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Summary

One of the problems that inevitably needs to be dealt with in numerical
modelling of the atmosphere, ocean or any other geophysical flow system,
is the representation of processes that act on scales that are smaller than
those resolved by the model. This problem is called parameterization. Over
the last decades, several methods have been proposed to address this issue.
Often, these methods strongly depend on the system under consideration
and usually some form of tuning is necessary to optimize the parameteri-
zation. The latter is, in principle, not necessary for parameterizations that
are based on the principle of maximum entropy, i.e., on the assumption that
the probability distribution of the unresolved scales (unresolved degrees of
freedom of the system) should be in a state of maximum entropy. This has
been shown to work well for a simple schematic model proposed by Lorenz
(Verkley, 2011).

In this study, we applied the same procedure to a somewhat more realistic
model: a two-dimensional, doubly-periodic flow system. It is assumed that
the flow is incompressible and therefore divergence free, so that the system
can be described completely by the vorticity equation. The system is forced
by a fixed vorticity pattern and damped by linear damping and viscosity. The
numerical description is based on a spectral form of the vorticity equation
with sine and cosine functions in both directions and uses a fourth order
Runge Kutta time integration scheme. The truncation that is chosen, i.e.
the maximum values of the wave numbers in the sine and cosine functions,
determines which scales are resolved and which scales are unresolved.

We first ran the model with a high truncation, so that the part of the
spectrum that we are interested in has converged to a stable solution. The
time evolution that is described by this model is referred to as the reference
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run and is considered as reality, which we then tried to approximate with a
model with a lower truncation. The main research question was: “To what
extent can the model with the lower truncation represent the corresponding
scales in the model with the higher truncation and does the inclusion of a
parameterization of the unresolved scales (everything between the lower and
higher truncation), based on the maximum entropy assumption, lead to an
improvement of this representation?”

The results show that without any parameterization, the lower trunca-
tion leads to an overestimation of the energy and enstrophy in the smallest
resolved scales of the model. This is reflected in a grainy, unphysical texture
of the flow field and quick decorrelation with the reference run. The new
parameterization leads to a damping that acts specifically on these smallest
resolved scales. The simulated flow field is more realistic and correlation
with the reference run is maintained longer. We also show that the climate
of the model, expressed as probability density functions of the energy and
enstrophy of the system, is improved by the new parameterization.
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of the MSc program ‘Earth and Environment’ at Wageningen University
(WUR). Within this study programme I specialized in meteorology. On
behalf of WUR, Leo Kroon was the internship supervisor.

I worked with a two-dimensional flow model, written in Fortran77 code.
Part of this report can be considered as a user manual for this model. All
the relevant equations are derived, the construction of the model is outlined
and also the settings as we used them are listed and explained.

Another important ingredient of this report is the theory of maximum
information entropy. It states that the probability density function that
describes the (unknown) state of a system should be as broad as possible,
given any (known) constraints on that system. Wim used this concept to
derive an expression for the unresolved scales of our model. In this report,
I develop this derivation in a way that is understandable for me and I hope
also for students with a similar background.

My most important contribution to this study was the implementation
of the maximum entropy parameterization in the Fortran77 model. The
rest of my internship was devoted to testing the new parameterization and
documenting the results. In anticipation of what follows, I can say that they
are at least very promising.

I had an enjoyable time at KNMI. I had the opportunity to see a lot of
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tower, the ozone balloon, the wind tunnel and the seismology department.
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ciable lunches, pitch presentations and spontaneous Friday afternoon drinks.
I want to thank Wim for all his time and patience and both Wim, Camiel
and Leo for their excellent feedback and teaching.

Enjoy reading :-)
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1
Introduction

In understanding geophysical fluid flows, numerical models that simulate
these flows have become indispensable instruments. A challenging part of
many of these models is the question how to deal with the unresolved scales
in the model. This problem is called parameterization. In this report, we
present a new type of parameterization. It is based on the assumption that
the information entropy of the probability density function representing the
unresolved scales should be maximal, given the state of the resolved scales.
We have implemented this parameterization in a two-dimensional flow model
on a bi-periodic domain. This chapter deals with the basic concepts of at-
mospheric modelling and the need for parameterization. As such, it provides
the background and motivation for this study.

1.1 Two-dimensional flow

In this project we are dealing with a flat surface, a square of dimensions
2πL ∗ 2πL, where L is an arbitrary length scale and periodic in both direc-
tions. Moreover, this surface does not move or rotate. In that sense, it is
different from the atmosphere or ocean, which are both three-dimensional
and experience an ambient rotation. The turning of the globe introduces
interesting phenomena referred to as the Coriolis effect and centrifugal ac-
celeration, but the treatment of these is reserved for later studies. Never-
theless, this square surface has important similarities to the more complex
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CHAPTER 1. INTRODUCTION

three-dimensional atmosphere and therefore it is still useful for exploratory
studies like this.

One of the reasons that the atmosphere can be relatively well described
by this simple model is that the atmosphere is, in fact, very thin. The day-
to-day weather variations occur in a layer called the boundary layer, with a
typical depth of the order of 1 km. Larger-scale weather phenomena such as
anvil clouds and cyclones may reach up to the troposphere, which is located
at approximately 12 km. In recent years the stratospheric circulation has
received increasing attention in the context of climate variability. Then, we
are dealing with a height of around 50 km. Still, compared to the radius of
the earth (6371 km) and the horizontal extent of the atmosphere (2π ∗ 6371
km) this is indeed very thin. Another reason why atmospheric flows behave
as if they were two-dimensional is that air pressure decreases with height. A
common simplification in meteorology is that the atmosphere is barotropic,
which means that density (and temperature) is only dependent on pressure.
Then, the atmosphere can be viewed as a stack of surfaces, each with its own
density. If a parcel of air is displaced from one surface to another, it will
be ‘pushed’ back because the ambient pressure is higher or lower than the
pressure of the parcel. This is called the buoyancy effect. The result is that
moving air tends to follow these surfaces of equal density. In essence, this is
also what is done in meteorological models: stacked surfaces with interaction
terms for the cases in which the barotropic assumption is not justified.

Indeed, a model for two-dimensional flow gives results that are similar to
what we observe in the atmosphere (Wayne, 2011). An example is given in
Figure 1.1. Both the atmosphere and the two-dimensional model form rotat-
ing structures called vortices, which move with the mean flow and interact
when they come close to each other, often forming long filaments on the run.
Extensive and illustrative descriptions of this behaviour can be found in e.g.
Kraichnan and Montgomery (1980); McWilliams (1984) and Bouchet and
Venaille (2012).

There are numerous textbooks about numerical modelling of geophysical
flows (e.g. Coiffier (2011) or Cushman-Roisin and Beckers (2011)) and models
based on the assumption that the motion is quasi two-dimensional are widely
applied. For example, the dynamic core of the European Centre for Medium-
Range Weather Forecast (ECMWF) model, albeit much more extensive, is in
essence similar to the model that is used for this particular study. Models are
quite suitable for describing the large-scale motions of the atmosphere, but it
is obvious that they will never be able to describe features up to the individual
motion of each air molecule on the planet. Small-scale motions, however, do
have an effect on the large scale flow. To be able to represent these effects,
atmospheric modellers have introduced the concept of parameterization.
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1.2. PARAMETERIZATION

Figure 1.1: Left: Landsat image of real atmospheric vortices (Wayne, 2011).
Right: Modelled two-dimensional vorticity field.

1.2 Parameterization

The goal of parameterization is to derive expressions that enable us to ac-
count for the effects of small-scale processes without explicitly resolving them.
The effect of these unresolved processes is usually a form of damping and the
most straightforward type of parameterization, still widely used, is to add
an appropriate damping term to the equations (Cushman-Roisin and Beck-
ers, 2011). A disadvantage of this type of parameterization is that it needs
to be tuned for each resolution separately. Several studies further elabo-
rate on this kind of parameterization (see, for example, Smagorinsky (1963);
Sadourny and Basdevant (1985); Frederiksen and Davies (1997); Frederiksen
and Kepert (2006) and Bihlo et al. (2014)).

From a more fundamental perspective, we can think of the unresolved
scales as variables that are in an unknown state that can be statistically
described by a probability density function (PDF). This PDF may be condi-
tioned on the large-scale variables. In a deterministic approach we can then
average the equations over this PDF to find the mean effect of the unresolved
scales. In a stochastic approach, random samples are taken from the PDF
to represent the effect of small-scale processes (e.g. Crommelin and Vanden-
Eijnden 2008; Christensen et al. 2014). In both approaches, the question
arises how to choose this PDF.
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CHAPTER 1. INTRODUCTION

1.3 The maximum entropy approach

In this study, we derive an expression for the PDF using the principle of
maximum entropy. The information entropy is a measure for the uncertainty
of the state of a system first introduced by Shannon (1948). Jaynes (1957)
showed that maximization of the entropy can be used to infer best estimates
for the state of unknown variables in a system. Verkley and Lynch (2009)
adopted this principle to derive best estimates for energy and enstrophy
spectra of geostrophic flows and to find long-term global means for relative
vorticity. Two years later, Verkley (2011) proposed to use the maximum
information entropy to address the problem of parameterization. For this
study, he used the Lorenz ’96 model (Lorenz, 1996), which was referred to by
Crommelin and Vanden-Eijnden (2008) as “a test bed for parameterization
algorithms”.

1.4 This study

The aim of this study is to extend the results of Verkley (2011) to a more
realistic model, in particular to two-dimensional flow. We might formulate
the central research question as: “Can the simulation of two-dimensional
flow be improved by using a parameterization that is based on the principle
of maximum entropy?” To answer this question, we first run the model using
a high resolution and consider this simulation as ‘reality’. Subsequently, we
run the model with exactly the same settings, but on a lower resolution. This
is the ‘unparameterized’ model. Then, we increase the value of the viscosity
parameter. This is a commonly used parameterization, which we refer to as
‘conventional’. Finally, we implement the new parameterization and compare
the results, both on a short term, relevant to weather forecasting applications,
and on a long term, relevant to climate simulations.

