫ 1

0
P (u, φ, µ′, φ′)e−(τ∗−τ)/µ′dµ′dφ′. (6.54)

Now, since this expression no longer depends on the solution, the solution can be derived

by integrating the source function over the height variable, as described in section 4.3.

Unfortunately, we are generally unable to evaluate the double integral (6.54) analytically.

We have experienced that solving for the top of atmosphere radiance now becomes a

problem with significantly increased numerical complexity.

Additionally, computing derivatives with the included surface term becomes trouble-

some, as they include terms with the integral∫ 2π

0

∫ 1

0

1

µ′
P (u, φ, µ′, φ′)e−(τ∗−τ)/µ′dµ′dφ′, (6.55)

which is even harder to compute numerically than the integral in (6.54), due to the extra

factor 1
µ′ .

Including additional orders of scattering is difficult because the multiple scattering source

term (the final term in (4.28)) depends on the solution itself. We can however employ a

Lambda iteration method (see [17]) to express the radiance as the sum of contributions

I0, I1, ..., In where In is the contribution to the radiance due to photons that are scattered

n times. Then, using In−1 in the source term for In yields a system of n+1 equations that

we can solve. Not only is this construction quite complex, but this system of equations

is only relatively easy to solve under the assumption of isotropic phase functions (i.e. no

angular dependence of the scatterers).

Concluding, although it is possible to extend the single scattering approximation that

is discussed in this chapter, it is not very advantageous to do so, as any extension

will lead to a strong increase in numerical and mathematical complexity. Since we

decided to use the single scattering approximation for its simplicity, trying to extend

the approximation now makes little sense. When one needs to incorporate the surface

or increase more order of scattering, full radiative transfer models, like DISAMAR’s

LABOS or the Doubling/Adding method, deal with these extensions in a much more

efficient way.
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Chapter 7

Interpretation of Retrieved

Aerosol Layer Height

7.1 Introduction

We hypothesize that the Aerosol Layer Height solution for a realistic aerosol profile

(see chapter 3) can be interpreted as a centroid of the aerosol profile, i.e. a weighted

average of the aerosol profile, with proper weights. Here, we investigate this hypothesis

by constructing centroids of the aerosol extinction profile.

This idea is inspired by [12], where centroids for cloud profiles are developed and com-

pared to the Ozone Monitoring Instrument (OMI) cloud height product. These centroids

use knowledge on the properties of the radiation field for cloudy atmospheres. These

atmospheres typically have very diffuse light. For cloud free atmospheres with aerosols

we need to consider other properties of the radiation field. Thus, we construct three

different centroid methods.

These centroids can be computed without actually performing any retrieval simulations.

This has the additional advantage that these methods can also be used in large scale

validation studies if there is good agreement with the retrieval solution.

7.2 Basic Centroid

First, the most straightforward way to compute a centroid of the profile, is to integrate

the altitude using the aerosol extinction profile as weights. Thus, we compute the
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centroid Zbasic(k
ext
aer(z)) as follows:

Zbasic(k
ext
aer(z)) =

∫∞
0 zkext

aer(z)dz∫∞
0 kext

aer(z)dz
. (7.1)

7.3 Centroid Based on Multiple Scattering Derivatives

Aerosol at different altitudes can have a significantly different impact on the top of

atmosphere radiance (see section 6.5), and the retrieval solution may account for this

fact. Thus, we also construct a centroid where we take into account the sensitivity

of the top of atmosphere radiance to aerosol at a particular altitude. We compute a

weighted average of the altitude, using as weights the product of the aerosol extinction

coefficients and the measured top of atmosphere radiance derivative with respect to

the aerosol number density. These multiple scattering derivatives are computed with

DISAMAR. How we do this is described in appendix B.

