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Abstract

This report makes part of the KNMI HYDRA project and it gives an overview of the reproduction and
analysis of and adjustments to the so called “A Compound Weibull Model For The Description Of
Surface Wind Velocity Distributions” (Rijkoort, 1983). This model is used to calculate return levels of
hourly mean wind speeds with high return periods (up to 10* years) at several stations in the Netherlands.
It turned out that the persistence correction used in the model causes unreliable results with respect to the
return levels of interest, especially when the correction is used in combination with the occurrence of
relatively many low wind speed values.

In order to use the model properly, adjustments have to be made. It makes sense to use a threshold to
prevent the impact of low wind speed values and to determine the persistence correction based on
physical grounds.

Alternative extreme wind models also have been examined. The combined GEV distribution results in
unreliable return levels due to the split up into seasons and wind direction groups. The one-step Markov
chain model has to be extended substantially before results of interest can be obtained. Finally, the
analysis of separate storms instead of the parent distribution of wind speed or the distribution of annual
maxima of wind speed is discussed briefly.
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1 Introduction

The National Institute for Coastal and Marine Management (RIKZ) and the Institute for Inland Water
Management and Waste Water Treatment (RIZA) in the Netherlands are legally obliged to redo their risk
assessment of the Dutch dike systems regularly. On the IJssellake, the Waddensea and parts of the
Zeeland waters wind is the main source of waves. This urged the need for an updated wind climate
assessment of the Netherlands, including the water-land (and vice versa) transition zones. This is the
contribution of the Royal Netherlands Meteorological Institute (KNMI) to the HYDRA (HY Draulische
RAndvoorwaarden) project.

One of the main goals of the project is to provide return levels of hourly mean wind speeds corresponding
with return periods up to 10* years. At this moment, the Directorate-General of Public Works and Water
Management (RWS) uses the outcomes from a model described in detail in “A Compound Weibull Model
For The Description Of Surface Wind Velocity Distributions” (Rijkoort, 1983). Because of the doubt
about the quality of this model (henceforth the Rijkoort-Weibull model (RW-model)) and because of the
extension of available time series up to now, it seemed worthwhile to review and to update the model and
to adjust it if necessary. The results of this are set out in this report.

First of all, the available time series and stations that are used during the research are discussed in Chapter
2. Chapter 3 describes the RW-model in rough lines. In this Chapter, a number of phrases and formulas
are literally taken from the paper of Rijkoort, but often more explanation about the interpretation of the
theory turned out to be necessary which has been added. In Chapter 4, the reproduction of the model is
discussed. This reproduction is based on the same observational series Rijkoort used. Chapter 5 evaluates
the model and Chapter 6 reviews some possible adjustments to it. Also alternative wind extreme models
have been examined. These models are discussed in Chapter 7. Chapter 8 summarises the main
conclusions and recommendations are given in Chapter 9. Finally, several numerical and graphical
outcomes can be found in the Appendices.
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In this report wind data is used from several stations of the KNMI-network in the Netherlands. At the
stage of reproduction of the RW-model, a selection of twelve stations is made and used. These stations
are equal to the stations Rijkoort used in the application of his model. Furthermore, also the time period
used is equal to the time period used by Rijkoort (1962-1976). Both the same stations and the same time
period makes comparison between the results of Rijkoort and the reproduction valid.

More stations and longer time periods have become available for analysis. These data also are used in this
report. Figure 2.1 shows the geographical locations of all the stations used and Figure 2.2 shows the
tabulated representation of the time series that have been used.

¥ Stations used atthe stage of reproducing the RW-maodel
e Other stations used

Figure 2.1: Stations used.

The wind speed data that are used are from a data set compiled for this project (Verkaik, 2000a). The time
series that are included by this data set consist of hourly mean wind speed values. These values are
corrected for local terrain roughness in a way that the measured wind speeds are translated to a height of
10 meters over open terrain (roughness length z, 0.03 meter). These translated measured wind speeds are
called potential wind speeds. The exposure correction method was developed by Wieringa (1976, 1986).
It includes the estimation of direction dependent roughness lengths at the anemometer locations by
gustiness analysis. It was applied in the assessment of the Dutch wind climate by Wieringa & Rijkoort
(1983). The original parameters of the RW-model are based on these observations only. The reproduction
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of the RW-model also uses these observations. More recent observations are corrected using the same
method although a different gustiness model has been used (Beljaars 1987, Verkaik 2000b). Also these

data have been used in

this report.

Il Time series used at the stage of reproducing the RW-model
I Other time series used
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Figure 2.2: Time series used.
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3 Description of the Rijkoort-Weibull model

3.1 The Compound model

The RW-model is based on the Weibull distribution. This distribution is used frequently for wind speeds
and is commonly accepted. Its distribution function has the form

Flu)=1- exp{— (Z] ] , @3.1)

where u is the wind speed, x the shape parameter and « the scale parameter. In this report, the wind speed
concerns only hourly mean values and the unit of wind speed used equals meters per second (m/s). The
shape parameter x determines the degree of peakedness of the distribution function around the mean and
the width of the tails of the distribution function. Because our interest concerns extreme wind speeds the
value of x is very essential in the model. The scale parameter & can be seen as a multiplication factor and
therefore as a good indication for the mean wind speed.

Although the Weibull distribution fits wind speed reasonably well, Rijkoort introduced a modification of
the Weibull distribution for nighttime situations (Rijkoort, 1980). This modification approaches (3.1) at
high wind speeds. The modification results in two separate distributions for nighttime (F,(«)) and daytime

(Fw)):
u N
F,(u) =1—exp| - [a {1 +y exp(— SJH , 3.2)

F (u)=1- exp{— (Z] ] , (3.3)

where y is the extra parameter in the nighttime distribution and also called the stability parameter. The
factor 5 in (3.2) has been derived empirically by Rijkoort.

F, (u) indicates the probability that on an arbitrary moment during nighttime the wind speed is less than u.
F,(u) is defined likewise but nighttime is replaced by daytime.

When using these distributions it’s necessary to define the days and nights. Table 3.1 is used for this
purpose:

Month Hours Month Hours
January 10-14 July 06-18
February 09-15 August 06-18
March 08-16 September 07-17
April 07-17 October 08-16
May 06-18 November 09-14
June 05-18 December 10-13

Table 3.1: Hours assigned to daytime per month (UTC). The tabulated hours refer to the previous hours.
For example, 10 means 09:00 — 10:00 UTC.

A next step in the RW-model is to split up the data into six seasons and twelve wind direction groups.
This is done because the overall (without dividing the data into seasons and wind directions) Weibull
distribution seems to fit over a limited range (at most between 3 and 15 m/s). When using a subdivision
into seasons and wind directions the separate Weibull fits seem to fit in a better way. The subdivision into
seasons is listed in Table 3.2 and the subdivision into wind directions is listed in Table 3.3.
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Season Months
1 Midwinter January — February
2 Spring March — April
3 Presummer May — June
4 Midsummer July — August
5 Autumn September — October
6 Prewinter November — December

Table 3.2: Subdivision into seasons.

Wind direction
1 30° | 015°-044°
2 60° | 045°-074°
3 90° | 075°-104°
4 | 120° | 105°-134°
5] 150° | 135°-164°
6 | 180° | 165°-194°
7 | 210° | 195°-224°
8 | 240° | 225°-254°
9 | 270° | 255°-284°
10 | 300° | 285°-314°
11| 330° | 315°-344°
12 | 360° | 345°-014°

Table 3.3: Subdivision into wind directions.

This split up into season and wind direction results in:

N _ u- ) _E !
F,(ul|i,j)y=1-exp [(Z,-j {1 +7y exp( S]H ) 3.4)
Fy(uli,j)=1-exp —[”J , (3.5)

where i (1,2, . . .,12) indicates the azimuth group andj (1, 2, . . . ,6) the season group.

F, (u | i, j) indicates the probability that on a arbitrary moment during nighttime the wind speed is less
than u given that this moment lies in season j and that the wind direction is i. F; (u | i, j) is defined
likewise but nighttime is replaced by daytime.

After the split up we have a great number of Weibull parameters (12:6:3 =216 per station):

a;,

Kjandy; .
These parameters are fitted by the method of maximum likelihood.

When we combine day- and nighttime, the wind distribution for an individual season-azimuth group is
now

5UFd(u|l:j)+VUFn(u|l:])
6,-j+v,-j

Fuli,j)= , (3.6)

where the parameters §; and vj indicate the numbers of day- and nighttime observations in a year during
season j with wind direction is i. The parameters &; and v; increase the total number of parameters to 360
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(=(12-6:3)+(12-6-2)). Estimates of &, and v; can be made by averaging the observations over the years
that are used for analysis.

Furthermore, when we combine these individual azimuth-season distributions we get a distribution for
each wind direction

6
(6, Fyuli, ) +v,Fy i )

i=1
6
Z(5y+vy')

Fuli)="
Jj=1

; 3.7

and for each season

12
20 Ful vyl i)
Ful == B : 3.8)

(6, +v,)

i=1

When we combine all season-azimuth groups we get the distribution for any arbitrary moment:

T M.\,

6
Z( 8, Fy iy )+ v, Fyuli )))

12 6
2(50'“’:'/)

i=1 j=1

F(u)= (3.9)

F(u | i, j) indicates the probability that on a arbitrary moment the wind speed is less than u given that this
moment lies in season j and that the wind direction is i. F(u | i) indicates the probability that on a arbitrary
moment the wind speed is less than u given that the wind direction at this moment is i. F(u | j) indicates
the probability that on a arbitrary moment the wind speed is less than u given that this moment lies in
season j. Finally, F(u) indicates the probability that on a arbitrary moment the wind speed is less than u
without any given situation.

3.2 Smoothing of the model-parameters
In order to make the 360 distribution parameters per station more manageable, Rijkoort has chosen to

“smooth” these parameters. Because of the often bimodal structure of a wind rose he subjected the 12
azimuthal parameters to harmonic analysis. This resulted is the following sine forms:

a;=a;+a, sm(301+aj2)+ ajs sm(601+a ) 3.10)
K =kjo +kj-] sm(301+k )+kj3 sm(601+kj4), 3.11)
7y =80 +&nsin30i+g )+ g sin(60i+g ), (3.12)
8, =dy+d,sin(30i+d,,)+d;sin(60i +d ), (3.13)
Vi =njg +nj1s1n( 1+n12)+nj3sm( 1+n/4). 3.14)

The first harmonic parameter (respectively ay, jo , gjo , djo and my, j = 1, . . ,6) is equal to the mean of the
parameter in question combined over all azimuth sectors. The parameters dj, and #; are in fact no
parameters but constants, because their means combined over all azimuth sectors are equal to the numbers
of hours in season j divided by the total numbers of azimuth sectors (=12). dj, and #y, are therefore fixed
numbers and the same for all stations. The values of dj, and 7, are given in Table 3.4.
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In this fashion the 360 parameters per station are reduced to 150 (=5-6-5) parameters per station. For
geographically interpolating purposes though, 150 parameters is still an huge amount of parameters. For
this reason, more steps of simplification and smoothing are performed which are described in detail in the
paper of Rijkoort (1983). Some of these steps will be discussed in Chapter 4.

Jan-Feb =~ Mar-Apr May-Jun  Jul-Aug Sep-Oct  Nov-Dec

dyo 29.40 50.75 68.58 67.17 50.75 25.33
o 89.10 71.25 53.42 56.83 71.25 96.67

Table 3.4: Values of the constants dj, and #jo.

3.3  Model extension for the calculation of extreme values

The main goal of the RW-model is to calculate return levels of wind speed with high return periods (7).
So, our interest doesn’t concern the whole range of the wind speed distribution, but only the tail of it: the
extremes.

In theory, a possible method to calculate extreme return levels of wind speed is to derive these values
directly from the wind speed distributions determined in the preceding Paragraphs 3.1 and 3.2. For
example, when using the combined distribution F(u) based on the several seasons and wind directions, the
return level u corresponding with return period 7(u) expressed in hours can be calculated by

_ 1
u=F7(l —%), (3.15)

where F ™' represents the inverse of the distribution function F.

However, doing this will not result in return levels of interest. Because time series of wind speed are
strongly autocorrelated, many extreme values are clustered within a relative short time, which is the case
during a storm. Such a storm is only one event we are interested in, while a certain wind speed can be
exceeded more than once during that same storm.

As an example the hourly mean wind speed time series of station Schiphol in the period 1951-1999 can
be taken. In this period the value of 22.8 m/s is exceeded 51 times (on average 1.04 times a year).
Furthermore, each time the value of 22.8 is exceeded on average 2.2 more wind speeds exceed this value,
so that an exceedance lasts on average 3.2 hours.

The mean return period of a single exceedance is equal to 1/1.04 = 0.96 years, but the mean return period
of each event (the one of interest) equals 3.03 years, because the exceedance frequency of each event is
not 1.04 times a year but 1.04/3.2 = 0.33 times a year. Clearly, calculation by ways of (3.15) does not take
this into account.

Based on this example the relation between the exact definition of the return period and the exceedance
frequency is given by

T(u) = (3.16)

L
f)’
where T{u) represents the mean duration in years between exceedances of the level # and f{u) represents
the average number of exceedances per year of the level u.

The method Rijkoort applies to solve the problem of the autocorrelation between successive values of
wind speed is the determination of the distribution of the maximum value in a predefined not too short
period (for example, the RW-model uses one year), because these maximum values are rather
independent of each other. The maxima are not fully independent, because a storm can occur at the end of
a period while continuing in the following period. This doesn’t occur often, so this dependency is not that
severe. More important is the dependency between successive years. Experience learns that years with
many stormy periods often are followed by years with many high winds also. Nevertheless, the
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dependency between the maxima of successive years will be much less than the dependency between
successive hours.

Using the distribution of the maximum, though, yields a different interpretation of the resulting return
periods. When the period is defined as a year, the resulting return period corresponding with a certain
wind speed can not be less than one year, while exceedances for the considered wind speed can occur
more frequently within the year. So, a change in definition about the return period has been introduced.

So theoretically we have, expressed in formula,

P(U ey > u) < f(u), (3.17)

where Uy, represents the annual maximum wind speed.

But if it can be assumed that an exceedance of # never occurs together with an other exceedance of u
within the same year, then the equal sign holds (Geerse, 1999). In other words, if the probability of two or
more exceedances of u in the same year can be neglected, then the probability that U,,,, exceeds u equals
the exceedance frequency f{u), and from (3.16) then

P(U x> u) = f(u) = T(lu) (3.18)

Moreover, it’s easy to show that the probability of two or more exceedances of # within the same year can
be neglected if f{u) is smaller than say 1/10 or 1/20 per year and if exceedances of u can be approximately
assumed to be independent.

In the RW-model it is assumed that (3.18) holds to a sufficiently good approximation. This means that the
two definitions of return periods, the one in terms of exceedance frequencies and the other in terms of the
annual maxima, coincide.

Rijkoort uses the results from the preceding paragraphs to extend the model for the calculation of extreme
wind speed values, because the exact general formula for maximum values is based on the basic
distribution model

Gy ={F)}", (3.19)

where F(x) is the probability that an outcome of the stochastic variable X is smaller than x, whereby
(3.19) means the probability that all outcomes of X from a sample of size N are smaller than x, so that also
the largest element xy < x. Then the probability that this maximum xy exceeds x is:

Gy(x)=1-Gy(x). (3.20)
In the case of the compound model we get for an individual azimuth-season group (i,/):
Gyy(u) = {Fy |, DY AF, |, @3:21)

(3.21) indicates the probability that in season j the maximum of all wind speeds with wind direction ; is
smaller than u, given that §;+v; hours occur in season j with wind direction i. Because the number of
hours in a certain season with a certain wind direction fluctuates over years and normally doesn’t equal
the average value over years (J;+v;), (3.21) is an approximation of the probability that in season j the
maximum of all wind speeds with wind direction / is smaller than «. For example, imagine a year where
season j includes a high number of hours with wind direction i. In this year, the probability that in season
J the maximum of all wind speeds with wind direction i is smaller than u will be less compared with a
year where season j includes a low number of hours with wind direction 7. (3.21) does not take account of
this fluctuation in the number of hours over years. This means the following:

P(Umax,ij > u) ~1= Gij (u) s 3.22)
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where Upay ; Tepresents the annual wind speed maxima per azimuth sector and season.