1.5 About this report

The outline of the following chapters is as follows. In chapter 2 we derive the
vorticity transport equation, which is the basis for our model. Chapter 3 is
concerned with the numerical implementation of this equation and chapter
4 outlines the reasoning behind the maximum entropy approach. Chapter 5
explains our methodology, the results are presented in chapter 6 and finally
chapter 7 contains a discussion and conclusions.
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2
The vorticity transport equation

In this chapter, we will present a derivation of the vorticity transport equa-
tion (VTE). The vorticity transport equation is a simplification of the full
vorticity equation, valid for two-dimensional, incompressible fluid flow in an
inertial frame of reference. The VTE is derived from the Navier-Stokes equa-
tions for fluid motion and is formulated in terms of (relative) vorticity and a
stream function. As already mentioned in the introduction, the VTE can be
extended with extra terms that account for the Coriolis effect and centrifugal
acceleration, but this is not within the scope of the current study.

2.1 Equations of fluid motion

The equations of motions are derived from Newton’s second law, which states
that the time rate of change of momentum of an object is equal to the sum of
all forces acting on this object. Since momentum equals mass times velocity,
we can obtain a prognostic equation for the velocity by expressing the forces
per unit of mass (assuming that the mass of the object itself is independent
of time). In mathematical form, this is:

dv

dt
=

∑
i

Fi

m
, (2.1)

where v represents the three-dimensional velocity vector, d
dt

is the total
derivative with respect to time, Fi are force vectors and m is the mass of
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CHAPTER 2. THE VORTICITY TRANSPORT EQUATION

the particle or parcel. The relevant forces are the pressure gradient force,
viscous force and gravitational force, which can be represented respectively
as (Holton and Hakim, 2013):

Fp

m
= −1

ρ
∇p, (2.2)

Fv

m
= ν∇2U, (2.3)

Fg

m
= g, (2.4)

so that the prognostic equation for velocity becomes:

dv

dt
= −1

ρ
∇p+ ν∇2v + g, (2.5)

where ρ is the density of the fluid, p is the pressure, ν is the viscosity of
the fluid and g is the acceleration due to gravity. To simplify what follows,
we now choose to continue the analysis in two-dimensional Cartesian coor-
dinates. With the total derivative written out the equation above takes the
form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.6a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (2.6b)

Gravity is absent in these equations because it only acts in the vertical direc-
tion. We assume that density and viscosity are constant. Constant density
implies that the divergence of the velocity field is zero. This will be used in
the following section (Equation (2.11)).

2.2 Vorticity

Vorticity is a measure of fluid rotation that is defined for each individual point
in a fluid. It is defined as the curl of the velocity field. In two dimensions,
this is simply a scalar field:

ζ ≡ ∂v

∂x
− ∂u

∂y
. (2.7)
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2.2. VORTICITY

To obtain a prognostic equation for the vorticity, we subtract the y-derivative
of Equation (2.6a) from the x-derivative of Equation (2.6b):

∂

∂y

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
=

∂

∂y

[
−1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)]
, (2.8a)

∂

∂x

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
=

∂

∂x

[
−1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)]
. (2.8b)

Writing out term by term and changing the order of the equations for easier
subtraction results in:

∂

∂x

∂v

∂t
+
∂u

∂x

∂v

∂x
+ u

∂2v

∂x2
+
∂v

∂x

∂v

∂y
+ v

∂

∂x

∂v

∂y
=

− 1

ρ

∂

∂x

∂p

∂y
+ ν

(
∂

∂x

∂2v

∂x2
+

∂

∂x

∂2v

∂y2

)
, (2.9a)

∂

∂y

∂u

∂t
+
∂u

∂y

∂u

∂x
+ u

∂

∂y

∂u

∂x
+
∂v

∂y

∂u

∂y
+ v

∂2u

∂y2
=

− 1

ρ

∂

∂y

∂p

∂x
+ ν

(
∂

∂y

∂2u

∂x2
+

∂

∂y

∂2u

∂y2

)
. (2.9b)

It is immediately clear that the pressure gradient terms will cancel upon sub-
traction. This is an important advantage of using the vorticity-formulation
of the Navier-Stokes equations. Subtraction and rearrangement results in:

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ u

∂

∂x

(
∂v

∂x
− ∂u

∂y

)
+ v

∂

∂y

(
∂v

∂x
− ∂u

∂y

)
+(

∂u

∂x
+
∂v

∂y

)(
∂v

∂x
− ∂u

∂y

)
= ν

(
∂2

∂x2
+

∂2

∂y2

)(
∂v

∂x
− ∂u

∂y

)
. (2.10)

The last term on the left-hand side of the above equation is zero because of
the continuity equation:

∂u

∂x
+
∂v

∂y
= 0. (2.11)

In all other terms we substitute Equation (2.7) and we recognise the Lapla-
cian on the right hand side of the equation which leaves us with:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= ν∇2ζ. (2.12)
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CHAPTER 2. THE VORTICITY TRANSPORT EQUATION

2.3 The stream function

For two-dimensional, incompressible flows it is possible to define a stream
function ψ, such that:

u = −∂ψ
∂y

and v =
∂ψ

∂x
. (2.13)

The use of a stream function has several advantages. First of all, it is possible
to replace both components of velocity with only one scalar field. Secondly,
use of the stream function automatically ensures that the continuity equation
(2.11) is satisfied. Indeed, using the stream function to write u and v gives:

∂u

∂x
+
∂v

∂y
=

∂

∂x

(
−∂ψ
∂y

)
+

∂

∂y

(
∂ψ

∂x

)
= 0. (2.14)

Finally, vorticity can also be expressed in terms of the stream function:

ζ =
∂v

∂x
− ∂u

∂y
=
∂2ψ

∂x2
+
∂2ψ

∂y2
= ∇2ψ. (2.15)

The last equation is called a Poisson equation. This equation will allow us
to compute the velocity field from the vorticity. Substituting the stream
function in the advection terms in Equation (2.12) yields:

∂ζ

∂t
− ∂ψ

∂y

∂ζ

∂x
+
∂ψ

∂x

∂ζ

∂y
= ν∇2ζ. (2.16)

Finally we use the definition of the Jacobian:

J (ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
, (2.17)

to obtain:
∂ζ

∂t
+ J (ψ, ζ) = ν∇2ζ. (2.18)

This is the vorticity transport equation, which states that the rate of change
of relative vorticity following the flow is only due to viscous forces. In the
absence of other source terms, this implies that vorticity will slowly dissipate
until all gradients are smoothed.

We want the model to remain in a fully turbulent state, so we will use a
slightly different version of the vorticity transport equation, namely:

∂ζ

∂t
+ J (ψ, ζ) = ν∇2ζ + μ(F − ζ). (2.19)
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2.3. THE STREAM FUNCTION

Two terms are added on the right-hand side: F is an arbitrary forcing that
drives the model to a given state and the last term is a linear damping. μ is a
linear coefficient that determines the magnitude of the forcing and damping.
After sufficiently long integration, the cumulative contributions of forcing,
linear and viscous damping drive the model to a state of statistical equilib-
rium. The next chapter will be devoted to the numerical implementation of
this equation.
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3
Construction of the model

In this chapter we explain how our model is constructed. Equation (2.19) is
evaluated on a biperiodic domain, i.e. between −π to +π in both the x- and
y-direction. The model is formulated in terms of non-dimensional variables,
which means that the real grid boundaries are obtained by multiplying with
a length scale L. The advantage of the non-dimensionalized model is that we
can choose any length scale, for example L ∼2000 km such that the domain
stretches over North-West Europe1. Section 3.1 elaborates on the steps that
must be taken to make the model dimensionless. In Section 3.2, expressions
for the energy and enstrophy are derived, which we will need later on. The
model is a spectral model, which means that all information is stored in so-
called spectral coefficients. These coefficients are independent of space and
are related to a grid using certain basis functions. This is explained in more
detail in Section 3.3. Here, we also discuss the concept of truncation. Finally,
we elaborate on the numerical implementation of the model in Section 3.4.

3.1 Non-dimensional quantities

In order to make the model dimensionless we need scaling parameters. We
choose a time scale related to the rotation rate of the earth and a length

1In this example, the curvature of the earth’s surface is neglected.
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3.1. NON-DIMENSIONAL QUANTITIES

scale equal to the earth’s radius:

T = Ω−1 =
sidereal day

2π
=

1

7.292× 10−5
s (3.1)

L = a = 6371× 103 m (3.2)

The choice for these parameters is arbitrary, but this particular choice will
make the extension to more sophisticated, global and non-inertial models
easier. The dimensionless units of time t′ and lengths x′ and y′ are obtained
by dividing by these scaling parameters:

t′ =
t

T
x′ =

x

L
y′ =

y

L
(3.3)

Recalling the units of the model parameters, we can use these expressions to
obtain the following non-dimensional model parameters:

u′ = u
T

L
v′ = v

T

L
(3.4a-b)

ζ ′ = ζT ψ′ = ψ
T

L2
(3.4c-d)

ν ′ = ν
T

L2
μ′ = μT (3.4e-f)

F ′ = FT (3.4g)

Also the definitions of the Jacobian and Laplace operators must be adapted,
as illustrated by the following example:

J (ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
(3.5a)

=
∂ψ′

∂x′
L2

TL

∂ζ ′

∂y′
1

TL
− ∂ψ′

∂y′
L2

TL

∂ζ ′

∂x′
1

TL
(3.5b)

=
1

T 2

∂ψ′

∂x′
∂ζ ′

∂y′
− 1

T 2

∂ψ′

∂y′
∂ζ ′

∂x′
=

1

T 2
J ′(ψ′, ζ ′). (3.5c)

Likewise,

ν∇2ζ =
1

T 2
ν ′∇′2ζ ′, where (3.6)

∇′2 =
∂2

∂x′2
+

∂2

∂y′2
. (3.7)

It can be checked that upon substitution of the expressions (3.4) to (3.6)
in the original equation (2.19), all scaling parameters cancel and we are left
with exactly the same equation, with now all variables dimensionless. If we
want to convert to dimensional values of e.g. vorticity, we just have to use
the expressions (3.4).

19



CHAPTER 3. CONSTRUCTION OF THE MODEL

3.2 Energy and enstrophy

Before we continue, we will also derive expressions for the energy and en-
strophy and their evolution. Both are important quantities in the charac-
terisation of two-dimensional flow and they will later be used to derive the
maximum entropy parameterization.

