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Abstract:

In spectral wave models, wave propagation suffers from the so-called
garden-sprinkler effect: due to the treatment of spectral bands of finite
width as individual (continuous) wave components, most of the energy
of the propagating wave becomes concentrated along the main direc-
tions recognized by the model. In this paper a method is proposed
aiming to diminish the garden sprinkler effect in numerical wave mod-
els without paying the penalty of a large increase in computation time.
Starting from the energy balance equation, additional terms are derived
which correct for the finite width of the angular bands. The correction
terms are defined locally, hence knowledge of large-scale quantities is
not required for their computation; however, they do contain addi-
tional angular and spatial derivatives, the calculation of which may be
costly. It is shown that for areas of limited spatial extent the correction
terms may be approximated by a simple diffusive operator depending
on the scale length of propagation. Inclusion of the angular diffusion
term in the WAM propagation scheme leads to a significant decrease
of the garden sprinkler effect in this model. The simplified correction
term requires little computation time and can easily be implemented
in spectral wind wave models.

1 Introduction

Present state-of-the-art wave models are formulated in terms of a wave energy spectrum
discretized into a large number of spectral bands. The finite width of these bands introduces
non-trivial complications for the computation of wave propagation. Ideally, the energy of a
wave disturbance of small initial extent will spread out smoothly over the sea or ocean in the
course of time. In most of the presently operational models, however, the spectral resolution

1s so coarse that the so-called ”garden-sprinkler” effect occurs (e.g. [4],[8],[9]): most of the
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energy of the propagating wave becomes concentrated along the basic directions of the
model which are closest to the direction of wave propagation, while in other directions
the wave energy is underestimated. Thus, the limited angular resolution of the model
introduces a measure of artificial anisotropy in the spatial distribution of wave height. One
consequence of this phenomenon is that the arrival of swell originating from distant storms
is often poorly predicted [1,4].

A straightforward way to remove this problem is simply to increase the spectral res-
olution. This is computationally expensive, however. A second solution to the garden
sprinkler problem was derived by Booy and Holthuijsen [4], for wave propagation over a
plain surface. Their approach consists of adding two terms to the energy balance equation,
which correct for the finite width of the angular and frequency bands. The disadvantage
of inclusion of the correction terms of Booij and Holthuijsen in spectral wave propagation
schemes is that this requires the solution of a more complex equation than the energy
balance equation, with a corresponding increase in computing time.

In the present paper we propose another approach, capable of removing the garden
sprinkler effect to a large extent without demanding a significant additional amount of
cpu-time. The method adopted here is outlined in section 2. We consider the case of pure
swell propagation on the sphere in deep water. For this problem an analytical solution
can be derived. Correction terms to the energy balance equation are derived in a manner
similar to that of Booij and Holthuijsen. In the case of propagation over an area of limited
extent (such as the North Sea), these correction terms can be reduced to a simple angular
diffusive operator, which can be implemented in numerical propagation schemes at little
computational cost.

In section 3, the proposed solution is applied to the WAM-model [5]. A wave disturbance
of prescribed initial shape and spectrum is assumed to propagate through a deep water
region of roughly 20 by 20 degrees in extent. The analytical solution of this problem is
derived and compared to the results of the standard WAM model and to the modified

version including an angular diffusive operator.



2 The angular smoothing technique

The strong influence of the garden sprinkler effect on presently operational spectral wave
models (e.g. [1],(4],[8],[9]) is due mainly to the coarseness of the angular resolution adopted
(generally 15 or 30 degrees); the discretization of the spectrum into frequency bands plays
a less important role. For this reason we will limit ourselves to a discussion of the conse-
quences of describing the spectrum with angular bands of finite width only; but in principle

all of the following can be applied to frequency as well.

