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Preface

This report is written as a thesis project from the Lund University. The research

itself is done at, the Royal Netherlands Meteorological Institute (KNMI) in the

Bilt, in the Netherlands.

The focus in this report will be on mapping global radiation. However, this re-

search is part of a larger research, namely: ”High resolution climatology based on

integrated in-situ observations, satellite observations and model data.”, within the

KNMI which covers several climatic topics. The goal of the bigger research at the

KNMI is to improve the existing climatological and meteorological products. This

is done by increasing the resolution through the addition of external data sources

or different modeling methods.

In this report, satellite data is used as an external data source in combination

with the existing measurement network.
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Summary

For this research, two satellite products were used to see if it was possible to

improve the resolution and quality of the global radiation interpolation in the

Netherlands. The first data source was from the Climate Monitoring Satellite Ap-

plication Facility (CM-SAF). The second data source was the Surface Insolation

under Clear and Cloudy Skies (SICCS) from the KNMI. Both products were avail-

able for the period of January 2006 to December 2011 and came in the form of

images with monthly and daily averages.

To combine the satellite images with the input provided by the KNMI’s 32

measurement stations, these interpolation/merging methods were used:

1. Thin Plate Splines (TPS)

2. Mean Bias interpolation (MB)

3. Interpolated Bias interpolation (IB)

4. Kriging with External Drift, Exponential model (KED-EXP)

5. Kriging with External Drift, Spherical model (KED-SPH)

All these methods made use of the in-situ measurements as main input for the

interpolation and all methods except TPS used the satellite products as auxiliary

data.

Interpolations were made for the average of the six year period and on monthly

measurements, for each month, in each year. Daily interpolations were made for

April 2010 until July 2010.

Different validation methods were used to analyze the output. The results showed

that; for the six year average both products and all interpolation methods did a

good job on predicting global radiation. The R2 was lowest for the IB on the

CM-SAF product with a value of 0.19. However, the MAPE (mean absolute per-

centage error) did not exceed 1.39% on the CM-SAF product and 1.42% on the

SICCS product. These values corresponded with an absolute bias of 1.77 W/m2

and 1.8 W/m2.

The monthly results showed similar results. The R2 values tended to differ

more, especially in the IB and MB interpolation. In most cases this could be

explained by the quality of the satellite images. The MAPE was low in all cases.
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A maximum MAPE of 8.38% was found (when using proper satellite images), in

November, which corresponded with an absolute bias of ± 4 W/m2. Datasplitting

returned similar results. MAPE’s did increase up to 9.27% when leaving out 1/4th

of the measurement stations but this value corresponds with an absolute bias of

2.71W/m2. These low absolute errors showed that all interpolation methods re-

turn an accurate interpolation. However, because the interpolation methods rely

on the quality of the satellite images, the SICCS product would be a better prod-

uct. These images were complete in all months while the CM-SAF product lacked

data in December.

Since it turned out that all interpolations perfored well, daily data was analyzed

for the period of April until July 2010.

It turned out that for the daily data KED and the IB interpolations performed

significantly better than the TPS or MB interpolation. The biggest average MAPE

was found for the TPS method (10.7% in May). The smallest average error of 0

% was found for the IB method. However this method was paired with very low

R2 values which made the model unpredictable. The average KED R2 and MAPE

ranged from 0.57 to 0.75 and from 0.08% to 0.95 %. This made the method a stable

and accurate interpolation method. The satellite images on their own would not

be good enough to use directly as a global radiation map, for this time interval.

The over- and underestimated bias of the satellite images ranged from -89.63 to

64.49 W/m2. This showed that, a combination of station data and satellite data

would improve the quality and resolution of daily global radiation maps.
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1 Introduction

Global radiation is the main driver of nearly every dynamic process on Earth. It

drives both air and ocean circulations, thereby influencing weather and climate.

It has a direct climatic impact and it is the main energy source for nearly all

life on Earth. Therefore it is fundamental to understand and keep a good record

of global radiation measurements. With proper knowledge and a long term well

preserved database with global radiation measurements, it is possible to get a

better understanding of the climate system and possibly find solutions to mitigate

global warming. At the same time, global radiation measurements can be used

to satisfy request from agricultural-, medical-, biological-, industrial- and energy-

sectors (Greuell et al., 2013; Kipp & Zonen; WMO, 2008).

Global radiation data has been recorded in the Netherlands since 1957 by means

of a network of meteorological stations. The measurements started with only one

meteorological station, located in De Bilt, the Netherlands, in 1957. Since that

time, the amount of meteorological stations has increased to 32.

At the same time, there is an increasingly growing demand of high resolution

global radiation maps, both internal within the Royal Netherlands Meteorological

Institute (KNMI), as external. An increasing number of applications make use of

high resolution data. Therefore current low resolution maps should be improved.

The current resolution of global radiation maps in the Netherlands is determined

by the density and distribution of the existing stations. Using station data and

interpolating this data has some drawbacks. The density of the ground stations

is often lower then the pixel density of satellite images. Also, due to the limited

number of stations and the distribution of these stations, spatial patterns cannot

always be described. New possibilities should be explored to increase the spatial

resolution (Greuell et al., 2013).

Currently, in-situ measurements, satellite observations and model outputs are

all treated separately. The integration of these data sources could lead to an

improvement in the resolution of the radiation maps and should therefore be ex-

plored.

Several studies have already shown that both polar orbiting as well as geosta-

tionary satellites have the possibility to improve the potential of global radiation

mapping. Polar orbiting satellites have the advantage of being able to provide

data with a spatial resolution of several meters as source data compared to geo-

stationary satellites which provide data with a spatial resolution of 1 to several

kilometers. On the downside, temporal resolution of these satellites can be rela-
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tively low. Especially when one compares the temporal resolution of a polar orbit-

ing satellite with that of a geostationary satellite, like Meteosat second generation

(MSG). MSG provides the user with data on a 15 minute temporal resolution with

a spectral resolution of 12 channels ranging from 0.635 µm to 14.4 µm (Schmetz

et al., 2002). Perez et al. (1994, 1997) have already proven that satellite data

from a geostationary meteorological satellites becomes more accurate than local

ground measurements if the distance to the station exceeds 40 to 50 km and in

some cases even 34 km. With the stations in the Netherlands lying 6 km to 60

km apart, this could lead to data improvements. Greuell et al. (2013) have also

created a model able to successfully capture global irradiance at the ground with

a 15 minute interval using the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) instrument on the Meteosat second generation satellite. Noia. M., et

al., has evaluated several techniques to get global radiation data from satellite

images. Both using physical as well as statistical models. (Noia. M., et al. 1993).

Statistical as well as physical models have the possibility to improve the resolu-

tion of global radiation mapping compared to the mapping of radiation by using

meteorological stations only. Journée. et al. have proven that combining satellite

data with ground measurements by using Kriging or an interpolated bias leads to

superior maps compared to using either one of those sets on its own. (Journée et

al. 2010, Journée et al. 2012).

Aim of the research:

”The aim of this report is to see if it is possible to improving the existing global

radiation maps in the Netherlands by assimilating in-situ observations with MSG

satellite measurements.”

Objectives of the research:

Objectives are the following research questions:

1. Is Kriging with external drift the best interpolation method, as expected?

2. Is the physically detailed Surface Insolation under Clear and Cloudy Skies

(SICCS) product a better auxiliary data source than the Climate Monitoring

- Satellite Application Facility (CM-SAF) product?
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To test and answer these question, three data sets were used. The main data

source were the measurements made by the KNMI’s meteorological stations. This

data was used as the main input for interpolation. It was also be used to validate

the output by for instance cross-referring with a ”leave one out cross validation”

technique. The second data set that was used was irradiance data obtained by

MSG. This data set was created by the climate-monitoring satellite application

facility (CM-SAF). The final data source that was used was another irradiance

data set. Data from this Surface Insolation under Clear and Cloudy skies (SICCS)

model was also obtained by the MSG satellite. The difference with this data set

however is that the SICCS used a more detailed physical model; taking more cloud

physical properties and atmospheric properties into account. This model is used

by the KNMI and is designed and created by Greuell, W., Meirink, J.F. and Wang,

P. (Greuell et al., 2013).

The organization of this report is as follows. Chapter 1 will continue with an

introduction of a related study, explaining what other researchers have done. Af-

terwards, a notification is given for fields that could benefit from better global

radiation data. In chapter 2, the background information and data which was

used is described. In chapter 3, the methods are described, starting with a de-

scription of which data was used, followed by an overview of how this data could be

combined. After this, the interpolation and validation methods are described. In

chapter 4, the results will be represented. In chapter 5, a summarizing discussion

will be given, followed by a conclusion. Finally, chapter 6 will give an outlook on

what further possibilities could be explored in relation to this research.

Due to the fact that different interpolation methods have to be compared with

each other, both statistically and visually, metadata is not provided in the exam-

ple maps due to the limited space available on the paper. Therefore, the research

area within Europe and the metadata for all the maps of the Netherlands is rep-

resented in appendix A.
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1.1 Related study

Improving the spatio-temporal distribution of surface solar radiation

data by merging ground and satellite measurements (Journée et al.,

2012).

In this research, Journée and Bertrand (2010), from the royal meteorological in-

stitute of Belgium, combined in-situ data with data from Meteosat. They made

use of different algorithms and functions provided by two Satellite Application Fa-

cility’s (SAF). First they created a cloud mask by using the MSG/SEVIRI cloud

detection algorithm. The surface albedo came from the LSA-SAF, which provided

a near real-time surface albedo product. Other parameters like transmittance,

water vapour, ozone and aerosols were taken from other models or measurements.

Once all parameters were known and the transmittance for a specific atmospheric

state was determined, the solar surface irradiation could be calculated. This was

done by multiplying the transmittance with the extraterrestrial incoming solar flux

density. Another approach used in this research was to extract the transmittance

of a given atmospheric state from a look up table and multiplying this value with

the extraterrestrial incoming solar flux density. Other parameters like ozone and

water vapour concentrations were still used from external sources. Several meth-

ods were used by Journée and Bertrand to combine the data. They came to the

conclusion that out of these methods, Kriging with external drift gave the best

results. They also pointed out that the process of combining satellite data with

in-situ data for an area with a relative dense network of measurement stations and

a relative high cloud frequency could improve previously obtained data.
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1.2 Fields of interest

Solar energy

The energy provided by the Sun is so abundant that the Earth receives energy

at a rate that is 10.000 greater then mankind consumes it (Arvizu et al., 2011).

It is an energy source which is available in every country in the world and besides

the emissions present at the production of solar energy collectors, CO2 and other

greenhouse gas emissions are very low for the use of direct solar energy. With new

solar technologies and an increase in the use of photovoltaic solar energy, thermal

power plants, passive solar heating/cooling and daylight systems, proper solar data

is required (Journée et al., 2012). Therefore to make efficient use of this energy

source, it is important to know how much energy the Sun provides at each location

by measuring the total irradiation (Arvizu et al., 2011). A map providing informa-

tion about the amount of potential solar energy is the basic essential information

for solar power designing (Otani et al., 1994). That is a reason why it is important

for (solar)energy companies to get a good and relatively high resolution map of

solar irradiation. With this information it becomes easier to pinpoint locations

that would have the optimum benefit from the Suns energy.

Other sectors

There are many fields that could benefit from global radiation data. Here, a few

of these fields will be shortly mentioned to get an impression where the datasets

from this research can be used for.

One of the fields that could defenitly benefit from high resolution global radia-

tion maps are the nature and agricultural sectors. ”Solar radiation in the visible

region of the spectrum affects the growth rates of crops, and it is used in numerical

models to estimate soil moisture, potential evapotranspiration and photosynthe-

sis.” (Tarpley, 1979). Besides crop growth rates other properties of landscapes and

soils are affected by global radiation.

One of the operational products that the KNMI delivers to one of its associates is

the evaporation product of the Netherlands. For the KNMI evaporation product,

Makkink is used (Hiemstra et al., 2011). Makkink (a calculation method used in

the Netherlands for evaporation) evaporation uses the shortwave incoming solar
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radiation and the mean daily temperature as input parameters. From these two

the radiation parameter is the most important one and has the largest influence on

the evaporation (Hiemstra et al., 2011). Therefore high resolution radiaton data

could also lead to higher resolution evaporation data.

Another product that makes use of global radiation data as input is the Sun-

shine duration product (Greuel et al., 2013). Radiation is used in an algorithm to

calculate the hours of Sunshine at a location within a specific time interval. There

are quite some models that also work the other way around and calculate global

radiation by the use of Sunshine duration as input. The Angström Prescott equa-

tion is an example where Sunshine duration is used to calculate global radiation

(Yorukoglu et al., 2005).

2 Radiation

2.1 General description

This paper only deals with electromagnetic radiation (ER). ER is a form of radiant

energy and the most important mode of transportation of energy in the Earths

system. The source of the Earths energy is the Sun. The Sun emits ER to the

Earth true a vacuum with the speed of light. In general the amount of energy

received at the top of the atmosphere (TOA) by a surface perpendicular to the

Sun is set to be 1.367 W/m2, which is the value recommended to use by the world

radiometric center (Huashan et al., 2010) . The temperature of the Sun is about

5.800 Kelvin, leading to a solar spectrum with wavelengths between 0.25 µm to 3

µm (Arvizu et al., 2011).

2.1.1 Global radiation

The maps that were created for this research deal with global radiation. Radiation

received by the Earth’s surface can be divided in two different types: direct radia-

tion (also referred to as beam radiation) and diffuse radiation. Direct radiation, is

radiation that is directly received by the Sun. Diffuse radiation, is radiation that

is indirectly received. For example, radiation from the Sun can be reflected and

scattered by clouds and other molecules or particles in the air before reaching the

sensor. Global radiation is the sum of both direct and diffuse radiation received on

a horizontal surface under a solid angle of 2π steradian. The unit used for global
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radiation is the amount of energy per time unit per area (W/m2 or Js−1/m−2).

Extraterrestrial solar radiation reaches the TOA. The fraction that infiltrates

the atmosphere interacts with molecular gases, aerosols and cloud droplets. The

electromagnetic radiation can be reflected upon the interacting and be redirected

back to space. It can be absorbed or it continues towards the Earths surface.

Once it reaches the Earth’s surface it can either be absorbed by it or it can yet

again be reflected back towards space. The fraction of the amount of radiation

that is reflected back into space is referred to as the Albedo. This leads to the

fact that the radiation leaving the atmosphere, which is captured by the satellite,

consists of the back-scatter from the particles and molecules in the atmosphere

and the fraction of radiation reflected by the Earths surface (Noia et al., 1993).

An overview of these interactions is given in figure 1.

Figure 1: Overview of what happens to radiation when interacting with the atmo-

sphere and Earth (Cubasch et al., 2013).
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These interactions lead to the energy balance in equation 1. This can be

calculated for each pixel individually.

IE↓(i, j) = IE↑(i, j) + EA(i, j) + EG(i, j) (1)

Where:

• IE↓(i, j) = The flux density incident on TOA at location (i,j) in W/m2.

• IE↑(i, j) = The flux density of radiation leaving the atmosphere measured

by the satellite at location (i,j) in W/m2.

• EA(i, j) = The fraction of IE↓ absorbed by the atmosphere at location (i,j)

in W/m2.

• EG(i, j) = The fraction of IE↓ absorbed by the surface at location (i,j) in

W/m2.

The flux density incident on the atmosphere is dependent on the distance be-

tween the Earth and the Sun and the zenith angle of the Sun. The incident flux

density can be calculated with equation 2, for each individual pixel.

IE↓(i, j) = Fes

(ro

r

)2

cosθ(i, j) (2)

Where:

• IE↓(i, j) = The flux density incident on TOA at location (i,j) in W/m2.

• Fes = The solar constant ' 1367 W/m2.

• ro = The mean distance between the Earth and the Sun in AU.

• r = The real distance between the Earth and the Sun in AU.

• θ = The Sun’s zenith angle at location (i,j).

The mean distance between the Sun and the Earth is set to 1 AU (astronomical

unit) which is equal to 149.597.870.700 meter. The real distance between the Earth

and the Sun can be calculated with a relative easy equation, 3. There are more

complicated and precise equations to calculate the distance between the Earth

and the Sun, however this equation is adequate and accurate enough for most

engineering calculations (Duffie et al., 1991).
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r = 1 + 0.033cos

(
360n

365

)
(3)

Where:

• r = The real distance between the Earth and the Sun in AU.

• n = The day of the year (1-365) with January 1st being 1.

When radiation reaches the surface, it can either be reflected or be absorbed.

To calculate the amount of radiation that is absorbed by the surface (Eg) equation

4 can be used. This equation takes the incoming radiation at the surface and

multiplies it with the fraction that is not reflected due to the surface albedo.

Eg(i, j) = IG(i, j)(1− A(i, j)) (4)

Where:

• Eg(i,j) = The fraction of IE↓ absorbed by the surface.

• IG = Solar radiance at ground level.

• A(i,j) = The Albedo of the ground at location (i,j), varying between 0 and

1.

The solar radiance at ground level can either be calculated with the help of

equation 5 or it can be measured by a Pyranometer.

IG =
1

1− A
[IE↓ − IE↑ − EA] (5)

With knowledge about the incoming radiation at TOA and incoming radiation

at the ground it is possible to determine the transmittance of the atmosphere with

equation 6.

T =
IG

IE↓
(6)

Where:

• T = The fraction of transmittance of the atmosphere.
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Now it is possible to calculate most of the incoming and outgoing radiation

fluxes. However it is important to know that all these fluxes get influenced by

several factors. The most important factor influencing these fluxes is the zenith

angle of the Sun. This directly influences the air mass the radiation has to inter-

act with and thereby influences the absorption and scattering of radiation in the

atmosphere. Since it is possible to calculate the solar zenith angle the first fac-

tor influencing the flux measured by the satellite can be corrected. Another factor

influencing the flux measured by the satellite and the incident flux are clouds. Wa-

ter droplets and ice particles in clouds have a big influence on the absorption and

scattering of solar radiation. Cano et al. (1985), Otani et al. (1994), Diabaté et

al. (1989) and several other researchers assume that the cloud cover over a certain

area statistically determine the amount of incoming radiation at that location. If

clouds can be detected by the satellite it is possible to determine their impact by

comparing insolation under clear sky conditions with those of cloudy conditions.

It is possible to distinguish clouds on satellite images, since clouds tend to have

a high fraction of reflectivity in the visible solar spectrum (much higher then the

Earth’s surface if not covered with snow or ice)(Cano et al., 1986; Diabaté et al.,

1989; Noia et al., 1993; Otani et al., 1994).

2.1.2 physical patterns

Several researches have concluded that clouds are one of the main factors that

determinte the amount of incoming global radiation (Cano et al., 1986; Diabaté

et al., 1989; Tovar et al., 2001). This means that the formation of clouds over the

Netherlands will results in lower radiation at certain locations and higher radia-

tion in other places. One factor influencing cloud formation are big lakes and other

waterbodies. In general, during the winter period more clouds are expected above

waterbodies due to the relative warmer temperatures compared to the surrounding

land. In the summer period this pattern is the other was around and more clouds

are expected to form over land (Ackerman et al., 2013). This would result in a

relative cloud free shore in the Netherlands during the summer.

Another factor influencing cloud formation is land cover and vegetation. Vege-

tation processes such as respiration release water vapour which is needed for the

formation of clouds (Nc-climate). This means that in the Netherlands more clouds

are expected above vegetated areas. This is true especially in the summer months

due to higher respiration and vegetation activities. The Veluwe area (appendix

G) for example will therefore experience more clouds and less incoming global

17



radiation.

2.2 Methods to capture global radiation from satellites

A method for the determination of the global solar radiation from me-

teorological satellite data. (Cano et al.,1986)

Cano et al. have developed a statistical approach using satellite data and training

data from the ground to determine the parameters of the regression model that is

used to predict the global radiation. Satellite data is taken from the geostation-

ary satellite Meteosat. They made use of both the visual as well as the thermal

infrared spectrum. In a first step albedo map of a cloudless sky is created over

the research area. This is done by taking the pixels with the lowest value out of

time series of satellite data. This can be done because in general clouds will re-

flect more radiation then other surfaces (except snow and some desert soils). In a

second step the cloud cover index is computed. This index is computed by taking

the original satellite image and extracting the ground albedo. What is then left is

the reflectance from the clouds which can be standardized to become a value from

0 to 1 indicating the percentage of clouds covering a pixel. With this knowledge

and data measured by stations the atmospheric transmittance has been calculated

for each pixel. These values range from 0.2 to 0.8. With these known parameters

Cano et al. created a model to predict global radiation at any pixel of the satellite

image with success.

Description of an operational tool for determining global solar radia-

tion at ground using geostationary satellite images. (Diabaté et al.,

1989)

Diabaté et al. have delivered the Helion station. This is a relative cheap package

of software and hardware that will calculate global radiation at ground level by

using geostationary satellite images. They used the same method as Cano et al.

(1986) which has been proven to be efficient. They took a satellite image and used

clear sky conditions to create a reference albedo map from the surface. In a second

step the seasonal variation in albedo was taken into account. When this map was

complete they use it as a reference map to be able to create a cloud index. To

determine the transmittance of the atmosphere Diabaté et al. refer to the linear

relation between the cloud cover index and the transmittance, proven by Cano et
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al. (1986). With these parameters known, Diabaté et al. were able to estimate

global solar radiation at the surface by taking the transmittance at a specific pixel

and multiplying it with the incoming radiation at the top of the atmosphere.

Solar radiation mapping from NOAA AVHRR data in Catalonia, Spain.

(Tovar et al., 2001)

Tovar et al. used a statistical approach to determine the global solar radiation

in Catalonia, a location in the north-eastern corner of Spain. In this research a

similar approach was used as by Diabaté et al. (1989). They assumed that the

amount of cloud cover for each location (pixel) determines the global solar radiation

received by that area. Therefore the first step in this research consists of detect-

ing clouds by using a multispectral cloud detection procedure. With the results

of this procedure a cloud cover index could be determined for each point (pixel)

of the area. This cloud cover index was then used in a final step to statistically

determine the global solar radiation model. For this global solar radiation model

the transmittance from the atmosphere was used as a factor. This was determined

before by looking at the relationship between total incoming radiation and radi-

ation measured by stations at the ground. Ground measurements were also used

to determine the regression coefficients of the model. The results of this research

showed an excellent correlation between the estimated global solar radiation and

the measurements from the stations. It resulted in a coefficient of determination

which was greater then 0.98 for every case and it had a RMSE ranging from 9.6%

to 15.8%. The bias varied from 1.3% to 9.5%. The research also showed that the

estimated global solar radiation tended to be better if the measurement stations

were more sparse (RMSE of 7%) than those who were obtained by interpolation

of station data which had a RMSE of 11% to 16%.

Mapping a topographic global solar radiation model implemented in

a GIS and refined with ground data. (Pons et al., 2008)

Pons et al. have computed a physically-based model to predict potential solar

radiation in Catalonia, Spain and refined the data by using meteorological data.

The main challenge in this research was to include the elevation of the area and

to be able to obtain a potential solar radiation map with only a Digital Elevation

Model (DEM) and data from meteorological measurement stations. The model

took several parameters into account when predicting potential solar radiation.
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These parameters were: The solar constant, the distance between the Earth and

the Sun, the solar geometry, the angles of incident Sunbeams in each cell, shadows

and the relation between direct and diffuse solar radiation. The methodology used

in this research has shown to be valid for computing solar radiation both on a

monthly and annual time scale. It has provided new maps with RMSE of 10kJ

m−2day−1. The result showed an error of 7.3% in March, 6.1% in June, 6.4% in

September and 13.1% in December. These results are better then those obtained

by classic interpolation techniques, especially in rugged terrain like in this research.

The model is still very much influenced by the quality of the DEM and the winter

months need to be accurately adjusted.

Estimating incident solar radiation at the surface from geostationary

satellite data. (Tarpley et al., 1979)

Tarpley et al. used a statistical approach to determine solar radiation at the

surface. However compared to most other methods, Tarpley et al. used three

different equations to calculate the irradiance. One equation for clear sky pixels,

one equation for partially clouded pixels and finally, one for cloudy pixels. To be

able to apply the right equation to the pixels, first a clear sky condition had to be

computed. This was done with data captured by the satellite before the start of

the time serie of this research. To compute the cloud detection process all data sets

with a solar zenith angle of 85◦ and higher were discarded. Data with a standard

deviation which was to large was also discarded. The remaining data was fit to a

regression model to get a set of coefficients. If the brightness values of a picture

were still greater than the predicted value, they were discarded as well. The last

2 steps were performed three times. The procedure then left a cloud free data set

and reliable regression coefficients. These results were then manually checked for

special conditions like mountains and lakes etc. The next step in the research was

to create a cloud index to determine the amount of clouds in a pixel. As a final

step the transmittance of the atmosphere was calculated. The results show that

the model has an error of less than 10% of the mean. Knowledge of cloud type

and thickness could further improve this model.

Retrieval and validation of global, direct, and diffuse irradiance derived

from SEVIRI satellite observations. (Greuell et al., 2013)

In this research Greuell et al. created a new model to obtain solar irradiance at
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the surface derived from SEVIRI imagery on board of the MSG satellite (Schmetz

et al., 2002). The main input data used for this research were; a cloud mask and

cloud physical properties, which were both obtained by SEVIRI observations. The

Surface Insolation under Clear and Cloudy skies (SICCS) model works with a phys-

ical based algorithm. This means that it does not use any ground control points

for the determination of the surface insolation. Instead, surface insolation was

obtained by using a detailed radiative transfer model. SICCSs algorithm consists

of two parts. The first part is the input and describes the state of the atmosphere.

The second part is the algorithm itself which calculates radiative transfer of the

atmosphere based on the input parameters. When comparing the hourly results

obtained by the SICCS with eight stations that measured radiation on the ground

the following results were received. The median values of the station biases was

6W/m2 (5%) for direct irradiance and 1W/m2 (1%) for diffuse irradiance. The

global irradiance had an bias of 7W/m2 (2%).

2.2.1 Global radiation data challanges

In general there are several problems when comparing ground data with satellite

data. The first problem is that you have to find the Pyranometer location on

the satellite image. This can be complicated due to the relatively high latitude

location of the Netherlands compared to the centre of the area observed by MSG.

The high latitude changes the resolution of the pixels and the viewing angle making

it harder to pinpoint the exact location of the Pyranometers. The second problem

is the difference of what is measured. The satellite measures radiation over a

small solid viewing angle. The Pyranometer measures radiation over a solid angle

of 2 π. Another small possible problem is the time scale at which the data is

captured. However with MSG capturing data every 15 minutes this problem is

close to resolved. The biggest challenge is coming from clouds and atmospheric

distortion. As stated before water droplets and ice crystals have an influence on

the scattering and absorption of radiation in the atmosphere. Aerosols are another

type of particles in the atmosphere that have a similar effect on radiation. All of

these factors have to be accounted for, making equation 1 to 6 more complicated.

The principle of these equations still stands however, explaining the differences

between each location will be harder to explain.

Another problem with clouds is the so called cloud parallax effect. The Sun

does not stand directly above the area of interest. This produces difficulties with

clouds in respect to the viewing angle and the location on the satellite image. A
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10km high cloud at 50 degrees North is displaced by more than 10km northwards

in the satellite image (Journée et al, 2012).

2.3 Current situation

Before trying to improve data, it is important to take a look at the current data and

how this data is obtained. In 2011 The KNMI has published its newest edition of

the climate atlas. It is both available as a book (Sluijter et al., 2010) and a selection

is visible on a website (www.klimaatatlas.nl). One part of this atlas consists of the

global radiation maps that are open for improvements. These maps were created

by taking data from official measurement stations and interpolating the missing

data to create a complete map. The data that was used in the klimaatatlas is the

average of the 30 year period from 1981 to 2010. An example of a global radiation

map is given in figure 2. The global radiation data is currently being used as an

input to compute Makkink evaporation. This dataset is operational and is being

deliverd to and used by Rijkswaterstaat. Rijkswaterstaat is a part of the Dutch

Ministry of Infrastructure and the Environment and responsible for the design,

construction, management and maintenance of the main infrastructure facilities in

the Netherlands.

2.3.1 Radiation measurements

Current radiation data is captured at 32 different meteorological measurement

stations in the Netherlands. The locations of these stations can be seen in figure

3. The meteorological stations located at the North Sea do not capture global

radiation data.

The stations that capture global radiation, use a Pyranometer. These Pyra-

nometers are of type CM 11 manufactured by Kipp & Zonen, Delft, The Nether-

lands . The measurements at the stations are performed automatically every 12

seconds. Mean, minimum maximum and standard deviation levels of irradiance

are computed from these 12 second interval measurements for time series of 1 and

10 minutes. In general the 10 minute interval measurement data is used. This

data is the average of 50 measurements performed by the Pyranometer. The mea-

surement resolution for average global radiation for the stations is 1 W/m2. The

thermo-electric Pyranometer can measure global or diffuse irradiation. For the

latter, the pyrometer’s measurement tool can be blocked from direct Sun beams

by means of a shadow disk (Kipp & Zonen, 1992; KNMI, 2005).
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Figure 2: Longterm average 1981-2010. Average yearly global radiation.

(www.klimaatatlas.nl).

.

The CM 11 works by using two heat absorbing detectors. One of these detectors

is exposed to short-wave radiation the other one acts like a reference detector and

its thermal state is not altered by radiation. The temperature difference between

these two detectors is used to determine the amount of irradiation by converting

it to a voltage. The irradiance is modelled by a linear equation, equation 7 (Kipp

& Zonen, 1992).

E↓Solar =
Uemf

Sensitivity

(7)

Where:

• E↓Solar = Global Radiation [W/m2].

• Uemf = Output of the Pyranometer [µV ].

• Sensitivity = Sensitivity of the Pyranometer [µV/W/m2].

Natural factors like precipitation, temperature changes, winds etc. can influ-

ence the accuracy of the measurements. Another possible source of offset is that,
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Figure 3: The 32 meteorological stations owned by the KNMI that are used in the

interpolations for global radiation.

the sensors are non-selective, they absorb all radiation, both short-wave as well

as long-wave radiation. Since the CM 11 is designed to accurately measure so-

lar irradiance, long-wave radiation and environmental factors have to be blocked

out. The CM 11 is therefore protected by two glass domes. These glass domes

are designed in such a way that they do not interfere with direct solar irradiance

and serve as a filter for shortwave radiation (Figure 4). This makes the CM 11

Pyrometer capture radiation data within a spectral interval of 285 nm to 2800 nm

(Kipp & Zonen, 1992).
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Figure 4: The thick line (1) represents the relative spectral transmittance of the

two pyranometer domes of the CM11. The dotted line (2) represents the spectral

distribution of solar radiation at sea level. Sun at zenith (Airmass 1). (Kipp &

Zonen, 1992).

