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CHAPTER 1

INTRODUCTION

1.1. Atmospheric Structure

The earth's atmosphere is commonly described as a series of layers defined by
their thermal characteristics (fig. 1.1). Specifically, each layer is a region
where the change in temperature with respect to altitude has a constant sign.
The layers are called "spheres" and the boundary between the connecting layers

is the "pause".
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Figure 1.1 Thermal structure of atmospheric layers.



The lowest layer, called the troposphere, exhibits generally decreasing
temperatures with increasing altitudes up to a minimum called the tropopause.
The temperature and location vary with latitude and season. At the equator,
its mean altitude is located near 18 km, and the temperature is roughly 190 K.
In the polar regions its elevation is only about 8 km and the temperature
roughly 220 K. Above the tropopause the stratosphere begins, exhibiting
increasing temperature with altitude up to a maximum of about 270 K at the
level of the stratopause located near 50 km. At still higher altitude, the
temperature again decreases up to 85 km, where another temperature minimum is
found. This layer is called the mesosphere and its upper boundary is the
mesopause. In these layers the major constituents, N2 and 02, make up about 80
and 20% respectively of the total number density, so that the mean molecular
weight of air varies little with altitude. Because of this common feature, the
three layers are collectively referred to as the homosphere.

The region located above the mesopause is called the thermosphere. The
temperatures there increase very rapidly with altitude and can reach daytime
values of 500 to 2000 K, depending on the level of solar activity. The
composition at these altitudes is very different from that of the lower
regions due to an increasing proportion of atomic oxygen, whose density
becomes comparable to and even greater than those of O2 and N2 above about 130
km. The abundances of O, and N, decrease, primarily as a result of rapid
photo-dissociation. In contrast to the homosphere, the mean molecular weight
of air in this region, therefore, varies with altitude; for this reason the
region above 100 km is also called the heterosphere.

The atmosphere above the tropopause is called the upper atmosphere.

The upper atmosphere is the site of substantial motion. Limited evidence has
been available to mankind throughout the centuries in the form of auroral
displays and meteor trail distortions, but this evidence went largely
unnoticed or unappreciated. Scientific consideration can be said to date from
1882, when Stewart advanced the important postulate that motions of the upper
atmosphere are responsible through a dynamo action for the geomagnetic
variations that are observed at ground level. A century later a wealth of data
is available on motions in the upper atmosphere. The last three decades the
available data base has explosively been augmented and extended by the
development of space technology.

The interpretation of the motion of the upper atmosphere has also reached a
rather mature level.



A division of the motions according to the time scales involved is as follows.

a. Prevailing winds. Change with seasons. Dependent on latitude, longitude and

altitude. Strong winds, for example at 250 km height windspeeds of 300 m/s
are measured.

b. Planetary waves. Time scales of a day or longer. Occur on a global scale.

Amplitudes of tens of meters per second. Strongly dependent on season.

c. Tidal oscillations. Periods are integral fractions of either a lunar or a

solar day. Amplitudes of tens of meters per second.

d. Acoustic-gravity waves. Periods from fractions of a second to hours. This

class of waves contains the well-known sound and infrasound waves but also
the internal gravity waves.

e. Turbulence. Time scales of seconds. Turbulence is revealed by variations in
the diffusive growth of meteor trails. The cross-section of a trail
increases first under the effects of molecular diffusion, but in a matter

of seconds eddy diffusion becomes important and ultimately dominates.

With regard to the dynamics of the upper atmosphere, we will restrict

ourselves to tides and internal gravity waves and these will be considered in
some more detail.

1.2. Tides

The sea tides, with rise and fall of the water twice daily on most coasts,
have been known from time immemorial. The explanation of tides was first
indicated by Newton in his Principia Mathematica. They are a consequence of
the lunar and solar gravitational forces. Newton realized that the tidal
forces must affect the atmosphere as well as the oceans, but thought "with so

small a motion that no sensible wind will be thence produced" (Newton, 1687).



Atmospheric tides were first measured by using a barometer. The vertical
accelerations of the air are so small that the barometer effectively measures
the weight of the overlying air, thus an above-normal barometric height
implies a heaping up of air above the station. In the tropics, the barometer
does show a marked semidiurnal variation, but its period is half a solar, not
lunar day. This is illustrated in the historical figure 1.2 for five days of
November 1919, at Batavia (presently Jakarta) in Indonesia, at 6.5°S latitude,
and also at the temperate zone station Potsdam (52.4° N) where the barometer
undergoes larger irregular variations associated with weather changes with

small tidal variations superimposed (Bartels, 1928).

760 mm
BATAVIA 756

N POTSDAM—|—— 7®

Nt~ 740

Figure 1.2 Historical registration of the barometric variations (on twofold

different scales) at Batavia (6° S) and Potsdam (52° N) during November 1919,
After Bartels (1928).



In the upper atmosphere important sources of tidal wind information are the
ionized trails left by the numerous meteors disintegrating there. These trails
are carried by the neutral wind and may be tracked from the ground by the
observations of reflected radio signals.

Greenhow and Neufeld (1961) were the pioneers of a systematic analysis of the
horizontal wind above Joddrel Bank (53.2° N, 2.3° E) averaged over the
vertical range 80-100 km. Later on French groups have contributed largely to
this kind of tidal wind measurements (Fellous et al., 1975). Diurnal and
semidiurnal winds were found at these heights with amplitudes of tens of
meters per second.

Comprehensive reviews of atmospheric tides can be found in Chapman & Lindzen
(1970) and Kato (1980).

The introduction of tidal theory is greatly simplified if it is assumed that
the background wind can be ignored and that the unperturbed atmospheric
parameters (p,p,T) vary with height z only. The tidal variations are assumed
to be small. The tidal oscillations may be analyzed into a number of
eigenmodes. The longitudinal variation may be taken simply sinusoidal, while
the latitudinal variation is the solution of the Laplace Tidal Equation. The
solutions are called "Hough functions". With each of these eigenfunctions a
specific parameter h is associated which is known as the equivalent depth.
Greatest interest centers on modes which progress around the earth in step
with the generating agency, solar or lunar as the case may be. The equivalent
depth of such modes will here be denoted h; and h; for the diurnal and the
semidiurnal components respectively. The "1" and the "2n identify the number
of wavelengths in 360° of longitude, while n is an index identifying the form
of the latitudinal variation of the mode; it increases in magnitude with
increasing complexity of latitudinal variations.

The various modes are excited with various amplitudes by the forcing agencies.
In the case of atmospheric tides the main forcing agency is solar heating of
the troposphere and the stratosphere by absorption of bands in the solar
spectrum by water vapour and ozon respectively (Chapman & Lindzen, 1970).

The amplitude of the excited modes depends on the degree of fitting in their
latitudinal and longitudinal variations with the forcing agency. It depends
also on the degree of fitting in the vertical variation and on the degree to
which energy input at one level manifests itself, through propagation, at
other levels where further input may be found and where constructive or

destructive interference may occur.



It is important to realize that the solar heating of the atmosphere is the
main generator of the atmospheric tides. Gravitational attraction is much less
important. The consequence is that atmospheric tides are mainly coupled to the

sun where as sea tides by the gravitational influence are mainly coupled to

the moon.

Here attention will be paid to the vertical propagation of the tidal

oscillations.

The value of the equivalent depth of the most important semidiurnal mode, the
2.2 mode, is 7.85 km. This makes the local vertical wavenumber, which is a
function of the temperature and the equivalent depth, imaginary over an
interval of about 20 km around the temperature minimum in the upper
mesosphere. The energy of the 2.2 mode thus tends to be trapped in between the
mesopause and the earth surface and a standing oscillation with relatively
slight leakage of energy is established.

Higher order semidiurnal modes have smaller equivalent depths and real values

of the vertical wavenumber. Accordingly they are less efficiently trapped.

The calculation of the reflection of semidiurnal modes at the temperature

profile of the upper atmosphere is treated in some detail in this thesis.

1.3. Internal Gravity waves

Any wave must be associated with some restoring mechanism in a medium in
equilibrium. For acoustic waves, the restoring force arises from the
compressibility of the medium. For internal gravity waves, it is the buoyancy
exerted on a displaced fluid element in a stably stratified fluid.

Consider an element of fluid at some level z_, in a fluid with density »p

o}
decreasing with height at a rate - %% .



The situation is depicted in fig. 1.3 a.

y 4 A
A

0s
> X om

———

F =-o} ds

Figure 1.3 a Schematic description of fluid elements, their displacements
and buoyancy forces per unit mass.

The mass of the fluid element at zZ, is
sm = p(zo) s v,

where 6v is the volume of a fluid element. If we displace 6m over a small

vertical distance 6s , it will be subject to a buoyancy force:

dp(zo)

g———dz——— és 6v ,
acting to return é&m to z; 8 is the acceleration of gravity. Variations of
§v due to compressibility have, for simplicity, been neglected.

The equation of motion leads to

d%6s _ _ g dp ss
dt? p(zo) dz °°°

(1.1)



In a stably stratified, incompressible fluid %% < 0 . Hence equation (1.1)

describes a harmonic oscillation with a frequency wg given by

wB2=-%%%, (1.2)

wg is known as the Brunt-VAisdld frequency. The effect of adiabatic

expansion is to change the expression for wg into the following

we? = & (& 4 QI)
c

B T dZ s (103)

where T is the temperature of the ambient fluid and cp is the specific heat at

constant pressure.

f =~} 6z

Figure 1.3 b Schematic description of fluid elements, their displacements
and buoyancy forces per unit mass.

Let us designate the buoyancy force per unit volume on a displaced fluid
element as

= - 2
FB = - wg §s (1.4

Fg 1s directed vertically. Now consider a fluid element that is somehow
constrained to move at some angle 6 with respect to the vertical (viz. fig.
1.3 b).



The force exerted on this fluid element will be the projection of the buoyancy
force

F = -sz cos?9 és, (1.5)

and the element will oscillate with a frequency w , given by

B cos? 6 . (1.6)

Hence oscillations with all frequencies lower than the Brunt-Viisili frequency
are possible. If the frequency is low the neglecting of the Coriolis force is

no longer justified and the simple picture sketched above is no longer valid.

The gravity waves, once excited, propagate througn the atmosphere which is an
inhomogeneous medium as temperature and wind are functions of the coordinates.
Partial reflection and transmission occurs on gradients in the temperature and
the wind. In layered wind fields gravity wave energy is not conserved. The
waves can loose energy at a so-called critical level, that is the height where
the wind velocity equals the horizontal component of the phase velocity. This
was first treated by Booker & Bretherton (1967). 3ut the contrary occurs also.
Jones (1968) found that if the critical level is situated in a region with a
sufficiently low value of the Richardson number, then a gravity wave can tap
energy from the background wind.

Two chapters in this thesis are devoted to extensions of the theory of gravity

waves propagating through height dependent windfields containing critical
levels.

1.4, Ionospheric observations

Ionospheric observations raised also the interest in gravity waves.
Frequently, wavelike Travelling Ionospheric Disturbances (TIDs) were observed.
In 1950 Martyn suggested already that the TIDs might be the result of buoyancy
or gravity waves in the ionosphere. Since then a lot of experimental and
theoretical work has been done and is still going on on gravity waves at

ionospheric heights. A pioneer in this field was Colin Hines (1960).