In the energy balance equation, the evolution of a wave spectrum S(w, B, ¢,0, t) with
respect to frequency w, propagation direction 8 (measured here counterclockwise from the

parallel), latitude ¢ and longitude # (on the spherical earth) and time, is described in the

form of a differential operator:

_0S 1 8(dcos¢S) AOS) OB S)
L(s) = E-Fcosqﬂ 0¢ + a9 + ap

=G 1)

G = G(w, B, 9,0, t) is the function describing the sources and sinks of wave energy, con-
sisting of wind input, bottom friction, dissipation and non-linear interaction terms. The
functions q.S, 9 and ﬂ represent the rates of change of position (¢,8) and direction of prop-

agation f of a wave packet travelling along the ray (a great circle):

¢ = C,sing /R (2)
0 = C,cosp /(R cose) (3)
B = —C, tang cosg / R (4)

where C, is the wave group velocity and R is the earth radius.

We will investigate the solution of equation (1) for the case of pure swell propagation,

assuming the source term G to be zero: L(S)=0.

2.1 Effects of angular discretization

Numerical solution of the energy balance equation (1) requires the discretization of the

continuous wave spectrum in frequency-direction space. Let S™(wy, f).be the wave spectral
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component at time step n corresponding to frequencies in the range (wr — 0.5 Aw < w <
wi + 0.5 Aw) wy and directions in the band (3 — 0.5 A < 8 < 5+ 0.5 AB). The mean
energy contained in the angular range (4 — 0.5 AB <8< 5 +0.5 Ap) can be determined

by integrating the energy balance equation (1) over the angular band width:

— 1 ﬁz+%§
S(wr, Br) = AB Jg_se S dp (5)

The usual way to estimate the integral (5) is to use first-order numerical integration schemes
(1-5]. .Under the assumption that S is continuous and twice differentiable, a more accurate
second-order algorithm can be used. To derive the mean energy in the band (3 —0.5 AB <
B < B+ 0.5 AB), quadratic interpolation is applied between three points 8i_;, 8 and Bi4;.

The mean energy value can then be approximated by:
1

-S-(wkaﬂl) = Z a; S(wr, 5l+j) (6)

=1

where the interpolation coefficients a_; = a; = 1/24; a, = 11/12. The mean energy
contained within the band therefore does originate not only from the component S(wx, 4),

but from neighbouring (in direction space) components as well.

In a similar manner the energy balance equation can be adapted to incorporate the

effects of a finite angular resolution ApJ, by applying to it the integral operator:

1 Bi+AB/2 S) d 7
AB Joooo (S) dp (7)

By using the definition of mean energy (6) and by applying the following expansion, which

is valid for small values of | Af |< 1:

cos Biz1 = cos (B AB) = cos B (1 — (AB)?/2) Fsin B AB + O((AB)?)
sin iz = sin (B2 AB) = sin B (1 - (AB)?/2) £cos B AB + O((AB)?)

it can be shown that:

as 1 9, -
Bt + Eo—sga_¢( ¢ (1 + €/2) cosg S) +
o - —_ J - —
+%(9(1+6/2)S)+8—5(ﬂ(1+6)5)+ (8)
eC, @ . 9(S cosp) 1 9(S sing) 1 d%S _
* R %{ 0¢ B cos¢d 00 t+ 2 tang cosf 8_52} + 0(62) =0
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where € = (AB)?/12 < 1.

The first four terms in eq.(8) are similar in nature to the terms on the left-hand side
of the original energy balance equation (1). In addition they contain a correction term of
order €, which describes changes in the velocity of spectral components due to the angular
discretization. Since in general € is small (for the standard WAM model with 12 directions
€ & 2%), the contribution of this term to the factor (1 + ¢/2) is negligible. The same holds
for the sixth term on the left-hand side of (8). It is the fifth term in (8) which provides the
corrections required to represent the effects of finite angular resolution on the evolution of
the wave spectrum. This term contains second-order spatial and angular derivatives. It
is proportional to € (in other words, to (ApB)?), to the group velocity C, and the radius
of the Earth R. The fifth term itself consists of three parts. The first two contributions
are determined by spatial and angular inhomogeneities of the wave field; the third part
describes the wave variance due to changes in wave propagation angle 3 as the wave travels
along a great circle.