Formula (3.21) only can be used when the hourly mean values of wind speed are mutually independent.
Because this is evidently not the case for wind speeds (like stated earlier), Rijkoort introduces a
persistence correction factor g;(u) in order to reduce the J; and v;; to numbers of seemingly independent
elements, as follows:

Sij vi

Gy = s i} {E @i} (3.23)

Determination of the persistence correction factor g;(u) is described in detail in Paragraph 3.4.
For the extreme values, belonging respectively to azimuth sectors, seasons and the full year, the
distributions have the following basic forms:

6
Gw)=T]G,m), (3.24)
j=1
j]2
G,(u)= H G,(u), (3.25)
121=]6
G =1][]G,®- (3.26)

i=1 j=I

Again, these formulas only can be used when the maximum hourly mean values of wind speed per season
and azimuth sector are independent of each other. However, it is possible that some dependence exists
between neighbouring azimuth sectors (during a storm multiple wind directions can occur) or between
subsequent seasons (a storm can occur at the end of a season while continuing in the following season). In
that case additional corrections for persistence might be required. Determination of these factors is also
described in Paragraph 3.4.

Finally, return periods in years for individual season-azimuth sectors, seasons, azimuth sectors and for the
whole year can be calculated based on (3.23), (3.24), (3.25) and (3.26):

1

Ty(u) = -G, (3.27)
T (u) = I—Glj(u) , (3.28)
T;(u) = 1-(1;,(14) , (3.29)

T(u)= 1-(1;(14) . (3.30)

3.4  Determination of persistence correction factors

Rijkoort determines the persistence correction factors, that are needed as a result of the dependency
between successive hourly wind speed values, with the help of the observed annual maxima of wind
speed.

First, these extremes are plotted on Gumbel graph paper following the plotting position formula of
Benard and Bos-Levenbach (1953), which often is used for wind extremes. This position is given by

r—03
H(u,)=N+04, 3.31)

—11-
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where r equals the ranked position of the annual extreme (from low to high) and N the total number of
years in the time series. These positions can be interpolated linearly, so that non-exceedance probabilities
of integer values of the wind speed (u;) between the lowest and highest annual extreme can be calculated.
These probabilities are denoted as H(u;).

Next, Rijkoort calculates the non-exceedance probabilities P(Upax,;; < #;) by ways of (3.21) and (3.26) as
follows:

12 6 12 6
PWoay <7) = TTTTNFa s 12 DY F, Gy 1V |=TTT1G, ) 3.32)
i=l j=l i=l j=l

Now the g(u;)-values can be obtained by

12 6
e w160
{HHG,-,(uJ)J = H(u;), or q(u;) = "mfl;(u) :

7

=1 j=1

(3.33)

The resulting g(u;)-values can be plotted against ;. Full correctness of the model would require g(u;) — 1
(asymptotic independency between successive hourly wind speed values) for increasing u; (#; — o). If
the g(uy)-values become significantly smaller than 1 or stay significantly above 1, besides the persistence
correction also a tail correction is introduced. It appeared that the g(u;)-values become significantly
smaller than 1 what results in higher non-exceedance probabilities and thereby in higher return levels of
wind speed.

Values of the persistence correction and tail correction have been determined for the various individual
azimuth-season sectors. This results in:

1
Gy )™ ™ = H(up), or q;(u;)=

InG, ()

— 3.34)
InH;(u;)
Furthermore, there appears to be quite some variation in the position of the g;(u;)-lines between stations:
The g;(uy)-lines of coastal or offshore stations seem to lie on a higher level than inland stations. This is
not surprising because one can expect that inland stations reach earlier the level of independence (¢=1)
than offshore stations as a result of the difference in the average wind speed. This made Rijkoort to take
the station mean wind speed into account. Therefore the g,(u;)-values are plotted against u,; /c;, where o
is the scale parameter of the Weibull distribution for the wind speeds in season j with wind direction /.
The result from this is that now the position of the g;(u;)-lines seems to liec on the same level reasonably
well.

By trial and error Rijkoort found the following relation between g;(u;) and u; /cy;:

2
Ing, (u;) = A,{”’] +B,,
aj (3.35)
with 4;<0.
Because Rijkoort found no definite systematic variation between the values of 4; and By for different
stations, these parameters were averaged over the stations. From these averages and the station values of
ay; the persistence/tail factors g;(u;) can be calculated, and from there the extreme value distribution for
any arbitrary azimuth-season sector (i,/) by (3.23).

Next, the distributions for separate seasons, for separate azimuth sectors, and for the overall (year)
maxima can be determined. It proved necessary to introduce additional persistence correction factors that
take into account the dependence between neighbouring azimuth sectors and subsequent seasons. For
seasonal calculations the mutual dependency between azimuth groups was accounted for by a persistence

—12—



Analysis of the Rijkoort-Weibull model A. Smits

correction factor 2.0. For azimuthal calculations the mutual dependency of seasons required a persistence
correction factor 1.2. For yearly calculations the mutual dependency between azimuth groups and
between seasons required a persistence correction factor of again 2.0. Based on these correction factors,
(3.24), (3.25) and (3.26) are replaced by

*
12
Gj(u) = [H Gy (M)Jz0 : (3.36)
i=1
1
6 .
Gi(u) = [H G;,-(M)Jl 2 , (3.37)
-1

1
12

G = [Hﬁqj (u)J” . (3.38)

i=1 j=I
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4 Reproduction of the Rijkoort-Weibull model

In this chapter step by step the reproduction of the RW-model will be explained (Paragraph 4.1-4.3). This
reproduction makes use of the same theory (Chapter 3) and the same station wind observations (Chapter
2) as Rijkoort (1983). Problems that arose during the reproduction are discussed in detail. Finally, the
reproduction results (Table B.1, B.2, B.3 and B.4 in Appendix B) are compared with the results of
Rijkoort (Table A.1, A.2, A.3 and A.4 in Appendix A) to see what and why certain deviations occurred
(Paragraph 4.4).

4.1 The Compound model

In Paragraph 3.1 it was shown that the RW-model requires a split up of the wind speed data according to
three criteria: season, azimuth sectors and day- and nighttime for the purpose of fitting a reasonable
Weibull distribution. When subdividing between azimuth sectors Rijkoort encountered a problem. This is
due to the fact that wind speeds can have a variable wind direction and therefore they can not be placed
into one of the twelve azimuth sectors. Furthermore, anemometers have a finite starting speed, so they
often can not register weak wind speeds below approximately 2 m/s and therefore they are not able to
measure the wind direction reliably. In such circumstances though, these wind speeds have to be
distributed over the azimuth sectors like the wind speeds above 2 m/s with a certain wind direction.
Rijkoort applied a method which distributes this class over the azimuth sectors in proportion to the
amount of data in each azimuth sector.

Rijkoort did not describe how to handle wind speeds above 2 m/s with a variable wind direction. During
the reproduction these wind speeds are subdivided by the same method as applied for the wind speed
values below 2 m/s. Because the frequency of occurrence of this class is relative small (station average
0.36%) compared with the frequency of occurrence of the class with wind speeds below 2 m/s (station
average 14.57%) the method of subdividing of this class won’t influence the results in a severe way.

For each azimuth-season sector the wind speed data has been fitted to the Weibull distribution for
daytime hours and to the modified Weibull distribution for nighttime hours. The maximum likelihood
method was used to estimate the parameters ¢, &;; and y; in (3.4) and (3.5). In this, the parameters «;; and
x; are set equal for day- and nighttime hours, so the optimal fit has been obtained by combining the
Weibull distribution for daytime hours and the modified Weibull distribution for nighttime hours.

Before doing this the data is grouped in classes. The widths of these classes are not defined in the report
of Rijkoort but it can be assumed that they each have width one meter per second, except for the lowest
class which width is twice as wide because of the reason explained above. Therefore, the classes are of
the following form:

[0.0,1.9], [2.0,2.9] ,[3.0,3.9], . .. @1

Some attention has to go to the fitted values of y;. This parameter is called the stability parameter and
therefore it indicates the measure of difference between night and day. When there is no difference the
parameter is equal to zero and the distributions for day and night are the same. At inland stations, one can
expect a larger difference between day and night wind speeds than at coastal or sea stations, because of
more stable conditions over sea. This indeed seemed to be the case for example for L.S. Texel, a station
about 30 kilometres off the coast. About 50% of the azimuth-season sectors produced a y~value that was a
little smaller than zero, while the remaining 50% of the azimuth-season sectors produced a j~value that
was a little above zero. That outcome is not surprising, because in cases where a parameter equals zero
and nevertheless is being estimated, a 50% chance exists to get an parameter estimate that is smaller than
zero when this parameter is not bounded theoretically. Therefore, in cases with no difference between
day- and nighttime, it might be wise to set the y~parameter equal to zero.

In his report, Rijkoort did not take notice of this problem. Therefore it is assumed that he did not set any
parameter equal to zero, but that he estimated each parameter. For this reason, each parameter is
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estimated during the reproduction.

However, whether Rijkoort did set a number of y-parameters equal to zero or not, the deviation between
the results following his procedure and the results following the reproduction will not be of great
importance because of the mostly near zero values for the estimates of y.

4.2  Smoothing of the model parameters

Paragraph 3.2 showed which function is used to subject the wind direction to harmonic analysis. This
function is a mixed function of two sine functions with each an amplitude and phase shift which has to be
estimated. Furthermore these sine functions have period lengths which are set equal to 1 and .
In Rijkoort’s report (Rijkoort, 1983), it is not mentioned how this mixed function has been fitted, but it
can be assumed that the method described in Rijkoort (1980) is used where for instance function (3.10) is
rewritten as

a; =a; +bysin30i + b, cos30i + by sin60i + b, cos60i , 4.2)
where

b =a

j1€08d 5,

by =ajsina,
by=aj;;cosa,y,
by =a;sina,,

i=1,..12.

(4.2) can be fitted using the method of multiple least squares after which the estimates of b,, b,, b; and b,
can be used to calculate the estimates of a;,, aj, a3 and aj, in the following way:

by
a,= arctan(b]} 4.3)
by
U o) (4.4)
a, = arctan[b‘lJ 4.5)
i by )’ .
bs
B o)’ (4.6)

This harmonic analysis reduced the number of parameters from 360 to 150 parameters per station.
A further reduction has also been made. Some points of this reduction are discussed below.

The separate seasonal values of the first harmonic parameter of djy and n, are listed in Table 3.4. These
values, however, are not equal to the values that are listed in the report of Rijkoort. The values written
down in his report are equal to the total number of hours in season j divided by the total number of
azimuth sectors (=12), but cumulated over the years that are used. Rijkoort used in his analyses the time
period 1962-1976, so his values are a factor 15 times the values in Table 3.4.

Although Rijkoort listed values that are a factor 15 too high, he probably used the correct values in his
calculations. This because of using the wrong values would result in unrealistic high return levels of the
wind speed, which evidently is not the case is his report.

Another parameter requires some explanation. The RW-model calculates this parameter to reduce the
station noise in the seasonal variation of the stability parameter gj, and is defined as follows:
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. 13(gp
g,o=SZ(’] , @.7)
s

(4.7) stands for the station average value of the ratio between the seasonal mean of the stability parameter
and the annual mean of the stability parameter. After analysis, it turned out that some stations could not
be used for this purpose. L.S. Texel, for instance, has a calculated value for g that is close to zero. This
value blows up the fraction in (4.7), so it's not possible to obtain a realistic value for the parameter. The
only way to get a value that is realistic, is to average over all stations minus the stations with a g-value
close to zero. Rijkoort followed this procedure, what can be deduced from Figure 8 from Rijkoort’s
report, where the line belonging to station L.S. Texel is missing.

A way to deal with these low values of g could be using linear regression to fit the relation between gjo
and g.

In an earlier stage (equation (3.10) to (3.14)) of the reproduction, harmonic analysis was used to reduce
the wind direction dependent parameters. For one parameter (g;o) this analysis has been performed for the
different seasons also:

a .
0y csin(60j+ ;(), (4.8)
a

where

6
a:lZajO and j=1,...,6.
6J.=]

The difference with the earlier harmonic analysis is that the sine structure is unimodal instead of bimodal.
Rijkoort stated that the parameter ¢ in (4.8) can be set to a constant (0.11) because of the little variation in
the separate c-values of the different stations. The values calculated for the stations are in the range of
0.09 up to 0.13, which indeed is rather constant, with the exception of L.S. Texel where ¢ equals 0.19.
Because of this and because of the earlier demonstrated special behaviour of station L.S. Texel, it can be
argued whether offshore stations have to be treated the same as coastal and inland stations. In this stage
however, during the reproduction the specified constant is used for each station, also for station L.S.
Texel.

The parameters d* and »n* (see Table B.1 in Appendix B) are calculated by projection on a regression
line. These parameters represent the seasonal mean of the normalised amplitudes of the first harmonic of
respectively o, and vj,. It is assumed that Rijkoort used normal projection, though this is not mentioned
explicitly in his report.

The table with seasonal dependent parameter values in Rijkoort’s report (Table 2 on page 19) contains
three errors (probably typing errors). The corrected values of this table (and those of the other tables) are
copied into Table B.2 in Appendix B).

The first error concerns the parameter D;,. The original value of this parameter is 0.10, while it should be
the value —0.10. This conclusion is based on two reasons:

First of all an almost perfect correlation exists between the parameter D;; calculated by Rijkoort and
calculated by the reproduction, except for D;;. When changing this value into —0.10 the correlation
coefficient (R?) increases from 0.7262 to 0.9981.

Furthermore, in Figure 6.4 from Rijkoort’s report can be seen that almost all different station values of
d,;)/d,; (top of the figure) lie beneath the annual mean, what should have been resulted in a negative value
for Dy;.
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The remaining two errors concerns the parameters ny, and ny, . The original values of these parameters
are respectively 232° and 255°, while it’s almost for sure that these values have to be replaced by 132° and
235°,

This is based on Figure 6.5 from Rijkoort’s report which shows clearly that the different station values of
the March/April component of 7, (second figure from above) lie around 132° instead of 232° and those of
the November/December component of #;, around 235° instead of 255°. In this case, when the values are
changed into 132° and 235° the correlation coefficient R* between the values of np calculated by Rijkoort
and calculated by the reproduction increases from 0.4702 to 0.9993.

4.3  Determination of persistence correction factors

Like described in Paragraph 3.4, the parameter ¢ is determined with the help of the observed annual wind
speed maxima. These values are plotted on Gumbel graph paper after which the observations are
interpolated to obtain probabilities for integer values.

During the reproduction, this interpolation was firstly done using the method of linear least-squares
regression. This method corresponds with fitting the values to a Gumbel distribution. Doing this however,
the variation in the observations is reduced at this stage, while this has to be done at a stage somewhat
further following the RW-model.

For this reason it’s more likely that Rijkoort interpolated linearly between two successive points instead
of using linear regression. In this way, the variation in the observation can be maintained at this stage.

After calculating the g-values and with the help of the parameter estimates calculated before, return
periods can be calculated for each station.

Rijkoort noticed a slightly worse fit for some of the stations (Eelde, Deelen and Leeuwarden). For this
reason he adjusted the k-values for these stations. However, he did not mention in what manner these
adjustments took place so it was not possible during the reproduction to adjust these values in the same
way. Therefore, the k-values in Table A.1 and Table B.1 are the original, not adjusted values to keep the
comparison between the calculations of Rijkoort and the reproduction objective.

4.4  Comparison between results calculated by Rijkoort and resulting from the reproduction

Because of the points made in this chapter the results of Rijkoort do not need to correspond exactly with
the outcomes resulting from the reproduction. Indeed this was not the case. Relatively small differences in
the parameters resulted in severe differences for the return levels of wind speed at certain stations.

The deviations between the station dependent parameters are graphically listed in Figure C.1 of Appendix
C. Clearly can be seen in this figure that the correlation in the parameters , ¢ and n’ is quite bad. The
correlation in the parameters «, y and g on the contrary is quite good.

Parameter k£ is the most important parameter of the (modified) Weibull distribution. This parameter
handles the shape of the distribution and therefore it is mainly responsible for the width of the tail. The
way to obtain an estimate for parameter k is to calculate the mean of the separate smoothed
season/azimuth maximum likelihood estimates of x (x;;). Because no serious problems arose by doing so,
it’s not clear how the deviations could become as severe as they are now.