Radio~astronomical measurements contain information on TIDs (Kelder &
Spoelstra, 1986 b). Radio-astronomical measurements, like those done in
Westerbork (the Netherlands), yield very precise determinations of the angle
of arrival of the radiation of radio sources. For point sources with well-
known positions this angle of arrival can be calculated and differences with
the measured values must be caused by refraction either in the troposphere or
in the ionosphere. For wavelengths longer than 21 cm the ionospheric
refraction in general dominates. Hence it is possible to subtract from angle
of arrival measurements certain ionospheric parameters.

The signals of beacon satellites can also be used to measure ionospheric
structure. Beacon satellites are in principle designed for position
determinations. They are emitting continuously signals at high frequencies
which propagate through the ionosphere. As the ionosphere is a dispersive
medium the time of travel is dependent on the frequency. By using two
frequencies a first order correction can be made for the ionospheric error in
the position determination. However, this difference in time of travel can
also be ﬁsed for the determination of some characteristics of ionospheric
irregularities.

A chapter is devoted to the interpretation of measurements of TIDs by
different techniques.

In this thesis certain aspects of the propagation of high frequency radio
waves through the ionosphere of some relevance for radio-astronomical and

beacon satellite measurements are also discussed.

Some of the work that is presented in this thesis has been published
previously. This is the case with chapter 3 (Spoelstra & Kelder, 1984; Kelder
& Spoelstra, 1984 a,b; Kelder & Spoelstra, 1986 a), chapter 4 (Teitelbaum &
Kelder, 1985) and chapter 5 (Teitelbaum, Kelder & Van Duin, 1986).
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CHAPTER 2

ELECTROMAGNETIC WAVES OF HIGH FREQUENCY IN THE IONOSPHERE

2.1. Introduction

A large part of the literature on the ionosphere is devoted to the description
of the propagation of electromagnetic waves of frequencies of kHz to tens of
MHz. Waves with these frequencies are reflected in the ionosphere and hence
sulted for ground based remote sensing of the ionosphere. For high frequencies
the ionosphere becomes transparent. This transparency is not perfect and in
the last years some effort has been put in calculating the influence of the
ionosphere on high frequency waves. The accuracy of geodesy with the help of
navigation satellites is namely limited among other things by the influence of
the ionosphere.

In this chapter the higher order terms in the refractive index are calculated
and discussed. The influence of the finite temperature of the ionospheric
plasma on the refractive index is also analysed.

Finally an analytic expression for the Doppler shift of signals propagating

through a wavelike perturbation of the ionospheric electron density is derived
and discussed.

2.2. The refractive index for the propagation of electromagnetic waves through
the ionosphere

The theory of the propagation of electromagnetic waves in an ionized medium in
the presence of an imposed magnetic field is sometimes called the magneto-
ionic theory. This theory was developed during the first part of this century,
following Marconi's experiments in long-distance radio propagation and
Kennelly's and Heaviside's suggestions in 1902 that these waves are reflected

from a conducting layer in the upper atmosphere. In the form used today the

13



theory is mainly the result of the work done by Appleton and Hartree between
1927 and 1932. A thorough discussion can be found in e.g. Ratcliffe's
monograph (1951), Stix (1962), Allis et al. (1963). The equation for the
refractive index n of an ionized tepid medium with an imposed magnetic field,
taking into account the effect of collisions by introducing an effective
collision frequency v (see e.g. Ginzburg, 1961), is generally known as the
Appleton-Lassen dispersion formula (Lassen, 1927; Appleton, 1928 ; Rawer &
Suchy, 1967)

n = 1—X/(1-jz-[gY; / (1—X—jZ)]t/(ZY; / (1-X-jZ)z+Yz)] . (2.1)

X,Y;,¥p and Z are dimensionless quantities defined as follows

w
N 2
)

X=('w—' , YL=mL/w, Y /wy, Z=v/w:

T 97
w = frequency electromagnetic wave,
wy = angular plasma frequency,

v = electron collision frequency,
w, < chos 06 Wy = mH81n e .

wy = electron gyro-frequency.

where 8 is the angle between the direction of propagation of the wave and the
direction of the geomagnetic field line. The plus sign corresponds in the
quasi-transverse approximation to the so-called ordinary wave, the minus sign
to the extraordinary wave (Stix, 1962). Although the Appleton-Lassen equation
is strictly valid only for a homogeneous medium, we assume that the relation
is also useful for application to slowly varying media, that is, where the
changes in the refractive index are small over a distance of a wavelength,
i.e. in the approximation of geometrical optics.

We shall first review the values of the different parameters.

The electron gyro-frequency wy equals 2IIf‘H and

fH = eB/(2Im) , (2.2)

where e is the electron charge, m the electron mass and B the earth's magnetic

field. The earth's magnetic field B can be approximated by the field of a
dipole, that is

14



_u _2
B(r,A) = .32(r‘E/r‘)3 /(143 sin?)) 10 Wbm , (2.3)

2

B = Field strength of magnetic induction in wbm ,
rg = Earth's radius,

r = Geocentric distance,

A = Geomagnetic latitude.

The value of the field strength B varies roughly by a factor of 2 from the
equator to the poles. The variation with height up to 600 km is in the order
.
of 10%. The value of B at U45° latitude and 350 km height is B = .43 10
2

Wbm . The corresponding value of the electron gyro-frequency fy = 1.20 MHz.

The angular plasma frequency w, is defined as

N

2

- 2 2
wy = Ne /(so 4n2pm), (2.4)

_3
where N is the electron density in m , and Eo is the dielectric constant

in vacuum.

Substituting values in (2.4) yields a plasma frequency fy equal to

N (Hz) = v (80.6N) . (2.5)

2 -3

1
A high value of N is 3 10 m and the corresponding value of fy is 15.5 MHz.
12 3

Typical values of N are about 10 m which corresponds to fy = 9.0 MHz. The
value of N varies considerably. For example, at night it drops to 10% of the
daytime value. The average collision frequency of electrons with neutral

particles and with ions Ven and Vai respectively, is given by (see e.g. Banks
& Kockarts, 1973)

= 8
Ven = 1.8 10 P, Hz , (2.6)

where Pn is the neutral pressure in Torr,

-5 _3/2
Vei = 5.4 10 NT Hz , (2.7)

where T is in K.
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Table 2.1 gives some specific values of the neutral and electron densities,

the temperature, and the collision and plasma frequencies for the different
ionospheric layers.

Table 2.1

Layer D(80 km) E(110 km) Fi (180 km) F5(300 km)
T(K) 200 320 1130 1450
N(m™3) 6 108 6 1010 1 10 2 1012

N (m3) 41020 3 1018 1.5 1016 1.5 1015
v (Hz) 110! 6 102 1102 2 103

v (Hz2) 3107 3103 7 21072
ty(Hz) 2 10° 2 108 3.2 10° 1.3 107

The neutral density is indicated by Nn'
These values are valid at moderate latitudes with a 1500 K thermopause

temperature (see Banks & Kockarts, 1973).

Below, we shall discuss some approximations in magnetoionic theory, a subject
that has recently drawn some attention (De Munck, 1982; Budden, 1983; Hartmann
& Leitinger, 198Y4; Heading, 1984).

Let us first assume that X,YL,YT and Z are all in the order of ¢,

with € << 1. The electron collision frequency v in the dispersion equation
is assumed to be equal to the sum of the electron-neutral collision frequency
Ven and the electron-ion collision frequency v

ei’
The expression (2.1) for the refractive index can then be approximated by

2 YT2 _ YT“
n = 1—X/(1-jZ-{—§—(1+X+jZ) vy

[
(1+—=)+0(e )}) . (2.8)

8YL
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Equation (2.8) can be reduced to

2
Y
n? = 1 - XaXY, ~JXZ-X(Y, + —% — Z2)42jXZY. +0(e*) (2.9)
~77L L 2 - L : :

For the refractive index n we have

2
Y
-1 - RPN G S ST :
n=1 inzXYL > 8 5 (YL *t Z2) ¢ jxzy,
Tlxey +1—jX22-—l—X3 + 0(e*) (2.10)
y L 4 16 : *
This can also be written as
2 2 2 ("
f f, f.cos 6 f 2 2 2 f
n = 1- —Eg + -H——ET———— - N“ (fB (cos 8 + ¥%sin?2 8) - v ) - % §
2f 2f 2f f
2 4 L 6
- f f_cos 6 f,, f_cosé f f
N G s P e R IR
2f f f f

From Table 2.1 it can be inferred that for a height of 300 km and for a

frequency f of 100 MHz: X=0.017, Y = w,/w =0.012 and Z=10"°. That isZ ~ 0(e2).

H

Hence (2.11) can be written as

2 Y 2 2
2
o fN . fx chose 1 fN ) fN f (00820 + sinze)
- 2f2 ~ ors 8 " 2f" 2
2 6
f f., £f.cosé f
s N o _ 1Y NB T 1 N "
J2Fs VT T fs 16 et O(e") . (2.12)

In measuring distances with the help of satellites and astronomical data some
effort has been put into calculating higher order ionospheric corrections
(Bertel, 1969; St. Etienne, 1981; De Munck, 1982; Lohmar, 1985). Expressions
similar to (2.12) are then used. These authors, however, calculate higher
order corrections by making higher order developments in an approximated
refractive index equation. In some papers first the quasi-longitudinal
approximation has been made and then a higher order development is made. This

procedure offers no guarantee that all relevant terms are obtained.
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In general the effects of a temperate plasma, deviations of geometrical optics
and the influence of ions on the propagation of electromagnetic waves has to
be carefully evaluated in the context of higher order developments in an
expression for the refractive index. This domain seems to be not fully
explored.

A less rigorous result than (2.12) is also obtained by Leitinger (1974) and
Hartmann & Leitinger (1984).In the latter paper a worst case estimate of
residual ionospheric errors for vertical incidence is given. In their

calculation Hartmann and Leitinger use a model of the ionosphere of 200 km
13 3

thickness and an uniform electron density of 10 m . A value of 1.74 MHz is
taken for the electron gyro-frequency. The expression used for the refractive
index consists of the first five terms of the right-hand side of equation
(2.12). From this expression, Hartmann and Leitinger calculated by integrating
optical path lengths.

The contributions of:

2 4 2 2
fN fB fN f fB
—_———— — 2 32 a
t %3 cos8, 5F" and —F (cos?8 + % sin?e8) are called ASA, ADB and ASC

respectively.

Let the contributions of:

2 4 6

f f. f_cos6 f

N N 'B 1 N

577 V1 3 4 —Fs—— and - 3¢ G be named ASD, ASE and ASF
respectively.

Inserting the values of the ionospheric parameters (v is taken to be equal to
2.103 Hz, 6 = 0):

ASA = lLEF;Qi: m,
ASB = :li%rlgi: m,
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_ _ 5.7.10%°

and

- 48
as. - 6:510%

where f is in Hz.
Taking a frequency of 100 MHz, then

ASA = + 140m, ASB = -160 m, ASC = 2.4 m ,ASD = -0.16 m, ASE =:5Tm

and ASF = -6.5 m. Hence ASE and ASF are comparable with AS and may not

C
be ignored as was done by Hartmann & Leitinger (1984). This also has
consequences for the 150/400 MHz corrections, of importance in geodesy; but

this aspect will not be pursued here.