The fifth term in eq.(8) is comparable to a similar term derived in an analogous manner
by Booij and Holthuijsen [4], for the case of wave propagation over a plain surface. The
correction term given by Booij and Holthuijsen depends on a quantity which they term
"wave age”, which is not defined locally. The main advantage of the anéular correction
term applied here is that it is defined purely locally for a spherical surface. For a plain

surface, a correction term for finite angular resolution can be derived in a manner analogous

to eq.(8):

aS aS S 9 A(S cosP) 3 d(S sinpB) _
6t+chax+cgy%+60gaﬂ{ By pe } =0

(9)
where Gy, = (1 + ¢/2) C, cos B and C,y = (14 ¢/2) C, sin B are components of the wave
group velocity. The additional terms in eqns.(8) and (9) depend on angular resolution

(through €), group velocity and the spatial and angular inhomogeneity of the wave field.



2.2 A special case

Inclusion of the fifth term on the left-hand side of eq.(8) (or, equivalently, the last term of
(9) in the plain surface case) in the energy balance equation of the WAM model would lead
to substantial complications for the WAM numerical scheme. Calculation of the second-
order derivatives would lead to a significant increase in required computation time. Under
certain circumstances, however, it is possible to simplify the three contributions to the
correction term considerably.

Let L be a typical scale length for wave propagation in the region of interest. For an
ocean L will be in the order of several thousand kilometers, whereas for a shelf sea such as
the North Sea L will typically be a few hundred kilometers. Following Booij and Holthuijsen
[4], it can be shown that:

9(S cosp) 1 9(S sinp) N E@

¢ cos¢ 96 L 9P
For a shelf sea, the factor (R/L) will be of the order of 10 or larger. Thus, the first two

(10)

contributions to the angular correction term are likely to be an order of magnitude larger
than the third, which was connected to the wave variance due to changes in 8 as the wave

propagates along a great circle. By neglecting this third contribution, the energy balance

~ equation is reduced to:

d§~a§ 1 3

) _ 0 - — 0 . — eC, 9*S
ENE—}—COS¢8¢(¢COS¢5)+——(95)+%(ﬂ5)%A—-—— (11)

09 R 0p?

where A = R/L. In other words, the terms correcting the energy balance equation for the

finite width of the angular bands may be approximated by a simple diffusive operator, which
describes a slight ”exchange” of energy between the nearest angular components. The main
problem with the solution of eq.(11) is associated with an accurate determination of the
dimensionless parameter A. A large value of A (strong angular smoothing) is able to wipe
out all details of the angular distribution; with too small a value of A the garden sprinkler
effect will not be diminished.

For swell propagation on oceanic scales, A is of the order of 1-10. In this case, neglect of

the 3S/0B%-term is perhaps not justifiable, and the approximation of the energy balance
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equation (1) by equation (11) may not be appropriate.
To obtain more insight in the behaviour of the solution of (11), let us consider the

simpler but similar case of the heat equation with the same right hand side:

iKY 9*S
5 =6 I (12)
where
§ = A(AP)?C,/12R (13)
The only non-trivial solution of (12) which is periodical in 3 is given by:
Sm(B,7) = B(m) exp(£imB — m?r §) (14)

Here B(m) is an arbitrary function of a constant m, which is defined by the initial conditions

of the problem. In the course of time solution (14) relaxes to an isotropic spectrum:

lim S(8,7) = B(m) = o~ [ S(8,0) dB (15)

T—00

The e-folding timescale on which this relaxation occurs is:
Ar =~ 1/(6m*) = 12R/(m*A(AB)’C,) = 487 R/ (m*A(AB)*gT) (16)

T being the mean wave period. Since in nature wave spectra starting from anisotropic
initial conditions do not become quasi-isotropic in this manner, we may suppose that the

validity of the approximation (11) is limited by the condition:

AT > tyasr (17)

where tp,, is the maximum duration of the wave propagation to be considered. This

condition allows us to obtain an upper limit to, and second estimate of, the value of A:
A < 487R/(m*A(AB) g T tmas) (18)

For a mean wave period of 10 sec, an angular resolution A = 7/12, m=>5 and a maximum

duration of 36 hours, for example, we find that A < 102.