The parameters ¢ and " don’t have much influence in the outcomes of the RW-model, so deviations in
the estimates of these parameters can’t do much harm. Something can be said though about one station of
which the estimates deviate more than those of the other stations. In the lower two plots of Figure C.1 (the
ones about ¢ and »") can be seen that one point (right at the top) shows abnormal behaviour. This point
corresponds with station Beek which is the most inland station Rijkoort used in his analysis. Both from
the results from Rijkoort and the results from the reproduction can be concluded that the d* and »n* value
of this station is rather high. This implies that some azimuth-season sectors at this station obtain relatively
few observations (and other azimuth-season sectors relatively many) compared with other stations. After
smoothing, even negative frequencies were calculated for some of the 72 (=12-6) azimuth-season sectors
(respectively 8 and 7 for day and night) which evidently is not realistic. To avoid negative frequencies,
Rijkoort probably lowered the d" and »" values such that negative values didn’t occur anymore. These
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levels occurred at values of 0.52 for both &" and »": When the values are set on 0.53 one azimuth-season
sector gives a negative frequency, but when the values are set on 0.52 the frequency becomes slightly
positive. The reproduction of the RW-model does not lower the & and »" values but replaces negative
values by 1, because Rijkoort did not describe the procedure to lower d and »'. This explains the
deviation between the results from Rijkoort and the results from the reproduction in the case of station
Beek.

Next, the estimated seasonal dependent parameters are compared. Graphically, these deviations are listed
in Figure C.2 of Appendix C. Two parameters (dj and #;) are not included in this figure, because they
(like mentioned earlier) are constants and don’t have to be estimated. Consequently, no deviations exist
between dj, and »;, calculated by Rijkoort and resulting from the reproduction.

Most of the other season dependent parameters show a good (gj, , Dj1, da > Nj1, 1) or reasonable (a;1, ap,
ko', g1, ds, dy’, my) correlation, but quite bad correlations exist in the case of the parameters a3, au, k1,
ki and gp. Again, it’s not obvious what the causes are of the relative large deviations between the
parameters calculated by Rijkoort and resulting from the reproduction.

The deviations in the persistence/tail correction are shown in Figure C.3 of Appendix C. Again, these
deviations are quite large. This is not strange, because the values of the persistence/tail parameters are
partly based upon the values of the station and season dependent parameters. So, certain deviations in
these parameters will result in deviations in the persistence/tail correction parameters too.

Return levels of wind speed can be calculated using the station dependent parameters, the season
dependent parameters and the persistence/tail correction parameters. Deviations in these parameters will
therefore result in deviations in the return levels. This can be seen in Figure C.4, where the return levels
calculated by Rijkoort and resulting from the reproduction are set out against each other. Apparently, the
deviations are relatively small in the case of short return periods (2, 5 and 10 years), but they are
extremely large for some stations in the case of longer return periods (500 or 1000 year). For example, for
station Deelen the reproduction gives a return level of 51.4 m/s for a return period of 1000 years, while
Rijkoort calculates a return level of 38.0 m/s. Both values are not realistic (especially the value of 51.4
m/s). The question is of course how these return levels became so high, which will be discussed in
Paragraph 5.1. This paragraph evaluates model weaknesses at different steps in the model.

An explanation for the severe deviations in the return levels of wind speeds for high return periods can be
the separate deviations in the three parameter tables (Table B.1, B.2 and B.3 in comparison with Table
A.1, A2 and A.3). Together, these deviations have an cumulative and strengthening effect on the return
levels. That is why it is sensible to look at the model with at certain points different choices compared
with the original RW-model, which makes it possible to isolate certain effects of parameter estimates.
This and more properties of the RW-model will be evaluated in the following chapter.
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5 Evaluation of the Rijkoort-Weibull model

The results of the reproduction of the RW-model (Table B.1, B.2, B.3 and B.4 in Appendix B) can be
used to examine the quality of the model. The reproduction of the RW-model produces intermediate
results what makes it possible to examine step by step what effects certain decisions have on the results.
In Paragraph 5.1 each of these steps will be discussed. Paragraph 5.2 evaluates the persistence corrections
used between neighbouring azimuth sectors and subsequent seasons and the consequences of class
definition of wind direction and season will be examined in Paragraph 5.3. Finally, the effect of the length
and quality of time series on the results of the RW-model will be discussed in Paragraph 5.4.

5.1 The Rijkoort-Weibull model step by step

The RW-model can be split up into two rough parts: The first part concerns the estimation of the azimuth-
season (modified) Weibull parameters while the second part concerns the determination of the persistence
correction between successive wind speed values (where this persistence factor turned out to function as a
tail correction also). Return levels of wind speed can be estimated without the second part (so without
application of the persistence/tail correction), which makes it possible to concentrate on the effects of
parameter estimation. The mutual azimuthal and seasonal persistence correction factors (like used in
(3.36), (3.37) and (3.38)) will be applied in both cases (without and with the persistence/tail correction)
though.

The parameter estimation itself can be split up into a number of parts also. First, each azimuth-season
sector is fitted to the modified Weibull distribution, which results in a number of individual Weibull
parameters. Next, the individual Weibull parameters are subjected to harmonic analysis, which results in a
number of harmonic Weibull parameters. Finally, the harmonic parameters are subjected to further
smoothing, which results in a number of smoothed Weibull parameters.

Each step of the parameter estimation can be ran with or without the persistence/tail correction to produce
return levels of wind speed, which makes it possible to analyse the effect of each of these extensions of
the RW-model.

The persistence/tail correction itself can also be split up into two parts: the first without averaging over
the several stations (station dependent persistence/tail correction), the second with averaging over the
several stations (station independent persistence/tail correction). The effect of this difference will be
analysed as well.

An overview of the separate steps with corresponding model names is given in Table 5.1. In this
paragraph will be referred to the names in this table.

persistence/tail correction
parameters no persistence/tail station dependent station independent
correction persistence/tail correction | persistence/tail correction
individual Weibull model A model B model C
parameters
ey UYElul model D model E model F
parameters
smoothed Weibull model G model H RW-model
parameters

Table 5.1: Listing of several steps in the RW-model.

5.1.1 Individual Weibull parameters without persistence/tail correction
The most simple model with minimal extensions is the model which makes use of individual (modified)

Weibull parameters without implementation of the persistence/tail correction (model A). The resulting
return levels of wind speed of this model are listed in Table 5.2.
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Station Return period in years

10 20 50 100 200 500 1000 2000 5000 10000
L.S. Texel 28.1 292 306 317 327 34. 35.1  36.1 375 385
Schiphol 255 267 28.1 292 302 315 325 | 335 347 356
De Bilt 19.5 203 214 221 22.8 238 244 251 260 @ 26.6

Soesterberg 216 226 239 249 258 270 279 288 30.0 308
Leeuwarden 222 231 24.3 25.1 260 27.1 279 287 298 306

Deelen 24.4 25.6 27.0 28.1 29.2 30.6 31.6 32.7 34.0 35.0
Eelde 21.6 22.7 24.0 25.0 259 272 28.1 29.0 30.2 31.0
Vlissingen 23.4 24.4 25.7 26.7 27.6 28.8 29.7 30.6 31.7 32.6
Zestienhoven 239 24.9 26.1 26.9 27.8 28.9 29.7 30.4 31.5 32.2
Gilze-Rijen 21.3 223 235 244 253 26.4 273 28.1 29.1 30.0
Eindhoven 21.7 22.7 239 24.8 25.6 26.7 27.6 284 294 30.2
Beek 20.4 213 22.4 23.1 239 24.9 25.6 26.3 272 27.8

Table 5.2: Return levels in m/s (model A).

At first the results seem reasonably realistic, so a closer look at the results is necessary to obtain a better
idea of the quality of the model. A method to validate the outcomes is to compare the return levels with
measured wind speeds. The observed annual maximum values of hourly mean wind speeds can be plotted
at Gumbel graph paper using the plotting position formula of Benard and Bos-Levenbach (1953),
described in Paragraph 3.4. The values in Table 5.2 can also be plotted in this figure. The deviations
between the annual maxima and the model output can be interpreted as a measure of quality of the model.
An example of this presentation is Figure 5.1. A complete list of this presentation for all models and all
stations is placed into Appendix D.
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Figure 5.1: Comparison between model A and annual maxima for station Beek.

Figure 5.1 shows clearly the relative high levels of wind speeds for low return periods following model A.
This deviation seems to disappear for higher return periods. A similar pattern occurs in the case of the
other stations (Figure D.1 in Appendix D), but this is not surprising because there is no correction for the
persistence in the time series. Each exceedance of a certain wind speed level is now considered as one
event while a number of exceedances within a storm has to be seen as one event (Paragraph 3.3). Because
the persistence will decrease gradually at higher wind speed levels, especially for relative low levels of
wind speed model A will produce return periods that are too short.

—20—



Analysis of the Rijkoort-Weibull model A. Smits

5.1.2  Individual Weibull parameters with station dependent persistence/tail correction

In this model (model B) a list of persistence/tail parameters like Table A.3 in Appendix A and Table B.3
in Appendix B has been determined for each station, so without averaging these values over the several
stations (like done in the RW-model).

The results from this model are listed in Table 5.3.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 277 293 315 @ 331 348 372 390 408 432 449
Schiphol 252 267 287 302 317 337 352 | 366 385 399
De Bilt 210 223 240 252 264 279 290 @ 30.1 31.5 326
Soesterberg 22.1 237 259 275 290 @ 31.1 326  34.1 36.1 37.7
Leeuwarden 244 260 279 294 308 327 340 354 372 385
Deelen 248 265 287 303 31.8 339 354 370 390 405
Eelde 229 247 270 287 303 325 @ 341 356 377 392
Vlissingen 232 246 265 279 292  31.1 324 338 355 368
Zestienhoven 240 256 275 289 302 319 332 | 344 359 370
Gilze-Rijen 225 240 259 274 288 307 322 337 356 37.1
Eindhoven 225 239 258 272 287 306 @ 32.1 336 357 372
Beek 20.8  22.1 237 249 260 275 285 295 309 319

Table 5.3: Return levels in m/s (model B).

To evaluate the values in Table 5.3, again the results are presented graphically like in Subparagraph 5.1.1
(Figure D.2 in Appendix D). The example below for station Beek (Figure 5.2) demonstrates the effect of
the persistence/tail correction.

Beek
30 1
Model B //
®  Annual maxima
26
o 7
é 22
=) (]
3 | .
& Ned
o] yd
= /"
14
[ ]
10

4

1.1-10°  2-10° 510" 10" 2:10' 510" 10° 2-10° 5-10° 10° 2:10° 5-10° 10
Return period (years)

Figure 5.2: Comparison between model B and annual maxima for station Beek.

The return periods seem no longer to be too short for relative low return levels. This effect appears also
for the several other stations (Figure D.2 in Appendix D). But when Figure D.2 is compared to Figure D.1
more can be noticed. Like stated earlier, the persistence correction also seems to function as a tail
correction. All stations show the same effect of higher return levels of wind speed in the tail of the
distribution (at high return periods).

The return level corresponding with a return period of 10,000 years increases at all stations rather strong
(from 4.1 m/s at station Beek up to 8.2 m/s at station Eelde). This behaviour can be explained by taking a
closer look at the g-factors described in Paragraph 3.4. From all the individual azimuth-season g-factors
that could be calculated (12 stations - 12 wind direction - 6 seasons = 864) 47.2% of them were smaller
than 1 at the highest azimuth-season wind speed at each station. Because the g-factor is defined in a way
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that the factor will decrease at higher wind speeds the percentage of them lower than 1 will increase at
higher wind speeds. At the level of wind speed corresponding with a return period of 10,000 year the
percentage is increased to 79.3. This percentage is rather constant for all stations considered.

Based on this it’s not surprising that the return levels resulting from model B are rather high for all
stations in comparison with the outcomes of model A.

5.1.3 Individual Weibull parameters with station independent persistence/tail correction

Model B can be extended to the model where the persistence/tail correction parameters are averaged over
the stations (like done in the RW-model). The results from this model (model C) are listed in Table 5.4.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 29.3 312 338 358 37.8 405 424 442 467 484
Schiphol 258 275 29.6 312 327 347 362 376 394 408
De Bilt 202  21.6 232 244 256 @ 27.1 282 292 306 @ 31.6
Soesterberg 28.0 32.0 39.3 52.6 * * * * * *
Leeuwarden 23.8 255 28.0 30.0 321 35.1 374 397 427 450
Deelen 29.0 315 35.0 378  40.8 @ 45.1 48.6 = 52.5 * *
Eelde 23.0 249 272 290 307 33.0 347 364 385 @ 40.1
Vlissingen 235  25.1 274 29.1 309 332 349 @ 365 38.6  40.1
Zestienhoven 25.1 26.5 284 297  31.0 327 339 351 36.7 378
Gilze-Rijen 22.8 245 26.7 283 299 319 334 348 367 38.1
Eindhoven 234 25.1 274 29.1 30.8  33.1 349 366 390 408
Beek 213 228 248 262 276 294 306 319 335 346

Table 5.4: Return levels in m/s (model C).

It’s evident that the values in Table 5.4 are generally higher than the values in Table 5.2 and Table 5.3.
The return levels for the stations Deelen and Soesterberg are even that high at certain return periods that it
was not possible to calculate these values in a proper way. These values have been noted with a star (*).
With the help of Figure D.3 in Appendix D it becomes clear that also the return levels of the stations L.S.
Texel (Figure 5.3) and Leeuwarden have become much higher. Only the calculated 10,000 year return
levels for the stations De Bilt and Gilze-Rijen are lower in comparison with model B.

The return levels concerning Soesterberg and Deelen will be discussed later in this chapter, for now we
will concentrate on the return levels of wind speed calculated for station L.S. Texel. For this station,
observed annual maxima are compared with model values in Figure 5.3.
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Figure 5.3: Comparison between model C and annual maxima for station L.S. Texel.
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The return levels listed are based on the several (12:6=72) individual azimuth-season sectors (see (3.38)).
These sectors are combined in a way that the resulting return levels are mostly higher than the maximum
return levels of each individual azimuth-season sector (“mostly” because of the constant factors used for
correcting dependency between neighbouring azimuth sectors and subsequent seasons). So when one
certain azimuth-season sector produces unrealistic high return levels, the final return level will probably
be unrealistically high as well. It’s therefore sensible to look at separate return levels for the 72 azimuth-
season sectors. 10,000 year return levels for each azimuth-season sector resulting from model C are listed
in Table 5.5 for L.S. Texel.

. Season
Azimuth 1 ) 3 7 5 6

1 27.6 23.7 18.0 17.3 19.0 30.4
2 26.7 27.5 17.1 18.0 19.8 28.1
3 30.3 28.7 15.1 15.0 18.2 29.5
4 25.7 47.8 14.4 16.7 18.6 23.2
5 19.1 18.4 13.7 22.6 25.4 23.1
6 28.6 25.4 20.5 23.0 26.5 28.5
7 32.1 26.2 24.6 27.0 33.4 30.6
8 33.0 24.7 24.4 23.7 32.0 31.6
9 36.6 31.2 23.4 27.1 30.2 32.4
10 42.3 31.9 26.4 28.7 34.1 38.3
11 40.5 33.0 26.4 27.8 34.2 34.5
12 29.4 25.9 19.3 21.8 34.2 32.3

Table 5.5: 10,000 year return levels for L.S. Texel following model C.

As can be seen from Table 5.5, only one of the azimuth-season sectors produces an unrealistic return level
of wind speed. This concerns sector (4,2) (the first number represents the azimuth, the second number
represents the season). Azimuth 4 (between east and south) in combination with season 2 (March/April) is
not a sector with a high frequency of strong winds, so a resulting 10,000 year return level of 47.8 is very
surprising. If we look at the list of x~values, we notice that this azimuth-season sector produces the lowest
Weibull x-value (1.90) as can be seen in Table 5.6.

. Season
Azimuth 1 ) 3 7 5 6

1 2.24 2.36 2.84 2.80 2.70 2.19
2 2.48 2.37 2.84 2.75 2.61 2.30
3 2.33 2.25 3.02 3.01 2.71 2.34
4 2.57 1.90 2.84 2.71 2.71 2.68
5 2.95 2.65 2.78 2.36 2.23 2.61
6 2.35 2.22 2.44 2.38 2.30 2.48
7 2.32 2.35 2.40 2.36 2.07 2.58
8 2.19 2.49 2.36 2.49 2.26 2.49
9 2.18 2.29 2.37 2.35 2.33 2.55

10 2.02 2.31 2.30 2.33 2.12 2.32

11 2.08 2.31 2.33 2.43 2.14 2.39

12 2.29 2.44 2.65 2.52 2.12 2.58

Table 5.6: Individual Weibull x~parameter following model A, B and C.