In the next section we will deal exclusively with first order corrections and

we can simplify (2.12) further to

2
fN (X, y, 2, t)

n=1- 5 . (2.13)
2f

2.3. The temperate plasma correction to high frequency waves

The dispersion relation for electromagnetic waves in a temperate plasma is
given by (Yeh & Liu, 1972, ch. U4):

<>
det D =0, (2.14)
with
3 I . 3
3
B=kl-kk- k,? K, (2.15)
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where 8 is the angle with the magnetic field vector (//z axis), and kK 1lies

in the x,z plane.

>

K is given by Yeh & Liu (1972) in equations (4.18.16) and (4.18.17).

Substituting this in (2.15) results in the following expression.

> 2 n20 0 n? sin® @ 0 n? sin & cos ©
B = L0 n20]) - 0 0 0 ) +
0 0 n? n2 sin 8 cos 8 0 n? cos? @
100
X

- (0 1 0) YTy ey ~v2 F3

00 1 1-Y2-n26 (1 Y2 cos? 8)

1 ~n? 8§ cos 28 JY (1 - n* 6§ cos2 8) n? § sin 8 cos ©
( - jY (1-n%8cos?2 8) 1 - n? & -jY n?2 6§ sin® cos 8 ) | (2.16)

n®> § sin 8 cos 8 jY n?8sin 0 cos © 1 - Y2 - n? 8§ sin? 8

The parameter § takes into %cgount the thermal velocity vy of the plasma
articles, in formula: § = £ XK
p 1 ’ : ez T me?

only electrons contribute in the propagation of the wave and therefore only

In the high frequency approximation

the & corresponding to the electrons appears in (2.16).

Define:

X! = X/(1-Y2-n2%6(1-Y2%co0s?%6)),

Key =1 - X' (1 -n?® 6§ cos?* 9 ),

KXY = - jX!'Y (1 - n%? 8§ cos 29), (2.17)
KXZ = -n?¢§ X' sin & cos & ,

Kyy = 1 - Xt (1 -n?%g%),

K,, = 1 - X' (1 - Y% -n% 6 sin?29) ,

Kyg =+ jX'Y n* 6 sin 6 cos ©
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N
Then B can be written as

2 2 - - - 2 3
g . n® cos“ © KXx + KXY KXZ n“ sin 6 cos 6
_ - 2 -
2 ( Kyy n Kyy Kyz ) (2.18)
- - 2 3 2 s .2 -
KXZ n® sin 6 cos 0 + KYZ n‘ sin® o KZZ

A reasonable estimate for the electron temperature in the ionosphere above 200
km height is 2000°K (e.g. Banks & Kockarts, 1973, Aeronomy II, p. 288).

If the adiabatic condition is assumed, then for high frequency plasma waves

Y = 3 is predicted (Yeh & Liu, 1972). With these values the parameter & is
roughly = 10_6 .

This value of 6 should, in principle, lead to corrections in the refractive
index of the order discussed in the preceding section. However, below we shall

show that this is not the case.

2.3.1. The cold plasma

If we take § = 0 we get the cold plasma equations

c X c ., _ X
Kex =1V " 7y2 0 Ky =V - 957,
c c c
Kzg = 17X Kz = Kyz =0
K C i XY
XY 1-y2
and
n? cos? o - K. - k.,.C - n? sin 6 cos 6
N XX XY
2
5% - 57 (v k' n? - Ky O )
-n?2sin®cose O n? sin? § - KZZC

The dispersion relation follows again from

3
det Dc =0 .
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. c _ c c _ ¢ . c c _ c ¢
Introducing Ko = KZZ , KI KXX + JKXY ’ KII Kxx JKXY ’
ultimately yields
c c
n? (K,  + K )
2 _  C I IT1° _,c c L2
(n K, ) { 5 Ki™ Kip ] sin? 8 +
K, [ (n K; ) (n Krp ) ] cosz 8 =0 . (2.19)

The longitudinal case: 6 = 0 ,

then (2.19) reduces to

X
2 _1-
nt = 1Ty
X
2 - 1- =
n 1 -y °

These expressions describe the refractive index for left- and right-handed

circularly polarized waves respectively.

The transversal case: 8 = g ’
n2 =K %=1-x,
o)
c ¢]
. 2 KI KII
= - ’
KI KII
or
X (1-X)
2 - 2 2/
n® =1 - Iyex

These expressions describe the ordinary and extraordinary waves respectively.
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2.3.2. The temperate plasma

We have to solve
> >
> >
det D=0 |, with D given by (2.18).

We consider only two special cases:

s
® = 0 and 6 = 5-

The longitudinal case: 6 = 0 .

The expressions in (2.17) reduce to

X
Kex =1~ 942 > Kyz = Kyz =0
K. = - XY
XY 1-y2
X
KYY'1 1-Y2
and
X
Kgz =1~ 7075 -
The determinant becomes:
2 _ -
KXX KXY 0
2 _
KxY n KXX 0 .
0 - Kyg

The only place where § acts is in Kz7; that is we recover the two cold plasma
modes and one extra mode:

1-X
2 o 4
n 5 .

This last mode is just the electron plasma mode.

The transversal case: 8 =

T
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With 8 = % the expressions in (2.17) reduce to
K =1 - N S K = K =0
XX 1 - Y - n% ' XZ YZ ’
K = —:JF)SY—z ,
XY 1 - Y% - n*§
_ . _ _X(1 - n%8)
Kyy =1 "7 -y -
and
KZZ =1-X.
Hence we have to solve:
“Kyx “Kyy 0
2 _ =
Kyy n Kyy 0 0,
2 _
0 n KZZ

or

(n* - Ky7) (Kyy (n* - Kyy) - KGy) = 0.

A One solution is

that is just the ordinary cold plasma electromagnetic wave.

B The other solutions are

(- X ) (n2 -1 + XU _-n%) x2y?

T - Y2 - n%s 1T - Y2 - n2%s (1 - Y2 - nZ8)2

that is
(1 =X -Y2-n%8) ((n2 -1) (1 - Y2 - n2%8) + X(1 -~ n38)) + X2Y2 =0 .
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This can be reduced to

8§%n® - 8n* ((2 - 2Y* - X) + 6(1 - X)) +

n® (1 - Y%+ 68(2-X)) (1 - X - Y¥%)+ XY - (1 -X-Y2)2=0, (2.20)

The equation (2.20) should correspond to expression (4.19.5b), p 208 of Yeh &

Liu, but it does not.

Let us first look at the plasma wave.

Define

then equation (2.20) can be written as

§2N® - §N% ((2-2Y2-X) + 8(1-X)) + N(1-Y2+§(2-X)) (1-X-Y2) +

X2Y? - (1-X-Y¥2)%2 = 0 . (2.20a)
No
Suppose N = 3
1
O(E)'

3 2 _ov2_ _vy2 “Y-Y2) =
No No (2-2Y2-X) + N0(1 Y?) (1-X-Y?) 0.

The first solution is

The other solutions are

No2 - (2-2Y%-X) No + (1-¥?) (1-x-y*) =0 ,

25



hence

(2-2Y2-X)

No =5 + };1/(2--2Y2—X)2 - 4(1-Y2) (1-x-Y2?) ,
that is
N =1-Y%-X,
o
N =1- Y2
o

For N we have:

1 -Y2. 2 -y2
P YG X oy A

These are again plasma waves.

o(1), o(s)

N =N, + 8N,

Substituted in (2.20a) we obtain

X(1-X)

M= T - i

(1 -2X - Y% + X?)
(1 -X-Y)(1 - Y?)

(-XY2 + 2Y" + XY') .

Hence the lowest order of the warm plasma correction in the transverse case is

§ XYZ2.

For high frequency waves (f ~ 100 MHz)

X = 1072 ,
Y2 = 10 ° ,
=> sxy2 = 10712 .
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This can be ignored. The expression (4.19.8a) of Yeh & Liu (1972) yields a
correction of n® =1 - § + 0(8%). This correction cannot be ignored. As
shown above, this is not correct and the temperate plasma correction can

indeed be ignored.

2.4, Ray paths in the ionosphere

In discussing ionospheric parameters a spherical coordinate system is often
useful. Spherical coordinates r, ¢ and 6 are used, with the origin at the
centre of the earth, ¢ being the longitude and 6 the colatitude.

Let us consider electromagnetic waves of high frequency in the ionosphere.
Their wavelength is much shorter than the scale at which the electron density
changes. Approximations based on such a condition show that the energy is
propagated mainly along special trajectories (group rays), which are not
necessarily straight lines. The approximations in question are termed
geometric-optical. If we ignore the earth's magnetic field or investigate only
propagation perpendicular to it, the geometric-optical treatment may be based
on a single scalar equation with a refractive index n varying from point to
point.

The optical length of a phase ray path between the points a and b is

P =afbn(r, 6, 8) ds =

r,fb[1 + 292 + rzézsinzelz n(r, ¢, 8) dr , (2.21)
a
where
and
(@)% = (ar)® (1 + 2 (@)% 12 sinze ()7
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Fermat's principle, known also as the principle of the shortest optical path
or the principle of least time, asserts that the optical length
b

P = f n ds ,

a
of an actual phase ray between any two points a and b is shorter than the
optical length of any other curve that joins these points and that lies in a
certain regular neighbourhood of it. By a regular neighbourhood is meant one

that may be covered by rays in such a way that one (and only one) ray passes

through each point of it.

From Fermat's principle the following ray equations can be derived

d 2 .20 46y _ n

0s (nr? sin?e ds) 39 (2.22)
d » 46y _ 9n 2 s d¢,?

35 (nr s [ae + nr? sin® cosé (ds) 1, (2.23)
d dr, _ 3n de,, c 2, (49,2

PP (nag) A toor ((ES) + sin?e (ds) ) (2.24)

Let us first treat the case of a refractive index dependent on r only. The

equations (2.22), (2.23) and (2.24) simplify to

d 2 oio2q d0y _

Is (nr? sin?e dS) 0, (2.25)
d o248y _ o d¢,*?

15 (nr ds) nr? sin® cos © (ds) , (2.26)
and

4 dry _ 9n 46,2 inzg (9952

0 (n ds) or + nr((ds) + sin?e (ds) ) . (2.27)

The spherical symmetry allows a choice of axes such that the ray passes
through 6 = 0. Then it follows from (2.25) that %% = 0 , that is the ray

stays in a longitudinal plane.
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This allows us to write (2.26) and (2.27) as

%3’- (nr? %—Z—) =0, (2.28)
d dry _ 9n de,?
P (n Eg) = o + nr'(ds . (2.29)

Integration of equation (2.28) yields
nr sini=p, (2.30)

where p is a constant and i is the angle between the ray and the vector ; .
That is n(r) r sin i is constant along the ray path. This can also be proved

from (2.29). Note that (2.30) is Snel's law for spherical surfaces.

Since r sin i represents the perpendicular distance d from the origin to the
tangent, (2.30) may also be written as

nd = constant. (2.31)

This relation is sometimes called the formula of Bouguer and is the analogue
of a well-known formula in dynamics, which expresses the conservation of
angular momentum of a particle moving under the action of a central force.

