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Abstract

A combination of high frequency measurements from the Cabauw measurement site and LES
results is used to evaluate timescales and structures of turbulent transport of heat in the
atmospheric boundary layer.
On the basis of the cospectrum of vertical velocity and temperature, a dominant timescale of
transport is introduced. An emperical equation is proposed to easily determine this timescale
as a function of wind velocity, height and Obukhov length. Using this timescale, loss in Eddy
Covariance measurements due to finite averaging time can be predicted on the basis of a
model for the cospectrum shape. Eddy Covariance measurements from the Cabauw site
show behaviour confirming this predicted loss behaviour. No evidence is found for the possi-
ble presence of unpredicted systematic flux on very large timescales.
Attention is also given to the presence of a certain gap scale seperating turbulent and
mesoscale motions, but it is found that these motions overlap in unstable conditions, making
seperation impossible.
As several authors have pointed at the phenomena of Turbulent Organized Structures as
large contributors to large timescale flux, an attempt is made to identify these structures
in measurement series. This is done with the help of two algorithms, based on criteria and
wavelet analysis, demanding vertical coherence and rising, warm air. Detected structures
within measured and LES simulated time series show great similarity, giving further confi-
dence that detection is possible and appropiate.
Thermals are found as coherent structures of warm and rising air, surrounded by cold and
descending air. A statistical profile is made of the shape of thermals as they appear in time-
series, which is confirmed by LES results. Behaviour of the thermals involving size, velocity
and temperature are investigated for different heights.
The average flux within thermals is found to be well modelled by the mass flux approach
when based on a thermal surface fraction of 10 percent.
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Chapter 1

Introduction

Vertical transport in the atmospheric boundary layer is usually measured using Eddy-Correlation
(EC) techniques. This technique is based on flux averaging in intervals of typically ten or
thirty minutes. In reality, however, transport is not limited to these time intervals and will
also happen on longer timescales.
In Cabauw, EC measurements are done on four heights, ranging from three to 180 meters.
These measurements are used in multiple applications. It is therefore important to quantify
the amount of flux represented by longer timescales. This will allow, for example, comparison
between the four installations.
The purpose of this paper is to quantify which timescales are important in vertical trans-
port in the atmospheric boundary layer, and which factors play a role in influencing these
timescales. The results will be used to find an applicable scheme for predicting the amount
of flux found in long timescales.
Also, the multiresolution method as proposed by Vickers and Mahrt (2002) will be inves-
tigated to see whether a certain maximum timescale in which turbulent transport happens
(gap timescale) exists.
Last, the large thermal structures present in the convective boundary layer will be given
attention, as they are a large contributor on large scale transport. An attempt will be made
to identify these structures from the measured Cabauw time series by comparing sensor data
of multiple heights.
The characteristics of these structures will be investigated in an effort combining time series
with LES fields. Typical shape and behaviour as conditions vary are studied, as well as the
amount of heat flux found in the thermals. The mass flux approach is also evaluated as a
method to approximate fluxes within thermals.
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Chapter 2

Data and methods

2.1 Data

2.1.1 Cabauw data

For this report, data is used from the Cabauw site. This site features a 213 m high tower
equiped with instruments of different sorts to continually monitor the atmospheric boundary
layer. Most extensively used in this paper are the Gill R3 sonic anemometers which are
mounted on the tower, positioned at respective heights of 3 m, 60 m, 100 m and 180 m.
These produce 10 Hz measurements of the threedimensional wind vector and of temperature,
which allows the calculation of Eddy Correlation fluxes.
Since we are interested in longer timescales, a single day will not be sufficient to base our
analysis on. We therefore looked for comparable days.
To start, data is used from a rare happening of nine successive cloudless days from May 3rd
up to and including May 11th, 2008, which show very nice convection-driven behaviour. This
set is then extended with comparable days throughout spring and summer of 2009. This
yields a set of seventeen days with temperatures typically between 15 and 25 degrees Celcius,
wind speeds below 10 m/s and a wind direction between north- and southeast.
In order to provide a stronger statistical basis for testing of parameterisation or for analysing
parameters which are extremely noise, the dataset is further extended with convective days
in the summer and spring of 2007 and 2006. These days share the same characteristics,
although increasing the temperature spread to a maximum of 32 oC. This adds another 15
days, giving a total of 32 days with excellent convective data on four measurement heights
at high frequency. Table 2.1.1 gives an overview.

2.1.2 LES data

To get a firmer grip on the three-dimensional dynamics of the boundary layer, especially when
investigating thermal structures, the measured Cabauw data set is supplemented with LES
(Large Eddy Simulation) results. The notion of LES is described extensively in the literature
and it is assumed the reader is familiar with it.
An LES run is done with a surface flux of 60 W/m2 and geostrophic wind forcing of 4 m/s,
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CHAPTER 2. DATA AND METHODS

Table 2.1: Typical wind conditions of the used data

Typical u [m/s] Wind direction Dates

< 4 NE -
< 4 E 2007/7/17-19, 2007/4/15
< 4 SE 2008/5/7
4 − 5 NE -
4 − 5 E 2008/5/10, 2009/8/6, 2006/7/1, 2006/7/16
4 − 5 SE 2009/8/5
5 − 6 NE 2009/4/29
5 − 6 E 2008/5/8, 2006/7/2-3
5 − 6 SE 2008/5/3-4, 2008/5/11, 2009/8/4, 2009/8/23, 2006/6/10
6 − 7 NE 2009/4/30, 2007/4/2
6 − 7 E 2008/5/5-6, 2007/4/30, 2007/5/1
6 − 7 SE -
≥ 7 NE 2008/4/21, 2007/4/1, 2007/4/29
≥ 7 E 2009/4/15
≥ 7 SE 2008/5/9, 2009/4/24

to accomodate fair comparison with Cabauw measurements. A full horizontal cross section
is stored at 6 different heights every two seconds to be able to analyse the behaviour of large
structures in time. This data is stored at several one-hour periods such that a range of in-
version heights is acquired.
The LES experiments are performed without any moisture content, such that virtual tem-
peratures are equal to the absolute temperatures.
Other LES simulations involve one with geostrophic wind forcing of 2 m/s and two simula-
tions with surface fluxes of 30 and 90 W/m2.
Runs are made with a resolution of 40m horizontally and 20m vertically, on a 128 by 128
horizontal grid, thus spanning more than 5x5km.

2.2 Wavelet Transform

One of the methods that will be used to analyse the given data is wavelet analysis. Wavelet
analysis has the great advantage over Fourier analysis that the result is localized in time and
space, such that structures in space are not lost, while it still decomposes the series over a
range of timescales.
In this report a simple form of the wavelet analysis will be done, as described by de Haij,
2005. Therefore, here we give only a short summary.
The wavelet is a zero-mean function which is localized in time and space, and preferably
represents the form of the structures one is looking for. Therefore, the Mexican Hat wavelet
is chosen in this research, which is visualized in figure 2.1. It is given by:

ψ(x) =
1 − x2

√
2π

e−x2/2 (2.1)

Where x is a dimensionless parameter, which represents t/s in our analysis, with t the time

4



CHAPTER 2. DATA AND METHODS

Figure 2.1: General shape of the Mexican Hat wavelet. The function shown here is not normalized.

difference between two points in the time series, and s the wavelet scale. Therefore, the
Mexican Hat has zeros at t = −s and t = s. The wavelet transform is the convolution of the
wavelet function with the time series, so applying a filter which tests the power found in the
time series in timescales of the order s.
This transform is then done with increasing s, which can be increased exponentially to avoid
using an unnecessary amount of computer resources:

sj = s02
j/2 (2.2)

The smallest scale is chosen as s0 = 2dt. The result of this process is a wavelet transform
Wi(s) which is dependent on time (through the discrete timesteps i) and on scale s. To
analyse how much power can be found on each scale the function can be averaged over time
such that a power spectrum is yielded as follows.

W
2
(s) =

1

N

N−1
∑

i=0

|Wi(s)|2 (2.3)

This could be used to find on which scales the greatest amount of power is located by locating
the maximum of the above function. Note however that this scale represents the distance
from the maximum to the zero crossing, and hence the size is twice this scale.
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Chapter 3

Timescales in the atmospheric

boundary layer

3.1 Defining a dominant timescale

An important aspect of this study will be to analyze the timescales involved in turbulent
transport in the boundary layer. The dominant timescale is relevant in determining the
appropiate averaging period when applying the Eddy Correlation method. It also gives -
together with the mean wind speed - information on the mean size of turbulent eddies. It is
therefore likely that a possible presence of so-called Turbulent Organized Structures (TOS)
can also be related to the timescale of transport.
In this paper quantitative relations between these phenomena are sought.
The first problem in this is the determination of the dominant timescale. Many timescales
have been proposed, based on, for example, the use of Ogives, the integration of the correla-
tion function (Ouwersloot, 2009), or the integration of the spectrum (Schalkwijk, 2008).
In this paper, the timescales will be based on the cospectra of w′T ′, since it is the dominant
timescale in turbulent transport of heat that is the main focus of this research. As a spectrum
decomposes time series over frequency, it is a logical candidate to examine when evaluating
timescales. The cospectrum will be used as a weight function to determine a weighted fre-
quency. This frequency is then converted to the dominant timescale as f∗ = 1/t∗.

t∗ =

[
∫

∞

−∞
fSwT (f)df

∫

∞

−∞
SwT (f)df

]

−1

(3.1)

Note that, assuming a certain common spectrum shape, most forms of a dominant timescale
can be directly related to each other, and hence the main effect of a choice of a certain
timescale involves the way it has to be calculated and the possible errors in this. Some of
these errors have been discussed by Ouwersloot (2009).

In the following we rely on surface-layer similarity theory which states that in the lowest
part of the atmospheric boundary layer the relevant parameters are friction, velocity and
virtual temperature flux. From this, only one dimensionless stability parameter can be con-
structed, e.g. z/L. Dimensional arguments then show that each dimensionless turbulent
quantity can only be a function of z/L.
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CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

For observations higher up in the boundary layer, this approximation will fail and and other
parameters, like boundary layer height, come into play.

3.2 Spectral analysis

As suggested in the previous section, spectral decomposition is very useful when examining
timescales in the boundary layer. Kaimal (1972) showed that spectra demonstrate great
similarity when made dimensionless with friction velocity u∗ and temperature scale T ∗ and
grouped by the stability parameter z/L. In this paper a somewhat simplified approach will
be taken, where the surface layer spectra approximation is used according to Bosveld, 1999,
which is based on Kaimal’s paper.
The relation is as follows, where n is the dimensionless frequency n = fz/U .