Kinetic energy is a measure for the intensity of motion in the system.
The total kinetic energy in the flow field is given by

E =

∫∫
D

dx dy
1

2
ρv2, (3.8)

where D is used to indicate integration over the model domain, ρ is the mass
per unit area and v is the velocity vector in two dimensions. In meteorology,
it is common practice to express energy per unit area. Bearing this in mind
we introduce the energy scale

E∗ = (2πL)2ρ

(
L

T

)2

=

(
2πL2

T

)2

ρ (3.9)

and express the dimensionless energy as

E ′ =
E

E∗ =

(
1

2π

)2 ∫∫
D′

dx′ dy′
1

2
v′2 (3.10)

It will later be convenient to express the energy equation in terms of vorticity
and the stream function. To this end, we note that v′ equals

v′ = k×∇ψ′. (3.11)

Further, because
v′ · v′ = ∇ψ′ · ∇ψ′, (3.12)

we have

E ′ =
(

1

2π

)2 ∫∫
D′

dx′ dy′
1

2
∇ψ′ · ∇ψ′ (3.13)

Using the vector identities

∇ · (ψ′∇ψ′) = ψ′∇ · ∇ψ′ +∇ψ′ · ∇ψ′ (3.14a)

∇ · ∇ψ′ = ∇2ψ′ (3.14b)
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3.2. ENERGY AND ENSTROPHY

and recalling that the vorticity is the Laplacian of the stream function, we
can write

v′ · v′ = ∇ · (ψ′∇ψ′)− ψ′∇ · ∇ψ′ = ∇ · (ψ′∇ψ′)− ψ′ζ ′, (3.15)

to express Equation (3.13) as:

E ′ =
1

2

(
1

2π

)2
⎡⎣∫∫

D′

dx′ dy′ ∇ · (ψ′∇ψ′)−
∫∫
D′

dx′ dy′ ψ′ζ ′

⎤⎦ , (3.16)

Gauss’ theorem states that for a closed area D′ with boundary C ′,∫∫
D′

dx′dy′ ∇ ·A =

∮
C′

ds′ n ·A, (3.17)

where A denotes a vector field. We can apply this theorem to the first
integral in Equation (3.16). Since we will use periodic boundary conditions
there is no net flow out of our system and we can say that∫∫

D′

dx′ dy′ ∇ · (ψ′∇ψ′) =
∮
C′

ds′ n · (ψ′∇ψ′) = 0, (3.18)

so that we can finally write

E ′ = −
(

1

2π

)2 ∫∫
D′

dx′ dy′
1

2
ψ′ζ ′ (3.19)

Enstrophy is a measure of the amount of structure or detail in the flow.
High values of enstrophy correspond to a flow field with many small vortices.
Enstrophy is associated with dissipation or the decay rate of kinetic energy
(e.g. Zhu and Antonia, 1996). At the end of this section we will demonstrate
this. Enstrophy turns out to be a useful quantity in the description of two-
dimensional flow (Bouchet and Venaille, 2012). In two dimensions, it is
defined as the square of the vorticity in two dimensions:

Z =

∫∫
D

dx dy
1

2
ρζ2 (3.20)

which can be rewritten in terms of our non-dimensional model parameters as

Z ′ =
Z

Z∗ =

(
1

2π

)2 ∫∫
D′

dx′ dy′
1

2
ζ ′2 (3.21)
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with

Z∗ = (2πL)2ρ

(
1

T

)2

=

(
2πL

T

)2

ρ (3.22)

At this point have derived non-dimensional expressions for all important
model parameters that we will work with. In the remainder of this report
we will omit the primes and work only with the non-dimensional parameters,
unless explicitly stated otherwise.

Prognostic equations for energy and enstrophy provide valuable in-
sight in the system of equations. Moreover, the time derivative of energy will
be used later in this report to derive an important expression in the maxi-
mum entropy parameterization. Let us first examine the energy. Following
equation (3.10), we get:

dE

dt
=

d

dt

(
1

2π

)2 ∫∫
D

dx dy
1

2
v2, (3.23a)

=

(
1

2π

)2 ∫∫
D

dx dy v · ∂
∂t

v, (3.23b)

=

(
1

2π

)2 ∫∫
D

dx dy∇ψ · ∂
∂t

∇ψ. (3.23c)

Again using the vector identities (3.14) and Gauss’ theorem (3.17), this can
be rewritten as

dE

dt
= −

(
1

2π

)2 ∫∫
D

dx dy ψ
∂ζ

∂t
. (3.24)

Substituting (2.19) we find

dE

dt
= −

(
1

2π

)2 ∫∫
D

dx dy ψ
[−J (ψ, ζ) + ν∇2ζ + μ(F − ζ)

]
. (3.25)

We can eliminate the Jacobian term in this equation by realising that it is
another form of writing vorticity advection for a divergence-free fluid:

J (ψ, ζ) = v · ∇ζ. (3.26)

Using the product rule (3.14a) twice we find subsequently

ψ [v · ∇ζ] = ψ [∇ · (vζ)−∇ · vζ] , (3.27a)

ψ [∇ · (vζ)] = ∇ · [ψ(vζ)]−∇ψ · vζ, (3.27b)
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3.3. SPECTRAL REPRESENTATION

where the last term in Equation (3.27a) vanishes because of incompressibil-
ity and the last term in Equation (3.27b) vanishes because v and ∇ψ are
perpendicular. Finally, we apply Gauss’ theorem once again to completely
eliminate the Jacobian term in the integral, which leaves us with

dE

dt
= −

(
1

2π

)2 ∫∫
D

dx dy ψ
[
ν∇2ζ + μ(F − ζ).

]
(3.28)

A similar procedure leads to a prognostic equation for enstrophy. Using

ζ[v · ∇ζ] = v · ∇1

2
ζ2, (3.29)

= ∇ ·
[
v
1

2
ζ2
]
− 1

2
ζ2∇ · v, (3.30)

= ∇ ·
[
v
1

2
ζ2
]

(3.31)

and again applying Gauss’ theorem, it follows that

dZ

dt
= −

(
1

2π

)2 ∫∫
D

dx dy ζ
[
ν∇2ζ + μ(F − ζ)

]
. (3.32)

The physical interpretation of the above expressions is that the rate of change
of energy and enstrophy is determined only by the forcing and friction terms.
If both μ and ν equal zero, energy and enstrophy are conserved in two-
dimensional flow. That enstrophy is conserved in unforced-undamped two-
dimensional turbulence is an essential property that distinguishes it from
three-dimensional turbulence (Kraichnan and Montgomery, 1980).

Let us quickly examine a conceptual system without forcing or linear
damping. Then, Equation (3.28) can be written as

dE

dt
= −2νZ. (3.33)

This equation expresses the relation between enstrophy and the dissipation
of energy, which we mentioned earlier in this section.

3.3 Spectral representation

In this section, we explain the concept of a spectral model and how it is
derived for the vorticity transport equation.
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CHAPTER 3. CONSTRUCTION OF THE MODEL

Figure 3.1: A seemingly complicated function can be decomposed into simple
waves with different wave number and amplitude.

3.3.1 Basis functions

The concept of a spectral model is based on the idea that any (seemingly
complicated) scalar field or function can be represented by a summation
of orthonormal basis functions, for example a set of sine and cosine waves.
This is illustrated in Figure 3.1 for a one-dimensional field, but the concept
can easily be extended to two (or more) dimensions. We choose our basis
functions to be

Ym,n(x, y) = Xm(x)Xn(y), (3.34)

with

Xm(x) =

⎧⎪⎨⎪⎩
√
2 cos(|m|x) if m > 0

1 if m = 0√
2 sin(|m|x) if m < 0

(3.35)
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3.3. SPECTRAL REPRESENTATION

and likewise for Xn(y). Here, m and n are components of the wave vector k.
It is then possible to express the vorticity as

ζ(x, y, t) =
+∞∑

m=−∞

+∞∑
n=−∞

ζm,n(t)Ym,n(x, y), (3.36)

where ζm,n are called the spectral coefficients. They can be interpreted as
amplitudes or weight factors associated with each wave. Note that the above
expression for Xm(x) is closely related to the complex exponential form

Xm(x) = eimx. (3.37)

Both representations are useful and it is possible to switch between the two
using a relation between the real coefficients associated with the real basis
function and the complex coefficients associated with the exponential basis
functions. We show this derivation in Appendix A. The advantage of the
exponential form is that we can use a Fast-Fourier Transformation (FFT) to
switch between the grid-point representation and the spectral representation
of ζ. The basis functions (3.34) have the convenient properties that

∂Xm

∂x
= −mX−m(x) ,

∂2Xm

∂x2
= −m2Xm(x) and (3.38a-b)

∇2Ymn(x, y) = −(m2 + n2)Ym,n(x, y) (3.38c)

and since ζm,n(t) is not dependent on x or y and we used absolute values of
m and n in the definitions of the real basis functions, we can write

∂ζ(x, y, t)

∂x
=

∂

∂x

+∞∑
m=−∞

+∞∑
n=−∞

ζm,n(t)Ym,n(x, y) (3.39a)

=
+∞∑

m=−∞

+∞∑
n=−∞

ζm,n(t)
∂

∂x
Ym,n(x, y) (3.39b)

=
+∞∑

m=−∞

+∞∑
n=−∞

ζm,n(t)[−mY−m,n(x, y)] (3.39c)

=
+∞∑

m=−∞

+∞∑
n=−∞

mζ−m,n(t)Ym,n(x, y). (3.39d)
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Likewise it can be checked that

∂ζ(x, y, t)

∂y
=

+∞∑
m=−∞

+∞∑
n=−∞

nζm,−n(t)Ym,n(x, y), (3.40a)

∂2ζ(x, y, t)

∂x2
=

+∞∑
m=−∞

+∞∑
n=−∞

−m2ζm,n(t)Ym,n(x, y), (3.40b)

∂2ζ(x, y, t)

∂y2
=

+∞∑
m=−∞

+∞∑
n=−∞

−n2ζm,n(t)Ym,n(x, y), (3.40c)

∇2ζ(x, y, t) =
+∞∑

m=−∞

+∞∑
n=−∞

−(m2 + n2)ζm,n(t)Ym,n(x, y), (3.40d)

If we recall that the vorticity is the Laplacian of the stream function, we can
easily find the spectral coefficients of the stream function from the spectral
coefficients of the vorticity by

ψm,n(t) =
−1

(m2 + n2)
ζm,n(t). (3.41)

3.3.2 Finding the spectral coefficients

In this section, we derive an expression for the relation between the spectral
coefficients ζm,n(t) and the corresponding field ζ(x, y, t). We define the inner
product of two arbitrary vector fields A and B as:

〈A,B〉 =
(

1

2π

)2 ∫∫
D

dx dy A(x, y)B(x, y), (3.42)

where we divide by the area of (2π)2 of the dimensionless domain in line
with the energy equation. As mentioned above, the basis functions are said
to be orthonormal, which means that by virtue of the above expression for
the inner product,