.

The World Meteorological Organization (WMO) has classified the CM 11 Pyra-

nometer as a secondary standard device (Kipp & Zonen, 1992). This means that

the device is placed in the best category according to the ISO 9060 standard. To

be classified as secondary standard the WMO expects maximum errors in hourly

radiation to not exceed 2 to 3% (WMO, 2008). In order to perform proper mea-

surements and to prevent errors, maintenance of the Pyranometers is of utter

importance. Therefore the Pyranometers are cleaned every half year and on air-

fields this happens more frequently with an average of every two months. If errors

or abnormalities occur in the measurements, local maintainers can clean the Pyra-

nometers on request. To ensure the consistency and accuracy of the Pyranometers

a routine calibration is performed every 26 months at the KNMI (KNMI 2005).

2.3.2 Data processing

The 30 year averaged data obtained by stations was used to interpolate the current

maps in the climate atlas. For average yearly insolation, 20 stations were used and

for monthly insolation 16 stations were used. The data was taken for the period

of 1981 to 2010 which is the normalized period for climatic data. The interpola-

tions were performed in the program R, which is a language and environment for

statistical computing and graphics (R-Project). Both for the monthly and for the

yearly average the same R script was used. The only difference is the input data
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that was used. R used the auto-map function and thin plate splines for the inter-

polation and mapping of the data. In the interpolation with thin plate splines, λ

was set to be constant at 0.004 for all interpolations. The data was validated by

cross referring the interpolated data with the measured station data by the ”leave

one out cross validation”. The R2 was given as an output alongside the map and

information about the cross-validation. The R2 for yearly averages was 0.51 and

for monthly averages it was 0.61. The resulting maps are also evaluated by expert

judgement, done by R. Sluijter, within the KNMI itself (Hiemstra et al., 2011;

Sluiter, 2012).

2.4 Satellites

Satellites can be classified into two groups. Polar orbiting satellites and geosta-

tionary satellites.

Polar orbiting satellites move in a path around the world at an average height

of 800 km (EUMETSAT), passing over both poles, hence the name. These polar

orbiting satellites move from North to South and cross the equator at an angle

of approximately 90 degrees. However each rotation around the Earth they pass

the equator at a different longitude. Therefore it can take several days to months

before these satellites visit the exact same location again. The biggest advantage

of these satellites is the high resolution they allow data to be captured in.

Geostationary orbiting satellites are located at a specific point above the Earth

(often the equator at 0 degrees latitude) at an average height of 36.000 km (EU-

METSAT). These satellites move at the same speed as the rotation of the Earth.

This allows the satellite’s instruments to constantly capture data above a certain

area. Weather satellites are geostationary in most cases. The drawback of this type

of satellite is the relative low resolution the instrument captures data in compared

to polar orbiting satellites (NASA).

2.4.1 Meteosat

Meteosat Second Generation (MSG) is the current generation of European me-

teorological geostationary satellites. They are established by the cooperation

of the European Space Agency (ESA) and the European Organisation for the

Exploitation of Meteorological Satellites (EUMETSAT). MSG has replaced the

older Meteosat first generation. The first MSG satellite was Meteosat-8 and was

launched in 2002. This satellite was followed by 2 more similar satellites, Meteosat-

9, launched in 2005 and the current main meteorological satellite, Meteosat-10 in
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2012. Meteosat-10 is located at a position of 0◦ at a height of 36.000km, Meteosat-

9 is located at a position of 9.5◦ at a height of 36.000km and Meteosat-8 serves as

a backup service at a position of 3.5◦ and a height of 36.000km (ESA). The Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI) instruments on the MSG

satellites have a temporal resolution of 15 minutes (5 minutes for Meteosat 8 and

9 which are currently set on Rapid Scan Service (RSS)). The images produced

by SEVIRI have a radiometric resolution of 10bit per pixel and a spatial reso-

lution of 3km at nadir (directly under the satellite) for all channels. SEVIRI is

also equipped with a high-resolution visible (HRV) channel which has a spatial

resolution of 1km (Schmetz et al., 2002).

On the ground side, the MSG program exists of several components. The

central facilities are located at the EUMETSAT headquarters in Darmstadt, Ger-

many. Here data captured by the satellite is pre-processed up to level 1.5. This

means that satellite data is: corrected for differences in detector responses, com-

pensation for non-linearity and a geometric correction is performed to put the

data in a standard reference system. The rest of the ground segment consists of

stations for data acquisition, data control and back-ups. Another service provided

by the EUMETSAT is the distribution of data by Satellite Application Facilities

(SAFs). These facilities provide end-users with data and services that are fully

operational and ready to use. At this point there are 7 SAFs operational, each

covering different ”themes” that are related to climate monitoring (Schmetz et al.,

2002). To give some examples, the OSI-SAF (ocean and sea ice-SAF), provides in-

formation about the ocean and atmosphere interaction. The O3M-SAF (ozone and

atmospheric chemistry monitoring-SAF) processes data related to ozone, aerosols,

ultraviolet data and other trace gases (EUMETSAT SAF).

2.4.2 Other satellites

Due to the fact that satellites measure radiance, any satellite could be used to

obtain global radiation data. However not all satellites would be equally useful

when it comes down to their performance. All satellites have their plus and down

sides. The SEVIRI instrument on MSG has a relatively low resolution but is able

to capture data every 15 minutes. This makes the satellite able to create data sets

that are usable for time series. Satellites like SPOT (Satellite Pour l’Observation de

la Terre) and Landsat could provide a better resolution and therefore more detailed

maps (NASA, SPOT). Besides the operational Landsat and SPOT satellites, the

Sentinels from the EUMENTSAT sentinel program can also provide the data which
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is required. The first Sentinal was launched at the 3th of April 2014. Sentinel-2 to

Sentinal-6 will be launched in the near future. Though as a downside, the temporal

resolution of these satellites could be too low to create good time series and due

to the lower temporal resolution it becomes harder to correct cloud influences.

MSG will in time be replaced by Meteosat Third Generation (MTG). The MTG

program will consists of 6 satellites and the first one is planned to be ready for

launch in 2018. The MTG will have a higher spatial, temporal and radiometric

resolution compared to MSG. MTG will have 16 channels with a spatial resolution

ranging from 0.5 to 2 km. The temporal resolution of MTG will be 10 minutes

for a full disk scan and 2.5 minutes when set to a European regional rapid scan

(EUMETSAT MTG).

The choice of satellite is therefore dependent on the wishes of the user. If the

user wants an end product with high resolution on a specific time, data from

SPOT, Landsat or the Sentinels might be better than MSG. However, if the user

wants a result based on time series, a higher temporal resolution is needed and

MSG or GOES (Geostationary Satellite system) are better data sources. MTG

could become a balance between spatial and temporal resolution when operational.
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3 Methods

The methods to obtain global radiation from satellites described in chapter 2 can

be devided into two approaches. The first approach is a statistical approach. The

statistical approach is based on the relationship between the satellite and ground

station data. The second approach is a physical approach. This approach uses

a radiative transfer model to determine how the satellite data and the ground

station data are linked together (Tovar et al., 2001; Noia et al., 1993). In general,

statistical methods work better on small areas (Cano et al., 1985). Both approaches

work with a similar physical basis. In this research data was taken from two

sources, both using MSG and a physical approach. The SICCS (Greuell et al.

2013) is a pure physical model not taking ground measurements into account for

its calculations (except for its validation). This is a very detailed model, taking

cloud physical properties into account among other factors like aerosols and water

vapor etc. The second set came from the CM-SAF (EUMETSAT CM-SAF 2013).

The physical model used for the CM-SAF product is less complex than the SICCS

model. It accounts for less physical properties in the atmosphere.

3.0.3 Input data used

For this research three input sources were used:

1. In-situ radiation data, measured at meteorological stations by means of Pyra-

nometers.

2. Climate Monitoring Satellite Application Facility (CM-SAF) radiation data,

modelled by the climate modelling satellite application facility using MSG

images.

3. Surface Insolation under Clear and Cloudy Skies (SICCS) radiation data,

modelled by the KNMI using a detailed physical model using MSG images.

3.0.4 In-situ data

Monthly, yearly and daily averages of global incoming radiation were used. These

values were extracted from the KNMI database and contained values of J/cm2.

These values were converted into W/m2 to match the satellite images. First J/sm2

was converted to J/m2 by multiplying by 10.000. After this Joules were converted

to W. This was done by using equation 8.
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P(W) =
E(J)

t(s)
(8)

Where:

• P(W) = Power in Watt [W].

• E(J) = Energy in Joules [J].

• t(s) = Time in seconds [s].

In total, 32 in-situ measurement stations were used. They were spread out over

the country as shown in figure 3. Radiation data at these locations was recorded

according to the method explained in section 2.3.1.

3.0.5 Meteosat data

Both the CM-SAF product as well as the SICCS product used MSG images as input

data for their models both products used auxiliary data from external sources.

3.0.5.1 CM-SAF: From the CM-SAF daily and monthly averages were used

(montly averages are also used to compute the yearly averages).This data was ob-

tained from the CM-SAF website (CM-PRODUCT). The start point of the time

series for montly averages was January 2006 and the end data was December 2011.

Daily data was obtained for the period of April 1st 2010 untill July 31st 2010.

The CM-SAF product used a Radiative Transfer Model (RTM) to compute the

radiation. The instruments providing the input data for the algorithms used are:

SEVIRI and the Geostationary Earth Radiation Budget (GERB) on MSG. The

Advanced Very High Resolution Radiometer (AVHRR) on the National Oceanic

and Atmospheric Administration (NOAA) and the Meteorological Operational

(MetOp) satellites for the northern latitudes (Mueller et al. 2009).

The CM-SAF algorithm used for calculating shortwave incoming solar radiation

(SIS) is based on the following underlying fundamental assumption:

SIS = Eocos(θ0)T (9)

where E0 is the incoming solar flux at TOA. θ0 is the solar zenith angle and T

is the transmissivity of the atmosphere.
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This algorithm to obtain SIS is based on several look up tables (LUT). This was

done to decrease the computational time of the algorithm. LUT’s were constructed

after running calculations in radiative transfer models (RTM) for different atmo-

spheric compositions and states. Once the tables were computed Transmittance

of the atmosphere could be extracted from these tables by simple interpolation.

This transmittance was then used in the fundamental assumption as shown in the

equation above (equation 9).

When computing the SIS with the CM-SAF algorithm pixels are first classified

as cloud free or cloudy. Depending on the classification different approaches were

used.

If a pixel was classified as cloud free, a LUT which considers: Aerosol Optical

Depth (AOD), single scattering albedo (ssa), asymmetry parameters (gg), water

vapour, ozone and surface albedo were used to obtain the transmittance of the at-

mosphere. Water vapour, Ozone and surface albedo use fixed values in the model,

these values correspond with: 15kg/m2 for water vapour, 345 DU (Dotson Unit)

ozone and a surface albedo of 0.2 (seasonal changes are not considered). The

satellite image was not used any further in the process to determine SIS. The full

schema used for clear sky conditions is displayed in figure 5 (Mueller et al., 2009;

CM-SAF, 2013).

When a pixel was classified as cloudy a different approach had to be used since

cloud albedo’s are considered to determine the incoming surface irradiance. All

the other input data was identical to that of the clear sky model. Surface albedo,

water vapour, ozone, aerosol properties etc. were the same. However in this case

the satellite image was used to determine the radiation under cloudy conditions.

It did so by deriving the top of the atmosphere albedo.

The full schema used for cloudy sky conditions is displayed in figure 6 (CM-

SAF, 2013).
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Figure 5: Schema of the clear sky conditions. I is the Solar surface irradiance)

(Mueller et al., 2009).

.

Figure 6: Schema of the cloudy sky conditions (CM-SAF, 2013).

.

32



To validate the results of the CM-SAF surface incoming solar radiation method,

results from the model were compared with measurements of a baseline surface

radiation network (BSRN). To calculate the accuracy of the monthly mean maps 12

stations were used. From these 12 stations 578 measurements were taken between

2006 and 2011 for the validation. The optimal accuracy was set to 8 W/m2 both

for the bias and the absolute bias. The bias of the results compared with the

BSRN is 1.6W/m2 and the absolute bias is 7.2W/m2. Both were well below the

optimal accuracy, indicating that the obtained measurements were of high quality.

When looking at the quality of the daily data. The target accuracy was set to

20W/m2. The bias obtained by this method was 1.6W/m2 and has an absolute

bias of 14.8W/m2. This indicated that the hourly obtained radiances were also

well below the target, again indicating high quality measurements (EUMETSAT

2013).

Table 1 shows the statistics that were obtained by the validation with the

Cabauw station in the Netherlands, which is part of the BSRN. These statistics

were provided by R. Müller, one of the creators of this data set.
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Table 1: Validation of the montly CM-SAF product in Cabauw, the Netherlands.
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3.0.5.2 SICCS: From the SICCS daily and monthly averages were used (monthly

averages were also used to compute the yearly averages). This data was supplied

by J.F. Meirink (KNMI, climate department, the Netherlands), one of the creators

of the dataset. The start point for montly data was January 2006 and the end

data was December 2011. For daily data the time series started at April 1st 2010

and ended at the 31st of July 2010.

The SICCS product used a detailed RTM to compute radiation. The SICCS’s

algorithm consists of two parts. The first part is the input and describes the state

of the atmosphere. The second part is the algorithm itself which calculates radia-

tive transfer based on the input. The following parameters were considered when

the irradiance and the atmospheric transmissivity were calculated:

1. Solar zenith angle (SZA).

2. Cloud optical thickness (COT).

3. Cloud particle radius.

4. Cloud phase.

5. Aerosol optical thickness (AOT) at 500 nm.

6. The Ȧngström exponent.

7. The aerosol single scattering albedo (SSA).

8. surface elevation.

9. Visible and near-infrared surface albedo.

10. Integrated water vapour (IWV).

Before the algorithm starts, 8 look up tables (LUT) were computed by radiative

transfer calculations. These tables contained information about the transmissiv-

ity of the atmosphere depending on variables between the atmosphere and the

surface. 4 LUT’s were computed for clear sky conditions. Two LUT’s contained

transmissivity about global irradiance for VIS (240-704nm) and NIR(704-4606nm)

wavelengths. The other 2 LUT’s contained transmissivity about direct irradiance

for VIS and NIR wavelengths. The other 4 LUT’s were for cloudy skies. 2 LUT’s

contained transmissivity about global irradiance for VIS and NIR wavelengths for
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water clouds and the other 2 contained transmissivity in the same wavelengths but

for ice clouds.

When these LUT’s were computed the algorithm can be run for each pixel in

the SEVIRI image. This process goes as followed:

1) A cloud mask was computed. This was done with information about SEVIRI

reflectances and brightness temperatures. Each pixel was classified in one of three

categories in this step. A pixel is either ”cloud free”, ”cloud contaminated” or

”cloudy”.

2) If a pixel was in the ”cloud free” category. Direct and global transmissivity

for both wavelengths is computed by using the LUT’s. Since the LUT’s work with

discrete values, interpolation of the transmissivity might be used.

3) If a pixel was classified as ”cloud contaminated” or ”cloudy” information

about the physical properties of the cloud had to be computed. Cloud phase,

COT and cloud particle effective radius were determined with the Cloud physical

properties (CPP) algorithm. A description of this algorithm can be found in

Greuell et al. (2013).

4) With the CPP known, the global transmissivity could be found in the LUT’s

for clouds. The same interpolation was used as for clear sky pixels if the values

did not perfectly match the LUT values. If it turned out that the CPP found a

COT lower then a certain threshold. The pixel was treated like a cloud free pixel

and the LUT’s for clear sky conditions were used.

5) In this step the global transmissivity for all other wavelengths and pixels

were computed and the direct transmissivity for clear sky pixels. This is done

by taking the transmissivity of the VIS and NIR wavelengths and weighing them

according to the fraction they contribute to the total incoming radiation on top of

the atmosphere.

6) A correction was then performed to account for a bias found in ice clouds.

7) COT and clear sky direct transmissivity were used in an equation to calculate

the cloudy direct transmissivity (Greuell et al., 2013).

8) Gaps in the data and missing data were filled. This missing data was

computed by a correction algorithm (Greuell et al., 2013) or by taking the mean

of the retrieved transmissivity on the same day.

9) The diffuse transmissivity was calculated. This was done by taking the global

transmissivity and subtracting the direct transmissivity. The difference between

these two is equal to the amount of diffuse transmissivity.
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10) The global, diffuse and direct transmissivity(Ti) were recalculated into

global, diffuse and direct irradiance(Fi). This was done by the following equation:

Fi = S
uo

d2
Ti (10)

In this equation, S is the reduced solar constant which is set on 1358.1W/m2

and d is the distance from the Sun to the Earth in astronomical units.

When comparing the hourly results obtained by the SICCS with eight stations

that measured radiation on the ground the following results were received. The

median values of the station biases was 6W/m2 (5%) for direct irradiance and

1W/m2 (1%) for diffuse irradiance. The global irradiance had an bias of 7W/m2

(2%) (Greuell et al., 2013).

3.1 Data processing

The data was processed in the KNMI’s Geospatial Interpolation Environment

(GSIE). GSIE is a virtual environment that allows the user to perform large

amount of interpolations by running a pre-defined script which consists of 3 main

input files. A recipe, a query and a, interpolation script written in R.

The recipe tells GSIE where to find all the required files and what parameters

should be set for the input and output. All recipies that are used in GSIE have

the same structure. First the time span of the data to be processed is given. The

user has to define the start and stop time and has to set the resolution within

this time serie (day, month or year for instance). After this, the query is defined.

The query calls up the in-situ measurements from the KNMI database. The query

contains information on which variable should be loaded in, which stations and

the locations from these stations. The recipe describes where the results of the

query are located and what kind of file and units it contains. Next, the folders

where the R files are located are defined and the R scriped that has to be used is

set.

The R script contains the interpolation and validation code that will be per-

formed. The R script loads in all the data and works trough it line by line as

written in the script. The R script will load in the in-situ and satellite data and

will convert all radiation units to W/m2 using the method described in 3.0.4.

When this is done the different interpolation methods can be used on the input

data. This is done by using codes that define the variable to be interpolated and

parameters required for each interpolation. When the initial interpolation is done,
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a cross-validation script is run and statistics on the interpolation are computed

according to the code written in the R script. These statistics are exported as .txt

files and can be analysed to get a better understaning of the interpolation output.

The interpolated results are exported as maps in the form of .ASCII files. The R

scripts used for global radiation can be found in appendix B to F.

Ones the interpolation has been performed and the maps have been created,

GSIE uses a web mapping service to show the created maps to the user and evaluate

them (figure 7). Within this mapping service maps can easily be downloaded in

different formats and be reprojected, edited, etc.

Figure 7: The GSIE web mapping service from the KNMI.

.

3.1.1 Data assimilation

For the exploration of combining in-situ data with satellite data different inter-

polation techniques had to be analysed. There are several interpolation methods

that allow the use of auxiliary data. Kriging with external drift is an example of

this (Sluiter, 2008). However data can also be combined on different ways. A Bias

interpolation (Journée et al., 2010) method could also be made to compare differ-
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ences between ground measurements and satellite measurements and take these

differences into account when interpolating the station values.

3.1.2 Interpolation

Interpolation is a process used to determine the variable of an unmeasured location

by using known values of measured locations. Each method has its advantages

and disadvantages (Hiemstra et al., 2011). Interpolation can however be divided

in several classes.

The first division can be made in whether a method is deterministic or prob-

abilistic. Deterministic methods create an interpolated surface by only using the

geometric characteristics of the measured points. Probabilistic methods use these

points as well but assume that there is a random element in the interpolation.

This type of interpolation allows the user to add a variance into the interpolation

method and it will provide a statistical significance of the results it gives.

The second division in interpolation methods can be made whether a method

is a global or local interpolater. Global interpolation uses one function to apply

on the entire field of interest. Local interpolators use several different functions

for the entire field or part of the field. Global interpolators often gives a smooth

map.

The last division that can be made is if a interpolation method is an exact or

inexact interpolation. Exact interpolations assume that values on which the inter-

polation is based are correct and will return the same values as measured at the

locations of the measurement stations/locations. Inexact interpolations assume

that there are uncertainties in the measured values and will therefore not return

the exact value as the input data at the measured location (Sluiter, 2009).

The simplest form of interpolation is taking the mean of all the measurements

and apply this to all unknown locations. However for this research that would

have been to simplistic. Different interpolation methods should be explored and

tested for there accuracy.

There are however several characteristics that can be expected when using any

interpolation method:

1. If there is a dense dataset of sample points and they are spread uniformly

over the area of interest. A fairly good interpolation will be performed, no

matter which method is used.
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2. If the data is clustered in several locations with large distances between them,

the output of the interpolation will be unreliable, no matter which method

is used.

3. Due to the fact that all interpolation methods average out values from mea-

surements, it is expected that high values will be underestimated and low

values will be overestimated.

In the next section some of the most used and known interpolation methods will

be explained. These methods are: nearest neighbour, inverse distance weighting,

splines and Kriging. Besides these interpolation methods, two more methods for

combining satellite data with in-situ measurements will be explained. The mean

bias correction and the interpolated bias correction.

Nearest neighbour interpolation (NN) is a relative simple interpolation method.

NN is also known as Thiessen polygon or Voronöı interpolation (Sluiter, 2008). NN

takes the value of the closest measured location and allocates it to the unknown

point. This is a very fast and mathematically simple interpolation method. How-

ever the results are very simplistic and do not look realistic in most cases. NN

interpolation is also very sensitive for the amount of input data. The more mea-

surements available the better the result. (Sluiter, 2008). For this research NN

will not be used due to the relative low amount of measurement locations.

Inverse distance weighting (IDW) interpolation is an exact interpolation method

that continues on the basis of the NN interpolation. IDW allows more than just

one measurement to influence the value of a location. The influence of the measure-

ment on the unknown location is determined by the distance from the unknown

location to the measurement. The further away the measurement the less influence

it has on the determination of the value of the unknown location. The value of an

unknown location (Zu) is given by equation 11.

Ẑi =

∑n
i=1 ω(xi)Z(xi)∑n

i=1 ω(xi)
(11)
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Where:

• Ẑi = The estimated value.

• ω(xi) = The weight of location (xi).

• Z(xi) = The measured value at location (xi).

The weight ω(xi) that a location receives is determined by the distance to the

measured points and the power that determines how fast weights drop with an

increasing distance, see equation 12.

ω(xi) = ‖xi − x0‖−p (12)

Where:

• ‖ ∗ ‖ = The Euclidean distance between the unknown location and the mea-

surement.

• −p = The power that determines how fast weights drop.

IDW interpolation is a fast and easy to implement method. The user can

change the −p parameter to influence the output and create a better result. How-

ever this interpolation method does not allow the user to add a secondary data

source and was therefore not sufficient for the combination of satellite data with

in situ data in this paper. However IDW was used to explore the interpolated bias

method, since it was a relative simple but exact method. IDW is already a widely

used method in interpolation of meteorological data and was therefore chosen to

be used for the interpolated bias interpolation (Hiemstra et al., 2011; Sluiter, 2008).

Splines interpolates a surface by applying a set of polynomials trough the obser-

vations. The polynomials are often of a third order degree. Lowering the degree

makes the interpolation more general and simplistic. Having a too high degree of

polynomials can create errors in the data set due to the high amount of oscillations

that can occur.

For splines interpolation it is important to determine whether to apply the

polynomials to a global pattern or a local pattern. The difference between local

and global patterns is visualized in fig 8.

To get the best accuracy with splines a cost function can be applied. A cost

function will minimize the amount of bending while optimizing the accuracy of
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Figure 8: global vs local patterns in splines interpolation (Hiemstra et al., 2011).

.

the polynomial at the measured locations (Hiemstra et al., 2011; Sluiter, 2008).

Higher errors at a measured location have a higher cost. The goal is to keep the

cost as low as possible by keeping the biases at the measured locations as small as

possible.

For this research splines was not the most interesting interpolation technique

to use. This due to the fact that the amount of versions of splines allowing a

secondary data set to be used is limited and very complex. However the concept

of the spline interpolation was of great importance due to the fact that the cur-

rent maps of global radiation data are interpolated with Thin plate splines (TPS).

TPS interpolation is assumed to be a good method to interpolate monthly and

yearly climate elements (Sluiter, 2008). Several climatologic and meteorological

elements are currently interpolated at the KNMI using TPS. Not all climatological

and meteorological data used for the interpolations comes with the same spatial

and temporal resolution. So TPS might not have been the optimal interpolation

technique for every element. However since it gave the best results on average,

the KNMI chose to use TPS for the evaporation and radiation datasets. One of

the data sets which is interpolated using TPS is the Makkink evaporation. Since

Makkink evaporation is determined by temperature and most importantly global

radiation, TPS is used for global radiation mapping to keep the spatial patterns

the same. (Sluiter, 2012).

Kriging is a geo-statistical interpolation method that assumes that spatial vari-

ation, of the to be interpolated attribute, is often not able to be described with a

simple function.
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Ordinary Kriging (OK) is the basic form of Kriging. OK uses weights, which

are described by a variogram, to optimize the interpolation values. OK uses the

following equation, equation 13, as an assumption to calculate the unknown value

of a variable at an unmeasured location.

Ẑi = m(x) + ε′(x) + ε” (13)

Where:

• Ẑi = The variable at location x.

• m(x) = A function describing a structural component of Z at location x.

• ε’ = A random spatially correlated component.

• ε” = A random non-spatially correlated term.

When the structural components have been accounted for. The semi-variance

can be calculated. This explains the correlation the residuals have with each other.

A semi-variogram is computed using equation 14.

Yu(h) =
1

2n

n∑
i=1

{z(xi)− z(xi + h)}2 (14)

Where:

• Yu(h) = The semi-variance.

• n = The number of point pairs of the sample data z separated by distance

h.

The semi-variogram (figure 9) gives the user information about several com-

ponents: the sill, the range and the nugget. The sill is the maximum value the

semi-variogram reaches. The range is the distance at which the sill is reached.

This means that from this distance on, sample points will no longer influence the

predicted value at a certain location. The nugget is the error or noise in the data.

It assumes that if a location is measured more then once, different values will be

given, this difference is explained by the nugget.

When the optimum weight is obtained by the semi-variogram, the expected

value at an unmeasured location can be calculated using equation 15.
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Figure 9: Semivariogram (Sluiter, R. 2009).

.

Ẑi =
n∑

i=1

λi ∗ z(xi) (15)

Where:

• Ẑi = The expected value at location x0.

• λi = The optimal weight of location i.

This method is known as OK. There is a variant called: ”Simple Kriging”. It

works the same as OK however, it makes use of known mean. This makes it a

slightly better version of OK but it is often difficult to derive the mean (Sluiter.

R. 2009).

When Kriging is used as an interpolation method, the user has the possibility to

make use of blocks. When blocks are set, Kriging predicts the blocks mean values.

This smoothens the map and often gives a better look to the map. However

when blocks are set, the original values of the observations are not returned at the

observation points. This leads to a mismatch of the original observed value and

the value obtained from the map (Sluiter, 2012). For this research blocks have

not been used since the aim was to get exact maps with high resolution instead of

smoothend maps.
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Universal Kriging/Kriging with a trend/Kriging with external drift

(KED) is a different variant of OK. KED makes use of a secondary data source

which has a high spatial resolution and is closely correlated to the main attribute

to predict the output values of the interpolation (Journée et al., 2010). In this case

it used in-situ measurements as the main input source and the satellite image as

a secondary data source. The satellite image had a relative high spatial resolution

and was most likely correlated with the in-situ data because they both gave infor-

mation about the same attribute. The satellite image was used as a trend in the

interpolation of the in-situ data. At the KNMI KED is used for several datasets.

When using KED several parameters can be set or adjusted. At the KNMI KED

is performed using a spherical or exponential variogram model and the nugget of

the variogram is set to 0. The nugget is set to 0 to ensure that Kriging returns

the in-situ measured values at the stations location, since it is possible to assume

that this value is correct. The other variogram parameters are set automatically

by using an autofit function.

Mean Bias correction (MB) is not really an interpolation technique but a

method that could show potentials for improving the current resolution of global

radiation maps. Journée et al., from the royal meteorological institute of Belgium

used this technique to improve their global radiation maps. It turned out that

even though it is a very simplistic method the results were only slightly less good

in respect to the more complex and detailed interpolation techniques (Journée et

al., 2010). Therefore it should be explored in this research.

The method is based on the idea that the satellite has an error and that this

error is constant over the entire area. So by looking at the differences between the

satellite measurements and the ground measurements and taking the average of

this we can apply this difference on all other unmeasured locations.

The method works as followed, equation 16 and 17:

Ẑi = δq(xi) (16)

With

δ =

∑n
i=1 Q(xi)∑n
i=1 q(xi)

(17)

Or it can be used as an additive function, function 18 and 19:

Ẑi = q(xi) + ∆ (18)
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With

∆ =
1

N

(
n∑

i=1

Q(xi)−
n∑

i=1

q(xi)

)
(19)

Where:

• Ẑi = The estimated value at location (xi).

• xi = The location of interest.

• Q(xi) = The in-situ measured radiation at location (xi).

• q(xi) = The satellite measured radiation at location (xi).

Journée et al., already described that this is not the best method to get accu-

rate radiation data. However since it gave better results as expected and since it

is a very easy to apply method testing it for the Netherlands was worth the effort

(Journée et al, 2010).

Interpolated bias correction (IB) is also a combination method that was ex-

plored rather than an interpolation method. The concept of this method was the

same as that of the MB correction. However in this case, the bias that is found

between the measurement stations and satellite observations is interpolated with

equation 20 and equation 21. With this method we no longer assume that the

error the satellite captured is uniform but varies from location. It was possible to

use different interpolation techniques on the bias values. Journée et al. used IDW

interpolation on the bias. However Kriging or Splines could also work. (Journée

et al., 2010).