U

z
Sf

wT (f) = Sn
wT (n) = FT

a
(

1 + n a
p−1

)p (3.2)

Which is here normalized such that
∫

∞

0 Sn
wc(n)dn = Fc. Now introducing the earlier proposed

dominant frequency f∗:

f∗ =
1

FT

∫

∞

0
fSf

wT (f)df =
U

zFc

∫

∞

0
nSn

wT (n)dn (3.3)

Introducing 3.2, this results in:

f∗ =
U

z

∫

∞

0

an
(

1 + n a
p−1

)p dn (3.4)

Now changing variables to x = 1 + an
p−1 , the integral becomes:

f∗ =
U

az

∫

∞

1

(x− 1)(p − 1)2

xp
dx (3.5)

The integral can now be performed analytically for p > 2, which is the relevant case for the
opted application, resulting in:

f∗ =
U(1 − p)

za(2 − p)
(3.6)

In the case of the turbulent heat fluxes: w′T ′ we have p = 7/3 and hence we find:

a =
4U

f∗z
(3.7)

Note that this equation allows us to compare the dominant timescale t∗ = 1/f∗ with the
timescale used in Bosveld’s analysis, Jwc. Bosveld defined the timescale as:

Jwc =
1

Rwc(0)

∫

∞

−∞

Rwc(τ)dτ (3.8)

7



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Which resulted in a = 2JwcU/z. Comparing this with 3.7 we find the direct relationship

t∗ =
1

2
Jwt (3.9)

Returning to the spectrum, inserting a and setting n∗ = f∗z/U , we find:

Sn
wT (n) =

4FT

n∗
1

(

1 + 4n/n∗

p−1

)p (3.10)

Interesting is the fact that we can rewrite this spectrum in terms of f instead of n to find:

Sf
wT (f) =

4FT t
∗

(

1 + 4ft∗

p−1

)p (3.11)

This allows some further physical interpretation of the earlier defined timescale t∗. Note
that, when first dividing equation 3.11 by Fc =

∫

∞

0 Swc(f)df and then multiplying left and
right with f , the right hand side becomes a function of f/f∗ only. This allows averaging
of co-spectra derived from different periods, which do not need to have the same timescale
t∗. Since t∗ is also dependent on z/L this means that such an average may also contain co-
spectra with different stability. This is an obvious advantage over displaying the co-spectra
as a function of the dimensionless frequency n.
Averaging in this paper is done by dividing the horizontal scale (in this case ft∗) in a suitable
number of bins. The data is then grouped into these bins. The data within the bins is
averaged. Horizontal bars over the points display the bin size, vertical bars the error in the
mean . Hence the vertical error bars represent the error of a certain point y given by:

σy =
σy√
N

=
1√

N
√
N − 1

√

√

√

√

N−1
∑

j=0

(yj − y)2 (3.12)

Where N is the number of points y in the given bin, and σy the standard deviation of y.
Important to note is that while a small vertical error bar indicates a small error in the mean,
no error bar is drawn in the bins where N = 1, meaning an unkown error instead of no error.

Figure 3.1 shows such an averaged spectrum. It shows a comparison between measured spec-
tral data and equation 3.11, based on surface layer theory. The data is taken from 10-Hz
sonic anemometer observations, collected over seventeen selected convective days, spread over
spring and summer of various years. The data is corrected for tilt before spectral analysis
is done. Cross-wind correction on sonic temperature is done internally in the instrument.
Spectra are based on three-hour intervals around noon. These intervals are split into sections
of 6 minutes for 3m, and 14 minutes for other heights. These section lengths are chosen as
it has been found that the timescale t∗ is independent of further increasing the maximum
section length, suggesting that these section lengths are long enough for a correct evaluation
of t∗.
Figure 3.1 shows the spectra on a logarithmic horizontal axis. The result is that a peak is
introduced in the spectrum. This peak is intuitively a measure of which timescales are im-
portant in w′T ′ transport. Indeed, using equation 3.11 by setting the derivative of fSwc(f)

8



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.1: Spectral data of a three-hour interval around noon (dots), averaged over 32 convective
days, is compared to the empirical form of equation 3.11 (dashed line).
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CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

to zero, it is found that the peak is located at a frequency corresponding to t = 4t∗. This is
confirmed when examining figure 3.1.
The qualitative behaviour of the observed co-spectra is reasonably modelled by the simple re-
lationship of equation 3.11, especially on the high-frequency range. This in accordance with,
for example, Kaimal, 1972, who finds noisy behaviour in the low frequency part of spectra
for z/L < 0, but better behaviour in the inertial subrange. Note that all the data used for
figure 3.1 indeed has z/L < 0 as can be expected for convective days.

3.3 Low frequency loss

The true flux at a given time is defined as the rate of transport through a given horizontal
plane. When measuring Eddy-correlation (EC) fluxes, temporal averages are used to approx-
imate the true flux. In this process, the underlying assumption is that when measuring long
enough, a representative image of the flux is formed. A prerequisite for this to be true is
thus, that all characteristics of the flux field ’pass by’ the observer in this averaging period.
However, fluxes which are transported over timescales longer than the averaging time T , will
not be adequately represented by the EC-flux. This leads to an overall low frequency loss.
In this section an analytical approximation to the low frequency loss is sought.

Let w(t) and c(t) be the stationary turbulent time series of the vertical wind speed and
a scalar quantity, respectively. With the overbar denoting temporal averaging, the Eddy
Covariance flux over a period T is found as:

F T
c =

1

T

∫ T/2

−T/2
(w − w) (c− c) dt (3.13)

Writing out the product and performing ensemble averaging (denoted with the curved paren-
thesis) the actual flux Fc can be taken out and, introducing the time correlation function
Rwc(τ), this can be rewritten to:

{

F T
C

}

= Fc

[

1 − 1

T

∫ T

−T
dτ

(

1 − |τ |
T

)

Rwc(τ)

]

(3.14)

Now performing the integration we find that the loss becomes:

Loss =

∫

∞

0
Sf

wc(f)
sinπfT 2

(πfT )2
df (3.15)

Where the cospectrum Swc(f) =
∫

∞

−∞
Rwc(τ)e

2πifτdτ is introduced. The factor with which
the cospectrum is multiplied can be thought of as a low-pass filter, which can be approximated
by the simpler expression 1 − fT to find:

Loss =

∫ 1/T

0
Sf

wc(f) (1 − fT )df (3.16)

10



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.2: The absolute behaviour of equation 3.19.

In the previous section an expression was found for the spectral behaviour. Using this relation
allows us to find an explicit expression for the loss as follows. Rewrite equation 3.15 for the
case of heat fluxes in terms of Sn

wT (n) and introduce 3.10 to find:

Loss =

∫ z

TU

0
Sn

wT (n)(1 − nTU

z
)dn

=
4FT

n∗

∫ z

TU

0

(

1 +
4n

n∗(p− 1)

)

−p (

1 − n
TU

z

)

dn (3.17)

Now change variables to x = 1 + 4n
n∗(p−1) , and introducing y = 1 + 4/f∗T (p− 1), we have:

Loss =
FT (p− 1)

y − 1

∫ y

1
yx−p − x1−pdx (3.18)

This integral can be evaluated to yield the final expression:

Loss = FT

(

1 +
y2−p − 1

(p − 2)(y − 1)

)

(3.19)

Interesting is that the loss fraction is now solely a function of T/t∗, the averaging time over
the dominant transport timescale. Figure 3.2 demonstrates the behaviour of equation 3.19.
The loss quickly decreases over the first five t∗ to about 30%. It then converges slower to
reach a loss of 10% in about 20t∗ and 5% in 40t∗.

Now that a physical interpretation of t∗ and the behaviour of the Eddy Covariance loss
as a function of t∗ are known, it is a good idea to evaluate how t∗ typically behaves in the
atmospheric boundary layer, and look at the typical order of magnitude. Figure 3.3 shows
t∗(z) for near-neutral, unstable and stable situations. These situations are chosen so as to
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CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

accomodate comparison with the gap timescale which will be introduced in chapter 3.5.
The figure is based on data from 32 days which are especially selected for their optimal
convective characteristics. Data with |L| ≥ 100 is grouped as near-neutral, while data with
|L| < 100 is grouped by sign into unstable and stable groups. This yields a dataset of respec-
tively 4, 24 and 36 three-hour periods at all measuring heights.
Note that dependence of t∗ on other parameters like horizontal wind speed U is expected, so
figure 3.3 should be seen as an indication of the typical order of scales in the boundary layer
for different situations, and not be interpreted too quantitatively.
The figure shows a behaviour of t∗ like what one would expect from a timescale which charac-
terizes turbulent transport. It increases with height, yet the increase becomes less steep with
greater height. Note that a slope corresponding to the diagonal of the graph corresponds to a
scale proportional to the height. The increase is also influenced by the stability, as in unstable
situations the timescale can grow to more than an order larger than in stable situations.
On a clear, convective day, which is a typical unstable situation, the timescales grow from the
order of 4 seconds at 3m to more than a minute at 180m. Comparing this with the behaviour
of equation 3.19, the result is that averaging times in the order of 20 minutes will be needed
at 180m to reduce the loss below 10%. At 100m this drops to 10 minutes, while at 3m an
averaging time of 2 minutes is more than enough to reach this accuracy. In stable situations
timescales rarely grow beyond the order of 10 seconds, even at greater heights.
The length scale characterizes the typical order of the size of eddies dominantly responsible
for turbulent transport. Note that at 180m in convective surroundings, the length scale typ-
ically grows to as much as 300m. Remembering that the peak of the fSwc(f) spectrum falls
on t = 4t∗, this would correspond to eddy sizes on the order of the inversion height, which is
what is generally expected to happen in this situation.
Interesting is also to see that length scales are of the same order in unstable and stable
situations for measurements 3m high. This is a strong indication that eddy transport at
this height is mainly limited by the height itself and independent of other parameters. The
differences in time scales in this regions is then solely explained by differences in wind speed.

Returning to the loss function, note that in the process of deriving equation 3.19, no addi-
tional assumptions where made in comparison to the result (eq 6.12) in Bosveld, 1999. This
means that 3.19 is simply another manifestation of the same function, now based on the
earlier defined dominant timescale t∗.
This provides the possibility of comparing these expressions. The advantage of using equation
3.19 is that the t∗ is acquired directly from the spectral data. This means that no empirical
relations are needed to find the loss, one can rely on measurements only. This provides a nice
way of examining the correction method.
First, it is now possible to compare the empirical relation which is used to determine JwT

using t∗, since equation 3.9 relates t∗ directly to JwT . The advantage in this lies in the fact
that t∗ is easier to determine since it does not require the integration of an infinite correlation
function.
Bosveld parameterizes the timescale for turbulent transport of heat as:

lwt(z/L) =
JwTU

z
=

{

5.0 z/L < 0,
5.0

1+6.7z/L z/L ≥ 0.
(3.20)

12



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.3: The average behaviour of the dominating transport timescale t∗ in seconds (connected
boxes on the left) and the associated length scale (m) which is found by Taylor’s hypothesis as
L∗ = Ut∗ (right line).
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CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.4: The nondimensionalized dominant timescale is plotted against the stability parameter
z/L. Data collected at different heights is distinguished by symbol. The dotted line represents the
equation 3.21. The dashed line represents a custom fit, equation 3.22. The left figure shows unstable
cases for convective circumstances, the right figure shows stable cases at night. Both figures are based
on a selection of 32 days.

Using equation 3.9, we can relate this equation to t∗:

Ut∗

z
=

{

2.5 z/L < 0,
2.5

1+6.7z/L z/L ≥ 0.
(3.21)

Note that this means that for ideal days with very convective circumstances, L is typically
negative and hence the parameterisation is simply Ut∗/z = 2.5. To evaluate the reliability of
this approximation, data is collected from 32 days, selected for their convective circumstances.
For each of these days, two periods are selected, one from 0.30 to 3.30h at night, and one
from 10.30 to 13.30h around noon. Measured data is corrected for tilt and then averaged
over these periods. The results are shown in figure 3.4.
The dotted line in figure 3.4 represents equation 3.21. The figure suggests that in convective

circumstances, data from the 3m sensor is structurally being underestimated by equation
3.21, data from the higher sensors is overestimated. In stable circumstances, all data is
underestimated.
The dashed line in figure 3.4 is a custom fit:

Ut∗

z
=

{

1.70 + 2.30
1−1.43z/L z/L < 0,

4.0
1+3.5z/L z/L ≥ 0.