From (2.30) the ray path can be calculated, namely

de _ tan i _ P

= = . (2.32)
dr r r/n2r2-p2

We will now examine the refraction of high frequency radio waves more closely.
Following the general lines of a derivation given by Born & Wolf (1970), it
can be shown that the radius of curvature p-of a ray in general (within the

limits of ray theory), in an isotropic ionosphere, can be written as

1 1 >
p n |Vn t d—sl ’ (2-33)
where n is the refractive index, E is the unit tangent vector to the ray at

the point of interest, and s is the arc length of the ray.
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This expression can be simplified to

1.1 |grad n sin z| , (2.34)
p n
where z is the angle between the ray and the direction of the gradient of the

refractive index.

Figure 2.1 The relation between the curvature and the angular refraction of
a ray in a medium with a gradient in the refractive index (Snel's law).

With the geometry as shown in figure 2.1 and n dependent on r only, we have

1. (da

o= sl (2.35)
and

o _ _1dn __p

dr ndr /n?rZ-p? ° (2.36)
This formula was also derived by De Munck (1982) (Except for a factor % ).

In the high frequency limit this equation can be simplified to

da __ dn

dr  dr Vr2-p? ° (2.37)
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Hence

r
a = - %E 7!’_‘2):[-)-2— dr . (2.38)
r

e
This formula was used by De Munck (1982) to calculate the refraction of high
frequency radio waves in a spherically stratified ionosphere. He obtained
analytical expressions for electron density distributions quadratic in r.
However, the integral in (2.38) is also solvable in closed form for arbitrary
polynomials in r (Gradshteyn & Ryzhik, 1965 p 68). Hence the class of easily

integrable electron density profiles is larger.

The integral (2.38) was used by Spoelstra (1983) in calculating the refraction
in an ionosphere that has horizontal gradients also. However, expression
(2.38) is only strictly valid in a spherically stratified ionosphere. It has

to be proved that this is a good approximation.

Another expression for refraction in a spherically stratified ionosphere was
derived by Chvojkovd (1958) and used by Komesaroff (1960) and Spoelstra
(1983). Equation (2.29) can be written as

dn . .. di 1 dn ., n sin?%i

—_— - —_— —— e = 2 -

gr €08 1 T nosin 17 cosi dr r cos i’ (2.39)
or

di _ _ tan i dn _ tan i

r- T Thnoa T (2.40)

The second term on the right-hand side is nothing else than the change in i
for the refractive index n = 1. Define i(r) = in=1(r) + a(r) then

da _ _ tan i dn
dr n dr° (2.41)

This is nothing else than (2.36).
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2.5 The Doppler shift of the signals of the beacon satellites

The phase path ¢ can be expressed as
o =%+ et =4 g (2.42)
A c ’

where the optical path 1 = ofsn ds, f is the frequency, t is time, A is the
wavelength in vacuum, ¢ the speed of light in vacuum, n is the real part of
the refractive index, o is the position of the observer and s the position of
the source. For high frequencies (i.e. GHz range), n can be approximated by
(see section 2.2)

f

=z N

. (2.43)

N
)
N

From equation (2.42) and (2.43) we get

f .s e? s
5 of ds 8n2meocf of N ds . (2.44)

The decrease of the phase path equals

ez

_ e S
" Frtne ot JN as . (2.145)

¢|

If the values of the constants are substituted, equation (2.45) gives

1.3 1077

' = 7 TEC . (2.46)

The total electron content, TEC, between the satellite and the receiver is
defined as

TEC = _S°N(r)ds . (2.47)

The quantity TEC can be expressed as

1
cos x O

TEC =

/5N ds = DOON, (2.148)
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where x corresponds roughly to the zenith angle at the altitude of maximum
electron density. A formal definition of the geometrical factor D is

1 h h

={ISNE°—S1—-1-(—h)—dh}///{fSNdh}, (2.49)
(o} (o}

D(x) = cos Y

where i(h) is the zenith angle at altitude h and h.s is the height of the
satellite. The geometrical factor D is a slowly varying function with values
between 1 and 3 (Leitinger and Putz, 1978).

The frequency shift, Af, being the consequence of the time-dependent phase
shift can be written as

7

' -
ap = o' _ 1.3% 10 %E(TEC)

at 7 (2.50)

The relative difference in frequency shift with respect to the frequency of
400 MHz equals

.8 o -7 d
Df = ( 3 750 70° ~ 5§00 10° ) 1.34 10 at (TEC) , (2.51)
or
=195 d
bf = 2.05 10 at (TEC) . (2.52)

From (2.48)

d _d 4
Gt (TEC) = Gg DIX(E)) N (x(8),¥(8)) + D(x(1)) Go N} (x(t),y(8)) (2.53)

where the horizontal coordinate x is the coordinate parallel to the meridian
from north to south, while the horizontal coordinate y is orthogonal to x and
from east to west. For satellites moving in a polar orbit with a sufficiently
high velocity, only the variation of N;, in the coordinate x has to be

considered. We assume a small periodic variation of Ni of the form:

Nl(X) = Ni + Nl sin kx . (2.54)
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With this, and assuming that %% << D and Qi >> Nl , equation (2.53) yields

d - yo 4D dx
at (TEC) = Nl at * D(x) 3t Nl k cos kx . (2.55)

Thus Df reduces to

15 2 ]
- - 0 -y XX, 1 dx
Df = 2,05 10 (N 1°°% X G * o5y at ylk cos kx). (2.56)
The first term of the right-hand side is a slowly varying quantity. The second
term reflects wavelike perturbations. In equation (2. 48) Nl also contains
observational biases such as, for example, the projection of the line of sight

along the wave fronts.

A more thorough discussion on the Doppler shift can be found in Bennet & Dyson
(1982). We will retrace their derivation and show that in good approximation
analytic expressions can be obtained which are useful for the interpretation
of Doppler shift measurements. These authors use a general variational theory
to obtain an expression for the contribution of irregularities to the Doppler
shift. The basis of the method is that the phase path may be expanded in a
multiple Taylor-McLaurin series and the coefficients evaluated assuming that
for all combinations of values of the variables the ray continues to exist. It
is thus essentially an imbedding technique. The calculations are simplified
because the ray has to satisfy a variational equation (Fermat's principle).
Specifically, a quasi-stationary approach to time variations is adopted and
the refraction caused by the background ionosphere is assumed to be a first

order perturbation of the free space ray. Then
~ ! 2 2
P PO + (5mP + srP) + g\sm P + ZGmGPP * 8, P), (2.57)

where P is the phase path and PO is the value of the phase path in the absence
of the refracting ionosphere. GmP is the first m-variation of P which
represents the first order (linear) contribution caused by the smooth
background ionosphere and GPP represents the corresponding contribution
caused by the irregularity. At the high frequencies used in satellite Doppler
measurements the ionospheric refraction is small, and treating it as a first

order perturbation is a good approximation.
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Making use of the Doppler shift formula

dp

Af = - EE ’ (2.58)

[eX]a)

the following expression is obtained

dp
f 0o d d
Af = ° (F+d_t6mp + at GY‘P L P B (2.59)
In equation (2.59) the Doppler shift is represented as the sum of the free
space contribution and the first order contributions of the smooth ionosphere
and the irregularity. The second and third term in equation (2.59) may be
evaluated using the general formula for the second variation of P (Bennet,

1969, 1973). Since we are interested in irregularities we will consider the
third term only.

x,(h)

4  perturbed

ray
B

—unperturbed ray

H

)X3

X9

Figure 2.2 Coordinate system for observer at A and satellite at B.
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Consider the simple case of a satellite passing the local zenith of the
observer, as sketched in figure 2.2. Then the Doppler shift caused by the
irregularity equals

d v, H V, sin x, H

1
a = — = + r , 2.60
(86 P) CH f hu 26r dh T f u_8r dh ( )

o (0]

where V, 1is the horizontal component of the velocity of the satellite. Xo
is the zenith angle and H is the height of the satellite. p 1is the
refractive index. x, 1is the horizontal coordinate. The variation in

refractive index urér equals

___K
urér = - 3p7 Nm smw , (2.61)
e2
where K = E?TEFE‘ and Nm dm denotes the smooth electron density
o)

distribution and w is the perturbation of the background electron density.

The derivative term “rx 8r reads
2

_ - _K L
urxzdr = 5¢7 Nm Sm 5%, (2.62)

2

where it is assumed that Nm6m is independent of x,.

As a simple model for the perturbation w of the background electron density

distribution is taken:

h-h 2 X, X,

w(x,,%,) = exp [~ m 2) } cos (2n (KT - K:) )s (2.63)
s

where hO is the height of the maximum percentage wave amplitude, H_ is the

s
scale height of the wave and x,,X, and A,,A, are the vertical and horizontal

coordinates and wavelengths respectively.

The first term on the right-hand side of equation (2.60), indicated from now

on by Ix , 1is an integral over the horizontal gradient of the perturbation
2

weighted by the height. The second term, indicated by I, is an integral over

the perturbation.
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From (2.60), (2.62) and (2.63) we obtain

h—ho 2

V,K w H H : tany,
I of thGm e sin (Zﬂh(K: T I

x,  fZcos X2 H ))dn .
Suppose that Nmém is independent of height in the region of interest,
(2.64) reads

h_ho 2

V,Knm Nme H ( HS ) 1 tany,
f he sin (2w h(x— i
1 2

)) dn .

X,  f2cos xo AH o

With the substitution h' = h - h,, the integral in (2.65) becomes

hl
H-h, CH?
(h'+h,) e sin (a h* + a hy) dn!

where
tan x,
a=2nm (7\-1- - A2 )
H_ho 2 ho 2
Now m >> 1 and (ﬁ_) >> 1,
s s

Hence we may approximate the last integral by

f h' e ° (sin a h! cos a hy, + cos a h! sin a hy) dh! +

h, j (sin a h! cos a hy + cos a h! sin a hy) dnh! .

The non-zero contributions in (2.68) are

=
[
N
=
N

+o H 2 to

cos a h, f h! sin a h! e dh! + hy sin a h, f cos a h! e

- )

ja o)
N

(2.64)

then

(2.65)

(2.66)

(2.67)

(2.68)

dh!

(2.69)



The integrals in (2.69) are given in Gradshteyn & Ryzhik (1965), p. 495 and

480 respectively. The result is

a%H 2
a2H ¢ ) Z _ HS
v/ Hs ( m S+ n, ) sin (ahy + a) e s (2.70)
aHS2
where tan a = Eﬁ:_ .
Using (2.70) Ix reads
2
a2H 2
VK 3/2 HN sm a’H_* % - us
I, = - ( + ho?) sin(a het a) e . (2.71)

X, f2cos ¥, A.H y

The integral in I can be approximated in the same way, resulting in:

azH 2
V, K Hy - us
I = - 57 N ém i T e [sin xo cos a h, +
aZH 4 2 };
Azcgs = ( us +hy ) sin(ahg + a)] . (2.72)
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Figure 2.3 The frequency shift of a high-frequency signal as a function of
the angle of incidence in the case of a wavelike perturbation in the electron
density of the ionosphere.
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In figure 2.3 the dependence of %E (GrP) as function of sin yx, is drawn for
A= A, = 100 km, Hs = 100 km, h, = 250 km and H = 1000 km. The shape
of %E (drP) agrees with commonly observed patterns in the Doppler shift

measurements (see e.g. Stolp, 1985).