Partly this is not surprising because the value of x determines the length of the tail. Normally, when this
x-value is low the tail of the distribution is long which results in relative high return levels and when this
x-value is high the tail of the distribution is short which results in relative low return levels. Figure 5.4
shows clearly the difference in wind speed distribution between azimuth-season sectors with low x-values
and azimuth-season sectors with relative high x-values.
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L.S.Texel - azimuth 4, season 2 L.S.Texel - azimuth 5, season 1

Frequency (%)
Frequency (%)
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Figure 5.4: Histograms of Texel. The left histogram corresponds with azimuth-season sector (4,2) with a
low x-value (1.90). The right histogram corresponds with azimuth-season sector (5,1) with a x~value that
is relatively high (2.95).

However, this correlation between the value of x and the values of the return values can’t explain the
extreme value for sector (4,2) in a direct way. Therefore it’s possible that this low x=value is indirectly
responsible for the unrealistic high return value. What we do know at this point, is that the station
independent persistence/tail correction plays an important role in it, because after applying the station
dependent persistence/tail correction (model B) no azimuth-season sectors produced unrealistic return
levels of wind speed (azimuth-season sector (4,2) produces a 10,000 year return level of 31.2 m/s
following model B).

For a better understanding why the impact of the station independent persistence/tail correction is so
strong, it’s necessary to take a better look at its definition. This persistence/tail correction consists of three
parts:

e The first part of the correction determines the relation between the annual extremes and the model
without persistence/tail correction factor (in this case model A) per azimuth-season sector:

1
Gy )™ = Hy(uy), or qy(u) =

InG;(u;) (3.34)
InH,(u;) )

e The second part of the persistence/tail correction draws a smoothed curve through these g;(u,)-lines by

least squares regression:
2

u
m%@ﬂ=@(é)+%, (3.35)
if

where Bj; corresponds with the persistence parameter and 4, with the tail parameter.

(3.35) tries to bring the separate g;(u;)-lines for each station to the same level by dividing by the
location parameter (o) of the (modified) Weibull distributions. The purpose of this division by the
location parameter (¢;) of the (modified) Weibull distribution is to make it possible to average over
the separate station values of A; and B;, what should reduce the noise produced by the several
stations.

e The final part is the averaging over the separate station values of 4;; and B;; for the reasons described
above. If this averaging is not applied the resulting model equals model B, so the difference between
model B and model C is the averaging over the station values of 4, and B;,.

To do the final part of the the persistence/tail correction properly, Rijkoort divided in the second part the
wind speed values by the location parameter (¢;) of the (modified) Weibull distribution. Without this
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division, the separate station values of 4;; and B; are not comparable, because stations off shore (with in
general high wind speeds) produce g-factors that converge at a higher level of wind speed than inland
stations where the wind speed is less strong generally. So, when no division is applied into the second
part of the definition one can expect to get structural differences between the separate station values of 4
and Bj;.

Rijkoort “solved” this problem by introducing the division by the location parameter («;) of the
(modified) Weibull distribution. However, after doing this the problem has not been solved in a proper
way. For low return periods the division by ¢;; may be sufficient but for higher return periods the impact
of the k-value of the (modified) Weibull distribution becomes stronger and stronger. Figure 5.5, where
10,000 return levels are presented as a function of & en x; makes the above more clear.
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Figure 5.5: Scatterplots of « (left) and x (right) against corresponding 10,000 year return levels for each
azimuth-season sector for station L.S. Texel resulting from model A The dashed lines represent the
regression lines.

Figure 5.5 shows that besides the a;-parameters also the x;-parameters seem to play an important role in
determining 10,000 year return levels following model A. This is not surprising, but the figure can be
misleading though. If the aj-parameters and the x;-parameters are strongly correlated, the additional
explanation power on the 10,000 year return levels of the xj-parameters will be less than could be
interpreted from the right part of Figure 5.5. The correlation between these two parameters in the case of
station L.S. Texel is not very strong though (R* = 0.21), so the level of the K;-parameters indeed plays an
important role in determining the 10,000 year return levels following model A.

The above explains that structural deviations between the separate station values of 4, and B; won’t
disappear after dividing by the location parameters ;. As a result of this azimuth-season sectors with a
relative low x-value in comparison with it’s a~value will produce return levels that are too high and
azimuth-season sectors with a relative high x~value in comparison with it’s a-value will produce return
levels that are too low.

An overview of what this means for azimuth-season sector (4,2) at station L.S. Texel is listed in Table
5.7.

model A model B model C
A 0.000 -0.247 -0.555
By 0.00 3.39 2.95
Qs 7.655 7.655 7.655
q12(30.4) 1.0000 0.6033 0.0031
T1,(30.4) 10000 6033 31

Table 5.7: Example of impact of station averaging of persistence/tail correction on return level.

Table 5.7 makes clear that the change in values of A4, and By, in model C in comparison with model B
has far-reaching consequences. If we calculate the 10,000 year return level following model C, the return
level increases a lot, because the corresponding g-value will be even less than 0.0031.
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5.1.4 Harmonic Weibull parameters without persistence/tail correction

We return to the model without persistence/tail correction (model A) but subject the azimuth dependent
Weibull parameters to harmonic analysis (model D). By this, the individual Weibull parameters change to

harmonic Weibull parameters. The results of this model are listed in Table 5.8.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 280 29.0 303 313 322 334 343 352 364 373
Schiphol 257 268 282 292 302 315 324 333 344 353
De Bilt 19.8 206 217 225 233 242 250 257 266 272
Soesterberg 223 234 249 259 270 283 29.3 302 315 324
Leeuwarden 228 239 251 26.1 27.0 282  29.1 299 | 31.1 31.9
Deelen 250 262 277 288 298 312 322 332 345 @ 355
Eelde 21.8 228 241 250 259 271 279 288 298 306
Vlissingen 23.0 239 251 259 268 278 286 294 304 31.1
Zestienhoven 24.1 25.1 264 273 282 293 30.1 309 320 3238
Gilze-Rijen 224 234 247 256 265 277 286 294 305 @ 313
Eindhoven 226 237 249 259 268 279 288 296 307 315
Beek 206 216 227 236 244 254 262 270 280 287

Table 5.8: Return levels in m/s (model D).

The results have been set out graphically in Figure D.4 in Appendix D. As example, in Figure 5.6 again
the results for station Beek are compared to observed annual maxima.

Figure 5.6: Comparison between model D and annual maxima for station Beek.
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As can be seen in Figure D.4 in Appendix D and Figure 5.6 the results are very similar to those resulting
from model A. The harmonic analysis has been performed to reduce the noise produced by the wind
directions. However, this reduction doesn’t seem to improve the results. This can be explained by the fact
that each Weibull parameter has been corrected independently from the other parameters. This
disadvantage could neutralise the advantage of reducing the noise between the wind directions.

5.1.5 Harmonic Weibull parameters with station dependent persistence/tail correction

Model D has been extended with the station dependent persistence/tail correction (model E). The results
of this model are listed in Table 5.9 and in Figure D.5 in Appendix D. For station Beek the comparison to
observed annual maxima is presented in Figure 5.7.
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Based on Figure 5.7 and Figure D.5 in Appendix D it becomes clear that even after applying the station
dependent persistence/tail correction the changes in return levels compared with the model with
individual Weibull parameters (model B) are rather small. So, at this stage of the RW-model, harmonic
analysis of the wind direction doesn’t seem to improve the results.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000
L.S. Texel 27.7 29.3 31.3 32.9 34.5 36.5 38.0 39.5 41.4 42.8
Schiphol 25.2 26.7 28.7 30.2 31.7 33.6 35.0 36.3 38.1 39.4
De Bilt 20.9 22.3 24.0 252 26.4 27.9 29.1 30.2 31.6 32.7
Soesterberg 22.1 23.7 25.9 27.5 29.1 31.2 32.7 342 36.3 37.8
Leeuwarden 243 26.0 28.0 29.5 30.9 32.8 34.2 35.6 37.3 38.6
Deelen 24.8 26.5 28.7 30.3 31.9 34.0 35.6 372 39.3 40.8
Eelde 23.0 24.8 27.1 28.8 30.5 32.7 34.3 35.8 37.8 39.3
Vlissingen 23.2 24.7 26.5 27.9 29.2 31.0 32.3 33.6 35.3 36.5
Zestienhoven 24.0 25.5 27.4 28.8 30.1 31.7 32.9 34.1 35.6 36.7
Gilze-Rijen 22.4 23.9 25.8 27.2 28.6 30.3 31.7 33.0 34.7 35.9
Eindhoven 22.4 23.8 25.6 27.0 28.3 30.0 31.2 32.5 34.1 35.3
Beek 20.9 22.2 23.9 25.1 26.3 27.8 28.9 30.1 31.5 32.6
Table 5.9: Return levels in m/s (model E).
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Figure 5.7: Comparison between model E and annual maxima for station Beek.
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5.1.6

Harmonic Weibull parameters with station independent persistence/tail correction

In this subparagraph the station dependent persistence/tail corrections (model E) have been replaced by
the station independent persistence/tail corrections (model F). The results of this model are given in Table
5.10 and Figure D.6 in Appendix D.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 284 299 318 332 346 364 378 39.1 40.8  42.0
Schiphol 252 267 286 299 313 329  34.1 353 36.8 379
De Bilt 202 214 230 242 253 268 278 289 302 312
Soesterberg 263 29.1 328 357 388 @ 43.1 46.8  51.0 * *
Leeuwarden 234 249 270 285 300 319 333 347 366 379
Deelen 284 305 333 354 375 404 426 448 477 4938
Eelde 227 244 266 282 297 317 331 34.5 36.3 37.7
Vlissingen 224 237 254 | 267 279 295 306 318 333 345
Zestienhoven 247 260 278 290 302 31.7 328 | 339 353 36.4
Gilze-Rijen 22.5 241 262 278 293 313 327 342 360 374
Eindhoven 23.1 247 267 282 298 317 332 346 364 378
Beek 206 220 238 252 @ 265 283 29.6 309 326 339

Table 5.10: Return levels in m/s (model F).

As with model C here an example is given for station L.S. Texel (Figure 5.8).
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Figure 5.8: Comparison between model F and annual maxima for station L.S. Texel.

When we compare Figure 5.8 with Figure 5.3 it becomes clear that model F produces better results than
model C in the case of station L.S. Texel. This can be explained as follows:
As discussed in Subparagraph 5.1.3, model C performs very badly as a consequence of the occurrence of
some relatively low k-values. For station L.S. Texel this concerned sector (4,2) with a k-value of 1.90. But
as can be seen in Table 5.6 this value is an outlier compared with the values of the other wind directions
in season 2. As show in Table 5.11 and Figure 5.9, with the help of harmonic analysis this value could be

smoothed.
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. Season
Azimuth 1 > 3 1 5 6

1 2.28 2.40 2.78 2.75 2.49 2.30
2 2.37 2.30 2.94 291 2.73 2.31
3 2.49 2.20 2.98 2.88 2.77 241
4 2.61 2.19 2.87 2.68 2.59 2.54
5 2.65 2.27 2.69 2.46 2.33 2.61
6 2.56 2.39 2.52 2.35 2.18 2.60
7 2.36 2.43 2.40 2.37 2.18 2.53
8 2.15 2.38 2.34 2.42 2.25 2.47
9 2.03 2.31 2.32 241 2.25 2.46

10 2.04 2.30 2.33 2.36 2.17 2.46

11 2.12 2.35 2.41 2.38 2.12 2.44

12 2.20 2.41 2.58 2.52 2.24 2.37

Table 5.11: Harmonic Weibull x-parameter following model D, E and F.
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Figure 5.9: Comparison between individual (model A, B and C) and harmonic (model D, E and F)
parameters for station L.S. Texel in season 2 (March/April) .

But if we take a close look at Figure D.6 in Appendix D we see that the results of Soesterberg and Deelen
are still unsatisfactory. Apparently the harmonic analysis doesn’t smooth the low k-values for these
stations. If we look at the seasons that are responsible for the unrealistic high return levels (season 1 for
both stations) then we see that there are no wind directions that are outliers, but that for these station the
low k-values are structural for several azimuth sectors (Figure 5.10).
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Figure 5.10: Comparison between individual (model A, B and C) and harmonic (model D, E and F)
parameters for the stations Soesterberg (left) and Deelen (right) in season 1 (January/February).
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The reason for this structural behaviour of low k-values is the presence of too many zero values of wind
speed for these stations as a consequence of the finite starting speed of anemometers at some stations,
especially in the past. As a result of this the hourly mean values of wind speed are often too low. If we
look at the percentage of wind speed values between 0 and 1 m/s ([0,1)) for each station (Table 5.12),
then we see that this percentage for the stations Soesterberg and Deelen is rather high.

L.S. Texel 2.7
Schiphol 4.1
De Bilt 6.0
Soesterberg 12.4
Leeuwarden 2.6
Deelen 10.7
Eelde 3.0
Vlissingen 2.5
Zestienhoven 6.4
Gilze-Rijen 6.6
Eindhoven 7.6
Beek 3.2

Table 5.12: Percentages of wind speed between 0 and 1 m/s.

The effect of these percentages on the wind speed histograms is visualised in Figure 5.11, where
Soesterberg and Deelen are compared to Beek.
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Figure 5.11: Histograms of stations with a relative high frequency of low wind speeds (left above and
right above) and a histogram of a station with a normal frequency of low wind speeds (bottom).

A relative high frequency of low wind speeds results in low x=values of the Weibull distribution. Because
a low x-value implies a heavy tail this seems a bit strange. How can too many low values result in a tail
that is too heavy? The answer to this question is the increasing standard deviation of the distribution. The
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mean distance to the mean of the distribution will increase and with this the standard deviation. As a
result the x-value will decrease and the tail-width will increase.

If this behaviour is structural, the harmonic analysis will not correct for it and the model will produce
unrealistic return levels of wind speed. This is the case for the stations Soesterberg and Deelen.

The conclusion of this is again that relative low x-values in combination with the station independent
persistence/tail correction will result in unrealistic return levels of wind speed.

5.1.7 Smoothed Weibull parameters without persistence/tail correction

The harmonic analysis of the parameters of the Weibull distribution (model F) can be subjected to further
smoothing. Without applying the persistence/tail correction (model G) this will result in the return levels
of wind speed listed in Table 5.13.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 289 300 314 325 335 347 357 366 377 386
Schiphol 235 244 257 266 274 285 29.3 30.1 31.1 31.9
De Bilt 202 21.1 222 230 238 248 255 262 271 27.8
Soesterberg 21.8 228 241 250 259 271 279 288 299 307
Leeuwarden 224 233 244 252 | 260 270 278 285 294  30.1
Deelen 253 265 28.0  29.1 302 316 326 337 350 359
Eelde 205 213 224 232 | 239 249 256 262 271 27.8
Vlissingen 227 236 248 256 264 274 282 289 299 @ 306
Zestienhoven 244 255 268 278 287 299 308 317 328 336
Gilze-Rijen 212 221 232 240 248 258 265 272 282 288
Eindhoven 220 229 241 250 258 269 277 285 295 303
Beek 18.8 196 205 212 218 227 233 239 | 247 @ 253

Table 5.13: Return levels in m/s (model G).

Comparison with observed annual maxima has been performed again which can be found in Figure D.7 in
Appendix D. One station from this figure has been picked out in Figure 5.12.
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Figure 5.12: Comparison between model G and annual maxima for station Beek.

The return levels for station Beek are significantly smaller following model G than following model A or
D which are both without persistence/tail correction. A possible reason for this can be the problem
encountered in Paragraph 4.4. In this paragraph was shown that Rijkoort probably lowered the d" and »"
parameter values for station Beek such that negative frequencies didn’t occur anymore.
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The other stations show no strongly deviations with model A or D.

5.1.8 Smoothed Weibull parameters with station dependent persistence/tail correction

Model G can be extended with the station dependent persistence/tail correction (model H). The results of
this model are listed in Table 5.14.

Station Return period in years
10 20 50 100 200 500 1000 2000 5000 10000

L.S. Texel 28.1 298 31.8 334 349 368 383 39.7 415 4238
Schiphol 249 264 283 298 312 33.0 344 357 374 @ 387
De Bilt 21.0 223 240 252 265 280 292 303 31.8 330
Soesterberg 219 235 255 269 284 302 @ 316 330 347 36.0
Leeuwarden 240 254 272 285 297 313 324 335 349 359
Deelen 247 265 28.7 304 320 342 358 374 396 412
Eelde 22,6 241 26.1 275 289 306 @ 319 332 347 359
Vlissingen 232 246 265 278 @ 29.1 30.8  32.0 332 347 358
Zestienhoven 240 255 274 288 @ 30.1 319 332 | 345 36.1 373
Gilze-Rijen 22.1 234 251 26.3 275  29.1 302 314 328 339
Eindhoven 224 238 256 269 282 299 @ 31.1 324 340 352
Beek 205 217 232 242 | 252 @ 265 275 284 295 304

Table 5.14: Return levels in m/s (model H).