(3.22)

Which is seen to better match the data than equation 3.21. Note that closer inspection
suggests that influence from an extra parameter, as data from increasing heights seems to
structurally lie slightly lower in the graph. This unkown parameter is expected to be the
boundary layer height zi. Indeed, a slight structural dependence on zi is found, but for the

14



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

intended application the slight induced error by using a single curve for all heights is not very
significant, and the fitted curve is clearly an improvement on equation 3.21.
The problem in equation 3.21 lies in the way it is derived. Note that, in the process of
acquiring equation 3.11, the spectrum is modelled by a simplified curve. The peak of this
curve lies in the point n = 1/(2lwc). Equation 3.20 is based on this relation and the behaviour
of the maximum, as is found in Kaimal, 1972. The problem here is that equation 3.11 is based
on the −7/3 power spectrum, while Kaimal uses a function composed of two parts, where
the −7/3 powered part is typically not the part where the maximum lies.
For example, Kaimal introduces the following parameterisation for the case z/L = 0:

nSn
wc(n) ∼

{

11n
(1+13.3n)1.75 n ≤ 1,

4.4n
(1+3.8n)2.4 n > 1.

(3.23)

Differentiating, the maximum of nSwc(n) lies in the low frequency part of the function, at
n = 0.10. This directly results in the 5.0 to which equation 3.20 reduces when z/L = 0.
However, it is clear that the −7/3 part of the function is no longer valid here.
How much of a problem this assumption exactly is can only become clear by looking at
the correction scheme at work. Using raw 10Hz data from the Cabauw tower, it is possible
to study the effects of varying the averaging period. This can then be compared with the
relationships derived above.

Figure 3.5 does exactly that. The diamonds represent the w′T ′ flux as the averaging
time varies. The data is based on 3-hour intervals around noon on the selected days. Only
averaging times which fit an integer number of times into the 3-hour interval - such that no
data is missed - are used. The data is then normalized as relative loss with respect to the 5
or 20 minutes averaged flux, for 3 meter or other heights, respectively:

L = 1 − w′T ′(Taveraging)

w′T ′(Tmax)
(3.24)

All data has been corrected for tilt before it is used.
The solid line represents equation 3.19, also normalized with respect to the same averaging
time. This allows comparison of the behaviour of the fluxes. Note that, as t∗ comes from the
spectral data, the only approximations introduced in this line are the use of the spectral shape
as proposed by Kaimal, equation 3.2 and the simplification of the low pass filter, equation
3.16. The dots represents how the correction algorithm is now applied, hence it introduces
another approximation, equation 3.21. Calculated values of t∗ and J/2 are also displayed.
When these two equal, the dots fall exactly over the solid line.
The interpretation of this figure is now that points which fall above the solid line are fluxes
with smaller magnitude than surface layer theory would predict. Where points fall under the
solid line, surface layer theory underestimates the true flux.
Figure 3.5 demonstrates that for very convective days, fluxes behave very reasonably accord-
ing to surface layer theory all the way up to 180m high. The data does become more noisy at
greater altitude, but the loss is estimated reasonably well by the correction algorithm, even
though t∗ is not always accurately represented through J/2.
Although figure 3.5 illustrates well the principal idea of the correction method, it does not
provide enough statistics to give much information on the quantitative performance of the
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Figure 3.5: The behaviour of w′T ′ fluxes as averaging time varies is compared with correction
algorithms as derived from boundary layer theory. The diamonds represent data taken from the
Cabauw tower, measured on May 4 and May 5, 2008. The solid line is equation 3.19 with t∗ from the
spectral data, while the dots(.) result from the use of relationship 3.21.
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method. To better evaluate whether or not systematic errors are made, the averaging algo-
rithm discussed earlier is used to average the behaviour of the measured flux as a function
of T/t∗, the averaging time over the timescale. Note that equation 3.19 suggests that indeed
the loss is a function of this quantity only.
Figure 3.6 shows this averaged behaviour, with the black boxes representing the averaged

data and the red crosses representing the averaged prediction of the correction algorithm,
based on the same data. The only difference between the red crosses and the dotted line
lies in the way t∗ is found, which the red crosses derive from equation 3.21 while the dotted
line is based on the spectrum. Hence, the impact of the error visible in figure 3.4 is directly
visualised.
In this figure, none of the data is normalized such that it accounts to zero after a certain
period of time (equation 3.24). Instead, w′T ′(Tmax) in equation 3.24 is corrected according
to equation 3.19. This forces w′T ′(Tmax) on the dashed line. However, this action is less
drastic than forcing the loss to be zero at Tmax in order to enable comparison, which is what
is done if the loss is displayed relative to the flux at Tmax. Therefore, figure 3.6 allows for
some more quantitative evaluation.
The general picture of figure 3.6 is rather promising. Especially at 60 to 100 meters high the
correction algorithm (red) follows theory very well. This could have been expected from figure
3.4, which shows that many of the 60 and 100 meter measurements are found at z/L ∼ −5
and scatter close to the dashed line. Even more promising is the fact that the data from the
Cabauw tower falls very nice over the correction predictions, indicating that the behaviour
of the fluxes when varying the EC averaging time can indeed be predicted.
At 3m and 180m, figure 3.6 shows a departure by the correction method from theory. This
can also be seen from figure 3.4, which shows that the value of Ut∗/z is systematically overes-
timated at 3m and systematically underestimated at 180m. The result is that the correction
predicts a faster respectively slower decrease to zero loss. Since the data still closely follows
the predicted loss (dashed line), an error is introduced in the correction.
For average use, the error in the correction at 3m is not a large problem, as it has largely
diminshed after T/t∗ = 50, which at this height typically occurs at an averaging time of 2.5
minutes, where typical averaging times stretch over 10 minutes or more. At 180m, however,
averaging times of 10 minutes typically correspond to T/t∗ = 10, at which point a significant
departure of the correction method is found.
The blue triangles represent the result of using Bosveld’s correction method, but now based
on the fit of equation 3.22. As expected, it is seen to match theory and data better for all
heights, but especially for 3m and 180m. Although for T/t∗ > 10 at 180m the performance of
the correction decreases, it remains better than or equivalent to the performance of equation
3.21.
For convective days then, it can be concluded that surface layer theory holds well enough
and the correction algorithm based on these relationships can well be used. When tuning the
correction method with equation 3.22 the correction method’s applicability can be extended
up to measurements at 180m height.

Figure 3.7 shows the behaviour in stable situations. The same 32 days are used, but now a
period from 0.30h to 3.30h is selected. Cases with an absolute flux |w′T ′| < 0.010Km/s are
left out since this introduces practically only noise. The result of this is that only heights
of 3m and 60m are displayed since above these heights the absolute flux rarely meets this
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Figure 3.6: The behaviour of w′T ′ fluxes as a averaging time varies is compared with correction
algorithms as derived from surface layer theory. Black boxes represent data which is averaged over
32 days which are selected for their convective circumstances, with the average value for t∗ printed in
the title. Averaging bin sizes vary exponentially such that like amounts of points fall in each bin. The
red crosses represent the averages of the correction method described in Bosveld, 1999, applied on the
same dataset. The dotted line represents equation 3.19 with t∗ extra directly from the spectra. Blue
triangles represent the averages of a correction method equal to Bosveld, but based on equation 3.22
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Figure 3.7: The behaviour of w′T ′ fluxes as a averaging time varies is compared with correction
algorithms as derived from surface layer theory. Black boxes represent data which is averaged over 32
days. Red crosses represent the averages of the correction method described in Bosveld, 1999, applied
on the same dataset. The dotted line represents equation 3.19 with t∗ extra directly from the spectra.
Blue triangles represent the averages of a correction method equal to Bosveld, but based on equation
3.22

minimum criteria.
At night, the correction algorithm (red) systematically underestimates the loss, while a tweak
with equation 3.22 (blue) shows a striking improvement. At 3m high, the figure shows great
agreement between theory, use of equation 3.22 and the data.
The plot shows interesting features at 60m as well. Note that the dashed loss function seems
to overestimate the loss systematically, while the blue line for the tuned correction method
follows the data almost perfectly. Since the only difference between these methods is the way
t∗ is evaluated, a possible explanation for this lies in the fact that the spectra of the smaller
nightly fluxes are typically much noisier than the spectra for fluxes in convective surround-
ings. Hence, it is possible that evaluating t∗ using this spectra (equation 3.1) is less succesful
at night.
While these differences are striking for T/t∗ < 20, they have little impact for the typical
averaging time of 10 minutes, since for the small values of t∗ found at night, this would
correspond to values of T/t∗ around 150, at which point the fluxes have long converged.

The major sidenote on figures 3.6 and 3.7 would be that correcting w′T ′(Tmax) according
equation 3.19 forces the data at Tmax to fall on the dotted line. Although the agreement in
the behaviour of the data and predictions is very good, which at least indicates the correct-
ness of the prediction, it gives no information on the fluxes found on timescales larger than
Tmax, and hence the absolute loss found in the data.
To investigate whether or not a significant flux is found in timescales larger than evaluated

above, and which are not predicted by the above correction methods, the above analysis is
continued for longer timescales. Tmax is taken at the same values of T/t∗ as was done for
figure 3.6, but after T = Tmax the analysis is continued. This way the data is allowed to
deviate from the prediction for T > Tmax if a significant flux is found there.
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Figure 3.8: The behaviour of w′T ′ fluxes as a averaging time varies is compared with correction
algorithms as derived from surface layer theory. Black triangles represent individual results, while the
red line pluses display the result of averaging the individual results over the bin size indicated by the
horizontal line. The dashed line represent the theoretic loss of equation 3.19.
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Figure 3.8 displays these results. Note that the individual results show an increased spread
as T/t∗ increases, which also increases with height. One explanation for this spread is the
fact that points with higher T/t∗ fit less integer times into the interval used for calculation,
increasing the uncertainty. Another might be the influence of diurnal variability. An attempt
is made to compensate for this increase of uncertainty by averaging over a large amount of
days and evaluating if an average systematic flux is found. The results of this averaging is
the red line. Figure 3.8 shows data based on three-hour intervals around noon of 32 selected
days. For this figure, used temperature data is first detrended. Note that this involves the
possibility of removing a part of very long timescale fluxes, but it is found that the spread
is greatly decreased by detrending. This suggests the detrending process did not remove any
systematic flux.
Figure 3.8 gives no reason to suggest a significant, systematic flux at larger timescales for
the lower heights. At 3m and 60m the flux is very well-behaved. However, the figure shows
an increasing mismatch with the predicted loss for increasing heights. For 100m and 180m,
it seems that an underestimation of the true flux is made by small-timescale measurements,
since the spread of points seems to be centered beneath the dashed line. However, the amount
of datapoints is not large enough to provide hard proof on this subject. Even besides the
amount of datapoints, it is the question if errors in eddy covariance averaging can be found
using EC methods, even when averaging for long timescales. After all, if the EC method
converges to the wrong value (as has been suggested by Schalkwijk, 2008; and Ouwersloot,
2009), this will never be detected using above methods.
The issue here is that with timeseries at one point we will never sample all relevant structures
occuring at a large horizontal plane.
It seems techniques as used so far cannot be used to prove whether a systematic part of the
flux is found in very large timescales. Note that comparison is further made difficult by the
fact that these papers have been mainly concerned by the fundamentals of such a systematic
loss, and have only studied cases for U = 0. The loss correction as described in this paper
is a function of T/t∗ (equation 3.19), where t∗ is found by equation 3.22. Note that this
last equation behaves asymptotically for t∗ as U approaches zero, hence the loss prediction
is undefined for this case.