〈Ym,n, Ym′,n′〉 = δm,m′δn,n′ (3.43)

with

δm,m′ =

{
1 if m = m′

0 if m 	= m′ (3.44)

and likewise for δn,n′ . We will not prove this here, but an excellent explana-
tion can be found, for example, on Paul Dawkins’ online math tutorials2. We

2http://tutorial.math.lamar.edu/terms.aspx (accessed 16 February, 2015)
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3.3. SPECTRAL REPRESENTATION

will now use this property to find an expression for ζm,n(t). Let us consider
the inner product

〈Ym,n(x, y), ζ(x, y, t)〉 =
(

1

2π

)2 ∫∫
D

dx dy Ym,n(x, y)ζ(x, y, t). (3.45)

Substituting the spectral expression (3.36), we can rewrite the left hand side
as

〈Ym,n(x, y), ζ(x, y, t)〉 = 〈Ym,n(x, y),
+∞∑

m′=−∞

+∞∑
n′=−∞

ζm′,n′(t)Ym′,n′(x, y)〉 (3.46)

=
+∞∑

m′=−∞

+∞∑
n′=−∞

ζm′,n′(t)〈Ym,n, Ym′,n′〉. (3.47)

We recognise that by virtue of (3.43) this inner product is only non-zero for
m = m′ and n = n′, thus the summation only involves m and n so that we
can write

ζm,n(t) = 〈Ym,n(x, y), ζ(x, y, t)〉 =
(

1

2π

)2 ∫∫
D

dx dy Ym,n(x, y)ζ(x, y, t).

(3.48)

3.3.3 Truncation and the need for parameterization

The theory above assumes that we use an infinite number of waves to repre-
sent our function. In practice this is not possible and we limit our model to
2N + 1 waves in both the x- and y-direction:

ζ(x, y, t) =
+N∑

m=−N

+N∑
n=−N

ζm,n(t)Ym,n(x, y) (3.49)

As a result of truncation the effects introduced by interactions of smaller
waves (small scale/sub-grid scale processes) are not represented by the model.
This is visualized in Figure 3.2. Truncation can have considerable influence
on the model results. Using a higher truncation improves the model perfor-
mance, but comes at the cost of extra computation time. Therefore, we wish
to somehow implement the effect of the unresolved scales without explicitly
computing them. This is referred to as parameterization. Small-scale pro-
cesses tend to perturb the mean flow. Therefore, the effect of the unresolved
scales is usually a damping of the larger scales. In that perspective, it is
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similar to friction and the simplest (and commonly used) parameterization
is to manually adjust the viscosity parameter. However, this method requires
tuning of the viscosity parameter. Moreover, it is not universal, in the sense
that the tuning has to be done for each individual model and must be val-
idated for different regimes in which the system can find itself. Our aim is
to find and test a parameterization for which this is not necessary. We will
explain this in Chapter 4.

Figure 3.2: Illustration of the wavenumber continuum. Black dots represent
a number of commonly used truncation levels, e.g. T42 means that waves up
to wavenumber 42 are accounted for. Unresolved scales are all waves between
the truncation level and infinity.

3.4 Numerical implementation

3.4.1 Time stepping routine

A flowchart of the Fortran77 model that we use for our numerical simulations
is given in Figure 3.3. The program first reads an initial field, which may
be zero or a set of spectral coefficients taken from a previous run that has
reached statistical equilibrium. From the initial vorticity field, the backward
Laplace routine computes the spectral coefficients of the stream function.
Also, a forcing field is defined. In our model, the forcing field is simply
a single wave, which can be denoted with the wave vector k = ( 5

5 ). The
two coefficients (m = 5, n = 5) correspond to the wave numbers in x- and
y-direction. The amplitude of the forcing is 1

2

√
2. From Equation (2.19)

it can be seen that there are four terms contributing to the tendency of
ζ: the redistribution term (Jacobian), friction, forcing and linear damping.
The model computes these terms separately and then adds them to find the
overall tendency of the vorticity field. This tendency calculation is the core of
the model. It is used in a fourth order Runge-Kutta time integration scheme
to predict future values of vorticity. This scheme runs through the following
steps:

1. Load initial vorticity field ζ0 (or set it to 0)
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3.4. NUMERICAL IMPLEMENTATION

Figure 3.3: Flowchart of the original numerical model. Squares indicate fields
of spectral coefficients, ellipses represent functions (fortran subroutines).

2. Compute the tendency of ζ0, call it k1

3. Use k1 to calculate ζa = ζ0 +
1
2
Δtk1

4. Compute the tendency of ζa, call it k2

5. Use k2 to calculate ζb = ζ0 +
1
2
Δtk2

6. Compute the tendency of ζb, call it k3
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7. Use k3 to calculate ζc = ζ0 +Δtk2

8. Compute the tendency of ζc, call it k4

9. Use k1, k2, k3, k4 to calculate ζ1 = ζ0 +
Δt
6
(k1 + 2k2 + 2k3 + k4)

10. Repeat step 2 - 9 with the output of step 9 as new input to step 2, until
the desired integration time is reached.

During the computation of one time step Δt, the tendency calculation routine
is called four times. These intermediate tendencies are weighted to compute
one overall tendency that is used for the time step.

3.4.2 Tendency routines

Most routines that are visualized in Figure 3.3 are straightforward, linear op-
erations. For example, the backward Laplacian is given by Equation (3.41),
and the forward Laplacian by the inverse. Only the Jacobian is a non-linear
term and requires some extra explanation. Since it is a computationally ex-
pensive task to determine the non-linear term in spectral space, the deriva-
tives of the fields represented by the spectral coefficients ζm,n and ψm,n are
transformed to a grid by a Fast Fourier Transform. On the grid, they are
multiplied and the resulting product is transformed back to spectral space.
This is illustrated in Figure 3.4. For this approximation of the non-linear
terms to be exact, the number of grid points in each direction must be equal
to or larger than N ≥ 3M +1 where M is the number of spectral coefficients
corresponding to that direction (Coiffier, 2011). This is also known as the
Orszag two-thirds rule (see Boyd, 2001, chapter 11). The FFT as imple-
mented in this model works most efficient when the number of grid points is
a power of 2, so we work with a grid of N = 128 = 27 ≥ 3 ∗ 42 + 1 for T42
and for T85 with N = 256 = 28 ≥ 3 ∗ 85 + 1.
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Figure 3.4: Flowchart of the Jacobian subroutine. Like figure 3.3 with the
octagons representing fields in grid space.
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4
The maximum entropy approach

In this chapter, we derive a new expression for the parameterization of the
effect of subgrid-scale processes in our two-dimensional flow model. First, we
split Equation (2.19) in a resolved (R) and an unresolved (U) part. We then
approximate ψU and ζU with averages over a probability density function.
To justify this approach we assume that the unresolved processes act on
time scales that are sufficiently short compared to the larger scale (resolved)
processes. On the time scale of the resolved processes the unresolved scales
are assumed to be in a statistically stationary state. Then, the input and
output of energy in the unresolved scales will balance on average.

4.1 Resolved and unresolved scales

Before we can derive expressions for unresolved variables, we need to know
how they influence the model. To this end, we define the resolved part of the
spectrum as the set R and the unresolved part as the set U , as is visualized
in Figure 4.1. Then, we can write

ζ = ζR + ζU , (4.1)

ζR =
∑

m,n∈R
ζm,nYm,n, (4.2)

ζU =
∑

m,n∈U
ζm,nYm,n (4.3)
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Figure 4.1: The spectral grid with truncation level N . R represents the
spectral domain, i.e. the resolved part of the grid: R = {{m,n} |m,n ∈
Z∧−M ≤ m,n ≤ +M}. The model that we consider as ‘reality’ is truncated
at N = 85. The other models are truncated at N = 42. The unresolved
variables are represented by the set U which contains all wavenumbers that
are part of the T85 spectrum, but fall outside of the T42 spectrum.

and likewise for ψ and F . Substituting these forms in Equation (2.19), we
get:

∂ζR

∂t
+
∂ζU

∂t
+ J (ψR + ψU , ζR + ζU) =

ν∇2(ζR + ζU) + μ(FR + F U − ζR − ζU). (4.4)

The contribution of the Jacobian can be split in a resolved and unresolved
part as well:

J (ψR+ψU , ζR+ζU) = J R(ψR+ψU , ζR+ζU)+J U(ψR+ψU , ζR+ζU). (4.5)

The superscripts R and U are added to the Jacobian operators to indicate
that only the projection of this operator in the resolved resp. unresolved
part of the spectrum is considered. The projection in the unresolved part
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of the spectrum arises from the transformation back to the spectral space,
as illustrated in figure 3.4. The other terms do not introduce interactions
between the resolved and the unresolved part of the spectrum, so that we
can split Equation (4.4) in two:

∂ζR

∂t
+ J R(ψR + ψU , ζR + ζU) = ν∇2ζR + μ(FR − ζR), (4.6a)

∂ζU

∂t
+ J U(ψR + ψU , ζR + ζU) = ν∇2ζU + μ(F U − ζU). (4.6b)

The first equation is explicitly solved by the numerical model, while the
second equation represents subgrid-scale processes. It can be seen that inter-
actions between the resolved and unresolved variables occur only through the
non-linear advection term. If the effect of the unresolved scales is neglected
(ψU = ζU = 0), the first expression (4.6a) is equivalent to the truncated
spectral model without any parameterization. As we will see in the results
section, this leads to an overestimation of energy and enstrophy in the small-
est scales. We propose to represent the effect of unresolved processes by
averaging Equation (4.6a) over a probability density function (PDF) of the
unresolved scales. For the Jacobian, we write:

J R(ψR + ψU , ζR + ζU) =J R(ψR, ζR) + J R(ψR, ζU)

+ J R(ψU , ζR) + J R(ψU , ζU). (4.7)

Averaging over the probability density function of the unresolved scales then
gives

J R(ψR + ψU , ζR + ζU) =J R(ψR, ζR) + J R(ψR, ζU)

+ J R(ψU , ζR) + J R(ψU , ζU) (4.8a)

=J R(ψR, ζR) + J R(ψR, ζU)

+ J R(ψU , ζR) + J R(ψU , ζU) (4.8b)

=J R(ψR + ψU , ζR + ζU). (4.8c)

Although it is common in statistics and probability theory to denote averages
and expectation values with angle brackets, we choose to work with overbars
to avoid confusion between the average and the inner product later on (nor-
mally, overbars are used for the arithmetic mean). In going from (4.8a) to
(4.8b) we made the assumption that J R(ψU , ζU) = J R(ψU , ζU). We will
come back to this assumption later. The model for the resolved part then
becomes

∂ζR

∂t
+ J R(ψR + ψU , ζR + ζU) = ν∇2ζR + μ(FR − ζR). (4.9)
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Thus, our aim is to replace ζU and ψU in Equation (4.6a) with averages over a
probability density function ζU and ψU . In the following sections, we explain
how this PDF is constructed.