2.3 The numerical algorithm

The numerical realization of applying the correction for a finite angular resolution is

achieved by a simple finite differences approximation:

S (wr, B1) = vS™(wk,Bi-1) + (1~ 20)8™(wi, B1) + vS™(wk, Bre1) (19)

where v = A C, At/12R and A = R/L is a dimensionless parameter, the value of which
depends on the area to be described by the model. From eq.(13) it can be shown that v
does not depend on the angular resolution AS. Essentially, eq.(19) represents an angular
smoothing of the wave spectrum, a slight exchange of energy between neighbouring angular
spectral components, which is applied at every propagation time step.

One way to test the algorithm is to check whether the total wave energy is conserved. To

estimate the energy exchange for all directions, the spectrum is integrated over all angles:

or & or &
—[TES"H(wk,ﬂl) AB = —EZ{GS"(wk,ﬂz—l) + (1-2¢)S™(wk, 1) + €S™(wk, Bi+1)}AB
=1 =1
(20)
Since the spectrum S(wy, 3;) is a periodic function of direction S, it is possible to show

that operation (19) conserves total energy:

27T L n+1 27(' L n
T LS wn B) DB = 73S (wk B) AP (21)
=1 =1

3 Numerical simulations of swell propagation

To compare the performance of the standard first-order propagation scheme of the WAM
model with that of the modified algorithm outlined above, we will investigate the solution of
the energy balance equation for the case of pure swell propagation on a spherical surface.
For this particular situation, an analytical solution can be obtained, which can then be

compared to both the standard and modified WAM propagation schemes.

3.1 Initial conditions and integral characteristics

The following test set-up has been defined. A rectangular grid is chosen, extending in

longitude from -12.0° to 12.0° and in latitude from 51.0° to 75.0°. The grid consists of
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25x49 points; the grid spacing is 0.5° in latitude and 1.0° in longitude, which approximately
corresponds to a 556km distance between neighbouring points near the center of the grid.

The region is supposed to consist of sea points only, of uniform depth (250m) and without

currents.

An initial disturbance is assumed to propagate from the center of this grid towards the
south; the initial angle of mean wave propagation 8, (measured counterclockwise from the

parallel) thus is equal to -90°. The spectrum of the initial distribution is taken to have the

following form:

So(w, B,4,0,t=0) = S,(w,B) F(4,0) = S,(w)Q.(B)F(9,06) (22)

where F(¢,0) is a spatial spreading function and S,(w, 3) is the initial spectrum.

The frequency-dependent part of the initial spectrum is described by:

So(@) = (n+1) m, sz e [—(2E1) (“nez)n (23)

where m, is the zeroth moment of the spectrum, wne is the frequency of the spectral
maximum and n is a parameter indicating the width of the frequency spectrum. The

angular distribution function Q(f) is assumed to be of the form:

scos(B—B,) if |B—B,| < m/2
Qo(ﬂ) = (24)
0 if | B—B|> 7/2

For the spatial spreading function F(¢,6) we adopt a form suggested by Burgers et al. [7]:

F(8,0) = exp(— (0 6.7 + (6 - 6,7 (25)

in which L is a scale parameter describing the extent of the spatial distribution. L is taken

to be 150 km.