The centroid Zmultiple(k
ext
aer(z), λ) is now computed as follows

Zmultiple(k
ext
aer(z), λ) =

∫∞
0 zkext

aer(z)
∣∣∣ d2Î

dndz (z, λ)
∣∣∣dz∫∞

0 kext
aer(z)

∣∣∣ d2Î
dndz (z, λ)

∣∣∣ dz , (7.2)

where d2Î
dndz is the multiple scattering derivative of the measured radiance, as computed

by DISAMAR. Since a strong negative derivative still means that the aerosol has a

strong effect on the top of atmosphere radiance, we take the absolute value. Note that

this is now a spectral quantity, due to the spectral dependence of d2Î
dndz .

7.4 Centroid Based on Single Scattering Derivatives

Third, we again compute the centroid as before, using as weights the product of the

aerosol extinction coefficient and the derivative of the measured top of atmosphere ra-

diance. This time, however, we use the derivatives from the single scattering approxi-

mation, δ2Î
δnδz , as derived in chapter 6.

Thus, we define the centroid Zsingle(k
ext
aer(z), λ) as

Zsingle(k
ext
aer(z), λ) =

∫∞
0 zkext

aer(z)
δ2Î
δnδz (z, λ)dz∫∞

0 kext
aer(z)

δ2Î
δnδz (z, λ)dz

. (7.3)
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Figure 7.1: Centroids as a function of wavelength compared to the retrieved Aerosol
Layer Height. The scenes that are shown are SAT (left), SAL (middle), and ECI (right).
The dark black line is the retrieved Aerosol Layer Height, and the colored lines belong
to the centroids, where red is the basic centroid Zbasic, green is the centroid based on
the single scattering derivatives Zsingle, and pink is the centroid based on the multiple

scattering derivatives Zmultiple. The true aerosol extinction profile is shown in gray.

This time, there is no need to take the absolute value of the derivative, because these are

non-negative. Again, like the other centroid based on the multiple scattering derivatives,

the centroid in (7.3) is also a spectral quantity.

7.5 Comparison

Figure 7.1 shows the computed centroids as a function of wavelength for the SAT, SAL

and ECI scenes.

We see that all centroid methods exhibit some agreement with the retrieved Aerosol

Layer Height, but none of the methods is of a clear higher quality than the others.

For the centroids based on the single scattering derivatives, we see an increase in centroid

height inside the strong absorption parts of the O2 A band. This is as expected, since the

instrument is more sensitive to aerosol higher in the atmosphere, for those wavelengths

(see section 6.5).

For the centroids based on the multiple scattering derivatives, the previous need not be

the case. While we do see similar behavior for the SAT scene, the SAL scene actually

shows a decrease in centroid altitude in some strong parts of the absorption band. This

can be caused by, for example, shielding effects.

When the centroids based on the single scattering and multiple scattering derivatives

agree, they do so very strongly. Indeed, we see for the SAT scene that these two centroid

methods yield almost exactly the same results.
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We also see that including information from derivatives need not improve the centroid

method. For the ECI scene, we see that the basic centroid lies below the centroids of

those based on the single scattering derivatives for a large part of the spectrum. Since

the retrieved Aerosol Layer Height also lies below these centroids, the basic centroid

might be preferred.

Finally, we note that the centroids based on the derivatives are spectral quantities. In

order to properly compare these methods to retrieved Aerosol Layer Height, we need to

combine the spectral information into a single quantity. We address this is the following

section.

7.6 Spectral Averaging

We saw that the centroids based on the derivatives are spectral quantities. We need to

combine the spectral information of these centroids to obtain a single quantity which

can be compared to the retrieval solution.

We do not use the information from the entire wavelength window, since some of the

spectral channels contain the same information, e.g. the continuum channels below 759

nm and above 768 nm.

Like in the cloud product Fast Retrieval Scheme for Clouds from the Oxygen A band

(FRESCO), we use the information from three wavelength windows; 758-759 nm (con-

tinuum, no absorption), 760-761 nm (strong absorption), and 765-766 nm (moderate

absorption), see [9]. The reflectivities in these three wavelength windows contain nearly

all independent information that is available in the O2 A band.

For the wavelengths within the previously described windows we again take a weighted

average. We average the centroids over the wavelengths with the instrument’s signal-to-

noise ratio as weights.

