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Samenvatting

Voor de beoordeling van de veiligheid van waterkeringen in Nederland zijn waar-
den van windsnelheid en zeewaterstand voor terugkeertijden tot (plaatselijk) enkele
miljoenen jaren nodig. Dit is een uitdaging, gegeven dat reeksen van betrouwbare
windmetingen niet verder teruggaan dan ongeveer 70 jaar, en de metingen van wa-
terstand niet verder dan 70-140 jaar.

Momenteel wordt door KNMI en Deltares in opdracht van Rijkswaterstaat ge-
werkt aan een oplossing van dit probleem. Deze is gebaseerd op het gebruik van
omvangrijke datasets van simulaties door numerieke weermodellen en daaraan ge-
koppelde waterbewegingsmodellen; zie van den Brink (2018, 2020); de Valk and van
den Brink (2020a). Deze aanpak staat of valt met de kwaliteit van de modellen. Bo-
vendien, zelfs met gebruik van grote datasets zoals het archief van ECMWF ensemble
seizoensvoorspellingen blijft er een fors verschil in terugkeerperiode dat moet wor-
den overbrugd. Daarom wordt gekeken naar de mogelijkheid om de extrapolatie van
staarten van kansverdelingen over een breed bereik van terugkeertijden te verbeteren
door gebruik van de Gegeneraliseerde Weibull (GW) staart, de log-Gegeneraliseerde
Weibull (log-GW) staart, of de Weibull staart.

Voor deze modellen alsmede voor twee klassieke staart-modellen, de Gegenera-
liseerde Pareto (GP) staart en de exponentiële staart, evalueren we de nauwkeurig-
heden van schattingen van de staart van de kansverdeling van de hoogwaterstand
en de scheve opzet op 21 kuststations op basis van simulaties met het WAQUA
DCSM-5 waterbewegingsmodel aangedreven door schuifspanning en luchtddruk uit
de ECMWF SEAS5 ensemble seizoensvoorspellingen, waarvan ongeveer 5800 jaar
aan data is gebruikt.

Daarvoor gebruiken we twee methoden: de methode uit van den Brink and Kön-
nen (2008), en Monte-Carlo simulatie van de schatting van terugkeerwaarden voor
zeer grote terugkeertijden op basis van plausibele modellen van de staart, bepaald
uit de gesimuleerde gegevens. De laatste methode verbetert de methode gebruikt in
de Valk and van den Brink (2020a), maar de resultaten van beide methodes wijken
niet veel af.

Voor waterstand en opzet blijken zowel de GW staart als de GP staart goede
resultaten te geven wanneer de vormparameters nauwkeurig worden geschat uit de
volledige set van SEAS5/DCSM-5 gegevens. De GW staart presteert overall het
beste, met name als alle parameters (inclusief de vormparameter) uit een kleine
dataset van 78 jaar worden geschat. Eerder bleek dit type staart voor wind en (uit
schuifspanning afgeleide) pseudo-wind de meest geschikte optie (de Valk and van
den Brink, 2020a). Een bijkomend voordeel van het gebruik van de GW staart voor
zowel windsnelheid/pseudo-windsnelheid als opzet/waterstand is dat een machtswet
voor de wind-opzet relatie (fysisch enigszins te verdedigen als benadering) behouden
blijft in GW staarten.

Daarnaast zijn vergelijkingen gemaakt tussen de staartverdelingen van water-
stand en opzet geschat uit de SEAS5/DCSM-5 modelsimulaties en de staartverde-
lingen geschat uit de meetgegevens van 6 stations. De resultaten wijzen in de richting
van enige onderschatting van de vormparameter van de GW staart bij de wat minder
hoge waterstanden/opzetten (vaker overschreden dan in 1 op de 100 hoogwaters).
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Alleen voor de waterstand en opzet van meetstation Delfzijl is duidelijk sprake van
onderschatting; tegelijk lijken voor hogere waterstanden en opzetten de vormpara-
meters uit de SEAS5/DCSM-5 modelsimulaties voor Delfzijl meer realistisch dan de
schattingen uit de meetgegevens.

Om deze afwijkingen bij Delfzijl beter te begrijpen en te bepalen hoe hiermee
om te gaan in de afleiding van terugkeerwaarden en in de foutenanalyse wordt aan-
bevolen om eerst de geplande analyse van de effecten van modelresolutie en andere
aspecten van de atmosferische en waterbewegingsmodellen op de gesimuleerde wa-
terstand en opzet uit te voeren.

Deze studie is uitgevoerd binnen een Maatwerk I&W opdracht, onder begeleiding
van Marcel Bottema en Robert Slomp (WVL). Prof. dr. Pieter van Gelder heeft
een review van dit rapport uitgevoerd waarvan dankbaar gebruikt is gemaakt voor
de eindversie van dit rapport en voor vervolgstudies.

Summary

To assess the reliability of flood protection in the Netherlands, return values of
wind speed and coastal water level for return periods up to several million years are
needed. This is a major challenge, given that records of reliable wind measurements
do not go back further than about 70 years, and water level measurements do not
go back further than 70-140 years.

Several ideas are currently explored to tackle this problem. One idea is to in-
crease data volume by utilizing large datasets of simulations by numerical weather
prediction models and hydraulic models forced by these simulations; see van den
Brink (2018, 2020); de Valk and van den Brink (2020a). This approach relies heav-
ily on the quality of these models. Furthermore, even large datasets such as the
archived ECMWF seasonal ensemble forecasts leave a considerable gap in return
period to be overcome. Therefore, a parallel effort is made to improve the extrapo-
lation of the tails of distribution functions over a wide range of return periods: the
Generalized Weibull (GW) tail, the log-Generalized Weibull (log-GW) tail, or the
1-parameter Weibull tail.

For these models and for two classical tail models, the Generalized Pareto (GP)
tail and the exponential tail, we compare estimates of the tails of the distributions
of high-tide water level and skew surge at 21 tide gauge stations derived from sim-
ulations by the WAQUA DCSM-5 shallow-water flow model driven by wind stress
and surface pressure from the ECMWF SEAS5 seasonal ensemble forecast archive.
For each tide gauge station, approximately 5800 years of data is used.

Two methods are used to assess the estimates: the method from van den Brink
and Können (2008), and Monte-Carlo simulation of the estimation of return values
for very high return periods based on plausible models of the tails, derived from the
SEAS5/DCSM-5 data. The latter method improves the method used in de Valk and
van den Brink (2020a), but the results of both methods are not very different.

For water level and surge, both the GW tail and the GP tail give accurate
estimates if their shape parameters are estimated accurately from the complete
set of SEAS5/DCSM-5 data. Overall, the GW tails performs best, in particular
if all parameters (including the shape parameter) are estimated from a small 78-
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year subset. Earlier, this type of tail was found to be the most suitable one for
wind and for pseudo-wind derived from stress (de Valk and van den Brink, 2020a).
An additional advantage of using the GW tail both for (pseudo)wind speed and
for surge/water level is that a power law for the wind-surge relation (a reasonable
simplification) is preserved.

In addition, tail estimates for water level and surge from SEAS5/DCSM-5 model
simulations are compared to estimates from measurements at 6 tide gauge stations.
The comparison is focused on the shape parameter (as errors in shape estimates are
the main source of error in estimates of return values), regarded as a function of
water level or surge.

The results indicate that the estimates of the shape parameter of the GW tail
from the model simulations are somewhat lower than the estimates from measure-
ment data for relatively low water levels or surges (exceeded in more than 1 in 100
high tides).

Only for low water levels and surge at Delfzijl, the shape is clearly underestimated
by the simulated data. However, in the higher range of water levels or surges, the
shape estimates from the. SEAS5/DCSM-5 simulaties for Delfzijl look more realistic
than the estimates from the measurements.

To understand these deviations at Delfzijl better, we need the results of the on-
going analysis of the effects of model resolution and other aspects of the atmospheric
en hydraulic models on the simulated water levels and surges.

This studie was carried out within Maatwerk I&W under supervision by Marcel
Bottema and Robert Slomp (WVL). Prof. dr. Pieter van Gelder carried out a review
of this report, which was used in the final version and in the work that followed.
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Part I. Report

1 Introduction

This report describes a comparison of statistical models and methods for estimating
return values of high-tide water level and skew surge along the coast of the Nether-
lands, undertaken as part of the development of new estimates of the statistics of
hydraulic loads on the flood protection infrastructure of the Netherlands.

