Technical report; TR-224

J

KNMI

HDFg library and some HDF utilities

an extention to the NcsA HDF library

user’s manual ¢ reference guide

Han The

e o0 0
De Bilt, 1999

Technical report = Technisch rapport; TR-224
De Bilt, 1999

P.O. Box 201

3730 AE De Bilt

Wilhelminalaan 10

Telephone +3130 220 69 11
Telefax +31 30 221 04 07

Author: Han The

UDC: 681.3.06
551.50
(03)

ISSN: 0169-1708

ISBN: 90-369-2168-6

© KNMI, De Bilt. All rights reserved. No part of this publication may be reproduced, stored in retrival systems, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher.

HDFg library and some HDF utilities
An Extension to the NCSA HDF Library

User's Manual & Reference Guide

Han The, October 1999

This report describes the HDFg library. HDFg comprises a set of high-level HDF I/O functions, built on top of
the official NCSA HDF library (version 4.1). They were developed to simplify I/O from and to HDF scientific
data sets (i.e. multi-dimensional arrays) and their attributes. Furthermore as set of utilities were developed to
convert the data from asimof, ASCII or plain binary format to HDF. This report gives a full description of the
HDF attributes used to interpret the GRIB header information. These conventions are used by the asim2hdf
utility. The HDFg library was developed as part of the WEPTEL project.

How to obtain the HDF library?

The HDF library can be downloaded from the internet address:

http://hdf.ncsa.uiuc.edu/

or:
ftp: hdf.ncsa.uiuc.edu pub/dist/HDF/

You can download the source code as well as compiled versions. Be sure to download version 4 (latest
release 4.1r3). Additional documentation can also be downloaded. Both the user's guide as well as the
reference manual are available as an on-line html document (http://hdf.ncsa.uiuc.edu/training/-
HDFtraining/) or as a printable postscript file. The chapters in these guides that can be read as an
introduction to HDF are "Fundamentals" and "SD API". Items not explained in this report can be found in
these manuals. The functions described in this document are available from library 1ibHDFg1. 0.

How to use the HDF library?
The NCSA HDF-code comprises the following libraries:

libmfhdf.a libdf.a libjpeg.a libz.a

You should give the following library specifications to compile an application containing HDFg functions :

-I<path of HDF include directory> -I<path of hdfgrib.h> \
-L<path of HDF libraries> \
<path>/1ibHDFgl.0.a -lmfhdf -1df -1z -1lm

-1m refers to the mathematical library and is required for C only. If this does not work, try —-1M.

Include HDFg.h for C and HDFg.inc as well as hdf.inc for Fortran. hdf.inc is an NCSA include-file.
HDFg.h contains references to the required NCSA HDF includes, which do not need to be included explicitly
in addition to HDFg.h. If you want to have access to the GRIB data set names (see Appendix 1), then you
should include gribdef .h as well.

When using Fortran, the function names might need slight (compiler-dependent) modifications.

Type Definitions for Scientific Data Sets (SDS)

Scientific data sets are defined by an array description and the data itself. We combined these to a single
structure (C only):

typedef struct ({
int32 rank; /* number of dimensions */
int32 *dim;
int32 type; /* number type (see Table 1) */
float *data;

} SDS;

Data sets can be identified by name in an HDF file. We did not include this as part of the structure, because it
is auxiliary information not needed to interpret them correctly in terms of computer data.

Typecast *data to the appropriate type if SDS.type is not equal to DENT FLOAT32. For example, use
((unsigned short *)sds.data) [1] to access element i in the array if the data represent an array of
unsigned shorts. You may also use (uint16 *) instead. In context:

switch (sds.type) {

case DFNT_UINT16:

..do something with

((unsigned short *)sds.data) [i] or ((uintlé *) sds.data) [1]

break;
case DFNT_FLOAT32:

..do something with sds.data[i]
break;

}

The number-type definitions in Table 1 can be accessed by including HDFg.h. The number of bytes
occupied by a single value of this type can be obtained by calling DFKTNsize (), e.g.:

nb = DFKNTsize (DFNT_FLOAT32) /* nb equals 4 */

Table 1. HDF type definitions (NCSA4)

DENT CHARS 4 DENT UCHAR 3
DENT INT8 20 DENT UINTS 21
DENT INT16 22 DFNT UINT16 23
DENT INT32 24 DFNT UINT32 25
DENT FLOAT32 5 DFNT FLOAT64 6

Attributes, i.e. auxiliary information also referred to as metadata, are defined by a keyword (name), its
number type, length and content. We have combined these to a single structure (C only). For convenience
we limited the keyword length to 32 characters. The attribute structure contains a pointer to the next
attribute, used to create a linked list when.

struct attribute {
char keyword[32];
int32 len; /* length of value */
int32 type; /* see Table 1 */
char *value;
struct attribute *next;

}i

typedef struct attribute attribute;

If the attribute represents a text string, then len must equal the string length including the delimiter '\0"'.
Attributes can be stored in an HDF file linked to a data set, or an axis of the data set or just as global
information. Note that although attributes can be accessed by names similarly to data sets, we included the
name as part of the structure to be able to recognise them in a linked list.

Converting data sets from asimof-format to HDF-format

Data files in asimof format can be converted to HDF format using the utility asim2hdf. asim2hdf
translates the GRIB headers into HDF attributes. Furthermore, data sets in asimof format representing layers
of a 3D data set are combined into a single 3D HDF data set. It is assumed that the GRIB headers contain a
grid description section (GDS), otherwise conversion will fail. asim2hdf cannot be used if the grid has been
described implictly (PDS octet 7).

Usage (version 1.1):

asim2hdf [-v] [-MAXBUF] [-f] [-{ecmwf,metcast}] [-1[fname]] asimof file hdf file

-v stands for verbose;

-MAXBUF is used to increase the buffer required containing the data. By default, MAXBUF equals 50000
(floats). If you want to convert asimof files containing data sets larger than 50000 floats, you
can indicate this by replacing MAXBUF with the size required;

-f is used to indicate that the data must be stored as floats and not as scaled data;
-{ecmwf, metcast}

asim2hdf recognises the following local code tables for Section 1 (PDS): ECMWF (version
number 128), METCAST (version number 254), and HIRLAM (version number 1). The default
conversion is Hirlam (see Appendix 1 for the corresponding HDF data set names).

-1 convert the data sets read from stdin (Use <cnt1>D to mark end of stdin when using this
option in interactive mode). Each line is interpreted as a single data-set name. The data set
names typed in should be exactly as they would appear in the HDF file (see naming
conventions below).

-lfname same as -1, except that the names are read from file. This option is the same as using -1

only plus a redirection, i.e. 'asim2hdf -1 ..<fin'instead of'asim2hdf -1fin .."

Naming Conventions and Attribute Definitions for asim2hdf

Data Set Names

The meteorological data set names are stored in char grib param[] (Appendix 1). They correspond to
the GRIB definitions in Table 2 in the WMO GRIB reference manual. All data set names are less than 36
characters (including *\0’). They do not contain blanks and are written in undercast.

Data set names representing values at the standard heights 2m and 10m above ground are tagged by the
extension 2, resp. 10. Names representing values at mean sea level are tagged by the extension: msl.
Data set containing modelling layers get the extension _=.

A data-set name can be referred to as grib param[i], where i is the GRIB data-set code. Also, a list of IDs
is available, referring to the elements in grib param[].e.g.

grib param[PRESSURE] = “pressure”
Therefore, instead of:

if (!strcmp(grib param[i],”pressure”))
you could write:

if (i == PRESSURE)

These IDs are defined in gribdef.h.