The largest values of %E (GPP) are found around a = 0, that is
A,
tan x, = T That means that the zero-order ray is aligned with the phase
1
fronts of the irregularity. The decay of the amplitude is exponential and

depends on A,,A, and Hs. The angles xy of the first maximum or minimum around

Xo are given by

A,
X = Xo I, COS™ Xo - (2.73)

Hence, if the height of maximum density is known, the horizontal wavelength

can be estimated.

More general cases can be discussed along the same l:ines. For example, instead
of (2.61) a perturbation can be taken of the form
X,-hy 2 Xy Xp X,

w(X,,X,,X3) = exp (-( i ) ) cos (2m(— - — - K:)]' (2.74)
s

Suppose the satellite has a horizontal velocity (0, V,,V,).

then instead of (2.60) we obtain

4 v, h
0 O = SorrlE oj hu  8r dh +
V, sin ¥, H
+ i | weran-
(o]
Vs H
+ m “I:l‘ OJ‘ h urx36r' dh . (2.75)

This leads to the same kind of integrals as above and analytical expressions

can be obtained in an analogue way.
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CHAPTER 3

EXPERIMENTAL STUDY OF TRAVELLING IONOSPHERIC DISTURBANCES

3.1. Introduction

It is well known that the ionosphere is not a homogeneous medium. However,
only during the last 30 years a more or less systematic search has been made
for irregularities in the ionosphere. An important impetus to this study was
given by the classic paper by Hines (1960) on the interpretation of
irregularities in terms of internal gravity waves. Since then, the knowledge
of internal gravity waves has considerably been extended. Several review
papers and books are witnesses to this; see e.g. Hines (1974), Kato (1980).
While looking for methods to correct radio-astronomy observations for
ionospheric refraction, it was realized that a radio interferometer is also a
sensitive tracer of ionospheric behaviour. High precision measurements made
with the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands
deliver information about the difference in total electron content at scales
of the interferometer baselines ranging from 36 m to 2.7 km. In many
observations strikingly clear wavelike patterns were present. According to the
usual classification these are medium-scale travelling ionospheric
disturbances (MS TIDs).

At De Bilt, the differential Doppler shift in the signals of satellites of the
Navy Navigation Satellite System (NNSS) is determined. These satellites move
in polar orbits around the earth. Hence the measurements contain mainly
information on the north-south component of ionospheric disturbances. By
following the satellite, a north-south section through the ionosphere of up to
4000 km long can be covered.

A general review of satellite beacon contributions to studies in the structure
of the ionosphere can be found e.g. in Leitinger et al. (1975), Leitinger &
Putz (1978) and Evans (1977).
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Measurements with both techniques were combined. Climatological
characteristics were determined. The direction of propagation of the medium
scale TIDs seems to be mainly south - south-west. Fourier analysis of the
amplitudes of the measured irregularities showed two periods of equal
strength: one of 12h and the other of 24h. Given the characteristics of medium

scale TIDs it seems probable that these are related to atmospheric tides.

3.2. Observations

From 8 January - 31 March, 1982 and from 24 December, 1982 - 16 March, 1983
the WSRT (52.9°N, 6.6°E) was used for observations at 608.5 MHz. The WSRT
consists of an array of 14 steerable telescopes, each with a diameter of 25 m.
They are situated along an east-west baseline. Ten of them occupy fixed
positions at 144 m intervals. Four additional paraboloids are movable and
serve as references against which the phase of the radiation received by the
fixed antennas is measured. To do this, the fixed antennas are connected to
the four additional paraboloids to form correlation interferometers. The back
end of each correlation interferometer consists of a correlator system which
measures the four complex correlation components necessary to characterize the

polarization state of the radiation. The maximum baseline between two
telescopes is 2.7 km.

A source is observed by tracking it in its diurnal rotation from 6 hours
before to 6 hours after meridian transit, or over some fraction of this range.

The array beam is continuously steered by proper phasing of the elements. This
is done with very high precision.

Point sources are observed frequently for checking and calibrating the
instrument. The standard integration time for these observations is 1 minute.
For point sources, we know that the incident wavefront should in good
approximation be perfectly flat as the distance to the astronomical source is
large; deviations must be the result of propagation effects giving rise to

path-length errors (e.g. Hamaker, 1978; Spoelstra, 1983).
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These deviations are visible as phase errors, A¢, which are to first order

proportional to the baseline between two interferometer elements.

]

1 ! 1 1 1

15 16 17 18 19 20
UT(hours)

Figure 3.1 Example of the variation of the phase differences between two
telescopes. The source is 3C147, the date is 21 February 1983. The used
baseline was 2718 m. The frequency 608.5 MHz.

Many observations showed phase errors much larger than the internal accuracy
of the system. These errors show often a wavelike behaviour as a function of
the hour angle (= time). An example is given in figure 3.1. Their cependence
on baseline and frequency of observation indicates that they are the result of
ionospheric irregularities such as TIDs. For these wavelike patterns it is
possible to derive the amplitudes as a function of interferometer baseline
(the amplitude is half of the peak to peak of the variations of the phase
errors), and as a function of the time of the day. Another quantity which can

be determined is the apparent period of the wave.
The Navy Navigation Satellite System consists of five satellites moving in

polar orbits at 1100 km altitude with a velocity of 7.5 km/s. They

continuously transmit two coherent signals at frequencies of 150 and 400 MHz.
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At the Royal Netherlands Meteorological Institute (KNMI) in De Bilt (52.1°N,
5.2°E) we use a receiver originally designed for geodetic Doppler
observations. With this apparatus, a value is determined for the phase
difference at each frequency, every 4.6 seconds, using the receiver's
oscillator. The integration time of 4.6 sec means roughly a minimum horizontal
scale of 12 km at 350 km height. As our aim was to study ionospheric
irregularities we looked at the derivative of the phase difference, i.e. the
frequency difference. An example is given in fig. 3.2. In total nearly 500

satellite passages have been analysed for these periods.
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Figure 3.2 Example of the variation of the differential Doppler shift
between the 150 and 400 MHz signals during a passage of the satellite. The
measurement was carried out at 11 February 1985. The registration starts at
12h21m UT and the maximum elevation of the satellite is 46°.
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In all cases, in which ionospheric irregularities were observed with the WSRT
they were also present in simultaneous differential Doppler measurements. This
does not necessarily imply that both instruments were looking for the same
irregularities, but it strongly suggests that the domain in which
irregularities occur may be several hundred kilometres wide. A suggestion also
supported by the work of Stolp (1985) on measurements made simultaneously with

two and three receivers of satellite signals.

3.3. Climatology

From the phase variations of the WSRT observations we determined the amplitude
A and apparent period P of each irregularity as a function of time for the
longest baseline (2.7 km). Figures 3.3 and 3.4 show A as a function of time (O
- 24 hours UT). The instrumental noise at 608.5 MHz is about 0.5° in phase.
Noise ih phase of up to about 4° may be caused by the presence of low level
structure in some of the fields observed (e.g. 3C286). Figures 3.3 and 3.4
show a strikingly systematic pattern for the occurrence of ionospheric
irregularities, a peak being reached around noon. With respect to noon the
pattern is clearly asymmetric, for there is a sharp decrease after noon in A.
When the sun is below the horizcon significant irregularities are still
observed. However, the apparent periods P are much shorter during the night.
During the day a typical value for P is 16 minutes. During the night P is
typically about 4 minutes or less. When very short phase variations occur,
i.e. with P < 1 minute, the interferometer amplitude also shows serious
disturbances, indicating that the variations occur within one integration
time. After a careful check of the observations and of instrumental behaviour
we conclude that ionospheric irregularities with time scales of less than 60
seconds are a common feature during the night. Figures 3.3 and 3.4 indicate
that the amplitudes of the phase variations for these fast irregularities are
up to twice as large than those for the slower ones. The linear horizontal
distance which the line of sight travels per minute at an altitude of about
350 km, is 1.5 km. The primary beam for the WSRT at 608.5 MHz has linear
dimensions of 6 km at this height. Thus the spatial dimensions of these fast

irregularities are of this order of magnitude or less.
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Figure 3.3 Variations in the amplitude of WSRT phase variations at 2.7 km
baseline due to ionospheric irregularities as a function of time. Open symbols
indicate that variations with periods less than 1 minute have been included.
The dashed line represents the average (foF2)“ variation with time. Local noon
is at 11h34m UT.
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Figure 3.4 The mean amplitudes of the variation in phase differences during
the first three months in 1983 as function of the time of the day.

The dots indicate data without short-time fluctuations (shorter than 1
minute), the open circles with these fluctuations included. The error bars are
also given.
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Differential Doppler observations of NNSS satellites in general show the same
behaviour, although they are not completely comparable with the WSRT
observations because the WSRT is mainly sensitive to the dependence on the
east-west gradients of ionospheric parameters along the line of sight as a
function of time. With the aid of satellites a latitudinal cross-section at
discrete time intervals is obtained.

The most pronounced characteristics from the differential Doppler observations

are:

(1) Nearly every day, waves occur during the daytime. They are observed most
clearly south of our geographic latitude, because the radio path lies
approximately in surfaces of constant gravity wave phase (Georges and
Hooke, 1970; Davis, 1972; Sen Gupta and Nagpal, 1982).

(2) The amplitudes of the waves are a function of time and are larger in the
morning than in the afternoon.

(3) Small-scale irregularities (with time scales < 4.6 sec, or spatial scales
< 12 km), are present nearly every night north of our latitude. Their

southern boundary varies with time and day.
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Figure 3.5 Hourly averages of the amplitudes of irregularities for satellite
passage in the eastern as well as in the western sky. The crosses indicate
irregularities with horizontal scales larger than 12 km. The circles the

irregularities with shorter scales. The error bar indicates the mean spread
per averaged data point.
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Figure 3.5 presents the amplitudes of these waves as a function of time. The
registrations for satellite passages east and west of the observing stations
are shown separately. The amplitudes of the waves are about 50% larger in the
eastern sky than in the western sky, which agrees with the results from the
WSRT observations. The error bar in figure 3.5 indicates the spread in the
data.

3.4. Mean diurnal behaviour of TID amplitudes

In order to compare the 1982 and 1983 data, the time-dependence of the
amplitudes of the WSRT phase variations at 2.7 km baseline (as e.g. given in
figure 3.4) was subjected to Fourier analysis. It is assumed that because of
the large amount of data, observational biases depending on celestial
coordinates are averaged out. With respect to the occurrence of TIDs, the
scheduling of WSRT observations and of the satellite passages is random. The
observations are spread over any part of the sky over the whole 24 hours of
the day. We observed that the diurnal behaviour does not change significantly
from one day to another. The total coverage of data as a function of time is
not continuous,because of gaps in the schedule of the WSRT calibration
observations and of the satellite passages. Therefore, we assumed that it is
permissible to average all data in windows of 30 minutes to check the average
diurnal behaviour, because TIDs occur as a function of time. Thus, all data
were projected on a single day after averaging, and subjected to Fourier
analyses (Smart, 1958, pp. 157f) in order to detect systematic variations of
the amplitudes A as a function of time, i.e. periodicities in these
variations. The results are shown in Table 3.1. In this table these amplitudes
are represented by Aw. In Table 3.1 only those Fourier components that were
above the mean errors of the solutions have been given. The results show a
time-independent component, the zero level, and components with periods of 24
and 12h., These periodicities result primarily from the daytime observations.
Taking errors into account, the 24h period has the same strength as the 12h
period. This holds for 1982 as well as for 1983. The comparison between 1982
and 1983 shows that the amplitudes in 1983 are 20% lower than those of 1982.
Within the errors the relative strengths of the 24 and 12h terms with respect

to the zero level are equal. This means that the difference between the
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diurnal variations of Aw in 1982 and 1983 is only a scaling factor. This

factor, being the ratio of the amplitudes in 1983 to those in 1982, is 0.8 +
0.1.