7.7 Results

Computing the centroids after spectral averaging yields the results as presented in Figure

7.2. We see that all centroid methods yield similar results, but small difference are

present. We investigate the individual performance of the three centroid methods.

Correlation graphs of each centroid method versus the retrieved Aerosol Layer Height

are given in Figure 7.3. Furthermore, Pearson correlation coefficients r are also given.
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Figure 7.2: Bar diagram comparing computed centroids and the retrieved Aerosol
Layer Height for all test scenes. The different centroid methods are distinguished via
color. Retrieved Aerosol Layer Height is shown in gray, as is the corresponding extinc-

tion profile.

Figure 7.3: Correlation graphs for the three centroid methods versus the retrieved
Aerosol Layer Height (n = 8). The centroid method based on the definition is on
the left, while centroids based on the derivatives of the single- and multiple scattering
approximations are given in the middle and to the right, respectively. The red line is a

linear least-squares fit of the data.

We see that all centroid methods exhibit a fairly strong correlation with the retrieved

Aerosol Layer Height (n = 8).

The correlation between the centroid methods and the retrieved Aerosol Layer Height

further motivates our hypothesis that the retrieved Aerosol Layer Height can be inter-

preted as a centroid of the extinction profile. For the current dataset, the results suggest

that the centroid method based on the multiple scattering derivatives is the best, as it

shows the highest correlation.

A larger dataset of aerosol profiles is needed to improve the statistical power of the

arguments made here. The ESA project Lidar Climatology of Vertical Aerosol Structure

for Space-Based Lidar Simulation Studies (LIVAS), see [34], can be used to extend

our dataset. This web portal provides an extensive aerosol profile database for remote

sensing simulations, which are produced from CALIOP data in a similar fashion as in

chapter 3.
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If the centroid methods still show good agreement with the retrieved Aerosol Layer

Height for a larger dataset, then we can use the centroid methods to compute quantities

that are representative of the retrieved Aerosol Layer Height, without actually having to

perform a retrieval simulation. This allows us to perform large scale validation studies,

as seen in [12].
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Chapter 8

Retrieval Revisited

8.1 Introduction

We have found evidence that the retrieval solution of the Aerosol Layer Height algorithm

can be interpreted as a centroid of the aerosol extinction profile, provided that we only fit

the optical thickness and the mid pressure of the aerosol layer. The default Aerosol Layer

Height algorithm also fits the surface albedo. It does this, because the surface albedo is

not known accurately: climatologies typically give monthly averages, but the variability

is quite large on this time scale. For example, snowfall and changes in vegetation cover

influence the reflectivity of the surface significantly. In this chapter, we investigate

whether our previous results can be extended to the case where we also fit the surface

albedo.

8.2 Including Surface Albedo

We perform the same simulation experiment as in section 3.3, except this time we also fit

the surface albedo at 758 and 770 nm. All prior values, except for the mid pressure, equal

their true values. We do not introduce any errors in the model parameters. The prior

standard deviations equal 1 for the surface albedo nodes and the optical thickness, and

for the mid pressure we set it at 500 hPa. We vary the prior mid pressure of the aerosol

layer from 400 to about 900 hPa. Furthermore, we also vary the fixed pressure-thickness

of the aerosol layer, with values ∆P = 50 hPa, ∆P = 100 hPa , ∆P = 200 hPa, and

∆P = 300 hPa. We repeat the same experiment for all scenes given in section 3.2.

The retrieval results for the scenes above sea (CAT, SAT, NWP and SPA) are given in

Figure 8.1. The retrieval results for two of the land scenes, CEU and SAL, are given
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in Figure 8.2. The retrievals for the other two land scenes are not shown because these

did not converge, as they reached the maximum number of iterations. Based on the

retrieval results, the following observations can be made.

• All scenes show convergence issues. Most of these convergence issues occur when

the a priori pressure is close to the surface and ∆P is large. In these cases, we

often see that the algorithm stops on the boundary (the surface).