These statistics include return values of high-tide water level and skew surge cor-
responding to return periods of up to 107 years, which is the range relevant for flood
protection in the Netherlands (see e.g. the maximum allowed annual probabilities
of failure of the flood protection in Waterwet Bijlage II).

The estimates currently in use (Chbab, 2017) are based on measurement records
covering less than 150 years, which limits their precision. Furthermore, the methods
employed involve assumptions and simplifications needed to obtain estimates at sites
where no measurements are available and to extrapolate to very high return periods.
As a result, the estimates may be biased and physically inconsistent. The resulting
uncertainty in return values is particularly high for the highest return periods in the
range considered.

To improve the accuracy of the statistics of wind, wind stress, water level and
surge, we are currently exploring the use of very large datasets of simulated weather
and water levels; in particular,

• the SEAS5 seasonal ensemble weather reforecast archive of ECMWF, con-
taining for each of its grid points effectively 8000 years of weather conditions
representative for the present climate. and

• water level simulations created by running the DCSM-5 shallow-water flow
model with surface stress and pressure forcing from the SEAS5 data; see van
den Brink (2020).

Together, these two datasets will be referred to as the SEAS5/DCSM-5 dataset.
Furthermore, we explore the use of new statistical models for estimating return

values, making use of the SEAS5/DCSM-5 dataset to compare statistical models for
estimating return values of high-tide water level and skew surge, as we did earlier
in de Valk and van den Brink (2020a,b) for wind and pseudo-wind speed.

The statistical models considered are parametric approximations of the tail of a
distribution function for values above some threshold value, based on extreme value
theory de Haan & Ferreira (2006). The purpose of these models is to provide a
stable extrapolation of the distribution function beyond this threshold, to determine
return values for very high return periods. An overview of these tail models and
their background is given in de Valk and van den Brink (2020a) (see also Gardes
and Girard (2016); de Valk (2016a,b)). They are

• the Generalized Pareto (GP) tail,

• the Generalized Weibull (GW) tail,

https://wetten.overheid.nl/jci1.3:c:BWBR0025458&bijlage=II&z=2021-01-01&g=2021-01-01
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• the log-Generalized Weibull (GW) tail,

• the Weibull tail (a special case of the former two), and

• the exponential (EXP) tail (a special case of all the former).

Table 1 gives an overview. In this table, F is the distribution function of high-
tide water level or skew surge (F (z) being the mean fraction of high waters in which
the level z is not exceeded), Q is the inverse of 1 � F (so 1 � F (Q(p0)) = p0 for all
p0 2 [0, 1]), and p is the probability of exceedance of a threshold value Q(p) (so p
is small, but large enough that Q(p) can be estimated accurately by an empirical
quantile).

Tail 1� F (z) = Q(p0) = (1� F )�1(p0) =

GP p
⇣
1 + �

⇣
z�Q(p)
a(p)

⌘⌘�1/�

Q(p) + a(p) 1�

⇣⇣
p
p0

⌘�

� 1
⌘

EXP pe(Q(p)�z)/a(p) Q(p) + a(p) log
⇣

p
p0

⌘

GW p(1+⇢( z�Q(p)
f(p) ))

1/⇢

Q(p) + f(p)1⇢

⇣⇣
log p0

log p

⌘⇢

� 1
⌘

log-GW p(1+✓( log z�logQ(p)
g(p) ))

1/✓

Q(p) exp

✓
g(p)1✓

✓⇣
log p0

log p

⌘✓

� 1

◆◆

Weibull p(
z

Q(p))
1/⇢

Q(p)
⇣

log p0

log p

⌘⇢

Tab. 1: Approximations of the probability of exceedance 1�F (z) of level z and of the tail quantile
Q(p0) exceeded with probability p0 by five different types of tails (GP, EXP, GW, log-GW,
Weibull): p is the probability of exceedance of the fixed threshold Q(p). a, f and g are
positive functions and �, ⇢ and ✓ are real numbers.

Note that the Weibull and the exponential tails are 1-parameter tails (not count-
ing the threshold Q(p) in the formulas in Table 1), and the GP, GW and log-GW
tails are 2-parameter tails.

As in de Valk and van den Brink (2020a), we apply two different approaches to
compare the performances of the tail models: one approach (Chapter 4) is based
on the statistics of maxima of high-tide water level or skew surge over 78-year
subsamples of the SEAS5/DCSM-5 data, and the other approach (Chapter 5) focuses
directly on the error statistics of return values of high-tide water level and skew surge
estimated from these subsamples and/or from the full SEAS5/DCSM-5 dataset.
However, in this report, a different method is used to assess these error statistics.
A comparison is made with the results of the method of de Valk and van den Brink
(2020a) to demonstrate that both methods are compatible, but that the new method
works better.

Besides providing guidance on the type of tail to use for extrapolation, the anal-
ysis offers other valuable insight, for example about the potential increase in accu-
racy if the shape parameter of the GP, GW or log-GW tail is estimated from the
full SEAS5/DCSM-5 dataset instead of from a subsample. This gives a conservative
assessment of the potential increase in precision due to the use of SEAS5/DCSM-5
data for these tails: it is foreseen that the location and scale parameters will be esti-
mated after calibration of the SEAS5/DCSM-5 data to high-resolution simulations
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of a limited subset of storms from the SEAS5/DCSM-5 archive, so the statistical
extrapolation after this calibration may be somewhat less precise than before (which
is the price to be paid for the expected reduction in simulation model bias).

In the comparison of the performances of tail models, we ignore simulation model
bias, defined as systematic error in the distributions of SEAS5/DCSM-5 model out-
put variables.

Simulation model bias is analyzed separately, focusing on the shape parameters of
the GW and GP tails (as simulation model bias in the scale and location parameters
is expected to be corrected by calibration on high-resolution simulations). Shape
estimates from these data are compared to estimates from measurement data for
six tide gauge stations, and an assessment is made of the order of magnitude of the
bias in return values resulting from simulation model bias in the shape parameter.
Possible implications for the use of calibrated SEAS5/DCSM-5 data for estimation
of return values for high return periods are indicated.

The discussions of the results are included in the chapters.
Deze studie is uitgevoerd binnen een Maatwerk I&W opdracht onder begeleiding

van Marcel Bottema en Robert Slomp (WVL). Prof. dr. Pieter van Gelder heeft
een review van dit rapport uitgevoerd waarvan dankbaar gebruikt is gemaakt voor
de eindversie van dit rapport en voor vervolgstudies.
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2 The SEAS5/DCSM-5 dataset

The bulk of the archive of SEAS5 weather data consists of seasonal ensemble refore-
casts computed starting at the first day of every month in 1981-2016, each forecast
running over at least 7 months. In addition, operational forecasts are available from
2017 to present.

The output time step is 6 hours. Further information about the SEAS5 data
can be found in Implementation of Seasonal Forecast SEAS5 (ECMWF, 2018a) and
SEAS5 User Guide (ECMWF, 2018b).

Water levels were computed by the DCSM-5 flow model for shallow tidal seas,
forced by pressure and wind from SEAS5; see van den Brink (2020). High-tide
water level maxima were extracted from these data. In addition, the skew surge was
determined by the method implemented in the DCSM-5 model.

No corrections for limitations on resolution etc. (van den Brink, 2020) have yet
been applied to the SEAS5/DCSM-5 data.

For the SEAS5 reforecast data, the ensemble size is 25 and for Feb, May, Aug and
Nov, the size is 50. The ensemble size is also 50 for the operational forecasts. Only
25 ensemble members of each forecast were used in order to retain the same data
volume for every year/month (out of caution, but this may not have been necessary).
Furthermore, data of the first month of each forecast run were discarded to ensure
independence among the members of an ensemble. This resulted in about 5800 years
of data for each station. Subsequently, 150 subsamples of these data were generated
by combining ensemble members with the same ensemble member label and with
starting dates at regular 6-month intervals. Pairs of subsamples were combined,
resulting in 75 subsamples, each one covering about 78 years.

In this study, we analyse high-tide water level and skew surge data computed
for the 21 coastal tide-gauge stations Duinkerke, Oostende, Zeebrugge, Cadzand,
Vlissingen, Westkapelle, OS11, Roompot buiten, Lichteiland Goeree, Hoek van Hol-
land, Scheveningen, Meetpost Noordwijk, IJmuiden, Den Helder, Texel Noord, Har-
lingen, West Terschelling, Huibertgat, Delfzijl, Cuxhaven, and Esbjerg. These sta-
tions are aligned along the southern and eastern boundaries of the North Sea from
N. France to Denmark; see Figure 1.