Table 3.1

Periodicities in TID amplitudes and foF2 data

year data units zero level 2Uh period 12h period
1982 Aw degrees 9.1 + 0.4 5.8 + 0.6 5.2 + 0.6
phase degrees - 347.1 + 6.2 347.1 + 6.9
As Hz 0.4 + 0.1 0.5+ 0.1 -
phase degrees - 340.5 + 12.9 -
foF2 MHz 7.1 £ 0.1 3.9 + 0.1 0.6 + 0.1
phase degrees - 32.3 + 2.8 347.1 + 10.1
1983 Aw degrees 7.3+ 0.3 4.4 + 0.4 b6 + 0.4
phase degrees - 357.5 + 4.9 354,9 + 4.7
As Hz 1.2 + 0.2 0.9 + 0.2 -
phase degrees - 334.0 + 20.9 -
foF2 MHz 5.3 + 0.2 3.4+ 0.2 1.0 + 0.2

+

phase degrees - 24,9 + 41 26.3 14,4



We determined the phase of the different periods with respect to the meridian
transit of the sun. These phases are also given in Table 3.1. Again, taking

errors into account, the behaviour in 1982 and 1983 was identical.

The same analysis was done for the amplitudes of the TIDs detected by
differential Doppler measurements and indicated by As. The data show only one
specific period: 24 hours, see Table 3.1. Perhaps this is due to the fact that
during the night no TIDs were observed and moreover the spread in the data is
larger for the satellite observations than for the WSRT measurements. The
phase with respect to the solar meridian transit is, taking errors into

account, the same as that determined from WSRT observations.

In order to check for any relation between the amplitudes of medium scale TIDs
and the variation in the total electron content we looked at the behaviour of
foF2, the critical frequency of the F2 layer, which is roughly a measure of
the total electron content. The same Fourier analysis was performed on the
foF2 data of the observing periods. The results, given in Table 3.1 indicate
that the time-dependence of foF2 differs from that of the Aw data. Although,
apart from a zero level, a 24h period and a 12h period were detected, the
relative strengths of these two periods are far from equal. Furthermore, the
foF2 dependencies with respect to solar meridian transit are several tens of
degrees out of phase with the equivalent WSRT data. We therefore conclude that
the diurnal variations of medium-scale TID amplitudes show another time-

dependency than that of the total electron content of the ionosphere.

3.5. Discussion

The medium scale TIDs reflect variations that are typically about 5% of the
total electron content. The horizontal linear dimensions are between about 100
and 800 km. It is clear that the waves propagate neither perfectly east-west
nor north-south. It may be that the suspected preference for one of these
directions is based on observational selection effects: e.g. 3ougeret (1981)
mde his observations mainly with an east-west radio interferometer and
therefore his sensitivity to north-south irregularities was minimal.

There is controversy about the sources of the ionospheric irregularities, see
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for a review e.g. Jones (1982). There is evidence for auroral generation see
e.g. Hunsucker (1982). Bertin et al. (1975, 1978) suggest a tropospheric
origin, i.e. instability of jet streams. They obtained the location of the
sources by inverse ray tracing. On the basis of differential Doppler
measurements Sizun et al. (1981) argue that single point-like sources are not
sufficient to explain the irregularities. They prefer extended sources that
are located at higher latitudes, rather than the local source suggested by
Bertin et al. (1975, 1978). Herron and Donn (1973) using an array of
continuous-wave Doppler sounders show that the direction of propagation of
TIDs changes with local time: i.e. during the morning hours the preferred
direction is south-east; at noon it is south, in the afternoon it is south-
west. This pattern agrees with the observations made by Bertin et al. (1978).
This effect might reflect directional filtering by the neutral wind. Herron
and Donn (1973) and Bertin et al. (1978) made their observations mainly during
daytime. Morton and Essex (1978) analysed gravity wave observations made at a
southern hemisphere mid-latitude station. They also determined the speeds,
azimuths, periods and times of occurrence of these disturbances. Although they
tried to interpret their results in terms of directional coupling by neutral
winds, their results for daytime observations basically show scatter diagrams
only. However, night-time results seem to show some support for the hypothesis
of directional coupling by neutral winds.

If the lines of sight of the WSRT and the Doppler receiver are aligned in the
same direction in the sky, the observations can also be used to calculate the
azimuth and speed of the observed TIDs (Kelder & Spoelstra, 1986). The
calculations show that the azimuths of the direction towards which the
irregularities propagate are mainly south - south-west. This differs from the
observations made by Bertin et al. (1978) and by Herron and Donn (1973) and
Mercier (1986). The reason for this difference is not necessarily seasonal,
since the observations of Bertin et al. were made during the summer and those
of Herron and Donn during the winter. Mercier's difference is maybe due to
differences in data reduction but this will be pursued in the near future.

In the current literature, different sources for medium-scale TIDs are
mentioned. With respect to these sources a distinction must be made between

discrete events and regular sources. On the basis of the observational data,

the following must be explained:
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a. the occurrence of TIDs is a regular phenomenon, since they can be
observed continuously in any direction in the sky;

b. the amplitudes of the TIDs show 12- and 24-hour components of equal
strength in the Fourier analysis (see Table 3.1);

c. TIDs occur worldwide.

The occurrence of 12h and 24h periods of equal strength in the data is,
however, typical of upper atmospheric tides (Chapman and Lindzen, 1970). Our
hypothesis is that atmospheric tides generate gravity waves continuously.
Experimental evidence of a relationship between the intensity of internal
gravity waves and tides has already been presented by Gavrilov et al. (1981).
A possible mechanism could be as follows. Tidal waves, mainly excited in the
lower atmosphere i.e. the stratosphere and troposphere, grow with height z as
exp(z/2H), where H is the scale height of the atmosphere. Between 80 and 120
km altitude they can reach large amplitudes in the order of 150 m/s. At this
height they travel through the coldest part of the atmosphere. Here are large
temperature gradients and low values of the Brunt-V&isdld frequency. The
Richardson number corresponding with the tidal field can become smaller than
0.25. Then, tidal waves become unstable and can generate internal gravity
waves with horizontal phase velocities in the order of 150 m/s. For the theory

of hydrodynamic instability see e.g. Drazin & Reid (1982).

The assumption that tides generate internal gravity waves can explain a, b and

c (see above).

The consequences of the tidal generation of internal gravity waves are:

i. these internal gravity waves should show a latitudinal dependence;

ii. the TID parameters should be dependent on the season;

iii. Variation of the mesopause temperature profile shall modulate with the
same period the internal wave amplitudes. This effect may be partly

responsible for the observed spread in the amplitudes Aw and As.

The assumption that internal gravity waves are excited between 80 and 120 km
does not conflict with the validity of the filtering mechanism of
thermospheric tidal winds as proposed by e.g. Kalikhman (1978, 1980) and
Waldock & Jones (1986). Both mechanisms should show up as a function of time
of day. The conclusion derived by Bertin et al. (1978) that sources of gravity

waves are located in the troposphere does not conflict with the hypothesis of
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tides as sources. Instabilities in the troposphere will certainly generate
gravity waves, but the troposphere may not be the regular source needed to

explain the daily occurrence of such waves.
Most of this chapter has been published previously: Kelder & Spoelstra, 1984

a,b, 1986, and Spoelstra & Kelder, 1984,
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CHAPTER 4

CRITICAL LEVELS FOR INTERNAL GRAVITY WAVES IN A JET TYPE FLOW

4.1. Introduction

In their classic paper, Booker & Bretherton (1967) analysed the propagation of
an internal gravity wave through a height-dependent wind field containing one
critical level, i.e. a level where the wind velocity equals the horizontal
phase velocity of the wave. They showed that the transmission of the wave
depends only on the value of the Richardson number at the critical level. The
Richardson number is defined as the ratio between the square of the Brunt-
Véisélékfrequency and the square of the vertical gradient of the wind. It is a
measure for the dynamic stability of the wind field. They considered only
background flows with a Richardson number larger than 0.25. Later on, Jones
(1968) found that, for low values of the Richardson number at the critical
level, overreflection, i.e. the absolute value of the reflection coefficient
larger than 1, occurs.

These results have been confirmed by various authors and for different
background flows, e.g. a broken-line profile (Eltayeb & McKenzie, 1975) and a
hyperbolic-tangent profile (Van Duin & Kelder, 1982).

Viscosity and thermal conduction were introduced by Hazel (1967). He showed
that for values of the Richardson number larger than 0.25 a large amount of
wave energy is lost near the critical level. Not known is the fraction of
energy lost by dissipation or by excitation of other modes. The transmission
coefficient is the same as found by Booker & Bretherton in the dissipationless
model. It was shown by Van Duin & Kelder (1986) that for all values of the
Richardson number the reflection and transmission coefficients remain
approximately unchanged at the limit of small molecular viscosity and thermal
conduction. Geller, Tanaxa & Fritts (1975) and Fritts & Geller (1976) studied
instability in the vicinity of the critical level. They found that, in the
linear theory, viscosity and heat conduction can play a stabilizing role with

respect to convective instability. A numerical model was used by Fritts (1978,
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1982) to compare the effects of viscosity, time dependence and nonlinear
interaction. Time dependence was found to play only a minor role in
stabilizing the critical level. Nonlinear effects can give rise to higher
harmonics of the forcing wave, which develop large amplitudes near the

critical level when viscous effects are small.

A nonlinear non-dissipative treatment was given by Brown & Stewartson (1980,
1982 a, b). They showed that for large values of the Richardson number the
linear model is valid up to a certain time inversely proportional to the wave
amplitude. After that time, the reflection and transmission coefficients
change. Another very different approach to the nonlinear stationary problem
was put forward by Teitelbaum & Sidi (1979). They showed that a contact
discontinuity appears below the critical level in the absence of dissipative
processes.

To summarize: nonlinearities might change the results of linear models to an
extent that is neither theoretically well understood nor experimentally
documented. In agreement with Lindzen (1973), we believe that, if dissipative
damping occurs before amplitudes have grown to the point where nonlinear
effects become important, the linear approximation is a good one.

The problem of one critical level has been extensively treated by Rosenthal &
Lindzen (1983 a, b) and Lindzen & Rosenthal (1983) with regard to
instabilities and the relation between instabilities and overreflection.
Within the framework of a linear and inviscid model with one critical layer
Grimshaw (1980) added the effects of rotation and electrical conductibility.
Although he mentioned the problem of two or more critical levels, he does not
study this.

Propagation through background flows containing more than one critical level
has attracted little interest. Drazin, Zaturska & Banks (1979) have done a
calculation for a flow containing two critical levels. They modelled the flow
by a broken-line profile. They showed that for large values of the Richardson
number the transmission coefficient of the whole layer can be found by
considering the transmission coefficients of the two critical levels
independently, attributing to those two levels the same value of the
Richardson number.