• Two continental scenes, NAD and ECI, show no convergence at all. For these

regions, the intermediate solution oscillates between a solution with a high and a

low aerosol layer. The high aerosol layer has a low optical thickness and a high

surface albedo, while the low aerosol layer has a high optical thickness and a low

surface albedo.

• When a solution is found, we see, in most cases, that the retrieved parameters are

very stable as a function of the prior mid pressure, indicating that we are dealing

with global minima.

• The SPA scene exhibits many minima, and hence unstable retrievals. It should be

noted, however, that the SPA scene is the scene with the least amount of aerosol

extinction, so the aerosol signal is relatively weak.

• Although small, we see variations in retrieval results for different values of the

pressure thickness.

• For the scenes above sea, we retrieve exceptionally high mid pressures, accompa-

nied by a low optical thickness and a high surface albedo. Except for the SAT

scene, the retrieved mid pressure is even far above the aerosol profile. Although

the mid pressure for the SAT scene is placed inside the aerosol profile, it is still

comparatively higher than the mid pressure found in the retrievals of chapter 3.

• For the two continental scenes that show convergence, we observe different be-

havior than for the sea scenes. For the CEU scene, only the optical thickness is

overestimated, while the other parameters are close to the (true) values retrieved

in chapter 3. For the SAL scene, the mid pressure is overestimated, and both the

optical thickness and surface albedo are underestimated.

This experiment has shown that retrieval results tend to be stable, whenever there is

convergence. However, retrieval results that are found can be unrealistic. The next

experiment further investigates these unrealistic retrievals.
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Figure 8.1: Retrieved parameters as a function of the a priori aerosol layer mid
pressure for all four sea scenes. Fit parameters are mid pressure (left), optical thickness
(middle), surface albedo at 758 nm (right), and surface albedo at 770 nm (not shown).
The four scenes are the sea scenes CAT (first row), SAT (second row), NWP (third row),
and SPA (fourth row). The four colors correspond to different pressure thicknesses, ∆P .
The true extinction profiles are shown in gray (on an arbitrary linear scale), and the
true optical thickness and surface albedo values are shown in red. A missing data point
indicates a non-convergent retrieval, and convergence ratios are shown in the legend.

57



Retrieval Revisited

Figure 8.2: Retrieved parameters as a function of the a priori aerosol layer mid
pressure for two land scenes. Fit parameters are mid pressure (left), optical thickness
(middle), surface albedo at 758 nm (right), and surface albedo at 770 nm (not shown).
The two scenes are the land scenes CEU (top) and SAL (bottom). The other two scenes
are not displayed because the retrievals did not converge. The four colors correspond
to different pressure thicknesses, ∆P . The true extinction profiles are shown in gray
(on an arbitrary linear scale), and the true optical thickness and surface albedo val-
ues are shown in red. A missing data point indicates a non-convergent retrieval, and

convergence ratios are shown in the legend.

8.3 Bifurcations

This retrieval experiment further investigates the unrealistic results that are obtained

when the surface albedo is also retrieved.

We set the prior value of the surface albedo on its true value, and do retrievals for various

values of the prior variance of the surface albedo, Var (As). We set the variance to values

ranging from 10−7 to 1 (with 50 logarithmic steps). A prior variance of 0 would mean

that we do not fit the surface albedo. The initial placement of the aerosol layer does not

matter much, since we tend find global minima, as long as we do not start too close to

the surface and the assumed pressure thickness is not too high. Therefore, we pick an

aerosol layer that is initially placed at 620 hPa with a pressure thickness of ∆P = 100

hPa.

