KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT ## WETENSCHAPPELIJK RAPPORT SCIENTIFIC REPORT W.R. 80 - 5 E. Bouws, B.W. Golding, G.J. Komen, H.H. Peeck, and M.J.M. Saraber Preliminary results on a comparison of shallow water wave predictions. ### Publikatienummer: K.N.M.I. W.R. 80-5(OO) Koninklijk Nederlands Meteorologisch Instituut, Oceanografisch Onderzoek, Postbus 201, 3730 AE De Bilt, Nederland. E. Bouws¹), B.W. Golding²), G.J. Komen¹), H.H. Peeck¹) and M.J.M. Saraber¹) Abstract: Predictions from two different wave models on wave height, low frequency wave height, wind speed and wind direction, are compared with observations. The comparison is made for the month of December 1979 and for three different locations in the southern North Sea. - 1) Royal Netherlands Meteorological Institute, KNMI, De Bilt, Holland. - 2) Meteorological Office, Bracknell, U.K. #### 1. Introduction In recent years interest in accurate wave predictions has been increasing steadily. This interest has been stimulated by demands from the off-shore industry. In the Netherlands a special stimulus came from the envisaged construction of a storm surge barrier in the Oosterschelde estuary, which should start by 1982. At present a large number of wave prediction models is available 1,2. Although many of these are used for hindcasting studies, few are actually used for operational forecasts on shallow water (depth < 0.2 wavelength). Two such models are the Met Office model (Golding³) and the KNMI model GONO (Sanders⁴). The latter model has been extended to take certain bottom effects into account. The former considers refraction as well. The Met Office model makes use of two different grids, a coarse one covering most of the North Atlantic and a finer 50 km grid for the North Sea (Fig. 1a). It gives wave predictions every 12 hours: a 12 and 24 hour forecast, as well as a calculation based on the analysed weather map. GONO gives similar predictions every 6 hours. Its 75 km (Fig. 1b) grid extends quite far to the North (75° N). It covers only a small part of the Atlantic Ocean. In order to monitor the over-all quality of these predictions it was decided to compare the output of both models with each other and with available observational data. The comparison started on the first of December 1979. Predictions for 5 different locations were selected for the comparison. These positions are | | | | | depth | |----|----------|----------------------|----------------------|-------| | 0 | EURO | 51°59 'N | 3°30 'E | 20 m | | 1 | IJMUIDEN | 52°34'N | 4°03'E | 25 m | | 2 | PENNZOIL | 53 ⁰ 13'N | 3°13 ' E | 22 m | | 3 | EKOFISK | 56°33'N | 3°13'E | 60 m | | 14 | OWS MIKE | 66°00'N | 2 ⁰ 00 'E | œ | The comparison is to cover the period until at least April 1980. It is hoped that results from the NORSWAM⁵ model for the month of March 1980 and from the Manual Method used by KNMI (Kruseman⁶) can be included in the comparison. The present report will cover preliminary results for December 1979 and for the first three stations only. Wave data were obtained with the help of waverider measurements. The data from EURO and PENNZOIL came to us via Rijkswaterstaat, Directie Noordzee; the IJMUIDEN data have been taken with the KNMI waverider. The models involved predict wave spectra. In principle, these could be compared with the observed spectra. However, because of the large amount of data involved it was considered more useful to concentrate on a comparison of the significant wave height $$H_{S} = 4 \left(\int_{0}^{\infty} E(f) df \right)^{1/2}$$ (1) where E (f) is the variance spectrum whose integral over all positive frequencies f gives the mean square surface displacement. As there is a special interest in the low frequency part of the spectrum an additional comparison was made of the low frequency (period > 10 s) energy. To this end a "low frequency wave height" $$H_{S,10} = 4 \left(\int_{0}^{1} E(f) df \right)^{1/2}$$ (2) was introduced.* Since the atmospheric input to the models is important, we also made a comparison of calculated and measured wind vectors. Wind data for EURO were taken from the nearby light platform Goeree, for IJMUIDEN from a nearby coastal station and from PENNZOIL from the oil rig itself. ^{*} At KNMI the quantity E_{10} has also been used as a measure of the low frequency energy. Its relation to $H_{S,10}$ is $E_{10} = (\frac{1}{5}, H_{S,10})^2$. ^{**} If missing, Hook of Holland data were used. It should be understood that the present comparison is mainly of interest as a test for the accuracy of the actual predictions. A search for weak points in the steps that lead to the predicted values would require a different approach. As stated, the results and conclusions presented