In this chapter propagation through two critical levels in a jet-type
background flow is studied. Jet-type background winds are frequently observed

in the atmosphere. Moreover short-period gravity waves see planetary and tidal
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waves as stationary jets due to the large difference in the period and in the
phase velocity.

As the mathematical treatment is more difficult than in the case of one
critical level, we restrict ourselves to the linear non-dissipative case.

We have taken a symmetric jet-type background flow. This case can be solved
analytically. The reflection and transmission coefficients are determined. The
influence of the distances between the two critical levels is considered.
Also, various values of the Richardson number are taken. The reflection and
transmission coefficients are also calculated using a numerical approach,
which gives the same results as the analytical one.

A large part of this chapter has been published previously (Teitelbaum &
Kelder, 1985).

4.2, On the hydrostatic and the Boussinesq approximations

In the literature a lot can be found on approximations see e.g. Holton (1972)
and Gill (1982). Here some elementary concepts are repeated in a rather
concise form.

In the hydrostatic approximation the pressure at any point is approximated by

the weight of a unit cross-section column of air above that point.

In formula

gjzz=_pg . (4.1)

The vertical momentum equation states that

E—E=-EE_8' (,402)

The hydrostatic approximation is therefore equivalent to neglecting the
vertical acceleration in comparison with the vertical pressure variation
divided by the density and the acceleration of gravity. This will be further

elucidated hereafter.

A scale analysis of atmospheric gravity waves leads to the following
characteristic numbers:
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Table 4.1

Scale analysis of atmospheric gravity waves

horizontal velocity scale U 102 m/s
vertical velocity scale W 107" m/s
horizontal length scale Lh 105 m
vertical length scale L, 102 m
pressure scale p 103 Pa

time scale T Lh/U 103 S
density scale p 1072 kg m3

Define a standard pressure, po(z), which is the average of the pressure over a

large domain in time and in the horizontal plane. The corresponding standard

density p_(z) is such that p.(z) and p (z) are in exact hydrostatic balance:
0 o o]

— — = -g.

The total pressure and density fields may be written as

p(x,y,2,t) po(z) + p'(x,y,2,t) ,

p(x,y,2,t) po(z) + pl(x,y,2,t)

where p! and p! are perturbations from the standard values of pressure and

density. Substituting these expressions in the vertical momentum equation
1

1
(4.2) and assuming that e and 2 are much less than unity in magnitude we
o o]
obtain that

_lp_ o __1 ap-
53z  8° o [o'g 1.

Using the numbers from Table 4.1 we find that
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po z po
and

dw W _ 4 2

at T 10 m/s*.

We see that to a very good approximation the perturbation pressure field is in

hydrostatic equilibrium with the perturbation density field such that

In order to clarify further the validity of the hydrostatic and also the more
commonly used Boussinesq approximation we consider the perturbations in a
windless isothermal atmosphere in more detail. Assume again a state with an

unperturbed pressure po(z). Hydrostatic equilibrium is supposed hence

dpo :
E-Z—- = - po g. (u-3)
Further it is assumed that %E 1n pO = - %, where H is a constant scale height.

This assumption is justified if the background temperature is not dependent of
height.

If the perturbations are small enough the equations may be linearized and we
get the following set (it is understood that quantities without indices are
first order perturbations). Without loss of generality it is assumed that

there is no y dependency.

ou . 9p _
Pt " ax - 00 (4. 1)
2w 3p _
po at + pg + az 0’ (4-5)
ap . % 3u . Aw
3t * Gz TP Gx T3z T O (4.6)
dp dp
op o} ) op . o
P = e w_')o ()"-7)
TR T T
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Assume a perfect gas, then the velocity of sound c equals v 151,

where Y denotes the ratio of the specific heats Y = cp/cv, R is the gas
constant and m the molecular weight.

With the help of (4.3) and (4.6) the equation (4.7) can be written as

9p _ 2 (QU , OW, _
ot P 8 ¥ * Po © (ax ¥ Bz) 0 (4.8)

The density perturbation p can be eliminated from this set of equations by

using (4.5) resulting in:

du . 9p _
°o 3t * 3x 0, (4.9)
%}E'Pogw+pocz%+pocz%’=o, (4.10)
P 2 2
o 3w  123%p Wo_ o 8u_ 3w _
g o9t? " gozot " PoH Podx Podz -0 (4.11)

cop 2 2 82
0 9°w _ c® 8%p 9p _
g otz " Po (TN BW T oT ot tae O (4.12)
o _ 2 22 - W _ 2 %Wy _
(atz c axz) p po (g ot c 3zat) =0 ’ (’4.13)

2
using that in a perfect gas H = %E.
Eliminating the pressure perturbation p from the equations (4.12) and (4.13) a

partial differential equation is obtained for the vertical velocity w

where the Brunt-Vdisdli frequency wg is defined as wy = " il:%%.&i.

Define ; by w(x,z,t) = eZ/2H ;(x,z,t) then the equation for ; reads
SRR - B TpE - R
where , 2 = ¥'g’




The coefficients in equation (4.15) are constants hence solutions can be
constructed with a normal mode analysis, i.e. suppose the form ei(mt-kx—lz)’
where w is the frequency and k and 1 are the horizontal and vertical wave
numbers respectively. From (4.15) the following dispersion relation is
obtained

LW - w?) Wt (wg? - w?) K- w? 17 = 0, (4.16)

A dispersion diagram is drawn in figure U4.1. An acoustic and gravity branch
can be distinguished.

.‘/

|2>0 . 7M=ck
RV

Figure 4.1 Dispersion diagram for constant vertical wavenumber 1.

Assume now that the hydrostatic approximation is valid: i.e. the term Py %% in
the vertical momentum equation (4.5) is ignored with respect to the two other

terms. Retracing the derivation of (4.,14) with this in mind one ends up with

R CEN C I LU
2 ( azz) Wo- g 5x2 + H 325t% = 0. (4.17)




Again the exponential growth of the amplitude can be split off i.e.

W(X,Z,t) = GZ/2H W(Xyz!t)-

A

The equation for w reads
1 5 3%w _ 2 93w _ 3w
7 W." 3%z T YR 3% T Be7azz C O (4.18)

(@]

The hydrostatic wave equation (4.18) in comparison with wave equation (4.15)

. . . d'w “w . co
is lacking two terms i.e. o7 3" and YEETTR Comparing (4.18) and (4.15) it is

clear that the hydrostatic approximation is valid if

2
th << waz’
and (4.19)
2
2
302 <L wp e

Hence within the hydrostatic approximation only phenomena with time scales
which are large with respect to 2w/ma and 2w/mB can be described. The
hydrostatic approximation is essentially a low-frequency approximation.

In order to gain some insight into the values of w_ and wp the dependency of
these frequencies with height is drawn in figure 4.2.

200 400 600 800 (m/s)

g

Height (km)
g

-

) 1 1 fodand —>
0.5x102 1x10™215x10 2 2x10~2 (rad/s)
10.47 524 P (min)

Figure 4.2 Height profiles of the velocity of sound ¢, the Brunt-Vdisili
frequency wp and the acoustic cut-off frequency w in a realistic
atmosphere (after Tolstoy and Pan, 1970).
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Remark that in the derivation of the equations wa and wg are assumed to be
constant. For the lower atmosphere values of %1 ~ 270 sec and %1 ~ 300 sec are

a B
reasonable.

The hydrostatic dispersion relation is obtained by assuming in equation (4.18)

a normal mode solution i.e. W(x,z,t) = el(mt-kx_IZ):
wa2
w? 57 + @2 1% - mBz k? = 0. (4.20)

Figure 4.3 gives the dispersion diagram corresponding to (4.20). Notice that

the acoustic branch is suppressed and that evanescent waves can be described

sz mz
within the hydrostatic approximation if 2 k2 < ci .

Figure 4.3 Dispersion diagram for constant 1. Hydrostatic approximation
applied.

In the Oberbeck-Boussinesq approximation (Oberbeck, 1879; Boussinesq, 1903)
the fluid motion is assumed to be incompressible and the background density is

treated as constant except where it is coupled to gravity in the buoyancy term
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of the vertical momentum equation. Retracing the derivation of the wave

equation (4.15) with this in mind we end up with

32
at?

S, 2 ooz W
( (axz + azz)) W wB' axz = 0’ ()4.21)

2
2 _ Y8BT
where wg o2

4 "
In comparison with wave equation (4.15) the terms %3 %E¥ and 5%7%;5 are
lacking and moreover no exponential growth has appeared.

The Oberbeck~Boussinesq approximation is valid if:

1 32 52 32
o 3tz e t 3z
and (4,22)
2
w
a 92 2 92
o7 ez Cwg't e

From (4.22) it is clear that the Oberbeck-Boussinesq approximation is valid if

the phase velocity is much smaller than the velocity of sound i.e.

2
% << CZ’ (M.ZB)

W 2

using that —2— = % ~ 0(1).

!

Hence the Oberbeck-Boussinesq approximation is essentially a low phase
velocity approximation.
i(wt-kx-1z)

Substituting a normal mode solution i.e. e in (4.21) the resulting

dispersion solution reads
(wg,* = w?) k* - w? 1% = 0. (4.24)

From (4.16) it is clear that this Oberbeck-Boussinesq dispersion relation can
also be obtained by taking the limit of the velocity of sound ¢ tends to
infinity. Note that in the Oberbeck-Boussinesq approximation evanescent waves
can be described if w > wé . Figure 4.4 gives the dispersion diagram
corresponding to (4.24). The Oberbeck-Boussinesq approximation suppresses the

acoustic branch, changes considerably the value of Brunt-Viisila frequency,
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and finally neglects completely the exponential growth of the waves with
height.

1

o
wTB

—

k__,
kO

Figure 4.4 Dispersion diagram for the Boussinesq approximation.

4.3. On log-pressure coordinates

Pressure and log-pressure coordinates are treated in different textbooks see
e.g. Holton, 1972 and Gill, 1982. For reasons of self-consistency we have

gathered here some elementary concepts.

In the hydrostatic approximation it is sometimes advantageous to replace the z
coordinate with another variable. In meteorology, pressure p is most commonly
used and the variables are then known as isobaric coordinates. The advantage

is that the density disappears from the equations. In log isobaric coordinates

the logarithm of the pressure is used and the new vertical coordinate is then
defined as

z : =-Hl1ln P , (4.25)



where D is a standard reference pressure (usually taken to be 100 kPa),
H: = ng is a constant scale height and R is the gas constant for dry air.
In log isobaric coordinates, at variance with isobaric coordinates, the static

stability parameter is almost constant with height.

4.3.1. The momentum equation

In the hydrostatic approximation only the horizontal momentum equation

contains direct information on the velocity. That is

p%‘—é+%§=o. (4.26)

In order to rewrite this equation it is useful to refer to figure 4.5 to
elucidate the derivation

Figure 4.5 The relation between horizontal variations of pressure at a fixed
level z and horizontal variations of level (or geopotential ¢ = gz ) at a
fixed pressure. Two neighbouring pressure surfaces in the x,z plane such that
the change in pressure in a horizontal distance Ax is Ap .