The retrieval results for the sea scenes are shown in 8.3, and the results for the land

scenes are shown in Figure 8.4. The following observations can be made.
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Figure 8.3: Retrieved parameters as a function of the a priori surface albedo variance,
Var (As), for all four sea scenes. Fit parameters are mid pressure (left), optical thickness
(middle), surface albedo at 758 nm (right), and surface albedo at 770 nm (not shown).
The four scenes are the sea scenes CAT (first row), SAT (second row), NWP (third
row), and SPA (fourth row). The retrieved parameters are shown in black and the true
value is shown in red for the optical thickness and surface albedo. The true extinction
profile is shown in gray on an arbitrary linear scale. Missing data points indicate

non-convergence. Note the logarithmic scale for Var (As).
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Figure 8.4: Retrieved parameters as a function of the a priori surface albedo vari-
ance, Var (As), for all four land scenes. Fit parameters are mid pressure (left), optical
thickness (middle), surface albedo at 758 nm (right), and surface albedo at 770 nm (not
shown). The four scenes are the land scenes CEU (first row), NAD (second row), SAL
(third row), and ECI (fourth row). The retrieved parameters are shown in black. The
true extinction profile is shown in gray (arbitrary linear scales) and the true values for
the optical thickness and surface albedo are shown in red. Missing data points indicate
non-convergence. Note the logarithmic scale for Var (As), and the compact y-axes for

the CEU scene.
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• For very small values of Var (As), we retrieve the same solution as when we do not

fit the surface albedo. See chapter 3.

• A sharp change in retrieval results is observed when Var (As) becomes too large.

This bifurcation happens when Var (As) is somewhere between 10−6 and 10−4,

varying slightly per scene. Whenever this bifurcation point is passed, a new mini-

mum is attained, or convergence is lost.

• The new minimum that is retrieved after the bifurcation, is the unrealistic solution

retrieved in the previous section.

This experiment shows that in order to have a realistic retrieval solution, we need to

constrain the surface albedo’s variance to a value lower than 10−6 around the true prior

value. Thus, we need to know the surface albedo with a standard error smaller than

10−3. In reality, we expect to estimate the surface albedo with an error of around 2·10−2,

see [20].

8.4 Discussion

We have discovered that the surface albedo plays a big role in the meaningfulness of our

retrievals. Whenever the surface albedo is allowed too much freedom, in the optimal

estimation sense, a bifurcation occurs, and retrieval results may become unrealistic.

Especially for profiles that have aerosol that is mostly contained within the lower part

of the atmosphere, near the surface, we see that unrealistically high mid pressures are

retrieved. To improve the algorithm, we outline a few options.

First, one could decide not to fit the surface albedo altogether, and keep it as a model

parameter. Although this might introduce other (potentially equally problematic) errors

in the retrieval and/or convergence issues, it is at least guaranteed that the particular

surface albedo related bifurcation does not occur.

Second, a different parameterization might be more useful. We see that in the sea

scenes, the surface albedo takes over all the contribution to the top of atmosphere

radiance from the aerosol near the surface. Since we typically find aerosol near the

surface, a potential alternative parameterization may include a fixed aerosol layer near

the surface, see Figure 8.5. Using such a parameterization might prevent the surface from

taking over. Then, in addition to the fixed layer on the surface, another aerosol layer

that is free to move might be used to capture elevated aerosol contributions. Research

is needed to investigate whether the O2 A band contains enough information to fit these

two layers simultaneously, and if this parameterization is feasible.
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Figure 8.5: Schematic drawing of a true aerosol profile (gray) along with a potential
new parameterization that accommodates for boundary layer aerosol (red). Here, P is
the pressure, k(P ) is the aerosol extinction at pressure P , ∆P1 is the pressure thickness
of an aerosol layer fixed on the surface, and ∆P2 is the pressure thicknes of an elevated

aerosol layers at mid pressure Pmid, which is free to move.

Last, if the default Aerosol Layer Height algorithm remains the same, more research is

needed to investigate the influence of errors in other parameters to the results presented

here. In this research, we assumed that we know all model parameters without error,

which is obviously false. Additional extensions like heterogeneous aerosol properties are

also of interest.
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Chapter 9

Conclusion

For our first retrieval experiment (see chapter 3), we developed eight aerosol scenes.

These scenes are constructed to be representative of a realistic aerosol profile. For

these typical scenes, we simulated Aerosol Layer Height retrievals. In these retrieval

simulations, we did not include the surface albedo in the state vector. The simulations

showed that the retrieval of Aerosol Layer Height is generally stable, and yields values

that are somewhere inside the aerosol extinction profile. We conclude that this value

can probably be seen as a centroid of the aerosol profile.