Attributes

Attributes are meta-data attached to a file, a data set, or a data-set dimension. The dimension sizes, rank and
number type are not considered as attributes and are stored as an intrinsic part of the data set. Attribute
names are not fixed. However, a number of names are proposed by the NCSA'. We adopted these
conventions whenever suitable. The attributes used by asim2hdf are listed below. Non-standard attribute
names are written in italics.

Note: all names are case-sensitive.

' The NCSA recommends a set of standard attribute names. These are: 1ong_name (additional name for the array),
units, format (format for dispaying the numerical values), cordsys, valid_range, Fillvalue, scale_factor,
scale_factor_err, add_offset, add_offset_err, calibrated nt (number type of the calibrated data).
Unfortunately, even though these attribute names are unique, their contents might be ambiguous, e.g.
cordsys="geographic" or cordsys="Geographic", referring to the same coordinate system.

object type attribute type count description
global source DENT_CHARS * source from which the data were made
available
global or ref_ time DEFNT_FLOAT64 1 time label for the data set contents:
SDS array yyyymmddhhhh
cordsys DFNT_CHARS coordinate system used for the SDS array
cordsys_param DFNT_FLOAT32 array of parameters describing cordsys
(number of parameters and meaning depend on
the type of projection)
SDS array unit DFNT_CHARS * units used for the contents of the data
only scale_factor DENT_FLOAT64 1 value by which each array value is to be
multiplied
add_offset DEFNT_FLOAT64 1 value to which each array value is to be added
precision DENT_INT8 1 data precision expressed in bits
n_scale factor DFNT_FLOAT64 * values by which each value in a plane of a 3D
data set is to be multiplied
n_add offset DENT_FLOAT64 * values by which each value in a plane of a 3D
data set is to be added
n_precision DFNT_INT8 * data precision expressed in bits per plane
ttype DFNT_CHARS * time range indicator
trange DFNT_FLOAT64 2 time range indicated by ttype
(yyyymmddhhhh)
zlevel DFNT CHARS * vertical extent (for data sets 2D in space only)
zrange DENT_FLOAT32 2 vertical range for zlevel
zunit DENT_CHARS * units in which zrange is given
xandy step DENT_FLOAT32 1 grid size in degrees or coordinate-system units
dimension ~ start value DFNT_FLOAT32 1 coordinate of first grid point
z dimension range DENT_FLOAT32 2 range within the projection space (edges of the
grid or position of the first/last grid point)
unit DFNT_CHAR8 * units in which scale and range are expressed
long_name DFNT_CHARS * indicator for contents of vertical extent
(corresponds to zlevel)
Specifications

Below you find a survey of the attribute contents. The equivalent position in the GRIB header is indicated
between brackets. PDS stands for product definition section; i.e. section 1 of the GRIB header. GDS stands for

grid description section; i.e. section 2 of the GRIB header.

source

ref time

cordsys

“ecmwit” (98), " knmi” (99), “hirlam” (96), “noaa” (59), “esa” (97), “dmu” (150)
(PDS octet 5) If the station ID differs from the ones indicated, then source contains the ID as a text

string;

(PDS octets 13-17+25) Reference time. The time is given as a single value: yyyymmddhhhh. e.g.:
199709011230. If the asimof file contains data sets with different reference times, then ref time is
given as a data sets attribute, otherwise ref time is given as a global attribute;

“geographical”, “polar stereographic”, “space view”, “shifted pole”

(GDS octet 6) The remaining projection types have not been implemented. If the asimof file contains
data sets with different coordinate systems, then cordsys is given as data set attribute, otherwise
cordsys is given as a global attribute;

cordsys param
These parameters are needed to interpret the geographical coordinates of the projected grid points. If
the asimof file contains data sets using various coordinate systems, then cordsys param is given as
a data set attribute, otherwise it is given as a global attribute. B

unit

for geographical (GDS octet 6: 0):
none

for polar stereographic (GDS octet 6: 5):

0 North pole (0) / South pole (1) is on the projection plane (GDS octet 27)
1 orientation of the grid (GDS octets 18-20)

2, 3 Earth's radius in meters (GDS octet 17, bit 2)

for space view (GDS octet 6: 90):

0 apparent diameter of earth in grid lengths in x-direction (GDS octets 18-20)

1 apparent diameter of earth in grid lengths in y-direction (GDS octets 21-23)

2 longitude of sub-satellite point (GDS octets 14-16)

3 latitude of sub-satellite point (GDS octets 11-13)

4 orientation of the grid (GDS octets 29-31)

5 altitude of the camera from the earth’s centre in units of the earth’s radius (GDS octets 32-34)
6, 7 Earth's radius in meters (GDS octet 17, bit 2)

for shifted pole (GDS octet 6: 10):

0 longitude of the South pole of the rotated grid (GDS octets 36-38)
1 latitude of the South pole of the rotated grid (GDS octets 33-35)
2 angle of rotation (GDS octets 39-42)

3 longitude of pole of stretching (GDS octets 46-48)

4 latitude of pole of stretching (GDS octets 43-45)

S stretching factor (GDS octets 49-52)

6, 7 Earth's radius in meters (GDS octet 17, bit 2)

The remaining parameters in the GDS are included as step and start value as dimension
attributes.

(implicitly defined by (PDS octet 9)) units used for the contents of the data.

scale factor

add_offset

precision

These parameters are used to scale the data to n-bits integers (n<=16). The original values are
recalculated as: y = scale * (yi - offset).

Number of bits used to scale the data;

n _scale factor
n_add offset

n_precision

ttype

trange

zlevel

These parameters were introduced to combine asimof data sets into a single 3-dimensional data set.
n_scale factor and n_add offset are arrays with size equal to the z-dimension. They are
used to scale the data to n-bits integers (n<=16) similar to scale factor and add offset,
except that for each horizontal plane specific scaling factors have been defined;

(GDS octet 21) “ forecast”, “analysis un”, “analysis”, “valid range”,
“average”, “accumulation”, “difference”, “valid time”,
“climatological”

analysis un stands for uninitialised analysis product or image product (P1 = 0);

(pDS octets 19-20) Time range.Time is expressed as a single number with the format:
yyyymmddhhhh. trange is calculated from PDS octet 21. A point of time is indicated by
trange[0]=trange[1].

“isobaric”, “msl”, “ht msl+”, “ht grd+’, “sigma”, “isentropic”,
“ocean”, “atmosphere”, ““gurface” , T cld base”, “cld top”,
“0_isotherm”, “adiabat condens”, “max wind”, “tropopause”,
“nominal top”, “sea bottom”

(PDS octet 10) In 3-D data sets, z1evel is replaced by dimension attribute 1ong name;

zrange vertical extent of the data. A plane is indicated by zrange[0]=zrange[1]. In 3-D data sets,
zrange is replaced by dimension attribute range (z-dimension);

zunit (pDS octets 11-12) units of zrange. In 3-D data sets, zunit is replaced by dimension attribute
unit (z-dimension). All units are converted to SI units. Sigma levels are given as fractions. Model
layers below ground level are indicated by 0, -1, -2 instead of 0, 999, 998 (hirlam definition);

start value (GDS octet 11-13; 14-16. for shifted pole: GDS octet 24-25, 26-27) Latitude or longitude of the
first grid point in the array;

step grid size + orientation. If step is negative it implies that scanning mode is reversed to the direction of
the projection coordinate system. In all cases the x-coordinate or y-coordinate of the last grid point
equals start _value + (N-1)*step;

for geographical: GDS octet 11-13, 14-16;
forpolar stereographic: GDS octet 21-23, 24-26;
for space view: GDS octet 24-25, 26-27;
for shifted pole: GDS octet 28 bit 1-2 (£1).