3.4 Eddy Covariance flux measurements in LES data

Later in this report, several qualities of behaviour in timeseries from Cabauw data can be
reproduced in LES simulations. This raises the question whether the behaviour of EC flux
measurements as a function of timescales can also be reproduced. In fact, LES data has a
major advantage over measured data when considering large scale contributions: the ’true’
flux is very closely approximated by the spatially averaged flux, and hence we are not depen-
dent on the correction of a long-averaged flux to represent the true flux, as we were in the
production of figure 3.6.
Therefore, the true loss can be visualized, while it becomes possible to investigate whether
the EC flux really approaches the spatial flux for long timescales.
This advantage comes at a cost, though, since LES simulations at common resolutions cannot
resolve turbulence nearly as small as the 10 Hz sonic measurements can. This causes problems
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when calculating the dominant timescale t∗ as was done for figure 3.6. To compensate for
this, t∗ is corrected for this high frequency error based on a general spectrum shape (equation
3.11).
For a fair comparison, figure 3.4 shows the behaviour of the loss completely analoguous to

what was done for figure 3.6, meaning that the loss is considered with respect to the corrected
EC flux at Tmax and not the true flux. The figure is now however based on 100 randomnly
chosen time series from a 128 by 128 horizontal grid at heights approximately corresponding
to the top turbulent observation levels of the Cabauw tower. The time series are based on
the LES from 9 to 10 hours simulated time, in which the boundary layer height grew to the
order of 1km.
The behaviour is very much alike the Cabauw data loss, which is a comforting knowledge.
However, the theoretic line seems to systematically underestimate the true loss for larger
T/t∗. Since the behaviour for low T/t∗ is very good, it is difficult to state whether this is due
to a faulty evaluation of t∗. This would be the first expected cause, as it is not unexpected
that the correction of t∗ is not completely accurate.
Now that the similarity is established, the same analysis can be done, but now regarding the
loss with respect to the spatial flux, which is supposed to represent the ’true’ flux. Figure
3.10 shows this results. The same qualitative behaviour is witnessed as in figure 3.6 for small
T/t∗, although it does not completely correspond to the theoretical line, especially at greater
altitude. This might point at a faulty evaluation of t∗.
However, for larger T/t∗, the EC average stops converging to the true flux, resulting in a
typical absolute loss of about 20%, with this absolute loss decreasing with height. This is
a strange phenomena which can not easily be explained, as expectations are that the loss
increases with height (Schalkwijk, 2008; Ouwersloot, 2009). The question is also whether the
behaviour for large T/t∗ in the first figure ’warned’ us of the behaviour for the true loss. This
would indicate that as the measurements show no such behaviour, they do not deviate from
the true flux that much.
A full LES study will be needed to state whether or not the EC behaviour in LES is fully
comparable to the behaviour of measured time series.

3.5 Multiresolution decomposition

Instead of using a Fourier analysis to find a spectrum, Vickers and Mahrt (2002) propose the
use of multiresolution spectra. This algorithm decomposes the flux over timescales t = δt2m,
where m integer. This is done by partitioning the interval into averages on scales of 2m

consecutive data points. Where Fourier analysis decomposes the spectrum using predefined
functions e2πint/T , multiresolution (MR) analysis decomposes the record into averages on
different timescales, satisfying Reynold’s averaging on all scales. A full description of the MR
algorithm is found in Vickers and Mahrt, 2002.
According to Vickers and Mahrt, the MR cospectrum Dwc relates to the Fourier spectrum
Swc as Dwc(m) ∼ fSwc(f). This would mean that the MR spectrum can be related to the
modelled spectrum 3.11 directly, according to:

Dwc(m) ∼ 4FCt
∗/t

(

1 + 4t∗/t
p−1

)p (3.25)
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Figure 3.9: The behaviour of w′T ′ fluxes as a averaging time varies is compared with correction
algorithms as derived from surface layer theory as figure 3.6, now based on LES results. 100 time
series were randomly chosen from a single LES run from 4-5h simulated time. Black boxes represent
the averages of EC fluxes as calculated from these time series, with respect to the corrected flux with
Tmax =10min. The dashed line represents equation 3.19. Titles indicate the average values for the
corrected t∗.

23



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.10: The behaviour of w′T ′ fluxes as a averaging time varies is compared with correction
algorithms as derived from surface layer theory as figure 3.6, now based on LES results. 100 time
series were randomly chosen from a single LES run from 4-5h simulated time. Black boxes represent
the averages of EC fluxes as calculated from these time series, with respect to the spatial flux. The
dashed line represents equation 3.19. Titles indicate the average values for the corrected t∗.
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(a) Unstable data, scaled according to equation
3.26 and bin-averaged as before.

(b) Stable data, individual MR spectra without
any scaling.

Figure 3.11: The behaviour of the MR spectrum based on 3m sonic data taken from three-hour
periods from a) 10.30-13.30h and b) 0.30-3.30h.

With t = t(m) as above. Now FC =
∫

∞

0 Swc(f)df ∼
∫

∞

0 Dwc(m)/fdf , thus equation 3.25
becomes:

Dwc(m)
∫

∞

−∞
ln(2)Dwc(m)dm

=
4t∗/t

(

1 + 4t∗/t
p−1

)p (3.26)

Figure 3.11(a) compares the 3m data to this equation as an example. Indeed, figure 3.11(a)
closely resembles figure 3.1.
The increased amount of noise in figure 3.11(a) is due to the fact that a MR spectrum based

on 3 hours of 10Hz data is composed of only 16 points, as timescales range from t = δt = 0.1
second to t = δt216 ≈ 1.82 hours. Thus, no segmentation of the dataset is done, as was
performed in the Fourier analysis. This is the reason larger timescales are reached than the
Fourier analysis reached before. The disadvantage is that large jumps are made in timescale
stepping, which introduces large errors when, for example, numerically integrating the spec-
trum.
However, it is not the idea of the MR spectrum to make it look like a Fourier spectrum.
Instead, Vickers and Mahrt state that a gap region becomes clearly visible in the MR cospec-
tra. This gap region is the region which is then supposed to seperate turbulent fluxes from
mesoscale motions.
Indeed, figure 3.11(b), composed of seventeen three hour periods of stable periods after tilt
correction, indicates the existence of such a gap time scale. Less days are used than the
32-day dataset for clearness of presentation, since the spectra are not suited for averaging.
Scales of turbulent transport at night are generally much smaller than those in convective
circumstances, however, so it is interesting to see whether a gap timescale can be seen for
those circumstances.
Figure 3.12 shows the MR spectra of the dataset of seventeen days with three-hour periods
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Figure 3.12: MR heat flux cospectra of seventeen three-hour periods around noon at several heights.
No normalisation has been done.
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around noon. While a gap timescale can mostly still be identified at 3m, the spectra become
much noisier at greater heights and a gap timescale is not easily identified.
Vickers and Mahrt proposed the use of an automated algorithm to objectively find the gap
timescale. This algorithm scans the MR spectra from small t to large after having applied
a 1-2-1 filter to smooth out the noise. It then identifies the first peak. The gap scale is
identified where the cospectra either increase or level off at a time scale greater than this
peak time.
Note that the large amounts of noise at larger heigts will greatly inhibit the accuracy of this
scanning algorithm, as it is clear that the noise is too large to be smoothed out with a 1-2-1
filter. This is identified as a random sampling error by Vickers and Mahrt, who propose to
make use of an average gap scale over the entire dataset, instead of using the individual gap
timescales as identified by the algorithm per time series.
It can also be observed that the amplitude of mesoscale contributions increases with height
heights, and that both negative and positive mesoscale contributions occur.
Evaluating this averaged gap scales, Vickers and Mahrt seperate unstable, stable and near-
neutral situations and find a clear height-dependence. In order to accomodate a comparison
between the CASES99 data from Vickers and Mahrt and the Cabauw data used in this paper,
the same distinction will be made here. Data with |L| ≥ 100 is grouped as near-neutral, while
data with |L| < 100 is grouped by sign into unstable and stable groups.
Data is selected from the 32 day data set as mentioned before. To allow for fair comparison
with Vickers and Mahrt, one-hour periods are used. Each day two stable one-hour periods
from 1.00-2.00h and 2.00-3.00h are selected, as well as 3 unstable periods from 10.30-13.30h.
This gives a respective spread of 17, 67 and 76 one-hour periods for the near-neutral, unstable
and stable groups. Figure 3.13 shows this data, where the data is averaged ’geometrically’,
hence the average of the logarithm of the values is taken, which corresponds to the logarith-
mic horizontal axis and gives less weight to large values, hence decreasing the spread.
Note that even with so much data and averaging logarithmically, the error in the averages
is still very significant, and far larger than was observed in figure 3.3. This is due to low
amounts of points per spectrum, which results in the fact that each single step upwards in
gap timescale is a doubling of value. Furthermore, the strange behaviour of sudden decrease
of gapscales for stable situations above 60m is caused by high amounts of noise in the MR
spectra as the flux magnitudes approach zero for these situations. At this points the auto-
mated gap scale detection algorithm has severe difficulties pinning the right gap scale.
Quantitatively, the comparison is further made difficult by the fact that Vickers and Mahrt
include heights from 0.5m up to 60m, which means that only the lowest two points of the
Cabauw data, 3m and 60m, can be compared to their data. Note that this also qualitatively
gives a distorted picture as they observed a fast increase of gap scales from 0.5m to 10m,
with only three measurement heights in this range.
This increase is not witnessed on the Cabauw site, but this could be due to the fact that

measurement starts at 3m and no measurements are done at 10m. At the comparable heights,
Vickers and Mahrt observe typical gap timescales in the order of 200s for stable situations,
while this grows to the order of 1000s in unstable circumstances. In this range, figure 3.13
displays timescales of the order of 100s for stable situations and 300s for unstable cases. This
accounts to differences of a factor two to three. It might be that this is caused by differences
in location as the gap timescale is expected to be dependent on mesoscale transport scales.
This dependence on mesoscale motions might also explain the fact that figure 3.13 shows

27



CHAPTER 3. TIMESCALES IN THE ATMOSPHERIC BOUNDARY LAYER

Figure 3.13: Height dependence of the gap scale (timescale in seconds, length scale in meters)
as found by an automated algorithm as described by Vickers and Mahrt. The scales are found by
logarithmic averaging.
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very little height dependency, in contrast to figure 3.3 which is expected to show timescales
of dominant turbulent transport. This clearly illustrates the difference in physical meaning
of t∗ and tgap.
Drawing further on this interpretation, it is very interesting to note that features of figure
3.12 can be explained by comparing t∗ and tgap. It is clearly visible in the MR spectrum
of figure 3.12 that while at 3m height a gap scale can easily visually be identified, this be-
comes increasingly difficult at greater heights. This can be directly related to the increase
in t∗ shown over this heights, where it reaches a value of the order of 80 seconds in unstable
surroundings at 180m. Since the peak of the spectrum is reached at 4t∗ ∼ 320 seconds, and
it is seen that at this point tgap ∼ 300 seconds, this predicts the overlap between turbulent
and mesoscale motions which can be directly observed in the MR spectrum of figure 3.12.
This illustrates well the problem of Eddy Correlation flux measurements, as time-based mea-
surements of turbulent fluxes is obviously problematic when timescales of turbulent and
mesoscales motions overlap.
Therefore, it seems this problem cannot be solved so simply by using similarity relationships.
A localized view of the flux behaviour is necessary to further study the influence and be-
haviour of the different scales of motions in the atmosphere.
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Chapter 4

Identification and study of thermal

structures

As mentioned before, Kanda (2006) has suggested the presence of TOS to be (partly) the
cause of the presence of flux on larger timescales and hence the resulting low frequency loss.
Their LES studies showed coherent structures in all conditions. Figure 4.1 illustrates their
results. It shows velocity maps of their LES studies for wind speeds from 0 to 4 m/s, av-
eraged over 1 hour. Note that the average profile blurs somewhat as wind speed increases,
but remains visible even after 1 hour averaging. This means results of one-hour averaging
in timeseries will still be dependent on measurement location even with geostrophical wind
forcing of 4 m/s.
In this section, an attempt will be made to identify and study this structures as they appear
in time series. The same time series resulting from measurements at Cabauw will be used in
the first instance, and will later be supplemented by LES results. The underlying idea is that
with nonzero wind speed, these structures should propagate over the measurement point.
Hence, the measurement in time can be seen as a one dimensional ’slice’ of space. First, an
algorithm is descibed, used to identify the thermal structures and their sizes as they pass.