For each station, Figure 2 shows the difference between the empirical quantiles
of water level and skew surge as a function of the probability of exceedance. As
observed in van den Brink (2020)[Figure 9], these are fairly close to constant, but
in particular for sites to the south of Den Helder, some curvature can be seen. A
possible explanation for this curvature is a systematic dependence between the skew
surge (high-tide water level minus undisturbed tidal maximum) and the height of
the undisturbed tidal maximum, due to surge-tide interaction (for example: high
astronomical maxima are reduced more by the surge than low astronomical maxima).
The effect should be higher in the south, where the tidal range is larger and storm
surges tend to be lower (see Appendix A). This is indeed observed in Figure 2.

https://confluence.ecmwf.int/display/FCST/Implementation+of+Seasonal+Forecast+SEAS5
https://www.ecmwf.int/sites/default/files/medialibrary/2017-10/System5_guide.pdf
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Fig. 1: Locations of coastal tide gauge stations in the North Sea. Station OS11 is close to Roompot.
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3 Comparison of estimates from the full sample

Estimates of return levels of water level were made for return periods of 107 years
and of 104 years

a) directly from high-tide water level data, and

b) indirectly, from data of skew surge, with the return levels of skew surge con-
verted to water level by adding a site-dependent constant determined from
Figure 2 at a sample fraction of 0.005 (3.5/year), in the range where the
curves are relatively stable and precise.

.
Figure 3 shows these estimates for a return period of 107 years and for 6 different

threshold probabilities (sample fractions) as functions of the location index from
South (Duinkerke) to North (Esbjerg). The estimates for a return period of 104

years are shown in Figure 4.
The patterns in the estimates and their dependence on location, data source

(water level or skew surge) and tail type are similar for both return periods, but the
estimates for a return period of 104 years show less variation when varying tail type
and data source. Therefore, we will focus on the return period of 107 years.

Return level estimates based on corrected skew surge data (dashed) and water
level data (full) are very different for the Weibull tail. As for wind (de Valk and van
den Brink, 2020a), this tail is clearly too rigid and cannot adapt sufficiently to the
data. For the exponential tail, the estimates based on water level data and surge
data agree much more closely. Among the 2-parameter tails, only the log-GW tail
shows large differences between the estimates based on water level data and surge
data; they are of the order of 0.5-1.0 m for threshold sample fractions of 0.001-0.02
(frequencies of exceedance of 0.7-14/year). This is not surprising: the difference
between the tails of water level and skew surge is approximately a shift, but the
log-GW tails are not shift-invariant1, unlike the GW and GP tails. For the GW
and GP tails (which are shift-invariant 2-parameter tails), the estimates based on
water level data and surge data agree quite closely for sample factions of 0.005-0.02.
At lower sample fractions and in the South, they deviate more. The differences
between GW and GP-based estimates is somewhat larger in the Waddenzee than
further to the West and South. This is likely related to the larger curvatures of the
tails for stations in the Waddenzee; see Chapter 6. For all tails except the Weibull,
the estimates vary considerably with sample fraction in the range 0.01-0.05, but are
rather stable for sample fractions of 0.01 and lower. From the Flemish coast up to
Hoek van Holland/IJmuiden, the estimates based on GW and GP tails are similar
to the estimates based on the exponential tail. This is not the case further North,
where the exponential gives higher return values.

Generally, return value estimates of high-tide water level based on skew surge
data are lower than estimates derived directly from water level data (but for the

1 A shift-invariant family of tails has the property that if the random variable (e.g. water level)
is expressed relative to a different offset (e.g. mean sea level instead of NAP), its tail still belongs
to the same family of tails.
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Source Vlissingen Hoek v H Den Helder Harlingen Delfzijl

Dillingh et al (1993) 5.55 4.75 4.15 4.40 6.15
Eilander (2012) 5.32 4.66 3.76 4.44 6.16
SEAS5/DCSM5 5.48 4.26 3.79 4.56 5.62

Tab. 2: Estimates of return levels of high-tide water level (m) for a return period of 104 years from
different sources (see also Chbab (2017), Table 3.15); the estimates from SEAS5/DCSM5
are from a GW tail fitted to a sample fraction of 0.01 (7/year).

Weibull tail, it is the opposite). The reason is dependence between the skew surge
and the height of the astronomical maximum due to surge-tide interaction, as ex-
plained in Section 2. Indeed, as expected, the largest differences are found for
stations in the South, where the tidal range is high. This could be a reason to prefer
direct estimates from from water level data. For the log-GW tail and in particular,
the Weibull tail, the differences between estimates derived from water level data and
from surge data are unrealistically large, in particular at the higher sample fractions
(these differences should be considerably smaller than the tidal amplitude). This
indicates serious bias.

In van den Brink (2020), the empirical distributions of annual maxima of skew
surge and water level from the same SEAS5/DCSM-5 dataset are compared to dis-
tributions of annual maxima of water level and skew surge from measurements. For
most stations, the estimates from SEAS5/DCSM-5 data are considerably lower than
those from measurements.

In Table 2, the estimates of return levels for a return period of 104 year in
Figure 4 for five stations are compared to two different reference estimates from
Chbab (2017), Table 3.15. For the stations Vlissingen, Den Helder and Harlingen,
estimates from SEAS5/DCSM5 data are compatible with the estimates from the
other studies. For Hoek van Holland and Delfzijl, estimates from SEAS5/DCSM5
data are up to 10% lower. Possibly, the limited resolution of DCSM5 has a relatively
large impact at these two sites.

All together, we may conclude that the estimates from SEAS5/DCSM5 are not
far off the earlier estimates from measurement data. It is too early for a closer
examination of the differences, since we have not yet addressed corrections of the
SEAS5/DCSM5 data for resolution effects etc. (van den Brink, 2020).

In Appendix A), return value estimates are shown for skew surge, prepared in
the same way as for high-tide water level.
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Fig. 3: Return level estimates of high-tide water level for a return period R = 107 years as function
of location index. Estimates are based on sample fractions indicated above the panels (these
correspond to frequencies of exceedance of 0.7, 1.4, 3.4, 7, 14 and 35/year).
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Fig. 4: Return level estimates of high-tide water level for a return period R = 104 years as function
of location index. Estimates are based on sample fractions indicated above the panels (these
correspond to frequencies of exceedance of 0.7, 1.4, 3.4, 7, 14 and 35/year).
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4 Statistics of transformed maxima over subsamples

A first check of the extrapolation skills of different tail models is from van den Brink
and Können (2008, 2011). With a chosen tail model, we fit the empirical tail of
the seasonal wind speed forecasts, using the upper 100p% of values. This tail fit
allows us to transform the upper 100p% of values in each of the m = 75 subsamples
monotonically to render their tail approximately standard exponential. If the fitted
tail matches the true tail closely, then the distribution function of the transformed
wind speed should be close to the standard exponential distribution. Let n be the
size of a subsample, and Y the highest transformed wind speed in the subsample
minus log(np↵), with ↵ the extremal index (e.g. de Valk and van den Brink (2020a),
Ch 2). For high tide water level and skew surge, a value of 1 was found for ↵. Then
the distribution function of Y should be close to a standard Gumbel distribution:
for np large, P(Y )  x) ⇡ (1� exp(�x� log(np↵)))np↵ ⇡ exp(� exp(�x)).

Since we have m subsamples, we can check whether this is true. Let Y1, ..., Ym

be the highest transformed wind speeds from each of the m subsamples; they can be
sorted to obtain the order statistics Y1:m  ...  Ym:m. Then the plot of Yi:m against
� log(� log(i/(m+1))) for i = 1, ...,m (known as the Gumbel plot) should be close
to a straight line through the origin with slope 1. Furthermore, assuming that Y
has an exact Gumbel distribution and that Y1, ..., Ym are independent, pointwise
confidence bounds can be derived from e.g. Czörgő & Révész (1978). The accuracy
of the approximation provides a measure of the accuracy of the fitted tail used to
transform the data to unit exponential.

The method described above differs from the one applied in de Valk and van den
Brink (2020a) in that there, the tails of individual subsamples were fitted, whereas
here, the fit was computed from the full sample. The latter method is valid (bias in
the estimates from subsamples and from the full sample is virtually identical), and
is much less affected by noise.