Ẑi = δq(xi) (20)

With

δ =
n∑

i=1

Wi
Q(xi)

q(xi)
(21)

Or it can be used as an additive function, function 22 and 23:

Ẑi = q(xi) + ∆ (22)
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With

∆ =
n∑

i=1

Wi(Q(xi)− q(xi)) (23)

Where:

• Ẑi = The estimated value at location (xi).

• xi = The location of interest.

• Q(xi) = The in-situ measured radiation at location (xi).

• q(xi) = The satellite measured radiation at location (xi).

• Wi = The interpolation weights obtained by the IDW interpolation.

Table 2 gives a short overview of the interpolations and methods explained

above and the data they use for the interpolation.

Table 2: The different interpolations and methods explained and the data they

use.

.

3.1.3 Data validation

To see if the interpolation techniques or methods used to get values at unmeasured

locations performed a proper job, validation was needed. There are several ways

to perform a validation of the data.

Data splitting is one method to validate the interpolation. Before the inter-

polation takes place. The input data is divided into two different sets. One set

that is used to perform the interpolation and one control set that is used to vali-

date the interpolation. Once the interpolation is done the control set is taken and
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the value of the measured location is compared to the value of the same location

in the interpolation. By looking at the interpolated value and the real value out of

the control set an assessment can be made on how good of a performance the in-

terpolation gave (Sluiter, 2008). Data splitting was an option for this research due

to the fact that a background trend in the form of a satellite image was used which

could have a big influence on the output of the interpolation. However it could

also have had a big influence on the interpolation quality since the meteorological

stations are used as the main input and only 32 stations were available. Therefore

a different validation method was preferred but this one was not excluded.

Cross validation is a more statistical approach to validate the data. Cross

validation uses all input stations to evaluate the interpolation. It does this by

a ”leave one out” technique. A station was left out in the interpolation process

and its value was predicted using the other observations. The predicted value was

then compared with the measured value at that stations location. This step was

repeated for every station to test the model. By doing this a set of residuals was

obtained from each stations location. Statistics can then be performed on these

residuals to test how good the interpolation performed. Several statistics can be

computed with the cross-validation residuals.

The R2 value. The R2 is calculated as shown in equation 24:

R2 = 1− SSe

SStot

= 1−
∑n

i=1(Zi − Ẑi)
2∑n

i=1(Zi − Z̄i)2
(24)

• n = The number of observations.

• Zi = The measured global radiation at location i.

• Ẑi = The estimated value at location i.

• Z̄ = The mean global radiation.

• SSe = The residual sum of squares (
∑n

i=1(Zi − Ẑi)
2).

• SStot = The total sum of squares (
∑n

i=1(Zi − Z̄i)
2).

The R2 value tells the user how much of the variance in the data can be ex-

plained by the model. The R2 value is normally located between 0 and 1. The best

value to obtain is 1. This would indicate that the model can account for all the
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variation that is obtained by running the model. The R2 is often used to compare

different models with each other. R2 is used in the previous version of the global

radiation maps of the Netherlands and was therefore used again as a comparison

(Hiemstra et al., 2011).

The root mean square error (RMSE), equation 25. The RMSE is a measure of the

difference between the observations and predicted values. It tells the user how big

the magnitude of the errors is. Lower RMSE values are preferred to be obtained

since this means that the errors in the model are small.

RMSE =

√√√√1

n

n∑
i=1

(Ẑcv,i − Zi)2 (25)

Where:

• Ẑcv,i = The estimate from the cross validation at location i.

• Zi = The measured global radiation at location i.

To see if the interpolation generally over or underestimates the values the mean

error can be used. The Mean error (ME) can be calculated using equation 26.

ME =
1

n

n∑
i=1

(Ẑcv,i − Zi) (26)

The RMSE and the ME are relatively easy methods to compare different inter-

polation methods with each other. However it is only a measurement of relative

performance. When comparing two different methods it could turn out that the

RMSE and the ME of one method are very low compared to the other. However

in reality the method could still perform very bad. To be able to say something

about the real performance of an interpolation method other statistics have to be

looked at.

RMSEsd =

√
1
n

∑n
i=1(Ẑcv,i − Zi)2√

1
n−1

∑n
i=1(Zi − Z̄)2

(27)

The RMSEsd (equation 27) divides the cross-validation RMSE by the standard

deviation of the observed measurements. This method compares the interpolation

against the observed mean (Z̄) if it would be interpolated.
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A similar method can be used to make the ME say something about the real

performance of the interpolation. This can be done by taking the ME equation

and dividing it by the mean of the observations (Z̄). This provides a scale that

allows the user to compare the ME with the scale of the observations (the mean).

The MEmean is calculated by using equation 28

MEmean =
1
n

∑n
i=1(Ẑcv,i − Zi)

Z̄
(28)

With these statistics known it is possible to evaluate the different interpolation

methods. It is possible to evaluate them relative compared to each other with

the RMSE and ME and it is possible to judge them on there performance against

reality by using the RMSEsd and MEmean (Hiemstra et al., 2011).

Other methods to get a value to compare models with each other are the scaled

NRMSE and MAPE. The NRMSE is the normalized root mean squared error. It

divides the RMSE by the range of the observations, see equation 29. It is often

expressed as a percentage. Lower values indicate that there is less variance in the

residuals.

NRMSE =

√
1
n

∑n
i=1(Ẑi − Zi)2

xmax − xmin

(29)

The Mean Absolute Percentage Error (MAPE) method expresses the error as

a percentage. It takes the measured in-situ value minus the predicted value and

divides it by the measured in-situ value. For more observations these values can

be summed up. To get the percentage it needs to be multiplied by 100

MAPE =
100%

n

n∑
i=1

Zi − Ẑi

Zi

(30)

The MAPE statistic shows how much the residuals deviate from the original val-

ues. Therefore it is a very good statistic to look at since it gives a sense of how

good the model predicts reality (Hyndman et al., 2006).

Random points between the measurement stations could be analyzed and com-

pared with the interpolations and satellite image to get a better understanding of

the data in- and output. Since there were no ground control points to validate the

errors of the interpolation methods, the different outputs and satellite products

were compared against each other. Doing so gave a better understanding on how
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the satellite images stood on their own, how the satellite images influenced the

interpolation and how the interpolation methods performed compared to these

images. If the interpolations were accurate at the locations of the in-situ mea-

surement stations it was possible to assume that these interpolations are just as

accurate in-between the stations. By making this assumption it was possible to

see if the satellite images followed the same pattern as the interpolated output

and the same could be assumed the other way around. This would mean that;

if the interpolated output followed the same pattern as the satellite image (this

does not mean it had to return the same value), then it was possible to assume

that the interpolation method made good use of the trend that could be found

in the satellite product. On the other hand, if the values of the satellite image

came close to the values of the interpolation we could assume that the satellite

image consisted of accurate measurements. Due to the fact that the validation

of the satellite products already proves that they perform an accurate form of

measurements this method was a sort of double check.

This method also gave the opportunity to compare the satellite image values

with those of the TPS method which didn’t use the satellite data as an input at all.

For this paper the R2 and MAPE were used. R2 was used to get a first com-

parison between the different interpolation techniques. The R2 made it relatively

easy to compare different models and it was a method that was used before within

the KNMI. This allows a comparison with the previous global radiation dataset.

MAPE was used on the cross validation. It looked at the percentage difference

of a station when it was initially left out in the interpolation. With this method

a very clear and honest statistics was obtained that gave a good overview on how

the interpolation performed.

To get an even better understanding of the data set a data split was used where

8 random stations were left out when the interpolation was performed. Afterwards

these stations were put back in and the bias between the interpolation and the

stations was analysed. This gave an even better overview on how the interpolation

behaved and performed.

The data in between the stations was compared with each other at 60 different

locations. This was done to see how the interpolated maps and satellite images

stood against each other on locations that are not measured and known exactly.

Expert judgement wasl also used as a validation method. It was not statistically

sound, however it was of great help when analyzing results. Interpolation is a pure

mathematically process which does not account for physical or biological or any
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other process that could have an influence on the interpolated value in the real

world. Experts on radiation data could help analyze the map and find patterns

that should or should not be there. A discussion with an expert on radiation

patterns could lead to a better understanding and could be taken into account

when choosing an interpolation method or setting a parameter in an interpolation

equation. The expert that has been consulted was R. Sluijter, a climate expert at

the KNMI.

3.1.4 Spatial patterns

As a result of a discussion with the climate expert, when creating a map of global

radiation in the Netherlands, several patterns are to be expected.

1. Due to the slower warming of water, less clouds were expected to form di-

rectly above water bodies during spring and summer. Once the air moves

over land which warms faster, clouds are expected to form. Due to this a

cloud free coast was expected with clouds forming further in land. Therefore

especially in spring and summer time more radiation is expected along the

coast due to the lack of clouds.

2. Less radiation was expected above the Veluwe and the Utrechtse Heuvelrug.

These areas in the middle of the Netherlands are characterized by a higher

elevation (appendix G). The higher elevation canl cause orographic lift of

air, resulting in the formation of clouds due to the lowering temperature by

increasing elevation. The clouds will block out radiation due to a higher

albedo, leading to a lower radiation value. This pattern can also be observed

when looking at precipitation maps of the Netherlands. Most precipitation

falls in this area, see figure 10.
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Figure 10: Average precipitation in the Netherlands

.

3. In Spring and Summer a general west-east gradient can be detected with the

highest radiation values in the west along the coast.

4. In Autumn and Winter a general north-west gradient can be tetected with

the highest radiation values in the south. This pattern is observed due to

the differences in the lenght of the day.

With interpolation and validation methods known, the data could be processed.

In general the workflow shown on the next page can be followed to process the

data and evaluate the output.
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4 Results

Cross validation

Five interpolation methods were used (TPS, MB, IB, KED-SPH & KED-EXP).

The interpolations were performed for the average radiation over 6 years. For each

individual month of every year and for every single day from April 1st 2010 untill

July 31st 2010.

For the 6 year average, the R2 value of the IB was lower (0.19 for the CM-SAF

product and 0.43 for the SICCS product) than that of the other interpolation

methods (0.62 to 0.77 for the CM-SAF product and 0.49 to 0.62 for the SICCS

product)(figure: 11).

Figure 11: R2 values for the 6 year average interpolation. Left shows the results

for the CM-SAF product and right shows the results for the SICCS product.

The MAPE value of the IB performed just as good or even better than the other

interpolation methods (1.14% for the CM-SAF product versus 1.03% to 1.39% and

1.12% for the SICCS product versus 1.34% to 1.42%).

The highest average MAPE found for the CM-SAF product was 1.39% when

using the TPS interpolation method.

The MAPE’s in the SICCS product of the KNMI were a little higher in general

with a maximum error of 1.42% for both of the KED interpolations (Figure 12).
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Figure 12: MAPE values for the 6 year average interpolation. Left shows the

results for the CM-SAF product and right shows the results for the SICCS product.

When looking at the output maps it was possible to see a clear distinction

between interpolation methods that use auxilary data and methods that didn’t

(figure 13 and 14. The TPS method, which was not using auxilary data returns a

relative smooth map with no local variation. All interpolation methods that did

use auxilary data show local variation according to expected patterns.
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Figure 13: CM-SAF 6 year average interpolation output.

.
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Figure 14: SICCS 6 year average interpolation output.

.
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Looking at the monthly interpolation methods it was possible to see some more

variation in the results (figure) The CM-SAF products R2 was fairly stable for the

TPS and KED interpolations. The R2 of the IB and the MB interpolations were

changing quite a bit, ranging from -126.41 to 0.94. Especially the MB had a big

difference in R2 values. The SICCS product showed this same trend however the

variation was less extreme than in the CM-SAF product. The variation in this

product varied from -5.39 to 0.96. See figures 15 to 20
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Figure 15: R2 values for 2006 for both products.

.
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Figure 16: R2 values for 2007 for both products.

.
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Figure 17: R2 values for 2008 for both products.

.
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Figure 18: R2 values for 2009 for both products.

.
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Figure 19: R2 values for 2010 for both products.

.
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Figure 20: R2 values for 2011 for both products.

.
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The MAPE was low for all interpolation methods. The highest MAPE was

observed in January 2010 in the CM-SAF product using the IB method and was

11.62%. The average errors for each year are shown in table 3. As shown in the

table the highest average MAPE’s were found for the MB and IB interpolations

in the CM-SAF product. The MAPE’s of TPS and KED interpolation methods

were very low on the cross validated interpolations (3.02% at maximum).

Table 3: Average MAPE values for the interpolations per year

.

These low mean absolute percentage error (MAPE) values indicated that the

interpolations predicted the global radiation very well when using a cross validation

method. This ment that the values obtained by the interpolations were very

accurate and therefore all interpolations could be used. Figure 21 to 26 show the

MAPE for each month for both products.
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Figure 21: MAPE values for 2006 for both products.

.
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Figure 22: MAPE values for 2007 for both products.

.
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Figure 23: MAPE values for 2008 for both products.

.
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Figure 24: MAPE values for 2009 for both products.

.
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Figure 25: MAPE values for 2010 for both products.

.
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Figure 26: MAPE values for 2011 for both products.

.
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Data Split

Due to the fact that all interpolation methods performed relatively well, espe-

cially on the station locations, other forms of validation tests were performed. In

a next evaluation test, 8 stations were left out as a form of data splitting. 8 sta-

tions is 1/4th of the data which was relatively much due to the fact that only 32

observations were available. Figure 27 shows which stations were left out. First

a data split with stations spread across the country was performed. After that a

data split with station on the western side of the country was performed. This was

done to see how the interpolation performed if the data was not evenly distributed

across the country.

Figure 27: Stations that were left out in the data split are shown with a cross.

The left map is the map for the first data split and the right map is for the second

data split.

.
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When looking at the results of this data split (figure 28 to 31) it seemed that

the interpolated values yet again come very close to the in-situ measurements of

the stations. The maximum MAPE was 7% in January for the CM-SAF product.

This error was found in the MB interpolation method.

Comparing the products with each other showed that the SICCS product per-

formed a little better on average. The difference between the products were how-

ever extremely small with differences less than 1 to 2%.

Figure 28: Results for the first data split in Januari.
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Figure 29: Results for the first data split in April.

Figure 30: Results for the first data split in July.

75



Figure 31: Results for the first data split in October.

The average absolute bias and MAPE of the second data split are presented

in figure 32 to 35.The errors of the interpolation did start to increase now. The

biggest error was yet again found in January, in the MB interpolation for the

CM-SAF product with an average MAPE of 9.27%.
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Figure 32: Results for the second data split in Januari.

Figure 33: Results for the second data split in April.
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Figure 34: Results for the second data split in July.

Figure 35: Results for the second data split in October.
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Random Points

Since the interpolation kept performing this well at the station locations a val-

idation on random locations has been performed.

For each year January, April, July and October were used as input data. On

this way each season in each year was represented. The output values for each

interpolation method at the random locations were then compared with the value

of the satellite images. Figure 36 shows the locations of the random points used

to compare the values.

Figure 36: Random locations used between stations to evaluate the satellite image

versus the interpolations.

.
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The results are presented as line graphs below (figure 45 to 52). The black

line represents the values obtained by the interpolation. The red lines represent

the satellite image including the bias which was allowed/observed according to the

validation of the satellite product. This means that the CM-SAF product has a

positive bias of 4 W/m2 and a negative bias of 4 W/m2 which adds up to the

target of 8 W/m2 (CM-SAF 2013). For the SICCS product the positive bias was

set to 3.5 W/m2 and the negative bias to minus 3.5 W/m2, which adds up to the

observed bias of 7 W/m2 (Gruell et al., 2013). In this case the assumption was

made, that the bias that both products account for are evenly spread on both

the positive and negative side and fall within the optimal target accuracy of the

product.

If the interpolation performed well the black line should stay between the red

lines. In that case it did not pass the accepted bias (assuming the satellite values

are correct). In order to make it easier to asses the output, trend lines were added.

The orange trend lines are the trends that correspond with the positive and neg-

ative bias. The green line is the trend line corresponding with the interpolation.

All trend lines are third order polynomials. Third order polynomials were chosen

because they do capture the variation in the data without creating to many ex-

tremes on the edges. To evaluate the data, the trend line from the interpolation

method should stay between the trend lines from the satellite bias. If the line stays

exactly in the middle the interpolation performs best.
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Figure 37: Random point analysis Januari CM-SAF.

.
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Figure 38: Random point analysis Januari CM-SAF.

.
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Figure 39: Random point analysis Januari SICCS.

.
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Figure 40: Random point analysis Januari SICCS.

.
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Figure 41: Random point analysis April CM-SAF.

.
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Figure 42: Random point analysis April CM-SAF.

.
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Figure 43: Random point analysis April SICCS.

.
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Figure 44: Random point analysis April SICCS.

.
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Figure 45: Random point analysis July CM-SAF.

.
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Figure 46: Random point analysis July CM-SAF.

.
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Figure 47: Random point analysis July SICCS.

.
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Figure 48: Random point analysis July SICCS.

.
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Figure 49: Random point analysis October CM-SAF.

.
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Figure 50: Random point analysis October CM-SAF.

.
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Figure 51: Random point analysis October SICCS.

.
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Figure 52: Random point analysis October SICCS.

.
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The CM-SAF product seemed to perform very well again. All methods that

used the satellite image as input for the interpolation method followed the pat-

tern found in the image. This means that the interpolation methods made good

use of the satellite image as a background trend. However, TPS did not use the

satellite image as an input source. Looking at the pattern obtained by the TPS

interpolation method it is possible to see that it does fit the pattern of the satellite

image quite well. The pattern is less extreme than that of the other interpolation

methods but it is definitely visible. This indicates that TPS performs very well

in-between the measurement stations as well.

It did turn out that the CM-SAF satellite image overestimates the radiation

values between the stations. All interpolation methods used the in-situ station

measurements as main input and the values obtained at these locations fit that

observed by the station. Since it was already proven that these values obtained

at the station locations were very accurate we could assume the values in-between

the stations should fit this accuracy as well. In the graphs that show the data

between the stations we see that the values tend to be on the lower side of the

negative bias. This means that the interpolation method lowered the values found

in the satellite images when it interpolated the map. This indicated that the

values in the satellite images alone were too high. This pattern was especially

observed in the spring and summer months which is displayed in table 4. The

SICCS product showed the same pattern. However, the graphs from this product

seemed to have a better correlation. When looking at the graphs it is possible to

see that the satellite image values and the interpolation values followed the same

pattern. The satellite images did yet again overestimates the values compared to

the interpolated values. However the bias in this product was smaller than that of

the CM-SAF product. This indicated that the SICCS product on its own seems

to be better in quality (table 4).
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Table 4: Table showing the average values for each interpolation and the average

of the satellite image. Left is for the CM-SAF product and right for the SICCS

product.

.

The montly output maps showed more local variation than the 6 year average.

This was expected due to the fact that the 6 year map used average values over a

longer time period, removing the local patterns that could be observed in smaller

areas. Figure 53 to 58 show three examples from the montly output maps for both

the CM-SAF product as the SICCS product. In these examples it was possible

to see that TPS does show the same average pattern as the other interpolation

methods that made use of auxiliary data. However the interpolation methods that

did use auxiliary data show more local variation, visualizing expected patterns

like the lower radiation above the Veluwe for example. Comparing the producs

with each other showed that in general the resolution of the SICCS product is

higher. The CM-SAF product returned a more gridded map compared to the

SICCS product.
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Figure 53: CM-SAF results for July 2007.

.
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Figure 54: SICCS results for July 2007.

.
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Figure 55: CM-SAF results for October 2008.

.
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Figure 56: SICCS results for October 2008.

.
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Figure 57: CM-SAF results for May 2010.

.
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Figure 58: SICCS results for May 2010.

.
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Daily data

Since all interpolations performed very well on a monthly and long time average

scale, daily data was analyzed as an extra option. For the daily interpolation only

the months April to July in 2010 were analyzed for this research. These months

were chosen since they are the most interesting when it comes down to radiation.

Radiation values are higher during these months and products and processes that

use radiation are therefore more interesting in these periods. The interpolations

were performed with the same methods as for the monthly and long term yearly

average. The average R2 and MAPE showed that interpolations that made use of

satellite data returned better results than those who didn’t use auxilary data (see

table 5 and table 6).

Table 5: The average R2 and MAPE for the daily interpolations on the CM-SAF

product.

.

Table 6: The average R2 and MAPE for the daily interpolations on the SICCS

product.

.
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For the CM-SAF product, TPS had the highest average MAPE of 10.7% this

was significantly higher than that of the KED and IB interpolations. The MB

had a maximum average error of 8.06% which was also quite high compared to

the KED and IB. The IB had the lowest errors but this went together with a very

poor R2 which was also observed in montly interpolations.

The SICCS product results showed the same trend as the CM-SAF product.

TPS had the highest MAPE followed by the MB. The IB performed the best when

only looking at the MAPE but had a very unpredictable R2 yet again.

To get a better understanding on how the actual R2 and MAPE behaved from

day to day results are presented in line graphs (figure 59 to 66). These graphs

show the obtained values for each day. Here it is possible to see that the R2 value

of the IB performed worse than the other interpolation methods. However the

MAPE graphs show a different trend. As expected from the average values the

IB and KED interpolations perform significantly better than the TPS and MB

interpolations. It is clear from the graphs that especially the TPS method was not

able to capture the variation in global radiation on a daily scale as good as the

other interpolation methods.
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Figure 59: Daily R2 values for April and May 2010 using the CM-SAF product.

.
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Figure 60: Daily R2 values for June and July 2010 using the CM-SAF product.

.
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Figure 61: Daily R2 values for April and May 2010 using the SICCS product.

.
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Figure 62: Daily R2 values for June and July 2010 using the SICCS product.

.
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Figure 63: Daily MAPE values for April and May 2010 using the CM-SAF product.

.
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Figure 64: Daily MAPE values for June and July 2010 using the CM-SAF product.

.
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Figure 65: Daily MAPE values for April and May 2010 using the SICCS product.

.
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Figure 66: Daily MAPE values for June and July 2010 using the SICCS product.

.
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When comparing the satellite measurements with the station measurements it

was possible to see that the interpolation methods adjusted the values found in the

satellite image to match the measurements made by the stations on the ground.

Table 7 shows how big the bias was between the satellite image and the ground

measurements for the CM-SAF product. The optimal accuracy of the CM-SAF

product for daily data was an error smaller than 20 W/m2 (CM-SAF 2013). As

shown in the table, this was not always obtained by the satellite image on its own.

Therefore using the satellite image as a stand alone product is not a valid option

and interpolation is needed.

Table 7: The bias in W/m2 showing the station value minus the satellite image of

the CM-SAF product, for 4 different days in 4 months in 2010.

.

The same could be said about the SICCS product. It would be unwise to use

the satellite image on its own at this point. Table 8 shows the average bias and

the minimum and maximum bias between the in-situ measurements and satellite

measurements. Although the bias was smaller compared to the CM-SAF product

it was still relatively high to use as a product on its own. Especialy when the

over or underestimation can easly be accounted for by using interpolation as used

above.
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Table 8: The bias in W/m2 showing the station value minus the satellite image of

the SICCS product, for 4 different days in 4 months in 2010.

.

In figure 67 to 72 three examples of daily interpolations are presented for both

products. The results have already shown that the error’s for the IB and KED

interpolations were smaller than those of the IB and TPS interpolations. Visually

all the interpolation methods gave more details than the TPS interpolation. More

local patterns and variations can be observed in both products.
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Figure 67: CM-SAF results for the 12th of May 2010.

.

117



Figure 68: SICCS results for the 12th of May 2010.

.
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Figure 69: CM-SAF results for the 21th of June 2010.

.
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Figure 70: SICCS results for the 21th of June 2010.

.
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Figure 71: CM-SAF results for the 31th of July 2010.

.
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Figure 72: SICCS results for the 31th of July 2010.

.
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Kriging Variance

When Kriging interpolations are performed, the interpolation also creates a krig-

ing variance map. The Kriging variance maps shows how big the variance of a

predicted value can be. It gives an estimation of its own estimation error (Kriging,

2005). In the following figures (figure 73 to 79) the variance maps are represented

for each temporal resolution.

Figure 73: Kriging variance for the 6 year average for both products.

.
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Figure 74: Kriging variance for July 2007 for both products.

.

Figure 75: Kriging variance for October 2008 for both products.

.
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Figure 76: Kriging variance for May 2010 for both products.

.

Figure 77: Kriging variance for 12 May 2010 for both products.

.
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Figure 78: Kriging variance for 21 June 2010 for both products.

.

Figure 79: Kriging variance for 31 July 2010 for both products.

.
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5 Discussion and Conclusion

5.0.5 Discussion

The 6 year average seemed to perform fairly well, no matter which interpolation

method or input source was used (figure 11 and 12). The lowest R2 values were

found for the IB which means that the model couldn’t predict or explain the resid-

uals as well as in the other methods. The highest average MAPE found for the

CM-SAF product was 1.39% for TPS. This was a very low value, especially con-

sidering the fact that the maximum observed in-situ value was 127 W/m2. This

means that at maximum, the interpolation on the cross validation was 1.77 W/m2

off. This is well under the 2-3% that the WMO uses as a standard to classify

measurement equipment as secondary standard (WMO, 2008).

The SICCS product of the KNMI had a maximum error of 1.42% (which is, at

maximum a bias of 1.8 W/m2) it is also still under the targets of the WMO and

falls within the bias observed by the validation of the SICCS product (Greuell et

al., 2013).

The unstable R2 that was observed in the monthly MB and IB could be explained

by the quality of the satellite image. In the winter the solar angle for the Nether-

lands can be quite low. This makes it hard for the satellite to capture the data

with high precision. Due to this some satellite images were not complete or had

extremely low values in the northern half of the Netherlands. These low or missing

values had a big influence on the mean bias and the interpolated bias, creating

artefacts in the interpolation and therefore show bad results. The reason why

these interpolation methods were effected most is due to the fact that the values

that are interpolated are directly influenced by the difference between the in-situ

measurements and the satellite measurements. If one of these measurements was

not represented the interpolation would be less accurate. The other interpolation

methods only used the auxilary data as a trend or not at all. Their interpolation

on the in-situ measurements were therefore not or less effected.

In the satellite images it is possible to see why the SICCS product performed

better then the CM-SAF product fig 80. The SICCS images were in general more

complete than those of the CM-SAF. Since this pattern was visible in December

every year the SICCS product seemed to be a little better to use if the IB or MB

interpolation method is chosen as the most optimal interpolation method.
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Figure 80: CM and SICCS satellite image for December 2008. The values of the

CM-SAF image are 0 in the northern part of the Netherlands.

.

The only time the MAPE exceeded 11.62% was when the satellite images were

not complete or had values of 0 as explained above. A MAPE of 11.62% is still

relatively low. This error was found in January 2010 where radiation reaches max-

imum values of 35.87 W/m2. This means that the error was still only ±4.17W/m2.

Which was yet again under the target of the CM-SAF product.

Besides that, the MAPE of all other interpolation methods was very low on the

cross validated interpolations (3.03% at maximum). The secondary standard of

the WMO is set at 2-3% for measuring equipment. This means that the monthly

MAPE of the combination of the satellite image and the in-situ measurements still

came close to, or reach this target.

The data split that was used to analyze how the interpolations perform with

less in-situ measurements showed that there were changes in MAPE values. The

maximum MAPE of 7% which was observed is not as bad as it seems. The rea-
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son this error was relatively high is due to low global radiation values that were

present in January. The radiation in the satellite images ranged from 11 to 45

W/m2. Therefore 7% was still a relative low. When looking at the absolute bias

this corresponded with a value of 2.01 W/m2, which was well below the CM-SAF

optimal target bias of less than 8W/m2 (CM-SAF, 2013). Besides this particular

error it was possible to see that all interpolation methods still perform very well.

This would mean that even with less in-situ measurements the interpolation meth-

ods still manage to predict the global radiation values with high accuracy. Though

this theory was only plausible so far when the in-situ observations were spread

evenly around the country.

The increase in the MAPE in the second data split to 9.27% was yet again a

relatively small increase. As explained above this value still only corresponded

with an absolute bias of 2.71 W/m2. An interesting thing was that in the first

data split the SICCS product performed better when looking at the MAPE. In

the second data split it was the other way around. Besides the January month,

the CM-SAF product performed a better interpolation with stations missing at a

concentrated area. Though the difference between the products MAPE was on a

scale smaller then 2%.

The final analysis with random points in-between the stations showed that it is

possible to come to the following conclusions:

1. All interpolation methods that used the satellite products as auxiliary data

in their interpolation made good use of the pattern found in the satellite

product. The interpolation method almost follows the exact same pattern

as the satellite image.

2. All interpolation methods, including TPS, came very close to the satellite

measurements when it comes down to absolute values. The satellite images

seem to overestimate the global radiation but this is an overestimation which

is often still within the allowed/target accuracy.

The results obtained confirm the findings of R. Sluiter that concluded that TPS

was a good interpolation method for monthly and yearly climate elements (Sluiter,

2008).
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For the daily interpolations TPS and the MB interpolation performed worse

than the IB and KED interpolations. The reason why the TPS and the MB

performed worse lies in the fact that the variation in global radiation on a daily

scale is larger than that of the monthly and long term yearly data. For the daily

data the differences in incoming global radiation between stations can be 4 to

10 times higher while this variation was very small in monthly data due to the

fact that these maps were obtained by taking the average of daily measurements.

Due to the high variation, larger errors were to be expected when performing

a crossvalidation with TPS since one station can make a bigger difference when

variation is bigger. This increase in variation also made it harder for the MB

interpolation to get an accurate average error that could be accounted for in the

satellite image.

The variation in the map, which causes the TPS and MB interpolation to

perform worse, can be explained by weather conditions. For daily data weather

conditions play an important role. The weather conditions on a daily basis are very

random compared to a month or year average. One cloud above a measurement

station can block out a big proportion of the potential incoming global radiation.

This can cause high variation between different locations depeding on the local

weather. The KED and IB methods performed a lot better on a daily basis. This

is because these methods do account for the bigger variation and random patterns

that are present due to weather conditions. Both KED and IB use the trend in

the satellite image but alter the values in such a way that they correspond with

the measurements made by the stations. By doing so the interpolation returned

the correct values at the stations location and it keeps the trend from the satellite

image. Therefore variation and the expected random patterns caused by weather

can be observed in the results.