The most basic unit of the larger thermal structures is the thermal, or plume. In Stull’s
Boundary Layer Meteorology (1988), thermals are defined as ’large columns of rising buoyant
air in the convective mixed layer’. They are differentiated from plumes, which are defined as
’vertical structures of warm rising air’, which does not seem to be a definition which is very
different from the thermal. Therefore, since the main process in both structures is the upward
transport of warm air, and since both structures have sizes of the same order (hundreds of
meters to the order of a km), in this report no difference will be made between the two.
In order to identify these thermals, commonly attempts are made to use criteria which label
specific points of the time series as a thermal. De Haij (2005) also experimented with the use
of wavelet analysis to visualize the structures.
In this report, the criteria will be chosen such as to require the presence of warm, rising
air with an additional requirement of vertical coherence, as deduced from the definition in
Stull. One of the unique features of the Cabauw measurement tower is the presence of high-
frequency sonic anenometers at a range of different heights. Using the upper three heights
at 60m, 100m and 180m and excluding the lowest 3m measurement height as at this height
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Figure 4.1: Figure from Kanda et al (2006). Vertical velocity maps at 100m height, averaged from
2 to 3 hours simulated time. The figure shows velocity maps for geostropic winds of a) 0 ms−1, b) 1
ms−1, c) 2 ms−1 and d) 4 ms−1
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Figure 4.2: Figure illustrating the use of the given criterea on the correlation 4.1 Left the time series
of w′, q′ and Tv for the different heights can be seen, while on the right the correlations are visualised.
The dashed lines represent the thermals as marked by the criterea. The time series is passed through
the same triangular filter as the correlation in order for visualisation purposes. Data is used from
12.30 to 13.00hr of May 10th, 2008.

no detectable structure is expected, the vertical coherence is tested using the three-height-
correlation of vertical velocity as follows:

ρw(t) =
w′

60m(t)w′

100m(t)w′

180m(t)

σw60σw100σw180
(4.1)

The same correlation is calculated for the temperature T . These correlations are only ex-
pected to be significantly positive if a positive deviation from the mean is found at all three
heights.
A triangular smoothing filter with a width of 1.5 minute is used on the resulting correlation
series, which effectively removes all uncorrelated variations. A thermal is now identified as
those points in time in which ρw(t) > 0 and ρTv(t) > 0 for more than 95% of the time in an
interval with a minimum width of τ .

The resulting process is illustrated in figure 4.2, where the time series at all heights can
be seen on the left and the resulting filtered correlation on the right. Dashed vertical lines
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illustrate begin- and endpoints of the marked thermals. Note that the differences between
turbulent motions and coherent vertical structures present at all three heights is clearly visi-
ble in the correlated time series. For the figure a time series of May 10th, 2008, of 90 minutes
starting from noon, is used. The detection is done with τ = 50s for this figure so as to clearify
the process. Further in this report, the detection window is always τ = 15s (following de
Haij, 2005).
However, while the presence of thermals can now well be identified, figure 4.2 also clearly
illustrates the diffulty in defining the edges of the thermals. Looking at the time series, it
would be very hard for a human being to pinpoint the edges - and hence the size - of the
thermal structures, and the given criteria do no better. The size as found by the algorithm
is somewhat dependent on the minimum-time criterea of τ , which is clearly an undesirable
situation.
This difficulty in defining the size is not a surprise, as Stull already visualised a cross section
of a thermal as having a circular, but cloud-shaped form as shown in figure 4.3, with an
inner core and an intromission zone around. Within the intromission zone, the thermal is
less well-defined and hence a lot of noise will be introduced at the edges.

Figure 4.3: A visualisation of a horizontal cross section of a thermal from Stull’s Boundary Layer
Meteorology . The figure clearly illustrates the difficulty in defining the thermal’s edges.

However, a study on time and length scales in the atmosphere still requires an objective
classification of the size of a thermal. This is achieved by introducing a second algorithm.
This algorithm is an extension of the first one. It makes use of the wavelet transform (see
section 2.2) to find under which scale the greatest power is found. The algorithm considers a
part of the wavelet transform of the vertical velocity w′, 3 minutes wide, centered around the
thermal as detected by the first algorithm. It creates a wavelet power spectrum of this local
part of the wavelet transform, which it smoothens with a 1-2-1 filter. Now the scale s = smax

is calculated for which the wavelet power is at its maximum.
The algorithm then considers the wavelet transform at this scale, W (t, s = smax), which is
in essence the time series filtered with the wavelet mother function with scale smax. This
series is now used to find the exact location of the centre of the thermal by determining the
location tmax of the local maximum in this time series. The detected thermal is now defined
as the area tmax − smax < t < tmax + smax (remember that the Mexican Hat wavelet function
has zero crossings at −s and s).
The result of the second algorithm is illustrated in figure 4.4, where the time series is dis-

played together with it’s wavelet transform and the global power spectrum. Dashed vertical
lines indicate the beginning and end of the detected thermals as before. Note that the larger
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Figure 4.4: Figure illustrating the work of the algorithm used to determine the edges of the thermals.
Vertical dashed lines denote the edges of detected thermals as before. The wavelet is shown of a 1.5hr
interval starting at noon of May 6th, 2008.
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structures are beautifully visualized in a wavelet spectrum, being the remaining peaks as the
wavelet scale increases. However, the scale of the peak in the global power spectrum is usu-
ally much smaller than the scales of the thermals, indicating small-scale turbulent motions
dominate this global spectrum. This is the reason why the local power spectrum is regarded
in the classification of thermals.
The typical characteristics of the points which are detected as thermals are visualized in
probability density functions of vertical velocity, moisture and temperature at the three up-
per heights in figure 4.5. The shown pdfs are based on the full dataset (24 time series; the
data for which the inversion layer height could be profiled) equal to what will be used for
later figures.
The solid line represents the total probability density function of the data, while the red line
indicates the part of this function which is identified as being a thermal. The dotted line is the
complementary probability density function of the non thermal part. The thermals clearly
occupy the larger positive parts, but perhaps not so clear as would be expected. However,
the pdfs are expected to be smeared out due to the spread in behaviour of the different days.
The thermal probability density functions do seem to have a gaussian shape themselves, es-
pecially in vertical velocity. This is a comforting result as this is often assumed in modelling.

The use of the wavelet algorithm to improve the exact size of the thermals has two large
advantages. First, it provides a more objective, parameter-indepent way of defining the ex-
act scale, while not interfering with the requirement that the thermal has to stretch over all
heights by the use of the first algorithm. Second, it provides a way of pinpointing the exact
location of size of the thermal at different heights when executed over the w′ time series at
the local height. This allows a study of the shape and angle of the thermals as they pass over
the measurement site.
Figure 4 shows contour plots of vertical velocity w′ as function of height and time. On the

contour plot, the edges of the detected thermals are plotted in white, illustrating the vertical
structure. Only thermal structures lasting longer than 60 seconds are visualized for clearity.
This is the reason only a part of some thermals are visualized, as the not-shown part then
shrinks to a width below 60 seconds.
The contour plot is not very detailed as it based on only four timeseries between 3 and 180m,
giving an exaggerated sense of vertical coherence as the contour algorithm interpolates data
in between the measurement levels. However, the thermal structures are still visible as rel-
atively broad, light (high w′) vertical bands, and are well detected by the algorithm. The
algorithm is not used to detect thermals at 3m, since at this height they are so diffuse they
cannot be distinguished from turbulence.
Note that as the horizontal scale spans 90 minutes while the vertical scale spans only 200
meters, the contours have an aspect ratio of about 1:135, assuming an average wind speed
of 5m/s. Interesting is that while too diffuse at 3m, the thermals are already well defined at
60m, and change little in width as the height increases up to 180m. It would be interesting
for a possible future study to see from which height the thermals can be detected and see
how the structure changes when nearing the ground.
The figure also shows how the thermals pass the tower at all three heights. This illustrates
the concept of large vertical columns of air which move as a coherent structure through the
atmosphere, in contrast to buoyant parcels of air which move upwards in a bubble like way.
Note that The wavelet analysis enables us to reconstruct the angle of the thermal with re-
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Figure 4.5: Probability density function of the characteristic properties of the the thermal structures
based on 24 time series of 1.5 hour starting at noon. Solid black lines represent the complete PDF,
while the red and dotted lines represent the thermal and non-thermal parts of the PDF, respectively.
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Figure 4.6: Contour plots of vertical velocity w′ as function of height and time for the period from
12.00 to 13.30h, based on sonic data from 3, 60, 100 and 180m. White lines are reconstructions of the
thermal shape based on the size and location of the detected thermals at the upper three heights.

spect to the ground. Stull describes that wind shear causes the thermals to move in a 45
degree angle in the direction of the propagating wind speed. This would result in the thermal
arriving 180m earlier than 60m, and hence a time delay would be detectable.
Thermals propagate with a speed equal to the averaged wind speed over the vertical (Stull).
Therefore, the used wind speed is an average over data from the four used heights. Using this
wind speed and the detected time delay, the angle can be calculated based on the difference
between the centrum of the thermal at 180m and 60m, using Taylors hypothesis of frozen
turbulence to transform the time delay to a length scale.
Figure 4.7 shows that this is hardly a constant factor - a wide range of angles has been found,

with no clear dependence on wind speed itself. In fact, it is even possibe for thermals to be
tilted backwards (against the wind). It is expected that the thermals are much more complex
in shape than simple cilinders, merging with each other and changing shape as height or time
changes. This complexity is the expected cause for the wide range in angles. However, there
is a clear peaking of the probability density function in the range of very large angles. This
is currently unexplained and it remains a question whether this is a physical phenomenon or
an artifact of the attempt to reconstruct the thermal.

Figure 4 shows how the mean size of the thermals increases with height. Data is grouped by
inverion layer height. As expected, a considerable increase in size is found. In fact, the mean
size nearly doubles as height increases from 60 to 180 meters for high inversion heights.
Interesting is that while a significant difference of size is found between the lowest and highest
inversion classes, no mentionable difference is found between the higher classes. This might
indicate the lowest class is in a different regime.
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Figure 4.7: Probability density function of the angle the vertical thermal structures have with respect
to the vertical, with positive angles indicating a tilt in the direction of the propagating wind speed.

Returning to the time series, figure 4.9 shows the mean shape of the vertical velocity anoma-
lity and temperature anomality induced by the detected thermal structures as they appear
in the measured time series. Only time series dataset from section 2.1.1 measured in spring
and summer are used such to have a dataset as homogeneous as possible while still having
enough data to average. In this dataset, 2853 thermals were detected. The thermals show a
wide diversity in shape, but averaging these thermals over an horizontal axis which is nor-
malized with the detected size reveals the common shape. The part of the given shape which
is classified as thermal is thus plotted from -0.5 to 0.5. This also illustrates and explains the
earlier given probability density functions, which show a tail of both w′ and T ′ towards zero,
which seems to be caused, at least partly, by the edges of the thermals.
As the horizontal axis is a rescaled time series, the leftmost points are points detected first,
and hence the thermal moves with governing wind, directed from right to left.
Vertical bars denote the standarddeviation σ (not to be confused with the error in the mean
of equation 3.12). The general shape of the pattern is remarkably similar to the Mexican
Hat (section 2.2), indicating the right choice was made with respect to the wavelet’s ’mother
function’.
A very remarkable feature of the figure is the ’dips’ before and after the thermal, which
show that right before and right after the thermal, descending cold air is found. A slight
asymmetry is witnessed in this shape as well, as the ’dip’ after the thermal (hence trailing
the thermal) seems deeper and more steep. This dip is typically around 1/3rd as deep as the
peak is high for vertical velocity, while the temperature dip is less pronounced. Interesting
is also the fact that the structures start and end somewhat above the zero line, indicating
an overshoot when returning to zero. This is unlike the Mexican Hat shape, and it means
that they will have to go below the line further on, in order to sustain the average. This is
in contradiction with the concept of large thermals above the zero mean with large negative
areas around them.
It is also interesting to see how the maximum velocity anomaly increases with height, while
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Figure 4.8: The behaviour of the mean size of the thermals as height increases. Horizontal bars
indicate the standarddeviation in the mean. Only data from May 2008 is used to reduce surrounding
influences. Data is grouped by ranges of inversion height zi.

the temperature anomaly decreases with height. This is in accordance with expectations, as
measurements are done in the lower part of the boundary layer where the air is still accel-
erating upward. As the mean temperature increases with height, the temperature excess of
the thermal decreases with height.