The normalized total energy of the travelling disturbance, £(t), can be defined as:

S(t) = E(t)/E(t = 0) (26)



where
E(t) = / f / S(w, B, $,0,t) R? cos ¢ dw dB d¢ do (27)

A second integral quantity of interest is the spreading of the wave energy over the grid area
in time. The spreading parameter ©(t) is defined as the square root of the area containing

the waves with significant wave height h greater than 1/3 of the maximum value of wave

height at moment t:

o(t) = VT(t)/T(0) (28)

where
T(t) = / / F(,0,t) R? cos ¢ dé db (29)
and F(¢, 0) is Heaviside’s function:

F($,0) = F(h(6,0,1) ~ 3hmes(t)) (30)

Another integral parameter, the evolution of which is of interest, is the root mean square

wave height error RMS), over the whole area. This quantity has been defined as follows:

i

RMS,(t) = \/2 err?(;,0;,t)/N (31)

where N is the total number of grid points and err is the normalized local wave height

€ITor:

(hmodel(d’a 01 t) - hanal(¢a 0, t)
hma:c(t‘) (32)

anal

err(t) =

anai(t) is the maximum value of the significant wave height of the analytical solution over

the entire grid at time t.

The spatial distribution of significant wave height at t=0 is presented in figure la. The
maximum wave height, taken to be 10m, is located at the center of the spatially symmetric
disturbance, at coordinates ¢,=72° and 6,=0°. The mean wave period is 15 sec. Starting
from the initial conditions (22-25), we will study the evolution of the parameters &, ¥ and
O in time, as derived by the analytical solution, by the standard WAM model and by a

version of WAM modified to incorporate angular diffusion.

10



3.2 The analytical solution for pure deep water propagation

In the absence of energy sources and/or sinks, the wave energy remains constant along the

path of propagation:
S(w) ﬂa ¢791t) = So(wm ﬂo, ¢o, 00) (33)

To find the initial values w,, 8,, ¢,, and ,, one must solve the ray equations (2)-(4). In the
case of deep water and in absence of currents, the frequency of travelling waves remains
constant: wp = w, and wave packets move along the geodesics curve, which is the nearest
distance between two points on the spherical earth surface. By using (2)-(4), the equation

of propagation for a wave packet may be represented in the form:
. 1, .
¢+50 sin20 = 0 (34)
fcos>¢ — fsin2¢ = 0 (35)

The value of the propagation angle 3 can be found from the projection of the group velocity

C, on the parallel:

cos f = 6 cos¢p = 2 :R 0 cos¢ (36)

\/dﬂ + cos2¢ 62

By separating variables, equations (35)-(36) can be integrated:

. . 9
= V 2
) arcsin (V1 — a2 sin | 3 R(t

sin ¢

t,) + arcsin(——=

\/— )]) (37)

) — arctan ( Sin ge ) (38)

\/(cos2 ¢ /a?)-1 \/(cos2 $o [a?) —1

where a = cos @, cos B,. The constant parameters in (38)-(39) are found from the initial

0 = 6,+ arctan (

conditions: ¢ = @,,0 = 6, at t=t,. From (37) it can easily be shown that the following

quantity is constant along the ray:

cos B cos ¢ = cos B3, cos ¢, (39)

From this equality, the initial value of the propagation angle f3, at latitude ¢, can be derived

when the value of the spectrum S(w, 3, 4,0, 1) is defined at latitude ¢. The range of possible
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Bs, ¢o is given by the condition:

| cos B, | =|cos Bcosd/cosd,| <1 (40)

Values of 3,, ¢, for which this condition does not hold denote the area where the wave

cannot exist, i.e. the area of the wave’s shadow.

The analytical solution of the problem can now be found by substituting eqns. (37)-(39)
into eqn.(34).

3.3 Numerical results

Figs. 1b-1d show the analytical solution of the evolution in time of A(4,0,t), starting from
the initial conditions (22)-(25); they represent the situation respectively 12, 24 and 48 hours
after t=0. Fig.2 shows the numerical solution of this prépagation problem as derived by the
standard WAM propagation scheme, using 12 directions and 25 frequencies. In fig.2a the
distribution of mean wave height at t=24h is presented; fig.2b. shows the normalized error
err of the WAM solution with respect to the analytical one. The effects of limited angular
resolution clearly show up in the spatial distribution of wave height, and in particular in the
error map: too much energy is concentrated along the direction of propagation (positive
errors of more than 40 %), and too little along other directions (negative errors of up to
30 %).