The remaining GRIB header fields are translated as follows:

PDS octet 7: always assumed 255 (GDS required);

PDS octet 8: always assumed 64 (GDS given);

PDS octet 18: implicitly defined by trange;

GDS octet 7-8: implicitly given as the size of dimension 1 (use HDF function: SDgetinfo() to obtain this

information);

GDS octet 9-10: implicitly given as the size of dimension 2;

GDS octet 17: (bit 5) if bit 5 = 0, then the data are reversed before saving (i.e. the directions are set always relative to
the direction of x-axis and y-axis as in Hirlam);

GDS octet 28: (bit 1-2) scanning mode given as the sign of dimension attribute step;

(bit 3) if bit 3 = 1, then the data are transposed before saving (i.e. the data are always stored column
major as in C).

Data Storage

The data are stored with an n-bits accuracy (n<=16) and compressed using the gzip encoding algorithm
(default option of the HDF /O library). If n<=8 then the data are stored physically as unsigned chars,
otherwise the data are stored as unsigned shorts. The original data values can be recalculated as:

data_value = scale factor *(array value - add_offset)
The HDFg I/0 routines will handle this conversion in the background.

Note:

The keywords scale_factor and add_offset do not affect the data storage. These attributes may always
be included afterwards to modify the interpretation of the data. E.g. if the data are stored as bytes
representing percentages, then including the scale factor 0.01 will cause the data to be interpreted as
fractions.

Converting data from HDF to asimof

hdf2asim was provided to preprocess HDF files for Hirlam input. Its functionality is therefore limited to the
basic needs. hdf2asim reads an HDF data set and copies its data to an asimof file. If this file does not exist
then a new one is created, otherwise the data are appended. All GRIB header values, except for the fields 9 to
12, are set by default. The parameters describing the data set (fields 9-12) are user-supplied.

Usage:
hdf2asim hdffile 'dsl paraml levtypel levell [ds2 ...]' asimof
dsl, ds2,... HDF data set names
paraml, ... parameter classifying the data set (PDS octet 9)
levtypel, ... level type (PDS octet 10)
levell, ... level value (PDS octet 11-12)

The number of data sets that can be converted by a single call of hdf2asim is unlimited.
Example: hdf2asim clim.hdf 'pressure 1 103 0' clim.asim.

Tools to Convert Plain Data to HDF

The following three tools can be used to store the data in an HDF file:

cpset
addattr
addset

cpset

cpset is used to copy one data set from one HDF file to another. All attributes related to this data set are
copied as well.

Usage:

cpset [-f][-dlayer][-1ldataset {dimlist}][-ldim+name] infile dataset \
outfile [dataset_out]

Options:
-dlayer copy only the layer indicated from a 3D input data set (first layer: layer 0);
-1 option used to link or name the indicated:

-ldataset {dimlist}
link the dimensions indicated in dimlist to the dimensions of an existing data set;
-ldim+name rename the dimension to the name indicated. Both -1 options are mutually exclusive;
-f If this option is set then the output is stored as floats;
dataset_out output data set name. If no output data set is given than the data set name used is copied
from the input file.
Example:
in.hdf contains the data sets soil_moist (multi-layer) and pressure (single-layer). The first call to
cpset copies the first layer of soil_moist to out.hdf as soil_moist_0 and renames the dimensions to
longitude and latitude. The second call copies pressure and links the dimensions to the dimensions
of soil_moist_0. Consequently, the dimension names of pressure will also be longitude and
latitude:

cpset -d0 -ll+longitude -12+latitude in.hdf soil_moist out.hdf soil_moist_0
cpset -1lsoil_moist_0 1 2 in.hdf pressure out.hdf

addset

addset adds a plain data set to an HDF file. The default format of the input data is binary. The data are read
as a such without modifying its contents. Consequently, numtype should always represent the actual
contents. Converting the data on a different machine than where they were written may lead to a wrongly
interpreting the data.

ASCII data are read as a single stream of floats and converted to the data type indicated. Conversion takes
place according to the standard rules. E.g. if the input file contains floats and num_type is set to UINTS8
then the values are truncated to an integer modulus 256. Note that there are no warning messages if values
exceed the data range. Tabs, blank spaces and end-of-line are accepted as delimiters.

Usage:

addset [-t][-ASC][-a] hdf_file data_set infile numtype diml..dimN

Options:

-t this indicates that the data are stored top-down. This means that the first line of the data
represents the top line of an image. Setting this option means the the image will be flipped
vertically. This option takes effect for 2D data sets only;

-ASC indicates that the input data are ASCII;

-a indicates that the new data are appended to the output file. By default the HDF file is
replaced,

infile input file;

numtype number type can be: INT8, UINT8, INT16, INT32, FLOAT32 or FLOAT64;

diml..dimN are the dimension sizes of the input file.

addattr
addattr adds an attribute to an existing HDF file.

Usage:
addattr hdf_file [dataset dim] key numtype attr

dataset indicates the data set in hdf_file to which the attribute is included. Adding a data set attribute is
indicated by setting dim to 0, whereas dim greater than 0 refers to the dimension. A file attribute is
indicated by omitting both dataset and dim.

key is the attribute name.

numtype can be INT8, INT16, INT32, FLOAT32, FLOAT64 or CHARS.

attr is the contents of the attribute and may contain an arbitrary list of elements or a string. If the attribute
contains a string, then its length equals the length of the string plus 1. The last character contains the
delimiter '\0'. attr must be placed between quotes if it consists of more than a single word.

Example:
The following statement adds keyword grid_size to data_set. grid_size is a single float equal to 0.5:

addattr in.hdf data_set 1 grid_size FLOAT32 0.5
The following statment adds some comments to a data set:

addattr in.hdf data_set 0 comment 'output created by model X'

10

Reference Guide to HDFg

General remarks

The underlaying routines of the Fortran HDFg library are the C-library. Therefore, character strings must
be closed with char (0). Instead of, e.g., "filename" you should write "filename"//char (0).
Note that "filename" may not contain trailing blanks. If "filename" is stored in a string of 20
characters (character*20 string) then you should write: string(1:8)//char(0) instead. Also
check how the compiler treats Fortran strings.

Some HDFg functions accept NULL-pointers as arguments — unknown to Fortran — indicating that the
output returned to this argument is not needed (e.g. as in G_SDSinfo ()) or if the default value is used
(as in G_sDSw ()). Fortran programmers can use null instead. null is not a pointer, but a constant
defined in hdfg.inc as -32768 (SHRT MIN).

Functions needing dynamical memory allocation are defined for C only.

Reading and riting the data from Fortran is handled differently from the standard NCSA library. Before
storing or after recovering the data are they transposed. Consequently, a data set written by the HDFg
library in Fortran and read by a C program look identical. This is not the case when using the original
HDF library. In this case the data are transposed compared to the original data in the sense that a Fortran
array A (dl,d2) will be interpreted as A[d2][d1]. Using the HDFg library overcomes this problem by
transposing the data first.

Naming Conventions

I
0
IO

indicates an input argument.
indicates an output argument.
indicates that this variable must be initialised first. Its contents is modified by the function.

<any> indicates that this (pointer) variable can be of any type. This corresponds to void in C.