in this paper refer only to the month of December 1979. They should not be taken to imply that the models will always perform in this manner. In particular, both models have been revised since that time. #### 2. December time series The two models have been compared in detail at three locations, EURO, IJMUIDEN, and PENNZOIL for the month of December 1979. Data for EKOFISK and O.W.S. MIKE were also examined but were incomplete and are not presented. Two quantities are compared in the time series, H_S the significant wave height, and H_{S,10} a measure of the low frequency wave energy expressed as a height. In this section, the significant features of the time series are described. The comments should be read in conjunction with the time series diagrams (Figs 2a-f). The models will be referred to as model M for the Met Office model and GONO for the KNMI model. A general conclusion from all the stations is that model M overestimates $\mathrm{H}_{\mathrm{S},10}$ by about 0.5 metres. This may be caused by too little dissipation in the model, a problem which has recently been corrected. However, it is also thought that a large directional spread in waves generated North or West of Scotland may be resulting in too much swell entering the North Sea according to the model. #### (i) EURO On the 1st, 3rd and 5th, GONO generates peaks in $H_{S,10}$ which did not occur. H_S is also too large at these times. The error appears to be due to the winds being too strong. Model M datawere only available from 4th. It correctly predicts H_S on 5th but, like GONO, has a peak in $H_{S,10}$ which did not occur. The reduction of height after 5th is badly forecast by model M but well handled by GONO. On the 13th GONO's analysed and predicted H_S is too high. The analysis error is due to winds being too strong. However, in the 12 and 24 hour forecasts an error in wind direction appears to be the cause since the wind should be from the land but is predicted to be from the sea Model M overpredicts the 24 hour forecast winds and H_S . The 14th is a particularly interesting example. Model M has correct winds but H_S is too low. GONO has winds too high and incorrect H_S . Two possible explanations may be offered. One is that neither model can simulate the steep rise in the wave height that was observed in the preceding 12 hours. The other is that linear interpolation in time of the wind speeds may have resulted in the winds being too light for much of that time. On the 17th incorrect wind forecasts result in both models overestimating ${\rm H_S}$ and ${\rm H_{S,10}}$. On 27th/28th, GONO increases the winds too fast leading to ${\rm H_S}$ being too large. The 24 hour forecast winds are too low and so is ${\rm H_S}$. Model M performed well during this period. #### (ii) IJMUIDEN On the 10th model M is about right but GONO has H_S too high. The wind speed is correct and the error appears to be due to a slight discrepancy in the wind direction which is almost parallel to the coast. On 14th, the wind at 0600Z was blowing off the coast. In the following 6 hours it veered and increased rapidly. GONO overestimates $H_{\rm S}$ which actually increased rather later than predicted. This example of an error due to a time lag in the wave response is expected to cause difficulties in the statistical analysis of errors. Model M has wind speeds too high in the 24 hour forecast and this results in $H_{\rm S}$ being too high. The 18th is a particularly interesting case at this location. Both models approximate H_S correctly while both badly underpredict H_{S,10}. At PENNZOIL and EURO both models correctly predict H_{S,10} as well as H_S. The reason may be indicated by the observed spectral shapes (Fig. 3). At PENNZOIL, a single narrow peak, typical of a wind driven sea, is shown. However, at IJMUIDEN the spectral peak has been flattened by some process which may be a reduction in wind speed or a shallow water effect. Whatever the reason, this shape of spectrum is not one that either model will permit. The likely result is that the models will actually have a more peaked spectrum with a higher peak frequency, thus losing the low frequency energy in H_{S,10}. Recent modifications to GONO may improve its representation of these processes and it is hoped that a rerun of this period will be possible using the new version. On 28th GONO is too high as at EURO because of wind speed errors. #### (iii) PENNZOIL On 5th model M behaves as at EURO with ${\rm H_{S,10}}$ too high and the reduction in ${\rm H_{S}}$ too slow. GONO also analyses ${\rm H_{S}}$ too high although the winds are correct. The forecasts of ${\rm H_{S}}$ are correct but with winds that are too low. On 11th GONO underestimates ${\rm H_{S,10}}$ although ${\rm H_{S}}$ is a little high. The error may be connected with the northerly winds prevailing at the time. Both models perform very well for the 18th-20th and 26th/27th. However GONO underpredicts ${\rm H_{S}}$ in the 24 hour forecast on 26th/27th due to a poorly predicted wind speed. #### 3. Statistics Two forms of presentation were selected for the statistical analysis, Firstly, summary tables of the errors for the whole month; and secondly contingency tables and scatter diagrams were prepared. In the discussion which follows the Met Office model is referred to as model M while the KNMI model is called GONO. Tables for the verification of wind direction and speed, H_S and H_{S,10} are shown. Tables are given with the analysis and the 24 hour forecast. They show location, number of observations, average of the observed values, average error, RMS error, number of cases overpredicted and number of cases underpredicted for each of the given locations. (Fig. 4). For the analysis of wind direction errors, cases with a wind speed less than 10 knots are omitted. As before, no discussion is given for stations EKOFISK and O.W.S. MIKE because of incompleteness and unreliability of the data. #### (i) Wind direction Model M wind-analyses include observations and so it is not valid to compare the errors at this time. In the forecasts both models show an average positive error indicating that forecast directions are veered from the observations. The GONO forecast errors deteriorate with length of forecast more quickly than in model M. #### (ii) Wind speed The analyses again cannot be compared because of the inclusion of observations in model M. GONO overestimates the wind-speed on average. The forecasts by model M have substantially lower errors than these from GONO. In particular, the 24 hour forecast GONO winds are too low on average. (iii) H_S Model M gives better analyses than GONO. At 12 hours the GONO RMS errors are actually smaller than in the analyses. The 24 hours forecasts by GONO are too low on average. This is consistent with the average wind speed error noted above. (iv) H_{S,10} Model M is consistently about 40 cms too high both in analyses and forecasts. GONO estimates this quantity much more accurately on average. The accuracy does not deteriorate significantly with increasing forecast time. However, the RMS error is of similar size to the average observed value so it is necessary to look in more detail at the distribution of errors. This can be done by looking at the scatter diagrams of which an example from each model is presented (Fig. 5). This example is for stafor the analysis and 24 hour forecast. The area of the diagram bounded by 50 cms observed or predicted H_{S.10} is important because this height is critical for the entry of supertankers into EUROPOORT. The axes are labelled in cms, observed height on the vertical axis, and predicted height on the horizontal axis. Cases are grouped into bands of the labelled height + 5 cms. This presentation confirms the overprediction of ${\rm H_{S}}_{10}$ by model M. The points within the boundaries at the upper left indicate the "safe area" where both observed and predicted values are below 50 cms. The cases in the lower left part of the diagram are underpredictions and need to be minimised for a safe forecast. It should be noted that strong serial correlations exist in the data and that many entries may refer to the same "event". In order to investigate the correlation of wave height (H_S) errors with wind speed errors, the summary diagrams were recalculated with all cases removed from the H_S, H_{S,10} calculations when the wind speed error was greater than 7.5 knots. The resulting diagrams for 24 hour forecasts are shown. Both models results are substantially improved. However, the improvement to GONO is greater leading to very similar errors between the two models. This supports the view that the differences in wave height errors are primarily due to the different wind errors. #### 4. Conclusions Both models performed rather well during December 1979. However, the following weak points were observed: - 1. The Met Office model overestimates $H_{S,10}$ by about 0.5 metres. - 2. The observed large $H_{S,10}$ at IJmuiden during the night of 17/18 December is not given by either model. - 3. Most of the discrepancy between calculations and observations is attributable to errors in the wind input. This is a qualitative statement, which we intend to quantify later. - 4. For the period and locations considered, the Met Office winds were better than the KNMI winds. The first point may be due to do incorrect handling of dissipation or by an overestimate of the angular spread, which takes waves from the ocean