The wave height distribution in fig.2 represents one extreme case, in which the direction
of wave propagation coincides exactly with one of the main directions recognized by the
model. The other extreme is given by the situation in which the propagation direction
lies on the borderline between two angular bins. In this case, the wave height and error
distributions are of the form given in fig.3. The errors are of the same order as in fig.2, but
the distributions are very different: the single-peaked initial wave distribution is broken
up into two systems, propagating southwards along two of the basic model directions at
an angle of 30 degrees to the initial propagation angle. In these two situations the errors
caused by the garden sprinkler effect are maximal; generally, the situation will be something

in between. In the remainder, we will consider only the situation in which the propagation
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direction coincides with one of the model directions.

Increasing the number of directions should diminish the garden-sprinkler effect [8,10].
The same computations have therefore been repeated with the WAM model with the num-
ber of directions increased to 24. The resulting height and error distributions at t=24h are
presented in fig.4. Inspection of the error distribution shows that increasing the number of
directions does indeed significantly improve the agreement between the numerical model

and the analytical solution. Local wave height errors are down to 20 %.

The same propagation problem has been solved with a modified version of the WAM
propagation scheme including angular diffusion (eq.20). For a scale length of wave propa-
gation of 300-400 km (a typical value for North Sea circumstances), the diffusion parameter
Ais ~ 20. The larger A is, the stronger the angular diffusion becomes. To study the impact
of varying A, computations have been carried out for the WAM model using 12 directions
and three different values of A: A=19, 37.5 and 75. The resulting distributions of mean
wave height and error are given in figs.5-7, respectively.

It is evident from figs.5-7 that the introduction of angular smoothing in the WAM
propagation scheme significantly diminishes the garden sprinkler effect. Wave amplitudes
deviate less from the analytical solution; local wave height errors are down to 20 % or

less. This is comparable to the results obtained with WAM using 24 directions, at half the

computational cost.

The evolution of the normalized total wave energy X(t) and the spreading function
O(t) in time, for the analytical solution and the WAM results described above, is shown in
fig.8. The wave energy X(t) steadily decreases in time due to the outward flux of energy
through the boundaries of the region. The closest approximation to the analytical solution
of ¥(t) is obtained with the standard WAM scheme with 24 directions. The modified WAM
schemes are slightly more diffusive on the whole than the standard WAM model; it should
be stressed, however, that the distribution of the wave energy is far more accurate in the

case of the modified WAM schemes, for all values of A, than for the standard (12 directions)
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WAM scheme.

This can also be seen from the behaviour of the spreading parameter ©(t). ©(t) increases
almost linearly during the first 15 hours (fig.8b). After reaching a maximum at t 22 30h, O(t)
diminishes due to the flow of energy through the boundaries. The closest approximation
to the analytical solution of © is achieved by the WAM model using 12 directions and an
angular smoothing with A = 19. Thus, for this integral parameter, angular smoothing,
which is accomplished at a minimal increase in computing time, gives better results than
a doubling of the angular resolution.

As can be seen from fig.8b, the application of angular smoothing increases the degree of
spatial spreading. Due to this fact, the energy flux through the boundary becomes larger
and the total energy remaining in the area becomes smaller than in a situation without

angular smoothing. This effect is evident in fig.8a; however, the impact on the total wave

energy is fairly small.

The evolution of the root mean square error RMS,, in time is presented in fig.8c. For
t<12h the differences between the various numerical schemes are negligible. For 12<t<48h,
however, results deviate considerably. The RMS error is lowest in the case of the standard
WAM propagation scheme using 24 directions (an overall error of < 9%) and highest for
the standard WAM model with 12 directions (an error of up to 20%). The improvements
caused by the introduction of angular smoothing are obvious. For up to t=~30 hours,
the accuracy of the modified WAM scheme using 12 directions and an angular smoothing
parameter A = 37.5 is comparable to that of the standard WAM scheme with 24 directions;

only for larger durations of the propagation, the standard algorithm with 24 directions is

clearly superior.