Figure 5 shows the results for a sample fraction p = 0.036 (the values exceeded
less than 25/year). It should be kept in mind that the results for different stations
are not independent; they are generated by surge events affecting the whole southern
North Sea. For most stations and tails, a substantial part of the Gumbel plot is
outside the pointwise 95% confidence interval. This indicates that none of these
tails fits the data very well over the entire range from the quantile with probability
of exceedance p = 0.036 to the maximum over the subsample. However, the sample
fraction p = 0.036 is rather large, so this is not necessarily a negative result. The
plots for the Weibull tail deviate far from the diagonal in almost all cases. For the
exponential tail, the deviation is substantial in particular for surge at stations in the
North.

With a lower sample fraction p = 0.007 (the values exceeded less than 5/year),
the diagonal is approximated much more closely; see Figure 6. Values a little outside
the 95% confidence interval are observed mainly for Weibull and water level in the
South, for Weibull and surge in the North, and for the exponential in the North
(both water level and surge). For the other tails, the curves are mostly within the
confidence intervals.

The approximations are even better with a lower sample fraction p = 0.0014(the
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Fig. 5: Gumbel plots of transformed maxima over the subsamples of the data of water level (left)
and surge (right), for different tails (see legend) and stations (rows). Dashed: standard
Gumbel line; dotted: 95% confidence bounds. Tail estimates based on values exceeded
25/year (sample fraction of 0.036).
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from high−tide water level from skew surge
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Fig. 5: Continued from last page.
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from high−tide water level from skew surge
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Fig. 6: Gumbel plots of transformed maxima over the subsamples of the data of water level (left)
and surge (right), for different tails (see legend) and stations (rows). Dashed: standard
Gumbel line; dotted: 95% confidence bounds. Tail estimates based on values exceeded
5/year (sample fraction of 0.007).
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from high−tide water level from skew surge
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Fig. 6: Continued from last page.
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from high−tide water level from skew surge
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Fig. 7: Gumbel plots of transformed maxima over the subsamples of the data of water level (left)
and surge (right), for different tails (see legend) and stations (rows). Dashed: standard
Gumbel line; dotted: 95% confidence bounds. Tail estimates based on values exceeded
1.0/year (sample fraction of 0.0014).
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from high−tide water level from skew surge
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values exceeded less than 1/year); see Figure 7. Part of this is explained by the
fact that with a lower sample fraction p, the subsample-maxima are closer to the
threshold exceeded by this sample fraction, so we are testing extrapolation to a
larger fraction of p; 0.013p in the latter case.

We may conclude that 2-parameter tails (GP, GW and log-GW) are performing
satisfactorily for p  0.01; the 1-parameter tails (Weibull and exponential) show
clear biases.
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5 Checking the extrapolation from subsamples by
Monte-Carlo simulation from plausible distribution
functions

5.1 Introduction
In de Valk and van den Brink (2020a), the bias in return value estimates of (pseudo)
wind speed from subsamples is estimated from the difference between their mean
value and a reference estimate derived from the full sample at a much higher thresh-
old. This bias estimate is used for the estimation of the root mean square (RMS)
error.

Here, a modified method is applied which is less sensitive to noise, and provides
estimates of bias relative to an absolute reference value. For a given distribution
function F , the error statistics of quantile estimates based on different types of tails
can be determined straightforwardly by Monte Carlo simulation. The advantage of
this approach is that the reference quantile is known exactly, as was stressed by prof.
Pieter van Gelder in his review of de Valk and van den Brink (2020a). However, the
results of Monte Carlo simulation depend sensitively on the choice of the distribution
function(s), and therefore often tend to be subjective and ambiguous.

To avoid this, we construct plausible tails representing the tails of high tide
water level and skew surge at all tide gauge stations considered in this study. These
tails are derived from the estimates of the GW, log-GW or GP shape parameter for
all threshold probabilities p obtained from SEAS5/DCSM5 data. This is feasible
thanks to the large size of the SEAS5/DCSM5 dataset available for each tide gauge
station2.

5.2 Method
Suppose for simplicity that the distribution function F is smoothly increasing, and
let let q be the quantile function defined as the function satisfying

1� F (q(y)) = e�y

for every y 2 [0,1) (so q(y) = Q(e�y) with Q defined in Section 1).
Define the function ⇢̃ by

⇢̃(y) = y(log(yq0(y))0, (1)

with 0 indicating differentiation with respect to y; ⇢̃ is a dimensionless measure of
curvature. If ⇢̃(y) tends to a constant ⇢ when y ! 1, then the distribution function
F satisfies a GW tail limit with GW shape parameter equal to ⇢. However, we can
model ⇢̃ regardless of whether a GW tail limit applies or not, as the quantile function
q can be determined by solving (1). Moreover, we can estimate ⇢̃ regardless of
whether a GW tail limit applies or not: most GW shape estimators ⇢̂p at a threshold
exceeded by the fraction p of the sample are really estimators for ⇢̃(log(1/p)), so
applying them for different p, we can estimate the function ⇢̃.

2 The next section is rather technical; it may be skipped or browsed in a first reading.
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Fig. 8: GW-shape parameter estimates ⇢̂p from SEAS5/DCSM-5 data of skew surge at Cuxhaven
as function of sample fraction p (full), with their two-sided 95% confidence intervals. The
dashed line is �̂p(log 1/p) + 1, with �̂p the GP- shape parameter estimates from the same
data. The indicated sample fractions correspond to 0.007, 0.07, 0.7, 7.0 and 70/year.

Alternatively, we can consider another type of dimensionless curvature �̃, defined
by

�̃(y) = (log(q0(y))0 = (⇢̃(y)� 1)/y. (2)

If �̃(y) tends to a constant �, then F satisfies as GP tail limit with shape parameter
equal �. But again, this is not the issue here.

In principle, it does not matter whether the function ⇢̃ or the function �̃ is used
to describe the quantile function q; either will do.

From (2), we see that ⇢̃(y) � 1 is the magnification of �̃(y) by a factor y. This
is illustrated by the estimates ⇢̂p of ⇢̃(log 1/p) (full line) and �̂p/(log 1/p) + 1 of
(log 1/p)�̃(log 1/p) (dashed line) in Figure 8, derived from the SEAS5/DCSM-5 data
of skew surge at Cuxhaven3. Therefore, ⇢̃ is more suitable for modelling of the finer
details of the tail than �̃, as the former magnifies these details.

The following procedure is used to determine a plausible quantile function q:
3 The small differences between the two curves are due to different types of estimators being

used, so the estimates do not exactly satisfy (2).
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1. fix a threshold probability p0 such that q(y) can be determined accurately for all
y 2 [0, log 1/p0] directly from the empirical quantiles with probabilities of exceedance
[p0, 1]; let y0 := log(1/p0);

2. estimate a plausible profile for ⇢̃(y) for all y � y0 := log(1/p0) from the estimates ⇢̂p
for p  p0;

3. estimate q0(y0) (in fact, q0(y0) = f(y0)/y0, with f(y) the local scale parameter of the
GW tail at y, which can be estimated directly);

4. numerically integrate the differential equation (1) starting from the initial values
(q(y0), q0(y0)) to obtain q(y) for every desired value of y � y0.

The large size of the SEAS5/DCSM5 dataset for each tide gauge station makes
it possible to make accurate shape estimates ⇢̂p over a much wider range of sample
fractions p than would be possible using measurements or reanalysis data.

One candidate model for the profile of ⇢̃(y) at y � y0 is

⇢̃(y) = ⇢̃(y0) + (c/�)((y/y0)
� � 1) (3)

with � < 0 and c a real number. In this model, ⇢̃(y) relaxes toward the constant
⇢(y0)�c/� as y ! 1, which can be close to ⇢̃(y0) or far away from ⇢̃(y0). This model
implies that F satisfies the GW tail limit (eq. (9) in de Valk and van den Brink
(2020a)) with shape parameter ⇢ = ⇢̃(y0) � c/� and with second-order regularity
given by eq. (24) in Appendix A.1 of de Valk and van den Brink (2020a). The
relaxation to a constant gives the model of the tail a certain stability, which helps
to reduce the sensitivity of estimates of the model to noise. However, if the true
⇢̃(y) tends to ±1 when y tends to infinity, then estimates ⇢̂p will also divergence
as p tends to 0 (i.e., estimates of � will be close to 0 and/or estimates of |c| will be
large). If this is observed, then we may consider other classes of profiles for ⇢̃(y)
which diverge as y tends to infinity, such as, for example, ⇢̃(y) = ⇢̃(y0)+ c log(y/y0).
But if the model (3) matches the estimates ⇢̂p well, then there is no need for this.