11

Function Definitions

libHDFg contains functions to simplify I/O to and from HDF files containing scientific data sets. The

following functions are available:

C Fortran Description

Opening/Closing files

G_SDcreate () G_SDCREATE() creates an HDF-file for writing

G_SDopen () G_SDOPEN () opens an HDF-file for reading and writing. A write-protected
file is opened as read-only

G_SDclose() G_SDCLOSE() closes an HDF-file and updates the file.

Reading/Writing SDS

G_SDSr () G_SDS R{() reads the contents of an SDS.

G_SDSw () G_SDS_W{() writes the contents of an SDS. If the data set already exists, then
the data are updated.

G_SDSa () G_SDS_A() appends a data block to an SDS with unlimited dimension.

G_SDSrdgrib () n.a. simplifies reading an sDs data set derived from GRIB data.

Query functions

G_sDSinfo() G_SDSINFO () returns rank, dimensions, number type and sizes of an SDS

G_SDSname () G_SDSNAME () reads the next SDS name in an HDF file.

G_SDScount () G_SDSCOUNT () returns the number of scientific data sets in the file.

G SDisunlimited()

G_SD_ISUNLIMITED()

Reading/Writing attributes

checks whether an SDS contains an unlimited dimension.

G_AttR1() G_ATT_RI1() reads a single attribute from an HDF file.

G_AttsR() n.a. reads a linked list of attribute from an HDF file.

G_AttsFR() n.a. initialises a list of attributes from a resource file.

G_AttWl() G_ATT_W1() writes a single attributes to an HDF file.

G_AttsW() n.a. writes a linked list of attribute to an HDF file.

G_AttsEW() G_ATTS FW() appends the attributes described in a resource file, to an HDF
file.

Dimension-related functions

G_SDSdimpurge () n.a. removes all dimensions of size 1 in an SDS structure.

G_SDSdiml () n.a. adds dimensions of size 1 to an SDS structure.

G DIMsetname () G_DIM SETNAME () renames the dimension name.

G_DIMlink() G_DIM LINK() combines the dimension meta information of two data sets.

G _DIMsetscale()
G _DIMgetscale()

G _DIM SETSCALE ()
G _DIM GETSCALE ()

writes the dimension scale indicated.
reads the dimension scale indicated.

Utility functions

attlist append() n.a.
attlist free() n.a
attlist getlink() n.a
cii() n.a

allocates memory in a linked list of attributes for a new
attribute to be appended.

frees the memory occupied by a linked list of attributes.

returns a pointer to a link in a list containing the keyword
returns the position of an element in an array corresponding to
the coordinates indicated.

12

G_SDcreate

G_SDcreate () creates a new HDF-file and returns a file ID (from now on referred to as sd id). An

existing HDF-file with the same name is overwritten. The fill mode is set to SD NOFILL
(SDsetfillmode ()).

Function output
sd idor FAIL

G_SDopen

G_SDopen () opens an existing HDF-file for reading and writing and returns a file ID. If the file is write-
protected, then the file is opened as read-only.

Function output
sd _id, NO HDF or FAIL

G SDclose

G_SDclose () closes an open HDF-file and saves the changes made during the session. If an HDF-file is not
explicitly closed, then all changes made during the session are lost.

13

G_SDSw

G_SDSw () writes data to data set sds name in file sd_id. If the data set already exists then the data are
overwritten, otherwise a new data set is created. 1yr info is a structure containing the following fields:

typedef struct {
int32 *size;
int32 *offset;
int32 *stride;
int32 *chunks;
} lyr info;

The first three fields correspond to sds_size, offset, and stride in the Fortran call. chunks is an array
to define the chunk sizes to split up the array. Any of the fields can be set to NULL, if they are not required.
If none of the information in info is needed, then info can be set to NULL. If info.offset or offset is
set to NULL, it is assumed to be {0,0, ..0}.If info.stride or stride is set to NULL, it is assumed to be
{1,1,..1}. The dimensions of the data set to be created are given by sds_size. These dimensions can be
different from the dimensions of the array (sds->dim (C) or arr size in Fortran), e.g. if you want to
write a layer in a 3-dimensional array. If they do agree or if you want to (over)write (parts of) an existing
SDS, then sds_size or info.size can be set to NULL. If you want to create a data set with unlimited
dimension, then sds_size can be set to {SD UNLIMITED}. In this case, the data set to be written is
assumed to be the first data block.

If the rank of data is less then the rank of the SDS, then the missing dimension must be indicated by 1. For
example, a horizontal plane in a 3D data set is denoted by {10, 20, 1} instead of {10, 20} and rank equals
3. offset and stride must have the same rank as sds_size.

If the data set contains invalid data, then they must be indicated by fillvalue. fillvalue must be of the
same type as the data set. If fi11value is included, then the attribute FillValue is set.

14

np is the array size of precision. np can have the following values:

0: the original (unscaled) data are stored. In this case the variable list arguments are obsolete and can be
deleted;

1: The original data are scaled before they are stored. They can be recalculated as:
scale factor *(stored data - add offset);

size dimension 3: The original data are scaled. Each horizontal layer is scaled using a distinct precision.
Layer n of the original data can be recalculated as:
n_scale_factor[n] *(stored data - n_add offset[n]);

precision is the number of bits used to trunk the data values. E.g. a 10-bits precision corresponds to 3
significant digits. If you define precision for data sets of type int or char, then the data values are
truncated to the number of bits indicated. Scaling is applied to data of type float or double only
(DENT FLOAT32 or DENT FLOAT64). If np is set to a value larger than 0, then {n_ }add offset,
{n_}scale factor and {n_}scale factor err will be included to the file as data-set attributes.
{n_}scale factor err equals the maximum potential error as a result of scaling the data. The data are
stored in the smallest possible data type (8 or 16 bits unsigned integer).

The data-set values are scaled between the maximum and minimum value of the data set. However, if the
data set is appendable (i.e. contains an unlimited dimension), then scale factor and add offset cannot
be determined in advance, because new data blocks could be appended not fitting the range. Therefore, the
range for scaling the data can also be included explicitly as range max and range min. This range is user-
defined and must be choosen as small as possible (to obtain the smallest error), but large enough to contain
all values that will be appended. The range must be given in the same number type as the data set itself.

If precision is set to 1, then a bitmap is created (variable bit-length is set to 1). The bitmap corresponds to
the first bit, representing integer value 1.

If a fill value has been defined, then it will no longer match the scaled data. G _spsw() will re-define
fill value as 0. Hence, the fill value in the restored data set equals ~add_offset*scale_factor.

The C version and Fortran version of the function are slightly different although the results are the same. In
Fortran the record fields of sps must be given explicitly as numtype, data (), rank and arr_size.

Warnings
¢ Do notuse SHRT MIN (null)as fillvalue (reserved for Fortran null).
e Always set sds_size to NULL if you write to an existing data set.

Examples
In the following examples Fortran programmers can read arr_size for sds.dim, and rank for sds.rank.
There is no difference in the initialisation.