into the southern North Sea. The cause for the second point may be found in the observed spectral shape, which is not allowed by either model. It is hoped that more recent versions of both models score better on these points. #### Acknowledgements We would like to thank Roel van Moerkerken who scrutinized all data. The section ME of KNMI was helpful in the handling of data, Jan Schaap and Henk Kalle assisted with the plots while Arjen Baan wrote the final plotting routines. Discussions with Peter Janssen and Jan Sanders are gratefully acknowledged. This investigation is part of a joint wave model-ling programme of KNMI and Rijkswaterstaat. #### References - 1. Turbulent fluxes through the sea surface, wave dynamics, and prediction, edited by A. Favre and K. Hasselmann. Plenum, New York, 1978. - 2. Ocean wave climate, edited by M.D. Earle and A. Malahoff, Plenum, New York, 1979. - 3. B.W. Golding: A depth-dependant wave model for operational forecasting, in Ref. 1, p 593 606. - 4. J.W. Sanders: A growth-stage scaling model for the wind-driven sea, DHZ 29 (1976) 136 161. - 5. H. Günther, W. Rosenthal, T.J. Weare, B.A. Worthington, K. Hasselmann and J.A. Ewing: A hybrid parametrical wave prediction model. J. Geophys. Res. <u>84</u> (1979) 5727 5738. - 6. P. Kruseman: Twee practische methoden voor het maken van verwachtingen van golfkomponenten met perioden tussen 10 en 25 seconden nabij Hoek van Holland. KNMI report WR 76-1 (1976). #### Figure Captions - 1a. Grid of the Met Office Model. - 1b. Grid of GONO. - 2. Time series diagrams for December 1979. The upper part shows H_S as a function of time (4 times a day for GONO, twice a day for model M), the middle part gives $H_{S,10}$, the bottom part gives wind arrows. "Meting" and "0" refers to observations, "kaart analyse" and "1" to calculations based on analysed weather maps. The 12 hour forecast is indicated by "+" for the wave heights and by "2" for the winds, while 24 hour forecasts are indicated by "x" and "3". Wave heights are in metres, wind arrows follow standard convections. "GOLDING" refers to the Met Office model. - 3. a) Wave spectrum on the 18th at 00.00Z at IJMUIDEN. Note the relatively broad spectral peak at about 0.1 Hz. - b) For comparison the spectrum measured at PENNZOIL at the same time. - 4. Summary tables, giving results for wind direction, wind speed, H_S and H_{S,10} (from top to bottom). Given are resp. location, number of observations, average of the observed values, average error, RMS error, number of cases overpredicted and number of cases underpredicted. The following summaries are given a) GONO, analysis b) Met Office model analysis c) GONO, 24 hour forecast d) Met Office model 24 hour forecast. - 5. Scatter diagrams giving number of cases for a given calculated value of $H_{S,10}$ (horizontally) and a given observed value of $H_{S,10}$. The height is in cm, location is EURO, a) refers to GONO analysis, b) Model M analysis, c) GONO 24 hour forecast, d) Model M 24 hour forecast. The 50 cm level is critical for the entry of supertankers into EUROPOORT ($H_{S,10} = 50 \text{ cm} \leftrightarrow E_{10} = 150 \text{ cm}^2$). - 6. Summary tables of 24 hour forecasts for a) GONO and b) Met Office model, however, with all cases removed from the calculation when the wind speed error > 7.5 knots. Fig. 1b Fig. 2a EURO GOLDING DECEMBER 1979 Fia. 2b I JMUIDEN GONO DECEMBER 1979 Fig. 2c I JMUIDEN GOLDING DECEMBER 1979 PENNZOIL GOND DECEMBER 1979 F1g.2e PENNZOIL GOLDING DECEMBER 1979 Fig. 2f | W INDA
LOKATIE | RICHTING | | N
GEM CAL-OBS | ANALY SE
RMS | GONO
PLUS | MIN | |--|--|--|--|---|---|--| | EURO 5 | 110 | *** | 008 | 017 | 077 | 029 | | I JM UI DE N | 104 | *** | 914 | 026 | 081 | 023 | | PENNZOIL | 107 | *** | -005 | 016 | 035 | 070 | | EKOFISK | 078 | *** | -002 | 023 | 040 | 035 | | STATION M | 098 | *** | - 009 | 025 | 031 | 063 | | WIND:
LOKATIE | SNELHEID
AANTAL | | C
GEM CAL-OBS | ANALYSE
RMS | GONO
PLUS | MIN | | E UR 0 5 | 123 | 106 | 006 | 030 | 073 | 048 | | IJMUICEN | 123 | 106 | 006 | 028 | 067 | 054 | | PENNZOIL | 122 | 099 | 010 | 027 | 089 | 033 | | EKOFISK | 105 | 114 | - 02 5 | 035 | 010 | 095 | | STATION M | 118 | 120 | - 02 3 | 041 | 024 | 093 | | | | | | | | | | HS S
LOKATIE | IGN. GOLI
AANTAL | | IN CM
GEM CAL-OBS | ANALYSE
RMS | G DND
PLUS | MIN | | | | | | | | MI N
036 | | LOKATIE | AANTAL | GEM-OBS | GEM CAL-OBS | RMS | PLUS | | | LOKATIE
EURO 5 | 123 | GEM-0BS
205 | GEM CAL-OBS | R M S
071 | PLUS
085 | 036 | | LOKATIE
EURO 5
IJMUIDEN | 123
088 | GEM-0BS
205
215 | GEM CAL-OBS
037
040 | R M S
07 1
06 9 | PLUS
085
067 | 036
020 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL | 123
088
122 | GEM-0BS
205
215
229 | GEM CAL-OBS
037
040
026 | R M S
07 1
06 9