The estimator of ⇢̂p is from de Valk & Cai (2018) (the latter addresses estimation
of the log-GW shape parameter and tail; it is straightforwardly adapted the GW
shape parameter and tail). The estimation of � and c from the estimates ⇢̂p or
different sample fractions p is a delicate issue, because these estimates are strongly
dependent, and the variance of ⇢̂p increases strongly with decreasing p. A new
approach was developed in this study, based on the large-sample approximation of
the error statistics of ⇢̂p; see Appendix B.

This estimator appears to be very effective. As an example, Figure 9 shows
the shape estimates ⇢̂p with their confidence intervals as in Figure 8. The dots in
Figure 9 indicate the estimated curve given by (3) with � and c estimated from the
estimates ⇢̂p for p  p0 = 0.01. In view of the confidence bands for ⇢̂p, the estimated
curve seems quite plausible. Plausible estimates are also obtained for water level and
surge at the other sites of coastal tide gauges, all with the same threshold probability
p0 = 0.01. All estimates are shown in the figures in Appendix B.

It should be noted that such refined estimation of the function ⇢̂p would not be
possible without a very large dataset.
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Fig. 9: GW-shape parameter estimates ⇢̂p (full) from SEAS5/DCSM-5 data of skew surge at Cux-
haven as function of sample fraction p, with their two-sided 95% confidence intervals. Dots
indicate the estimated model (3), fitted to the values of ⇢̂p for p  0.01. The indicated
sample fractions correspond to 0.007, 0.07, 0.7, 7.0 and 70/year.

After computing the quantile function q from the estimated function ⇢̃ and other
estimates by the four-step procedure outlined earlier, it is straightforward to simulate
synthetic datasets of independent random high-tide sea level or skew surge values,
each covering a period of 5800 years.

Subsequently, return levels are estimated from the full dataset, from 78-year
subsamples, and from a combination of these (using the full dataset to estimate the
GP, GW or log-GW shape parameter, and a subsample to estimate the scale and
location parameters).

From these, we can compute the error statistics (bias, variance, and from these,
the root mean square (RMS) error) directly using the exact return level obtained
from the known quantile function q. We simulate 15 realisations of the full dataset
and draw 50 subsamples from each. This is sufficient to obtain precise estimates
of bias and RMS error from the full samples as well as from the (much smaller)
subsamples.

One issue remains: the synthetic data are independent, but the original high-tide
water level and skew surge values from SEAS5/DCSM-5 data are only independent
far in the tail of the sample. For return value estimates based on large sample
fractions, serial dependence increases the variance. To account for this, the esti-
mated variance of a return level estimate from the synthetic data is multiplied by
a threshold-dependent correction factor estimated from the SEAS5/DCSM-5 data;
see Appendix E.
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5.3 Results
Figures 10-13 show the bias and RMS error of the return level estimates from sub-
samples for different tails (colours) as functions of sample fraction, both for esti-
mates from high-tide water level data (top) and for estimates from data of skew
surge (bottom), for a representative subset of eight tide gauge stations.

Dashed lines are the bias and RMS for the GP, GW and log-GW tails with
shape parameter fixed to the estimate from the full sample. Comparing these to
the bias and RMS of estimates from a subsample gives a conservative assessment of
the potential increase in precision due to the use of SEAS5/DCSM-5 data for these
tails: it is foreseen that the location and scale parameters will be estimated after
calibration of the SEAS5/DCSM-5 data to high-resolution simulations of a limited
subset of storms from the SEAS5/DCSM-5 archive, so these will be less precise than
estimates from the original set of SEAS5/DCSM-5 data (how much less, is difficult
to say at this moment).

For a different view of the results, the same statistics are plotted in Figures
14-16 as functions of the station from South (Duinkerke) to North (Esbjerg), for
three values of the sample fraction (0.005, 0.01, 0.05, corresponding to 0.7, 7.0
and 70/year). To read the names of stations along the horizontal axis, it may be
necessary to zoom in.

The following can be seen in these plots:

1. The 1-parameter tails (Weibull, exponential) do not consistently perform well,
due to bias. For water level, the Weibull tail performs well for water level data
at sites to the North of IJmuiden, but poorly for sites further to the South.
The opposite is seen with the exponential tail. For skew surge data, both
tails show considerable bias, in particular the Weibull tail. This indicates that
1-parameter tails are not reliable.

2. At low thresholds exceeded by sample fractions above 0.01 (frequencies above
7/year), bias and RMS error are generally high, in particular for water level
(see Figure 16).

3. The estimates of GP and GW tails with shape parameter estimated from the
full dataset (emulating the use of the full SEAS5/DCSM-5 dataset calibrated
using a much smaller subset, in this case of 87 years; see above) achieve in
most cases the lowest RMS error of all tails. For sample fractions of 0.01
(frequencies above 7/year) or lower, this is consistently so in all cases; RMS
errors well below 0.5 m are found for the best performing GW tail at sample
fractions of 0.005 and 0.01 (3.5/year and 7/year; see Figures 14-15).
Although these quantitative outcomes cannot be directly translated to the sit-
uation of using calibrated SEAS5/DCSM-5, we can conclude that for these two
tails, random errors in the shape and location parameters due to calibration
of the data on a relatively small subset are likely to be small; most of the error
is associated to the shape parameters.
The RMS error for the log-GW tail with shape parameter estimated from the
full dataset is overall slightly higher and the results are less consistent.
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Fig. 10: Statistics of return level estimates of high-tide water level at Vlissingen and Hoek van
Holland for a return period R = 107 years. The sample fractions correspond to 0.7, 7.0
and 70/year.
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Fig. 11: As Figure 10 for IJmuiden and Den Helder.
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Fig. 12: As Figure 10 for Harlingen and Huibertgat.
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Fig. 13: As Figure 10 for Delfzijl and Cuxhaven.
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Fig. 14: Statistics of return level estimates of high-tide water level for a return period R = 107

years and a fixed sample fraction of 0.005 (3.5/year).
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Fig. 15: As Figure 14 for a sample fraction of 0.01 (7/year).
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Fig. 16: As Figure 14 for a sample fraction of 0.05 (35/year).
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4. If the GP, GW or log-GW shape parameter is estimated from the subsamples
(emulating estimates from measurements or reanalysis data), then the RMS
error tends to be much higher: of the order of 1 metre or more.
This shows the potential value of using SEAS5/DCSM-5 data for estimation
of the shape parameter, and using much smaller datasets for calibration of the
location and scale parameter. In the application, model-related bias in the
shape parameter from the SEAS5/DCSM-5 data (not taken into account in
the present analysis) will also contribute to the RMS error. This is addressed
in Section 6.

5. The GW tail appears to perform slightly better than the GP tail, because the
GP tail has some negative bias for tide gauge stations North of IJmuiden. If
the shape parameter is estimated from the subsample, then the difference in
performance is larger, because return value estimates based on the GW tail
have lower variance.

6. Using skew surge data instead of high-tide water level data results in approx-
imately the same accuracy, according to the Monte Carlo analysis.

The same analysis was performed with return level estimates for a return period
of 104 years, for which the reference estimates are more tightly constrained by the
data; see Figures 17-19. The patterns do not differ from those for a a return period
of 107 years.

To see how the estimates of bias and RMS error from Monte-Carlo simulation
compare to estimates derived directly from the data using the method from de Valk
and van den Brink (2020a), the estimates for Vlissingen and Hoek van Holland from
both methods are plotted in Figures 20 and 21.

For sample fractions larger than about 0.01 (frequencies above 7/year), the es-
timates of bias and RMS error from the two methods are remarkably similar. The
main difference is that the estimates based on de Valk and van den Brink (2020a)
are much more noisy, in particular for sample fractions below 0.01. Note in particu-
lar the large differences between reference estimates ("bias-corrected return value")
at different sample fractions and for different tails. In fact, where there are large
differences between both types of estimates (e.g. the bias and RMS error of the
107-year water level and surge at Hoek van Holland estimated using the GP tail,
at sample fractions above 0.01), there are also large differences between the refer-
ence values ("bias-corrected return values") for different tails, so the results of the
method from de Valk and van den Brink (2020a) are ambiguous. In these cases, the
error statistics based on Monte-Carlo simulation appear to be more reliable.