4.2 The probability density function (PDF)

The probability density function P(ζU) gives the probability for the unre-
solved scales to assume a given value for ζU (see Figure 4.2). The PDF has
the properties that the integral over all possible states equals unity and can
therefore be used to construct a weighted average:

+∞∫
−∞

dζU P(ζU) = 1, (4.10a)

G =

+∞∫
−∞

dζU G(ζU)P(ζU), (4.10b)

where G can be any function of ζU . Note that in these expressions ζU is
represented by its spectral coefficients ζm,n with m,n ∈ U and that the
integral is a multiple integral over all these coefficients, i.e.:

+∞∫
−∞

dζU =

∞∫
−∞

∞∫
−∞

...

∞∫
−∞

dζ−N,−N dζ−N,−N+1 ... dζN,N (4.11)

The information entropy of the unresolved scales is defined as

SU
I =

+∞∫
−∞

dζU P(ζU) ln
( P(ζU)
M(ζU)

)
. (4.12)

Here, M is an a priori PDF for which a constant value is used (assuming no a
priori information). In the derivation that follows, this value will turn out to
be irrelevant. According to Jaynes (1957), the information entropy should be
maximal given suitable constraints. As constraints, we use the normalization
condition (4.10a) and the the assumption that the time derivative of energy
in the unresolved scales equals zero on average. Using Equation (4.10b) this
leads to the following expression for this average:

dEU

dt
=

+∞∫
−∞

dζU
dEU

dt
(ζU)P(ζU) = 0 (4.13)
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Figure 4.2: The system f(t) moves through the phase space of f(t) in time.
The probability that a system f(t) is in a certain state fi, i.e., between
fi −Δ/2 and fi +Δ/2 is given by the probability density function P (fi)Δ.

In the following section, we will use these constraints to derive the maximum
entropy parameterization.
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4.3 Finding the maximum entropy PDF

We will first show that the time derivative of EU can be written in the form
A = ax2 + bx where x = ζU . Then, we demonstrate that the maximization
of SI (Equation (4.12)) under the constraints (4.10a) and (4.13) leads to an
expression for the PDF-averaged vorticity of the form x = −b

2a
.

Like vorticity and stream function, energy can also be split in a resolved
and an unresolved part. To see this, it is convenient to write E in the form
of an inner product as defined in (3.42):

E = −
(

1

2π

)2 ∫∫
D

dx dy
1

2
ψζ = −1

2
〈ψ, ζ〉 (4.14a)

= −1

2
〈ψR + ψU , ζR + ζU〉 (4.14b)

= −1

2
〈ψR, ζR〉 − 1

2
〈ψR, ζU〉 − 1

2
〈ψU , ζR〉 − 1

2
〈ψU , ζU〉 (4.14c)

= −1

2
〈ψR, ζR〉 − 1

2
〈ψU , ζU〉 (4.14d)

= ER + EU . (4.14e)

with ER = −1
2
〈ψR, ζR〉 and EU = −1

2
〈ψU , ζU〉. The second and third term

in Equation (4.14c) cancel because projections on R and U are perpendicular
by virtue of property (3.43) of the basis functions (3.34). Considering the
time evolution of E, we have (see the derivation leading to Equation (3.24)):

dER

dt
=

d

dt

[
−1

2
〈ψR, ζR〉

]
= −〈ψR,

∂ζR

∂t
〉 (4.15a)

dEU

dt
=

d

dt

[
−1

2
〈ψU , ζU〉

]
= −〈ψU ,

∂ζU

∂t
〉. (4.15b)
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Substituting (4.6) gives

dER

dt
= −〈ψR,−J R(ψR + ψU , ζR + ζU) + ν∇2ζR + μ(FR − ζR)〉
= 〈ψR,J R(ψR + ψU , ζR + ζU)〉 − ν〈ψR,∇2ζR〉 − μ〈ψR, (FR − ζR)〉

(4.16a)

dEU

dt
= −〈ψU ,−J U(ψR + ψU , ζR + ζU) + ν∇2ζU + μ(F U − ζU)〉
= 〈ψU ,J U(ψR + ψU , ζR + ζU)〉 − ν〈ψU ,∇2ζU〉 − μ〈ψU , (F U − ζU)〉.

(4.16b)

The Jacobian terms can be expanded as

〈ψR,J R(ψR + ψU , ζR + ζU)〉 =〈ψR,J R(ψR, ζR)〉+ 〈ψR,J R(ψR, ζU)〉+
〈ψR,J R(ψU , ζR)〉+ 〈ψR,J R(ψU , ζU)〉

(4.17a)

〈ψU ,J U(ψR + ψU , ζR + ζU)〉 =〈ψU ,J U(ψR, ζR)〉+ 〈ψU ,J U(ψR, ζU)〉+
〈ψU ,J U(ψU , ζR)〉+ 〈ψU ,J U(ψU , ζU)〉.

(4.17b)

The inner product is by definition zero for two orthogonal fields, so we can
discard the superscript for the Jacobian. This allows us to use the following
identities:

〈a,J (a, b)〉 = 0, (4.18a)

〈a,J (b, c)〉 = 〈J (a, b), c〉, (4.18b)

J (x, y) = −J (y, x). (4.18c)

The first two terms in Equation (4.17a) and the last two terms in Equa-
tion (4.17b) vanish because of (4.18a) and we can write the remaining terms
in Equation (4.17) as

〈ψR,J (ψR + ψU , ζR + ζU)〉 = −〈ψU ,J (ψR, ζR)〉+ 〈ψR,J (ψU , ζU)〉,
(4.19)

〈ψU ,J (ψR + ψU , ζR + ζU)〉 = 〈ψU ,J (ψR, ζR)〉 − 〈ψR,J (ψU , ζU)〉. (4.20)

The final results are

dER

dt
=− 〈ψU ,J (ψR, ζR)〉+ 〈ψR,J (ψU , ζU)〉
− ν〈ψR,∇2ζR〉 − μ〈ψR, (FR − ζR)〉, (4.21a)

dEU

dt
=〈ψU ,J (ψR, ζR)〉 − 〈ψR,J (ψU , ζU)〉
− ν〈ψU ,∇2ζU〉 − μ〈ψU , (F U − ζU)〉. (4.21b)
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The first two terms in both expressions have opposite signs and cancel if
both expressions are added. These terms are responsible for the transport of
energy between the resolved and the unresolved scales. Using cm,n = m2+n2

and ψm,n = −ζm,n/cm,n, Equation (4.21b) can be written in terms of spectral
coefficients as

dEU

dt
=

∑
m,n∈U

[
ζm,n

−cm,n

J (ψR, ζR)m,n − ν
ζm,n

−cm,n

(−cm,n)ζm,n

−μ ζm,n

−cm,n

(Fm,n − ζm,n)

]
−

∑
m,n∈R

ζm,n

−cm,n

J (ψU , ζU)m,n. (4.22)

The last term leads to correlations in the unresolved scales. This is not
necessarily zero on average, but assuming that it is small compared to the
other terms greatly simplifies the analysis (it was used earlier in going from
Equation (4.8a) to Equation (4.8b)). We can then write Equation (4.22) as

−dEU

dt
=

∑
m,n∈U

ζm,n

cm,n

J (ψR, ζR)m,n + ν
ζm,n

cm,n

cm,nζm,n − μ
ζm,n

cm,n

(Fm,n − ζm,n)

(4.23)

=
∑

m,n∈U

(
ν +

μ

cm,n

)
ζ2m,n +

(J (ψR, ζR)m,n − μFm,n

cm,n

)
ζm,n. (4.24)

Note that Equation (4.24) is a summation of quadratic functions in ζm,n. Let
us examine a simple case, where only one variable is considered. We denote
this variable with x and the time rate of change of the energy will be called
A. Then, Equation (4.24) can be written as

A = ax2 + bx , with (4.25a)

a =

(
ν +

μ

cm,n

)
and (4.25b)

b =

(
J(ψR, ζR)m,n − μfm,n

cm,n

)
(4.25c)

The information entropy in the case of a single variable x is given by

SI = −
∞∫

−∞

dxP(x) ln

( P(x)

M(x)

)
. (4.26)

Recall that this quantity should be maximal. Furthermore, (4.13) reduces
to ∞∫

−∞

dxP(x)A(x) = 0 (4.27)
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and the normalization constraint becomes

∞∫
−∞

dxP(x) = 1. (4.28)

The maximum entropy approach now combines these constraints to show that
the probability density function P(x) has the form of a Gaussian distribution
with mean

x = − b

2a
. (4.29)

Also, because all variables ζm,n are statistically independent, the result is
equally valid for the multivariate case (Equation (4.24)). The complete
derivation is given in Appendix B of this report and can also be found in
Verkley and Lynch (2009) and Verkley (2011).

Our final model is thus:

∂ζR

∂t
+ J R(ψR + ψU , ζR + ζU) = ν∇2ζR + μ(FR − ζR)

ζU =
∑

m,n∈U
ζm,nYm,n

ψU =
∑

m,n∈U

−ζm,n

cm,n

Ym,n

ζm,n = −
(J (ψR, ζR)m,n − μFm,n

2(νcm,n + μ)

)

(4.30a)

(4.30b)

(4.30c)

(4.30d)

4.4 Numerical implementation

We will now discuss the implementation of the new parameterization in the
Fortran77 model. The expression for the unresolved scales unfortunately
still includes a Jacobian contribution in the unresolved part of the spectrum.
Therefore, the simplest way to implement it is to use a full T85 model with a
mask function that sets the part of the spectrum outside the T42 truncation
to zero. The new tendency routine is visualised in figure 4.3. We are aware
that this implementation is likelier to increase computation time than to
make it more efficient, but our primary objective is to check whether it
works. Later on we may try and find a shortcut in the calculation of the
Jacobian.
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Figure 4.3: Flow chart of the model including maximum entropy parameter-
ization.
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5
Methodology

In this chapter, the model settings as used in our experiments are outlined.
We do two different kinds of experiments. The first set of experiments is
intended to analyse the forecast skill on the short term, i.e. approximately
50 model days1. The central question in here is ‘How long does it take before
the model run deviates substantially from reality?’ 2

The second set of experiments is used to describe the ‘climate’ of the
model. This climate can be described as a mean state in which the model re-
sides and an associated standard deviation (compare Figure 4.2). The central
question in here is ‘Does the new parameterization improve the simulation of
the state in which the model resides?’ If this is the case, it is likely that also
the short range forecast is improved.