Again, Figure D.8 in Appendix D compares the model results with annual maxima. For station Beek this
yields Figure 5.13.
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Figure 5.13: Comparison between model H and annual maxima for station Beek.

The results for the several stations following model H show no severe deviations compared with model E,
so there’s no indication that smoothing the parameters improves the model substantially.

5.1.9  The Rijkoort-Weibull model

Model H can be extended to the model where the persistence/tail correction parameters are averaged over

the stations. This model equals the final RW-model. The outcomes of this model are listed in Table 5.15
which are equal to those listed in Table B.4 in Appendix B.
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Station Return period in years

10 20 50 100 200 500 1000 2000 5000 10000
L.S. Texel 287 303 323 337 @ 351 36.8 381 394 409 @ 42.1
Schiphol 234 248 266 279 @ 29.1 307 319 330 345 355
De Bilt 207 220 238 250 263 279 290 @ 302 317 327

Soesterberg 247 266  29.1 31.0 329 354 372 390 414 @ 43.0
Leeuwarden 21.8 230 246 257 @ 267 @ 28.1 29.1 30.1 313 322

Deelen 31.2 342 38.3 41.5 44.8 49.4 514 54.5 55.9 57.5
Eelde 20.2 214 229 24.0 25.0 26.4 274 284 29.6 30.5
Vlissingen 22.6 23.9 25.6 26.8 28.0 29.5 30.6 31.7 33.1 34.1
Zestienhoven 254 27.1 29.2 30.8 323 34.2 35.7 37.1 38.9 40.2
Gilze-Rijen 21.2 225 24.1 253 26.5 28.0 29.1 30.1 31.5 32.5
Eindhoven 227 242 26.1 275 28.8 30.6 31.9 33.1 34.7 359
Beek 18.4 19.5 209 219 22.8 24.0 249 25.8 26.9 27.7

Table 5.15: Return levels in m/s (RW-model).

The results of the RW-model have been set out graphically in Figure D.9 in Appendix D. For station
Deelen and Soesterberg this yields Figure 5.14.
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Figure 5.14: Comparison between the RW-model and annual maxima for station Deelen and Soesterberg.

Figure 5.14 together with Figure D.9 in Appendix D shows that also the further smoothing of the Weibull
parameters does not correct the low k-values satisfactorily; the results for Soesterberg have been
improved, but the results for Deelen have become even worse compared with the results from model F
where the harmonic parameters were used in combination with the station independent persistence/tail
correction.

5.2 Persistence corrections between neighbouring azimuth sectors and subsequent seasons

Paragraph 3.4 describes that constant factors were used for the mutual dependency between azimuth
sectors and between subsequent seasons. Furthermore, the persistence factor for the dependency between
hourly mean values of wind speed was determined as a declining function of the wind speed level. The
idea was that the persistence would converge to 1 (no persistence) for high wind speeds. The same you
would expect for the dependency between azimuth sectors and seasons, so it’s a bit strange that Rijkoort
has chosen to use constant factors for these dependencies. He probably determined these constant factors
on empirical basis. Theoretically however, constant factors for these dependencies can not function
properly when these factors are above 1. Then there will be return levels of wind speed for a certain
return period corresponding with a certain wind direction that are higher than the overall (all wind
directions) return level. In most cases, this behaviour only occurs for high return levels, but when the
differences between wind directions and season are substantial, the behaviour will occur for lower wind
speeds as well. Imagine for example the following values for G;() in equation (3.23):

G(u)=080fori=1,
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G;(u) =099 fori=2,.,12.

Then using (3.25):
G;(u) ~0.846 .

Finally, using (3.27) and (3.28) we obtain:

T;(u)y=5fori=1,
T;(u)=100fori=2,.,12.
T;(u)=6.5.

Let’s take for instance j equals 1 and u equals 20.

The above then says that the return period for a wind speed value of 20 m/s with wind direction 1 in
season 1 equals 5 year and that the return period for a wind speed value of 20 m/s independent of the
wind direction in season 1 equals approximately 6.5 year. This is of course contradictive.

The RW-model has more than one such cases.

5.3  Effect of class definition

The RW-model divides the wind data into several seasons and wind direction sectors. This is based on
theoretical grounds and application grounds as well.

Theoretically (like stated in Paragraph 3.1) the division has been done because the (modified) Weibull
distribution does not fit very well for the whole wind speed range, but only for the wind speeds between 3
and 15 m/s (Rijkoort, 1983). After split up into several seasons and wind direction sectors the modified
Weibull distribution produces substantially better fits.

Besides this theoretical aspect, the division also suits from the point of view of application purposes.
Dikes for example are sensitive for the direction the wind is coming from. For this reason it’s better to
obtain return periods that correspond with a certain wind direction than return periods that correspond
with the wind directions combined. The same can be stated in the case of division into seasons.

The intervals for wind directions and seasons are chosen so that the (modified) Weibull distribution fit
reasonably well. For this goal a division into as many seasons and wind directions as possible is preferred.
Too many sectors though results in noise between the seasons and wind directions caused by the loss of
information per azimuth-season sector. After examination Rijkoort has chosen to divide the wind data
into six seasons and twelve wind direction groups.

What remains is how to define these seasons and wind direction groups. Table 3.2 and Table 3.3 in
Paragraph 3.1 show the final class definition in the RW-model.

Subparagraph 5.3.1 and Subparagraph 5.3.2 discuss the results of the RW-model when the wind
directions and seasons are defined differently.

5.3.1 Wind direction

From the point of view of application purposes it’s important that with the help of the RW-model return
levels can be derived for several azimuth sectors. In the Netherlands, differences in wind speed between
the several wind directions are rather large due to the position of the country between water (North Sea
and Atlantic Ocean) in the west and land in the east (Europe). A split up into enough wind directions is
necessary to prevent smoothing out the effect of this between land-sea position of the Netherlands. For
this reason a subdivision into less than 12 azimuth sectors is not wise.

An increase of the number of wind directions is another option but because a combination is made with a
number of seasons, one has to be careful with the results due to lack of data in the several azimuth-season
sectors. This lack of data can result in too much noise between the wind directions.

The above has been examined by replacing the split up into 12 azimuth sectors following the original
RW-model by a split up into 18 azimuth sectors (Table 5.16). With this new definition of azimuth sectors
the RW-model keeps its properties. Only the constants 30 and 60 in (3.10)-(3.14) have to be replaced by
20 and 40.
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Wind direction
15° | 005°-024°
35° | 025°-044°
55° | 045°-064°
75° | 065°-084°
95° | 085°-104°
115° | 105°-124°
135° | 125°-144°
155° | 145°-164°
9 | 175° | 165°-184°
10 | 195° | 185°-204°
11 | 215° | 205°-224°
12 | 235° | 225°-244°
13 | 255° | 245°-264°
14 | 275° | 265°-284°
15 | 295° | 285°-304°
16 | 315° | 305°-324°
17 | 335° | 315°-344°
18 | 355° | 335°-364°

Table 5.16: Subdivision into wind directions by increasing the number of azimuth sectors.

[=-IEN Be RV I U N S

When the RW-model was reproduced with this new definition of wind direction sectors, the variation
between the return levels corresponding with a certain azimuth sector didn’t increase substantially. This is
not surprising because of the harmonic analysis of wind direction. Furthermore, there were no significant
differences in comparison with the original definition of wind direction splitting up into 12 azimuth
sectors. Of course, a number of azimuth sectors produced different return values than in the original RW-
model, but these deviations didn’t seem to be structural, but more arbitrary.

So, the increasing variation between the azimuth sectors has been accounted for not by significant
differences between azimuth sectors but by increasing noise between the azimuth sectors as a result of
lack of data in the several azimuth-season sectors. Based on this, it’s not wise to increase the numbers of
azimuth sectors.

Also the effect of horizontal shifting of the original azimuth sectors has been examined. Shifts of 10
degrees leftwards and rightwards were performed (Table 5.17).

Wind direction
RW-model  Shiftto left Shift to right
015°-044° 005°-034° 025°-054°
045°-074° 035°-064° 055°-084°
075°-104° 065°-094° 085°-114°
105°-134° 095°-124° 115°-144°
135°-164° 125°-154° 145°-174°
165°-194° 155°-184° 175°-204°
195°-224° 185°-214° 205°-234°
225°-254° 215°-244° 235°-264°
255°-284° 245°-274° 265°-294°
285°-314° 275°-304° 295°-324°
315°-344° 305°-334° 325°-354°
345°-014° 335°-004° 355°-024°

Table 5.17: Subdivisions into wind directions with different class definitions.

An overview of the results of these shiftings has been set out graphically in Figure E.1 in Appendix E,
where the 10,000 year return periods (for Deelen 1,000 year as a results of the earlier stated problem of
calculating some extreme values) have been set out following the separate class definitions of wind

—35—



Analysis of the Rijkoort-Weibull model A. Smits

directions.

As can be seen in this figure the greatest part of the differences between the azimuth sectors has been
accounted for by the harmonic analysis of wind direction explained in Paragraph 3.2. As a result, the
effect of different class definitions are rather small. Based on this there is no apparent reason to use
another class definition than the one that has been defined in the RW-model.

5.3.2 Season

Because in the Netherlands extreme hourly mean values of wind speed mostly occur during winter rather
than during summer, also the effect of seasonal class definition has been examined.

Firstly, the number of seasons has been increased from the original 6 seasons to 12 seasons
(corresponding with months). As with the split up into more azimuth sectors, the RW-model keeps most
of its properties when increasing the number of seasons to 12. Only the constant 60 in (4.8) has to be
replaced by 30. Again the increasing variance didn’t seem to be structural. No seasons produced
significantly different return levels compared with the original definition of splitting up the seasons.

Also the effect of a horizontal shift of 1 month has been examined (Table 5.18).

Season

RW-model Shift by one month
January — February December — January
March — April February — March
May — June April — May
July — August June — July
September — October August — September
November — December October — November

Table 5.18: Subdivision into seasons with different class definitions.

An overview of the results of this shifting has been set out graphically in Figure E.2 in Appendix E,
where the 10,000 year return periods (for Deelen again 1,000 year) have been set out following the
separate class definitions of seasons. This figure shows that the structural differences between the class
definitions are greater than in the case of the azimuth sectors, but they are still rather small. Based on this,
again no much reason exists to use another class definition of season than the one used in the original
RW-model.

5.4  Effect of length and quality of time series

In his analysis, Rijkoort used the time period 1962 till 1976 for twelve stations. Most of these stations
started measuring before 1962 and except for one they kept measuring after 1976 (Figure 2.2). One can
consider using all the data that are available for analysis. The more data you have the more exact will be
the estimation of the return levels, one could argue. But because the wind speed in a certain year is always
different from the preceding year, estimates of return levels will be different when using that certain year
compared with the estimated values of return levels derived without using that same year. So, when after
a certain year with many high winds the estimated return levels of wind speed are updated, the estimates
probably will increase. The degree of this increase depends on the used extreme model in combination
with the length of the series used in that model.

If one is interested in the return levels for only one station (this is mostly not the case), it’s sensible to use
as many data as possible. If, on the other hand, one wants to calculate the return levels of multiple stations
(like in this paper), it’s necessary to use the same time period for each station to make the comparison
between the stations valid. By this the use of the same period for all the stations by Rijkoort has been
justified and it means that the extension of the series with data after 1976 used to estimate e.g. 10" year
return levels should be similar for all stations.

As stated earlier, the RW-model produced some very unrealistic return values for some stations. Partly,
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this was a consequence of the finite starting speed of some anemometers resulting in sometimes relatively
high frequencies of low wind speed values. It shows that an important condition of the RW-model is that
the quality of the wind speed data is optimal, especially for low wind speeds. A remarkable condition,
because we are interested in return periods of extreme wind speeds and certainly not in those of low wind
speeds. In general this asks for relatively recent periods of analysis because the quality of wind
measurement has improved considerably over the last decades in the Netherlands (Table 5.19).

. % [0,1)
Station 1962-1976 1981-1995

L.S. Texel 2.7 *

Schiphol 4.1 1.4
De Bilt 6.0 6.2
Soesterberg 12.4 6.2
Leeuwarden 2.6 2.5
Deelen 10.7 43
Eelde 3.0 2.3
Vlissingen 2.5 1.7
Zestienhoven 6.4 3.5
Gilze-Rijen 6.6 2.1
Eindhoven 7.6 4.2
Beek 3.2 1.2

Table 5.19: Percentages of wind speed between 0 and 1 m/s in two different 15 year time periods.

Another condition that has to be met in the RW-model is that reasonably long time series should be used.
Because in the persistence/tail correction the annual maxima are used, sample sequences must be
sufficiently long (see also Paragraph 7.1).

Both conditions (optimal quality of the wind speed data and long time series) are not in favour of the RW-
model.
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6 Adjustments to the Rijkoort-Weibull model

Several points in the RW-model appeared to be weak points. This has been discussed in the preceding
chapter (Chapter 5). To adjust the RW-model one has to be careful to change these points without
weakening relatively strong points in the model, because the preceding chapter indicated that a
combination of separate points in the model can have a strengthening effect on the results of the RW-
model.

The following list gives an overview of the weak points in the RW-model.

o The Weibull fits make use of the whole range of wind speed values, including low wind speed values
that are not of interest to us.

e The determination of the persistence correction between successive hourly mean wind speed values,
which also functions as a tail correction.

e The constant factors for the persistence correction between neighbouring azimuth sectors and
between subsequent seasons.

Possible improvements of these points are discussed in Paragraph 6.1, 6.2 and 6.3. Finally, a different
approach to the problem of persistence is discussed in Paragraph 6.4.

6.1 Improving the fit of the Weibull distribution

The RW-model uses all wind speed values to fit the Weibull parameters. We saw that relatively high
frequencies of low wind speed values reduce the k-value which has a clear effect on the return levels of
wind speed obtained by the RW-model. A method to prevent this is to impose a threshold value of wind
speed and to fit the wind speed values above this threshold by the conditional (modified) Weibull
distribution. This threshold however can not be put too high, because of the use of annual maxima during
the determination of the persistence correction. Because some azimuth-season sectors contain only low
values of wind speed, the derived annual maximum will be low as well. If this maximum is lower than the
threshold value, no value can be calculated for G;(u). For this reason the imposed threshold has to be as
low as possible but at that level where the finite starting speed behaviour of the anemometer is not
important any more (~4 m/s).

The general formula of the conditional distribution is defined as follows:

PWU <u,U > w) _ F(u)- F(o)

PU <u|U >w) = PU > o) - Fla)

. US> (6.1)

where wrepresents the threshold value.
In the case of the RW-model the conditional Weibull distribution can be imposed as follows to obtain the
parent distribution of wind speed for a certain azimuth-season sector:

Fuli, )= F(@|i))
1-F(w|i))

Foon (i /) = (1= P, (@))+ P, (@) . uvo 62)

where P;{ w) represents the percentage of hourly mean wind speed values in season j with wind direction i
that exceed the threshold value @. Furthermore, F(u | i, j) equals (3.6).

6.2 Improving the persistence correction between successive hourly mean wind speed
values

It was shown that the persistence correction factor also functions as a tail correction and that by averaging
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over the several stations a substantial error was created with severe effect on the return levels of wind
speed. This can be prevented in two ways:

Firstly, one can take the station dependent persistence/tail corrections, so without calculating the average
over the stations. By this, the extreme behaviour like in Subparagraph 5.1.3, 5.1.6 and 5.1.9 will not occur
anymore, because near zero values of the g-values won’t occur anymore. If no average over the stations is
calculated it’s also not necessary any more to divide the wind speed by the individual azimuth-season
scale-parameter ¢y Then the smoothing function (3.35) can be replaced by

Ing; (u;) = Alju? +By. (6.3)

Doing this, most values of g will still converge to values below 1, so the persistence factor will still
function as a tail correction also. To prevent this, the calculated smoothed values of ¢ (by (3.35)) can be
increased by adding the constant 1. This may not be the most elegant way, but a structural increase of the
return levels won’t appear anymore when this is done.

The best thing to do is to use both methods. Because when the averaging over the stations is skipped, the
noise between stations increases and with this the probability of strange patterns in the g-values.