06 1 | PLUS
085
067
084 | 036
020
038 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL EKOFISK | 123
088
122
018
117 | GEM-0BS 205 215 229 192 281 CH | GEM CAL-OBS 037 040 026 150 | RMS
071
069
061
198 | PLUS
085
067
084
018 | 036
020
038
000 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION M | 123
088
122
018
117 | GEM-0BS 205 215 229 192 281 CH | GEM CAL-OBS 037 040 026 150 088 | RMS
071
069
061
198
156 | PLUS
085
067
084
018
092
GONO | 036
020
038
000
025 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION H LOKATIE | 123
088
122
018
117 | GEM-0BS 205 215 229 192 281 CH GEM-0BS | GEM CAL-OBS 037 040 026 150 088 GEM CAL-CBS | RMS
071
069
061
198
156
ANALYSE
RMS | PLUS
085
067
084
018
092
GONO
PLUS | 036
020
038
000
025 | | LOKATIE EURO 5 I JMUIDEN PENNZOIL EKOFISK STATION M H S* LOKATIE EURO 5 | 123
088
122
018
117
10 IN
AANTAL | GEM-0BS 205 215 229 192 281 CH GEM-0BS 023 | GEM CAL-OBS 037 040 026 150 088 GEM CAL-CBS 001 | RMS
071
069
061
198
156
ANALYSE
RMS
022 | PLUS
085
067
084
018
092
GONO
PLUS
046 | 036
020
038
000
025
MIN
076 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION H LOKATIE EURO 5 I JMUI DEN | 123
088
122
018
117
10 IN
AANTAL
123
080 | GEM-0BS 205 215 229 192 281 CH GEM-0BS 023 045 | GEM CAL-OBS 037 040 026 150 088 GEM CAL-CBS 001 -012 | RMS 071 069 061 198 156 ANALYSE RMS 022 041 | PLUS
085
067
084
018
092
GONO
PLUS
046
024 | 036
020
038
000
025
MIN
076
056 | Fig. 4a | LOKATIE
HIND | RICHTING
AANTAL | IN GRADEN
GEM-OBS (| SEM CAL-OBS | ANALYSE
RMS | GOLDIN | IG
MIN | |--|---|---|--|---|--|--| | EURO 5 | 049 | *** | 006 | 011 | 035 | 010 | | IJMUIDEN | 045 | *** | 01 0 | 019 | 035 | 009 | | PENNZOIL | 052 | *** | 003 | 014 | 030 | 019 | | EKOFISK | 040 | *** | 004 | 012 | 028 | 010 | | STATION H | 052 | *** | 015 | 021 | 051 | 001 | | WIND
LOKATIE | SNELHEID
AANTAL | IN DMVSEC | SEM CAL-OBS | ANALYSE
RMS | GOLOIN
PLUS | IG
MIN | | EURO 5 | 057 | 109 | -007 | 018 | 023 | 032 | | IJMUIDEN | 057 | 108 | -011 | 020 | 013 | 043 | | PENNZOIL | 056 | 099 | 018 | 026 | 047 | 006 | | EKOFISK | 050 | 109 | -006 | 021 | 918 | 030 | | STATION M | 055 | 121 | 003 | 017 | 028 | 024 | | | | | | | | | | HS S | IGN. GOL | FHANGTE TO | N CM | 4 N A I V C E | COLATA | 10 | | FOKATIE
HS S | IGN. GOLI
AANTAL | FHOOGTE IN
GEM-OBS (| N CM
GEM CAL-OBS | ANALYSE
RMS | GOLDIN
PLUS | IG
MIN | | | | | | | | | | LOKATIE | AANTAL | GEM-DBS (| GEM CAL-OBS | RMS | PLUS | HIN | | LOKATIE
EURO 5 | OS7 | GEM-08S (| -017 | R M S | PLUS
017 | MIN
039 | | EURO 5 IJMUICEN | 057
034 | 211
218 | -017
-013 | RMS
041
058 | PLUS
017
015 | MIN
039
018 | | LOKATIE EURO 5 IJMUICEN PENNZOIL | 057
034
056 | 211
218
230 | -017
-013
023 | RMS
041
058
054 | PLUS
017
015
035 | MIN
039
018
021 | | EURO 5 IJMUICEN PENNZOIL EKOFISK | 057
034
056
009
054 | GEM-DBS (C) 211 218 230 204 281 CM | -017
-013
-023
176 | RMS 041 058 054 213 193 | PLUS
017
015
035
009
050 | MIN
039
018
021
000 | | LOKATIE EURO 5 IJMUICEN PENNZOIL EKOFISK STATION M H S. | 057
034
056
009
054 | GEM-DBS (C) 211 218 230 204 281 CM | -017
-013
-023
 | RMS
041
058
054
213
193 | PLUS
017
015
035
009
050 | MIN
039
018
021
000
004 | | LOKATIE EURO 5 IJMUICEN PENNZOIL EKOFISK STATION M H S. | 057
034
056
009
054
10 IN | 211
218
230
204
281
CM
GEM-OBS | -017
-013
-023
 | RMS 041 058 054 213 193 ANALYSE RMS | 9LUS
017
015
035
009
050
GOLDIN | MIN
039
018
021
000
004 | | EURO 5 IJMUICEN PENNZOIL EKOFISK STATION M H S. LOKATIE | 057
034
056
009
054
10 IN
AANTAL | 211
218
230
204
281
CM
GEM-OBS 6 | -017
-013
-023
176
162
GEM CAL-OBS | RMS 041 058 054 213 193 ANALYSE RMS 032 | PLUS
017
015
035
009
050
GOLDIN
PLUS
048 | MIN
039
018
021
000
004 | | EURO 5 IJMUICEN PENNZOIL EKOFISK STATION M LOKATIE EURO 5 IJMUIDEN | 057
034
056
009
054
10 IN
AANTAL
057 | GEM-DBS (CA) 211 218 230 204 281 CM GEM-OBS (CA) 025 050 | CAL-OBS -017 -013 023 176 162 GEM CAL-OBS 023 020 | RMS 041 058 054 213 193 ANALYSE RMS 032 048 | PLUS
017
015
035
009
050
GOLDIN
PLUS
048 | MIN
039
018
021
000
004
IG
MIN
009 | Fig. 4b | WIND:
LOKATIE | RICHTING
AANTAL | IN GRADEN
GEM-OBS G | | +24 GO
RMS | NO
PLUS | MIN | |---|--|---|---|--|---|--| | EURO 5 | 103 | *** | 011 | 039 | 067 | 033 | | IJMUIDEN | 096 | *** | 019 | 050 | 070 | 025 | | PENNZOIL | 095 | *** | 004 | 039 | 056 | 037 | | EKOFISK | 072 | ** | -010 | 066 | 041 | 031 | | STATION H | 088 | *** | - 00 1 | 033 | 041 | 046 | | FOKATIE
Mind | SNELHEID
AANTAL | IN DM/SEC
GEM-OBS C | ;
GEM CAL-OBS | +24 G0
RMS | NO
PLUS | MIN | | EURO 5 | 119 | 107 | -011 | 042 | 047 | 070 | | IJMUIDEN | 119 | 106 | -013 | 045 | 044 | 074 | | PENNZOIL | 118 | 099 | -010 | 041 | 041 | 076 | | EKOFISK | 102 | 113 | - 036 | 056 | 018 | 084 | | STATION H | 114 | 123 | -035 | 053 | 018 | 094 | | | | | | | | | | HS S | IGN. GDLI | FHOOGTE IN | N CM | +24 60 | พก | | | HS S