More importantly for this research, they are in agreement with the results ob-

tained by Journée et al. (2010) in their research ”Improving the spatio-temporal

distribution of surface solar radiation data by merging ground and satellite mea-

suremetns”.

In this research they come to the following conclusion: ”The best merging perfor-

mance was equally obtained by kriging technique (i.e., kriging with external drift)

and by an adjustment of the SAF products with the spatially interpolated bias be-

tween stations and SAF data. The distribution of surface solar radiation inferred

by merging ground and SAF data was systematiccaly more accurate than when us-
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ing each data source seperatly.”

In the research performed by Journée et al. they looked at data with a high

temporal resolution. This is in agreement with the results found in this research.

The KED and IB method perform better when the temporal resolution is increas-

ing. They also point out that this is caused due to the fact that by combining the

data the strenghts from both products is used to its optimal. The satellite image

contributes to the spatial distribution of the solar irradiance which is largely in-

fluenced by clouds and the in-situ measurements have their accuracy as a strong

point. The combination of these strenghts and the coverage of the satellite data

leads to a better product (Journée et al., 2010).

The results that were obtained by Journée et al. are represented in figure 81.

The figure shows the cross-validated mean bias error (MBE), mean absolute error

(MAE) and the root mean square error (RMSE) for all the interpolation/merging

methods they used. These statistics are based on 2 years of data (2008 and 2009).

In these results it is possible to see that the differences between the errors in the

interpolation techniques are small.
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Figure 81: The cross-validated mean bias error (MBE), mean absolute error (MAE)

and the root mean square error (RMSE) for the; Weighted interpolation (WI), Or-

dinary Kriging (OK), SAF-product (SAF), Mean bias correction (multiplicative

adjustment) (MB-m), Mean bias correction (additive adjustment) (MB-a), Inter-

polated bias correction (multiplicative adjustment) (IB-m), Interpolated bias cor-

rection (additive adjustment) (IB-a), Ordinary Kriging with multiplicative satellite

-based correction (KS-m), Ordinary Kriging with additive satellite-based correc-

tion (KS-a) and Kriging with external drift (KE) (Journée et al., 2010).
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Expert Judgement

Since it turned out that both satellite products and all interpolation methods

performed well when it comes down to absolute errors on a monthly and long

term temporal resolution, it was hard to judge them for the real quality they give

the user. Therefore as a last validation a discussion with the climate expert (R.

Sluijter) was held to analyze patterns in radiation.

The discussion lead to the following findings:

1. The interpolation methods that made use of the satellite images create a more

realistic map of radiation in the Netherlands. Spatial patterns of forests

in the center of the Netherlands are made visible by using satellite data.

This is not the case when performing a TPS interpolation. The same can

be said about the patterns visible in Friesland (a province in the North of

the Netherlands). More radiation is to be expected on the West coast of

Friesland. This pattern is better represented in interpolations using satellite

images as auxiliary data.

2. In the winter months strange or unexpected patterns are visible. This is

caused by the lack of incoming solar radiation on shorter days combined

with random (less predictable) weather processes. This is visible for all

interpolation methods.

3. The SICCS product has a higher visual resolution with more visible variation.

4. For the daily data, adding auxilary data to the interpolation results in better

maps. Although it isn’t possible to see known patterns due to chaotic weather

conditions the values returned are realistic and the chaotic patterns due to

weather are expected to give this kind of output. The daily maps that do

contain a certain pattern correspond with past weather conditions that are

known from a different databases. Figure 82 shows the daily incoming global

radiation on the 12th of May compared to the solar duration on that day,

obtained from the KNMI database.
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Figure 82: A comparisment between the solar duration (left) and the daily global

radiation (right) for the 12th of May. The solar duration map was created with a

TPS interpolation using 32 in-situ measurements. The global radiation map was

created with a KED-EXP interpolation using 32 in-situ measurements and the

CM-SAF product as auxilary data.

.

Kriging Variance

When looking at the Kriging Variance maps, lower variance values are prefered.

This would indicate that the kriging interpolation is more certain of the predicted

value. The Kriging variance will be higher when the variance in the data itself

increases or when less data is available. The Kriging variance will decrease when

the distance to a measured location is smaller (Minesight, 2005). This is visible in

all kriging variance maps as shown in figure 73 to 79. The Kriging variance values

at the in-situ measurement locations are 0 or near 0 and increase the further away

from the measurement station. This is logical since the in-situ measurements are

used as main input with a nugget of 0.

For the long term average Kriging variance the maximum variance was observed in

the SICCS product and has a value of 5.28 W/m2. This value was relatively high

since the range of the incoming global radiation ranged from 114 to 129 W/m2.
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The CM-SAF product had a better Kriging variance with a maximum value of

2.3 W/m2. This would mean that in general the CM-SAF product made a more

certain prediction. This was also visible in both the R2 value and the MAPE. The

CM-SAF had an R2 value of 0.76 and a MAPE of 1.03 % and the SICCS product

had a R2 value of 0.49 and a MAPE of 1.42 %.

For the monthly Kriging variance maps the same patterns are visible. Both meth-

ods perform very well at the in-situ measurement location and the certainty of the

interpolation decreases with an increasing distance from the in-situ measurements.

The Kriging variance values also stayed on the high end of the total range of global

radiation measured. The only difference with the monthly variance was, that for

these interpolations the SICCS product seemed to score better. The same patterns

were found in the R2 values and MAPE’s, both products worked fairly well here

and differences were small. However, the SICCS producted had a slightly better

R2 and MAPE here as well.

For the daily data a more stable pattern is visible. For these maps the SICCS

product performs significantly better than the CM-SAF product. This is in agree-

ment with the resutls found in the R2 and MAPE analysis. The Kriging variance

values remain high when further away from the stations but this is due to the fact

that the interpolation has no input data here but only a trend from the satellite

image.

These variance maps do show where the Kriging interpolation could be improved.

It is unrealistic to have in-situ measurements covering the entire area of the Nether-

lands. However, there are more in-situ measurement stations available then cur-

rently used to interpolate the data. The Woensdrecht (South Netherlands) and

Vlieland (North Netherlands) station (figure 83), currently do not measure global

radiation data. When looking at the variance maps it is possible to see that the

variance on these locations is relatively high in all maps. Adding a Pyranometer

to these stations will lower the variance at the location and in the area and could

further improve the quality of the global radiation maps when using interpolation.
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Figure 83: All available in-situ measurement stations in the Netherlands.

.

5.0.6 Conclusion

The results showed that all interpolation methods, depending on the temporal

resolution, performed well at the locations of the in-situ measurement stations.

Therefore all interpolation methods have their uses and cannot be classified as

unusable. The output of all interpolation methods returned the pattern that would

be expected when analyzing radiation in the Netherlands. This was especially

visible when interpolating radiation on average timescales of one month or longer.

In-between the stations it is possible to see that the interpolation methods that

used auxiliary satellite data follow the patterns observed in the satellite images

better than that of TPS. Though it is possible to conclude that this difference was

not big enough to say that one interpolation method turns out to be better than

the rest. This is however only true for the longer term averages and montly data.
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On a visual side it is of course possible to make a choice for the ”best” product.

The reason for this is due to the fact that the stations are used to set the amount

of incoming global radiation and the satellite data is used to describe the patterns.

This leads to maps with local observable patterns and a higher resolution.

In general the following conclusions can be made:

Long term average: All interpolations performed almost equally well here. The

R2 of 0.19 (CM-SAF) and 0.43 (SICCS) for the IB was lower and was therefore

more doubtful as a model. However, the absolute errors were just as small as in

the other interpolation methods. There was no significant difference between the

two different satellite products. Therefore the choice of product and interpolation

method is only dependent on the requirement specifications of the user.

Monthly data: TPS and both the KED interpolations performed the best in gen-

eral. The IB interpolation seemed to be less predictable when looking at the R2

values. When looking at the MAPE’s it turned out that the MB interpolation

scores significantly higher. This was mainly due to the December month where

radiation values were low or satellite data was not complete. This pattern could

especially be observed in the CM-SAF product where the December months lacked

data. Therefore it could be said that for monthly data the SICCS product would

be a better choice and KED or TPS should be used as interpolation method.

Daily data: Here it was possible to say that TPS and MB perform worse than

KED and IB. TPS was not able to capture the chaotic patterns that can be ob-

served on a daily basis due to weather conditions. The density of the in-situ

measurement stations is to low to capture the variation that is present inbetween

the stations. The big variation of the incoming solar radiation and the big differece

between satellite observations and in-situ observations also make it hard to find a

mean error in the satellite image. This leads to an inaccurate map using the MB

method.

Due to these circomstances it is possible to say that the KED and IB interpola-

tions would be the most optimal interpolation method on a daily basis. Especially

the KED due to its stable R2 compared to IB. Productwise, SICCS would be a

better choise due to the smaller differences and errors in the satellite images and

interpolations.
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To come back and answer the research questions;

1. Is Kriging with external drift the best interpolation method, as expected?

2. Is the physically detailed SICCS product a better underlying data source

than the CM-SAF product?

First off, Kriging with external drift is not necessarily the best interpolation

method. It is one of the most stable methods and it does capture the trend of the

satellite image very well. But, all other interpolation methods perform relatively

equal when it comes down to absolute errors for the 6 year average and monthly

data. It is possible to say though, that Kriging with external drift would be a

safer choice to use in the months where radiation values are low and satellite im-

ages limited (in the Netherlands this would be in December and January). For

daily data KED interpolation will result it more accurate maps compared to TPS

and MB. KED is able to capture the chaotic weather conditions and therefore give

more accurate results than TPS or MB interpolation. The advantage of using KED

compared to using satellite images on their own would be the fact that Kriging

accounts for the bias found in the satellite images. KED adjusts the values in the

satellite images to match those of the in-situ measurements thereby reducing the

errors in the product without reducing spatial resolution.

Secondly, the detailed SICCS product is not necessarily a better product to use as

auxiliary data when interpolating global radiation in the Netherlands. The differ-

ences between the product are to small and change to much to say if one product

is always better than the other. However for the December month the physically

detailed SICCS product is more stable and for this month it would be wise to use

the SICCS over the CM-SAF product.

For the daily data however the SICCS product would be a better choice. The

differences between the SICCS product and the CM-SAF product after using in-

terpolation are not that high. However, the satellite image on its own performs

better when looking at the bias between the image and the in-situ measurements

and would therefore be a more stable choice.
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6 Outlook

Both of the anomalies/artefacts above the water bodies near and in the Nether-

lands are not a problem for global radiation maps in this paper. GSIE automat-

ically masks the output maps with an overlay of the Netherlands and its water

bodies. Hereby cutting out these two observed problems. However when the radi-

ation maps are used as input for other models the data is not cut away and can

lead to artefacts in the model.

Since it turns out that the satellite images on their own perform a very good

job in predicting global radiation values it could be possible to immediately use

the satellite images as global radiation maps instead of using an interpolation

method. This would be true for atleast the long time average maps and monthly

maps. The SICCS product is immediately available at the KNMI since it is pro-

duced here. The CM-SAF product is available without costs and could be used.

However since these images seem to be less complete in the winter months it might

not perform well enough as a stand alone product. To see if this is possible more

research should be performed. Analysis have to be made on how good the images

perform over longer periods of time and under different conditions. Also satellite

equipment needs to be calibrated and corrected and both the models used to pre-

dict satellite global radiation measurements are dependent on input from auxiliary

data themselves.

Further research in the improvement of global radiation maps in the Netherlands

can be done. Since it turned out elevation has an influence on cloud formation a

DEM (Digital Elevation Model) could be taken as auxiliary data to obtain an even

more detailed model. Pons et al., (2008) have already shown that it is possible

to predict global radiation by using a DEM. Other auxiliary data such as a veg-

etation or albedo map could also possibly improve the quality of radiation maps.

The Veluwe area (which also has a higher elevation) and the centre of the Nether-

lands show lower radiation values on monthly and long term averages. These areas

are characterised by forests. However to come to definite conclusions about these

input sources more research has to be performed.
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A Metadata

The research area is the entire Netherlands. Figure 84 shows the location of the

Netherlands within Europe. The metadata used for all the maps of the Netherlands

is described on the next page.

Figure 84: The Netherlands is hightlighted with a red border within Europe.

.
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Metadata:

The output maps all have the same extend. They come with the following standard:

Left bottom corner (m) : (0, 300000)

Right top corner (m): (300000, 640000)

Cell size (m): (1000, 1000)

Rows/collumns : (340, 300)

For the CM-SAF product:

Maps created by: Jurgen van Tiggelen

Date: April 2014

Data provided by: CM-SAF and the KNMI.

Projected coordinate system: RD New

Projection: Double Stereographic

False Easting: 155000.000000

False Northing: 463000.000000

Central Meridian: 5.387639

Scale Factor: 0.999908

Latitude Of Origin: 52.156161

Linear Unit: Meter

Geographic coordinate system: GCS Amersfoort

Datum: D Amersfoort

For the SICCS product:

Maps created by: Jurgen van Tiggelen

Date: April 2014

Data provided by: The KNMI.

Projected coordinate system: RD New

Projection: Double Stereographic

False Easting: 155000.000000

False Northing: 463000.000000

Central Meridian: 5.387639

Scale Factor: 0.999908

Latitude Of Origin: 52.156161

Linear Unit: Meter

Geographic coordinate system: GCS Amersfoort

Datum: D Amersfoort
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B R-script for global radiation using TPS

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE
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#Start TPS process

# TPS preprocess data

nl tps.grd = nl.grd

fullgrid(nl tps.grd) = FALSE

# TPS Standard code

lambda fixed=0.004 # set TPS lambda smoothing parameter, NA for autofit

tps = doTps(VARIABLE ∼1, var, nl tps.grd, addFit = TRUE, debug.level = 1, lambda = lambda fixed)

lambdafit=tps$fit$lambda

#write.table(lambdafit, ”./output/lambda.txt”, row.names=FALSE, col.names=FALSE)

#TPS Cross validation

tps.cv = crossvalidate(VARIABLE ∼1, var, func = ”doTps”, debug.level = 0, lambda = lambda fixed)

teller = sum(tps.cv$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

tps.r2 = 1 - teller/noemer

tps meanvar = mean(tps.cv$residual)

tps maxvar = max(tps.cv$residual)

tps minvar = min(tps.cv$residual)

tps sdvar = sd (tps.cv$residual,na.rm=TRUE)

cv TPS = data.frame(tps.r2, tps minvar, tps maxvar, tps meanvar, tps sdvar)

#write.table(cv TPS, ”./output/TPS R2.txt”, row.names=FALSE, col.names=TRUE)

# Cut off at zero (no negative EV allowed)

result = tps$krige output

result$var1.pred = pmax(result$var1.pred,0)

# Grid output

write.asciigrid(result, ”./output/prediction.asc”, attr = ”var1.pred”, na.value = -9999)

# Data output

# Stations output

# create a dataframe with the station numbers and their corresponding indexes in the grid

stationAndIndex = data.frame(stationIndicesInGrid,var$STN,var$VARIABLE)

#remove stations which do not fall within the new grid

stationAndIndex = na.omit(stationAndIndex );

# StationFields #

#Fill all default values with 0

stationField=data.frame(data.frame(gridDefinition ,0))

#Fill in the stations

stationField[stationAndIndex$stationIndicesInGrid,3]=stationAndIndex$var.STN

#Create a SpatialDataGrid

coordinates(stationField)=∼s1+s2

gridded(stationField) = TRUE

# StationValues #

#Fill all default values with 0

stationValues=data.frame(data.frame(gridDefinition ,0))

#Fill in the stations values

stationValues[stationAndIndex$stationIndicesInGrid,3]=stationAndIndex$var.VARIABLE

#Create a SpatialDataGrid

coordinates(stationValues)=∼s1+s2

gridded(stationValues) = TRUE
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# Grid output

write.asciigrid(stationValues, ”./output/stationvalues.asc”,na.value = 0)

write.asciigrid(stationField, ”./output/stations.asc”,na.value = 0)

#MORE STATISTICS

#Mean Error TPS

ME = ((1/StNr)*((sum(abs(tps.cv$residual)))))

MEmean = (ME/(mean(tps.cv$observed)))

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((tps.cv$var1.pred− tps.cv$observed)2)))))

sdvar = ((tps.cv$observed− (mean(tps.cv$observed)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)

RMSEsd = (RMSE/sdvar)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

#MAPE

tps.cv$MAE = abs((tps.cv$residual/tps.cv$observed))

MAEsum = sum(tps.cv$MAE)

MAPE = (MAEsum*(100/StNr))

#TPS errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

TPS errors = data.frame(tps.r2, MAPE)

write.table(TPS errors, ”./output/TPS Errors.txt”, row.names=FALSE, col.names=TRUE)

149



C R-script for global radiation using MB

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)
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#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Calculate the mean bias

diff.grd = read.asciigrid(”./output/stationValues.asc”,colname=”sis”) #read in the stationvalues as a grid

diff.grd$sis = (diff.grd$sis-sis.grd$sis) #calculate the difference between the ground observations and satellite

observations

Mbias = mean(diff.grd$sis, na.rm=TRUE) #Find the mean of the differences

#Create and write the grid

Mbiasgrid = sis.grd #make a new grid with the same extend as the other grids

Mbiasgrid$sis = 0 #Change the values in the grid to 0 so its an ”empty” grid

Mbiasgrid$sis = (sis.grd$sis+Mbias) #fill in the grid by using the satellite values and add the mean bias error

#Output

#write.table(Mbias, ”./output/Mean Bias.txt”, row.names=FALSE, col.names=TRUE)

write.asciigrid(Mbiasgrid, ”./output/MeanBias.asc”, attr = ”sis”, na.value = -9999)
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#Stations output

stations = data.frame(stationIndicesInGrid,var$STN,var$VARIABLE)

#remove stations which do not fall within the new grid

stations = na.omit(stations);

stations$predicted = (Mbiasgrid$sis[stations$stationIndicesInGrid]) #load predicted values into overview

stations$residual = (stations$var.VARIABLE-stations$predicted) #calculate the residuals

MbiasStat = stations

# Statistics

teller = sum(MbiasStat$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

Mbias.r2 = 1 - teller/noemer

Mbias meanvar = mean(MbiasStat$residual)

Mbias maxvar = max(MbiasStat$residual)

Mbias minvar = min(MbiasStat$residual)

Mbias sdvar = sd (MbiasStat$residual,na.rm=TRUE)

cv Mbias = data.frame(Mbias.r2, Mbias minvar, Mbias maxvar, Mbias meanvar, Mbias sdvar)

#write.table(cv Mbias, ”./output/MbiasStats.txt”, row.names=FALSE, col.names=TRUE)

#Mean Error MB

ME = ((1/StNr)*(sum(abs(MbiasStat$residual)))) #Calculate the mean error

MEmean = (ME/(mean(MbiasStat$var.VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE =(sqrt((1/StNr) ∗ ((sum((MbiasStat$predicted − MbiasStat$var.V ARIABLE)2))))) #Calculate the

Root mean Square error

RMSEsd = (RMSE/Mbias sdvar)

NRMSE = (RMSE/((max(MbiasStat$var.VARIABLE)-(min(MbiasStat$var.VARIABLE)))))

#MAPE

MbiasStat$MAE = abs((MbiasStat$residual/MbiasStat$var.VARIABLE))

MAEsum = sum(MbiasStat$MAE)

MAPE = (MAEsum*(100/StNr))

#MBias errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

MBias errors = data.frame(Mbias.r2, MAPE)

write.table(MBias errors, ”./output/Mbias Errors.txt”, row.names=FALSE, col.names=TRUE)
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D R-script for global radiation using IB

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdidw=120000 # maxdist IDW

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000
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#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

InterBias = var

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

#create empty raster to work on

Ibiasgrid = sis.grd #make a new grid with the same extend as the other grids

Ibiasgrid$sis = 0 #Change the values in the grid to 0 so its an ”empty” grid

#Stations output

# create a dataframe with the station numbers and their corresponding indexes in the grid

stations2 = data.frame(stationIndicesInGrid,var$STN,InterBias$VARIABLE)

#remove stations which do not fall within the new grid

stations2 = na.omit(stations2 );

stations2$predicted = (sis.grd$sis[stations2$stationIndicesInGrid]) #load predicted values into overview
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stations2$residual = (stations2$InterBias.VARIABLE-stations2$predicted) #calculate the residuals

InterbiasStat = stations2

InterBias$VARIABLE = InterbiasStat$residual #set the residuals as the variable to be interpolated

#Interpolate the bias

idw = idw(VARIABLE∼1, InterBias, Ibiasgrid, maxdist=mxdidw, na.action=na.pass)

idw.cv = crossvalidate(VARIABLE∼1, InterBias, debug.level = 0)

teller = sum(idw.cv$residual2)

noemer = sum((InterBias$V ARIABLE −mean(InterBias$V ARIABLE))2)

idw.r2 = 1 - teller/noemer

idw sph.cv = idw.cv

#fill in the data

Ibiasgrid$sis = (sis.grd$sis+idw$var1.pred) #fill in the grid by using the satellite values and add the mean bias

error

write.asciigrid(Ibiasgrid, ”./output/Ibias.asc”, attr = ”sis”, na.value = -9999)

#Stations output

#create a dataframe with the station numbers and their corresponding indexes in the grid

stations3 = data.frame(stationIndicesInGrid,InterBias$STN,InterBias$VARIABLE)

#remove stations which do not fall within the new grid

stations3 = na.omit(stations3 );

stations3$predicted = (Ibiasgrid$sis[stations3$stationIndicesInGrid]) #load predicted values into overview

stations3$residual = (var$VARIABLE-stations3$predicted) #calculate the residuals

IbiasStat = stations3

#Statistics

Ibias meanvar = mean(IbiasStat$residual)

Ibias maxvar = max(IbiasStat$residual)

Ibias minvar = min(IbiasStat$residual)

Ibias sdvar = sd (IbiasStat$residual,na.rm=TRUE)

cv Ibias = data.frame(idw.r2, Ibias minvar, Ibias maxvar, Ibias meanvar, Ibias sdvar)
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#write.table(cv Ibias, ”./output/IbiasStats.txt”, row.names=FALSE, col.names=TRUE)

#Mean Error TPS

ME = ((1/StNr)*((sum(IbiasStat$predicted-var$VARIABLE)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((IbiasStat$predicted − var$V ARIABLE)2))))) #Calculate the Root mean

Square error

RMSEsd = (RMSE/Ibias sdvar)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

IbiasStat$MAE = abs((IbiasStat$residual/var$VARIABLE))

MAEsum = sum(IbiasStat$MAE)

MAPE = (MAEsum*(100/StNr))

#IBias errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

IBias errors = data.frame(idw.r2, MAPE)

write.table(IBias errors, ”./output/Ibias Errors.txt”, row.names=FALSE, col.names=TRUE)

156



E R-script for global radiation using KED-Exp

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE
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#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Overlay functions

sis.ov=overlay(sis.grd,var)

# Copy the values to Var

var$sis=sis.ov$sis

ked = autoKrige(VARIABLE∼sis, var, sis.grd, maxdist=mxdkrige, model = c(”Exp”), na.action=na.pass, fix.values=c(0,NA,NA),

miscFitOptions = list(merge.small.bins = FALSE))

# Krige Cross validation

ked.cv = autoKrige.cv(VARIABLE∼sis, var, model = c(”Exp”),maxdist=mxdkrige,fix.values=c(0,NA,NA), mis-

cFitOptions = list(merge.small.bins = FALSE))

teller = sum(ked.cv$krige.cv output$residual2)
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noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

ked exp.r2 = 1 - teller/noemer

ked.zscoremean = mean(ked.cv$krige.cv output$zscore)

ked.zscore.var = var(ked.cv$krige.cv output$zscore)

cv exp = data.frame(ked exp.r2,ked.zscoremean, ked.zscore.var)

var cv = ked.cv

#write.table(cv exp, ”./output/ked exp cv.txt”, row.names=FALSE, col.names=TRUE)

# FORCE GRID CELLS TO BE SQUARE

ked=ked$krige output

slot(slot(ked, ”grid”), ”cellsize”) = rep(mean(slot(slot(ked, ”grid”), ”cellsize”)), 2)

# Calculate differences at observation points

predicted= overlay (ked,var)

var$predicted = predicted$var1.pred

var$difference = (var$VARIABLE - var$predicted)

difmin = min (var$difference,na.rm=TRUE)

difmax = max (var$difference,na.rm=TRUE)

difmean = mean (var$difference,na.rm=TRUE)

difsd = sd (var$difference,na.rm=TRUE)

output = data.frame(difmin,difmax,difmean,difsd)

#write.table(output, ”./output/ked exp pointdifference.txt”, row.names=FALSE, col.names=TRUE)

# Grid output

write.asciigrid(ked, ”./output/ked exp prediction.asc”, attr = ”var1.pred”, na.value = -9999)

write.asciigrid(ked, ”./output/ked exp variance.asc”, attr = ”var1.var”, na.value = -9999)

#Mean Error KED

ME = ((1/StNr)*((sum(var$difference)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((var$predicted − var$V ARIABLE)2))))) #Calculate the Root mean Square

error

sdvar = ((var$V ARIABLE − (mean(var$V ARIABLE)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)
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RMSEsd = (RMSE/sdvar)

RMSEsd = (RMSE/difsd)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

var$MAE = abs((var$difference/var$VARIABLE))

MAEsum = sum(var$MAE)

MAPE = (MAEsum*(100/StNr))

#KED EXP errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

KED EXP errors = data.frame(ked exp.r2, MAPE)

write.table(KED EXP errors, ”./output/KED EXP Errors.txt”, row.names=FALSE, col.names=TRUE)
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F R-script for global radiation using KED-Sph

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE
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#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Overlay functions

sis.ov=overlay(sis.grd,var)

# Copy the values to Var

var$sis=sis.ov$sis

# Kriging

ked = autoKrige(VARIABLE∼sis, var, sis.grd, maxdist=mxdkrige, model = c(”Sph”), na.action=na.pass, fix.values=c(0,NA,NA),

miscFitOptions = list(merge.small.bins = FALSE))

# Krige Cross validation

ked.cv = autoKrige.cv(VARIABLE∼sis, var, model = c(”Sph”),maxdist=mxdkrige,fix.values=c(0,NA,NA), mis-

cFitOptions = list(merge.small.bins = FALSE))
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teller = sum(ked.cv$krige.cv output$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

ked sph.r2 = 1 - teller/noemer

ked.zscoremean = mean(ked.cv$krige.cv output$zscore)

ked.zscore.var = var(ked.cv$krige.cv output$zscore)

cv sph = data.frame(ked sph.r2,ked.zscoremean, ked.zscore.var)

#write.table(cv sph, ”./output/ked sph cv.txt”, row.names=FALSE, col.names=TRUE)

# FORCE GRID CELLS TO BE SQUARE

ked=ked$krige output

slot(slot(ked, ”grid”), ”cellsize”) = rep(mean(slot(slot(ked, ”grid”), ”cellsize”)), 2)

# Calculate differences at observation points

predicted= overlay (ked,var)

var$predicted = predicted$var1.pred

var$difference = (var$VARIABLE - var$predicted)

difmin = min (var$difference,na.rm=TRUE)

difmax = max (var$difference,na.rm=TRUE)

difmean = mean (var$difference,na.rm=TRUE)

difsd = sd (var$difference,na.rm=TRUE)

output = data.frame(difmin,difmax,difmean,difsd)

#write.table(output, ”./output/ked sph pointdifference.txt”, row.names=FALSE, col.names=TRUE)

# Grid output

write.asciigrid(ked, ”./output/ked sph prediction.asc”, attr = ”var1.pred”, na.value = -9999)

write.asciigrid(ked, ”./output/ked sph variance.asc”, attr = ”var1.var”, na.value = -9999)

#Mean Error KED

ME = ((1/StNr)*((sum(var$difference)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((var$predicted − var$V ARIABLE)2))))) #Calculate the Root mean Square

error

sdvar = ((var$V ARIABLE − (mean(var$V ARIABLE)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)

163



RMSEsd = (RMSE/sdvar)

RMSEsd = (RMSE/difsd)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

var$MAE = abs((var$difference/var$VARIABLE))

MAEsum = sum(var$MAE)

MAPE = MAEsum*(100/StNr))

#KED SPH errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

KED SPH errors = data.frame(ked sph.r2, MAPE)

write.table(KED SPH errors, ”./output/KED SPH Errors.txt”, row.names=FALSE, col.names=TRUE)
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G Elevation in the Netherlands

Figure 85: Elevation in the Netherlands. The pink/purple zone in the middle of

the Netherlands is the Veluwe with the Utrechtse Heuvelrug just to the west of it.

The blue lake north-west of the Veluwe is the IJselmeer.
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Preface

This report is written as a thesis project from the Lund University. The research

itself is done at, the Royal Netherlands Meteorological Institute (KNMI) in the

Bilt, in the Netherlands.

The focus in this report will be on mapping global radiation. However, this re-

search is part of a larger research, namely: ”High resolution climatology based on

integrated in-situ observations, satellite observations and model data.”, within the

KNMI which covers several climatic topics. The goal of the bigger research at the

KNMI is to improve the existing climatological and meteorological products. This

is done by increasing the resolution through the addition of external data sources

or different modeling methods.

In this report, satellite data is used as an external data source in combination

with the existing measurement network.
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Summary

For this research, two satellite products were used to see if it was possible to

improve the resolution and quality of the global radiation interpolation in the

Netherlands. The first data source was from the Climate Monitoring Satellite Ap-

plication Facility (CM-SAF). The second data source was the Surface Insolation

under Clear and Cloudy Skies (SICCS) from the KNMI. Both products were avail-

able for the period of January 2006 to December 2011 and came in the form of

images with monthly and daily averages.

To combine the satellite images with the input provided by the KNMI’s 32

measurement stations, these interpolation/merging methods were used:

1. Thin Plate Splines (TPS)

2. Mean Bias interpolation (MB)

3. Interpolated Bias interpolation (IB)

4. Kriging with External Drift, Exponential model (KED-EXP)

5. Kriging with External Drift, Spherical model (KED-SPH)

All these methods made use of the in-situ measurements as main input for the

interpolation and all methods except TPS used the satellite products as auxiliary

data.

Interpolations were made for the average of the six year period and on monthly

measurements, for each month, in each year. Daily interpolations were made for

April 2010 until July 2010.