These results show that for high-tide water level and skew surge, the advantages
of the modified approach appear to outweigh its potential drawbacks.

A similar comparison is shown in Appendix C for wind speed from the SEAS4
and SEAS5 seasonal ensemble reforecasts and for pseudo-wind speed from SEAS5
at the location 55N, 3E in the central North Sea. The results are similar to those
for high-tide water level and skew surge above, and confirm the conclusions.

The finding that two completely different methods for assessing error statistics
give similar results gives confidence in the conclusions derived from them.
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Fig. 17: Statistics of return level estimates of high-tide water level for a return period R = 104

years and a fixed sample fraction of 0.005 (3.5/year).
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Fig. 18: As Figure 17 for a sample fraction of 0.01 (7/year).
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Fig. 19: As Figure 17 for a sample fraction of 0.05 (35/year).
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Fig. 20: Bias and RMS error (left and centre) of return level estimates of high-tide water level and
skew surge at Vlissingen for a return period R = 107 years computed as in de Valk and
van den Brink (2020b) with an estimated reference return level ("bias-corrected return
value") (top 2 rows), and using the Monte-Carlo based method of this report (bottom 2
rows). The indicated sample fractions correspond to 0.7, 7.0 and 70/year.
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Fig. 21: Bias and RMS error (left and centre) of return level estimates of simulated high-tide water
level and skew surge at Hoek van Holland for a return period R = 107 years, computed
as in de Valk and van den Brink (2020b) with an estimated reference return level ("bias-
corrected return value") (top 2 rows), and using the Monte-Carlo based method of this
report (bottom 2 rows). The indicated sample fractions correspond to 0.7, 7.0 and 70/year.
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6 Verification of the tail shapes of high-tide water level and
skew surge data from SEAS5/DCSM-5

The high-tide water level and skew surge data from SEAS5/DCSM-5 can be used
for estimating return values for high return periods if there is enough confidence
that the bias in the tail of their distribution function is acceptable. Errors in offset
and scale are not considered a problem, as these can be corrected by calibration.
The current plan is to correct bias in offset and scale using the output of models of
higher resolution than of the SEAS5/DCSM-5 suite, because this makes it possible
to derive the corrections also for sites where no measurements are available.

Therefore, a comparison between the empirical tails from SEAS5/DCSM-5 data
and measurements should be focused primarily on the shape parameter of the tail to
be used for estimation of return values. A comparison of shape parameter estimates
of the GW and GP tails from SEAS5/DCSM-5 data and from measurements was
carried out for the tide gauge stations at Vlissingen, Hoek van Holland, IJmuiden,
den Helder, Harlingen and Delfzijl.

The high-tide water level measurements relative to NAP (as well as various types
of low-tide water levels) were provided by the Helpdesk Water of Rijkswaterstaat.
For each station, a smooth trendline for high-tide water level was determined by
fitting a local linear regression (loess) curve to the annual means as in de Valk
(2020). This trendline was normalised by subtracting its value for the last complete
year (2019), and was subsequently subtracted from the high-tide water level values.

Skew surge data from measurements at the same six stations were used without
adjustments4. Only the values above 0.30 m are available.

The tails of the empirical distribution functions of high-tide water level and skew
surge are displayed in Figure 22. For the water level exceeded 10% of the time, we
see positive differences between SEAS5/DCSM-5 and measurements at all stations
except IJmuiden and Hoek van Holland. This indicates that the tidal maxima at
Vlissingen, Den Helder, Harlingen and Delfzijl are overestimated. This is confirmed
by the plots for skew surge, which do not show an offset error. The overestimation
of tidal maxima may in part be caused by the limited resolution of DCSM-5, since
all four stations where it occurs are adjacent to estuaries.

This finding calls for the use of a shallow-water flow model in which the tides
are represented more accurately, such as DCSM6 or DCSM7. Further work is cur-
rently undertaken to downscale 250 storms from the SEAS5 archive and compute
the resulting water levels and surges in order to map meteorological and hydraulic
simulation model biases.

The slopes of the lines in Figure 22 for SEAS5/DCSM-5 and measurements agree
only for the station Vlissingen; for other stations, the slopes from SEAS5/DCSM-5
data are steeper than the slopes from measurements. The difference in slope appears
to increase along the coast from SW to NE. The same was found earlier in Appendix
B of Chbab (2017). The cause is not yet known.

Estimates of the GW shape parameter from measurements and SEAS5/DCSM-5
data of high-tide water level and skew surge are shown in Figures 23 and 24. As

4 For Delfzijl, the values for dates before Aug 3, 1881 were discarded, because they are apparently
erroneous.
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Fig. 22: Empirical probabilities of exceedance of high-tide water level (top) and skew surge (bot-
tom) from measurements (thin lines) and SEAS5/DCSM-5 simulations (thick lines) for six
tide gauge stations: IJmuiden (orange), Hoek van Holland (blue), Vlissingen (black), den
Helder (magenta), Harlingen (green) and Delfzijl (cyan). The indicated fractions of time
correspond to 0.0007, 0.07, 7.0, and 700/year.



6 Verification of the tail shapes of high-tide water level and skew surge data from SEAS5/DCSM-5 47

in Section 5, the shape parameter is regarded as a function of the probability of
exceedance p of the threshold (’sample fraction’ in the plots), perturbed by noise
which increases with decreasing p.

For relatively high p, the shape parameter from SEAS5/DCSM-5 data is lower
than the shape parameter from measurements at all stations except Hoek van Hol-
land. However, for all other stations except Delfzijl, the simulated shape values
are above or near the lower boundary of the 95% confidence intervals of the shape
estimates from measurement data. For Delfzijl, the differences are larger.

For this station and for Harlingen, the estimates from measurements drop steeply
as p decreases below about 0.01. However, the estimates from SEAS5/DCSM-5
data decrease only slightly. Because the confidence intervals of the estimates from
measurements are very wide, they contain almost all estimates from SEAS5/DCSM-
5, so the latter are not invalidated in this range. Figure 22 suggests that the drop
may have been enhanced by the small differences between the top three surges and
water levels at Harlingen and Delfzijl.

It seems unlikely that the drop in the shape estimates from measurements is a
real feature of the tail, because one would expect that for exceptionally high storm
surges, the large-scale surge on the North Sea would dominate, so one would not
expect that the tails at Harlingen and Delfzijl are radically different from those along
the West coast.

Therefore, for the lowest sample fractions, the curves from SEAS5/DCSM-5
for Harlingen and Delfzijl in Figure 24 seem more realistic than those from the
measurements. This already shows the value of the SEAS5/DCSM-5 dataset, even
with all its limitations: it imposes physical consistency between the tail estimates
for different sites. In fact, it is virtually impossible to choose a value of the shape
parameter to be used for extrapolation from the estimates from measurements (as
they vary strongly with sample fraction), but for the estimates from the much larger
SEAS5/DCSM-5 dataset, this is much easier.

The apparent underestimation by SEAS5/DCSM-5 of the shape parameter (up-
ward curvature) at sample fractions above about 0.01 (frequencies above 7/year)
is directly connected with the substantial overestimation of the magnitudes of the
slopes at lower sample fractions in the panels on the right in Figure 22. For relatively
low water levels (exceeded by high sample fractions above say 0.1, corresponding to
70/year), the slopes of the curves in this figure are relatively steep5. Because the
curvature is the derivative of the slope, the steeper slope of SEAS5/DCSM-5 at
high water/surge levels therefore implies a less positive curvature at intermediate
levels, i.e., a lower GW shape parameter. Both findings (the underestimation of the
shape parameter and the overestimation of the magnitude of the slope) may there-
fore have the same explanation(s). This implies that the apparent underestimation
by SEAS5/DCSM-5 of the shape parameter at sample fractions above about 0.01
does not need to invalidate these estimates.

In de Valk and van den Brink (2020b), no mismatch is found between estimates
of the omnidirectional and directional GW shape parameter of the SEAS5 wind and

5 For high-tide water level, this may be expected, because the astronomical tide has a substantial
effect on water levels in this range and it has a very light tail. The tail of skew surge is similar to
the tail of high-tide water level except for a level shift, and it shows this feature as well.
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pseudo-wind speeds and estimates from reanalysis data. Therefore, we should first
look at limitations of the DCSM-5 hydraulic model (such as resolution effects) for
an explanation of observed mismatches in shape parameter. An ongoing detailed
analysis of the effects of improved resolution and physics of the atmospheric and hy-
drodynamic models on the water levels reached during storms covering a wide range
of severities (including the storms causing the highest surges in the SEAS5/DCSM-5
dataset) may help to understand these mismatches better.