5.1 Model parameters

In Table 5.1 we list a number of model parameters as encountered in the
Fortran77 model. We use a time step equivalent to 15 minutes, which cor-

1Note that there is no relation between model days and real days. We just need a
measure to express the time it takes for the model to decorrelate from the reference.

2We recall here that reality is given by a model run at high resolution and that this
model run is compared with a model run at a lower resolution, with or without a given
parameterization.
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Table 5.1: Important Fortran77 model parameters with explanation.

LT Total integration time (e.g. 25 ∗ 96 = 25 days)
MN Total spectral domain (85 coefficients in all directions)
MR Fixed grid resolution (256 grid points in both directions)
MS Base two exponent for fast fourier transform (default = 7)
MNP Inner domain: 85 or 42 coefficients (outer domain is masked)
ME Resolution for energy spectra (default 60 for T42 spectrum)
AF,AE Forcing and damping (AE=AF=μ)
AY Viscosity (=ν)
IA Starting choice: start from zero or read initial field EST
LPAR Use the maximum entropy parameterization (0 = off, 1 = on)
KE Interval for writing energy/enstrophy to output files
KC Interval for writing vorticity field to output files
AN Resolution-dep. viscosity (85 ∗ 85 or 42 ∗ 42)
SQ Amplitude of the forcing (f5,5 =

1
2

√
2).

responds to 900 seconds. To make it non-dimensional3, we scale it with
T = Ω−1

Δt = 15 ∗ 60 ∗ Ω = 0.065629036 (5.1)

As to the value of the T85 viscosity, we choose a value that damps oscillations
on the smallest model scale with an e-folding time4 of five days. This gives
an expression for the non-dimensional viscosity:

νT85 =
1

24 ∗ 60 ∗ 60 ∗ 1

Ω
∗ 1

5
∗ 1

852
(5.2)

where we recognize both a conversion from seconds to days for convenience,
the scaling parameter T = Ω−1 and the inverse proportionality to the smallest
waves. Likewise, the time scale of the linear forcing and damping is 90 days:

μ =
1

24 ∗ 60 ∗ 60 ∗ 1

Ω
∗ 1

90
(5.3)

The forcing is a single wave with wave number 5 in both directions and
amplitude F5,5 =

1
2

√
2.

3Actually, in our model simulations the time step was scaled with a solar day instead of
a sidereal day. The time step then becomes 0.065449847, which does not make a substantial
difference, but it is in fact a bit improper.

4The e-folding time is the time it takes for the oscillations to decrease by a factor of e.
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5.2 Experiments

We use a T85 simulation as reference run. We will treat this run as ‘reality’
and try to approximate it using a model with T42 truncation. First, we run
the T42 model with the same viscosity as used in the T85 model. We call
this the unparameterized run. However, the original model used a resolution-
dependent viscosity. More precisely, the viscosity was inversely proportional
to the maximum wave number squared. This adaptive viscosity is a common
method to account for the effect of unresolved scales (and numerical insta-
bilities). Sometimes, this increased viscosity is referred to as eddy viscosity
(e.g. Cushman-Roisin and Beckers, 2011). We will also use this adaptive
viscosity so that we can compare results of the new parameterization with a
conventional one. Thus, we perform the following experiments

1. Reference run on T85 resolution

2. Model 1: Unparameterized T42 model

3. Model 2: T42 with resolution-dependent viscosity

4. Model 3: T42 with maximum entropy parameterization

As mentioned before, we do two different kind of analyses. For short-
range forecast analysis, the vorticity field is output on a high frequency of
two times a day to inspect it in detail. To substantiate the results of this
experiment, we perform all the experiments five times with different initial
fields (see Section 5.3). For climate analysis, we use energy and enstrophy to
characterize the state in which the model resides. A preliminary experiment
pointed out that in order to obtain a reliable mean and standard deviation
of the system, an integration over at least 5000 model days is desirable.

5.3 Initialization

When the vorticity transport model is initiated from a zero field, the forcing
will first lead to a vorticity field increasing in strength. The total energy
of the model increases until the flow becomes unstable. This happens after
approximately 100 days. At that point, the vorticity field becomes turbulent
and the total energy of the field decreases until the forcing and damping reach
an equilibrium. This happens after about 250 days. Then, the energy and
enstrophy fluctuate about an equilibrium value as is visualized in Figure 5.1.
We performed this simulation on a T85 resolution and output the vorticity
fields on day 200, 400, 600, 800 and 1000. These fields are used as input fields
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5.3. INITIALIZATION

Figure 5.1: Time evolution of total kinetic energy and enstrophy. The energy
first increases, then the flow becomes unstable and changes into a turbulent
state which evolves to statistical equilibrium. The EST# fields are used as
initial fields for the other simulations. For an impression, the EST fields have
been added as insets to the figure.

for the five forecast simulations. The field at day 600 is used to initialize
the climate simulation. Note that the field at day 200 has not yet reached
statistical equilibrium. Still, it is interesting to investigate the effect of our
new parameterization for this run as well.
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6
Results

This chapter gives an overview of the results of the experiments. We start
with a detailed analysis of the simulations with forecast settings. We continue
with an analysis of the model climate as expressed by means and variances
of the model’s energy and enstrophy. Before presenting the results, it must
be noted that we encountered several crashes while using the model with the
maximum entropy parameterization. To avoid this numerical instability, we
decreased the time step for these runs by a factor of 3.

6.1 Forecast simulations

6.1.1 Qualitative analysis of vorticity fields

As mentioned in Chapter 5, we ran four different models with five different
initial fields (Set 1-5), totalling 20 simulations in forecast mode. Following
initial field number 3, the calculated vorticity fields after 10, 20, 30, 40, 50
and 60 days are shown in Figures 6.1 and 6.2.

A feature that stands out is the grainy texture of the flow field in the
unparameterized run. There are large gradients between adjacent grid cells
at the smallest scales of the model (near the truncation limit). This behaviour
seems unphysical and a possible explanation might be that the smallest waves
of the spectrum are exaggerated. Both parameterizations reduce this noise,
especially the conventional parameterization is very effective and rigorously
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Figure 6.1: Vorticity fields from model simulations at time intervals of 10
days up to 60 days (continued on page 48). A T42 truncation has been used
to plot the vorticity fields, also for the reference.
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Figure 6.2: Vorticity fields from model simulations at time intervals of 10
days up to 60 days (continued).
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damps all the small scale effects. The maximum entropy parameterization
is not completely smooth, but it is still a considerable improvement over the
unparameterized run. We also note that the conventional parameterization
tends to damp out the extremes in the vorticity fields. In contrast, the
maximum entropy parameterization realistically retains the vorticity minima
and maxima.

If we analyse the vorticity fields in the course of time and focus on in-
dividual vortices, we see that at day 10 all fields are still more or less the
same. After 20 days, the first discrepancies can be identified, but they are
more clear after 30 days. We might focus, for example, on the two small,
strong vortices of opposite sign near the bottom boundary (circled in the plot
of the reference run). They are nearly identical in the reference and maxi-
mum entropy simulations, whereas the other two runs fail to reproduce this
feature. At day 50 the maximum entropy simulation still closely resembles
the reference run, whereas the conventional parameterization has damped
out most small scale features. At day 60, most of the correlation with the
reference run is lost for all parameterizations.

6.1.2 Quantitative analysis of vorticity fields

There are several measures to quantify model performance. Two indices
that are frequently applied are correlation and root mean square difference
(RMSD). Correlation is a measure for the similarity between two fields,
whereas RMSD is a measure for the difference between two fields. We ob-
tained time series of these quantities by directly comparing the vorticity val-
ues of each grid point of the model to the same grid point in the reference run.
Representing the model output values with xi and the corresponding cells of
the reference run with yi, the correlation and RMSD are given, respectively,
by

corr =

N∑
i=1

(xi − x)(yi − y)√
N∑
i=1

(xi − x)2

√
N∑
i=1

(yi − y)2

(6.1)

RMSD =

√√√√ N∑
i=1

1

N
(xi − yi)2 (6.2)

where N is the total number of grid cells and the overbars denote the mean
value of the field. The results for Set 3 are shown in Figure 6.3. All models
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Figure 6.3: Time evolution of RMSD (left) and correlation (right) with re-
spect to reference run for three models, started from initial field number
3.

show a steep rise in RMSD and a decrease in correlation within the first
70 days. In line with our previous qualitative analysis, we see that both
the rise in RMSD and the drop in correlation come about 20 days later in
the maximum entropy simulation than in the other runs. To substantiate
these results, we repeated the experiment for all initial states mentioned in
Figure 5.1 and averaged over the small ensemble. The results are shown in
Figure 6.4. Again, the ensemble average of the maximum entropy simulation
shows a later increase in RMSD and a later decrease in correlation, albeit
slightly less pronounced than in Set 3 alone. There is one set that deviates
slightly from the other sets. This is the simulation that follows from initial
field number 1. Here, the initialisation run had not reached statistical equilib-
rium yet. However, also for this set, the maximum entropy parameterization
improves the model performance. Also note that in terms of correlation, the
conventional parameterization does not seem to improve the simulation at
all.

6.1.3 Model performance in a Taylor diagram

There is a trigonometric relation between RMSD and correlation that allows
us to plot them in a single graph, called a Taylor diagram, after its inventor
(Taylor, 2001). Such a graph is shown in Figure 6.5 for both Set 3 and
the ensemble mean. In these plots, the reference is indicated by a star. In
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Figure 6.4: Time evolution of (mean) RMSD (left) and correlation (right)
with respect to reference run for three models, started from five initial fields.

the course of time, the models start to deviate from the reference and the
absolute distance to the reference star becomes larger. If we compare points
from different models at the same time, the model that is closest to the
reference point has the best score. For example, after 30 days of integration
in the diagram for Set 3, the maximum entropy simulation is found near
the 0.04 RMSD radius, whereas the other two models are closer to the 0.08
RMSD radius. This indicates that the maximum entropy parameterization
improves the accuracy of the simulation. Focusing on the ensemble mean,
it can be seen that the maximum entropy simulation had approximately the
same accuracy at day 40 as the other runs had after 30 days of integration.
This again indicates a substantial improvement of the model performance.