Different validation methods were used to analyze the output. The results showed

that; for the six year average both products and all interpolation methods did a

good job on predicting global radiation. The R2 was lowest for the IB on the

CM-SAF product with a value of 0.19. However, the MAPE (mean absolute per-

centage error) did not exceed 1.39% on the CM-SAF product and 1.42% on the

SICCS product. These values corresponded with an absolute bias of 1.77 W/m2

and 1.8 W/m2.

The monthly results showed similar results. The R2 values tended to differ

more, especially in the IB and MB interpolation. In most cases this could be

explained by the quality of the satellite images. The MAPE was low in all cases.
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A maximum MAPE of 8.38% was found (when using proper satellite images), in

November, which corresponded with an absolute bias of ± 4 W/m2. Datasplitting

returned similar results. MAPE’s did increase up to 9.27% when leaving out 1/4th

of the measurement stations but this value corresponds with an absolute bias of

2.71W/m2. These low absolute errors showed that all interpolation methods re-

turn an accurate interpolation. However, because the interpolation methods rely

on the quality of the satellite images, the SICCS product would be a better prod-

uct. These images were complete in all months while the CM-SAF product lacked

data in December.

Since it turned out that all interpolations perfored well, daily data was analyzed

for the period of April until July 2010.

It turned out that for the daily data KED and the IB interpolations performed

significantly better than the TPS or MB interpolation. The biggest average MAPE

was found for the TPS method (10.7% in May). The smallest average error of 0

% was found for the IB method. However this method was paired with very low

R2 values which made the model unpredictable. The average KED R2 and MAPE

ranged from 0.57 to 0.75 and from 0.08% to 0.95 %. This made the method a stable

and accurate interpolation method. The satellite images on their own would not

be good enough to use directly as a global radiation map, for this time interval.

The over- and underestimated bias of the satellite images ranged from -89.63 to

64.49 W/m2. This showed that, a combination of station data and satellite data

would improve the quality and resolution of daily global radiation maps.
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1 Introduction

Global radiation is the main driver of nearly every dynamic process on Earth. It

drives both air and ocean circulations, thereby influencing weather and climate.

It has a direct climatic impact and it is the main energy source for nearly all

life on Earth. Therefore it is fundamental to understand and keep a good record

of global radiation measurements. With proper knowledge and a long term well

preserved database with global radiation measurements, it is possible to get a

better understanding of the climate system and possibly find solutions to mitigate

global warming. At the same time, global radiation measurements can be used

to satisfy request from agricultural-, medical-, biological-, industrial- and energy-

sectors (Greuell et al., 2013; Kipp & Zonen; WMO, 2008).

Global radiation data has been recorded in the Netherlands since 1957 by means

of a network of meteorological stations. The measurements started with only one

meteorological station, located in De Bilt, the Netherlands, in 1957. Since that

time, the amount of meteorological stations has increased to 32.

At the same time, there is an increasingly growing demand of high resolution

global radiation maps, both internal within the Royal Netherlands Meteorological

Institute (KNMI), as external. An increasing number of applications make use of

high resolution data. Therefore current low resolution maps should be improved.

The current resolution of global radiation maps in the Netherlands is determined

by the density and distribution of the existing stations. Using station data and

interpolating this data has some drawbacks. The density of the ground stations

is often lower then the pixel density of satellite images. Also, due to the limited

number of stations and the distribution of these stations, spatial patterns cannot

always be described. New possibilities should be explored to increase the spatial

resolution (Greuell et al., 2013).

Currently, in-situ measurements, satellite observations and model outputs are

all treated separately. The integration of these data sources could lead to an

improvement in the resolution of the radiation maps and should therefore be ex-

plored.

Several studies have already shown that both polar orbiting as well as geosta-

tionary satellites have the possibility to improve the potential of global radiation

mapping. Polar orbiting satellites have the advantage of being able to provide

data with a spatial resolution of several meters as source data compared to geo-

stationary satellites which provide data with a spatial resolution of 1 to several

kilometers. On the downside, temporal resolution of these satellites can be rela-
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tively low. Especially when one compares the temporal resolution of a polar orbit-

ing satellite with that of a geostationary satellite, like Meteosat second generation

(MSG). MSG provides the user with data on a 15 minute temporal resolution with

a spectral resolution of 12 channels ranging from 0.635 µm to 14.4 µm (Schmetz

et al., 2002). Perez et al. (1994, 1997) have already proven that satellite data

from a geostationary meteorological satellites becomes more accurate than local

ground measurements if the distance to the station exceeds 40 to 50 km and in

some cases even 34 km. With the stations in the Netherlands lying 6 km to 60

km apart, this could lead to data improvements. Greuell et al. (2013) have also

created a model able to successfully capture global irradiance at the ground with

a 15 minute interval using the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) instrument on the Meteosat second generation satellite. Noia. M., et

al., has evaluated several techniques to get global radiation data from satellite

images. Both using physical as well as statistical models. (Noia. M., et al. 1993).

Statistical as well as physical models have the possibility to improve the resolu-

tion of global radiation mapping compared to the mapping of radiation by using

meteorological stations only. Journée. et al. have proven that combining satellite

data with ground measurements by using Kriging or an interpolated bias leads to

superior maps compared to using either one of those sets on its own. (Journée et

al. 2010, Journée et al. 2012).

Aim of the research:

”The aim of this report is to see if it is possible to improving the existing global

radiation maps in the Netherlands by assimilating in-situ observations with MSG

satellite measurements.”

Objectives of the research:

Objectives are the following research questions:

1. Is Kriging with external drift the best interpolation method, as expected?

2. Is the physically detailed Surface Insolation under Clear and Cloudy Skies

(SICCS) product a better auxiliary data source than the Climate Monitoring

- Satellite Application Facility (CM-SAF) product?
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To test and answer these question, three data sets were used. The main data

source were the measurements made by the KNMI’s meteorological stations. This

data was used as the main input for interpolation. It was also be used to validate

the output by for instance cross-referring with a ”leave one out cross validation”

technique. The second data set that was used was irradiance data obtained by

MSG. This data set was created by the climate-monitoring satellite application

facility (CM-SAF). The final data source that was used was another irradiance

data set. Data from this Surface Insolation under Clear and Cloudy skies (SICCS)

model was also obtained by the MSG satellite. The difference with this data set

however is that the SICCS used a more detailed physical model; taking more cloud

physical properties and atmospheric properties into account. This model is used

by the KNMI and is designed and created by Greuell, W., Meirink, J.F. and Wang,

P. (Greuell et al., 2013).

The organization of this report is as follows. Chapter 1 will continue with an

introduction of a related study, explaining what other researchers have done. Af-

terwards, a notification is given for fields that could benefit from better global

radiation data. In chapter 2, the background information and data which was

used is described. In chapter 3, the methods are described, starting with a de-

scription of which data was used, followed by an overview of how this data could be

combined. After this, the interpolation and validation methods are described. In

chapter 4, the results will be represented. In chapter 5, a summarizing discussion

will be given, followed by a conclusion. Finally, chapter 6 will give an outlook on

what further possibilities could be explored in relation to this research.

Due to the fact that different interpolation methods have to be compared with

each other, both statistically and visually, metadata is not provided in the exam-

ple maps due to the limited space available on the paper. Therefore, the research

area within Europe and the metadata for all the maps of the Netherlands is rep-

resented in appendix A.
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1.1 Related study

Improving the spatio-temporal distribution of surface solar radiation

data by merging ground and satellite measurements (Journée et al.,

2012).

In this research, Journée and Bertrand (2010), from the royal meteorological in-

stitute of Belgium, combined in-situ data with data from Meteosat. They made

use of different algorithms and functions provided by two Satellite Application Fa-

cility’s (SAF). First they created a cloud mask by using the MSG/SEVIRI cloud

detection algorithm. The surface albedo came from the LSA-SAF, which provided

a near real-time surface albedo product. Other parameters like transmittance,

water vapour, ozone and aerosols were taken from other models or measurements.

Once all parameters were known and the transmittance for a specific atmospheric

state was determined, the solar surface irradiation could be calculated. This was

done by multiplying the transmittance with the extraterrestrial incoming solar flux

density. Another approach used in this research was to extract the transmittance

of a given atmospheric state from a look up table and multiplying this value with

the extraterrestrial incoming solar flux density. Other parameters like ozone and

water vapour concentrations were still used from external sources. Several meth-

ods were used by Journée and Bertrand to combine the data. They came to the

conclusion that out of these methods, Kriging with external drift gave the best

results. They also pointed out that the process of combining satellite data with

in-situ data for an area with a relative dense network of measurement stations and

a relative high cloud frequency could improve previously obtained data.
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1.2 Fields of interest

Solar energy

The energy provided by the Sun is so abundant that the Earth receives energy

at a rate that is 10.000 greater then mankind consumes it (Arvizu et al., 2011).

It is an energy source which is available in every country in the world and besides

the emissions present at the production of solar energy collectors, CO2 and other

greenhouse gas emissions are very low for the use of direct solar energy. With new

solar technologies and an increase in the use of photovoltaic solar energy, thermal

power plants, passive solar heating/cooling and daylight systems, proper solar data

is required (Journée et al., 2012). Therefore to make efficient use of this energy

source, it is important to know how much energy the Sun provides at each location

by measuring the total irradiation (Arvizu et al., 2011). A map providing informa-

tion about the amount of potential solar energy is the basic essential information

for solar power designing (Otani et al., 1994). That is a reason why it is important

for (solar)energy companies to get a good and relatively high resolution map of

solar irradiation. With this information it becomes easier to pinpoint locations

that would have the optimum benefit from the Suns energy.

Other sectors

There are many fields that could benefit from global radiation data. Here, a few

of these fields will be shortly mentioned to get an impression where the datasets

from this research can be used for.

One of the fields that could defenitly benefit from high resolution global radia-

tion maps are the nature and agricultural sectors. ”Solar radiation in the visible

region of the spectrum affects the growth rates of crops, and it is used in numerical

models to estimate soil moisture, potential evapotranspiration and photosynthe-

sis.” (Tarpley, 1979). Besides crop growth rates other properties of landscapes and

soils are affected by global radiation.

One of the operational products that the KNMI delivers to one of its associates is

the evaporation product of the Netherlands. For the KNMI evaporation product,

Makkink is used (Hiemstra et al., 2011). Makkink (a calculation method used in

the Netherlands for evaporation) evaporation uses the shortwave incoming solar
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radiation and the mean daily temperature as input parameters. From these two

the radiation parameter is the most important one and has the largest influence on

the evaporation (Hiemstra et al., 2011). Therefore high resolution radiaton data

could also lead to higher resolution evaporation data.

Another product that makes use of global radiation data as input is the Sun-

shine duration product (Greuel et al., 2013). Radiation is used in an algorithm to

calculate the hours of Sunshine at a location within a specific time interval. There

are quite some models that also work the other way around and calculate global

radiation by the use of Sunshine duration as input. The Angström Prescott equa-

tion is an example where Sunshine duration is used to calculate global radiation

(Yorukoglu et al., 2005).

2 Radiation

2.1 General description

This paper only deals with electromagnetic radiation (ER). ER is a form of radiant

energy and the most important mode of transportation of energy in the Earths

system. The source of the Earths energy is the Sun. The Sun emits ER to the

Earth true a vacuum with the speed of light. In general the amount of energy

received at the top of the atmosphere (TOA) by a surface perpendicular to the

Sun is set to be 1.367 W/m2, which is the value recommended to use by the world

radiometric center (Huashan et al., 2010) . The temperature of the Sun is about

5.800 Kelvin, leading to a solar spectrum with wavelengths between 0.25 µm to 3

µm (Arvizu et al., 2011).

2.1.1 Global radiation

The maps that were created for this research deal with global radiation. Radiation

received by the Earth’s surface can be divided in two different types: direct radia-

tion (also referred to as beam radiation) and diffuse radiation. Direct radiation, is

radiation that is directly received by the Sun. Diffuse radiation, is radiation that

is indirectly received. For example, radiation from the Sun can be reflected and

scattered by clouds and other molecules or particles in the air before reaching the

sensor. Global radiation is the sum of both direct and diffuse radiation received on

a horizontal surface under a solid angle of 2π steradian. The unit used for global
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radiation is the amount of energy per time unit per area (W/m2 or Js−1/m−2).

Extraterrestrial solar radiation reaches the TOA. The fraction that infiltrates

the atmosphere interacts with molecular gases, aerosols and cloud droplets. The

electromagnetic radiation can be reflected upon the interacting and be redirected

back to space. It can be absorbed or it continues towards the Earths surface.

Once it reaches the Earth’s surface it can either be absorbed by it or it can yet

again be reflected back towards space. The fraction of the amount of radiation

that is reflected back into space is referred to as the Albedo. This leads to the

fact that the radiation leaving the atmosphere, which is captured by the satellite,

consists of the back-scatter from the particles and molecules in the atmosphere

and the fraction of radiation reflected by the Earths surface (Noia et al., 1993).

An overview of these interactions is given in figure 1.

Figure 1: Overview of what happens to radiation when interacting with the atmo-

sphere and Earth (Cubasch et al., 2013).

14



These interactions lead to the energy balance in equation 1. This can be

calculated for each pixel individually.

IE↓(i, j) = IE↑(i, j) + EA(i, j) + EG(i, j) (1)

Where:

• IE↓(i, j) = The flux density incident on TOA at location (i,j) in W/m2.

• IE↑(i, j) = The flux density of radiation leaving the atmosphere measured

by the satellite at location (i,j) in W/m2.

• EA(i, j) = The fraction of IE↓ absorbed by the atmosphere at location (i,j)

in W/m2.

• EG(i, j) = The fraction of IE↓ absorbed by the surface at location (i,j) in

W/m2.

The flux density incident on the atmosphere is dependent on the distance be-

tween the Earth and the Sun and the zenith angle of the Sun. The incident flux

density can be calculated with equation 2, for each individual pixel.

IE↓(i, j) = Fes

(ro

r

)2

cosθ(i, j) (2)

Where:

• IE↓(i, j) = The flux density incident on TOA at location (i,j) in W/m2.

• Fes = The solar constant ' 1367 W/m2.

• ro = The mean distance between the Earth and the Sun in AU.

• r = The real distance between the Earth and the Sun in AU.

• θ = The Sun’s zenith angle at location (i,j).

The mean distance between the Sun and the Earth is set to 1 AU (astronomical

unit) which is equal to 149.597.870.700 meter. The real distance between the Earth

and the Sun can be calculated with a relative easy equation, 3. There are more

complicated and precise equations to calculate the distance between the Earth

and the Sun, however this equation is adequate and accurate enough for most

engineering calculations (Duffie et al., 1991).
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r = 1 + 0.033cos

(
360n

365

)
(3)

Where:

• r = The real distance between the Earth and the Sun in AU.

• n = The day of the year (1-365) with January 1st being 1.

When radiation reaches the surface, it can either be reflected or be absorbed.

To calculate the amount of radiation that is absorbed by the surface (Eg) equation

4 can be used. This equation takes the incoming radiation at the surface and

multiplies it with the fraction that is not reflected due to the surface albedo.

Eg(i, j) = IG(i, j)(1− A(i, j)) (4)

Where:

• Eg(i,j) = The fraction of IE↓ absorbed by the surface.

• IG = Solar radiance at ground level.

• A(i,j) = The Albedo of the ground at location (i,j), varying between 0 and

1.

The solar radiance at ground level can either be calculated with the help of

equation 5 or it can be measured by a Pyranometer.

IG =
1

1− A
[IE↓ − IE↑ − EA] (5)

With knowledge about the incoming radiation at TOA and incoming radiation

at the ground it is possible to determine the transmittance of the atmosphere with

equation 6.

T =
IG

IE↓
(6)

Where:

• T = The fraction of transmittance of the atmosphere.
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Now it is possible to calculate most of the incoming and outgoing radiation

fluxes. However it is important to know that all these fluxes get influenced by

several factors. The most important factor influencing these fluxes is the zenith

angle of the Sun. This directly influences the air mass the radiation has to inter-

act with and thereby influences the absorption and scattering of radiation in the

atmosphere. Since it is possible to calculate the solar zenith angle the first fac-

tor influencing the flux measured by the satellite can be corrected. Another factor

influencing the flux measured by the satellite and the incident flux are clouds. Wa-

ter droplets and ice particles in clouds have a big influence on the absorption and

scattering of solar radiation. Cano et al. (1985), Otani et al. (1994), Diabaté et

al. (1989) and several other researchers assume that the cloud cover over a certain

area statistically determine the amount of incoming radiation at that location. If

clouds can be detected by the satellite it is possible to determine their impact by

comparing insolation under clear sky conditions with those of cloudy conditions.

It is possible to distinguish clouds on satellite images, since clouds tend to have

a high fraction of reflectivity in the visible solar spectrum (much higher then the

Earth’s surface if not covered with snow or ice)(Cano et al., 1986; Diabaté et al.,

1989; Noia et al., 1993; Otani et al., 1994).

2.1.2 physical patterns

Several researches have concluded that clouds are one of the main factors that

determinte the amount of incoming global radiation (Cano et al., 1986; Diabaté

et al., 1989; Tovar et al., 2001). This means that the formation of clouds over the

Netherlands will results in lower radiation at certain locations and higher radia-

tion in other places. One factor influencing cloud formation are big lakes and other

waterbodies. In general, during the winter period more clouds are expected above

waterbodies due to the relative warmer temperatures compared to the surrounding

land. In the summer period this pattern is the other was around and more clouds

are expected to form over land (Ackerman et al., 2013). This would result in a

relative cloud free shore in the Netherlands during the summer.

Another factor influencing cloud formation is land cover and vegetation. Vege-

tation processes such as respiration release water vapour which is needed for the

formation of clouds (Nc-climate). This means that in the Netherlands more clouds

are expected above vegetated areas. This is true especially in the summer months

due to higher respiration and vegetation activities. The Veluwe area (appendix

G) for example will therefore experience more clouds and less incoming global
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radiation.

2.2 Methods to capture global radiation from satellites

A method for the determination of the global solar radiation from me-

teorological satellite data. (Cano et al.,1986)

Cano et al. have developed a statistical approach using satellite data and training

data from the ground to determine the parameters of the regression model that is

used to predict the global radiation. Satellite data is taken from the geostation-

ary satellite Meteosat. They made use of both the visual as well as the thermal

infrared spectrum. In a first step albedo map of a cloudless sky is created over

the research area. This is done by taking the pixels with the lowest value out of

time series of satellite data. This can be done because in general clouds will re-

flect more radiation then other surfaces (except snow and some desert soils). In a

second step the cloud cover index is computed. This index is computed by taking

the original satellite image and extracting the ground albedo. What is then left is

the reflectance from the clouds which can be standardized to become a value from

0 to 1 indicating the percentage of clouds covering a pixel. With this knowledge

and data measured by stations the atmospheric transmittance has been calculated

for each pixel. These values range from 0.2 to 0.8. With these known parameters

Cano et al. created a model to predict global radiation at any pixel of the satellite

image with success.

Description of an operational tool for determining global solar radia-

tion at ground using geostationary satellite images. (Diabaté et al.,

1989)

Diabaté et al. have delivered the Helion station. This is a relative cheap package

of software and hardware that will calculate global radiation at ground level by

using geostationary satellite images. They used the same method as Cano et al.

(1986) which has been proven to be efficient. They took a satellite image and used

clear sky conditions to create a reference albedo map from the surface. In a second

step the seasonal variation in albedo was taken into account. When this map was

complete they use it as a reference map to be able to create a cloud index. To

determine the transmittance of the atmosphere Diabaté et al. refer to the linear

relation between the cloud cover index and the transmittance, proven by Cano et
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al. (1986). With these parameters known, Diabaté et al. were able to estimate

global solar radiation at the surface by taking the transmittance at a specific pixel

and multiplying it with the incoming radiation at the top of the atmosphere.

Solar radiation mapping from NOAA AVHRR data in Catalonia, Spain.

(Tovar et al., 2001)

Tovar et al. used a statistical approach to determine the global solar radiation

in Catalonia, a location in the north-eastern corner of Spain. In this research a

similar approach was used as by Diabaté et al. (1989). They assumed that the

amount of cloud cover for each location (pixel) determines the global solar radiation

received by that area. Therefore the first step in this research consists of detect-

ing clouds by using a multispectral cloud detection procedure. With the results

of this procedure a cloud cover index could be determined for each point (pixel)

of the area. This cloud cover index was then used in a final step to statistically

determine the global solar radiation model. For this global solar radiation model

the transmittance from the atmosphere was used as a factor. This was determined

before by looking at the relationship between total incoming radiation and radi-

ation measured by stations at the ground. Ground measurements were also used

to determine the regression coefficients of the model. The results of this research

showed an excellent correlation between the estimated global solar radiation and

the measurements from the stations. It resulted in a coefficient of determination

which was greater then 0.98 for every case and it had a RMSE ranging from 9.6%

to 15.8%. The bias varied from 1.3% to 9.5%. The research also showed that the

estimated global solar radiation tended to be better if the measurement stations

were more sparse (RMSE of 7%) than those who were obtained by interpolation

of station data which had a RMSE of 11% to 16%.

Mapping a topographic global solar radiation model implemented in

a GIS and refined with ground data. (Pons et al., 2008)

Pons et al. have computed a physically-based model to predict potential solar

radiation in Catalonia, Spain and refined the data by using meteorological data.

The main challenge in this research was to include the elevation of the area and

to be able to obtain a potential solar radiation map with only a Digital Elevation

Model (DEM) and data from meteorological measurement stations. The model

took several parameters into account when predicting potential solar radiation.
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These parameters were: The solar constant, the distance between the Earth and

the Sun, the solar geometry, the angles of incident Sunbeams in each cell, shadows

and the relation between direct and diffuse solar radiation. The methodology used

in this research has shown to be valid for computing solar radiation both on a

monthly and annual time scale. It has provided new maps with RMSE of 10kJ

m−2day−1. The result showed an error of 7.3% in March, 6.1% in June, 6.4% in

September and 13.1% in December. These results are better then those obtained

by classic interpolation techniques, especially in rugged terrain like in this research.

The model is still very much influenced by the quality of the DEM and the winter

months need to be accurately adjusted.

Estimating incident solar radiation at the surface from geostationary

satellite data. (Tarpley et al., 1979)

Tarpley et al. used a statistical approach to determine solar radiation at the

surface. However compared to most other methods, Tarpley et al. used three

different equations to calculate the irradiance. One equation for clear sky pixels,

one equation for partially clouded pixels and finally, one for cloudy pixels. To be

able to apply the right equation to the pixels, first a clear sky condition had to be

computed. This was done with data captured by the satellite before the start of

the time serie of this research. To compute the cloud detection process all data sets

with a solar zenith angle of 85◦ and higher were discarded. Data with a standard

deviation which was to large was also discarded. The remaining data was fit to a

regression model to get a set of coefficients. If the brightness values of a picture

were still greater than the predicted value, they were discarded as well. The last

2 steps were performed three times. The procedure then left a cloud free data set

and reliable regression coefficients. These results were then manually checked for

special conditions like mountains and lakes etc. The next step in the research was

to create a cloud index to determine the amount of clouds in a pixel. As a final

step the transmittance of the atmosphere was calculated. The results show that

the model has an error of less than 10% of the mean. Knowledge of cloud type

and thickness could further improve this model.

Retrieval and validation of global, direct, and diffuse irradiance derived

from SEVIRI satellite observations. (Greuell et al., 2013)

In this research Greuell et al. created a new model to obtain solar irradiance at
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the surface derived from SEVIRI imagery on board of the MSG satellite (Schmetz

et al., 2002). The main input data used for this research were; a cloud mask and

cloud physical properties, which were both obtained by SEVIRI observations. The

Surface Insolation under Clear and Cloudy skies (SICCS) model works with a phys-

ical based algorithm. This means that it does not use any ground control points

for the determination of the surface insolation. Instead, surface insolation was

obtained by using a detailed radiative transfer model. SICCSs algorithm consists

of two parts. The first part is the input and describes the state of the atmosphere.

The second part is the algorithm itself which calculates radiative transfer of the

atmosphere based on the input parameters. When comparing the hourly results

obtained by the SICCS with eight stations that measured radiation on the ground

the following results were received. The median values of the station biases was

6W/m2 (5%) for direct irradiance and 1W/m2 (1%) for diffuse irradiance. The

global irradiance had an bias of 7W/m2 (2%).

2.2.1 Global radiation data challanges

In general there are several problems when comparing ground data with satellite

data. The first problem is that you have to find the Pyranometer location on

the satellite image. This can be complicated due to the relatively high latitude

location of the Netherlands compared to the centre of the area observed by MSG.

The high latitude changes the resolution of the pixels and the viewing angle making

it harder to pinpoint the exact location of the Pyranometers. The second problem

is the difference of what is measured. The satellite measures radiation over a

small solid viewing angle. The Pyranometer measures radiation over a solid angle

of 2 π. Another small possible problem is the time scale at which the data is

captured. However with MSG capturing data every 15 minutes this problem is

close to resolved. The biggest challenge is coming from clouds and atmospheric

distortion. As stated before water droplets and ice crystals have an influence on

the scattering and absorption of radiation in the atmosphere. Aerosols are another

type of particles in the atmosphere that have a similar effect on radiation. All of

these factors have to be accounted for, making equation 1 to 6 more complicated.

The principle of these equations still stands however, explaining the differences

between each location will be harder to explain.

Another problem with clouds is the so called cloud parallax effect. The Sun

does not stand directly above the area of interest. This produces difficulties with

clouds in respect to the viewing angle and the location on the satellite image. A
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10km high cloud at 50 degrees North is displaced by more than 10km northwards

in the satellite image (Journée et al, 2012).

2.3 Current situation

Before trying to improve data, it is important to take a look at the current data and

how this data is obtained. In 2011 The KNMI has published its newest edition of

the climate atlas. It is both available as a book (Sluijter et al., 2010) and a selection

is visible on a website (www.klimaatatlas.nl). One part of this atlas consists of the

global radiation maps that are open for improvements. These maps were created

by taking data from official measurement stations and interpolating the missing

data to create a complete map. The data that was used in the klimaatatlas is the

average of the 30 year period from 1981 to 2010. An example of a global radiation

map is given in figure 2. The global radiation data is currently being used as an

input to compute Makkink evaporation. This dataset is operational and is being

deliverd to and used by Rijkswaterstaat. Rijkswaterstaat is a part of the Dutch

Ministry of Infrastructure and the Environment and responsible for the design,

construction, management and maintenance of the main infrastructure facilities in

the Netherlands.

2.3.1 Radiation measurements

Current radiation data is captured at 32 different meteorological measurement

stations in the Netherlands. The locations of these stations can be seen in figure

3. The meteorological stations located at the North Sea do not capture global

radiation data.

The stations that capture global radiation, use a Pyranometer. These Pyra-

nometers are of type CM 11 manufactured by Kipp & Zonen, Delft, The Nether-

lands . The measurements at the stations are performed automatically every 12

seconds. Mean, minimum maximum and standard deviation levels of irradiance

are computed from these 12 second interval measurements for time series of 1 and

10 minutes. In general the 10 minute interval measurement data is used. This

data is the average of 50 measurements performed by the Pyranometer. The mea-

surement resolution for average global radiation for the stations is 1 W/m2. The

thermo-electric Pyranometer can measure global or diffuse irradiation. For the

latter, the pyrometer’s measurement tool can be blocked from direct Sun beams

by means of a shadow disk (Kipp & Zonen, 1992; KNMI, 2005).
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Figure 2: Longterm average 1981-2010. Average yearly global radiation.

(www.klimaatatlas.nl).

.

The CM 11 works by using two heat absorbing detectors. One of these detectors

is exposed to short-wave radiation the other one acts like a reference detector and

its thermal state is not altered by radiation. The temperature difference between

these two detectors is used to determine the amount of irradiation by converting

it to a voltage. The irradiance is modelled by a linear equation, equation 7 (Kipp

& Zonen, 1992).

E↓Solar =
Uemf

Sensitivity

(7)

Where:

• E↓Solar = Global Radiation [W/m2].

• Uemf = Output of the Pyranometer [µV ].

• Sensitivity = Sensitivity of the Pyranometer [µV/W/m2].

Natural factors like precipitation, temperature changes, winds etc. can influ-

ence the accuracy of the measurements. Another possible source of offset is that,
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Figure 3: The 32 meteorological stations owned by the KNMI that are used in the

interpolations for global radiation.

the sensors are non-selective, they absorb all radiation, both short-wave as well

as long-wave radiation. Since the CM 11 is designed to accurately measure so-

lar irradiance, long-wave radiation and environmental factors have to be blocked

out. The CM 11 is therefore protected by two glass domes. These glass domes

are designed in such a way that they do not interfere with direct solar irradiance

and serve as a filter for shortwave radiation (Figure 4). This makes the CM 11

Pyrometer capture radiation data within a spectral interval of 285 nm to 2800 nm

(Kipp & Zonen, 1992).
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Figure 4: The thick line (1) represents the relative spectral transmittance of the

two pyranometer domes of the CM11. The dotted line (2) represents the spectral

distribution of solar radiation at sea level. Sun at zenith (Airmass 1). (Kipp &

Zonen, 1992).

.

The World Meteorological Organization (WMO) has classified the CM 11 Pyra-

nometer as a secondary standard device (Kipp & Zonen, 1992). This means that

the device is placed in the best category according to the ISO 9060 standard. To

be classified as secondary standard the WMO expects maximum errors in hourly

radiation to not exceed 2 to 3% (WMO, 2008). In order to perform proper mea-

surements and to prevent errors, maintenance of the Pyranometers is of utter

importance. Therefore the Pyranometers are cleaned every half year and on air-

fields this happens more frequently with an average of every two months. If errors

or abnormalities occur in the measurements, local maintainers can clean the Pyra-

nometers on request. To ensure the consistency and accuracy of the Pyranometers

a routine calibration is performed every 26 months at the KNMI (KNMI 2005).