Comparing the shape estimates for IJmuiden and Hoek van Holland, we see that
for measurements, the estimates for IJmuiden are mostly higher than those for Hoek
van Holland, but for SEAS5/DCSM-5 data, it is just the opposite. The cause is not
understood.

Appendix D presents a comparison of estimates of the GP shape parameter from
SEAS5/DCSM-5 data and measurements. It does not provide additional insight;
mismatches are qualitatively similar.

In summary, the results indicate that for most stations, the shape parameter
may be somewhat underestimated by SEAS5/DCSM-5 simulations, but with the
exception of Delfzijl, we cannot conclude that the shape parameter estimates from
the SEAS5/DCSM-5 simulations are inconsistent with the estimates from measure-
ments. For the interior of the Waddenzee (and in particular for Delfzijl), there is a
need for better physical and numerical understanding of the considerable mismatch
between tail estimates from measurements and from the SEAS5/DCSM-5 data.
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Fig. 23: GW shape estimate vs. sample fraction with 95% confidence interval from measurements
(thin line, light shading) and from SEAS5/DCSM-5 simulations (thick line, dark shading)
of high-tide water level (left) and skew surge (right) at three tide gauge stations. The
indicated sample fractions correspond to 0.07, 0.7, 7.0 and 70/year.
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Fig. 24: As Figure 23 for three other tide gauge stations.
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7 Implications for simulation model bias

To put the preceding comparison of GW shape parameters in context, Tables 3 and
4 show the effect of a given increase in the shape parameter estimated from the
SEAS5/DCSM-5 data on the return values of high-tide water level and skew surge,
showing the highest increase over all tide gauge sites. Increases of the shape param-
eter of 0.1 and 0.2 are considered, which are typical for the deviation of the shape
parameter of the measurements from the shape parameter of the SEAS5/DCSM-5
data in Figures 23 and 24 (of course, the estimates from measurement data have
wide confidence intervals, so these values are indicative at best).

�⇢ 107 106 105 104 103 102 101 years
0.1 0.38 0.30 0.24 0.19 0.14 0.09 0.05 m
0.2 0.80 0.65 0.50 0.39 0.28 0.18 0.09 m

Tab. 3: Increase in return level of high-tide water level (m) in response to an increase �⇢ in the
GW shape parameter for several return periods (header row); increases are maximized over
all tide gauge sites.

�⇢ 107 106 105 104 103 102 101 years
0.1 0.34 0.29 0.24 0.19 0.14 0.09 0.05 m
0.2 0.72 0.61 0.50 0.39 0.28 0.18 0.09 m

Tab. 4: Increase in return level of skew surge (m) in response to an increase �⇢ in the GW shape
parameter for several return periods (header row); increases are maximized over all tide
gauge sites.

To compare the simulation model bias to the estimation error analyzed in Chap-
ter 5, we may compare the numbers in Table 4 to the RMS errors in Figures 14-15:
both are "total" errors (the former consists of bias only).

Comparing the values in Table 4 for a return period of 107 year to the RMS errors
in Figures 14-15 for GW and GP tails with shape estimated from the full dataset
(dashed lines), which are of the order of 0.3 m, we see that a model uncertainty in
the shape parameter of 0.1 gives a similar uncertainty in the return value as the
estimated RMS error. With a model uncertainty in the shape parameter of 0.2, this
becomes the dominant source of error in return value estimates. Comparing the
tables to Figures 17-18, the same is found for a return period of 104 year.

On the positive side, the effects of model uncertainties in the GW shape param-
eter of up to 0.2 are still smaller than the RMS errors of return value estimates from
78-year long datasets using the GW tail (full lines), which are of the order of 1 m
for a return period of 107 year and 0.5 m for a return period of 104 year (see e.g.
Figures 14, 15, 17 and 18), and even higher for estimates based on the GP tail. This
supports the use of SEAS5/DCSM-5 data (at least for the shape parameter of the
tail).

In the uncertainly analysis, model uncertainty in the shape cannot be ignored and
may well be the dominant source of error in the end. Figures 23 and 24 suggest that
this is the case in particular along the Waddenzee coast, for sample fractions above
about 0.01 for Harlingen or 0.005 for Delfzijl (7/year, resp. 3.5/year). However, for
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the final estimates based on calibrated SEAS5/DCSM-5 data, we only need the shape
parameter at a relatively low sample fraction smaller or equal to 0.01 (see Chapter
5). It is possible that in this range, the shape parameter from SEAS5/DCSM-5 is
reliable, but we cannot check this because the corresponding shape estimates from
measurements have very wide confidence bands.

After performing additional runs with higher-resolution models (HARMONIE,
and more recent versions of DCSM), we will have a better understanding of the
shortcomings of the SEAS5/DCSM-5 model suite, and possibly an improved dataset
matching the tails from the measurement better. A that stage, we may be able to
interpret the observed mismatches much better than we are able to right now.
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8 Conclusions

Tail estimation error An analysis of the bias and RMS error of return value
estimates of simulated skew surge and high-tide water level at 21 tide gauge stations
(which ignores simulation model error) shows that:

a) If the shape parameter is estimated from a very large dataset (in this case,
of effectively 5800 years), then both the GW and GP tail produce accurate
return value estimates for skew surge and high-tide water level: root mean
square errors are of the order of 0.3 m for a return period of 107 year.

b) This supports the use of (calibrated) SEAS5/DCSM-5 or similar large datasets.

c) Overall, the GW tail performs best for skew surge and high-tide water level
at all sites: it produces slightly higher return values than the GP tail (in
particular, no negative bias at sites to the north of IJmuiden), performs sig-
nificantly better than the GP tail if noise is large (if the shape parameter is
estimated from the smaller 78-year datasets), and clearly performs best for
wind speed/pseudo-wind speed (Appendix C and de Valk and van den Brink
(2020a)). In addition, the refined tail fits for the purpose of Monte-Carlo
simulation in Section 5 and Appendix B support a GW tail.

d) Monte-Carlo simulation based on plausible tails estimated by a refined analysis
of very large and realistic datasets of wind, water level and surge data, like
the SEAS5/DCSM-5 data in this study, appears to be a good method for
comparing statistical models and methods: results are compatible with the
method in de Valk and van den Brink (2020a) but are much less affected by
noise.

e) Use of the same (GW) tail for (pseudo-) wind speed and surge/water level
has the added benefit that a power law for the wind speed/surge relation (a
reasonable simplification on physical grounds) is preserved in GW tails, but not
in GP or log-GW tails, for example. A practical demonstration was provided
in de Valk and van den Brink (2020a)).

f) A sample fraction of about 0.01 (threshold exceeded 7/year) for tail estimation
from the SEAS5/DCSM-5 water level and surge data appears to be a good
choice: higher values result in significant bias, and much lower values in loss
of precision. The same was found for wind speed/pseudo-wind speed from
SEAS5.

g) For estimation, skew surge offers no benefit over high-tide water level. Return
value estimates of high-tide water level derived from data of skew surge tend
to be slightly lower than directs estimates from high-tide water level data,
probably as a result of surge-tide interaction. Therefore, there is a slight
benefit in using water level data directly, because it tends to result in somewhat
higher return values for the water level.
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Simulation model error: comparison to shape parameter estimates from mea-
surements

h) For most stations, the GW shape parameter may be somewhat underestimated
by SEAS5/DCSM-5 simulations, but with the exception of Delfzijl, we can-
not conclude that the shape parameter estimates from the SEAS5/DCSM-5
simulations are inconsistent with the estimates from measurements.
However, even for Delfzijl, the shape estimates from SEAS5/DCSM-5 data
using small fractions of the data (high thresholds) are not invalidated by the
measurements; in fact, they seem more realistic than the (very imprecise)
estimates from the measurements.

i) Earlier (de Valk and van den Brink, 2020b), it was found that for wind speed
and pseudo-wind speed, estimates of the GW shape parameter from SEAS5
data are consistent with estimates from reanalysis data. Therefore, the appar-
ent bias in the GW shape parameter of SEAS5/DCSM-5 water level and surge
simulations is likely related to the hydraulic model.

j) Therefore, it is recommended to investigate in detail the impact of hydraulic
model refinement (in particular, improvement of the spatial resolution) on the
simulated high-tide water level and surge extremes.