Now that some of the qualitative features of thermal structures have been discussed and vi-
sualized, it is interesting to see whether data from the thermals as detected by the algorithms
can be used to make quantitative statements on the behaviour of thermal structures.
Proceeding along the lines of this report, it makes sense to start with the timescales involved
in thermal transport, or more accurately, the width of the detected thermals. This is ex-
pected to be hard, as the position of the measurement tower in itself already produces a
spread in the size of thermals. Luckily, as is discussed in appendix A, the probability density
function which is introduced by this phenomenon increases relatively sharpely towards the
true thermal size. With enough statistics, the behaviour can still be analyzed.
Towards this end, it is useful to introduce Chebyshev’s inequality for later use. This inequal-
ity allows one to make quantitative predictions on the possibilities of an event happening,
even if no information is known a priori. Chebyshev’s inequality is as follows (Dekking et al,
2005) For an arbitrary random variable Y and any a > 0:
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Figure 4.9: The normalized shape of the time series anomalities induced by thermal structures as
they pass over the measurement site. The horizontal axis is normalized over the detected size, hence
the part of the shown structures which are classified as thermal ranges from -0.5 to 0.5. Vertical bars
denote standarddeviations.
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(a) (b)

Figure 4.10: a) The time a thermal takes to pass over the measurement site T and b) the calculated
size, UT , are plotted as a function of the 10-minute propating wind speed U . The solid line represents
the averaged scale with vertical bars indicating the conservative 75% confidence interval.

P (|Y − E[Y ]| ≥ a) ≤ V ar(Y )

a2
(4.2)

Hence: the probability of an error in the evaluation of the mean being larger than a, is smaller
than the variance over a2. This is a strong basis for quantitative predictions as the variance
of the mean decreases with 1/N .
Turning back to the data, those days of the 32 day dataset are used for which the boundary
layer height zi could be profiled. For these days, four 1.5 hour periods per day from 9.00 to
15.00h were analysed and data from detected thermals was saved. This yielded 1008 detected
thermal structures.
Figure 4.10(a) shows the timescale data as a function of the propaging wind speed U . The

use of the wavelet-based algorithm implies that the detected timescale follows discrete steps,
following each other with power

√
2 (Single data points outside this range are thermals de-

tected on the edge of a considered period). As no direct structure can be seen in the data, a
first hypothesis would be that the timescale T is independent of propagation speed, indicating
that thermal structures stretch out as wind speed increases.
To test this hypothesis, the solid line represents the averaged values over horizontal wind
speed bins. Using Chebyshev’s inequality with variance as the square power of the standard
deviation of the mean, equation 3.12, vertical lines can be constructed as the 75% confidence
intervals. It now becomes apparent that there is in fact, a drop in average thermal timescale
is found as wind speed increases.
Indeed, averaging over only two bins, it can be found that if indeed the timescale was inde-
pendent of wind speed, the chances of obtaining averaged T as far from the global mean as
data from figure 4.10(a) is less than 1%. Hence it can be concluded that as propagation wind
speed increases, thermal timescales decreases .
In fact, figure 4.10(b) seems to indicate the typical structure size (again calculated with the
help of Taylor’s hypothesis) itself is independent of wind speed. The figure shows the same
timescale data, now multiplied with their propagation speed to find their spatial width. The
averaged data seems to remain constant, as the initial increase for small U might be explained
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Figure 4.11: Number of thermals intersected per normalized length of timeseries and normalized
average thermal length as a function of z/zi, following Lenschow (1980). The solid lines in the left
and right figure represent equations 4.5 and ??, respectively.

by the fact that the top sizes are limited by the scale coverage of the wavelet transform. In-
deed, no statistical evidence is found to reject a claim that the size of thermal structures is
independent of wind speed .
Lenschow et al (1980), found that normalized thermal size to be solely dependent on z/zi,
where they have used data from overseas aircraft measurements at 135m to obtain:

d

zi
= 0.16

(

z

zi

)1/3 (

1 − 0.25
z

zi

)

. (4.3)

Here d is the average thermal length per measurement. Cabauw measurements as used in
this paper had an average detected thermal size which is typically 3.5 times as large , as can
be seen from the solid line in figure 4.11(b), representing:

d

zi
= 0.56

(

z

zi

)1/3 (

1 − 0.25
z

zi

)

. (4.4)

The increased thermal size, as well as the increased spread in figure 4.11(b) relative to
Lenschow’s data can be attributed to a number of causes. First, Lenschow uses overseas
aircraft data, while in this report thermals are measured using a stationary tower. Secondly,
Lenschow uses a direct criterium (on humidity) whereas figure 4.11 has been created with the
help of wavelet analysis. Thirdly, the days selected in this paper are completely cloudless,
where Lenschow measured underneath shattered or broken stratocumulus.
This wide range of causes makes it impossible to point at the direct cause of differences. In
fact, it is surprising that - apart from the factor 3.5 - the average size behaves so similar as a
function of z/zi. Indeed, figure 4.11(a) shows the normalized number of detected thermals,
being the number of thermals divided by the measurement length over the boundary layer
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(a) (b)

Figure 4.12: The distribution of thermal sizes. a) The probability density function of thermal size.
b) The distribution per season and time of day, as data is grouped to season and time period, the
four vertical columns per season being the four 1.5 hour segments per day, from morning(left) to
afternoon(right).

height. This figure shows a much different behaviour as found by Lenschow: while Lenschow
finds N = 0.68(z/zi)

−1/3, figure 4.11(a) suggests a -1.43 power law:

N = 1.0 · 10−2

(

z

zi

)

−1.43

(4.5)

This difference may be attributed to the fact that in this report vertical coherence is de-
manded, which is expected to reduce the number of detected thermals.

Figure 4.12(a) shows a probability density function of the size of the intersected segments of
thermals, based on all 1008 detected thermals. It shows very clearly that the distribution in
size is not explained by the fact that segments will be intersected in various ways, since the
pdf looks very different from the pdf calculated in appendix A.
Figure 4.12(b) shows how the distribution of size is influenced by the season. A clear increase

in average size is found moving from winter to spring, but none from spring to summer. The
distribution is relatively equal for morning or afternoon, especially in spring and summer
months. This is interesting, as in this time a large increase in boundary layer height is wit-
nessed. This indicates that boundary layer height is not the only relevant parameter in the
process, at least at heights below 200m. It seems the full extend of the complexity of the
thermal structures in the convective boundary layer cannot be caught in simple similarity
relations.

4.1 LES study on thermal structures

For a better understanding of the thermal structures which have been identified in the mea-
sured time series, use is made of the LES model. The advantage of this is that the one
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dimensional view of the time measurement series is now expanded to a full four (spatial and
time) dimensional view. This allows us to study how time series relate to spatial behaviour.
A dry LES run is done with 128x128 grid boxes on each vertical level. First, an equal anal-
ysis as done on Cabauw data is applied to LES results. 100 randomly chosen time series
are extracted from the grid at 70m, 110m and 210m height, and in these series thermals are
detected. Figure 4.13 confirms that the detected thermals have indeed the same shapes in the
time series as was found in the Cabauw data. It shows that the acceleration and cooling of
the air as it moves up, which was seen in the Cabauw data, continues as the height increases.
The air starts to decelarate above the inversion, which is located between 200 and 300m for
the given period, where the temperature anomaly becomes negative, exactly as expected.
The descending air on the edges of the thermals are also found in LES data, although the
asymmetry is less obvious. It seems the temperature dip preceding the thermal evolves into
the negative temperature excess above the inversion.

Figure 4.1 gives an overview of the behaviour of the thermals as the air inside propagates
towards greater height. The figure distinguishes cases with different inversion heights, indi-
cating how the process is dependent on this height. It is clearly visible how the temperature
excess within the thermals drives the air, accelerating up to the inversion, where the tem-
perature excess dissapears and even turns into a deficiency, thus decelerating the air. This
confirms theoretic expectations.
Figure 4.1 visualizes how the thermals grow with height. The functional form of the size is
very similar to the vertical windspeed, growing up to the inversion after which the thermal
starts shrinking.
Equation 4.3 predicted this qualitative behaviour quite well, but the quantitative behaviour
is less well predicted, however. From lowest to highest inversion height, the dashed, dotted
and dash-dotted lines indicate the behaviour of this equation after being multiplied with a
factor of 14.9, 8.4 and 6.4, respectively. It seems a part of the behaviour is not yet caught
within the dynamics of equation 4.3.
Comforting is that the LES results at lower heights behave much alike the observed time-
series, where the sizes grow to the order of 400 meters as height increases up to 200 meters.
This is comparable to the orders found in figure 4.

To study how the detected thermals in the time series relate to the thermal structures in
space, the thermal detection on the basis of timeseries is extended to each of the 128x128
time series in the LES grid. These results can then be combined to give a 2D overview of
where the thermals are located as a function of time at several heights.
Figure 4.17 shows the result of this method at a single time instant. Note how the detection
algorithms, while not faultless, clearly detect the hexagonal structures which are expected.
A very interesting result of this fact is that, as the algorithm requires, the same structures
would be visible at roughly the same locations, in the vertical velocity and temperature field
at greater heights (up to 200m).

As time increases, the structures remain intact and pass over the grid. This allows the
time series to pick up the thermals as they pass by, such that adjacent time series ’pass’ the
thermals over to each other. Imagining the structures of figure 4.17 moving in horizontal di-
rection is thus very insightful when considering the pdf of figure 4.12(a). The thinner ’walls’
of the structures pass over the measurement site in a multiple of angles, hence introducing a
wide range of measured sizes. Besides that, it is clear that the thermals are not simple round
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Figure 4.13: The normalized shape of the time series deviations induced by thermal structures as
they pass over a virtual measurement site on a LES grid cell. The horizontal axis is normalized over
the detected size, hence the thermal ranges from -0.5 to 0.5. Vertical bars denote standarddeviations.
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Figure 4.14: Part 2 of figure 4.13, showing how the shapes continue to evolve as height increases.
The inversion height is not very strong for this figure, and starts between 200 and 300 meter. 46
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Figure 4.15: Figure illustrating properties and behaviour of thermals as they propagate higher into
the convective boundary layer. The figure is based on three periods in a single LES run, from 1-2
hr, 5-6hr and 9-10hr simulated time, such as to visualize the dependence on inversion height. The
upper panel shows average and thermal temperature, the lower panel shows the vertical wind speed
of thermals.
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Figure 4.16: Figure illustrating thermal sizes with increasing height. The figure is based on the
same three periods in a single LES run as before, 1-2hr, 5-6hr and 9-10hr simulated time. The solid
lines show the behaviour of the LES periods, while the dotted, dashed and dash-dotted lines indicate
the qualitative behaviour of Lenschow’s prediction, equation 4.3, although the equation was rescaled
with different factors to match the results.