6.3 Improving the persistence correction between neighbouring azimuth sectors and
subsequent seasons

In the RW-model, the dependency between neighbouring azimuth sectors and subsequent seasons has
been accounted for by using constant values of persistence correction factors. It was shown that this can
result in contradictive return levels when comparing individual azimuth sectors with the overall
distribution. The same can be stated when comparing individual seasons with the whole year distribution.
Like with the dependency between successive hourly mean values of wind speed it’s more reasonable that
this factor follows a decreasing function with respect to the wind speed and converges for high wind
speed values to one (at the level of no persistence). This can be done by treating the dependency between
azimuth sectors and seasons in the same way as the successive hourly mean values of wind speed.

For azimuth sectors, this results in the following persistence correction:

1
Gi(”[)qi(u') =H(u;), or q;(u;)=

In G (u;r)

InH(u;) 64

These g-values can be smoothed the same way as has been done for the successive hourly mean values of
wind speed:

Ing,(u;) = Au} +B,. (6.5)

The same procedure for seasons yields:

1
G )™ = H (uy), or q,(u;)=

InG,(u))

6.6
InH ;(u;) ’ 6

Ing,(u;)=Auj +B;. 6.7)

Like with the successive hourly mean values of wind speed the final values of ¢ can be obtained without
averaging the 4- and B-values over the stations and by adding the constant value of 1.
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6.4 A different approach to the problem of persistence

As discussed in Paragraph 3.3 the parent distribution F(u) of wind speed can not be used directly to derive
return periods of interest, because of the clustering of wind speed values. If one uses the parent
distribution in a indirect way, one has to correct for the clustering in successive wind speed values.
Rijkoort has followed this approach by deriving the distribution of the maximum in a year G(u) and
imposing a persistence/tail correction.

Another way to impose the persistence correction factor is to use the kind of information given in the
example in Paragraph 3.3. In this example, the mean exceedance frequency of the wind speed value 22.8
per storm equals 3.2 for station Schiphol. For this reason, the return period of interest (the return period of
a storm with at least one hourly mean wind speed value of 22.8 or higher) is a factor 3.2 larger than the
return period of a single exceedance. This mean exceedance frequency is most probably a decreasing
function of the wind speed. So

T(u)=Tw)-q(u), (6.8)

where T (u) represents the return period of interest in hours, 7(«) the return period of a single hourly
mean exceedance in hours and g(u«) the mean exceedance frequency of the hourly mean wind speed u per
storm. When we rewrite (6.8) the following can be derived:

1 1

T(u) = T(u)- q(u) = (—Fa) 1-Fa) (6.9)

q(u) = —

1
1-F(u) o)

where
Fay—1+7@=1 (6.10)
q(u)

In (6.9) F(u) represents the parent distribution of # and F(u) can be interpreted as the parent distribution

of u corrected for clustering. For low wind speeds g(u) will be greater than 1 and therefore (6.9) won't
work for wind speed values below ~2 m/s. Because wind speed values of interest are at a much higher
level, this is not an important restriction.

(6.9) gives the return period for any event based on the parent distribution of the wind speed. But as stated
earlier it’s necessary to divide the wind data into several season and wind direction sectors based on
theoretical and application grounds as well. For clarity, in the following the difference between the day-
and nighttime distribution will be ignored. Then, return periods for separate azimuth-season sectors can
be calculated as follows:

1 1 1 1 1 1
—q; )= 1

T, ) =T, @)-q;@w) =

1-F(ul|i,j) py q,_j(,,)(l—F(uli,j)) p; 1=-F@li,j) p; (6.11)
where
u E
Fu|i,j)=1-exp|—| — , (6.12)
ay
~ .. FQuli, j)-1
F(u|1,1)=1+M (6.13)
qij(u)

qi{(u) represents the mean number of hourly mean values of wind speed with wind direction i that lie in
season j per storm that exceed the value u and p;; represents the proportion of hours with wind direction i
and season j.

Now it can be shown that g;(«) in (6.11) has the same meaning as the g;,(«) in the RW-model. If we return
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to this RW-model and ignore the difference between the day- and nighttime distribution again, the
distribution of the maximum in a certain azimuth-season sector is given by

Sy+vy
G, )= F@u]i, j) @19
If g;{(u) is introduced before the distribution of the maximum is derived we get
1
(6.15)

Fuli.j)=Fulij)""

It is not difficult to prove that the differences in outcomes between (6.13) and (6.15) are not that great and
that they converge rather quickly to each other for higher wind speeds where the g;(u) values converge to
1.

The difference between g;(u) in the RW-model and in the new approach is the way of estimating these
values. In the RW-model this has been done by comparing the RW-model without correction with
observed annual maximum values of wind speed. In the new approach g;(u) can be estimated by the mean
exceedance frequencies of the wind speed per storm. The only thing what has to be done in the new
approach is to smooth the separate g;(u)-values with the purpose of extrapolation. This smoothing though,
won’t be as difficult as in the case in the RW-model, because no separate g;{(u)-values of below one will
occur in the new approach.

More advantages of the new approach compared with that of Rijkoort are the physical meaning of the
q;(u)-values and the quite easy extension to separate seasons and azimuth sectors which will be discussed
below.

The estimation of the persistence correction can be improved following the new approach. The new
approach however, calculates only return periods for separate azimuth-season sectors so far.

Following the new approach, return periods for a certain azimuth sector, for a certain season or for an
arbitrary moment can be easily estimated, but again a correction has to be made for the dependency
between neighbouring azimuth sectors and subsequent seasons.

Imagine the following extension of the example with wind speed data from station Schiphol (used in
Paragraph 3.3): The wind data is split up into two azimuth sectors and these sectors are on average evenly
represented per storm. We saw that on average the exceedance frequency of the wind speed 22.8 m/s was
equal to 3.2 per storm. Then the exceedance frequency per azimuth sector equals 1.6. If we now derive
the return period of the return level 22.8 m/s for an arbitrary moment the resulting return period will be a
factor 2 too small if this return period has been estimated by combining the azimuth sectors without
correction factor. This can be accounted for by using the mean number of wind directions during a storm.
Theoretically this yields the return period for season j (ignoring differences between day and night):

1 1 1 1 1 1

Rl g, YT i Fal ) T =Fal) o, 619

Tj(u) = Tj(u).qj(u) =

where
12

> (Fwlify- @, +vy)
Flul ="' ’ o

12
2(5/1 +V,-,-)
i=1

Flul j)-1

Fu|j)=1
(| =1+ ¢, ()

; (6.18)

q,(u) represents the mean number of azimuth sectors per storm above the threshold # in season j and p;
represents the proportion of hours in season j.
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In analogy, for azimuth sectors this yields:

~ 1 1 1 1 1
Ti(u)_Ti(u)'qi(u)—ﬁ';'ql(u)_ ql_%u)(l_F(”“))-Z_ —F@|) p, (6.19)

where

6 ~
> (Fwlif)- @, +v,)

Fuliy=""— , (6.20)
>0, +v,)
Jj=1
= o FQuli)-1
Fu|i=1+ 7% W (6.21)

g{(u) represents the mean number of seasons per storm above the threshold u for each azimuth sector i/ and
p; represents the proportion of hours with wind direction /.

It can be argued that g,(u) won’t deviate strongly from 1, because switches between subsequent seasons
don’t occur often.

Overall return periods can now be calculated based on the combined seasonal distributions F(u| /) :

1 1 1

T =T . = . = = ~ )
() =T(u)-q() = FGn) q(u) T {1=F@) 1 FG (6.22)
where
12 6 ,
> (Fwl -6, +v))
Fu)="""— , (6.23)

226 +vy)

i=1 j=1

F(u)-1

Fu) =1
=1

(6.24)

and g(u) represents the mean number of seasons per storm above the threshold .

Overall return periods can also be calculated based on the combined azimuthal distributions F(u| ). In
that case g(u) represents the mean number of azimuth sectors per storm above the threshold u.
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7 Alternative extreme wind models

Besides the adjustments within the RW-model and the new approach for the persistence problem in the
RW-model also a number of other extreme wind models have been examined. This chapter discusses the
pros and cons of these models in relation to the RW-model.

7.1  Combined Generalized Extreme Value model

In the RW-model, one important weak point is the determination of the persistence correction between
successive wind speed values. Classical extreme value estimation though, is often used to calculate long
return periods, whereby it is not needed any longer to correct for persistence.

The classical extreme value estimation describes how the maxima of samples of size N from sufficiently
long sequences of independent and identically distributed random variables with distribution function
F(x) can be fitted asymptotically (for large N) to one of three basic families derived by Fisher and Tippett
(1928). These families were combined into a single distribution by Von Mises (1936, in French; see
Jenkinson (1955) for an explanation in English), known as the Generalized Extreme Value (GEV)
distribution with distribution function:

1

F(x)=exp —( —@1)5 . 0+0 (7.1a)

F(x)= exp[— exp(—y)] , =0 (7.1b)

where @ is the shape parameter and y, the reduced variate, is given by

y=24 72
i (7.2)

where £ is the scale parameter and A the location parameter.

The shape parameter & determines the type of distribution. (7.1b) represents the Fisher-Tippett Type I
distribution, known as the Gumbel distribution. (7.1a) with a negative value of & represents the Fisher-
Tippett Type 11, known as the Frechet distribution. (7.1a) with a positive value of & represents the Fisher-
Tippett Type 111, known as the Reverse Weibull distribution.

The Gumbel distribution and the Frechet distribution are both unbounded at the right end of the
distribution, but the Frechet distribution has a heavier tail than the Gumbel distribution and is bounded at
the left end of the distribution. Furthermore, the Reverse Weibull distribution is bounded at the right end
of the distribution.

Often the GEV is fitted to annual maxima, because they are often considered to be independent of each
other (Paragraph 3.3). If we want to use the GEV distribution with respect to our point of view of
application purposes, it’s necessary to fit the distribution to each azimuth-season sector defined in Table
3.2 and Table 3.3. Then, the GEV distribution of the seasonal maxima of hourly mean wind speed values
for each azimuth sector is given by:

1

6‘1'/' .
Gy =expl1-0,y)" | 050 .30
G, (u) = exp[— exp(—y; )] , 6, =0 (7.3b)
where
u— i,-j
Vi = 7.4
B, (7.4)
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In (7.3a) and (7.3b) G;(u) indicates the probability that in season j the maximum of all wind speeds with
wind direction i is smaller than u. The parameters f;, A; and &, have been estimated using the probability
weighted moments (Palutikof, Brabson, Lister and Adcock, 1999).

Return periods corresponding for each azimuth-season sector can now be calculated using (3.27).

Next step in the model is to combine the separate azimuth-season G(u) distributions to derive
probabilities for seasons, azimuth sectors and the whole year. Like in the RW-model, one has to take into
account the dependency between neighbouring azimuth sectors and subsequent seasons. We have seen
that several methods can be used to estimate these persistence correction factors. For practical reasons,
the constant factors estimated in the original RW-model are used for this purpose, although better ways
exist (discussed in Paragraph 6.4). Probabilities for seasons, azimuth sectors and the whole year are then
derived using (3.24), (3.25) and (3.26). Finally, return periods can be calculated using (3.28), (3.29) and
(3.30).

The results of this model (the combined GEV model) for the whole year are listed in Table 7.1.

Station Return period in years

10 20 50 100 200 500 1000 2000 5000 10000
L.S. Texel 263 280 308 329 353 395 435 483 565 @ 64.1
Schiphol 243 256  29.1 329 382 476 57.0 689 @ 893 1092
De Bilt 207 229 262 292 330 393 454 | 527 648 762

Soesterberg 21.3 22.9 25.0 27.0 29.4 334 37.4 422 50.1 57.6
Leeuwarden 23.6 @ 25.8 29.3 32.8 369 434 493 56.3 67.5 77.7

Deelen 23.9 25.9 29.1 32.7 37.3 46.5 57.3 727 | 102.3  133.8
Eelde 21.7 23.7 26.3 284 30.9 359 40.9 47.0 57.5 68.1

Vlissingen 225 23.7 255 275 30.0 343 38.6 443 54.0 62.9
Zestienhoven 22.8 24.5 27.6 31.0 35.7 43.8 51.8 62.0 79.9 97.5

Gilze-Rijen 222 23.9 26.4 28.6 31.2 36.1 41.1 47.8 60.2 72.9
Eindhoven 222 24.0 26.6 28.7 31.0 35.0 38.9 43.6 51.5 58.6
Beek 20.3 21.8 24.2 26.3 289 33.2 37.6 43.3 53.5 63.6

Table 7.1: Return levels in m/s (combined GEV model) based on Rijkoort stations and time period 1962-
1976.

When comparing the values listed in Table 7.1 to observed annual maxima it’s very clear that the 10,000
year return levels are overestimated very much.

To find out why the combined GEV model performs unsatisfactory, we return to the individual azimuth-
season distributions of the maximum (G;(u)), because they form the basis of the model.

In the beginning of this paragraph we saw that a condition of the GEV distribution is the independence
between successive samples of random variables with distribution function F(x) for asymptotic purposes.
If this condition has been met, the observed annual maxima usually fit the asymptotic extreme value
theory very well when N exceeds 100 (Tabony, 1983). Because it’s evident that successive wind speed
values are not independent at all, the real number of independent elements per azimuth-season sector
decreases substantially. So, it’s the question whether the split up into the several azimuth-seasons sectors
doesn’t reduce the numbers of values in each sample too much for meeting the above described condition
of the GEV distribution.

This can be examined by looking whether the observed annual maxima in each azimuth-season sector
make part of the tail of its parent distribution. When N (for certain azimuth-season sectors) is so small that
some of the maxima are not being drawn from the tail then this is an indication that the assumption of
extreme value theory is not met. The tail of the parent distribution can be loosely defined as the top 10-
15% (Tabony, 1983). Table 7.2 lists the average number (relative) of annual maxima per azimuth-season
sector for each station that is not drawn from the top 15% and the top 10% of the corresponding empirical
parent distributions. It shows that the percentages of the annual maxima not being drawn from the top of
the parent distribution are rather large. This indicates that the number of hourly mean values of wind
speed per azimuth-season sector is too small to meet the assumptions of extreme value theory.

Based on this, we can doubt whether the combined GEV model is applicable with our azimuth-season
classification.
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Station % of maxima % of maxima
below 85% below 90%
L.S. Texel 12.9 22.7
Schiphol 9.1 15.6
De Bilt 9.7 15.8
Soesterberg 11.4 19.7
Leeuwarden 10.7 18.5
Deelen 10.3 17.4
Eelde 8.2 15.6
Vlissingen 93 16.2
Zestienhoven 10.4 16.9
Gilze Rijen 10.0 17.2
Eindhoven 9.8 17.6
Beek 7.9 14.2

Table 7.2: Percentage of yearly maxima per azimuth sector and season not belonging to the tail.

Furthermore, Cook (1985) suggests that at least 20 years of data should be used for reliable results, and
that the method must not be applied with fewer than 15 years of data. Because the return periods in Table
7.1 are based on 15 years of data, this is again an indication that the method will not work very properly
for the Rijkoort data set.

For this reason, the method has been applied to all available stations and time series (Figure 2.2). The
results are listed in Table 7.3.