To better understand the retrieved height parameter, we first had to gain more knowledge

about radiative transfer, via the radiative transfer equation. We introduced the radiative

transfer equation and related concepts in chapters 4 and 5.

In chapter 6, we constructed a single scattering approximation to the radiative transfer

equation. We also developed semi-analytic derivatives to the top of atmosphere radiance

with respect to the number density of aerosol at a specific height in the atmosphere. This

approximation allowed us to study radiative transfer using analytic and semi-analytic

expressions, which are easy to compute and interpret, as opposed to complex multiple

scattering descriptions.

We saw that the single scattering approximation is accurate inside the strong absorp-

tion parts of the O2 A band. Both the top of atmosphere radiance and semi-analytic

derivatives are approximated accurately there. This means that a low order of scattering

approximation is suitable for optimization of the radiative transfer code of the Aerosol

Layer Height algorithm, inside the strong absorption parts of the O2 A band.

In chapter 7, we constructed three centroid methods to compare against the retrieved

Aerosol Layer Height. The first centroid method was a simple weighted average of the

aerosol extinction profile. The other two methods also accounted for the measurement’s
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sensitivity to aerosol at a specific altitude. The sensitivities were determined using

the derivatives of the measured top of atmosphere radiance with respect to the aerosol

number density. The first derivative method used multiple scattering derivatives, while

the second used the derivatives of the single scattering approximation.

All three centroid methods showed good agreement with the retrieved Aerosol Layer

Height. Again, this is more motivation that we can interpret the retrieved Aerosol

Layer Height as the centroid of the aerosol profile. Furthermore, it also means that we

do not need to perform complex retrieval simulations to find a representative aerosol

height parameter, as the weighted averages also suffice. This can be used for large scale

validation studies. More research is needed to investigate whether these arguments still

hold for a larger dataset, such that we have a higher statistical power. Furthermore, it

is also interesting to investigate if a particular centroid method is preferred.

In chapter 8, we investigated whether our previous results could be extended to the

default Aersol Layer Height algorithm setting, which also includes the surface albedo in

its state vector. We repeated the retrieval experiment of chapter 3, but this time we

used the default Aerosol Layer Height algorithm setting. This had various interesting

consequences. First, the convergence and the stability of the algorithm deteriorated.

Second, the retrieval now yielded unrealistic results, with a retrieved Aerosol Layer

Height far above the actual aerosol profile. These solutions can no longer be interpreted

as centroids of the profile.

In a third retrieval experiment, we investigated how accurately we need to estimate the

surface albedo in order to maintain realistic results. Notable results were the following.

For small values of the variance of the surface albedo, Var (As) , retrieval results are

consistent with the retrievals where we did not fit the surface albedo. We can interpret

these results. However, if Var (As) is large, other (unrealistic) results are retrieved. We

saw that there is a bifurcation as Var (As) increases to a value somewhere between 10−6

and 10−4. When this bifurcation point is passed either a new minimum is attained, or

convergence is lost. When a new minimum is attained, this is often an unrealistic state.

Thus, we saw that, in order to guarantee results that we can interpret as a centroid of

the aerosol profile, we need a very accurate estimate of the surface albedo. This level of

accuracy is hardly reachable. Therefore, other options need to be considered to avoid

this problem and more research is needed.
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Appendix A

Lebesgue Integration Theorems

In this work, several convergence theorems from Lebesgue integration theory are used.

In this appendix, we supply these theorems and their assumptions. The theorems have

been taken from [35] and, for easy reference, we will use the same numbering. Note that

the integrals presented here are Lebesgue integrals.