Create a new data set of dimensions {2, 3, 4} and write its contents:
Initialise (using pseudo code):

sds.rank = 3

sds.dim = {2,3,4}
Call:

result = G _SDSw (sd id, name, &sds, NULL, NULL, O);

Similarly in Fortran:
include "hdf.inc"
integer*4 ierr
integer*4 numtype
real data(2,3,4)
integer*4 dim(3)
data dim /2,3,4/

ierr = G_SDS_W (sd_id, name, DFNT_FLOAT32, data, 3, dim,
* NULL, NULL, NULL, NULL, 0)

Create a new data set and write the bottom layer:

Initialise:
sds .rank
sds.dim 2,3,1}

info.size = {2,3,4)} (Fortran: sds_size)
The remaining fields of info must be set to NULL

Call:
result = G _SDSw (sd _id, name, &sds, &info, NULL, Q);

3
{

Similarly in Fortran:
include "hdf.inc"
integer*4 ierr
integer*4 numtype
real data(2,3,1)
integer*4 dim(3), sdsdim(3)
data dim /2,3,1/
data sdsdim /2,3,4/

ierr = G_SDS_W (sd_id, name, DFNT_FLOAT32, data, 3, dim,
* sdsdim, NULL, NULL, NULL, 0)

Write the second layer to the same data set:

Initialise:
sds.rank
sds.dim

3
{2,3,1}

info.offset = {0,0,1} (Fortran: offset)
The remaining fields of info must be set to NULL

Call:
result = G _SDSw (sd id, name, &sds, &info, NULL, 0);

Write the first data block to a time series of data block:

Initialise:
sds.rank = 3
sds.dim = {2,3,4}

info.size = {SD_UNLIMITED} (Fortran: sds size)
The remaining fields of info must be set to NULL

Call:
result = G SDSw (sd_id, name, &sds, &info, NULL, 0);

Rewrite the second data block of a time series of data block:

Initialise:
sds.rank = 3
sds.dim = {2,3,4}
info.offset = {1,0,0,0} /* the first dimension represents the time dimension */
The remaining fields of info must be set to NULL
Call:

result = G _SDSw (sd id, name, &sds, &info, NULL, 0);

Rewrite the third layer in the second data block of a time series of data blocks:

Initialise:

sds.rank = 3

sds.dim = {2,3,1}

info.offset = {1,0,0,2}

The remaining fields of info must be set to NULL
Call:

result = G_SDSw (sd id, name, &sds, &info, NULL, 0);

16

Write a data set in 10-bits precision.:
Initialise:
precision = 10

Call:
result = G _SDSw (sd_id, name, &sds, NULL, NULL, 1, &precision, NULL, NULL);

Similarly in Fortran:
include "hdf.inc"
integer*4 ierr
integer*4 numtype
real data(2,3,4)
integer*4 dim(3)
data dim /2,3,4/
character prec

ierr = G_SDS_W (sd_id, name, DFNT_FLOAT32, data, 3, dim,
* NULL, NULL, NULL, NULL, 1, 10)

Note that a variable list of arguments is not official Fortran, but can be applied because the underlaying
language is C.

Function output
FAIL or SUCCEED

G_SDSa

G_spsa() appends a data block to an existing data set. The data block must have identical dimensions and
must be of the same data type as the first one. This is implicitly assumed. The fist data block of an
appendable data set is created by using G_SDSw ().

Function output
FAIL or SUCCEED

G_SDSr

17

G_SDSr () reads a data set and returns the array. If numtype = 0, then the data are returned in the original
number type and the data-set number-type is returned (Fortran only). In C the number type is returned as
part of sds. If the data are stored as scaled data then they will not be converted to their original values. If
numtype differs from the actual data number-type, then the output is converted as indicated. This method is
applicable to conversions between (unsigned) char, (unsigned) short, (unsigned) int32, float and double. If
the number type indicated differs from the type in which the data are stored, then fillvalue is converted
to the appropriate type. If the data set does not contain a fill value (keyword _Fillvalue), then
fillvalue remains unchanged. It is assumed that _Fillvalue is of the same type as the data stored. If the
data are scaled, then the no-data value must be 0.

G_SDSr () cannot be used to read multiple time steps at once.

The C version and Fortran version of the function are slightly different.

C:

The data set is returned as a variable of type sps. If the entire data set must be read, then an empty sbs
variable can be passed and info can be set to NULL. G_SDSxr () will set its entire contents and will allocate
memory to the fields. If the sDs variable is recycled, be aware to free all memory first and set the fields
sds.data and sds.dim to NULL before passing it to G_SDSr () as an argument. If you want to read a
subset of the array, then you must first set the dimensions of the subset to be read. In this case, memory is
allocated only to sds.data. If info.offset = NULL then, by default, offset is setto {0,0,...}. If
info.stride = NULL then, by default, stride = {1,1, ...} (i.e. do not skip lines).

Note that the rank of the data set must be the same as the rank of the SDS, even though it represents a subset
of lower dimensions. A horizontal plane in a 3D data set must be denoted e.g. by {10,20,1} instead of
{10,20}. You can use the function G SDSdiml() to include the extra dimensions and call
G_SDSdimpurge () to remove them again. offset and stride must have the same rank as the SDS. If
numt ype is set, then sds. type is set to numt ype, and the data values are converted to the type requested.
If info is not equal to NULL and all fields in info are set to NULL, then G_SDSr () returns the chunk sizes
(warning: in this case memory must be allocated to info.chunks).

Fortran:

If you want to read the entire array you can set size to null. Be aware that there is enough memory
allocated to data to contain the entire array. Subsets can be read by setting size, of fset and stride
different from null = {1,1,...} (i.e. do not skip lines). If you need information about the data set first,
you can call G_SDSINFO (). Note that the rank of the data set must be the same as the rank of the SDS, even
though it represents a subset of lower dimensions. A horizontal plane in a 3D data set must be denoted e.g.
by {10,20, 1} instead of {10,20}. offset and stride must have the same rank as the SDS.

Examples
Initialise:
SDS sds = {0, NULL, O, NULL};
Call:
G _SDSr (sd id, name, &sds, 0, NULL, 1, NULL); /* read the entire data set */

Read the top layer of the second time block. Data set size: {3, 4,5}

Initialise:
sds.rank = 3
sds.dim = {3,4,1}

info.offset = {0,0,4}

18

info.stride = NULL
Call:
G _SDSr (sd_id, sds name, &sds, 0, &info, 2, NULL);
The following call will always convert the data to an array of floats, whatever the type of data stored:

G _SDSr (sd id, sds_name, &sds, DFNT_FLOAT32, NULL, 1, NULL);

Warning
Fortan programmers must be aware that the output is always given as a contiguous array. If you have
defined

real data(10,20)

and used it as the argument for G SDS R()to read an array of size (5, 10), then you cannot access the
elements properly.

C programmers can use the function cij ():

sds.value[cij (sds.rank,sds.dim,1i,73)]
to get access to element [i] [§] in the array.
cij () is part of libHDFg.a.

Function output
FAIL or SUCCEED

G_SDSrdgrib

G _SDSrdgrib() reads a data set from a file created by asim2hdf or a file using the same naming
conventions for the dats sets. The id and extension must be according to the naming conventions described
above and in the appendix. The data returned are always of type f1loats.

If you do not want to set info then you can insert NULL. If the data set contains several layers then, if
layer is set to —1, the entire array is returned. If you want a specific layer only, then the layer to be read
can be indicated by setting layer to a legal value (0 <= layer <# layers). info can be set independent of
layer. If info is set, then if will overrule layer if its contents contradicts layer, e.g. if the field

19

info.size does not correspond to a single horizontal layer. If the data set is 2-dimensional, then layer is
disregarded. See G_sDsw () for more details on 1yr_info.

If mode is set to 1 or CONT_ON_ERR, then G_SDSrdgrib () returns error code FAIL or SUCCEED. If mode is
set to 1 or EXIT_ON_ERR then the application will stop with an error message.

Notes
Note that the contents of sds must be reset in the same way as when applying G_sSDSx ().
If you want to use G_SDSrdgrib () then you must include grib_def .h in addition to HDFg. h.