Station Return period in years

10 20 50 100 200 500 1000 2000 5000 10000
Valkenburg 24.6 26.2 28.5 30.6 32.8 36.5 39.9 44.0 50.9 57.4
L.S. Texel 25.9 27.0 28.5 29.9 315 345 374 40.5 45.0 48.6
IJmuiden 23.1 239 249 25.6 26.4 275 28.5 29.7 314 329
Texelhors 25.4 26.9 29.0 30.7 324 34.7 36.4 38.1 40.4 42.3
De Kooy 242 25.4 27.0 28.3 29.5 31.1 32.5 34.5 37.4 39.8
Schiphol 23.8 249 26.4 27.6 28.8 30.3 313 323 33.7 35.0
Wijdenes 22.7 23.6 272 32.0 39.1 54.3 72.1 98.3 1548 = 2263
Terschelling 24.4 25.3 26.6 27.6 28.8 30.8 324 34.2 36.8 39.1
K13 27.0 28.5 31.2 33.8 36.6 40.8 44.4 48.9 56.8 64.5
M. Noordwijk 24.8 272 315 36.4 434 572 72.2 93.4 1354 182.8
De Bilt 194 204 21.7 22.6 235 24.7 25.7 26.7 28.0 29.0
Soesterberg 20.6 22.0 23.8 25.3 27.0 29.8 322 347 38.1 40.8
Stavoren 223 23.9 27.0 29.7 33.0 385 43.7 49.9 59.9 69.3
Houtrib 243 26.5 29.8 32.6 35.7 40.4 44.8 50.2 59.7 69.5
Lelystad 25.0 275 31.0 342 382 45.8 53.7 63.3 79.2 942
Leeuwarden 22.8 24.0 25.6 27.0 28.4 30.1 31.3 32.4 33.8 34.8
Marknesse 21.0 22.4 24.3 26.0 28.4 32.7 373 43.3 54.1 64.6
Deelen 21.7 232 252 26.7 28.4 30.9 333 36.3 415 46.3
Lauwersoog 235 24.8 26.5 28.1 30.0 32.6 34.7 36.7 39.4 414
Eelde 20.9 22.1 23.8 255 27.2 292 30.7 32.0 33.8 35.0
Huibertgat 24.7 25.5 26.7 27.9 29.6 32.3 34.7 37.3 41.2 44.5
Twenthe 20.0 21.8 24.4 26.8 29.3 329 359 39.0 43.6 475
Cadzand 23.9 25.1 26.7 27.8 28.9 30.3 313 324 34.0 35.7
Vlissingen 22.0 229 24.0 24.8 25.6 26.9 28.1 29.7 33.2 36.6
Goeree 24.9 26.2 28.1 29.5 30.9 32.9 34.6 36.5 39.3 41.7
Europlatform 27.1 29.2 325 352 38.1 42.5 46.2 50.3 56.5 61.9
H. van Holland 22.8 23.7 24.7 254 26.1 27.0 27.8 28.9 314 33.6
Zestienhoven 21.9 229 24.1 25.0 26.0 27.6 28.8 30.0 31.7 33.0
Gilze-Rijen 20.6 21.8 23.5 24.8 26.0 27.7 28.9 30.3 32.3 34.0
Herwijnen 223 235 25.1 26.4 27.8 30.2 32.1 34.0 36.6 385
Eindhoven 21.1 225 244 25.8 27.2 29.1 30.6 322 34.6 36.8
Volkel 20.2 21.6 23.6 25.4 27.7 31.6 349 38.6 44.1 48.8
Beek 20.2 21.2 22.5 23.5 24.4 25.7 26.7 27.7 29.1 30.3

Table 7.3: Return levels in m/s (combined GEV model) ) based on all stations and time periods available
in the Netherlands.
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Applied on all data available (from 5 years at Wijdenes to 47 years at IJmuiden), the overestimation of
wind speed levels at high return periods still exists for a number of stations, but it seems that the average
overestimation has been reduced. If we look more closely to the results we see a strong correlation
between the length of the time series and the degree of overestimation. But even for some stations with a
reasonable long history of measurements (£ 35 years), the overestimation is quite large (Deelen, Twenthe
and Volkel). The reason for this behaviour lies in the combination of the several azimuth-seasons sectors.
Because there are 72 azimuth-season sectors, the probability is high that at least one of them produces
unrealistic return levels. When the sectors are combined, this leads to unrealistic overall return levels as
well. An example is given in Figure 7.1, where it can be seen that the azimuth-season sector (7,1)
produces a 10,000 year return level (49.7) that is rather unrealistic, although the curve (Frechet) follows
reasonably well the annual maxima. Without having any knowledge about other azimuth-season sectors
the overall return level should be at least of this level. In this case the overall 10,000 year return level for
Volkel is less than 49.7 (48.8). This contradictive behaviour is the result of using constant values for the
dependency between neighbouring azimuth sectors and subsequent seasons.

Volkel, azimuth 7 and season 1

50

GEV model
®  Annual maxima

Wind speed (m/s)

4

1110 210" 510" 10 210" 510107 2-10° 5107 10" 2:10° 5-10° 10

Return period (years)

Figure 7.1: GEV fit for azimuth-season sector 7-1 at Volkel.

Figure 7.1 shows that even if the GEV distribution seems to fit reasonably well, the result is not always
what one would expect. There are also cases some extreme points in an azimuth-season sector indicate
bad performance. A good example of this can be seen in Figure 7.2, where the maxima of a severe storm
on April 2, 1973 has a substantially effect on the fit of the GEV distribution.

Without this extreme of 26.9 m/s the fit would be a Reverse Weibull with a 10,000 year return level of
about 20 m/s, but with the extreme the fit changes into a Frechet with a 10,000 year return level of 37.5
m/s. So, individual wind speed values can have a substantial effect on the way of fitting.

Based on what we have seen for station Volkel, we can conclude that with a split up into 72 azimuth-
season sectors we need substantially more than 20 years of data for a good performance of the model. In
combination with what we saw before (not meeting the asymptotic condition of the GEV distribution) the
combined GEV model is not an improvement in comparison with the (adjusted) RW-model.
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Volkel, azimuth 9 and season 2
40

GEV model
® Annual maxima |

Wind speed (m/s)
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4

1110 210" 510" 10° 2:10' 510107 2:10° 510" 10" 2:10° 510" 10
Return period (years)

Figure 7.2: GEV fit for a azimuth-season sector 9-2 at Volkel.

7.2 One-step Markov chain model

Another extreme wind model has been examined. This method simulates long time series of hourly mean
wind speed values and is described in detail by Dukes and Palutikof (1995). Based on the simulated time

series estimates have been derived for return periods of interest.

The procedure is as follows:

Firstly, a transitional and probability matrix (TPM) is created. For this purpose, the wind speed values in
our data sets were transformed into wind speed classes. Each wind speed class includes wind speeds
between certain values. A class width of 1 m/s is applied, except for the lowest class where a width of 2
m/s is applied. For the top class an upper limit has to be set. The top class includes all wind speeds above
this limit, which has been set on the nearest integer of the 99.5% percentile. Now the TPM can be created.
This matrix shows the probabilities p;; of a wind speed u in class i in hour 7 changing into class j in the

following hour #+1. An example of a TPM for our data set is given in Table 7.4.

class Bl
1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.774 0.204 0.018  0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.174  0.579 0.215  0.027 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.019 0.206 0.528 0.215  0.027 0.005 0.001  0.000 0.000 0.000 0.000 0.000 0.000
4 | 0.003 0.035 0.228 0.495 0.201 0.033 0.005 0.001 0.000 0.000 0.000 0.000 0.000
5 | 0.001 0.006 0.045 0.242 0475 0.196 0.030 0.004 0.001 0.000 0.000 0.000 0.000
6 | 0.000 0.001 0.010 0.055 0.253 0.460 0.185 0.030 0.005 0.001  0.000 0.000 0.000
7 | 0.000 0.000 0.003 0.012 0.055 0273 0.444 0.177 0.029 0.005  0.001 0.001 0.000
8 | 0.000 0.000 0.000 0.002 0.016 0.069 0267 0.423 0.185 0.031 0.005 0.001 0.001
9 | 0.000 0.000 0.000 0.001 0.003 0.020 0.081 0.272 0421 0.170 0.029 0.005 0.001
10 | 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.090 0.285 0.375 0.176 0.037 0.007
11 | 0.000 0.000 0.000 0.001 0.000 0.006 0.008 0.028 0.094 0.279 0.374 0.169 0.041
12 | 0.000 0.000 0.001 0.000 0.000 0.003 0.003 0.010 0.022 0.104 0.264 0370 0.223
13 | 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.007 0.021 0.065 0.165 0.733

Table 7.4: TPM for Eelde, 1962-1976. Listed are the probabilities p;; that a wind speed in class i (rows) at
hour »n changes into class j (columns) at hour n+1.

Using this TPM simulated time series of wind speed classes were created using a random number
generator. To transform the wind speed classes into wind speed values an uniform random generator can
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be used for the classes except for the lowest and highest wind speed class. For these classes a shifted
exponential distribution random number generator has been used.

Estimations of return levels have been calculated by simulating a number (here 100) of time series (each
with different random number initiator) with length equal to the requested return period and then by
averaging over the maximum wind speed values in each time serie.

The results of this model (one-step Markov chain model) are listed in Table 7.5. For return periods below
20 years the results have not been listed, because of the different definition of return periods. In the RW-
model and other models, the return period of the annual maximum has been derived, while in this model
the return period of an arbitrary wind speed is derived. As stated in Paragraph 3.3, for return periods
above about 20 year the difference becomes negligible. Because of the different definition of return
periods, the results are not graphically displayed and compared with the annual maxima (like before); the
graph would begin at return periods where the observed annual maxima would end.

Station Return period in years

20 50 100 200 500 1000 2000 5000 10000
L.S. Texel 314 327 335 351 370 38.0 394 409 @ 42.1
Schiphol 287 306 319 33.0 348 358 370 384 394
De Bilt 222 234 242 252 265 274 283 296 30.6

Soesterberg 239 254 269 276 @ 29.0 302 31.1 324 335
Leeuwarden 272 | 287 297 308 322 333 344 358 36.8

Deelen 26.1 27.5 29.0 30.0 314 32.4 33.6 34.8 35.7
Eelde 253 26.5 27.5 28.6 303 31.2 32.5 33.7 34.5
Vlissingen 252 26.6 27.7 28.6 30.1 30.9 31.7 33.0 34.0
Zestienhoven 254 272 27.7 29.0 30.1 31.5 324 33.8 34.8
Gilze-Rijen 24.4 25.0 26.3 27.1 28.5 29.5 30.6 31.9 32.9
Eindhoven 26.3 28.0 28.7 30.2 31.8 33.0 34.1 35.6 36.6
Beek 229 24.1 25.1 26.2 274 28.2 292 30.5 314

Table 7.5: Return levels in m/s (one-step Markov chain model) based on Rijkoort stations and time
period 1962-1976.

Some remarks have to be made about the values listed in Table 7.5 and about the applicability of the
model in the HYDRA project:

Firstly, the maximum derived from a time series of, let's say, 1000 year, is normally not a good estimation
of the 1000 year return level of wind speed. The maximum (or with this method the average of the
maxima) probably corresponds with a return period that is higher than the length of the time series.
Consequently, return periods calculated by the one-step Markov chain model are underestimated and
return levels overestimated.

The reason is that the maximum of the time series is a good estimate for the median return period but not
for the mean return period (Tabony, 1983). The degree of difference between the median and mean
depends on the underlying distribution, which has not been estimated by the method described in this
paragraph. It’s therefore hard to say something about the degree of underestimating the return periods.
For annual maxima that are Gumbel distributed, the underestimation of the return period when the
estimation is based on the highest observed annual maximum is about 44%, which can be derived from

r—0.44

Hn) =\ o

(7.5)

(Palutikov et al., 1999) where r represents the ranked number of the annual maxima and N represents the
total years included in the observation series. For the highest wind speed uy in the time period with length
N =100 year, H(uy) ~ 0.9944 and the corresponding return period is then 1/(1-0.9944) ~ 179 years. For
very long time series the relative difference between the length of these time series and the return periods
corresponding with the highest values in these time series tends to ~ 44%.

The highest wind speed class is fitted by the shifted exponential distribution. It can be questioned whether
this is the most appropriate distribution to use. The conditional Weibull distribution is the most obvious
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distribution to use with respect to wind speed values.

An important disadvantage of the values in Table 7.5 is that they are derived without splitting up the data
into seasons and azimuth sectors, which is necessary from the point of view of application purposes. So if
return periods that correspond with certain azimuth-seasons sectors have to be derived, the model has to
be extended. If only extra information about separate seasons is required, the model can be extended with
a number of transitional probability matrices for each season, which is easily done. However, if also
information with respect to the wind direction is required, the wind direction has to be simulated besides
the wind speed. This extension makes the model much more complex. In literature not that much is found
on this subject. Cheng (1991) and Cheng & Chiu (1990; 1992) have accounted for some of the features
described above. They analysed the simulated time series for its extreme value properties instead of
deriving the maximum from it to estimate return levels.

7.3 Analysis of separate storms

So far, the basic extreme wind models discussed in this report are based on all data (RW-model, one-step
Markov chain model (Paragraph 7.2)) or on annual maxima (combined GEV model (Paragraph 7.1)). We
saw that methods based on all data can result in unreliable results due to the relative strong effect of
uninteresting low wind speed values in the tail of the wind speed distribution (Chapter 5). Furthermore,
when using annual maxima one has to use relative long periods of measurements to prevent
overestimating return levels of wind speed if the GEV distribution is fitted on separate azimuth-season
sectors (Paragraph 7.1). Using annual maxima also means losing important information. During a year,
for example, multiple severe storms can occur, while there are years with no severe storms. The
consequence of this is that when only the maxima per year are used, sometimes an interesting storm
won’t be used while in other cases wind speeds are used that are not that interesting.

In summary, one can say that using all data is not optimal because of the use of too many uninteresting
wind speeds and using annual maxima is not optimal because of the use of too few interesting wind
speeds. A possible way in between is using separate storms and fitting a distribution (exact or asymptotic)
to the maximum wind speed per storm.

Models that use separate storms are widely used and accepted and much can be found on this subject in
literature. It seems thereby worthwhile to examine these kinds of models more in detail. Recently, RIKZ
has developed a method based on this theory but applied on water levels, wave heights and wave periods.
This method could be examined for application of wind speeds.
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8 Conclusions

It turns out that the Rijkoort-Weibull model has a number of shortcomings with the consequence that the
return levels for hourly mean values of wind speed derived from the model are very unreliable.

Especially, the determination of the persistence correction for successive wind speed values in
combination with the fit of the Weibull distribution where all the data are used sometimes results in
unrealistic high return levels. The performance of the persistence correction is unsatisfactory because it is
defined in a way that it also functions as a (rather poor) tail correction. Furthermore, the correction is
calculated by averaging over the stations used in the analysis while it turns out that systematic deviations
exist between these stations.

For some stations harmonic analysis of wind direction dependent parameters neutralises this effect, but
generally taken, the harmonic analysis and further smoothing of parameters do not improve the results
substantially.

Another weak point in the Rijkoort-Weibull model is the usage of constant values for the factors to
correct for the dependency between neighbouring azimuth sectors and subsequent seasons. This results in
some contradictive return levels with respect to certain azimuth sectors or seasons in comparison with the
whole year (e.g. return levels corresponding to individual azimuth sectors that are higher than the overall
return level).

A number of adjustments within the basic concept of the Rijkoort-Weibull model have been examined.

To prevent low wind speed values from having too much weight in the fit procedures of the Weibull
distribution, a threshold is imposed and values above this threshold are fitted with the conditional Weibull
distribution. Doing this, the tail estimation is less influenced by wind speed levels that are not interesting.
Furthermore, the determination of the persistence correction factor is modified by calculating the factor
without averaging over stations and by forcing the factor to go to the level of no persistence at high wind
speed values. By performing a persistence correction in this way, an unwanted tail correction is avoided.
Finally, another approach to the problem of persistence is introduced. This approach determines the
duration of a storm and therefore has a physical meaning. An advantage of the new approach is that it
produces much more robust persistence correction factors in comparison with those of the Rijkoort-
Weibull model. This approach also can be used to correct for the dependency between neighbouring
azimuth sectors and subsequent seasons properly.

Alternative extreme wind models also have been examined.

The first one, the combined GEV distribution, results in unrealistic high return levels because of the split
up into many seasons and wind direction sectors. For a good performance of this model, the analysis
should include longer time series and maxima derived per two years or more.

The second model, the one-step Markov chain model, has been performed without splitting the wind data
into wind directions and seasons. The resulting return levels are rather robust. To be able to use this
model in the HYDRA project, it needs to be extended substantially to obtain seasonal and azimuthal
return levels.

Finally, the advantages of the analysis of separate storms have been described. There are many examples
of models for the analysis of storms in literature (e.g. the RIKZ approach applied on water levels, wave
heights and wave periods). In part, it is from these models that the idea of the new approach for
determining the persistence correction arose.
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9 Recommendations

e The original Rijkoort-Weibull model should not be used anymore in the HYDRA project, nor its
results because of the shortcomings identified in this report. These shortcomings have a strong
impact on the wind speed levels at high return periods.

e Two important adjustments are recommended within the basic concept of the Rijkoort-Weibull
model that will substantially improve the results of the original model. They are:

1) imposing a threshold and
2) following a new approach to the problem of persistence.