2.3.2 Data processing

The 30 year averaged data obtained by stations was used to interpolate the current

maps in the climate atlas. For average yearly insolation, 20 stations were used and

for monthly insolation 16 stations were used. The data was taken for the period

of 1981 to 2010 which is the normalized period for climatic data. The interpola-

tions were performed in the program R, which is a language and environment for

statistical computing and graphics (R-Project). Both for the monthly and for the

yearly average the same R script was used. The only difference is the input data
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that was used. R used the auto-map function and thin plate splines for the inter-

polation and mapping of the data. In the interpolation with thin plate splines, λ

was set to be constant at 0.004 for all interpolations. The data was validated by

cross referring the interpolated data with the measured station data by the ”leave

one out cross validation”. The R2 was given as an output alongside the map and

information about the cross-validation. The R2 for yearly averages was 0.51 and

for monthly averages it was 0.61. The resulting maps are also evaluated by expert

judgement, done by R. Sluijter, within the KNMI itself (Hiemstra et al., 2011;

Sluiter, 2012).

2.4 Satellites

Satellites can be classified into two groups. Polar orbiting satellites and geosta-

tionary satellites.

Polar orbiting satellites move in a path around the world at an average height

of 800 km (EUMETSAT), passing over both poles, hence the name. These polar

orbiting satellites move from North to South and cross the equator at an angle

of approximately 90 degrees. However each rotation around the Earth they pass

the equator at a different longitude. Therefore it can take several days to months

before these satellites visit the exact same location again. The biggest advantage

of these satellites is the high resolution they allow data to be captured in.

Geostationary orbiting satellites are located at a specific point above the Earth

(often the equator at 0 degrees latitude) at an average height of 36.000 km (EU-

METSAT). These satellites move at the same speed as the rotation of the Earth.

This allows the satellite’s instruments to constantly capture data above a certain

area. Weather satellites are geostationary in most cases. The drawback of this type

of satellite is the relative low resolution the instrument captures data in compared

to polar orbiting satellites (NASA).

2.4.1 Meteosat

Meteosat Second Generation (MSG) is the current generation of European me-

teorological geostationary satellites. They are established by the cooperation

of the European Space Agency (ESA) and the European Organisation for the

Exploitation of Meteorological Satellites (EUMETSAT). MSG has replaced the

older Meteosat first generation. The first MSG satellite was Meteosat-8 and was

launched in 2002. This satellite was followed by 2 more similar satellites, Meteosat-

9, launched in 2005 and the current main meteorological satellite, Meteosat-10 in
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2012. Meteosat-10 is located at a position of 0◦ at a height of 36.000km, Meteosat-

9 is located at a position of 9.5◦ at a height of 36.000km and Meteosat-8 serves as

a backup service at a position of 3.5◦ and a height of 36.000km (ESA). The Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI) instruments on the MSG

satellites have a temporal resolution of 15 minutes (5 minutes for Meteosat 8 and

9 which are currently set on Rapid Scan Service (RSS)). The images produced

by SEVIRI have a radiometric resolution of 10bit per pixel and a spatial reso-

lution of 3km at nadir (directly under the satellite) for all channels. SEVIRI is

also equipped with a high-resolution visible (HRV) channel which has a spatial

resolution of 1km (Schmetz et al., 2002).

On the ground side, the MSG program exists of several components. The

central facilities are located at the EUMETSAT headquarters in Darmstadt, Ger-

many. Here data captured by the satellite is pre-processed up to level 1.5. This

means that satellite data is: corrected for differences in detector responses, com-

pensation for non-linearity and a geometric correction is performed to put the

data in a standard reference system. The rest of the ground segment consists of

stations for data acquisition, data control and back-ups. Another service provided

by the EUMETSAT is the distribution of data by Satellite Application Facilities

(SAFs). These facilities provide end-users with data and services that are fully

operational and ready to use. At this point there are 7 SAFs operational, each

covering different ”themes” that are related to climate monitoring (Schmetz et al.,

2002). To give some examples, the OSI-SAF (ocean and sea ice-SAF), provides in-

formation about the ocean and atmosphere interaction. The O3M-SAF (ozone and

atmospheric chemistry monitoring-SAF) processes data related to ozone, aerosols,

ultraviolet data and other trace gases (EUMETSAT SAF).

2.4.2 Other satellites

Due to the fact that satellites measure radiance, any satellite could be used to

obtain global radiation data. However not all satellites would be equally useful

when it comes down to their performance. All satellites have their plus and down

sides. The SEVIRI instrument on MSG has a relatively low resolution but is able

to capture data every 15 minutes. This makes the satellite able to create data sets

that are usable for time series. Satellites like SPOT (Satellite Pour l’Observation de

la Terre) and Landsat could provide a better resolution and therefore more detailed

maps (NASA, SPOT). Besides the operational Landsat and SPOT satellites, the

Sentinels from the EUMENTSAT sentinel program can also provide the data which
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is required. The first Sentinal was launched at the 3th of April 2014. Sentinel-2 to

Sentinal-6 will be launched in the near future. Though as a downside, the temporal

resolution of these satellites could be too low to create good time series and due

to the lower temporal resolution it becomes harder to correct cloud influences.

MSG will in time be replaced by Meteosat Third Generation (MTG). The MTG

program will consists of 6 satellites and the first one is planned to be ready for

launch in 2018. The MTG will have a higher spatial, temporal and radiometric

resolution compared to MSG. MTG will have 16 channels with a spatial resolution

ranging from 0.5 to 2 km. The temporal resolution of MTG will be 10 minutes

for a full disk scan and 2.5 minutes when set to a European regional rapid scan

(EUMETSAT MTG).

The choice of satellite is therefore dependent on the wishes of the user. If the

user wants an end product with high resolution on a specific time, data from

SPOT, Landsat or the Sentinels might be better than MSG. However, if the user

wants a result based on time series, a higher temporal resolution is needed and

MSG or GOES (Geostationary Satellite system) are better data sources. MTG

could become a balance between spatial and temporal resolution when operational.

28



3 Methods

The methods to obtain global radiation from satellites described in chapter 2 can

be devided into two approaches. The first approach is a statistical approach. The

statistical approach is based on the relationship between the satellite and ground

station data. The second approach is a physical approach. This approach uses

a radiative transfer model to determine how the satellite data and the ground

station data are linked together (Tovar et al., 2001; Noia et al., 1993). In general,

statistical methods work better on small areas (Cano et al., 1985). Both approaches

work with a similar physical basis. In this research data was taken from two

sources, both using MSG and a physical approach. The SICCS (Greuell et al.

2013) is a pure physical model not taking ground measurements into account for

its calculations (except for its validation). This is a very detailed model, taking

cloud physical properties into account among other factors like aerosols and water

vapor etc. The second set came from the CM-SAF (EUMETSAT CM-SAF 2013).

The physical model used for the CM-SAF product is less complex than the SICCS

model. It accounts for less physical properties in the atmosphere.

3.0.3 Input data used

For this research three input sources were used:

1. In-situ radiation data, measured at meteorological stations by means of Pyra-

nometers.

2. Climate Monitoring Satellite Application Facility (CM-SAF) radiation data,

modelled by the climate modelling satellite application facility using MSG

images.

3. Surface Insolation under Clear and Cloudy Skies (SICCS) radiation data,

modelled by the KNMI using a detailed physical model using MSG images.

3.0.4 In-situ data

Monthly, yearly and daily averages of global incoming radiation were used. These

values were extracted from the KNMI database and contained values of J/cm2.

These values were converted into W/m2 to match the satellite images. First J/sm2

was converted to J/m2 by multiplying by 10.000. After this Joules were converted

to W. This was done by using equation 8.
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P(W) =
E(J)

t(s)
(8)

Where:

• P(W) = Power in Watt [W].

• E(J) = Energy in Joules [J].

• t(s) = Time in seconds [s].

In total, 32 in-situ measurement stations were used. They were spread out over

the country as shown in figure 3. Radiation data at these locations was recorded

according to the method explained in section 2.3.1.

3.0.5 Meteosat data

Both the CM-SAF product as well as the SICCS product used MSG images as input

data for their models both products used auxiliary data from external sources.

3.0.5.1 CM-SAF: From the CM-SAF daily and monthly averages were used

(montly averages are also used to compute the yearly averages).This data was ob-

tained from the CM-SAF website (CM-PRODUCT). The start point of the time

series for montly averages was January 2006 and the end data was December 2011.

Daily data was obtained for the period of April 1st 2010 untill July 31st 2010.

The CM-SAF product used a Radiative Transfer Model (RTM) to compute the

radiation. The instruments providing the input data for the algorithms used are:

SEVIRI and the Geostationary Earth Radiation Budget (GERB) on MSG. The

Advanced Very High Resolution Radiometer (AVHRR) on the National Oceanic

and Atmospheric Administration (NOAA) and the Meteorological Operational

(MetOp) satellites for the northern latitudes (Mueller et al. 2009).

The CM-SAF algorithm used for calculating shortwave incoming solar radiation

(SIS) is based on the following underlying fundamental assumption:

SIS = Eocos(θ0)T (9)

where E0 is the incoming solar flux at TOA. θ0 is the solar zenith angle and T

is the transmissivity of the atmosphere.
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This algorithm to obtain SIS is based on several look up tables (LUT). This was

done to decrease the computational time of the algorithm. LUT’s were constructed

after running calculations in radiative transfer models (RTM) for different atmo-

spheric compositions and states. Once the tables were computed Transmittance

of the atmosphere could be extracted from these tables by simple interpolation.

This transmittance was then used in the fundamental assumption as shown in the

equation above (equation 9).

When computing the SIS with the CM-SAF algorithm pixels are first classified

as cloud free or cloudy. Depending on the classification different approaches were

used.

If a pixel was classified as cloud free, a LUT which considers: Aerosol Optical

Depth (AOD), single scattering albedo (ssa), asymmetry parameters (gg), water

vapour, ozone and surface albedo were used to obtain the transmittance of the at-

mosphere. Water vapour, Ozone and surface albedo use fixed values in the model,

these values correspond with: 15kg/m2 for water vapour, 345 DU (Dotson Unit)

ozone and a surface albedo of 0.2 (seasonal changes are not considered). The

satellite image was not used any further in the process to determine SIS. The full

schema used for clear sky conditions is displayed in figure 5 (Mueller et al., 2009;

CM-SAF, 2013).

When a pixel was classified as cloudy a different approach had to be used since

cloud albedo’s are considered to determine the incoming surface irradiance. All

the other input data was identical to that of the clear sky model. Surface albedo,

water vapour, ozone, aerosol properties etc. were the same. However in this case

the satellite image was used to determine the radiation under cloudy conditions.

It did so by deriving the top of the atmosphere albedo.

The full schema used for cloudy sky conditions is displayed in figure 6 (CM-

SAF, 2013).
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Figure 5: Schema of the clear sky conditions. I is the Solar surface irradiance)

(Mueller et al., 2009).

.

Figure 6: Schema of the cloudy sky conditions (CM-SAF, 2013).

.
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To validate the results of the CM-SAF surface incoming solar radiation method,

results from the model were compared with measurements of a baseline surface

radiation network (BSRN). To calculate the accuracy of the monthly mean maps 12

stations were used. From these 12 stations 578 measurements were taken between

2006 and 2011 for the validation. The optimal accuracy was set to 8 W/m2 both

for the bias and the absolute bias. The bias of the results compared with the

BSRN is 1.6W/m2 and the absolute bias is 7.2W/m2. Both were well below the

optimal accuracy, indicating that the obtained measurements were of high quality.

When looking at the quality of the daily data. The target accuracy was set to

20W/m2. The bias obtained by this method was 1.6W/m2 and has an absolute

bias of 14.8W/m2. This indicated that the hourly obtained radiances were also

well below the target, again indicating high quality measurements (EUMETSAT

2013).

Table 1 shows the statistics that were obtained by the validation with the

Cabauw station in the Netherlands, which is part of the BSRN. These statistics

were provided by R. Müller, one of the creators of this data set.
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Table 1: Validation of the montly CM-SAF product in Cabauw, the Netherlands.
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3.0.5.2 SICCS: From the SICCS daily and monthly averages were used (monthly

averages were also used to compute the yearly averages). This data was supplied

by J.F. Meirink (KNMI, climate department, the Netherlands), one of the creators

of the dataset. The start point for montly data was January 2006 and the end

data was December 2011. For daily data the time series started at April 1st 2010

and ended at the 31st of July 2010.

The SICCS product used a detailed RTM to compute radiation. The SICCS’s

algorithm consists of two parts. The first part is the input and describes the state

of the atmosphere. The second part is the algorithm itself which calculates radia-

tive transfer based on the input. The following parameters were considered when

the irradiance and the atmospheric transmissivity were calculated:

1. Solar zenith angle (SZA).

2. Cloud optical thickness (COT).

3. Cloud particle radius.

4. Cloud phase.

5. Aerosol optical thickness (AOT) at 500 nm.

6. The Ȧngström exponent.

7. The aerosol single scattering albedo (SSA).

8. surface elevation.

9. Visible and near-infrared surface albedo.

10. Integrated water vapour (IWV).

Before the algorithm starts, 8 look up tables (LUT) were computed by radiative

transfer calculations. These tables contained information about the transmissiv-

ity of the atmosphere depending on variables between the atmosphere and the

surface. 4 LUT’s were computed for clear sky conditions. Two LUT’s contained

transmissivity about global irradiance for VIS (240-704nm) and NIR(704-4606nm)

wavelengths. The other 2 LUT’s contained transmissivity about direct irradiance

for VIS and NIR wavelengths. The other 4 LUT’s were for cloudy skies. 2 LUT’s

contained transmissivity about global irradiance for VIS and NIR wavelengths for
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water clouds and the other 2 contained transmissivity in the same wavelengths but

for ice clouds.

When these LUT’s were computed the algorithm can be run for each pixel in

the SEVIRI image. This process goes as followed:

1) A cloud mask was computed. This was done with information about SEVIRI

reflectances and brightness temperatures. Each pixel was classified in one of three

categories in this step. A pixel is either ”cloud free”, ”cloud contaminated” or

”cloudy”.

2) If a pixel was in the ”cloud free” category. Direct and global transmissivity

for both wavelengths is computed by using the LUT’s. Since the LUT’s work with

discrete values, interpolation of the transmissivity might be used.

3) If a pixel was classified as ”cloud contaminated” or ”cloudy” information

about the physical properties of the cloud had to be computed. Cloud phase,

COT and cloud particle effective radius were determined with the Cloud physical

properties (CPP) algorithm. A description of this algorithm can be found in

Greuell et al. (2013).

4) With the CPP known, the global transmissivity could be found in the LUT’s

for clouds. The same interpolation was used as for clear sky pixels if the values

did not perfectly match the LUT values. If it turned out that the CPP found a

COT lower then a certain threshold. The pixel was treated like a cloud free pixel

and the LUT’s for clear sky conditions were used.

5) In this step the global transmissivity for all other wavelengths and pixels

were computed and the direct transmissivity for clear sky pixels. This is done

by taking the transmissivity of the VIS and NIR wavelengths and weighing them

according to the fraction they contribute to the total incoming radiation on top of

the atmosphere.

6) A correction was then performed to account for a bias found in ice clouds.

7) COT and clear sky direct transmissivity were used in an equation to calculate

the cloudy direct transmissivity (Greuell et al., 2013).

8) Gaps in the data and missing data were filled. This missing data was

computed by a correction algorithm (Greuell et al., 2013) or by taking the mean

of the retrieved transmissivity on the same day.

9) The diffuse transmissivity was calculated. This was done by taking the global

transmissivity and subtracting the direct transmissivity. The difference between

these two is equal to the amount of diffuse transmissivity.
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10) The global, diffuse and direct transmissivity(Ti) were recalculated into

global, diffuse and direct irradiance(Fi). This was done by the following equation:

Fi = S
uo

d2
Ti (10)

In this equation, S is the reduced solar constant which is set on 1358.1W/m2

and d is the distance from the Sun to the Earth in astronomical units.

When comparing the hourly results obtained by the SICCS with eight stations

that measured radiation on the ground the following results were received. The

median values of the station biases was 6W/m2 (5%) for direct irradiance and

1W/m2 (1%) for diffuse irradiance. The global irradiance had an bias of 7W/m2

(2%) (Greuell et al., 2013).

3.1 Data processing

The data was processed in the KNMI’s Geospatial Interpolation Environment

(GSIE). GSIE is a virtual environment that allows the user to perform large

amount of interpolations by running a pre-defined script which consists of 3 main

input files. A recipe, a query and a, interpolation script written in R.

The recipe tells GSIE where to find all the required files and what parameters

should be set for the input and output. All recipies that are used in GSIE have

the same structure. First the time span of the data to be processed is given. The

user has to define the start and stop time and has to set the resolution within

this time serie (day, month or year for instance). After this, the query is defined.

The query calls up the in-situ measurements from the KNMI database. The query

contains information on which variable should be loaded in, which stations and

the locations from these stations. The recipe describes where the results of the

query are located and what kind of file and units it contains. Next, the folders

where the R files are located are defined and the R scriped that has to be used is

set.

The R script contains the interpolation and validation code that will be per-

formed. The R script loads in all the data and works trough it line by line as

written in the script. The R script will load in the in-situ and satellite data and

will convert all radiation units to W/m2 using the method described in 3.0.4.

When this is done the different interpolation methods can be used on the input

data. This is done by using codes that define the variable to be interpolated and

parameters required for each interpolation. When the initial interpolation is done,

37



a cross-validation script is run and statistics on the interpolation are computed

according to the code written in the R script. These statistics are exported as .txt

files and can be analysed to get a better understaning of the interpolation output.

The interpolated results are exported as maps in the form of .ASCII files. The R

scripts used for global radiation can be found in appendix B to F.

Ones the interpolation has been performed and the maps have been created,

GSIE uses a web mapping service to show the created maps to the user and evaluate

them (figure 7). Within this mapping service maps can easily be downloaded in

different formats and be reprojected, edited, etc.

Figure 7: The GSIE web mapping service from the KNMI.

.

3.1.1 Data assimilation

For the exploration of combining in-situ data with satellite data different inter-

polation techniques had to be analysed. There are several interpolation methods

that allow the use of auxiliary data. Kriging with external drift is an example of

this (Sluiter, 2008). However data can also be combined on different ways. A Bias

interpolation (Journée et al., 2010) method could also be made to compare differ-
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ences between ground measurements and satellite measurements and take these

differences into account when interpolating the station values.

3.1.2 Interpolation

Interpolation is a process used to determine the variable of an unmeasured location

by using known values of measured locations. Each method has its advantages

and disadvantages (Hiemstra et al., 2011). Interpolation can however be divided

in several classes.

The first division can be made in whether a method is deterministic or prob-

abilistic. Deterministic methods create an interpolated surface by only using the

geometric characteristics of the measured points. Probabilistic methods use these

points as well but assume that there is a random element in the interpolation.

This type of interpolation allows the user to add a variance into the interpolation

method and it will provide a statistical significance of the results it gives.

The second division in interpolation methods can be made whether a method

is a global or local interpolater. Global interpolation uses one function to apply

on the entire field of interest. Local interpolators use several different functions

for the entire field or part of the field. Global interpolators often gives a smooth

map.

The last division that can be made is if a interpolation method is an exact or

inexact interpolation. Exact interpolations assume that values on which the inter-

polation is based are correct and will return the same values as measured at the

locations of the measurement stations/locations. Inexact interpolations assume

that there are uncertainties in the measured values and will therefore not return

the exact value as the input data at the measured location (Sluiter, 2009).

The simplest form of interpolation is taking the mean of all the measurements

and apply this to all unknown locations. However for this research that would

have been to simplistic. Different interpolation methods should be explored and

tested for there accuracy.

There are however several characteristics that can be expected when using any

interpolation method:

1. If there is a dense dataset of sample points and they are spread uniformly

over the area of interest. A fairly good interpolation will be performed, no

matter which method is used.
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2. If the data is clustered in several locations with large distances between them,

the output of the interpolation will be unreliable, no matter which method

is used.

3. Due to the fact that all interpolation methods average out values from mea-

surements, it is expected that high values will be underestimated and low

values will be overestimated.

In the next section some of the most used and known interpolation methods will

be explained. These methods are: nearest neighbour, inverse distance weighting,

splines and Kriging. Besides these interpolation methods, two more methods for

combining satellite data with in-situ measurements will be explained. The mean

bias correction and the interpolated bias correction.

Nearest neighbour interpolation (NN) is a relative simple interpolation method.

NN is also known as Thiessen polygon or Voronöı interpolation (Sluiter, 2008). NN

takes the value of the closest measured location and allocates it to the unknown

point. This is a very fast and mathematically simple interpolation method. How-

ever the results are very simplistic and do not look realistic in most cases. NN

interpolation is also very sensitive for the amount of input data. The more mea-

surements available the better the result. (Sluiter, 2008). For this research NN

will not be used due to the relative low amount of measurement locations.

Inverse distance weighting (IDW) interpolation is an exact interpolation method

that continues on the basis of the NN interpolation. IDW allows more than just

one measurement to influence the value of a location. The influence of the measure-

ment on the unknown location is determined by the distance from the unknown

location to the measurement. The further away the measurement the less influence

it has on the determination of the value of the unknown location. The value of an

unknown location (Zu) is given by equation 11.

Ẑi =

∑n
i=1 ω(xi)Z(xi)∑n

i=1 ω(xi)
(11)
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Where:

• Ẑi = The estimated value.

• ω(xi) = The weight of location (xi).

• Z(xi) = The measured value at location (xi).

The weight ω(xi) that a location receives is determined by the distance to the

measured points and the power that determines how fast weights drop with an

increasing distance, see equation 12.

ω(xi) = ‖xi − x0‖−p (12)

Where:

• ‖ ∗ ‖ = The Euclidean distance between the unknown location and the mea-

surement.

• −p = The power that determines how fast weights drop.

IDW interpolation is a fast and easy to implement method. The user can

change the −p parameter to influence the output and create a better result. How-

ever this interpolation method does not allow the user to add a secondary data

source and was therefore not sufficient for the combination of satellite data with

in situ data in this paper. However IDW was used to explore the interpolated bias

method, since it was a relative simple but exact method. IDW is already a widely

used method in interpolation of meteorological data and was therefore chosen to

be used for the interpolated bias interpolation (Hiemstra et al., 2011; Sluiter, 2008).

Splines interpolates a surface by applying a set of polynomials trough the obser-

vations. The polynomials are often of a third order degree. Lowering the degree

makes the interpolation more general and simplistic. Having a too high degree of

polynomials can create errors in the data set due to the high amount of oscillations

that can occur.

For splines interpolation it is important to determine whether to apply the

polynomials to a global pattern or a local pattern. The difference between local

and global patterns is visualized in fig 8.

To get the best accuracy with splines a cost function can be applied. A cost

function will minimize the amount of bending while optimizing the accuracy of
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Figure 8: global vs local patterns in splines interpolation (Hiemstra et al., 2011).

.

the polynomial at the measured locations (Hiemstra et al., 2011; Sluiter, 2008).

Higher errors at a measured location have a higher cost. The goal is to keep the

cost as low as possible by keeping the biases at the measured locations as small as

possible.

For this research splines was not the most interesting interpolation technique

to use. This due to the fact that the amount of versions of splines allowing a

secondary data set to be used is limited and very complex. However the concept

of the spline interpolation was of great importance due to the fact that the cur-

rent maps of global radiation data are interpolated with Thin plate splines (TPS).

TPS interpolation is assumed to be a good method to interpolate monthly and

yearly climate elements (Sluiter, 2008). Several climatologic and meteorological

elements are currently interpolated at the KNMI using TPS. Not all climatological

and meteorological data used for the interpolations comes with the same spatial

and temporal resolution. So TPS might not have been the optimal interpolation

technique for every element. However since it gave the best results on average,

the KNMI chose to use TPS for the evaporation and radiation datasets. One of

the data sets which is interpolated using TPS is the Makkink evaporation. Since

Makkink evaporation is determined by temperature and most importantly global

radiation, TPS is used for global radiation mapping to keep the spatial patterns

the same. (Sluiter, 2012).

Kriging is a geo-statistical interpolation method that assumes that spatial vari-

ation, of the to be interpolated attribute, is often not able to be described with a

simple function.
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Ordinary Kriging (OK) is the basic form of Kriging. OK uses weights, which

are described by a variogram, to optimize the interpolation values. OK uses the

following equation, equation 13, as an assumption to calculate the unknown value

of a variable at an unmeasured location.

Ẑi = m(x) + ε′(x) + ε” (13)

Where:

• Ẑi = The variable at location x.

• m(x) = A function describing a structural component of Z at location x.

• ε’ = A random spatially correlated component.

• ε” = A random non-spatially correlated term.

When the structural components have been accounted for. The semi-variance

can be calculated. This explains the correlation the residuals have with each other.

A semi-variogram is computed using equation 14.

Yu(h) =
1

2n

n∑
i=1

{z(xi)− z(xi + h)}2 (14)

Where:

• Yu(h) = The semi-variance.

• n = The number of point pairs of the sample data z separated by distance

h.

The semi-variogram (figure 9) gives the user information about several com-

ponents: the sill, the range and the nugget. The sill is the maximum value the

semi-variogram reaches. The range is the distance at which the sill is reached.

This means that from this distance on, sample points will no longer influence the

predicted value at a certain location. The nugget is the error or noise in the data.

It assumes that if a location is measured more then once, different values will be

given, this difference is explained by the nugget.

When the optimum weight is obtained by the semi-variogram, the expected

value at an unmeasured location can be calculated using equation 15.
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Figure 9: Semivariogram (Sluiter, R. 2009).

.

Ẑi =
n∑

i=1

λi ∗ z(xi) (15)

Where:

• Ẑi = The expected value at location x0.

• λi = The optimal weight of location i.

This method is known as OK. There is a variant called: ”Simple Kriging”. It

works the same as OK however, it makes use of known mean. This makes it a

slightly better version of OK but it is often difficult to derive the mean (Sluiter.

R. 2009).

When Kriging is used as an interpolation method, the user has the possibility to

make use of blocks. When blocks are set, Kriging predicts the blocks mean values.

This smoothens the map and often gives a better look to the map. However

when blocks are set, the original values of the observations are not returned at the

observation points. This leads to a mismatch of the original observed value and

the value obtained from the map (Sluiter, 2012). For this research blocks have

not been used since the aim was to get exact maps with high resolution instead of

smoothend maps.
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Universal Kriging/Kriging with a trend/Kriging with external drift

(KED) is a different variant of OK. KED makes use of a secondary data source

which has a high spatial resolution and is closely correlated to the main attribute

to predict the output values of the interpolation (Journée et al., 2010). In this case

it used in-situ measurements as the main input source and the satellite image as

a secondary data source. The satellite image had a relative high spatial resolution

and was most likely correlated with the in-situ data because they both gave infor-

mation about the same attribute. The satellite image was used as a trend in the

interpolation of the in-situ data. At the KNMI KED is used for several datasets.

When using KED several parameters can be set or adjusted. At the KNMI KED

is performed using a spherical or exponential variogram model and the nugget of

the variogram is set to 0. The nugget is set to 0 to ensure that Kriging returns

the in-situ measured values at the stations location, since it is possible to assume

that this value is correct. The other variogram parameters are set automatically

by using an autofit function.

Mean Bias correction (MB) is not really an interpolation technique but a

method that could show potentials for improving the current resolution of global

radiation maps. Journée et al., from the royal meteorological institute of Belgium

used this technique to improve their global radiation maps. It turned out that

even though it is a very simplistic method the results were only slightly less good

in respect to the more complex and detailed interpolation techniques (Journée et

al., 2010). Therefore it should be explored in this research.

The method is based on the idea that the satellite has an error and that this

error is constant over the entire area. So by looking at the differences between the

satellite measurements and the ground measurements and taking the average of

this we can apply this difference on all other unmeasured locations.

The method works as followed, equation 16 and 17:

Ẑi = δq(xi) (16)

With

δ =

∑n
i=1 Q(xi)∑n
i=1 q(xi)

(17)

Or it can be used as an additive function, function 18 and 19:

Ẑi = q(xi) + ∆ (18)
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With

∆ =
1

N

(
n∑

i=1

Q(xi)−
n∑

i=1

q(xi)

)
(19)

Where:

• Ẑi = The estimated value at location (xi).

• xi = The location of interest.

• Q(xi) = The in-situ measured radiation at location (xi).

• q(xi) = The satellite measured radiation at location (xi).

Journée et al., already described that this is not the best method to get accu-

rate radiation data. However since it gave better results as expected and since it

is a very easy to apply method testing it for the Netherlands was worth the effort

(Journée et al, 2010).

Interpolated bias correction (IB) is also a combination method that was ex-

plored rather than an interpolation method. The concept of this method was the

same as that of the MB correction. However in this case, the bias that is found

between the measurement stations and satellite observations is interpolated with

equation 20 and equation 21. With this method we no longer assume that the

error the satellite captured is uniform but varies from location. It was possible to

use different interpolation techniques on the bias values. Journée et al. used IDW

interpolation on the bias. However Kriging or Splines could also work. (Journée

et al., 2010).

Ẑi = δq(xi) (20)

With

δ =
n∑

i=1

Wi
Q(xi)

q(xi)
(21)

Or it can be used as an additive function, function 22 and 23:

Ẑi = q(xi) + ∆ (22)
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With

∆ =
n∑

i=1

Wi(Q(xi)− q(xi)) (23)

Where:

• Ẑi = The estimated value at location (xi).

• xi = The location of interest.

• Q(xi) = The in-situ measured radiation at location (xi).

• q(xi) = The satellite measured radiation at location (xi).

• Wi = The interpolation weights obtained by the IDW interpolation.

Table 2 gives a short overview of the interpolations and methods explained

above and the data they use for the interpolation.

Table 2: The different interpolations and methods explained and the data they

use.

.

3.1.3 Data validation

To see if the interpolation techniques or methods used to get values at unmeasured

locations performed a proper job, validation was needed. There are several ways

to perform a validation of the data.

Data splitting is one method to validate the interpolation. Before the inter-

polation takes place. The input data is divided into two different sets. One set

that is used to perform the interpolation and one control set that is used to vali-

date the interpolation. Once the interpolation is done the control set is taken and
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the value of the measured location is compared to the value of the same location

in the interpolation. By looking at the interpolated value and the real value out of

the control set an assessment can be made on how good of a performance the in-

terpolation gave (Sluiter, 2008). Data splitting was an option for this research due

to the fact that a background trend in the form of a satellite image was used which

could have a big influence on the output of the interpolation. However it could

also have had a big influence on the interpolation quality since the meteorological

stations are used as the main input and only 32 stations were available. Therefore

a different validation method was preferred but this one was not excluded.