In order to test to what extent the results presented here were affected by the spe-
cific choice of the initial spatial distribution (equation 25), the above calculations were
repeated for several other distribution functions of various shape and extent. Qualitatively,

the resulting wave height distributions and error maps were very similar to the solutions
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presented in figs.1-8, so we will not show them here. The anisotropy of the wave height

distribution due to the limited angular resolution was strongest in the case of initial dis-

turbances of small spatial extent; wave height errors in the direction of propagation could

then reach levels of 70% or more.

4

Conclusions

. Spectral wave models generally suffer from the so-called "garden sprinkler” effect,

which is related to the angular discretization applied in the model. In the present
paper a method of diminishing the garden sprinkler effect is proposed. An additional
term to the discretized energy balance equation is derived, which corrects for the finite
angular band width applied in the discretization of the spectrum. The advantage
of using this correction term, in comparison with the similar approach followed by
[4], is that it is defined locally and does not require the calculation of large scale

parameters; it does however necessitate the computation of several additional higher

order derivatives.

. It is shown that for wave propagation over relatively small distances (several hundreds

of kilometers) the correction term may be approximated by a more simple angular
diffusive operator. Implementation of this operator in a spectral model tends to
smoothen the spatial distribution of wave height. It is shown that modifying the
spectral WAM model according to this approach leads to a substantial reduction of the

garden sprinkler effect, while requiring a minimal additional amount of computation

time.

. A comparison between the modified WAM model, the standard WAM model and

an exact analytical solution show that the modified WAM model using 12 directions

gives results of an accuracy similar to that of the standard WAM model with 24

directions.
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Figure captions:

Fig. 1: The spatial distribution of wave height for the analytical solution of pure propa-
gation over deep water

la - the spatial wave height distribution at t=0 hours

1b - the spatial wave height distribution at t=12 hours

1c - the spatial wave height distribution at t=24 hours

1d - the spatial wave height distribution at t=48 hours

Fig. 2: The WAM solution for the case of pure swell propagation using 12 directions
2a - the spatial wave height distribution at t=24 hours

2b - the distribution of wave height errors at t=24 hours

Fig. 3: The WAM solution for the case of pure swell propagation using 12 directions, with
a direction grid shifted over AS/2 (=15 degrees).
3a - the spatial wave height distribution at t=24 hours

3b - the distribution of wave height errors at t=24 hours

Fig. 4: The WAM solution for the case of pure swell propagation using 24 directions
4a - the spatial wave height distribution at t=24 hours

4b - the distribution of wave height errors at t=24 hours

Fig. 5: The evolution of the spatial distribution of mean wave height for A = 19.
5a - the spatial wave height distribution at t=24 hours

5b - the distribution of wave height errors at t=24 hours

Fig. 6: The evolution of the spatial distribution of mean wave height for A = 37.5
6a - the spatial wave height distribution at t=24 hours

6b - the distribution of wave height errors at t=24 hours

Fig. 7: The evolution of the spatial distribution of mean wave height for A = 75.0

7a - the spatial wave height distribution at t=24 hours
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7b - the distribution of wave height errors at t=24 hours

Fig. 8: The evolution of the integral parameters
8a - The normalized total energy ¥(t) as a function of time
8b - The spatial spreading function ©(t) as a function of time

8c - The root mean square error RMS,(t) as a function of time

The various test cases are indicated by the following symbols:

x - analytical solution

A - standard WAM solution for 12 directions (A=0.0)

< - standard WAM solution for 24 directions (A=0.0)

o - WAM solution for 12 directions and a 15 degree shift in the direction grid (A=0.0)
* - modified WAM solution for 12 directions and A = 19

* - modified WAM solution for 12 directions and A = 75
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