6.1.4 Energy and enstrophy

Instead of looking at the vorticity fields, we can also look at the total en-
ergy and enstrophy of the flow. These are shown in Figure 6.6. The most
striking aspect of these graphs is the poor quality of the conventional param-
eterization. It is immediately clear that the extra damping introduced by
the higher viscosity is far too large, resulting in too low energy and enstro-
phy values of the field. In contrast, the maximum entropy parameterization
closely resembles the reference run up to 60 days of integration.
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Figure 6.5: Taylor diagrams of the runs initiated from initial condition 3 (set
3, left) and of the ensemble mean of the runs from initial conditions 1-5,
right. Numbers represent days after the start of the simulation. Radial grid
lines are RMSD values.

Figure 6.6: Time evolution of kinetic energy (left) and enstrophy (right) for
simulations of Set 3.
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6.2 Climate

6.2.1 Energy and enstrophy distributions

We could continue by showing an ensemble mean of the energy and enstro-
phy evolution. However, we believe that it is more informative to present
the statistics of these variables that result from a very long integration. Af-
ter initialisation, the energy and enstrophy will start to fluctuate around an
equilibrium value as in Figure 4.2. This equilibrium can be characterized
by a mean value and a variance, which can in turn be used to construct a
normal distribution curve representing the probability density function for
the total energy and enstrophy1. These distribution curves are shown in Fig-
ure 6.7. It appears that the conventional parameterization results in a model
climate with too little energy and enstrophy, as was already indicated by
the results of the previous section. The mean energy in the unparameterized
run is quite similar to the reference run, but the distribution is somewhat
broader. The enstrophy in the unparameterized run is overestimated. The
near coincidence of the maximum entropy and reference distributions of both
energy and enstrophy signifies that the maximum entropy parameterization
substantially improves the modelled climate.

6.2.2 Energy and enstrophy spectra

Finally, we consider the energy and enstrophy spectra. The energy and
enstrophy are calculated per wave number and averaged over the climate
simulation. Figure 6.9 illustrates how the spectra are constructed. The rect-
angle represents the spectral space. Each combination of m and n forms a
wave vector k with length (magnitude)

√
m2 + n2: the wave number. The

energy/enstrophy spectrum is constructed by binning waves with approxi-
mately the same wave number and computing the energy/enstrophy of all
the individual bins. When the wave number of the bins exceeds N (the first
dotted line in Figure 6.8), there are less coefficients, simply because they fall
outside the truncation that the model used for the integration. Outside

√
2N

there is no data at all (the second dotted line in Figure 6.8).
The results are displayed in Figure 6.8 and show that the energy and

enstrophy in the larger scales are nearly identical in all simulations, but on the
smaller scales, substantial differences occur. The unparameterized run has
too much energy in the smallest scales. This finding supports our hypothesis

1We checked that after a long integration as used here (5000 days), the histograms of
energy and enstrophy indeed converged towards the bell-shape characteristic for a normal
distribution.
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Figure 6.7: Gaussian distributions based on mean and variance of kinetic
energy and enstrophy from climate simulations with four different models.

that the grainy texture of the flow field is a result of excessive representation
of the smallest waves. The conventional parameterization imposes a damping
that is too large. Again, the maximum entropy parameterization improves
the simulation: the representation of the spectra is fairly accurate, even in
the smallest scales. This substantiates the results presented in Figure 6.7.
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Figure 6.8: Energy and enstrophy spectra of the flow field as simulated with
four different models. The dotted vertical lines indicate two truncation levels,
as illustrated in Figure 6.9.

Figure 6.9: Illustration of the calculation of the spectra. See text for expla-
nation.
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7
Discussion and conclusions

We have implemented a new parameterization for the effects of unresolved
scales on the resolved scales in a simple model of two-dimensional fluid flow.
The parameterization is based on the maximum entropy principle, which
states that the information entropy of the probability density function that
describes the unresolved scales should be maximal under suitable constraints.
We used the constraints of normalization and the assumption that the energy
in the unresolved scales should have a time derivative that is equal to zero.
The results so far seem quite promising. The parameterization leads to a
physically realistic flow field without affecting the intensity of the strongest
vortices (Figures 6.1-6.2). Compared to a model that uses a conventional
parameterization, the forecasting skill of the maximum entropy model (an-
alyzed in terms of the root mean square difference and correlation with the
reference run) is substantially higher. This is illustrated in Figures 6.3-6.5.
We also performed a climate simulation experiment. The maximum entropy
parameterization improves the representation of energy and enstrophy of the
flow (Figures 6.7-6.8). Especially near the truncation limit, the energy and
enstrophy spectra are more realistic. In this chapter, we will make some side
notes to the new parameterization and we look ahead to what the next steps
might be.

To investigate the effect of the new parameterization when it operates
in isolation, we performed a simulation without any forcing or damping,
except for the parameterization of the unresolved scales. The energy of this
run remains nearly constant while the enstrophy decreases to a new, much
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Figure 7.1: Energy and enstrophy of the flow field for a simulation of 300 days.
Started from EST3, ran without forcing and linear damping and without
viscosity (left). The only remaining source/sink is the maximum entropy
parameterization. Note the small range of the energy-axis. Right: final
vorticity field of this simulation.

lower equilibrium, as shown in Figure 7.1. The vorticity field converges to
a state which is dominated by only a few large vortices. These results are
comparable to the decaying two-dimensional flow solution of McWilliams
(1984) and confirm that the new parameterization indeed acts as a damping
on the smallest scales, such that all energy will concentrate in the larger
scales. This is an essential property of two-dimensional turbulence. In three-
dimensional turbulence, energy will flow continuously towards the smaller
scales (Bouchet and Venaille, 2012).

We note that the formulation of our parameterization is very similar to
the anticipated potential vorticity method (AVPM) introduced by Sadourny
and Basdevant (1985). Their Equation (8) expresses the damping resulting
from subgrid-scale processes as

D = θr−1/2L(r−1/2V · ∇η), (7.1)

which for our model would reduce to

D = θLJ (ψ, ζ) (7.2)

Here, θ is a time scale and L is a ‘nondimensional nonnegative definite lin-
ear operator’. If we assume the contribution of ψU is negligible, our Equa-
tions (4.30) can be rewritten in exactly the same form. However, whereas
Sadourny and Basdevant have to make an educated guess for the value of
their θ and L, the maximum entropy approach completely determines these
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parameters:

θ =
1

2μ
and L = PU

(
1− ν

μ
∇2

)−1

, (7.3)

where PU is a projection operator used to indicate that only spectral coef-
ficients in the unresolved domain are considered. Frederiksen et al. (1996)
tested the APVM parameterization for a barotropic vorticity model (their
Section 6.2). Our results show similar properties to theirs, in the sense that
enstrophy is dissipated while the mean energy is nearly unaffected.

With the current implementation, the maximum entropy parameteriza-
tion does not improve the forecast speed. Instead, the simulations take
(much1) longer. The reason that the Jacobian term is so expensive in the
spectral model is because it requires a transformation to and from the grid
space. There are also models that compute everything in grid space, in which
case this drawback is smaller. For the spectral model, there are several ways
in which the speed can be boosted. As shown in Figure 4.3, the model now
goes through the Jacobian routine twice. The first time, only the resulting
Jacobian coefficients in the unresolved domain are used and those of the re-
solved domain are discarded. It is not too difficult to rewrite the Fortran
code in such a way that only the unresolved variables are returned when cal-
culating the first Jacobian. This would already lead to a gain in computation
time.

A much more effective method, however, is to let only a few waves, that
are just outside the truncation limit, interact with the resolved variables. To
explain this more clearly, we return to Figure 3.2. The non-linear Jacobian
operator, when applied to T42 variables, also has a contribution in the T85
part of the spectrum. In the unparameterized T42 model, we simply neglect
these contributions. In the maximum entropy model, we average them with
Equation (4.30d) and account for them when going through the Jacobian
for the second time (the T85 waves that result from the second call of the
Jacobian routine, are discarded anyway). However, we could also discard
everything outside, say, a T50 truncation and only apply Equation (4.30d)
to the coefficients between T42 and T50. We ran some test simulations
and it appears that using only 3 or 5 extra rings of coefficients (T42+3,
T42+5) already leads to a comparable gain in accuracy. Combining these
two modifications leads us to believe that we will be able to run the model
on T42 resolution and speed while maintaining a T85 accuracy.

As mentioned in the beginning of Chapter 6, we encountered some numer-
ical instabilities with the new parameterization, forcing us to reduce the time

1approximately twice as long.
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step with a factor 3. These instabilities look like typical Courant-Friedrichs-
Lewy (CFL) violations, but further investigation of this issue is necessary.

The reader may have noticed a certain symmetry in the vorticity fields
shown in this report. It probably results from the simple, regular forcing
pattern that we prescribed for our simulations. Indeed, it would be better to
use a more sophisticated forcing (e.g. a stochastic forcing acting on multiple
scales) but we leave this to future studies on the subject.