LOKATIE | IGN. GDLI
AANTAL | FHOOGTE IN
GEM-08S (| N CM
GEM CAL-OBS | +24 GO
RMS | NO
PLUS | MIN | | | | | | | | MI N
062 | | LOKATIE | AANTAL | GEM-085 0 | SEM CAL-OBS | RMS | PLUS | | | LOKATIE
EURO 5 | 119 | GE M-085 0 | -006 | R M S
0 8 5 | PLU\$
055 | 062 | | EURO 5 IJMUIDEN | 119
084 | GEM-08S 0
205
214 | -006
-013 | 085
083 | PLUS
055
035 | 062
048 | | LOKATIE EURO 5 IJMUIDEN PENNZOIL | 119
084
118
018 | GEM-08S 0
205
214
229 | -006
-013
-024 | RMS
085
083
093 | PLUS
055
035
041
013 | 062
048
076 | | LOKATIE EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION M | 119
084
118
018
113 | GEM-08S 0
205
214
229
192
285 | -006
-013
-024 | RMS
085
083
093
078
124 | PLUS
055
035
041
013 | 062
048
076
005 | | EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION M | 119
084
118
018
113 | GEM-08S 0
205
214
229
192
285 | -006
-013
-024
-031
-041 | RMS
085
083
093
078
124 | PLUS
055
035
041
013
070 | 062
048
076
005
042 | | LOKATIE EURO 5 IJMUIDEN PENNZOIL EKOFISK STATION M H S, | 119
084
118
018
113 | GEM-08S 0
205
214
229
192
285
CH
GEM-08S 0 | GEM CAL-OBS -006 -013 -024 -031 -041 | RMS
085
083
093
078
124
+24 GO
RMS | PLUS
055
035
041
013
070 | 062
048
076
005
042 | | EURO 5 IJMUIOEN PENNZOIL EKOFISK STATION M H S.LOKATIE EURO 5 | 119
084
118
018
113
10 IN
AANTAL | GEM-08S 0 205 214 229 192 285 CH GEM-08S 0 | -006
-013
-024
-031
-041
GEM CAL-OBS
-006 | RMS
085
083
093
078
124
+24 G0
RMS | PLUS
055
035
041
013
070
PLUS
032 | 062
048
076
005
042
MIN
084 | | EURO 5 I JMUI DEN PENNZOIL EKOFISK STATION M H S, LOKATIE EURO 5 I JMUI DEN | 119
084
118
018
113
10 IN
AANTAL
119
076 | GEM-08S 0 205 214 229 192 285 CH GEM-08S 0 024 045 | GEM CAL-OBS -006 -013 -024 -031 -041 GEM CAL-OBS -006 -021 | RMS
085
083
093
078
124
+24 GO
RMS
020 | PLUS
055
035
041
013
070
PLUS
032
015 | 062
048
076
005
042
MIN
084
060 | Fig. 4c | WINDR
LOKATIE | RICHTING
AANTAL | IN GRADEN
GEM-DBS GE | M CAL-OBS | +24 GOI | LDING
PLUS | MIN | |--|--|--|--|---|--|---| | EURO 5 | 048 | *** | 021 | 033 | 039 | 009 | | IJMUIDEN | 048 | *** | 025 | 044 | 039 | 008 | | PENNZOIL | 047 | *** | 007 | 036 | 023 | 022 | | EKOFISK | 035 | *** | 012 | 043 | 022 | 012 | | STATION M | 049 | *** | 013 | 038 | 031 | 013 | | WINDS
LOKATIE | SNELHEID
AANTAL | IN DM/SEC
GEM-OBS GE | IM CAL-OBS | | LD ING
PLUS | MIN | | E UR 0 5 | 055 | 110 | 000 | 034 | 028 | 027 | | IJMUIDEN | 055 | 107 | -002 | 038 | 025 | 029 | | PENNZOIL | 054 | 098 | 009 | 042 | 038 | 016 | | EKOFISK | 048 | 108 | - 017 | 041 | 013 | 035 | | STATION H | 053 | 120 | - 01 7 | 039 | 017 | 036 | | | | | | | | | | H S - S - | TGN. COLE | HODGTE IN | CM | +24 GO | IOING | | | HS S | IGN. GDLF
Aantal | FHOOGTE IN
GEM-OBS GE | CM
EM CAL-OBS | +24 GO
RMS | LDING
PLUS | MIN | | | | | | | | MIN
021 | | LOKATIE | AANTAL | GEM-DBS GE | M CAL-OBS | RMS | PLUS | | | LOKATIE
EURO 5 | OSS | GEM-085 GE
213 | OO5 | R M S
071 | PLUS
031 | 021 | | LOKATIE
EURO 5
IJMUIDEN | 055
033 | GEM-OBS GE
213
218 | 005
008 | RMS
071
074 | PLUS
031
022 | 021 | | LOKATIE EURO 5 IJMUIDEN PENNZOIL | 055
033
054 | GEM-OBS GE
213
218
231 | OO5
OO8
O10 | RMS
071
074
079 | PLUS
031
022
034 | 021
011
020 | | LOKATIE EURO 5 IJMUIDEN PENNZOIL EKOFISK STATION N | 055
033
054
009
052 | GEM-OBS GE 213 218 231 204 273 | OO5
OO8
O10
154 | RMS
071
074
079
212
168
+24 GO | PLUS
031
022
034
009 | 021
011
020
000 | | LOKATIE EURO 5 IJMUIDEN PENNZOIL EKOFISK STATION N | 055
033
054
009
052 | GEM-OBS GE 213 218 231 204 273 | ON CAL-OBS ON 8 ON 0 154 126 | RMS
071
074
079
212
168 | PLUS 031 022 034 009 043 | 021
011
020
000
004 | | LOKATIE EURO 5 I JMUIDEN PENNZOIL EKOFISK STATION H LOKATIE | 055
033
054
009
052
10 IN | GEM-OBS GE 213 218 231 204 273 CM GEM-OBS GE | ON CAL-OBS ON B ON CAL-OBS The cal-obs CAL-OBS | RMS
071
074
079
212
168
+24 GO
RMS | PLUS
031
022
034
009
043
LD ING
PLUS | 021
011
020
000
004
MIN | | LOKATIE EURO 5 I JMUIDEN PENNZOIL EKOFISK STATION N LOKATIE EURO 5 | 055
033
054
009
052
10 IN
AANTAL | GEM-OBS GE
213
218
231
204
273
CM
GEM-OBS GE
026 | OD5 OD8 O10 154 126 EM CAL-OBS O25 | RMS
071
074
079
212
168
+24 GO
RMS
036 | PLUS
031
022
034
009
043
LD ING
PLUS
047 | 021
011
020
000
004
MIN
008 | | LOKATIE EURO 5 I JMUIDEN PENNZOIL EKOFISK STATION N LOKATIE EURO 5 I JMUIDEN | AANTAL
055
033
054
009
052
10 IN
AANTAL
055
028 | GEM-OBS GE 213 218 231 204 273 CM GEM-OBS GE 026 052 | CAL-OBS 005 008 010 154 126 EM CAL-OBS 025 015 | RMS
071
074
079
212
168
+24 GO
RMS
036
048 | PLUS 031 022 034 009 043 LD ING PLUS 047 022 | 021
011
020
000
004
MIN
008 | PERIODE 79120103-79123112 | | H S+10 | _ | IN CH | X. | | | | | A