Examples

#include "gribdef.h"
G_SDSrdgrib (sd_id, PRESSURE, "", 0, NULL, &sds, EXIT ON_ERR) ;

if (G_SDSrdgrib (sd_id, WIND_V, "_=", 31, NULL, &sds, CONT_ON_ERR) == FAIL) {
do your own error handling...

}

The first call will return the contents of data set "pressure" and exit if it cannot be read. The second
statement will return the 32rd layer of the data "wind_v_=", which contains the model surface layer v-
component of the wind.

G_AttW1

G_AttWl() writes a single attribute to an HDF file. sd_id is obtained from G SDopen() or
G_SDcreate (). Existing attributes with the same name are overwritten. The level to which the attribute is
appended, is indicated by combinations of sds_name, and dim as follows:

file sds_name equals "" (C) or char (0) (Fortran). dim is disregarded;
data set sds_name indicates a data set name and dim = 0;
dimension sds_ name indicates a data set name and dim > 0;

The attribute is defined by a keyword, number type (see Table 1), size, and contents.

Function output
FATIL or SUCCEED

20

G_AttsW

G_AttsW() writes a list of attributes to an HDF file. The level is defined by sds_name and dim as indicated
above. Invalid links (1en = 0 or keyword = '\0') are skipped. Existing attributes with the same name
are overwritten. The level to which the attribute is appended, is indicated by combinations of sds_name,
and dim, as described above.

Function output
FAIL or SUCCEED

G_AttsFW

G_AttsFW() reads the attributes from file and attaches the data to an HDF file. The level to which the
attribute is appended, is indicated by combinations of sds name, and dim as indicated above. Existing
attributes with the same name are overwritten.

The resource file must have the following format:

e Each line contains the data of a single attribute.

¢ A line may not exceed 1023 characters.

¢ A keyword must be a single word not exceeding 31 characters.

Format:
keyword type values

where:
type are the definitions given in Table 1 except for the DENT -prefix.
If type = CHARS then the rest of the line is interpreted as the attribute contents.

Examples
date INT32 1997 6 17
comment CHAR8 This is an HDF file

The first attribute will be initialised as an integer array of length 3: {1997, 6, 17}, the second one as the
character string: "This is an HDF file".

Function output
FATL or SUCCEED

21

G_AttR1

G_AttR1 () reads the contents of a single attribute named by keyword. The level is defined by sds name,
and dim as described above. G AttR1() does not allocate memory to attr. If the information for
numtype, count, or attr is not needed, you can replace them by NULL. To check the memory required to
store the attribute you can set attr to NULL. The memory required is returned as the function value.

Example

size = G_AttRl (sd id, sds name, dim, keyword, NULL, NULL, NULL);
if (size != FAIL) {

attr = malloc (size);

G _AttRl (sd id, sds name, dim, keyword, &numtype, &count, attr);
}

Function output
attribute size (bytes) or FAIL

G_AttsR

G_AttsR() reads the attributes at a level defined by sds_name and dim as described above. If attr is
empty {"", 0, 0, NULL, NULL}, then all the attributes at that level are returned as a linked list. Memory
is allocated dynamically. If at tr is not empty, then only the attributes that are listed are read. If keywords in
the list do not match, then the memory allocated to the field value is released and the field count is set to
0.

Function output
FATIL or SUCCEED

G_AttsFR

22

G_AttsFR() reads the attributes stored in a resource file as described above (G AttsFW). G AttsFR()
returns them in a linked list. G AttsFR() can be used to create templates.
attr must be an empty list: {"", 0, 0, NULL, NULL}.

Function output
FAIL or SUCCEED

G_SDisunlimited

G_SDisunlimited () returns 1 if the first dimension of the array is appendable and 0 if it is not.

Function output
FATL, 0 (false) or 1 (true).

G_SDSdimpurge

G_sbsdimpurge () removes the dimensions of size 1 in the sps field dim, and adjusts the rank. The memory
allocated to sds.dim remains unchanged.

Example

sds.dim = {10,1,30}

then
G_SDSdimpurge (&sds) results in:
sds.dim = {10,30} and sds.rank = 2

G_SDSdim1

G_SDSdiml () inserts value 1 for dimension dim and increases the rank by 1. The memory occupied by
sds.dim is re-allocated and increased by 1. This function can be used to temporarily match the dimensions
of sds with the dimensions of a scientific data set for I/O.

Example

sds.dim = {10, 30}
then

G _SDSdiml (&sds, 2) ;

G _SDSdiml (&sds,1);

23

results in:
sds.dim = {1,10,1,30} and sds.rank = 4

G_DIMsetname

G_DIMsetname () is used to give the dimensions to an appropriate name. The default dimension names are
fakeDiml etc. Be aware that the dimensions must be renamed first before any dimension attribute is
written.

Function output
FATIL or SUCCEED

G_DIMlink

G _DIMlink() links the dimension of data set sds name to the same dimension of data set sds_link to.
As a result, both data sets will point to the same block of meta-information for dimension dim. Changes in
the meta-information for dimension dim of either data sets will affect both. Linking dimensions reduces the
file size. Be aware that the dimensions must be linked before any dimension attribute is written. Once the
dimensions are linked, they cannot be unlinked any more. Use G_DIMsetname () to change the dimension
names.

Function output
FATL or SUCCEED

G_DIMsetscale

24

G_DIMsetscale () writes the scale to the dimension of the data set indicated. scale is defined as an array
of floats of size equaling the dimension size. If you want to include a scale of a different number type then
you must use the NCSA HDF functions.

Function output
FAIL or SUCCEED

G_DIMgetscale

G_DIMgetscale () reads the scale of the dimension indicated and returns the values to variable scale. In
C memory is allocated to scale. In Fortran, it is assumed that scale is large enough to store all the values.
If type is set to 0, then the scale is returned in the data type as stored, and its number type is returned as
type. If type has a value as defined in Table 1, then scale is converted to this data type.

Function output
FAIL or SUCCEED

G SDSinfo

G_sDsinfo () returns the rank, dimensions, number type and the data set size including the time dimension.
This function - does not indicate whether the first dimension is of unlimited length. You can use the function
G_SDisunlimited() to figure this out. If you do not want to query either rank, dims, or numtype, you
can replace them by NULL. The function returns the size needed to store the entire array.

25

Function output
data set size (bytes) or FAIL

G_SDSname

G_SDSname () returns the data set names stored in file sd_id. ref is a variable for internal use. The first
name is obtained by setting ref to 0.

Example
The following code shows how to get a list of all the data sets stored in an HDF file.

ref = 0;
while (G SDSname (sd id, &ref, name) != FAIL) {

printf_("as\n", name) ;

}

Function output
FAIL or SUCCEED

G_SDScount

G_SDScount () returns the number of data sets stored in HDF-file sd_id.

Function output
number of data sets or FAIL

Cij

cij () returns the position of an element in an array. The variable list contains the coordinates of the
element in an array of dimensions dim.

26

Example
sds.rank = 2
sds.type = DFTN_FLOAT32
sds.dim = {10,5}

then

sds.datalcij (sds.rank, sds.dim, 2, 3)] corresponds to data[2][3], if sds.data were
typecast to an array of size {10, 5}.

attlist_append

attlist append() appends a new attribute to a list and allocates memory or finds the link containing
keyword. The keyword, number type and length are initialised. If the list already contains an attribute
keyword, then this link is re-initialised (count can be equal to 0). attlist append() returns a pointer to
the initialised or appended attribute. If the list is empty, then the first link is initialised. If values = NULL,
then attlist append () creates an empty link and allocates memory for field value. found points to the
link that has been initialised, hence found->keyword = keyword.

attlist_getlink

attlist getlink() returns the link in the list containing keyword. If the keyword is not found then
NULL is returned.