Applied in the HYDRA project, this will lead to a revised wind statistics in the near future.

e The results of the (adjusted) Rijkoort-Weibull model that focuses on the parent distribution of the
wind speed should be compared with alternative extreme wind models that focus on the extremes.
Two of the three alternatives considered in this report are promising because they do have interesting
properties with respect to return levels of wind speed. One of these models (the One-step Markov
chain), has to be extended substantially before it can be used within the HYDRA project. Because
this extension is not well covered in literature, it is advised to explore the other one (that analyses
separate storms) in more detail. A method based on this theory, used by RIKZ to analyse water
levels, wave heights and wave periods, could be examined for application on wind speeds. Compared
with the above adjustments to the Rijkoort-Weibull model, a larger effort will be needed before it
contributes to an improved wind statistics.
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List of notation

a mean Weibull scale parameter
Ajoyeer Ajis harmonic Weibull scale parameters
by,...bs harmonic regression parameters
c amplitude parameter in seasonal harmonic analysis
con conditional
d daytime
iy s harmonic daytime observations parameters
, seasonal means of the normalised amplitudes of the first harmonic of and v

;2 ) d;4 ' & ;0 ) kj-o ) ”;2 > ”;4 parameters derived from dj, dis, gjo, kjo, 7 and njy
exceedance frequency

mean Weibull stability parameter

0--2Zj4 harmonic Weibull stability parameters
proportion of hours

azimuth group

season group

mean Weibull shape parameter

ko, k4 harmonic Weibull shape parameters
max maximum
n nighttime
0,14 harmonic nighttime observation parameters
transition probability

persistence/tail correction factor

rank number

wind speed

variable

reduced variate

persistence correction factor

tail correction factor

1, Dj3, Njt, Nj3 parameters derived from d;,dj3,n;; and nj3
distribution function

adjusted distribution function
distribution function of the maximum

0 08 N R

S~

Ooa xR ya

[

complement of G

plotting position

sample size

probability

correlation coefficient
return period

adjusted return period
Weibull scale parameter
GEV scale parameter
shifting parameter in seasonal harmonic analysis
daytime observations
Weibull stability parameter
Weibull shape parameter
GEV location parameter
nighttime observations
GEYV shape parameter
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Appendices

Several outcomes which resulted from the different models have been set out.

The parameters and return levels calculated by Rijkoort are shown in Appendix A (Table A.1, A.2, A3
and A.4). The values in Table A.1, A.2 and A.4, are not identical to the values listed in Table 1, Table 2
and Figures 22.2-22.8 in Rijkoort (1983). From Table 1, the original not corrected values are copied into
Table A.1. From Table 2, most of the values are copied directly into Table A.2, except for the parameters
Dy, ny," and ny,” which have been subjected to typing errors. Finally, the values in Table A.4 are partly
based on the values in Table A.1 and Table A.2.

Appendix B sets out the parameters and return levels calculated by the reproduction (Table B.1, B.2, B.3
and B.4).

Appendix C shows scatterplots in which the results from Rijkoort and the reproduction have been set out
(Figure C.1, C.2, C.3 and C.4).

Appendix D shows the resulting return periods for the several steps in the RW-model. The plotting
positions of the annual maximum wind speeds are calculated following the formula of Benard and Bos-
Levenbach (1953).

Appendix E shows the effect of class definition of wind direction and season in a graphic way.
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A Parameters and return levels calculated by Rijkoort

L.S. Texel 7.99 129 2.47 0.00 0.36 0.27
Schiphol 6.36 74 2.35 0.76 0.43 0.30
De Bilt 5.05 58 2.28 0.79 0.42 0.34
Soesterberg 5.24 38 2.26 0.87 0.44 0.36
Leeuwarden 6.38 68 2.48 0.70 0.42 0.30
Deelen 5.77 66 2.18 0.82 0.44 0.35
Eelde 5.52 58 2.37 0.74 0.43 0.39
Vlissingen 5.86 101 2.33 0.30 0.45 0.41
Zestienhoven 6.21 78 2.35 0.75 0.44 0.41
Gilze-Rijen 5.58 60 2.35 0.85 0.49 0.51
Eindhoven 5.60 58 2.32 0.79 0.48 0.42
Beek 4.69 75 2.25 0.45 0.52 0.52

Table A.1: Station dependent parameters (Rijkoort).

January - February

March - April 0.90 163 0.65 317

May - June 0.77 165 0.60 316

July - August 1.04 179 0.47 318

September - October

November - December

January - February 0.941 0.25 -19

March - April 1.034 0.13 59

May - June 1.066 0.20 67

July - August 1.089 0.20 54

September - October 0.956 0.20 8

November - December 0.915 0.13 -40

January - February 0.566 0.12 122

March - April 1.191 0.26 138

May - June 1.316 0.20 173

July - August 1.304 0.32 169

September - October 1.117 0.26 143

November - December 0.503 0.10 149

January - February 294 -0.10 249 -0.05 327
March - April 50.7 -0.21 151 -0.03 335
May - June 68.6 -0.05 170 -0.04 333
July - August 67.2 0.06 174 0.04 324
September - October 50.7 0.05 233 0.01 350
November - December 25.3 0.25 232 0.08 354
January - February 89.0 0.05 258 0.00 =27
March - April 713 -0.23 132 0.00 -11
May - June 53.4 -0.18 156 0.00 1
July - August 56.8 -0.06 194 0.00 2
September - October 71.3 0.16 257 0.00 10
November - December 96.7 0.30 235 0.00 -5

Table A.2: Season dependent parameters (Rijkoort).
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30° -0.412 2.86 -0.571 2.83 -0.630 3.16

60° -0.587 3.20 -0.695 3.24 -0.602 3.28

90° -0.613 3.49 -0.834 3.76 -0.604 3.05

120° -0.638 3.50 -0.842 3.27 -0.698 2.80

150° -0.511 3.08 -0.560 2.30 -0.518 232

180° -0.585 3.19 -0.532 2.49 -0.422 2.56

210° -0.536 3.45 -0.446 2.60 -0.475 2.90

240° -0.374 3.25 -0.480 2.92 -0.584 3.18

270° -0.381 3.28 -0.761 3.65 -0.590 3.20

300° -0.423 2.88 -0.925 3.75 -0.824 3.48

330° -0.466 2.28 -1.131 3.77 -0.952 3.40

360° -0.368 2.55 -0.635 2.72 -0.677 2.87

. A B | A B | A B |

30° -0.956 3.76 -0.557 2.80 -0.434 2.78

60° -0.799 3.56 -0.500 2.82 -0.583 2.93

90° -0.687 2.97 -0.525 2.52 -0.647 3.18

120° -0.815 2.65 -0.470 241 -0.548 3.04

150° -0.746 2.65 -0.519 2.88 -0.590 2.70

180° -0.749 3.13 -0.508 2.88 -0.572 2.76

210° -0.612 3.23 -0.470 2.78 -0.485 2.82

240° -0.501 3.10 -0.448 3.31 -0.337 291

270° -0.550 3.32 -0.365 2.74 -0.340 2.56

300° -0.835 3.45 -0.418 229 -0.480 2.97

330° -1.118 3.69 -0.521 2.16 -0.398 1.55

360° -0.835 3.35 -0.679 2.79 -0.494 2.27

Table A.3: Persistence/tail correction parameters (Rijkoort).

L.S. Texel 278 292 309 322 334 349 360 37.1 385 395
Schiphol 24.1 25.5 272 285 | 297 313 325 336 351 36.2
De Bilt 20.8 | 22.1 23.8 249  26.1 276 287 298 312 323
Soesterberg 215 229 246 258 270 286 298 31.0 325 336
Leeuwarden 219 23.0 245 255 265 278 288 297 309 317
Deelen 264 282 305 322 340 363 38.0 397 419 436
Eelde 208 220 234 245 256 269 279 289 302 @ 3l1.1
Vlissingen 234 248 264 276 288 303 315 325 339 350
Zestienhoven 237 251 268 280 292 308 319 331 345 356
Gilze-Rijen 214 226 242 253 264 278 289 299 312 322
Eindhoven 219 232 249 @ 26.1 272 287 298 309 323 334
Beek 207 | 220 236 248 @ 260 275 28.7 298 | 312 323

Table A.4: Return levels in m/s (Rijkoort).
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B Parameters and return levels resulting from the reproduction

L.S. Texel 8.06 128 2.43 -0.02 0.41 0.28
Schiphol 6.44 74 2.40 0.67 0.44 0.32
De Bilt 5.16 59 2.31 0.79 0.43 0.41
Soesterberg 5.28 34 2.17 0.87 0.46 0.42
Leeuwarden 6.47 73 2.50 0.70 0.43 0.31
Deelen 5.80 65 2.11 0.83 0.47 0.40
Eelde 5.64 61 2.43 0.71 0.45 0.43
Vlissingen 5.98 100 2.39 0.32 0.48 0.44
Zestienhoven 6.26 76 2.29 0.77 0.46 0.43
Gilze-Rijen 5.67 60 2.38 0.83 0.53 0.54
Eindhoven 5.65 59 2.30 0.78 0.52 0.45
Beek 4.90 83 2.43 0.44 0.67 0.64

Table B.1: Station dependent parameters (Reproduction).

January - February

March - April 0.77 166 0.56 313

May - June 0.63 170 0.51 313

July - August 0.88 183 0.36 316

September - October

November - December

January - February 0.937 0.27 355

March - April 1.021 0.11 24

May - June 1.061 0.18 12

July - August 1.090 0.25 25

September - October 0.960 0.34 16

November - December 0.931 0.22 2

January - February 0.549 0.11 122

March - April 1.195 0.22 153

May - June 1.347 0.17 177

July - August 1.320 0.28 178

September - October 1.088 0.20 180

November - December 0.501 0.10 146

January - February 2941 -0.11 248 -0.06 322
March - April 50.75 -0.22 151 -0.04 336
May - June 68.58 -0.05 169 -0.03 335
July - August 67.17 0.07 175 0.04 324
September - October 50.75 0.06 230 0.02 346
November - December 25.33 0.25 231 0.07 348
January - February 89.13 0.02 256 0.00 328
March - April 71.25 -0.26 136 0.00 347
May - June 53.42 -0.18 156 0.00 0
July - August 56.83 -0.06 193 0.00 355
September - October 71.25 0.19 252 0.00 4
November - December 96.67 0.30 233 0.00 348

Table B.2: Season dependent parameters (Reproduction).
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30° -0.408 3.11 -0.442 2.74 -0.538 3.11

60° -0.641 3.65 -0.692 3.34 -0.632 3.36

90° -0.658 3.57 -0.827 3.80 -0.700 3.19

120° -0.576 3.62 -0.748 3.12 -0.612 2.40

150° -0.424 3.04 -0.407 1.81 -0.457 2.02

180° -0.558 3.25 -0.562 2.53 -0.529 2.67

210° -0.515 3.59 -0.475 2.64 -0.539 2.94

240° -0.419 3.66 -0.463 2.81 -0.597 3.34

270° -0.361 3.25 -0.720 3.69 -0.327 2.85

300° -0.435 2.95 -0.783 3.61 -0.611 3.21

330° -0.492 2.10 -0.952 3.55 -0.623 2.85

360° -0.330 2.31 -0.376 2.34 -0.130 1.95

. A B | A B | A B |

30° -0.909 3.79 -0.726 3.14 -0.416 2.90

60° -0.935 3.84 -0.689 3.15 -0.805 3.55

90° -0.728 3.01 -0.540 2.68 -0.922 3.65

120° -0.781 2.34 -0.243 1.94 -0.595 3.08

150° -0.809 2.53 -0.430 2.80 -0.550 2.92

180° -0.794 3.11 -0.434 2.77 -0.499 2.82

210° -0.642 3.32 -0.270 2.64 -0.353 2.67

240° -0.435 3.01 -0.290 3.12 -0.225 2.82

270° -0.477 3.19 -0.139 2.60 -0.301 2.90

300° -0.734 3.36 -0.241 2.05 -0.481 2.67

330° -0.948 3.38 -0.475 1.87 -0.444 1.38

360° -0.660 2.99 -0.685 2.81 -0.615 2.37

Table B.3: Persistence/tail correction parameters (Reproduction).

L.S. Texel 287 303 323 337 351 36.8  38.1 394 409 @ 421
Schiphol 234 248 266 279 @ 29.1 30.7 319 33.0 345 355
De Bilt 207 220 238 250 263 279 290 302 @317 327
Soesterberg 247 266 @ 29.1 31,0 329 354 372 390 414 430
Leeuwarden 218  23.0 246 257 @ 267 @ 28.1 29.1 30.1 31.3 322
Deelen 312 342 383 415 448 494 514 | 545 559 575
Eelde 202 214 229 240 250 264 274 284 296 @ 305
Vlissingen 226 239 256 268 280 295 30,6 317 331 34.1
Zestienhoven 254 271 292 308 323 342 357 371 389 402
Gilze-Rijen 212 225 24.1 253 265 280  29.1 30.1 31.5 325
Eindhoven 227 242 26.1 275 288 306 319 331 347 359
Beek 18.4 19.5 209 219 228 240 249 258 269 277

Table B.4: Return levels in m/s (Reproduction).
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C Scatterplots of results calculated by Rijkoort and resulting from the reproduction
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Figure C.1: Scatterplots of station dependent parameters calculated by Rijkoort and resulting from the
reproduction. The diagonal dashed lines in these figures represent the one to one relations between the

results.
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Figure C.2: Scatterplots of season dependent parameters calculated by Rijkoort and resulting from the
reproduction. The diagonal dashed lines in these figures represent the one to one relations between the
results.
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Figure C.3: Scatterplots of persistence/tail correction parameters calculated by Rijkoort and resulting
from the reproduction. The diagonal dashed lines in these figures represent the one to one relations
between the results.
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Figure C.4: Scatterplot of return levels calculated by Rijkoort and resulting from the reproduction. The
diagonal dashed lines in these figures represent the one to one relations between the results.
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Figure D.1: Return periods and return levels following model A. The closed circles represent the annual
maximum wind speed.
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Figure D.2: Return periods and return levels following model B. The closed circles represent the annual
maximum wind speed.
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Figure D.3: Return periods and return levels following model C. The closed circles represent the annual

maximum wind speed.
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Figure D.4: Return periods and return levels following model D. The closed circles represent the annual

maximum wind speed.
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Figure D.5: Return periods and return levels following model E. The closed circles represent the annual
maximum wind speed.
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Figure D.6: Return periods and return levels following model F. The closed circles represent the annual
maximum wind speed.
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Figure D.7: Return periods and return levels following model G. The closed circles represent the annual

maximum wind speed.
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Figure D.8: Return periods and return levels following model H. The closed circles represent the annual

maximum wind speed.
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Figure D.9: Return periods and return levels following model 1 (the RW-model). The closed circles
represent the annual maximum wind speed.

—68—



Analysis of the Rijkoort-Weibull model A. Smits

E Effect of class definition

L.S. Texel Schiphol

W oW W
S N &

Return level (m/s)

Return level (m/s)

N
o

N
s

N
N

! ! ! ! ! ! ! 17 1 1 1 1 1 1 1 1 1 1 1

30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360
Wind direction (degrees) Wind direction (degrees)
De Bilt Soesterberg
35 45
33 43
M
31 39
D 29 @ 37
= = 35
§, 27 g o
= =
g g
Q@ 23 @ 29
£ £~
2 22
& 1 & 2
17 2
19
AR
wr 17
13 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 1
0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360
Wind direction (degrees) Wind direction (degrees)
Leeuwarden Deelen

34

Return level (m/s)
Return level (m/s)

16 1 1 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1
0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360

Wind direction (degrees) Wind direction (degrees)

Figure E.1a: Effect of class definition of wind direction. The interpolated circles represent the 10,000
year return periods (Deelen: 1,000 year) calculated for each wind direction class used in the original RW-
model (see Table 3.3 in Paragraph 3.1). The return periods represented by squares are calculated after
shifting of 10 degrees to the left and the return periods represented by triangles are calculated after
shifting of 10 degrees to the right.
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Figure E.1b: Continuation of Figure E.la.

—70—



Analysis of the Rijkoort-Weibull model

A. Smits

42

40

38

36

34

32

30

Return level (m/s)

28

26

24

34

32

30

28

26

24

Return level (m/s)

22

20

33

31

29

27

25

Return level (m/s)

23

21

L.S. Texel

A

| | | | | | | | | | |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

De Bilt

| | | | | | | |
Feb Mar Apr May Jun Jul Aug Sep Oct

Jan Nov Dec
Month
Leeuwarden

| | | | | | |
Feb Mar Apr May Jun Jul Aug Sep Oct

Month

Jan Nov Dec

Return level (m/s)

Return level (m/s)

Return level (m/s)

37

35

33

31

29

27

25

23

21

44
42
40
38
36
34
32
30
28
2
2
2

54
52
50
48
46
44
42
40
38
36
34
32
30
28
2
24
2

Schiphol

| | | | | | | | | |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Soesterberg

| | | | | |
Jan May Jun Jul Aug Sep Oct Nov Dec

Month

| | | |
Feb Mar Apr

Deelen

| | | | | 1 | | | | |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure E.2a: Effect of class definition of season. The interpolated circles represent the 10,000 year return
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Figure E.2b: Continuation of Figure E.2a.
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