Theorem 4.13 (Monotone Convergence Theorem)

If {fn}n∈N is a sequence of non-negative measurable functions, and {fn(x) : n ≥ 1}

increases monotonically to f(x) for each x ∈ E (measurable), i.e. fn ↑ f pointwise, then

lim
n→∞

∫
E
fn(x)dm =

∫
E
fdm. (A.1)

Theorem 4.26 (Dominated Convergence Theorem)

Suppose E is measurable. Let {fn}n∈N be a sequence of measurable functions such

that |fn| ≤ g almost everywhere on E for all n ≥ 1, where g is integrable over E. If

f = limn→∞ fn then f is integrable over E and

lim
n→∞

∫
E
fn(x)dm =

∫
E
fdm. (A.2)

Theorem 4.33 (ii)

Riemann-integrable functions on [a, b] are integrable with respect to Lebesgue measure

on [a, b] and the integrals are the same.
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Appendix B

Multiple Scattering Derivatives

with DISAMAR

Here, we describe how we can obtain semi-analytic derivatives of the top of atmosphere

radiance using DISAMAR. This allows us to find derivatives in case of multiple scattering

and a reflective surface.

Consider some atmosphere and cut it in two at the altitude at which we want to add

aerosol, say z. We then obtain a top and bottom part of the atmosphere, and the top

of atmosphere radiance belonging to light scattered from these combined parts of the

atmosphere is denoted as ITop+Bot.

Now, between these two half-atmospheres, we add a thin atmospheric layer of width

dz. This atmospheric layer contains both molecules and aerosol and has optical thick-

ness kext(z)dz. Denote the top of atmosphere radiance radiance corresponding to this

new complete atmosphere as ITop+Thin+Bot. We can then derive an expression for how

the radiance changes when particles are added to the atmosphere in a thin layer with

thickness dz located at an altitude z by looking at the difference quotient, i.e.

dI

dz
(z) :=

ITop+Thin+Bot − ITop+Bot

dz
. (B.1)

Now, we can take the derivative with respect to the scattering and absorption coefficients

of the thin layer to obtain the derivatives d2I
dkscadz (z) and d2I

dkabsdz
(z). DISAMAR computes
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Appendix B. Multiple Scattering Derivatives with DISAMAR

these derivatives internally using semi-analytic expressions (semi-analytic, because of the

non-infinitesimal nature of the thin layer, like before).

The previous derivatives with respect to the absorption and scattering coefficients can

be extracted from DISAMAR and can be used to find derivatives with respect to other

properties, say x, using the chain rule:

d2I

dxdz
(z) =

d2I

dkscadz

dksca

dx
+

d2I

dkabsdz

dkabs

dx
. (B.2)

In case of the derivative with respect to the aerosol number density, we obtain

d2I

dnaerdz
(z) = σsca

aer

d2I

dkscadz
+ σabs

aer

d2I

dkabsdz
. (B.3)

This monochromatic derivative can be convolved with the slit function to obtain the
derivative of the measured radiance, which we write as d2Î

dnaerdz
.
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Appendix C

Model Atmosphere Properties

In this appendix we present the mid-latitude summer profile and the physical constants
used for the modeling of the atmosphere, as discussed in chapter 5.

Constant Name Symbol Value Units

Avogadro’s constant NA 6.0221413× 1023 mol−1

Specific gas constant of air Rspecific 287.058 J kg−1 K−1

Reference number density of air
at 288.15 K and 1013.25 hPa nref 2.5468993× 1025 molecules m−3

Depolarization factor δ(λ) Function. See [23]. -
Refractive index of air N(λ) Function. See [24]. -
Molar mass of dry air mair 0.02897 kg mol−1

Mixing ratio of oxygen in dry air rmix 0.2946 -

Table C.1: List of physical constants used for modeling the Rayleigh atmosphere.