One of such studies would be to extend our results to a shallow-water or
reduced-gravity model. This would allow the study of the effects of diver-
gence, e.g. vortex stretching, and also to implement the latitudinal depen-
dence on the earth’s rotation through the Coriolis parameter.
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A
Fourier transformations

We will prove here that expressing a field ζ(x, y, t) as in Equation (3.37) can
be done by using complex exponentials. If we consider only one dimension,
we split the summation in (3.36) in three and substitute the real expressions
for Xm(x):

ζ(x) =
+∞∑

m=−∞
ζmXm(x) (A.1)

=
−1∑

m=−∞
ζmXm(x) +

∑
m=0

ζmXm(x) +
+∞∑
m=1

ζmXm(x) (A.2)

=
+∞∑
m=1

ζ−m

√
2 sin(mx) + ζ0 +

+∞∑
m=1

√
2ζ+m cos(mx) (A.3)

Now, we use

eimx = cos(mx) + i sin(mx) (A.4)

cos(−x) = cos(x) (A.5)

sin(−x) = − sin(x) (A.6)
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APPENDIX A. FOURIER TRANSFORMATIONS

to show that

eimx + e−imx = cos(mx) + i sin(mx) + cos(−mx) + i sin(−mx)
= cos(mx) + i sin(mx) + cos(mx)− i sin(mx) (A.7)

= 2 cos(mx)

eimx − e−imx = cos(mx) + i sin(mx)− cos(−mx)− i sin(−mx)
= cos(mx) + i sin(mx)− cos(mx) + i sin(mx) (A.8)

= 2i sin(mx)

Next, we replace the sine and cosine in equation (A.1) with the expressions
above, to find:

ζ(x) = ζ0 +
∞∑

m=1

ζ+m(e
imx + e−imx)/

√
2 (A.9)

+
+∞∑
m=1

ζ−m(e
imx − e−imx)/(

√
2i) (A.10)

Taking the two summations together yields

ζ(x) = ζ0 +
∞∑

m=1

1√
2
(ζ+m − ζ−mi)e

imx +
1√
2
(ζ+m + ζ−mi)e

−imx (A.11)

where we used that (1
i
) = (−i). Now, we define the complex coefficient ζ̂m

as

ζ̂+m = (ζ+m − ζ−mi)/
√
2 (A.12)

ζ̂0 = ζ0 (A.13)

ζ̂−m = (ζ+m + ζ−mi)/
√
2 (A.14)

so we can replace the loop over m to ∞ with a loop over −∞ to +∞ and
drop out the terms with negative exponentials. Then we are left with the
one-dimensional, complex exponential form of equation (3.36).

The two-dimensional equivalent of this is:
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ζ(x, y) =
∑
m,n

1

2
eimxeiny(−ζ−− − iζ−+ − iζ+− + ζ++)+

1

2
eimxe−iny(ζ−− − iζ−+ + iζ+− + ζ++)+

1

2
e−imxeiny(ζ−− + iζ−+ − iζ+− + ζ++)+

1

2
e−imxe−iny(−ζ−− + iζ−+ + iζ+− + ζ++)+

1√
2
eimx (−iζ−0 + ζ+0)+ (A.15)

1√
2
e−imx(iζ−0 + ζ+0)+

1√
2
einy(−iζ0− + ζ0+)+

1√
2
e−iny(iζ0− + ζ0+)+

ζ00

where the subscript ζ−− represents the coefficients ζ−m,−n, etc., so that the
complex version of the spectral coefficient is defined as:

ζ̂++ = (−ζ−− − iζ−+ − iζ+− + ζ++)/2 (A.16)

ζ̂+− = (ζ−− − iζ−+ + iζ+− + ζ++)/2 (A.17)

ζ̂−+ = (ζ−− + iζ−+ − iζ+− + ζ++)/2 (A.18)

ζ̂−− = (−ζ−− + iζ−+ + iζ+− + ζ++)/2 (A.19)

ζ̂+0 = (−iζ−0 + ζ+0)/
√
2 (A.20)

ζ̂−0 = (iζ−0 + ζ+0)/
√
2 (A.21)

ζ̂0+ = (−iζ0− + ζ0+)/
√
2 (A.22)

ζ̂0− = (iζ0− + ζ0+)/
√
2 (A.23)

ζ̂00 = ζ00 (A.24)

This will be used in for the Fast-Fourier transform in the Fortran program.
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B
Maximum entropy theory

We may illustrate how the principle of maximum entropy is applied by con-
sidering a simple case in which there is only one unresolved variable; this
variable will be called x. Denoting −dEU

dt
by A, the expression (4.24) then

becomes:

A = ax2 + bx , with (B.1a)

a =

(
ν +

μ

cm,n

)
and (B.1b)

b =

(
J(ψR, ζR)m,n − μfm,n

cm,n

)
(B.1c)

The information entropy in the case of a single variable x is given by

SI = −
∞∫

−∞

dxP(x) ln

( P(x)

M(x)

)
, (B.2)

where P(x) is the probability density function. For the so-called a-priori
probability density function M(x), we take M(x) = 1

c
, where c is a constant

with the same dimension as x. This means, effectively, that we assume no
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a-priori information. We then get:

SI = −
∞∫

−∞

dxP(x) ln [P(x)c] (B.3a)

= −
∞∫

−∞

dxP(x) [ln(P(x)) + ln(c)] (B.3b)

= −
∞∫

−∞

dxP(x) ln(P(x))−
∞∫

−∞

dxP(x) ln(c) (B.3c)

= −
∞∫

−∞

dxP(x) ln(P(x))− ln(c)

∞∫
−∞

dxP(x) (B.3d)

= −
∞∫

−∞

dxP(x) ln(P(x))− ln(c) (B.3e)

The last result follows from the fact that we always require

∞∫
−∞

dxP(x) = 1. (B.4)

We see that the value of c only leads to an offset of SI . In maximizing SI we
may just as well take c = 1.

The principle of maximum entropy states that SI should be maximum
under suitable constraints. The first constraint is the normalization condition
(B.4). The second constraint is

∞∫
−∞

dxP(x)A(x) = 0, (B.5)

i.e., that the average value of A (averaged over P) is equal to zero. Let us
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define:

B(P) ≡
∞∫

−∞

dxP(x) (B.6a)

C(P) ≡
∞∫

−∞

dxP(x)A(x) (B.6b)

=

∞∫
−∞

dxP(x)(ax2 + bx). (B.6c)

The condition that SI is maximal (or, more generally, extremal) can be
expressed as:

δSI = 0, (B.7)

where δSI is a perturbation of SI as a result of any allowable perturbation δP .
Now, we require that the perturbation of SI is zero under the constraints that
the normalization remains 1 (also the perturbed probability density function
has to be normalized) and that the average value ofA remains 0. This implies
that the perturbations that are allowed should satisfy

δB = 0, (B.8a)

δC = 0. (B.8b)

The trick is now to find values of λ1 and λ2 such that for any perturbation
(i.e. without constraint) we have

δSI + λ1δB + λ2δC = 0. (B.9)

If values of λ1 and λ2 (nonzero) can be found then it follows that if we
limit ourselves to perturbations for which δB = 0 and δC = 0, then also
δSI = 0. This is the of Lagrange multipliers. In our case we have two
Lagrange multipliers: λ1 and λ2. Now, we have:

δSI = −
∞∫

−∞

dx δP(x) ln(P(x))−
∞∫

−∞

dx δP(x), (B.10a)

δB = −
∞∫

−∞

dx δP(x), (B.10b)

δC = −
∞∫

−∞

dx δP(x)(ax2 + b), (B.10c)
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so that (for convenience we changed the signs of λ1 and λ2)

δSI − λ1δB − λ2δC =

−
∞∫

−∞

dx δP(x)
[
ln(P(x)) + 1 + λ1 + λ2(ax

2 + bx)
]
. (B.11)

If this has to be zero for any perturbation δP , then the expression between
square brackets has to be zero. This implies:

ln(P(x)) + 1 + λ1 + λ2(ax
2 + bx) = 0 ⇒ (B.12a)

ln(P(x)) = −1− λ1 − λ2(ax
2 + bx) ⇒ (B.12b)

P(x) = exp(−1− λ1 − λ2(ax
2 + bx)) (B.12c)

= exp(−1− λ1) exp(−λ2(ax2 + bx)) (B.12d)

= exp(−1− λ1) exp

(
−λ2a

(
x2 +

b

a
x

))
(B.12e)

= exp(−1− λ1) exp

(
−λ2a

[(
x+

b

2a

)2

−
(
b

2a

)2
])

(B.12f)

= exp(−1− λ1) exp

(
λ2a

(
b

2a

)2
)
exp

(
−λ2a

(
x+

b

2a

)2
)
.

(B.12g)

Now, compare this expression with the expression of the normal (Gaussian)
distribution:

N (μ, σ, x) =
1

σ
√
2π

exp

(
−(x− μ)2

2σ2

)
, (B.13)

with mean μ and standard deviation σ. Then we see that the maximum
entropy probability density function is equal to a Gaussian distribution with
mean

μ = − b

2a
(B.14)

and variance

σ2 =
1

2λ2a
(B.15)

We see that the mean of the distribution is already given in terms of the
system parameters a and b. To obtain the standard deviation σ, we note

67



APPENDIX B. MAXIMUM ENTROPY THEORY

that for a normal distribution we have

∞∫
−∞

dxP(x)x = μ, (B.16a)

∞∫
−∞

dxP(x)x2 = μ2 + σ2. (B.16b)

We now use the constraint:

∞∫
−∞

dxP(x)(ax2 + b) = 0 ⇒ (B.17a)

a

∞∫
−∞

dxP(x)x2 + b

∞∫
−∞

dxP(x)x = 0 ⇒ (B.17b)

a(μ2 + σ2) + bμ = 0. (B.17c)

This gives, after substituting the known value of μ,

a

((
b

2a

)2

+ σ2

)
− b

(
b

2a

)
= 0 ⇒ (B.18a)(

b

2a

)2

+ σ2 − b2

2a2
= 0 ⇒ (B.18b)

−
(
b

2a

)2

+ σ2 = 0 ⇒ (B.18c)

σ2 =

(
b

2a

)2

(B.18d)

Now σ is known, we know λ2. The value of λ1 can be obtained by using that

exp(−1− λ1) exp

(
λ2a

(
b

2a

)2
)

=
1

σ
√
2π

(B.19)

This completely determines the maximum entropy probability density func-
tion. The calculation above can be easily extended to the multivariate (more
variables) case as long as all the variables are statistically independent. We

are, actually, in this situation because the expression for−dEU
dt

(see (4.24))
does not contain any cross terms. This implies that if we would apply our
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maximum entropy analysis to this case, the resulting probability density func-
tion would be a product of independent Gaussians with means and variances
that are determined, individually, by Am,n and Bm,n.

Intuitively, we can also see that constraint (B.5) leads to a nonzero mean
of P(x). Since the integral over P(x) = 1, the expression for A should
‘compensate’ to get zero. When the PDF has a Gaussian form, and A is
a quadratic function, this is possible when the mean of P coincides with
the location where the quadratic expression A = 0 has its minimum (see
figure B.1). For the minimum of a quadratic function, we have

∂

∂x

[
ax2 + bx

]
= 0 (B.20)

2ax = −b (B.21)

x = − b

2a
(B.22)

which is equivalent to Equation (B.13)

Figure B.1: Shape of the probability density function (green) and the
quadratic function (blue). The product of the two functions is negative
where the quadratic function is negative, and positive elsewhere. With some
imagination, one can see that under certain conditions, the positive and neg-
ative products cancel and condition (4.13) is met. This is only possible if the
locations of the extremes coincide.
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