Cross validation is a more statistical approach to validate the data. Cross

validation uses all input stations to evaluate the interpolation. It does this by

a ”leave one out” technique. A station was left out in the interpolation process

and its value was predicted using the other observations. The predicted value was

then compared with the measured value at that stations location. This step was

repeated for every station to test the model. By doing this a set of residuals was

obtained from each stations location. Statistics can then be performed on these

residuals to test how good the interpolation performed. Several statistics can be

computed with the cross-validation residuals.

The R2 value. The R2 is calculated as shown in equation 24:

R2 = 1− SSe

SStot

= 1−
∑n

i=1(Zi − Ẑi)
2∑n

i=1(Zi − Z̄i)2
(24)

• n = The number of observations.

• Zi = The measured global radiation at location i.

• Ẑi = The estimated value at location i.

• Z̄ = The mean global radiation.

• SSe = The residual sum of squares (
∑n

i=1(Zi − Ẑi)
2).

• SStot = The total sum of squares (
∑n

i=1(Zi − Z̄i)
2).

The R2 value tells the user how much of the variance in the data can be ex-

plained by the model. The R2 value is normally located between 0 and 1. The best

value to obtain is 1. This would indicate that the model can account for all the
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variation that is obtained by running the model. The R2 is often used to compare

different models with each other. R2 is used in the previous version of the global

radiation maps of the Netherlands and was therefore used again as a comparison

(Hiemstra et al., 2011).

The root mean square error (RMSE), equation 25. The RMSE is a measure of the

difference between the observations and predicted values. It tells the user how big

the magnitude of the errors is. Lower RMSE values are preferred to be obtained

since this means that the errors in the model are small.

RMSE =

√√√√1

n

n∑
i=1

(Ẑcv,i − Zi)2 (25)

Where:

• Ẑcv,i = The estimate from the cross validation at location i.

• Zi = The measured global radiation at location i.

To see if the interpolation generally over or underestimates the values the mean

error can be used. The Mean error (ME) can be calculated using equation 26.

ME =
1

n

n∑
i=1

(Ẑcv,i − Zi) (26)

The RMSE and the ME are relatively easy methods to compare different inter-

polation methods with each other. However it is only a measurement of relative

performance. When comparing two different methods it could turn out that the

RMSE and the ME of one method are very low compared to the other. However

in reality the method could still perform very bad. To be able to say something

about the real performance of an interpolation method other statistics have to be

looked at.

RMSEsd =

√
1
n

∑n
i=1(Ẑcv,i − Zi)2√

1
n−1

∑n
i=1(Zi − Z̄)2

(27)

The RMSEsd (equation 27) divides the cross-validation RMSE by the standard

deviation of the observed measurements. This method compares the interpolation

against the observed mean (Z̄) if it would be interpolated.
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A similar method can be used to make the ME say something about the real

performance of the interpolation. This can be done by taking the ME equation

and dividing it by the mean of the observations (Z̄). This provides a scale that

allows the user to compare the ME with the scale of the observations (the mean).

The MEmean is calculated by using equation 28

MEmean =
1
n

∑n
i=1(Ẑcv,i − Zi)

Z̄
(28)

With these statistics known it is possible to evaluate the different interpolation

methods. It is possible to evaluate them relative compared to each other with

the RMSE and ME and it is possible to judge them on there performance against

reality by using the RMSEsd and MEmean (Hiemstra et al., 2011).

Other methods to get a value to compare models with each other are the scaled

NRMSE and MAPE. The NRMSE is the normalized root mean squared error. It

divides the RMSE by the range of the observations, see equation 29. It is often

expressed as a percentage. Lower values indicate that there is less variance in the

residuals.

NRMSE =

√
1
n

∑n
i=1(Ẑi − Zi)2

xmax − xmin

(29)

The Mean Absolute Percentage Error (MAPE) method expresses the error as

a percentage. It takes the measured in-situ value minus the predicted value and

divides it by the measured in-situ value. For more observations these values can

be summed up. To get the percentage it needs to be multiplied by 100

MAPE =
100%

n

n∑
i=1

Zi − Ẑi

Zi

(30)

The MAPE statistic shows how much the residuals deviate from the original val-

ues. Therefore it is a very good statistic to look at since it gives a sense of how

good the model predicts reality (Hyndman et al., 2006).

Random points between the measurement stations could be analyzed and com-

pared with the interpolations and satellite image to get a better understanding of

the data in- and output. Since there were no ground control points to validate the

errors of the interpolation methods, the different outputs and satellite products

were compared against each other. Doing so gave a better understanding on how
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the satellite images stood on their own, how the satellite images influenced the

interpolation and how the interpolation methods performed compared to these

images. If the interpolations were accurate at the locations of the in-situ mea-

surement stations it was possible to assume that these interpolations are just as

accurate in-between the stations. By making this assumption it was possible to

see if the satellite images followed the same pattern as the interpolated output

and the same could be assumed the other way around. This would mean that;

if the interpolated output followed the same pattern as the satellite image (this

does not mean it had to return the same value), then it was possible to assume

that the interpolation method made good use of the trend that could be found

in the satellite product. On the other hand, if the values of the satellite image

came close to the values of the interpolation we could assume that the satellite

image consisted of accurate measurements. Due to the fact that the validation

of the satellite products already proves that they perform an accurate form of

measurements this method was a sort of double check.

This method also gave the opportunity to compare the satellite image values

with those of the TPS method which didn’t use the satellite data as an input at all.

For this paper the R2 and MAPE were used. R2 was used to get a first com-

parison between the different interpolation techniques. The R2 made it relatively

easy to compare different models and it was a method that was used before within

the KNMI. This allows a comparison with the previous global radiation dataset.

MAPE was used on the cross validation. It looked at the percentage difference

of a station when it was initially left out in the interpolation. With this method

a very clear and honest statistics was obtained that gave a good overview on how

the interpolation performed.

To get an even better understanding of the data set a data split was used where

8 random stations were left out when the interpolation was performed. Afterwards

these stations were put back in and the bias between the interpolation and the

stations was analysed. This gave an even better overview on how the interpolation

behaved and performed.

The data in between the stations was compared with each other at 60 different

locations. This was done to see how the interpolated maps and satellite images

stood against each other on locations that are not measured and known exactly.

Expert judgement wasl also used as a validation method. It was not statistically

sound, however it was of great help when analyzing results. Interpolation is a pure

mathematically process which does not account for physical or biological or any
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other process that could have an influence on the interpolated value in the real

world. Experts on radiation data could help analyze the map and find patterns

that should or should not be there. A discussion with an expert on radiation

patterns could lead to a better understanding and could be taken into account

when choosing an interpolation method or setting a parameter in an interpolation

equation. The expert that has been consulted was R. Sluijter, a climate expert at

the KNMI.

3.1.4 Spatial patterns

As a result of a discussion with the climate expert, when creating a map of global

radiation in the Netherlands, several patterns are to be expected.

1. Due to the slower warming of water, less clouds were expected to form di-

rectly above water bodies during spring and summer. Once the air moves

over land which warms faster, clouds are expected to form. Due to this a

cloud free coast was expected with clouds forming further in land. Therefore

especially in spring and summer time more radiation is expected along the

coast due to the lack of clouds.

2. Less radiation was expected above the Veluwe and the Utrechtse Heuvelrug.

These areas in the middle of the Netherlands are characterized by a higher

elevation (appendix G). The higher elevation canl cause orographic lift of

air, resulting in the formation of clouds due to the lowering temperature by

increasing elevation. The clouds will block out radiation due to a higher

albedo, leading to a lower radiation value. This pattern can also be observed

when looking at precipitation maps of the Netherlands. Most precipitation

falls in this area, see figure 10.
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Figure 10: Average precipitation in the Netherlands

.

3. In Spring and Summer a general west-east gradient can be detected with the

highest radiation values in the west along the coast.

4. In Autumn and Winter a general north-west gradient can be tetected with

the highest radiation values in the south. This pattern is observed due to

the differences in the lenght of the day.

With interpolation and validation methods known, the data could be processed.

In general the workflow shown on the next page can be followed to process the

data and evaluate the output.
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4 Results

Cross validation

Five interpolation methods were used (TPS, MB, IB, KED-SPH & KED-EXP).

The interpolations were performed for the average radiation over 6 years. For each

individual month of every year and for every single day from April 1st 2010 untill

July 31st 2010.

For the 6 year average, the R2 value of the IB was lower (0.19 for the CM-SAF

product and 0.43 for the SICCS product) than that of the other interpolation

methods (0.62 to 0.77 for the CM-SAF product and 0.49 to 0.62 for the SICCS

product)(figure: 11).

Figure 11: R2 values for the 6 year average interpolation. Left shows the results

for the CM-SAF product and right shows the results for the SICCS product.

The MAPE value of the IB performed just as good or even better than the other

interpolation methods (1.14% for the CM-SAF product versus 1.03% to 1.39% and

1.12% for the SICCS product versus 1.34% to 1.42%).

The highest average MAPE found for the CM-SAF product was 1.39% when

using the TPS interpolation method.

The MAPE’s in the SICCS product of the KNMI were a little higher in general

with a maximum error of 1.42% for both of the KED interpolations (Figure 12).
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Figure 12: MAPE values for the 6 year average interpolation. Left shows the

results for the CM-SAF product and right shows the results for the SICCS product.

When looking at the output maps it was possible to see a clear distinction

between interpolation methods that use auxilary data and methods that didn’t

(figure 13 and 14. The TPS method, which was not using auxilary data returns a

relative smooth map with no local variation. All interpolation methods that did

use auxilary data show local variation according to expected patterns.
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Figure 13: CM-SAF 6 year average interpolation output.

.
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Figure 14: SICCS 6 year average interpolation output.

.
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Looking at the monthly interpolation methods it was possible to see some more

variation in the results (figure) The CM-SAF products R2 was fairly stable for the

TPS and KED interpolations. The R2 of the IB and the MB interpolations were

changing quite a bit, ranging from -126.41 to 0.94. Especially the MB had a big

difference in R2 values. The SICCS product showed this same trend however the

variation was less extreme than in the CM-SAF product. The variation in this

product varied from -5.39 to 0.96. See figures 15 to 20
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Figure 15: R2 values for 2006 for both products.

.
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Figure 16: R2 values for 2007 for both products.

.
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Figure 17: R2 values for 2008 for both products.

.
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Figure 18: R2 values for 2009 for both products.

.

63



Figure 19: R2 values for 2010 for both products.

.
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Figure 20: R2 values for 2011 for both products.

.
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The MAPE was low for all interpolation methods. The highest MAPE was

observed in January 2010 in the CM-SAF product using the IB method and was

11.62%. The average errors for each year are shown in table 3. As shown in the

table the highest average MAPE’s were found for the MB and IB interpolations

in the CM-SAF product. The MAPE’s of TPS and KED interpolation methods

were very low on the cross validated interpolations (3.02% at maximum).

Table 3: Average MAPE values for the interpolations per year

.

These low mean absolute percentage error (MAPE) values indicated that the

interpolations predicted the global radiation very well when using a cross validation

method. This ment that the values obtained by the interpolations were very

accurate and therefore all interpolations could be used. Figure 21 to 26 show the

MAPE for each month for both products.
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Figure 21: MAPE values for 2006 for both products.

.
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Figure 22: MAPE values for 2007 for both products.

.
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Figure 23: MAPE values for 2008 for both products.

.
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Figure 24: MAPE values for 2009 for both products.

.
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Figure 25: MAPE values for 2010 for both products.

.
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Figure 26: MAPE values for 2011 for both products.

.
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Data Split

Due to the fact that all interpolation methods performed relatively well, espe-

cially on the station locations, other forms of validation tests were performed. In

a next evaluation test, 8 stations were left out as a form of data splitting. 8 sta-

tions is 1/4th of the data which was relatively much due to the fact that only 32

observations were available. Figure 27 shows which stations were left out. First

a data split with stations spread across the country was performed. After that a

data split with station on the western side of the country was performed. This was

done to see how the interpolation performed if the data was not evenly distributed

across the country.

Figure 27: Stations that were left out in the data split are shown with a cross.

The left map is the map for the first data split and the right map is for the second

data split.

.

73



When looking at the results of this data split (figure 28 to 31) it seemed that

the interpolated values yet again come very close to the in-situ measurements of

the stations. The maximum MAPE was 7% in January for the CM-SAF product.

This error was found in the MB interpolation method.

Comparing the products with each other showed that the SICCS product per-

formed a little better on average. The difference between the products were how-

ever extremely small with differences less than 1 to 2%.

Figure 28: Results for the first data split in Januari.
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Figure 29: Results for the first data split in April.

Figure 30: Results for the first data split in July.

75



Figure 31: Results for the first data split in October.

The average absolute bias and MAPE of the second data split are presented

in figure 32 to 35.The errors of the interpolation did start to increase now. The

biggest error was yet again found in January, in the MB interpolation for the

CM-SAF product with an average MAPE of 9.27%.
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Figure 32: Results for the second data split in Januari.

Figure 33: Results for the second data split in April.
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Figure 34: Results for the second data split in July.

Figure 35: Results for the second data split in October.
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Random Points

Since the interpolation kept performing this well at the station locations a val-

idation on random locations has been performed.

For each year January, April, July and October were used as input data. On

this way each season in each year was represented. The output values for each

interpolation method at the random locations were then compared with the value

of the satellite images. Figure 36 shows the locations of the random points used

to compare the values.

Figure 36: Random locations used between stations to evaluate the satellite image

versus the interpolations.

.
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The results are presented as line graphs below (figure 45 to 52). The black

line represents the values obtained by the interpolation. The red lines represent

the satellite image including the bias which was allowed/observed according to the

validation of the satellite product. This means that the CM-SAF product has a

positive bias of 4 W/m2 and a negative bias of 4 W/m2 which adds up to the

target of 8 W/m2 (CM-SAF 2013). For the SICCS product the positive bias was

set to 3.5 W/m2 and the negative bias to minus 3.5 W/m2, which adds up to the

observed bias of 7 W/m2 (Gruell et al., 2013). In this case the assumption was

made, that the bias that both products account for are evenly spread on both

the positive and negative side and fall within the optimal target accuracy of the

product.

If the interpolation performed well the black line should stay between the red

lines. In that case it did not pass the accepted bias (assuming the satellite values

are correct). In order to make it easier to asses the output, trend lines were added.

The orange trend lines are the trends that correspond with the positive and neg-

ative bias. The green line is the trend line corresponding with the interpolation.

All trend lines are third order polynomials. Third order polynomials were chosen

because they do capture the variation in the data without creating to many ex-

tremes on the edges. To evaluate the data, the trend line from the interpolation

method should stay between the trend lines from the satellite bias. If the line stays

exactly in the middle the interpolation performs best.
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Figure 37: Random point analysis Januari CM-SAF.

.
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Figure 38: Random point analysis Januari CM-SAF.

.
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Figure 39: Random point analysis Januari SICCS.

.
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Figure 40: Random point analysis Januari SICCS.

.
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Figure 41: Random point analysis April CM-SAF.

.
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Figure 42: Random point analysis April CM-SAF.

.

86



Figure 43: Random point analysis April SICCS.

.
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Figure 44: Random point analysis April SICCS.

.
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Figure 45: Random point analysis July CM-SAF.

.
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Figure 46: Random point analysis July CM-SAF.

.
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Figure 47: Random point analysis July SICCS.

.
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Figure 48: Random point analysis July SICCS.

.
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Figure 49: Random point analysis October CM-SAF.

.
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Figure 50: Random point analysis October CM-SAF.

.
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Figure 51: Random point analysis October SICCS.

.
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Figure 52: Random point analysis October SICCS.

.
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The CM-SAF product seemed to perform very well again. All methods that

used the satellite image as input for the interpolation method followed the pat-

tern found in the image. This means that the interpolation methods made good

use of the satellite image as a background trend. However, TPS did not use the

satellite image as an input source. Looking at the pattern obtained by the TPS

interpolation method it is possible to see that it does fit the pattern of the satellite

image quite well. The pattern is less extreme than that of the other interpolation

methods but it is definitely visible. This indicates that TPS performs very well

in-between the measurement stations as well.

It did turn out that the CM-SAF satellite image overestimates the radiation

values between the stations. All interpolation methods used the in-situ station

measurements as main input and the values obtained at these locations fit that

observed by the station. Since it was already proven that these values obtained

at the station locations were very accurate we could assume the values in-between

the stations should fit this accuracy as well. In the graphs that show the data

between the stations we see that the values tend to be on the lower side of the

negative bias. This means that the interpolation method lowered the values found

in the satellite images when it interpolated the map. This indicated that the

values in the satellite images alone were too high. This pattern was especially

observed in the spring and summer months which is displayed in table 4. The

SICCS product showed the same pattern. However, the graphs from this product

seemed to have a better correlation. When looking at the graphs it is possible to

see that the satellite image values and the interpolation values followed the same

pattern. The satellite images did yet again overestimates the values compared to

the interpolated values. However the bias in this product was smaller than that of

the CM-SAF product. This indicated that the SICCS product on its own seems

to be better in quality (table 4).
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Table 4: Table showing the average values for each interpolation and the average

of the satellite image. Left is for the CM-SAF product and right for the SICCS

product.

.

The montly output maps showed more local variation than the 6 year average.

This was expected due to the fact that the 6 year map used average values over a

longer time period, removing the local patterns that could be observed in smaller

areas. Figure 53 to 58 show three examples from the montly output maps for both

the CM-SAF product as the SICCS product. In these examples it was possible

to see that TPS does show the same average pattern as the other interpolation

methods that made use of auxiliary data. However the interpolation methods that

did use auxiliary data show more local variation, visualizing expected patterns

like the lower radiation above the Veluwe for example. Comparing the producs

with each other showed that in general the resolution of the SICCS product is

higher. The CM-SAF product returned a more gridded map compared to the

SICCS product.
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Figure 53: CM-SAF results for July 2007.

.
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Figure 54: SICCS results for July 2007.

.
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Figure 55: CM-SAF results for October 2008.

.
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Figure 56: SICCS results for October 2008.

.
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Figure 57: CM-SAF results for May 2010.

.
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Figure 58: SICCS results for May 2010.

.
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Daily data

Since all interpolations performed very well on a monthly and long time average

scale, daily data was analyzed as an extra option. For the daily interpolation only

the months April to July in 2010 were analyzed for this research. These months

were chosen since they are the most interesting when it comes down to radiation.

Radiation values are higher during these months and products and processes that

use radiation are therefore more interesting in these periods. The interpolations

were performed with the same methods as for the monthly and long term yearly

average. The average R2 and MAPE showed that interpolations that made use of

satellite data returned better results than those who didn’t use auxilary data (see

table 5 and table 6).

Table 5: The average R2 and MAPE for the daily interpolations on the CM-SAF

product.

.

Table 6: The average R2 and MAPE for the daily interpolations on the SICCS

product.

.
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For the CM-SAF product, TPS had the highest average MAPE of 10.7% this

was significantly higher than that of the KED and IB interpolations. The MB

had a maximum average error of 8.06% which was also quite high compared to

the KED and IB. The IB had the lowest errors but this went together with a very

poor R2 which was also observed in montly interpolations.

The SICCS product results showed the same trend as the CM-SAF product.

TPS had the highest MAPE followed by the MB. The IB performed the best when

only looking at the MAPE but had a very unpredictable R2 yet again.

To get a better understanding on how the actual R2 and MAPE behaved from

day to day results are presented in line graphs (figure 59 to 66). These graphs

show the obtained values for each day. Here it is possible to see that the R2 value

of the IB performed worse than the other interpolation methods. However the

MAPE graphs show a different trend. As expected from the average values the

IB and KED interpolations perform significantly better than the TPS and MB

interpolations. It is clear from the graphs that especially the TPS method was not

able to capture the variation in global radiation on a daily scale as good as the

other interpolation methods.
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Figure 59: Daily R2 values for April and May 2010 using the CM-SAF product.

.
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Figure 60: Daily R2 values for June and July 2010 using the CM-SAF product.

.
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Figure 61: Daily R2 values for April and May 2010 using the SICCS product.

.
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Figure 62: Daily R2 values for June and July 2010 using the SICCS product.

.
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Figure 63: Daily MAPE values for April and May 2010 using the CM-SAF product.

.
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Figure 64: Daily MAPE values for June and July 2010 using the CM-SAF product.

.
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Figure 65: Daily MAPE values for April and May 2010 using the SICCS product.

.
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Figure 66: Daily MAPE values for June and July 2010 using the SICCS product.

.
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When comparing the satellite measurements with the station measurements it

was possible to see that the interpolation methods adjusted the values found in the

satellite image to match the measurements made by the stations on the ground.

Table 7 shows how big the bias was between the satellite image and the ground

measurements for the CM-SAF product. The optimal accuracy of the CM-SAF

product for daily data was an error smaller than 20 W/m2 (CM-SAF 2013). As

shown in the table, this was not always obtained by the satellite image on its own.

Therefore using the satellite image as a stand alone product is not a valid option

and interpolation is needed.

Table 7: The bias in W/m2 showing the station value minus the satellite image of

the CM-SAF product, for 4 different days in 4 months in 2010.

.

The same could be said about the SICCS product. It would be unwise to use

the satellite image on its own at this point. Table 8 shows the average bias and

the minimum and maximum bias between the in-situ measurements and satellite

measurements. Although the bias was smaller compared to the CM-SAF product

it was still relatively high to use as a product on its own. Especialy when the

over or underestimation can easly be accounted for by using interpolation as used

above.
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Table 8: The bias in W/m2 showing the station value minus the satellite image of

the SICCS product, for 4 different days in 4 months in 2010.

.

In figure 67 to 72 three examples of daily interpolations are presented for both

products. The results have already shown that the error’s for the IB and KED

interpolations were smaller than those of the IB and TPS interpolations. Visually

all the interpolation methods gave more details than the TPS interpolation. More

local patterns and variations can be observed in both products.
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Figure 67: CM-SAF results for the 12th of May 2010.

.
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Figure 68: SICCS results for the 12th of May 2010.

.
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Figure 69: CM-SAF results for the 21th of June 2010.

.
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Figure 70: SICCS results for the 21th of June 2010.

.

120



Figure 71: CM-SAF results for the 31th of July 2010.

.
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Figure 72: SICCS results for the 31th of July 2010.

.
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Kriging Variance

When Kriging interpolations are performed, the interpolation also creates a krig-

ing variance map. The Kriging variance maps shows how big the variance of a

predicted value can be. It gives an estimation of its own estimation error (Kriging,

2005). In the following figures (figure 73 to 79) the variance maps are represented

for each temporal resolution.

Figure 73: Kriging variance for the 6 year average for both products.

.

123



Figure 74: Kriging variance for July 2007 for both products.

.

Figure 75: Kriging variance for October 2008 for both products.

.
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Figure 76: Kriging variance for May 2010 for both products.

.

Figure 77: Kriging variance for 12 May 2010 for both products.

.
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Figure 78: Kriging variance for 21 June 2010 for both products.

.

Figure 79: Kriging variance for 31 July 2010 for both products.

.
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5 Discussion and Conclusion

5.0.5 Discussion

The 6 year average seemed to perform fairly well, no matter which interpolation

method or input source was used (figure 11 and 12). The lowest R2 values were

found for the IB which means that the model couldn’t predict or explain the resid-

uals as well as in the other methods. The highest average MAPE found for the

CM-SAF product was 1.39% for TPS. This was a very low value, especially con-

sidering the fact that the maximum observed in-situ value was 127 W/m2. This

means that at maximum, the interpolation on the cross validation was 1.77 W/m2

off. This is well under the 2-3% that the WMO uses as a standard to classify

measurement equipment as secondary standard (WMO, 2008).

The SICCS product of the KNMI had a maximum error of 1.42% (which is, at

maximum a bias of 1.8 W/m2) it is also still under the targets of the WMO and

falls within the bias observed by the validation of the SICCS product (Greuell et

al., 2013).

The unstable R2 that was observed in the monthly MB and IB could be explained

by the quality of the satellite image. In the winter the solar angle for the Nether-

lands can be quite low. This makes it hard for the satellite to capture the data

with high precision. Due to this some satellite images were not complete or had

extremely low values in the northern half of the Netherlands. These low or missing

values had a big influence on the mean bias and the interpolated bias, creating

artefacts in the interpolation and therefore show bad results. The reason why

these interpolation methods were effected most is due to the fact that the values

that are interpolated are directly influenced by the difference between the in-situ

measurements and the satellite measurements. If one of these measurements was

not represented the interpolation would be less accurate. The other interpolation

methods only used the auxilary data as a trend or not at all. Their interpolation

on the in-situ measurements were therefore not or less effected.

In the satellite images it is possible to see why the SICCS product performed

better then the CM-SAF product fig 80. The SICCS images were in general more

complete than those of the CM-SAF. Since this pattern was visible in December

every year the SICCS product seemed to be a little better to use if the IB or MB

interpolation method is chosen as the most optimal interpolation method.

127



Figure 80: CM and SICCS satellite image for December 2008. The values of the

CM-SAF image are 0 in the northern part of the Netherlands.

.

The only time the MAPE exceeded 11.62% was when the satellite images were

not complete or had values of 0 as explained above. A MAPE of 11.62% is still

relatively low. This error was found in January 2010 where radiation reaches max-

imum values of 35.87 W/m2. This means that the error was still only ±4.17W/m2.

Which was yet again under the target of the CM-SAF product.

Besides that, the MAPE of all other interpolation methods was very low on the

cross validated interpolations (3.03% at maximum). The secondary standard of

the WMO is set at 2-3% for measuring equipment. This means that the monthly

MAPE of the combination of the satellite image and the in-situ measurements still

came close to, or reach this target.

The data split that was used to analyze how the interpolations perform with

less in-situ measurements showed that there were changes in MAPE values. The

maximum MAPE of 7% which was observed is not as bad as it seems. The rea-
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son this error was relatively high is due to low global radiation values that were

present in January. The radiation in the satellite images ranged from 11 to 45

W/m2. Therefore 7% was still a relative low. When looking at the absolute bias

this corresponded with a value of 2.01 W/m2, which was well below the CM-SAF

optimal target bias of less than 8W/m2 (CM-SAF, 2013). Besides this particular

error it was possible to see that all interpolation methods still perform very well.

This would mean that even with less in-situ measurements the interpolation meth-

ods still manage to predict the global radiation values with high accuracy. Though

this theory was only plausible so far when the in-situ observations were spread

evenly around the country.

The increase in the MAPE in the second data split to 9.27% was yet again a

relatively small increase. As explained above this value still only corresponded

with an absolute bias of 2.71 W/m2. An interesting thing was that in the first

data split the SICCS product performed better when looking at the MAPE. In

the second data split it was the other way around. Besides the January month,

the CM-SAF product performed a better interpolation with stations missing at a

concentrated area. Though the difference between the products MAPE was on a

scale smaller then 2%.

The final analysis with random points in-between the stations showed that it is

possible to come to the following conclusions:

1. All interpolation methods that used the satellite products as auxiliary data

in their interpolation made good use of the pattern found in the satellite

product. The interpolation method almost follows the exact same pattern

as the satellite image.

2. All interpolation methods, including TPS, came very close to the satellite

measurements when it comes down to absolute values. The satellite images

seem to overestimate the global radiation but this is an overestimation which

is often still within the allowed/target accuracy.

The results obtained confirm the findings of R. Sluiter that concluded that TPS

was a good interpolation method for monthly and yearly climate elements (Sluiter,

2008).
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For the daily interpolations TPS and the MB interpolation performed worse

than the IB and KED interpolations. The reason why the TPS and the MB

performed worse lies in the fact that the variation in global radiation on a daily

scale is larger than that of the monthly and long term yearly data. For the daily

data the differences in incoming global radiation between stations can be 4 to

10 times higher while this variation was very small in monthly data due to the

fact that these maps were obtained by taking the average of daily measurements.

Due to the high variation, larger errors were to be expected when performing

a crossvalidation with TPS since one station can make a bigger difference when

variation is bigger. This increase in variation also made it harder for the MB

interpolation to get an accurate average error that could be accounted for in the

satellite image.

The variation in the map, which causes the TPS and MB interpolation to

perform worse, can be explained by weather conditions. For daily data weather

conditions play an important role. The weather conditions on a daily basis are very

random compared to a month or year average. One cloud above a measurement

station can block out a big proportion of the potential incoming global radiation.

This can cause high variation between different locations depeding on the local

weather. The KED and IB methods performed a lot better on a daily basis. This

is because these methods do account for the bigger variation and random patterns

that are present due to weather conditions. Both KED and IB use the trend in

the satellite image but alter the values in such a way that they correspond with

the measurements made by the stations. By doing so the interpolation returned

the correct values at the stations location and it keeps the trend from the satellite

image. Therefore variation and the expected random patterns caused by weather

can be observed in the results.

More importantly for this research, they are in agreement with the results ob-

tained by Journée et al. (2010) in their research ”Improving the spatio-temporal

distribution of surface solar radiation data by merging ground and satellite mea-

suremetns”.

In this research they come to the following conclusion: ”The best merging perfor-

mance was equally obtained by kriging technique (i.e., kriging with external drift)

and by an adjustment of the SAF products with the spatially interpolated bias be-

tween stations and SAF data. The distribution of surface solar radiation inferred

by merging ground and SAF data was systematiccaly more accurate than when us-
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ing each data source seperatly.”

In the research performed by Journée et al. they looked at data with a high

temporal resolution. This is in agreement with the results found in this research.

The KED and IB method perform better when the temporal resolution is increas-

ing. They also point out that this is caused due to the fact that by combining the

data the strenghts from both products is used to its optimal. The satellite image

contributes to the spatial distribution of the solar irradiance which is largely in-

fluenced by clouds and the in-situ measurements have their accuracy as a strong

point. The combination of these strenghts and the coverage of the satellite data

leads to a better product (Journée et al., 2010).

The results that were obtained by Journée et al. are represented in figure 81.

The figure shows the cross-validated mean bias error (MBE), mean absolute error

(MAE) and the root mean square error (RMSE) for all the interpolation/merging

methods they used. These statistics are based on 2 years of data (2008 and 2009).