k) For Delfzijl and Harlingen, it is virtually impossible to derive a value of the
GW or GP shape parameter from the measurement data, due to ambiguity and
high uncertainty. Such problems are not encountered with the SEAS5/DCSM-
5 data, due to their much larger sample size.

l) Realistic values of simulation model bias in the GW shape parameter from
SEAS5/DCSM-5 simulations lead to errors in return values which are consider-
ably smaller than estimation errors for 77-year data subsamples and therefore,
smaller than estimation errors from measurement records. This indicates that
the shape parameter estimates from SEAS5/DCSM-5 simulations are suitable
for estimating return values of high-tide water level. The results of simu-
lations of selected storms from SEAS5 using more refined/higher-resolution
models may provide additional insight.
The present results also indicate that in the uncertainty analysis, simulation
model bias in the shape parameter cannot be neglected, as it may be as large or
larger than the estimation error from the full set of SEAS5/DCSM-5 data. This
means that we will need to make at least an educated guess of the simulation
model bias in the shape parameter, based on all information then available.

m) There is a need for better physical and numerical understanding of the ob-
served mismatch between tail estimates from measurements and from the
SEAS5/DCSM-5 data within the Waddenzee, and in particular for Delfzijl.
When the results of downscaling of 250 storms from the SEAS5 archive and
high-resolution simulation of water levels and surges become available, the
comparison should be revisited, as these results will help us to learn more
about the causes of the mismatch and how it should be corrected.
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A Return level estimates of skew surge

The following figures are the analogues of Figures 3 and 4 for skew surge instead of
high-tide water level.
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Fig. 25: Return level estimates of skew surge for a return period R = 107 years as function of
location index. Estimates are based on sample fractions indicated above the panels (these
correspond to frequencies of exceedance of 0.7, 1.4, 3.4, 7, 14 and 35/year).
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Fig. 26: Return level estimates of skew surge for a return period R = 104 years as function of
location index. Estimates are based on sample fractions indicated above the panels (these
correspond to frequencies of exceedance of 0.7, 1.4, 3.4, 7, 14 and 35/year).
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B Estimation of the GW shape parameter as a function

For large sample size n and a suitable range of p (depending on sample size n), the
following approximation follows from eq. (27) in de Valk & Cai (2018):

n1/2 ⇢̂p � ⇢̃(log(1/p))

log(1/p)
= p�1B(p) (4)

in which B is a Brownian motion6: Brownian motion is the continuous analogue
of a random walk: increments of B over disjoint intervals of [0, 1] are independent
zero-mean normal random variables with variances equal to the lengths of these
intervals.

According to (4), the variance E|⇢̂p � ⇢̃(log(1/p))|2 of ⇢̂p is n�1p�1(log(1/p))2,
so estimates ⇢̂p fluctuate strongly at low p. This is indeed observed in practice, for
example in Figure 9.

We only have values of ⇢̂p at discrete values p1 < ... < pn of p. By (4), the
differences �⇢̂pi := ⇢̂pi+1�⇢̂pi for different i are independent normal random variables
with mean ⇢̃(log(1/pi+1))� ⇢̃(log(1/pi)) and variance

Var(�⇢̂pi) = n�1(p�1
i (log(1/pi))

2 � p�1
i+1(log(1/pi+1))

2).

From this information, it is straightforward to derive the maximum likelihood
estimator for the parameters � and c of the function ⇢̃ given by (3).

6 In the application, a small correction is applied to (4) to account for the serial dependences of
successive high-tide water level or skew surge values.
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Fig. 27: GW-shape parameter estimates ⇢̂p (full) from SEAS5/DCSM-5 data of high-tide water
level as function of sample fraction p, with their two-sided 95% confidence intervals, for
all stations. Dots indicate the estimated model (3), fitted to the values of ⇢̂p for p  0.01.
The indicated sample fractions correspond to 0.007, 0.07, 0.7, 7.0 and 70/year.
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Fig. 28: Continued from Figure 27.
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Fig. 29: Same as Figure 27, but for skew surge.



B Estimation of the GW shape parameter as a function 64

Fig. 30: Continued from Figure 29.
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C Error statistics of return values of wind speed estimated
by Monte Carlo simulation

For wind speed and pseudo-wind speed in the central North Sea (analysed before in
de Valk and van den Brink (2020b)), Figures 31 and 32 show the estimates for the
error statistics of the 107 year return value of wind speed and pseudo-wind speed
derived directly from data as in de Valk and van den Brink (2020b) and derived by
the Monte Carlo method from Section 5, respectively.

The most notable difference between these figures is that estimates based on
Monte Carlo simulation are much less noisy than those based on direct estimation
from data. Note in particular the large variation in the reference values ("bias-
corrected return values") on the right of Figure 31.

Another feature is that the minima of the RMS error from the MC simulation
are larger than those directly estimated from the data. The difference between the
curves of RMS error estimated directly from the data and from MC simulation can
largely be explained by the variation in the reference values for the former on the
right of Figure 31, which are caused by noise in the return value estimates. This
indicates that the MC-based estimates are more reliable. However, qualitatively,
both methods give similar results, and the conclusions from de Valk and van den
Brink (2020b) are confirmed by the MC simulation.

Figure 32 also shows estimates of bias and RMS error for return values based on
the GP tail with shape parameter estimated from the full sample (this was not yet
shown in de Valk and van den Brink (2020b)). We see that the bias and RMS error
are considerably larger than using the same method with the GW tail. Therefore,
the GP tail is clearly not suitable for estimating return values of (pseudo) wind
speed, even if the shape parameter can be estimated accurately. This conclusion
contrasts with what was found for high-tide water level and skew surge.
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Fig. 32: As Figure 31, but derived from Monte-Carlo simulation based on plausible tails (see Section
5).
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D Comparison of estimates of the GP shape parameter from
SEAS5/DCSM-5 data and measurements

In Figures 23 and 24, estimates of the GW shape parameter from SEAS5/DCSM-5
data and measurements are compared (see Chapter 6). Figures 33 and 34 show the
same type of plots for the shape parameter of the GP tail.

Based on the relationship (2), we should expect qualitatively similar outcomes.
Indeed, for sample fractions above 0.01 (frequencies above 7/year), GP shape es-
timates from SEAS5/DCSM-5 data are also generally lower than estimates from
measurements.

A difference with the GW shape estimates is that for Harlingen and Delfzijl, for
low sample fractions, the 95% confidence intervals of the the GP shape estimates
from measurements drop below the estimates from SEAS5/DCSM-5 data. The nar-
row confidence bands for the GP shape estimates from measurements are caused by
the high sensitivity of the GP tail to the shape parameter if it deviates substantially
from zero, and indicates that a GP model is too crude for these tails.
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Fig. 33: GP shape estimate vs. sample fraction with 95% confidence interval from measurements
(thin line, light shading) and from SEAS5/DCSM-5 simulations (thick line, dark shading)
of high-tide water level (left) and skew surge (right) at three tide gauge stations. The
indicated sample fractions correspond to 0.07, 0.7, 7.0 and 70/year.
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Fig. 34: As Figure 24 for three other tide gauge stations.
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E Accounting for serial dependence

Serial dependence in the SEAS5/DCSM-5 may increase the variance of return value
estimates (its effect is the same as of a reduction of the sample size).

For very high water levels or surges, it is weak (for example, estimates of the
extremal index are close to 1). However, when using a large sample fraction for
tail estimation, the effect of serial dependence on the variance of parameter and
return value estimates is not negligible. To account for this, the estimated variance
of a return level estimate from the synthetic data is multiplied by a threshold-
dependent correction factor estimated from the SEAS5/DCSM-5 data. This factor is
identical to the factor derived in Section 4 of Drees (2000) for the Hill and maximum
likelihood estimators of the shape parameter of the GP tail. This approach is based
on a heuristic argument that it also applies to the estimators of the parameters of
the GW, log-GW and Weibull tails used in the present study. Most of the theory
in Drees (2000, 2003) is also applicable in our context, with a slightly modified
assumption on the serial dependence. Furthermore, in the large-sample limit, the
parameter estimators GW, log-GW and Weibull tails are localized (they converge to
local values of the quantile function and of differential operators applied to it), just
like the Hill and maximum likelihood estimators considered in Drees (2000, 2003).
A rigorous analysis of this problem would of course be more satisfying than the
heuristic approach sketched above.

The proposed correction factor is implemented in the module r11.R of the R-
package EVTools (https://github.com/ceesfdevalk/EVTools).
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