Figure 4.17: An instantaneous cross-section is shown of the vertical velocity and the temperature
field, approximately 1.5 hours after startup, at 70m high. The white lines contour the parts of the
cross section which have been identified as thermal, based on the time series at those points.
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tubes and come in a wide variety of sizes and shapes.

To enable a quick comparison with the measurement series, temperature and vertical ve-
locity pdfs are shown in figure 4.18. The lines are equal to those in figure 4.5; solid lines for
the full pdf, red for the thermal and dotted for the non-thermal part. All data is collected
from a single LES run from 1 to 2.5 hours simulated time, of which out of the 128x128 hor-
izontal grid points, 100 random time series are chosen. Note that the qualitative behaviour
of the LES dataset is much like the measurement series, including the area covered by the
detected thermals. Due to the fact that these time series are more equivalent to each other
than the measurement series, less characteristics are lost when making a pdf of the complete
dataset. The skewness is much better visible, illustrating the role thermal structures play in
this skewness, as the dotted non-thermal density function clearly shows a more symmetrical
structure.
The probability density functions of the thermal itself have very Gaussian-like shapes, which
is in accordance with the time series from Cabauw as well.

Also, effort has been made to reproduce the probability density functions of angle and
size as figures 4.7 and 4.12(a) on the basis of LES results. Therefore, angle and size are cal-
culated in the same way as was done for Cabauw data, using Taylor’s hypothesis to transform
the time series to a spatial system. Two LES runs were used as a basis for these calculations:
one with a geostrophical wind forcing of 2 m/s and one with 4 m/s. Periods of 3-4 hours
simulated time were used of both
Figures 4.19 shows the results. Note that while two different wind speeds were used to give a
certain variety in wind speed, it does not nearly cover the broad range of wind speeds found
in measurement data. This is especially notable in figure 4.19(b) where wavelet analysis de-
scretizes the possible detected timescales of thermals. To cover this, exponentially increasing
bin sizes where used. Note that this results in a figure qualitative much alike 4.12(a). For
a quantitative analysis, a broader range of wind speeds would be needed. It would also be
interesting to consider the size in the horizontal twodimensional spatial domain as is supplied
by LES data. A smart algorithm would be needed however, to define where one thermal
begins, and the other ends (reconsider figure 4.17).
Both measurements and LES data point at an ever-decreasing probability for increasing
thermal sizes. The increasing probability and peaking at small sizes which can be seen well,
especially in the LES results, is expected to be an artifact of the fact that a minimum size
is needed for detection, and not true behaviour. The minimum scale which can be resolved
by the LES calculations might also influence this finding in LES results, as the first peakings
occur at 100 200m, which accounts to only a few 40m grid boxes.
Figure 4.19(a) shows behaviour which also shows some similarities with measured Cabauw
data, yet it shows clear differences as well. While the figure is also somewhat symmetrical
around zero and shows peaking at high positive and negative angles, it finds zero cases of
angles in between. This cannot be explained by the small range in geostrophic wind, as no
structural dependence on wind has been found. It might indicate that the peaks at highly
tilted thermals are in fact artifacts of the reconstruction of the angle on the basis of detected
thermals.
This could be resolved by determining the angle spatially, by looking at vertical instead of
horizontal cross sections. This would give much more spatial information on the shape and
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Figure 4.18: Probability density function of the characteristic properties of the the thermal structures
based on 100 random time series of a LES run from 1 to 2.5 hours simulated time. Solid black lines
represent the complete PDF, while the red and dotted lines represent the thermal and non-thermal
parts of the PDF, respectively.
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structure of thermals as a function of height and is certainly an interesting subject for future
research.

(a) (b)

Figure 4.19: Distributions of thermal characteristics based on LES data. a) The distribution of
angles with respect to the vertical and b) the probability density function of thermal size.

4.2 Mass flux approach

The flux contribution of the thermal structures in the CBL can be approximated by the use of
the Mass flux approach (Siebesma et al, 2006; Neggers et al, 2009). Using the identification
methods so far, this method can be evaluated step by step. Several assumptions are made,
and the effects of each of these assumptions can thus be investigated.
The mass flux approach as applied to thermal structures is descibed in Neggers et al, 2009.
Considering a parameter of interest ϕ, then the average value of such a parameter within
the thermal is given by ϕt = 1/at

∫

At
ϕdA, where the subscript t stands for thermal and the

area At for thermal area. It follows that ϕe = 1/(1 − At)
∫

1−At
ϕdA, where the subscript e

denotes the enviromental value. Hence it is easy to see that ϕ = atϕt +(1−at)ϕe, with at the
fractional area At/A. Applying this to the vertical velocity w and the potential temperature
θ, the turbulent flux can be decomposed as (Siebesma, 2007)

w′θ′ = at.w”θ”
t
+ (1 − at).w”θ”

e
+M(θt − θe) (4.6)

Where M = atwt the mass flux, and the overbar-t (ϕt) represents averages over the thermal
part of the data. In this text, the single primes indicate deviations from the complete average,
while the double primes indicate deviations from the specific average, as given by:

w”θ”
t
=

1

At

∫

At

(w − wt)(θ − θt)dA (4.7)

The first and last term of the right hand side of equation 4.6 together represent the flux in the
thermal structures, while the second term represents the flux in the environment. Often now
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the first term is neglected, which is justified if the subthermal fluctuations are uncorrelated.
The result is

w′θ′ = (1 − at).w”θ”
e
+M(θt − θe) (4.8)

Which is used in, for example, Neggers et al, 2009. The first term can then be modelled
by the well known K-diffision methods, while the second term is modelled by the mass flux
approximation. The further approximations involved are the estimation of the values of
wt, θt and at. It is common to estimate at as a constant. Then the spread of w and θ is
approximated as being normally distributed, with wt and θt being the top at percent of the
gausssian probability function. It can then be shown (Appendix B) that:

wt = σwD(at) (4.9)

θt = θ + σθD(at)

Where D a function which is commonly tabulated. While averages are known, the standard-
deviations have to be approximated by similarity relations (based on Siebesma et al, 2006;
Neggers et al, 2009)

σw = 1.3

[

u3
∗
+ 0.6

z

zi
w3
∗

]1/3 (

1 − z

zi

)1/2

(4.10)

σθ = b
w′θ′h
σw

Where the subscript h indicates the flux at the given height. Note that the the calculation
of σθ uses the calculated values of σw.
Figure 4.20 evaluates the effectiveness of these relationships. The figure is based on four
1-hour LES-periods. Two periods feature a surface flux of 0.06 Km/s, one period is taken
from 1-2 hours simulated time, the second from 4-5 hours simulated time, yielding a large
increase in inversion height. The other two periods are taken from 3-4 hours simulated time
with a surface flux of 0.03 Km/s and 0.09 Km/s.
Within the given periods, all 128x128 time series are analysed to determine the thermal
locations as before. Then, relevant parameters are calculated each minute, on the basis of
a cross section at 70m high. The horizontal axis of figure 4.20 denotes the true value of σ,
while the vertical axis shows the quality of relationships 4.10.
On the basis of the least squares principle, the coefficient b used in the calculation of σθ is

found to be b = 1.215.
Figure 4.20 shows that the behaviour of σw is somewhat less accurate for the individual LES
simulations, but as will be seen later, the average quality of is good enough for the mass flux
approach.
This then completes the approximation of parameters within the mass flux approximation.
Hence, in order to evaluate the mass flux approximation, the relationship

at.w”θ”
t
+M(θt − θe) = [M ]([θt] − [θe]) (4.11)

has to be evaluated. In equation 4.11, square brackets ([, ]) indicate that the used values are
the results of parameterisations.
The terms on the right hand side can be directly measured using the thermal identification
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Figure 4.20: Equations 4.10 are evaluated based on four 1h periods in LES data with varying
inversion height and surface flux.

system, and are plotted on the x axis of figure 4.21(a), based on cross-sections of LES data.
This figure demonstrates the effect of the above approximations in the following order:
1)The first term on the left hand side is neglected.

2) The fraction [at] is now assumed constant and to be equal to the average of the measured
[at]. [wt], [θt] and [θe] are estimated by assuming a normal distribution and using equations
4.9. However σw and σθ are directly measured.
3) Now [σw] and [σθ] are parameterized according to equation 4.10.
4) Lastly, [at] is now customly adjusted such that the parameterisation best fits the data.
The least squares method is used to find [at] = 9.9%.

It is interesting to see how the parameterisation exactly works and is dependent on the choice
of [at]. The first approximation obviously underestimates the flux as a term is neglected. This
loss is perhaps larger than expected, though. This underestimation is overcompensated by
approximating a Gaussian distribution shape in the second step. Assuming all values to be in
the very tail of the distribution, while still using the same surface fraction gives a large over-
estimation of the flux. This could be expected, considering that figure 4.18 shows a Gaussian
like shape for the distribution of the thermal part of the probability density functions, which
results in a large amount of points which do not reside in the tail of the total PDF.
The third approximation differs very little from the second, indicating that the parameteri-
sation of the standarddeviations is very effective within this application. The result is then
corrected by taking a surface fraction such that the mass flux approximation is effective.
This will put thermal properties further in the tail, somewhat increasing [tt] and [wt], but
the decrease of [at] has a larger influence.
With the commonly chosen value of at ≈ 10% the mass flux approach seems quite able to
capture the average behaviour of flux in a given period, although the variations within each
period are less well followed. This is mostly caused by the approximation of a constant at.
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(a) (b)

Figure 4.21: The mass flux approximation. a) The left hand side of equation 4.11 is plotted on the
x axis, while the vertical axis shows the quality of a cascade of approximations, of which the final
step is shown in red. The numbers in the legend correspond to the point at which the cascade of
approximations is applied. b) Shows the principle of these approximations, with the Mexican Hat
function representing the thermal (the thermal part is defined ad the positive part, which ranges from
-1 to 1), and the block function representing the mass flux approximation.

The dependence on at could have been expected, as the mass flux approach is essentially
a block function approximation, in which the smooth varying shape of a thermal has to be
estimated using a block function, which hence has to have a smaller area to produce the same
amount of transport. Figure 4.21(b) demonstrates this principle by plotting the Mexican Hat
function as an estimation to a thermal, and the estimation using a block function with the
same relative at and wt to the Mexican Hat as used in the final step of equation 4.21(a).
Indeed, using this values it is found that the area under the the thermal part of the Mexican
Hat is equal to around 92% of the area under the block function.
Before studying the effects of variation of at deeper, the question is whether the above results
can be found in Cabauw measurements as well. The problem in that, however, is that figure
4.21(a) is based on horizontal cross sections, while Cabauw measurements only consider the
time dimension. To study what the effect is of a transformation to the time dimension, 100
randomnly chosen time series within the simulation results used for figure 4.21(a) are ana-
lyzed in the same way as the cross sections.
Figure 4.22(a) shows the result of this time-based analysis. It shows that where the simu-
lations with different surface flux were easily separable in figure 4.21(a), no such separation
is visible anymore in the time series. The random sampling error induced by considering a
random time series is thus much larger than the differences caused by changing the driving
force. However, even with this random sampling error, the same qualitative behaviour is
found, where the neglect of sub-thermal transport causes underestimation of the flux, and
the modelling of a thermal by the tail of a normal distribution overcompensates this effect.
The value of [at] in the last approximation is set to 10% to match the results from figure
4.21(a). Indeed it is witnessed that this value leads to a good approximation in figure 4.22(a)
as well.
Figure 4.22(a) has demonstrated that results from time series show a much larger spread
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(a) (b)

Figure 4.22: The mass flux approximation evaluated on the basis of time series. a) 100 ramdonly
chosen time series from the same LES simulations as used for figure 4.21(a) are analyzed to directly
show the result of changing dimensions to time. b) Shows the analysis performed on the basis of 24
days of Cabauw time measurement with three 1.5hr periods used per day. The numbers in the legend
correspond to the point at which the cascade of approximations is applied.

in variables due to random sampling errors which are nonexistant in horizontal cross section
analysis. However, when accepting this spread it is still possible to evaluate the mass flux
approximation on the basis of time series. This is comforting, as random sampling errors are
inevitable in point measurements.
Figure 4.22(b) then shows exactly the same steps, but now applied to time series data from
Cabauw. The 24-day dataset of which inversion height is available is used again, with three
1.5hr from 10.30h to 15.00h periods used per day. The spread is now much larger than the
LES time series, which is expected as the LES introduces a random sampling error based on
the same dataset, while Cabauw data is based on days with differing conditions. Yet, the
same qualitative behaviour is witnessed, and the red triangles representing the final results
are centered around the 1:1 line, indicating that while the spread is large, the average be-
haviour confirms the conclusions which were made based on LES data.