Z | ALYS | ANALYSE GONO | 0 | | | | -4 | LOKATIE | IE | EURO | | |-----|--------|----|-------|----|----------|----|--|----|----------|----------|--------------|---|-------|-----|-------|---------|---------|-----|---------|-------| | | 0 | 10 |) 20 | 30 | 07 | 20 | 9 | 70 | 80 | 06 | 100 110 | | 120 1 | 130 | 140 1 | 150 160 | 60 1 | 170 | 180 190 | 002 0 | | 0 | - | 10 | 36 | 6 | 9 | κ. | | M | | | | | | | | | | | | | | | | 20 | • | | S | - | ∞ | - | | - | ~ | ~ | | | | | | | | | | | | 30 | 2 | | M -1 | 2 | ~ | 2 | | | | | | | | | | | | | e. | | | 0 4 | | | - | - | | 2 | and the second second | | | | | | | | | | | | | | | 20 | | | - 4 | | | | | - | | | | | | | | | | | | | | 60 | | | | | | 1 | | - | | | | | | | | | | | | | | 7.0 | - | | | | | | - | | | | | | | | | | | | | | | R0 | | | | | | | Talka or adama | | | | | | | - | | | | | | | | 0ó | | | - | | | | William and an appeal | - | | | | - | | | | | | | | | | 100 | | | | | | | | | | - | | | | | | | | | | | | 110 | | | | | | | ······································ | | | | | | - | | | | | | | | | 120 | 130 | 140 | | | | | | | | | | | | | | | | | | | | | | 150 | 160 | | | | | | | | | | | | | | | | ~ | | | | | | 170 | 180 | | | | | | | - a m | | | | | | | | | | | | | | | 190 | | | | | | | | | _ | Fig. | g K | | | | | | | | | | | 200 | | | | | | - | 1 | ZERIODE | | 7161 | 21162167-00102167 | 2116 | | | | |-----|--------|----|--------|----|----|----|---|-----|---------|---------|------------|-------------------|------------|-----------------|---------|-----| | - | H S-10 | _ | N
C | Œ | | | | | A. | ALYSI | G0 3 | ANALYSE GOLDING | | LOKATIE | EURD | | | | 0 | 10 | 20 | 30 | 40 | 20 | 9 | 7.9 | 89 | 36 | 90 100 110 | 120 | 130 149 1 | 140 150 160 173 | 180 190 | 200 | | 0 | | | | | | | | | | | | | | | | | | 10 | | - | S | စ | 5 | 7 | - | | | - | | | | | | | | 20 | | - | 2 | 2 | 8 | 4 | | - | | - | | | | | | | | 30 | | | - | | | | 2 | | | | | | | | n e | | | 40 | | | | | | | | | - | - | | | | | | | | 20 | | | | | | | - | | | | | | | | , | | | 90 | | | | | | | | | | | | | | | 1 | | | 7.0 | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | e-1 | | | | | 06 | | | | | | | | | - | | | | - | | | | | 100 | | | | | | | | | | | | | # | | | | | 110 | | | | | | | | | | | | | | | | | | 120 | | | | | | | | | | | | | | | | | | 130 | | | | | | | | | | | | | | | | | | 140 | | | | | | | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | | | 160 | | | | | | | | | | | | | | | | | | 170 | | | | | | | | | | | | | | | | | | 180 | | | | | | • | | | | | | | | | | | | 190 | | | | | | | | | Œ | F18. 5b | 2 9 | | | | | | | 290 | | | | | | _ | | | | | | | | | | | | | H S-10 | _ | INCA | Σ | | | | | • | 5 4 6 | +24 GOND | | | | | | LOKATIE | TIE | E U | EURO | | |-----|-----------|----|----------|----|-----|---|----|----|----|-------|----------|-----|-----|-----|-----|-----|---------|-----|---------|------|-----| | | 0 | 10 | 20 | 30 | 0,4 | 20 | 09 | 20 | 80 | 06 | 100 | 110 | 120 | 130 | 140 | 150 | 160 170 | 170 | 180 190 | | 200 | | 0 | 4 | 10 | 33 | 80 | ب | 4 | | | | | | | | | | | | | | | | | | | 83 | 4 | ~ | ∞ | 7 | M | 2 | | 2 | - | | | | | | | | | | | | | | 30 | m | - | 4 | 2 | | 2 | | | | | | | | | | | | | | | | | 07 | | 2 | | | | 2 | | | | | | | | | | | | | | | | | 20 | | - | | - | | | | | | | | | | | | | | | | | | | 09 | | - | | | | - | - | | | | | | | | | | | | | | 1 | | 7.0 | ~ | | | - | | | | | | | | | | | | | | | | | | | 80 | | | | | | | | • | - | | | | | | | | | | | | | | 06 | | | | | | 2 | | | | | | | | | | | | | | | | | 100 | | | | | | | 2 | | | | | | | | | | | | | | | | 110 | | | | | | | | | | - | | | | | | | | | | | | | 120 | 130 | | | | | | ****** | | | | | | | | | | | | | | | | | 140 | 159 | 160 | | | | | | ******* | | | | | | | | | | | | | | | | | 170 | 180 | | | | | | *************************************** | | | , | | | | | | | | | | | | | | 190 | | | | | | | | | - | Fig. | 2 | | | | | | | | | | | | 200 | FOKATIE
MIND | RICHTING
AANTAL | IN GRADI | EN
GEM CAL-OBS | +24 (
R MS | GONO
PLUS | MIN | |---|--|--|---|---|---|---| | EURO 5 | 119 | *** | 007 | 042 | 072 | 044 | | IJHUIDEN | 119 | *** | 019 | 055 | 085 | 033 | | PENNZOIL | 118 | *** | -002 | 0 4 5 | 063 | 053 | | EKOF ISK | 102 | *** | -006 | 070 | 055 | 047 | | STATION M | 114 | *** | -005 | 044 | 050 | 063 | | HIND:
LOKATIE | SNELHEID
AANTAL | IN CH/SI
GEM-OBS | EC
GEM CAL-OBS | +24 (
RMS | GONO
Plus | MIN | | EURO 5 | 119 | 107 | -011 | 042 | 047 | 070 | | IJHUIDEN | 119 | 106 | -013 | 045 | 044 | 074 | | PE NN ZOIL | 118 | 099 | -010 | 041 | 041 | 076 | | EKOF ISK | 132 | 113 | -036 | 0 56 | 018 | 084 | | STATION M | 114 | 123 | -035 | 053 | 018 | 094 | | | | | | | | | | ue e | TCN COL | EURDOZE : | • | | ¥ | | | HS S
LOKATIE | IGN. GOL | FHOOGTE :
Gem-obs | IN CM
GEM CAL-OBS | +24 (
RMS | ¥
Gono
Plus | MIN | | | | | | | SONO | MIN