Example

attlist is alinked list of attributes containing valid range:

attribute *range;
range = attlist; /* initialisation */
attlist getlink (&range, "valid range");

will result in:
range->keyword = "valid range" etc.

attlist_free

attlist free () releases all memory occupied by a linked list of attributes.

27

Appendix 1

Data set names used for the GRIB parameter code (version: PDS field 9 = 1, i.e. for Hirlam). Codes 1-127 are
universal codes. The same names in capital can be used as identifiers in the grib_param list, e.g.:

grib_param[PRESSURE] equals grib_param[0] or "pressure".

1 pressure

2 press_msl

3 press_tendency
6 geopotential

7 geopotential ht
8 geometric_ht

9 sd_height

11 temperature

12 T virtual

13 T _potential

14 T pseudo_adiabatic_pot

15 T max

16 T min

17 T_dewpoint

18 dewpoint depr
19 lapse_rate

20 wvisibility

21 radar_spectra_ 1
22 radar_spectra_2
23 radar_spectra 3
25 anomally temp
26 anomally press
27 anomally geopot_ht
28 wave_ spectra 1
29 wave_spectra_2
30 wave_spectra_ 3
31 wind dir

32 wind speed

33 wind u

34 wind v

35 stream_func

36 vel potential
38 vert vel s coord
39 vert_vel press
40 vert vel geom
41 abs_vort

42 abs_div

43 rel vort

44 rel div

45 vert_shear_u

46 vert_shear_ v

47 cur wind dir

48 cur_wind_speed
49 cur_wind_u

50 cur wind v

hum_specific

hum relative

hum mix_ ratio
prec_water
vapor_press
sat_deficit
evaporation
prec_rate

thunder prob
prec_total
prec_large_scale
prec_convec
snowfall rate
snow_depth_acc
snow_depth

pbl

trans_thermocl depth
main_thermocl depth
main_thermocl_ anomally
cld _cov_total

cld _cov_convec
cld_cov_low
cld_cov_medium
cld _cov_high

cld water

landmask
sea_level dev

surf rough

albedo

soil temp
soil_moist
vegetation
salinity

density

ice

ice_thick
ice_drift_dir
ice_drift_spreed
ice_drift u
ice_drift_ v
ice_growth

ice div
waves_wind_swell ht
waves_wind dir
waves_wind sign ht

waves_wind prd
waves_swell dir
waves_swell sign ht
waves_swell ht
1st wave_dir
1st_wave_prd
2nd_wave_dir
2nd_wave_prd
net_rad_sh_surf
net_rad 1 surf
net_rad_sh_toa
net_rad_1_toa
rad_long
rad_short
rad_global

heat flux E
heat flux H
bound_lyr dissip
momentum flx u
momentum flx v
image_data
momentum flx
forest_clearing
forest _needle
forest_needle_sparse
forest_loaf
forest_loaf sparse
forest mixed
forest_bushland
forest undef
agric

bare mountain
barren

wetland wet
wetland dry
snow
agric_irrig
grassland

urban
open_land_undef
soil_type

lakes

forest
open_land

KNMI-PUBLICATIES, VERSCHENEN SEDERT 1996
Een overzicht van eerder verschenen publicaties, wordt verzoek toegezonden door de Bibliotheek van het KNMI,
postbus 201, 3730 AE De Bilt, tel. 030 - 2 206 855, fax. 030 - 2 210 407; e-maul: biblioth@knmi.nl

Y KNMI-PUBLICATIE MET NUMMER

150-28 Sneeuwdek in Nederland 1961-1990 / A.M.G. Klein Tank

180a List of acronyms in environmental sciences : revised edition / [compiled by
P. Geerders and M. Waterborg]

181b FMI12 syNovP . internationale en nationale regelgeving voor het coderen
van de groepen 7wwW1W2 en 960ww; derde druk

183-1 Rainfall in New Guinea (Irian Jaya) / T.B. Ridder

183-2 Vergelijking van zware regens te Hollandia (Nieuw Guinea), thans Jaya-
pura (Irian Jaya) met zware regens te De Bilt/ T. B. Ridder

183-3 Verdamping in Nieuw-Guinea, vergelijking van gemeten hoeveelheden met
berekende hoeveelheden / T.B. Ridder

183-4 Beschrijving van het klimaat te Merauke, Nieuw Guinea, in verband met de
eventuele vestiging van een zoutwinningsbedrijf / T.B. Ridder a.o.

183-5 Overzicht van klimatologische en geofysische publikaties betreffende
Nieuw-Guinea / T.B. Ridder

184a Inleiding tot de algemene meteorologie : studie-uitgave ; 2e druk / B.
Zwart, A. Steenhuisen, m.m.v. H.J. Krijnen

185a Handleiding voor het gebruik van sectie 2 van de Fm 13-X sHip-code voor
waammemers op zee / KNM1; KLu; KM

186-1 Rainfall generator for the Rhine Basin: single-site generation of weather
variables by nearest-neighbour resampling / T. Brandsma a.o.

187 De wind in de rug: kNMi-weerman schaatst de Elfstedentocht / H. van Dorp

188 SODA workshop on chemical data assimilation: proceedings; 9-10

December 1998, KNMI, De Bilt, The Netherlands
\V TECHNISCH RAPPORT = TECHNICAL REPORT (TR)

170 DARR-94/C.P.G. Lomme

171 EFEDA-91: documentation of measurements obtained by KNMI/ W.A.A.
Monna a.o.

172 Cloud lidar research at the Royal Netherlands Meteorological Institute
KNMI2B2, version 2 cloud lidar analysis / A.Y. Fong a.o.

173 Measurement of the structure parameter of vertical wind-velocity in the
atmospheric boundary layer / R. van der Ploeg

174 Report of the AscAsex’94 workshop / ed. by W.A. Oost

175 Over slecht zicht, bewolking, windstoten en gladheid / J. Terpstra

176 Verification of the wAQUA/csM-16 model for the winters 1992-93 and 1993-
94 /J.W. de Vries

177 Nauwkeuriger nettostraling meten / M.K. van der Molen en W. Kohsiek

178 Neerslag in het stroomgebied van de Maas in januari 1995: waamemingen en
verificatie van modelprognoses / R.Jilderda a.o.

179 First field experience with 600PA phased array sodar / H. Klein Baltink

180 Een Kalman-correctieschema voor de wegdektemperatuurverwachtingen van
het vaisaLa-model / A. Jacobs

181 Calibration study of the K-Gill propeller vane / Marcel Bottema

182 Ontwikkeling van een spectraal UV-meetinstrument / Frank Helderman

183 Rainfall generator for the Rhine catchment : a feasibility study / T. Adri
Buishand and Theo Brandsma

184 Parametrisatie van mooi-weer cumulus / M.C. van Zanten

185 Interim report on the kNMI contributions to the second phase of the AEro-
project / Wiel Wauben, Paul Fortuin a.o.

186 Seismische analyse van de aardbevingen bij Middelstum (30 juli 1994) en
Annen (16 augustus '94 en 31 januari '95) / [SO]

187 Analyse wenselijkheid overname rivM-windmeetlokaties door kNM1 / H.
Benschop

188 Windsnelheidsmetingen op zeestations en kuststations: herleiding waarden
windsnelheden naar 10-meter niveau / H. Benschop

189 On the KNMI calibration of net radiometers / W. Kohsiek

190 NebwaM statistics over the period October 1994 - April 1995 / F.B. Koek

191 Description and verification of the HIRLAM trajectory model / E. de Bruijn

192 Tiltmeting : een altematief voor waterpassing ? / H.W. Haak

193 Error modelling of scatterometer, in-situ and eEcMwF model winds; a cali-
bration refinement / Ad Stoffelen

194 knmi contribution to the European project popsicLe / Theo Brandsma a.o.