Alt. (km) Press. (hPa) Temp. (K)

0 1013 294.20
1 902 289.70
2 802 285.20
3 710 279.20
4 628 273.20
5 554 267.20
6 487 261.20
7 426 254.70
8 372 248.20
9 324 241.70

10 281 235.30
11 243 228.80
12 209 222.30
13 179 215.80
14 153 215.70
15 130 215.70
16 111 215.70
17 95 215.70
18 81.2 216.80
19 69.5 217.90
20 59.5 219.20
21 51 220.40
22 43.7 221.60

Alt. (km) Press. (hPa) Temp. (K)

23 37.6 222.80
24 32.2 223.90
25 27.7 225.10
27.50 19.07 228.45
30 13.2 233.70
32.50 9.3 239.00
35 6.52 245.20
37.50 4.64 251.30
40 3.33 257.50
42.50 2.41 263.70
45 1.76 269.90
47.50 1.29 275.20
50 0.951 275.70
55 0.515 269.30
60 0.272 257.10
65 0.139 240.10
70 0.067 218.10
75 0.03 196.10
80 0.012 174.10
85 0.00448 165.10
90 0.00164 165.00
95 0.000625 178.30

100 0.000258 190.50

Table C.2: The Mid-Latitude Summer profile, taken from [27]. We present the alti-
tude, pressure and temperature.
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Appendix D

List of Symbols

Here, we present a list of common symbols used throughout the text. We also list their
meaning and their units.

Symbol Meaning Unit

y Measurement vector

x State vector

b Parameter vector

ε Measurement error vector

F Forward Model

Σε Covariance matrix of measurement errors

Σa Covariance matrix of prior state

Pmid Mid pressure of aerosol layer hPa

∆P Pressure thickness of aerosol layer hPa

I Radiance photons
m2 nm s sr

λ Wavelength nm

s Path coordinate m

kext Extinction coefficient m−1

ksca Scattering coefficient m−1

kabs Absorption coefficient m−1

σext Extinction cross section m2

molecule

σsca Scattering cross section m2

molecule

σabs Absorption cross section m2

molecule

n Number density molecule
m3

j Source coefficient photons
nm s sr

J Source function photons
m2 nm s sr

Continued on next page
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Continued from previous page

z Altitude m

θ Zenith angle deg

φ Azimuth angle deg

θ0 Solar zenith angle deg

φ0 Solar azimuth angle deg

τ Optical depth -

τ∗ Optical thickness -

u Direction cosine -

µ Absolute value of direction cosine -

µ0 Absolute value of solar direction cosine -

P Phase function sr−1

ω Single scattering albedo -

E0 Solar irradiance photons
m2 nm s

AS Surface albedo -

Sa Single scattering source term photons
m2 nm s sr

Sb Single scattering boundary source term photons
m2 nm s sr

Î Measured radiance photons
m2 nm s sr

S Instrument spectral response function -

η Perturbation in number density molecule
m3

C Constant used for derivatives photons
m2 nm s

M Geometric airmass factor -
δ2I
δnδz Single scattering derivative photons

nm s sr
d2I

dndz Multiple scattering derivative photons
nm s sr

Z Centroid m

Table D.1: List of common symbols used throughout the text.
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Appendix E

Abbreviations

Here, we present a list of all abbreviations and their meanings used throughout the text.

Acronym What it Stands For

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations
CAT Central Atlantic
CEU Central Europe
DCT Dominated Convergence Theorem
DD Desert Dust
DISAMAR Determining Instrument Specifications and Analyzing

Methods for Atmospheric Retrieval
ECI East China Industry
ESA European Space Agency
FWHM Full Width at Half-Maximum
FRESCO Fast Retrieval Scheme for Clouds from the Oxygen A band
HG phase function Henyey-Greenstein phase function
KNMI Koninklijk Nederlands Meteorologisch Instituut
LABOS Layer Based Orders of Scattering
LIVAS Lidar Climatology of Vertical Aerosol Structure for

Space-Based Lidar Simulation Studies
MCT Monotone Convergence Theorem
NAD North African Desert
NWP North West Pacific
OMI Ozone Monitoring Instrument
SA Strongly Absorbing
SAL South African Land
SAT South Atlantic
SPA South Pacific
SS Sea Salt
TROPOMI Tropospheric Monitoring Instrument
VU Vrije Universiteit Amsterdam
WA Weakly Absorbing

Table E.1: Table listing the abbreviations and their meaning used throughout the
text.
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