034 | | LOKATIE | AANTAL | GEM-OBS | GEM CAL-OBS | RMS | SONO
PLUS | | | LOKATIE
EURC 5 | AANTAL
075 | GEM-OBS | GEM CAL-OBS | R MS
055 | OND
Plus
040 | 034 | | LOKATIE EURC 5 IJHUIDEN | 075
050 | GEM-OBS
193
189
204 | 008
-003 | 055
056 | 90ND
PLUS
040
024 | 034
025 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL | 075
050
083 | GEM-OBS
193
189
204 | GEM CAL-OBS
008
-003
-018 | RMS
055
056
061 | 040
024
028 | 034
025
054 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION H | 075
050
083
038
051 | GEH-OBS
193
189
204
150
252 | GEM CAL-OBS 008 -003 -018 059 | RMS
055
056
061
074
137 | 040
024
028
007
045 | 034
025
054
001 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION H | AANTAL
075
050
083
038
061 | GEM-OBS
193
189
204
150
252 | GEM CAL-OBS 008 -003 -018 059 | RMS
055
056
061
074
137 | 040
040
024
028
007
045 | 034
025
054
001 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION M H S. | AANTAL
075
050
083
038
061 | GEM-OBS
193
189
204
150
252 | GEM CAL-OBS 008 -003 -018 059 074 | RMS
055
056
061
074
137 | 040
024
028
007
045 | 034
025
054
001
015 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION M H S. | 075
050
063
038
051 | GEM-OBS
193
189
204
150
252
CM
GEM-OBS | GEM CAL-OBS 008 -003 -018 059 074 GEM CAL-OBS | RMS
055
056
061
074
137
+24
RMS | OND
PLUS
040
024
028
007
045 | 034
025
054
001
015 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION H LOKATIE EURO 5 | 075
050
083
038
061
10 IN
AANTAL | GEM-OBS
193
189
204
150
252
CM
GEM-OBS
022 | GEM CAL-OBS 008 -003 -018 059 074 GEM CAL-OBS -004 | RMS
055
056
061
074
137
+24
RMS | 040
024
028
007
045
EONO
PLUS | 034
025
054
001
015
MIN
049 | | LOKATIE EURC 5 IJHUIDEN PENNZOIL EKOFISK STATION M LOKATIE EURO 5 IJHUIDEN | AANTAL
075
050
083
038
061
10 IN
AANTAL
075
045 | GEM-OBS 193 189 204 150 252 CM GEM-OBS 022 037 | GEM CAL-OBS 008 -003 -018 059 074 GEM CAL-OBS -004 -016 | RMS
055
056
061
074
137
+24
RMS
016 | 940
940
024
028
007
045
EDNO
PLUS
024 | 034
025
054
001
015
MIN
049 | m wind speed error < 7.5 knots | WINDS
LOKATIE | | IN GRADE
GEM-OBS | N
GEM CAL-OBS | +2 4
R MS | GOLDING
PLUS | MIN | |--|---|---|--|--|---|--| | EURO 5 | 055 | *** | 018 | 037 | 042 | 013 | | IJHUIDEN | 055 | *** | 021 | 054 | 043 | 011 | | PENNZOIL | 054 | *** | 004 | 037 | 026 | 026 | | EKOFISK | 048 | *** | -001 | 050 | 026 | 021 | | STATION H | 053 | *** | 012 | 037 | 033 | 020 | | WIND:
LOKATIE | SNELHEID
AANTAL | IN CM/SE
GEM-OBS | EC
GEN CAL-OBS | +24
RMS | GOLDING
PLUS | MIN | | EURC 5 | 055 | 110 | 000 | 034 | 028 | 027 | | IJMUIDEN | 055 | 107 | -002 | 0 38 | 025 | 029 | | PE NN ZOIL | 054 | 098 | 009 | 042 | 038 | 016 | | EKOFISK | 048 | 108 | -017 | 041 | 013 | 035 | | STATION H | 053 | 1 20 | -017 | 039 | 017 | 036 | | | | | | | | | | H S S | TGN. GOLI | FHARKTE ' | IN CM | 424 | E COLOTNO | | | HS S | | FHOOGTE :
Gem-obs | IN CM
GEM CAL-OBS | +24
RMS | GOLDING
PLUS | MIN | | | | | | | GOLDING | MIN
018 | | LOKATIE | AANTAL | GEM-OBS | GEM CAL-OBS | R MS | GOLDING
PLUS | | | LOKATIE
EURO 5 | AANTAL
045 | GEM-0BS
202 | GEM CAL-OBS | R MS
051 | GOLDING
PLUS
025 | 018 | | LOKATIE EURO 5 IJMUIDEN | 045
025 | 202
214 | 005
005 | R MS
051
059 | GOLDING
PLUS
025
017 | 018
008 | | LOKATIE EURO 5 IJMUIOEN PENNZOIL | 045
025
036 | 202
214
230 | GEM CAL-OBS
005
005
-000 | 051
059
053 | GOLDING
PLUS
025
017
021 | 018
008
015 | | LOKATIE EURO 5 IJHUIOEN PENNZOIL EKOFISK | 045
025
036
007
034 | GEM-OBS 202 214 230 154 251 | GEM CAL-OBS
005
005
-000
112 | R MS
051
059
053
114 | GOLDING
PLUS
025
017
021
007 | 018
008
015
000 | | LOKATIE EURO 5 IJHUIOEN PENNZOIL EKOFISK STATION H | 045
025
036
007
034 | GEM-OBS 202 214 230 154 251 | GEM CAL-OBS 005 005 -000 112 148 | RMS
051
059
053
114
187 | GOLDING PLUS 025 017 021 007 032 GOLDING | 018
008
015
000
002 | | LOKATIE EURO 5 IJMUIOEN PENNZOIL EKOFISK STATION H LOKATIE | 045
025
036
007
034 | 202
214
230
154
251
CM
GEM-CBS | GEM CAL-OBS 005 005 -000 112 148 GEM CAL-OBS | R MS
051
059
053
114
187
+24
R MS | GOLDING PLUS 025 017 021 007 032 GOLDING PLUS | 018
008
015
000
002 | | LOKATIE EURO 5 IJMUIOEN PENNZOIL EKOFISK STATION H LOKATIE EURO 5 | 045
025
036
007
034
10 IN
AANTAL | 202
214
230
154
251
CM
GEM-CBS
025 | GEM CAL-OBS 005 005 -000 112 148 GEM CAL-OBS 024 | R MS
051
059
053
114
187
+24
R MS
030 | GOLDING PLUS 025 017 021 007 032 GOLDING PLUS 040 | 018
008
015
000
002
MIN
005 | | LOKATIE EURO 5 IJHUIOEN PENNZOIL EKOFISK STATION H LOKATIE EURO 5 IJHUIDEN | 045
025
036
007
034
10 IN
AANTAL
045 | GEM-OBS 202 214 230 154 251 CM GEM-OBS 025 050 | GEM CAL-OBS 005 005 -000 112 148 GEM CAL-OBS 024 013 | R MS
051
059
053
114
187
+24
R MS
030
045 | GOLDING PLUS 025 017 021 007 032 GOLDING PLUS 040 017 | 018
008
015
000
002
MIN
005
004 | m wind speed error < 7.5 knots