In these results it is possible to see that the differences between the errors in the

interpolation techniques are small.
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Figure 81: The cross-validated mean bias error (MBE), mean absolute error (MAE)

and the root mean square error (RMSE) for the; Weighted interpolation (WI), Or-

dinary Kriging (OK), SAF-product (SAF), Mean bias correction (multiplicative

adjustment) (MB-m), Mean bias correction (additive adjustment) (MB-a), Inter-

polated bias correction (multiplicative adjustment) (IB-m), Interpolated bias cor-

rection (additive adjustment) (IB-a), Ordinary Kriging with multiplicative satellite

-based correction (KS-m), Ordinary Kriging with additive satellite-based correc-

tion (KS-a) and Kriging with external drift (KE) (Journée et al., 2010).
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Expert Judgement

Since it turned out that both satellite products and all interpolation methods

performed well when it comes down to absolute errors on a monthly and long

term temporal resolution, it was hard to judge them for the real quality they give

the user. Therefore as a last validation a discussion with the climate expert (R.

Sluijter) was held to analyze patterns in radiation.

The discussion lead to the following findings:

1. The interpolation methods that made use of the satellite images create a more

realistic map of radiation in the Netherlands. Spatial patterns of forests

in the center of the Netherlands are made visible by using satellite data.

This is not the case when performing a TPS interpolation. The same can

be said about the patterns visible in Friesland (a province in the North of

the Netherlands). More radiation is to be expected on the West coast of

Friesland. This pattern is better represented in interpolations using satellite

images as auxiliary data.

2. In the winter months strange or unexpected patterns are visible. This is

caused by the lack of incoming solar radiation on shorter days combined

with random (less predictable) weather processes. This is visible for all

interpolation methods.

3. The SICCS product has a higher visual resolution with more visible variation.

4. For the daily data, adding auxilary data to the interpolation results in better

maps. Although it isn’t possible to see known patterns due to chaotic weather

conditions the values returned are realistic and the chaotic patterns due to

weather are expected to give this kind of output. The daily maps that do

contain a certain pattern correspond with past weather conditions that are

known from a different databases. Figure 82 shows the daily incoming global

radiation on the 12th of May compared to the solar duration on that day,

obtained from the KNMI database.
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Figure 82: A comparisment between the solar duration (left) and the daily global

radiation (right) for the 12th of May. The solar duration map was created with a

TPS interpolation using 32 in-situ measurements. The global radiation map was

created with a KED-EXP interpolation using 32 in-situ measurements and the

CM-SAF product as auxilary data.

.

Kriging Variance

When looking at the Kriging Variance maps, lower variance values are prefered.

This would indicate that the kriging interpolation is more certain of the predicted

value. The Kriging variance will be higher when the variance in the data itself

increases or when less data is available. The Kriging variance will decrease when

the distance to a measured location is smaller (Minesight, 2005). This is visible in

all kriging variance maps as shown in figure 73 to 79. The Kriging variance values

at the in-situ measurement locations are 0 or near 0 and increase the further away

from the measurement station. This is logical since the in-situ measurements are

used as main input with a nugget of 0.

For the long term average Kriging variance the maximum variance was observed in

the SICCS product and has a value of 5.28 W/m2. This value was relatively high

since the range of the incoming global radiation ranged from 114 to 129 W/m2.
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The CM-SAF product had a better Kriging variance with a maximum value of

2.3 W/m2. This would mean that in general the CM-SAF product made a more

certain prediction. This was also visible in both the R2 value and the MAPE. The

CM-SAF had an R2 value of 0.76 and a MAPE of 1.03 % and the SICCS product

had a R2 value of 0.49 and a MAPE of 1.42 %.

For the monthly Kriging variance maps the same patterns are visible. Both meth-

ods perform very well at the in-situ measurement location and the certainty of the

interpolation decreases with an increasing distance from the in-situ measurements.

The Kriging variance values also stayed on the high end of the total range of global

radiation measured. The only difference with the monthly variance was, that for

these interpolations the SICCS product seemed to score better. The same patterns

were found in the R2 values and MAPE’s, both products worked fairly well here

and differences were small. However, the SICCS producted had a slightly better

R2 and MAPE here as well.

For the daily data a more stable pattern is visible. For these maps the SICCS

product performs significantly better than the CM-SAF product. This is in agree-

ment with the resutls found in the R2 and MAPE analysis. The Kriging variance

values remain high when further away from the stations but this is due to the fact

that the interpolation has no input data here but only a trend from the satellite

image.

These variance maps do show where the Kriging interpolation could be improved.

It is unrealistic to have in-situ measurements covering the entire area of the Nether-

lands. However, there are more in-situ measurement stations available then cur-

rently used to interpolate the data. The Woensdrecht (South Netherlands) and

Vlieland (North Netherlands) station (figure 83), currently do not measure global

radiation data. When looking at the variance maps it is possible to see that the

variance on these locations is relatively high in all maps. Adding a Pyranometer

to these stations will lower the variance at the location and in the area and could

further improve the quality of the global radiation maps when using interpolation.
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Figure 83: All available in-situ measurement stations in the Netherlands.

.

5.0.6 Conclusion

The results showed that all interpolation methods, depending on the temporal

resolution, performed well at the locations of the in-situ measurement stations.

Therefore all interpolation methods have their uses and cannot be classified as

unusable. The output of all interpolation methods returned the pattern that would

be expected when analyzing radiation in the Netherlands. This was especially

visible when interpolating radiation on average timescales of one month or longer.

In-between the stations it is possible to see that the interpolation methods that

used auxiliary satellite data follow the patterns observed in the satellite images

better than that of TPS. Though it is possible to conclude that this difference was

not big enough to say that one interpolation method turns out to be better than

the rest. This is however only true for the longer term averages and montly data.
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On a visual side it is of course possible to make a choice for the ”best” product.

The reason for this is due to the fact that the stations are used to set the amount

of incoming global radiation and the satellite data is used to describe the patterns.

This leads to maps with local observable patterns and a higher resolution.

In general the following conclusions can be made:

Long term average: All interpolations performed almost equally well here. The

R2 of 0.19 (CM-SAF) and 0.43 (SICCS) for the IB was lower and was therefore

more doubtful as a model. However, the absolute errors were just as small as in

the other interpolation methods. There was no significant difference between the

two different satellite products. Therefore the choice of product and interpolation

method is only dependent on the requirement specifications of the user.

Monthly data: TPS and both the KED interpolations performed the best in gen-

eral. The IB interpolation seemed to be less predictable when looking at the R2

values. When looking at the MAPE’s it turned out that the MB interpolation

scores significantly higher. This was mainly due to the December month where

radiation values were low or satellite data was not complete. This pattern could

especially be observed in the CM-SAF product where the December months lacked

data. Therefore it could be said that for monthly data the SICCS product would

be a better choice and KED or TPS should be used as interpolation method.

Daily data: Here it was possible to say that TPS and MB perform worse than

KED and IB. TPS was not able to capture the chaotic patterns that can be ob-

served on a daily basis due to weather conditions. The density of the in-situ

measurement stations is to low to capture the variation that is present inbetween

the stations. The big variation of the incoming solar radiation and the big differece

between satellite observations and in-situ observations also make it hard to find a

mean error in the satellite image. This leads to an inaccurate map using the MB

method.

Due to these circomstances it is possible to say that the KED and IB interpola-

tions would be the most optimal interpolation method on a daily basis. Especially

the KED due to its stable R2 compared to IB. Productwise, SICCS would be a

better choise due to the smaller differences and errors in the satellite images and

interpolations.
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To come back and answer the research questions;

1. Is Kriging with external drift the best interpolation method, as expected?

2. Is the physically detailed SICCS product a better underlying data source

than the CM-SAF product?

First off, Kriging with external drift is not necessarily the best interpolation

method. It is one of the most stable methods and it does capture the trend of the

satellite image very well. But, all other interpolation methods perform relatively

equal when it comes down to absolute errors for the 6 year average and monthly

data. It is possible to say though, that Kriging with external drift would be a

safer choice to use in the months where radiation values are low and satellite im-

ages limited (in the Netherlands this would be in December and January). For

daily data KED interpolation will result it more accurate maps compared to TPS

and MB. KED is able to capture the chaotic weather conditions and therefore give

more accurate results than TPS or MB interpolation. The advantage of using KED

compared to using satellite images on their own would be the fact that Kriging

accounts for the bias found in the satellite images. KED adjusts the values in the

satellite images to match those of the in-situ measurements thereby reducing the

errors in the product without reducing spatial resolution.

Secondly, the detailed SICCS product is not necessarily a better product to use as

auxiliary data when interpolating global radiation in the Netherlands. The differ-

ences between the product are to small and change to much to say if one product

is always better than the other. However for the December month the physically

detailed SICCS product is more stable and for this month it would be wise to use

the SICCS over the CM-SAF product.

For the daily data however the SICCS product would be a better choice. The

differences between the SICCS product and the CM-SAF product after using in-

terpolation are not that high. However, the satellite image on its own performs

better when looking at the bias between the image and the in-situ measurements

and would therefore be a more stable choice.

138



6 Outlook

Both of the anomalies/artefacts above the water bodies near and in the Nether-

lands are not a problem for global radiation maps in this paper. GSIE automat-

ically masks the output maps with an overlay of the Netherlands and its water

bodies. Hereby cutting out these two observed problems. However when the radi-

ation maps are used as input for other models the data is not cut away and can

lead to artefacts in the model.

Since it turns out that the satellite images on their own perform a very good

job in predicting global radiation values it could be possible to immediately use

the satellite images as global radiation maps instead of using an interpolation

method. This would be true for atleast the long time average maps and monthly

maps. The SICCS product is immediately available at the KNMI since it is pro-

duced here. The CM-SAF product is available without costs and could be used.

However since these images seem to be less complete in the winter months it might

not perform well enough as a stand alone product. To see if this is possible more

research should be performed. Analysis have to be made on how good the images

perform over longer periods of time and under different conditions. Also satellite

equipment needs to be calibrated and corrected and both the models used to pre-

dict satellite global radiation measurements are dependent on input from auxiliary

data themselves.

Further research in the improvement of global radiation maps in the Netherlands

can be done. Since it turned out elevation has an influence on cloud formation a

DEM (Digital Elevation Model) could be taken as auxiliary data to obtain an even

more detailed model. Pons et al., (2008) have already shown that it is possible

to predict global radiation by using a DEM. Other auxiliary data such as a veg-

etation or albedo map could also possibly improve the quality of radiation maps.

The Veluwe area (which also has a higher elevation) and the centre of the Nether-

lands show lower radiation values on monthly and long term averages. These areas

are characterised by forests. However to come to definite conclusions about these

input sources more research has to be performed.
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A Metadata

The research area is the entire Netherlands. Figure 84 shows the location of the

Netherlands within Europe. The metadata used for all the maps of the Netherlands

is described on the next page.

Figure 84: The Netherlands is hightlighted with a red border within Europe.

.
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Metadata:

The output maps all have the same extend. They come with the following standard:

Left bottom corner (m) : (0, 300000)

Right top corner (m): (300000, 640000)

Cell size (m): (1000, 1000)

Rows/collumns : (340, 300)

For the CM-SAF product:

Maps created by: Jurgen van Tiggelen

Date: April 2014

Data provided by: CM-SAF and the KNMI.

Projected coordinate system: RD New

Projection: Double Stereographic

False Easting: 155000.000000

False Northing: 463000.000000

Central Meridian: 5.387639

Scale Factor: 0.999908

Latitude Of Origin: 52.156161

Linear Unit: Meter

Geographic coordinate system: GCS Amersfoort

Datum: D Amersfoort

For the SICCS product:

Maps created by: Jurgen van Tiggelen

Date: April 2014

Data provided by: The KNMI.

Projected coordinate system: RD New

Projection: Double Stereographic

False Easting: 155000.000000

False Northing: 463000.000000

Central Meridian: 5.387639

Scale Factor: 0.999908

Latitude Of Origin: 52.156161

Linear Unit: Meter

Geographic coordinate system: GCS Amersfoort

Datum: D Amersfoort
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B R-script for global radiation using TPS

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE
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#Start TPS process

# TPS preprocess data

nl tps.grd = nl.grd

fullgrid(nl tps.grd) = FALSE

# TPS Standard code

lambda fixed=0.004 # set TPS lambda smoothing parameter, NA for autofit

tps = doTps(VARIABLE ∼1, var, nl tps.grd, addFit = TRUE, debug.level = 1, lambda = lambda fixed)

lambdafit=tps$fit$lambda

#write.table(lambdafit, ”./output/lambda.txt”, row.names=FALSE, col.names=FALSE)

#TPS Cross validation

tps.cv = crossvalidate(VARIABLE ∼1, var, func = ”doTps”, debug.level = 0, lambda = lambda fixed)

teller = sum(tps.cv$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

tps.r2 = 1 - teller/noemer

tps meanvar = mean(tps.cv$residual)

tps maxvar = max(tps.cv$residual)

tps minvar = min(tps.cv$residual)

tps sdvar = sd (tps.cv$residual,na.rm=TRUE)

cv TPS = data.frame(tps.r2, tps minvar, tps maxvar, tps meanvar, tps sdvar)

#write.table(cv TPS, ”./output/TPS R2.txt”, row.names=FALSE, col.names=TRUE)

# Cut off at zero (no negative EV allowed)

result = tps$krige output

result$var1.pred = pmax(result$var1.pred,0)

# Grid output

write.asciigrid(result, ”./output/prediction.asc”, attr = ”var1.pred”, na.value = -9999)

# Data output

# Stations output

# create a dataframe with the station numbers and their corresponding indexes in the grid

stationAndIndex = data.frame(stationIndicesInGrid,var$STN,var$VARIABLE)

#remove stations which do not fall within the new grid

stationAndIndex = na.omit(stationAndIndex );

# StationFields #

#Fill all default values with 0

stationField=data.frame(data.frame(gridDefinition ,0))

#Fill in the stations

stationField[stationAndIndex$stationIndicesInGrid,3]=stationAndIndex$var.STN

#Create a SpatialDataGrid

coordinates(stationField)=∼s1+s2

gridded(stationField) = TRUE

# StationValues #

#Fill all default values with 0

stationValues=data.frame(data.frame(gridDefinition ,0))

#Fill in the stations values

stationValues[stationAndIndex$stationIndicesInGrid,3]=stationAndIndex$var.VARIABLE

#Create a SpatialDataGrid

coordinates(stationValues)=∼s1+s2

gridded(stationValues) = TRUE
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# Grid output

write.asciigrid(stationValues, ”./output/stationvalues.asc”,na.value = 0)

write.asciigrid(stationField, ”./output/stations.asc”,na.value = 0)

#MORE STATISTICS

#Mean Error TPS

ME = ((1/StNr)*((sum(abs(tps.cv$residual)))))

MEmean = (ME/(mean(tps.cv$observed)))

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((tps.cv$var1.pred− tps.cv$observed)2)))))

sdvar = ((tps.cv$observed− (mean(tps.cv$observed)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)

RMSEsd = (RMSE/sdvar)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

#MAPE

tps.cv$MAE = abs((tps.cv$residual/tps.cv$observed))

MAEsum = sum(tps.cv$MAE)

MAPE = (MAEsum*(100/StNr))

#TPS errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

TPS errors = data.frame(tps.r2, MAPE)

write.table(TPS errors, ”./output/TPS Errors.txt”, row.names=FALSE, col.names=TRUE)
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C R-script for global radiation using MB

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)
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#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Calculate the mean bias

diff.grd = read.asciigrid(”./output/stationValues.asc”,colname=”sis”) #read in the stationvalues as a grid

diff.grd$sis = (diff.grd$sis-sis.grd$sis) #calculate the difference between the ground observations and satellite

observations

Mbias = mean(diff.grd$sis, na.rm=TRUE) #Find the mean of the differences

#Create and write the grid

Mbiasgrid = sis.grd #make a new grid with the same extend as the other grids

Mbiasgrid$sis = 0 #Change the values in the grid to 0 so its an ”empty” grid

Mbiasgrid$sis = (sis.grd$sis+Mbias) #fill in the grid by using the satellite values and add the mean bias error

#Output

#write.table(Mbias, ”./output/Mean Bias.txt”, row.names=FALSE, col.names=TRUE)

write.asciigrid(Mbiasgrid, ”./output/MeanBias.asc”, attr = ”sis”, na.value = -9999)
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#Stations output

stations = data.frame(stationIndicesInGrid,var$STN,var$VARIABLE)

#remove stations which do not fall within the new grid

stations = na.omit(stations);

stations$predicted = (Mbiasgrid$sis[stations$stationIndicesInGrid]) #load predicted values into overview

stations$residual = (stations$var.VARIABLE-stations$predicted) #calculate the residuals

MbiasStat = stations

# Statistics

teller = sum(MbiasStat$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

Mbias.r2 = 1 - teller/noemer

Mbias meanvar = mean(MbiasStat$residual)

Mbias maxvar = max(MbiasStat$residual)

Mbias minvar = min(MbiasStat$residual)

Mbias sdvar = sd (MbiasStat$residual,na.rm=TRUE)

cv Mbias = data.frame(Mbias.r2, Mbias minvar, Mbias maxvar, Mbias meanvar, Mbias sdvar)

#write.table(cv Mbias, ”./output/MbiasStats.txt”, row.names=FALSE, col.names=TRUE)

#Mean Error MB

ME = ((1/StNr)*(sum(abs(MbiasStat$residual)))) #Calculate the mean error

MEmean = (ME/(mean(MbiasStat$var.VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE =(sqrt((1/StNr) ∗ ((sum((MbiasStat$predicted − MbiasStat$var.V ARIABLE)2))))) #Calculate the

Root mean Square error

RMSEsd = (RMSE/Mbias sdvar)

NRMSE = (RMSE/((max(MbiasStat$var.VARIABLE)-(min(MbiasStat$var.VARIABLE)))))

#MAPE

MbiasStat$MAE = abs((MbiasStat$residual/MbiasStat$var.VARIABLE))

MAEsum = sum(MbiasStat$MAE)

MAPE = (MAEsum*(100/StNr))

#MBias errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

MBias errors = data.frame(Mbias.r2, MAPE)

write.table(MBias errors, ”./output/Mbias Errors.txt”, row.names=FALSE, col.names=TRUE)
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D R-script for global radiation using IB

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdidw=120000 # maxdist IDW

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

153



#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE

#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

InterBias = var

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

#create empty raster to work on

Ibiasgrid = sis.grd #make a new grid with the same extend as the other grids

Ibiasgrid$sis = 0 #Change the values in the grid to 0 so its an ”empty” grid

#Stations output

# create a dataframe with the station numbers and their corresponding indexes in the grid

stations2 = data.frame(stationIndicesInGrid,var$STN,InterBias$VARIABLE)

#remove stations which do not fall within the new grid

stations2 = na.omit(stations2 );

stations2$predicted = (sis.grd$sis[stations2$stationIndicesInGrid]) #load predicted values into overview
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stations2$residual = (stations2$InterBias.VARIABLE-stations2$predicted) #calculate the residuals

InterbiasStat = stations2

InterBias$VARIABLE = InterbiasStat$residual #set the residuals as the variable to be interpolated

#Interpolate the bias

idw = idw(VARIABLE∼1, InterBias, Ibiasgrid, maxdist=mxdidw, na.action=na.pass)

idw.cv = crossvalidate(VARIABLE∼1, InterBias, debug.level = 0)

teller = sum(idw.cv$residual2)

noemer = sum((InterBias$V ARIABLE −mean(InterBias$V ARIABLE))2)

idw.r2 = 1 - teller/noemer

idw sph.cv = idw.cv

#fill in the data

Ibiasgrid$sis = (sis.grd$sis+idw$var1.pred) #fill in the grid by using the satellite values and add the mean bias

error

write.asciigrid(Ibiasgrid, ”./output/Ibias.asc”, attr = ”sis”, na.value = -9999)

#Stations output

#create a dataframe with the station numbers and their corresponding indexes in the grid

stations3 = data.frame(stationIndicesInGrid,InterBias$STN,InterBias$VARIABLE)

#remove stations which do not fall within the new grid

stations3 = na.omit(stations3 );

stations3$predicted = (Ibiasgrid$sis[stations3$stationIndicesInGrid]) #load predicted values into overview

stations3$residual = (var$VARIABLE-stations3$predicted) #calculate the residuals

IbiasStat = stations3

#Statistics

Ibias meanvar = mean(IbiasStat$residual)

Ibias maxvar = max(IbiasStat$residual)

Ibias minvar = min(IbiasStat$residual)

Ibias sdvar = sd (IbiasStat$residual,na.rm=TRUE)

cv Ibias = data.frame(idw.r2, Ibias minvar, Ibias maxvar, Ibias meanvar, Ibias sdvar)
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#write.table(cv Ibias, ”./output/IbiasStats.txt”, row.names=FALSE, col.names=TRUE)

#Mean Error TPS

ME = ((1/StNr)*((sum(IbiasStat$predicted-var$VARIABLE)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((IbiasStat$predicted − var$V ARIABLE)2))))) #Calculate the Root mean

Square error

RMSEsd = (RMSE/Ibias sdvar)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

IbiasStat$MAE = abs((IbiasStat$residual/var$VARIABLE))

MAEsum = sum(IbiasStat$MAE)

MAPE = (MAEsum*(100/StNr))

#IBias errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

IBias errors = data.frame(idw.r2, MAPE)

write.table(IBias errors, ”./output/Ibias Errors.txt”, row.names=FALSE, col.names=TRUE)
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E R-script for global radiation using KED-Exp

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE
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#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Overlay functions

sis.ov=overlay(sis.grd,var)

# Copy the values to Var

var$sis=sis.ov$sis

ked = autoKrige(VARIABLE∼sis, var, sis.grd, maxdist=mxdkrige, model = c(”Exp”), na.action=na.pass, fix.values=c(0,NA,NA),

miscFitOptions = list(merge.small.bins = FALSE))

# Krige Cross validation

ked.cv = autoKrige.cv(VARIABLE∼sis, var, model = c(”Exp”),maxdist=mxdkrige,fix.values=c(0,NA,NA), mis-

cFitOptions = list(merge.small.bins = FALSE))

teller = sum(ked.cv$krige.cv output$residual2)
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noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

ked exp.r2 = 1 - teller/noemer

ked.zscoremean = mean(ked.cv$krige.cv output$zscore)

ked.zscore.var = var(ked.cv$krige.cv output$zscore)

cv exp = data.frame(ked exp.r2,ked.zscoremean, ked.zscore.var)

var cv = ked.cv

#write.table(cv exp, ”./output/ked exp cv.txt”, row.names=FALSE, col.names=TRUE)

# FORCE GRID CELLS TO BE SQUARE

ked=ked$krige output

slot(slot(ked, ”grid”), ”cellsize”) = rep(mean(slot(slot(ked, ”grid”), ”cellsize”)), 2)

# Calculate differences at observation points

predicted= overlay (ked,var)

var$predicted = predicted$var1.pred

var$difference = (var$VARIABLE - var$predicted)

difmin = min (var$difference,na.rm=TRUE)

difmax = max (var$difference,na.rm=TRUE)

difmean = mean (var$difference,na.rm=TRUE)

difsd = sd (var$difference,na.rm=TRUE)

output = data.frame(difmin,difmax,difmean,difsd)

#write.table(output, ”./output/ked exp pointdifference.txt”, row.names=FALSE, col.names=TRUE)

# Grid output

write.asciigrid(ked, ”./output/ked exp prediction.asc”, attr = ”var1.pred”, na.value = -9999)

write.asciigrid(ked, ”./output/ked exp variance.asc”, attr = ”var1.var”, na.value = -9999)

#Mean Error KED

ME = ((1/StNr)*((sum(var$difference)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((var$predicted − var$V ARIABLE)2))))) #Calculate the Root mean Square

error

sdvar = ((var$V ARIABLE − (mean(var$V ARIABLE)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)
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RMSEsd = (RMSE/sdvar)

RMSEsd = (RMSE/difsd)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

var$MAE = abs((var$difference/var$VARIABLE))

MAEsum = sum(var$MAE)

MAPE = (MAEsum*(100/StNr))

#KED EXP errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

KED EXP errors = data.frame(ked exp.r2, MAPE)

write.table(KED EXP errors, ”./output/KED EXP Errors.txt”, row.names=FALSE, col.names=TRUE)
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F R-script for global radiation using KED-Sph

#REMOVE ALL OBJECTS

rm(list=ls(all=TRUE))

#SET WORKING DIRECTORY

setwd(’F:/Data/Testmap’)

#Current system date: ”2014-01-28T08:12:17Z”

#Date used for the interpolation:

ISO8601Time=”2010-01-01T00:00:00Z”

#LOAD PACKAGES library(methods)

library(sp)

library(gstat)

library(automap)

library(grid)

library(spam)

#LOAD VALIDATION AND TPS

source (”./inputdata/doTps.r”)

source (”./inputdata/crossvalidate.r”)

#Grid definitions

gridTopology = GridTopology(cellcentre.offset=c(0+1000/2,300000+1000/2), cellsize=c(1000,1000), cells.dim=c(300,340))

gridDefinition =SpatialGrid(gridTopology, proj4string = CRS(as.character(NA)))

c = coordinates(gridDefinition)

mxdkrige=Inf # maxdist Krige

#LOAD SATELLITE IMAGE

sis.grd = read.asciigrid(”./inputdata/2006/0612.asc”,colname=”sis”)

#LOAD IN-SITU DATA

var = read.table(”./inputdata/2006/0612.dat”,header=TRUE) #Querry output

var$VARIABLE = var$VARIABLE*10000

#var$VARIABLE = var$VARIABLE/31550399.99 #6YEAR AVERAGE
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#var$VARIABLE = var$VARIABLE/31536000 #YEAR

#var$VARIABLE = var$VARIABLE/31622400 #LEAP YEAR (2008)

#var$VARIABLE = var$VARIABLE/2678400 #31 DAYS

#var$VARIABLE = var$VARIABLE/2592000 #30 DAYS

#var$VARIABLE = var$VARIABLE/2505600 #29 DAYS

#Var$VARIABLE = var$VARIABLE/2419200 #28 DAYS

coordinates(var) = ∼RD LOCATION X+RD LOCATION Y

#SET AMOUNT OF STATIONS USED

StNr = nrow(var)

#READ IN MAKS GRID

nl.inputdata = read.asciigrid(”./inputdata/wn maskbuffer 001.asc”)

#Get indexes of stations in the grid

stationIndicesInGrid=over(var,gridDefinition)

#Apply fixed coordinate system on mask map

gridded(nl.inputdata)=TRUE;

nl.grd = data.frame(mask = over(gridDefinition,nl.inputdata), xc = c[, 1], yc = c[, 2])

coordinates(nl.grd) = ∼xc+yc

gridded(nl.grd) = TRUE

nl.grd = as(nl.grd, ”SpatialGridDataFrame”)

fullgrid(nl.grd) = TRUE

# Overlay functions

sis.ov=overlay(sis.grd,var)

# Copy the values to Var

var$sis=sis.ov$sis

# Kriging

ked = autoKrige(VARIABLE∼sis, var, sis.grd, maxdist=mxdkrige, model = c(”Sph”), na.action=na.pass, fix.values=c(0,NA,NA),

miscFitOptions = list(merge.small.bins = FALSE))

# Krige Cross validation

ked.cv = autoKrige.cv(VARIABLE∼sis, var, model = c(”Sph”),maxdist=mxdkrige,fix.values=c(0,NA,NA), mis-

cFitOptions = list(merge.small.bins = FALSE))
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teller = sum(ked.cv$krige.cv output$residual2)

noemer = sum((var$V ARIABLE −mean(var$V ARIABLE))2)

ked sph.r2 = 1 - teller/noemer

ked.zscoremean = mean(ked.cv$krige.cv output$zscore)

ked.zscore.var = var(ked.cv$krige.cv output$zscore)

cv sph = data.frame(ked sph.r2,ked.zscoremean, ked.zscore.var)

#write.table(cv sph, ”./output/ked sph cv.txt”, row.names=FALSE, col.names=TRUE)

# FORCE GRID CELLS TO BE SQUARE

ked=ked$krige output

slot(slot(ked, ”grid”), ”cellsize”) = rep(mean(slot(slot(ked, ”grid”), ”cellsize”)), 2)

# Calculate differences at observation points

predicted= overlay (ked,var)

var$predicted = predicted$var1.pred

var$difference = (var$VARIABLE - var$predicted)

difmin = min (var$difference,na.rm=TRUE)

difmax = max (var$difference,na.rm=TRUE)

difmean = mean (var$difference,na.rm=TRUE)

difsd = sd (var$difference,na.rm=TRUE)

output = data.frame(difmin,difmax,difmean,difsd)

#write.table(output, ”./output/ked sph pointdifference.txt”, row.names=FALSE, col.names=TRUE)

# Grid output

write.asciigrid(ked, ”./output/ked sph prediction.asc”, attr = ”var1.pred”, na.value = -9999)

write.asciigrid(ked, ”./output/ked sph variance.asc”, attr = ”var1.var”, na.value = -9999)

#Mean Error KED

ME = ((1/StNr)*((sum(var$difference)))) #Calculate the mean error

MEmean = (ME/(mean(var$VARIABLE))) #calculate the mean error mean

#Root mean squared error

RMSE = (sqrt((1/StNr) ∗ ((sum((var$predicted − var$V ARIABLE)2))))) #Calculate the Root mean Square

error

sdvar = ((var$V ARIABLE − (mean(var$V ARIABLE)))2)

sdvar = sum(sdvar)

sdvar = ((1/(StNr-1))*sdvar)

sdvar = sqrt(sdvar)
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RMSEsd = (RMSE/sdvar)

RMSEsd = (RMSE/difsd)

NRMSE = (RMSE/((max(var$VARIABLE)-(min(var$VARIABLE)))))

var$MAE = abs((var$difference/var$VARIABLE))

MAEsum = sum(var$MAE)

MAPE = MAEsum*(100/StNr))

#KED SPH errors = data.frame(ME, MEmean, RMSE, RMSEsd, NRMSE, MAPE)

KED SPH errors = data.frame(ked sph.r2, MAPE)

write.table(KED SPH errors, ”./output/KED SPH Errors.txt”, row.names=FALSE, col.names=TRUE)
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G Elevation in the Netherlands

Figure 85: Elevation in the Netherlands. The pink/purple zone in the middle of

the Netherlands is the Veluwe with the Utrechtse Heuvelrug just to the west of it.

The blue lake north-west of the Veluwe is the IJselmeer.
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