To study how results are dependent on the surface fraction at, which varies as stricter or
less strict definitions of thermals are used, an algorithm is used to expand (include the area
surrounding the thermal) or contract (remove boundary areas) the detected thermal fields .
This variation is done on the basis of horizontal cross sections.
This is done by representing the information on which part of the cross section is thermal,
and which is not, as a seperate cross section layer with only bits. Ones represent points in
the cross section which belong to a thermal, zeros the points which do not. Now a smoothing
filter is applied, with the result that a zero-to-one jump now is a smooth transition from
zero to one over a range of points. Varying the treshold of which points are now labeled as
thermal allows us to expand or contract the thermal field.
The mass flux and sub-thermal flux as a function of the area fraction are shown in figure
4.23, normalized by the area which has been detected by wavelet analysis. This also gives
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better insight into what the algorithm actually detects.
The figure is based on the average of 60 cross sections within the 60 W/m2, Ugeo = 4 m/s

run, from 9-10hr, and clearly shows the dependency of fluxes on the definition of the edges
of thermals. As expected, the sub-thermal flux practically linearily increases with area, since
this represents local turbulent transport which is expected to be roughly constant throughout
the area. For low at, the mass flux increases much faster, which is expected as this now en-
closes more and more of the strong non local transport for which the thermals are responsible.
As at increases, the mass flux levels off and even decreases. This is expected as well, as at
this point the full thermal transport is enclosed, and further increases encloses environmental
negative flux, hence decreasing the averages wt and tt. This further confirms the fact that
cold descending air surrounds the warm and rising thermals. This phenomenon might also
explain why the subthermal turbulent fluxes suddenly drop for large relative surface fractions.
At it’s maximum, the contribution from the mass flux is typically between 30 and 40 percent
of the total flux.
Some of the noisiness of both curves can be attributed to the algorithm which expands the
area instead of physical phenomena.
The cross section at detected by the wavelet algorithm detects an area fraction around 18%
in all cases, which can be seen to be located at the point where the mass flux levels off. In
fact, it is typically close to the point where the difference between the mass flux and the sub
thermal flux is maximal, which is expected to be related to the fact that the local wavelet
power spectrum detects the largest power using this boundaries.
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Figure 4.23: The area which labels thermals is expanded and contracted, visualising how the mass
flux and subthermal flux depend on the definition of a thermal. The average total flux is mentioned
in the title.
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Chapter 5

Conclusion

In this report, timescales of turbulent transport in the vertical boundary layer have been
investigated, with the focus on heat transport. A dominant timescale has been defined as the
inverse of the integral of the cospectrum SwT of vertical velocity and temperature with the
frequency as weight, normalized by the integrated cospectrum itself.
Modelling the shape of the cospectrum by a simplified curve, the peak of fSwT is found to be
located at four times this dominant timescale. A loss function has been derived based on this
cospectrum, which predicts the loss in Eddy Covariance point measurement methods due to
finite averaging time as a function of averaging time and the dominant timescale.
Eddy Covariance measurements in Cabauw, on days selected for their convective and cloud-
less behaviour, showed behaviour very similar to this prediction, confirming that the loss
is indeed predictable. In order to predict this loss, knowledge of the dominant timescale is
required. An improved empirical equation is proposed to determine this scale as a function of
height, Obukhov length and wind speed. No evidence is found for the presence of unpredicted
systematic flux on very large timescales.
LES results confirmed the qualitative behaviour of the loss as a function of averaging time,
but showed some deviation for large averaging times.
The method of multiresolution decomposition, used to find a gap scale which distinguishes
turbulent motions from mesoscale motions is also evaluated. It is found that the dominant
timescale of transport closely approaches the gap scale in unstable situations, such that tur-
bulent and mesoscale motions are no longer seperable.

Secondly, thermals have been studied as they form structures responsible for large contri-
butions to turbulent transport. Two algorithms are introduced, which together have been
found able to detect thermals as they pass an observation site. The first algorithm scans
for vertically coherent deviations in vertical velocity and temperature, while the second algo-
rithm improves the find by performing wavelet analysis to distinguish the exact edges of the
thermals.
Timeseries from Cabauw were supplemented with fields resulting from LES simulations to do
a structural analysis of thermals. Thermals detected in LES time series were found to behave
similar to measurements in Cabauw.
It is found that thermal structures appear in time series in a Mexican Hat-like form, including
portions of descending, cold air before and after the thermal. Thermals appear in all sizes,
with probability decreasing with size, and the mean size independent of wind speed. Depen-
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dence has been found on height, as thermals grow all the way up to the inversion height.
The air in a thermal accelerates from the ground up to the inversion, driven by a temperature
excess which turns into a deficiency above the inversion, decelerating the air.
The average flux within thermals is found to be well approximated using the mass flux ap-
proximation, when it used on the basis of an updraft area of 10 percent. This non-local
transport can typically represent 40 percent of the total vertical turbulent transport of heat.
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Appendix A

Probability Density Function of

Thermal size

One of the problems in measuring the size of a thermal is that the distribution of measured
sizes can be partially explained by the fact that EC covariance measurements can be seen as
taking a one-dimensional cross section of space. This means that, assuming a certain shape of
the thermal, when the thermal passes over the measurement tower, the tower would typically
not cross the thermal exactly through the center. The result is that, even when all thermals
would have exactly the same size, still a wide range of thermal sizes would be measured.
To be able to nevertheless make statements on the measured data, lets take a look at the
probability density function which is introduced by the phenomenon described above.
For example, assume a thermal has the shape of a circular column. At any height, this would
account to a circular cross section with a certain radius R.
Now the probability of crossing the thermal with an offset from the center x (Figure A.1) is

the same for all x. Hence the probability function of x would become:

fx(x) =

{

1
2R −R < x < R,

0 otherwise
(A.1)

Figure A.1: Figure illustrating how a distribution of measured thermal sizes can occur through the
offset x with which thermals pass the measurement tower.
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As the thermal cross-section is circular, crossing the thermal starting at coördinate x will
mean a crossing length L(x) of:

L(x) = 2
√

R2 − x2 (A.2)

This gives us immediately the interesting result that the expected value for the mean measured
L is not the same as the diameter D = 2R:

E [L(x)] =

∫

∞

−∞

L(x)fx(x)dx =
π

2
R (A.3)

The cause of this is of course that the theoretic maximum path length L in the thermal is 2D,
and the minimum is 0. In reality, only thermals with a path length L larger than a certain
treshold will be detected.
Now lets take a look at the expected PDF. The PDF of L, fL(L) can be calculated by using
the invariance of a differential area, or |fx(x)dx| = |fL(L)dL|. Using equation A.2 to find
dL/dx, the probability density function becomes:

fL(L) =







L
4R

1√
R2−L2/4

0 < L < 2R,

0 otherwise
(A.4)

Figure A.2 shows the behaviour of this probability density function. Note how the probability
increases towards larger scales up to the maximum scale.

Figure A.2: The behaviour of equation A.4.
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Percentile of a normal distribution

Given a Gaussian probability distribution of a variable ϕ, we are interested in the mean ϕa

of the top fraction a of the Gaussian function. Assuming zero mean for simplicity, we have:

ϕa =

∫

∞

x

ϕ

σϕ

√
2π

exp
[

−ϕ2/2σ2
ϕ

]

(B.1)

Where x is the coordinate for which the top fraction a of the Gaussian starts, hence:

a =

∫

∞

x

1

σϕ

√
2π

exp
[

−ϕ2/2σ2
ϕ

]

(B.2)

Performing the integrations, the last equation can be inverted to express x as a function of
the inverse error function of 1 − 2a, erf−1(1 − 2a). This can be inserted into equation B.1,
after which integration leads to the conclusion that ϕa/σϕ is a function of a only.

ϕa = σϕ

√

2

π

[

e−erf−1(1−2a) − 1
]

≡ σϕD(a) (B.3)

With erf−1 the inverse of the error function. Given a variable φ with a nonzero mean µ, a
coordinate transformation easily yields the same results for ϕ = φ − µ. The values of D(a)
are tabulated in Neggers et al (2008).
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Correcting t
∗ for high-frequency

losses in LES results

When comparing values of t∗ from LES results with t∗ found from high frequency measure-
ment sites like the sonic anemometers in Cabauw, a significant difference is found in typical
order. The definition of t∗ places more weight on high frequency values of the spectra, which
is especially done since it is well known (Kaimal, 1972) that the high frequency part of the
spectrum behaves better than the lower frequency part. Adding to this effect is the fact that
numerical schemes for calculating the spectra introduce larger uncertainties for the low fre-
quency part. However, LES results model the high frequency turbulence in subgrid schemes,
and this part will therefore not be found in a spectrum calculated based on a LES simulated
time series. This results in an overestimation of t∗ when implementing the same techniques
on LES results as were used on measured data.
In this appendix, a correction for this effect will be sought using the same assumption for the
shape of the spectrum as was used in chapter 3. For convenience, the definition of timescale
t∗ (equation 3.1 and the Kaimal (equation 3.11) are repeated here:

t∗ =

[
∫

∞

−∞
fSwT (f)df

∫

∞

−∞
SwT (f)df

]

−1

(C.1)

Sf
wT (f) =

4FT t
∗

(

1 + 4ft∗

p−1

)p (C.2)

Using the assumption of the spectral shape, it is clear that inserting this equation into the
equation for t∗ yields t∗ = t∗ as required. However, in the LES results, assume no contribution
can be found on frequencies higher than a certain cutoff frequency fc, which is the lowest
of either the timestep or the δx/U . Assuming the LES resolves the important part of its
turbulent flux, it is assumed that integrating the spectrum still yields FT , the flux. Hence,
an uncorrected timescale, which will be denoted by t′, is found characteristic of the LES
timeseries:

1

t′
=

∫ fc

0

4ft∗
(

1 + 4ft∗

p−1

)pdf (C.3)
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RESULTS

Using coördinate transformations as before and inserting p = 7/3 for the heat flux cospectrum,
this equation can be directly integrated to find:

1

t′
=

1

t∗

[

1

3
x4/3 − 4

3
x1/3 + 1

]

(C.4)

Where x is a coördinate related to the cutoff frequency and dominant timescale: x = 1/(1 +
3fct

∗). No LES timeseries at very small heights (< 10 m) will be considered, since a very
high resolution model is needed to give a correct representation for this. Therefore, t∗ will
be in the order of 50-100 seconds (see figure 3.3 ). For the most extensively used LES run, a
horizontal resolution of 40 m is combined with 4 m/s wind speed, hence the cutoff frequency
will be of the order of 10 seconds. Thus, x ≈ 0.01 and hence the first term in brackets can
be neglected. The resulting equation is:

t∗

t′
= 1 − 4

3
x(t∗)1/3 (C.5)

The Newton-Raphson method will be used to find a t∗ such that this equation is satisfied for
the given t′.
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