195 ecBiLT . a coupled atmosphere ocean sea-ice model for climate predictability
studies / R.J. Haarsma a.o.

196 Environmental and climatic consequences of aviation: final report of the
KNMI contributions to the AERO-project / W. Wauben a.o0.

197 Global radiation measurements in the operational KNM1 meteorological net-
work: effects of pollution and ventilation / F. Kuik

198 kALcoORR: a kalman-correction model for real-time road surface temperature
forecasting / A. Jacobs

199 Macroseismische waamemingen Roswinkel 19-2-1997 / B. Dost e.a.

200 Operationele UV-metingen bij het knmi / F. Kuik

201 Vergelijking van de Vaisala’s HMP233 en HMP243 relatieve luchtvochtig-
heidsmeters / F. Kuik

202 Statistical guidance for the North Sea / Janet Wijngaard and Kees Kok

203 UV-intercomparison SUSPEN / Foeke Kuik and Wiel Wauben

204 Temperature corrections on radiation measurements using Modtran 3/ D.A.
Bunskoek, A.C.A.P. van Lammeren and A J. Feijt

205 Seismisch risico in Noord-Nederland / Th. De Crook, H.-W. Haak en B. Dost

206 The HIRLAM-STAT-archive and its application programs / Albert Jacobs

207 Retrieval of aerosol properties from multispectral direct sun measurements /
O.P. Hasekamp

208 The kNMI Garderen Experiment, micro-meteorological observations 1988-
1989; instruments and data / F.C. Bosveld a.o0.

209 CO2 in water and air during ASGAMAGE: concentration measurements and
consensus data / Cor M.J. Jacobs, Gerard J. Kunz, Detlev Sprung a.o.

210 Elf jaar Cabauw-metingen / J.G. van der Vliet

211 Indices die de variabiliteit en de extremen van het klimaat beschrijven / E.J.
Klok

212 First guess TAF-FGTAF: semi-automation in TAF production / Albert Jacobs

213 Zeer korte termijn bewolkingsverwachting met behulp van METCAST: een
verificatie en beschrijving model-uitvoer / S.H. van der Veen

214 The implementation of two mixed-layer schemes in the HOPE ocean general
circulation model / M. van Eijk

215 Stratosphere-troposphere exchange of ozone, diagnosed from an ECMWF
ozone simulation experiment / Harm Luykx

216 Evaluatierapport Automatisering Visuele Waamemingen Ontwikkeling
Meestsystemen / Wiel Wauben en Hans de Jongh

217 Verificatie TAF en TREND / Hans van Bruggen

218 LEO- LSG and ECBILT coupled through OASIS: description and manual/A. Sterl

219 Deinvloed van de grondwaterstand, wind, temperatuur en dauwpunt op de
vorming van stralingsmist: een kwantitatieve benadering / Jan Terpstra

220 Back-up modellering van windmeetmasten op luchthavens / Ilja Smits

221 PV-mixing around the tropopause in an extratropical cyclone / M. Sigmond

222 NPK-TIG oefendag 16 december 1998 / G.T. Geertsema, H. van Dorp e.a.

223 Golfhoogteverwachtingen voor de Zuidelijke Noordzee: een korte

vergelijking van het ECMWF-golfmodel (EPS en operationeel), de nautische
gidsverwachting, Nedwam en meteoroloog / D.H.P Vogelezang en C.J. Kok.

\/ WETENSCHAPPELIJK RAPPORT = SCIENTIFIC REPORT (WR)

96-01 A new algorithm for total ozone retrieval from direct sun measurements
with a filter instrument / W.M.F. Wauben

96-02 Chaos and coupling: a coupled atmosphere ocean-boxmodel for coupled
behaviour studies / G. Zondervan

96-03 An acoustical array for subsonic signals / H.W. Haak

96-04 Transformation of wind in the coastal zone / V.N. Kudryavtsev a.o.

96-05 Simulations of the response of the ocean waves in the North Atlantic and
North Sea to co2 doubling in the atmosphere / K. Rider a.o.

96-06 Microbarograph systems for the infrasonic detection of nuclear explosions /
H.W. Haak and G.J. de Wilde

96-07 An ozone climatology based on ozonesonde measurements / J.P.F. Fortuin

96-08 coMme validation at kNM1 and collaborating institutes / ed. P. Stammes a.o.

97-01 The adjoint of the wam model / H. Hersbach

97-02 Optimal interpolation of partitions: a data assimilation scheme for
NEDWAM-4; description and evaluation of the period November 1995 -
October 1996 / A.Voorrips

97-03 satview: a semi-physical scatterometer algorithm / J.A.M. Janssen a.o.

97-04 cps water vapour meteorology status report / H. Derks a.o.

97-05 Climatological spinup of the ecsILT oceanmodel / Arie Kattenberg a.o.

97-06 Direct determination of the air-sea transfer velocity of co2 during
ASGAMAGE / J.C.M. Jacobs, W. Kohsiek and W.A. Oost

97-07 Scattering matrices of ice crystals / M. Hess, P. Stammes a.o.

97-08 Experiments with horizontal diffusion and advection in a nested fine mesh
mesoscale model / E.LF. de Bruijn

97-09 On the assimilation of ozone into an atmospheric model / E.Valur H6lm

98-01 Steady state analysis of a coupled atmosphere ocean-boxmodel / F.A.
Bakker

98-02 The AscaAMAGE workshop, September 22-25, 1997 / ed. W.A. Oost

98-03 Experimenting with a similarity measure for atmospheric flows / R.A.
Pasmanter and X.-L. Wang

98-04 Evaluation of a radio interferometry lightning positioning system / H.R.A.
Wessels

98-05 Literature study of climate effects of contrails caused by aircraft emissions /
V.E. Pultau

99-01 Enhancement of solar and ultraviolet surface irradiance under partial
cloudy conditions / Serdal Tung

99-02 Turbulent air flow over sea waves: simplified model for applications / V.N.
Kudryavtsev, V.K. Makin and J.F. Meirink

99-03 The KNMI Garderen experiment, micro-meteorological observations 1988-
1989: corrections / Fred C. Bosveld

99-04 ASGAMAGE: the ASGASEX MAGE experiment . final report / ed. W.A.Oost

" a '.‘ [- a
. . s a .‘I “ . " . " B ‘
i
_II
% & el R el R o o [- SNy — R - L .
| 1 ” .
= b =5 i
& i - - Ly , & .
28 : |
| | a ! ! I ' |
I " —— 'l —"— 4 I g —. i
0 MAT | - o :
- o | M
1
=l h | " "
3 L I'
: e =
5 LA i
a B
i
B o -)
i) -)
ﬂ r=) ‘ i LA I|-,-.*l = 4 : « .1
I = r Fal
: . ; I SR ,’f.l 7 i Y
'| N 4) il i | S
[== _‘_' a0 -- = Pl
I "
I b |
I
* = B . N |
. {
i 1 » 1
.) |
|
o i - L o - |
dn . ' N I