[%%) = - %2 (%%] = < hydrostatic approximation > = pg (==)

Z p P

The geopotential & 1is defined as the work required to raise unit mass from

the surface of the earth to height z:

YA
0:= [ godz' . (4.27)
(o]

The relation between variations in the pressure and the geopotential is

illustrated in figure 4.6.

/’,r*"]qi;:_‘=‘-::(D“FAKD

7/—\~<(D
(i)

p
p+Ap

O+AD
.:;_,==:::::::==,_-=:__
® P

\>‘<;~EEE,/"' p+Ap

(i)

Figure 4.6 The relation between horizontal variations of pressure at a fixed
level z and horizontal variations of level (or geopotential ¢ = gz ) at a
fixed pressure. Representation of a high-pressure region in the x,z or

X,¢ plane (i). :

In (ii) the same situation is redrawn in the x,p plane and the feature appears
as a high in geopotential on an isobaric surface.

The horizontal pressure variation can be rewritten as

By L g7y L 20 | e
(ax)z ps(ax)p p(53) o(ax]z* .
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The horizontal momentum equation can now be written as
=0 . (4.28)

Suppose a horizontal background flow u in the x direction and a vertical

* * *
velocity w defined by w : = dz

dt
The operator %E now has the following form
d _3 , 8,
at ~ ot Yax T Y Bzx - (4.29)

The horizontal momentum equation can then be expressed as:

ou du ¥ 3u 3% _
30T Uax T Y 9z Tax T O (.30

4,3.2. The continuity equation

Consider a fluid element of mass AM and cross-section area Ax Ay, which is

confined between pressure surfaces p and p-Ap as shown in fig. 4.7.

p-Ap
Ax . Ay ,/”///’
-
AM

//////’p

Figure 4.7 An air column of fixed mass AM confined between two isobaric
sur faces.
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As the problem is basically two-dimensional we remove Ay from the expression
thus making AM a mass per unit length.

Applying the hydrostatic approximation we may write

AM = pAzAX = AEAB .

Since the mass of the fluid element is conserved following motion, we obtain

1 d svy-_8 4 AxApy _
M dt AM AXAD dt( g ) =0,

>

or

A dxy A_(gg) -0

—(==

Ax'dt’ = Ap dt

c i -z /H P *
From definition (4.3) we have p = pee hence Ap = - H Az and
. *
dp_ _pdz _ _*p
dt H dt H

This means that

A dpy _ A _ ¥
aplae) = aptv

Tio

= W _PAaw _
) = H

The continuity equation in the log pressure coordinates finally becomes

u,dw _ W o

3x  9z¥ H . (4.31)

4.3.3. The thermodynamic energy equation

Under the assumption that the motions are adiabatic, the first law of

thermodynamics can also be written as

pc ar _dp 0

pat at - 9 - (4.32)

Remark that in order to verify this assumption the time scale of the motion
has to be compared with the time scale referring to thermal conduction. As the

thermal conduction varies considerably with height some doubt is justified
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about the validity of the assumption of adiabatic motion in certain regions of

the atmosphere.

The last term in equation (4.32) may be written as

*

dp _-pdz _ -p *

dt H dt H *
The time derivative g? reads

d 3 ) ¥ 3

T Tartusstw o —,

dt ot ox 3z
hence

8T, 3T, ¥T . p . _

ot~ Yax T W et pHcp) =0 (4.33)
Define the static stability T by I : = 21 + ;ﬁc— .

3z p

With this definition equation (4.33) becomes

dT AT *
3’6+u3x+rw—o. ()4-31‘)

The temperature T can be expressed in the geopotential as follows

%¢ _ _ 3¢ _ _p3® _p _RT

z* H31lnp H3p pH H 7 (4.35)
or )

- Hoe

T=Raz*

If we furthermore define the hydrostatic Brunt-Viis#li frequency N by
2 RT

N := Fal the thermodynamic equation reads
9 ad 3 od 2 %
—a—t(ﬁ)+u§§-§+(l‘lw]=0. (4.36)
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The following set of equations describes, within the hydrostatic

approximation, the adiabatic variations of the fluid:

u * 3u 9% _

ECA TR T I T (431
* *

3 09 9 a9 2 %

5t (gg) *ugg (G + MW =0 (§.39)

* 1

e % C
]
o
+
%

]
©
)
+
<

where
u' << U and ¥ << ¢o.

Taking into account first order perturbations only and omitting the prime and
the asterisk

du . - du . 3¥ . dU

at*‘Uﬁ*"a—X*Ew—O, (4.40)
U | OW _ W _

ez H-O (.141)
3 (3¥y ., = 9 (o¥ 2 ’

3t ('B—Z) + U EY (-a—z)"' Nw=20. (4.42)

From the last equation

3 -3 Y dU 1 .9 -3 _ 3y

- Y - ’ (4.43)
ot X 9x dz N2 (at vy Bx) 9z 0
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i G B S (4.44)

9
t X
The Brunt-V4dis#dla frequency N is assumed to be constant, which implies that

the temperature is constant.
Multiplying equation (4.43) by %;, (4.44) by (%f +U %;) and subtracting, u is

eliminated from these two equations and we end up with

Nt

N
~
e
N~
N €

19¥y _ y20%¥ _
a az) Nsz = 0 . (4.45)

a -
(3{ + U

o)|o)
>

This is the partial differential equation for the perturbation of the
geopotential. Note that the derivatives of U have disappeared. This explains
the simple structure of equation (4.45). We look for normal mode solutions:

¥(x,z,t) = ¢(2) ei(mt-kX) .

Then the function ¢(2z) has to satisfy the linear second order ordinary

differential equation

¢ _ 1 de, NWE
dz? "Wz ot ¢ 0. (4.46)
4

With ¢(2) := A(z)e2H , which means an exponential growth with height,
equation (4.46) becomes

2 2 2

L R PR , (a.47)
dz Q 4H
with the Doppler-shifted frequency Q defined as Q : = @ - KU .

Equation (4.47) has also been derived by Holton (1972), but he assumed a
horizontal flow U independent of height, which - as is shown above - is not
necessary. Equation (4.47) for A contains no derivatives of the background
flow. Hence, applying the hydrostatic approximation and using log pressure as
the vertical coordinate a relatively simple equation for the geopotential

perturbation ¢ 1is obtained.
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Notice that for a hyperbolic tangent wind profile, treated analytically by Van
Duin & Kelder (1982), equation (4.47) can be transformed into the
hypergeometric differential equation irrespective of the place of the critical

level and the value of the Richardson number.

4.4, Critical levels in a jet-type flow

The background flow U(z) is taken to be

Uo

U(z) = (4.48)

()

This profile represents a symmetric jet-type flow. This type of flow occurs
frequently in the atmosphere. For example in figure 4.8 the zonal wind

structure is given as a function of height and more than one jet can be
identified.

Temperature regions

120 ?

Thermosphere

S ______ — Minimum

13 A oeE Mesosphere
Zeoj822
553
£ 4o ) — Maximum
s 05T
404 9 - =
T 20,3
* Stratosphere
20..
— Minimum
Troposphere

0O 20 40 60 80
Zonal wind, W=¥PE (m/s)

Figure 4.8 Magnitude of zonal winds in the upper atmosphere by the height

profile for 45° N latitude in January (from COSPAR International Reference
Atmosphere, 1972).
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Substituting expression (4.48) in equation (4.47) yields

2 2 2 ( Zz)z
1 + =%
A k N D 1
d 7 * [ Z 72 Uo . THZ JA=0, (4.49)
dz w (F-(c__”)
where ¢ : = % is the horizontal phase velocity.

Three cases can be distinguished, namely:
U, < ¢ no critical layer,

Uo'> c two critical layers,

[
]

¢ one critical layer.

Below we consider the last two cases.

4.,5. Two critical levels

As discussed above, if the horizontal phase velocity of the wave is smaller

than Uo’ the wave encounters two critical levels in the flow. This case will

now be examined.

After introducing the independent variable r defined by tz: = %5’ where

1)
d = (59 - 1)Z , equation (4.49) becomes:

2 2 2 2 2 2 B
dA, (ND (xdg) Ddy,.o, (4.50)
dg cd (g -1) 4H

2 -
Furthermore, if we define the function B(g) (z -1) % A(z) , the equation

for B reads:

2 2
2 dB B 2 2
(1-¢ ) 9—7 -2 %_ +(x+yY (-z) - —E—T) B=20, (4.51)
dg . 1-t
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where

2 2 2 N 1
vi-2 2N 0y opa (-1,
c c 4H
and
2 2 z
U
2
Woi= 1 - URL with Ri_: = DN o,
be d
2 dﬁ 2
The Richardson number Ri is defined as Ri := N /(EE) . It is easy to verify

that Ri, is the Richardson number at the critical level.

Equation (Y4.51) is known as the differential equation of spheroidal wave
functions. The properties of its solutions are discussed in Meixner & Schifke
(1954) (hereinafter referred to as MS) and Erdelyi et al. (1953).

The equation has three singular points at y = +1 and «. The points 1 are
regular singularities, whereas the one at = 1is an irregular one. The
parametér U is called the order of the wave function.

We need solutions which asymptotically become plane waves, the circuit
relations between solutions of that form then give the reflection and

transmission coefficients.

3 4
Solutions with these properties are SS( ") (z;Y). . For Igl > 1 they can

be represented by convergent series of the following form

2 -u/2 u ®
w®,*) oy _ (g -1) 4 U S G
Sy (g;7) = R PZ_Q ay o (YD ¥ 20 @), (4.52)
\Y
where Au(Yz) = E -n° a* (YZ) 'and W(j) are the spherical
v g v,2r v+2r P
Hankel functions, that is
3 1
vg (0 = GRS @ ana vl @) - @B @),

u

The coefficients av op have to satisfy the following three term recurrency
’

relat ion
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2 (vtp+t2r+2)(v+u+t2r+1) u 2
Y (2v+4r+3)(2v+lir+5) a\),21"+2(Y )+
[A - (ve2r)(ve2r+) + 2y Lyr2o)lvrartl) + -1 1a* o) (4.53)
vrerjivrer (2v+lr-1) (2v+ir+3) ay,2r .
+ Yz (V+2r_U)(V+2p_u—1) H (Yz) =0

(2v+ir-3) (2v+ir-1) 2y,2r-2

The parameter v 1is called the characteristic exponent of the spheroidal
differential equation, and is a function of A, u and Yz.

It is possible to expand A 1in a power serie in Yz, with coefficients
depending on u and v(see MS) as

TV _ (2u-1) (2u+1)q .2
A, (V) = vlvet) - [1 + Gooi) (2v+3)] Y o+ ... (4.53a)

It is obvious that:

W) = v (v+).
\V]

2 2
Other solutions we need are PSS (z;Y ) and Qst (z;Y ). They may be

represented in the following form

WAy Ly URS JT 2 u
Ps, (g3Y ) = ré_m (=17 ay 5. (v ) PO, (),
and
u z v rou z u
es, (Y ) = 1 (-1 a o (Y) Q. (0, (4.54)
p=-o ’ P

where PS and QS are the Legendre functions of the first and second kind
respectively. The series in (4.54) converge absolutely and uniformly in every

compact domain with the exceptions of #1 and «

3
The asymptotic behaviour of Ss( )(C;Y) as g+« |is

. 1 i
s PR exp [1(vg -~ m] . A ;
P gim T TR T 33y —22— oY} L (uss)
. [-2ivg]

for -m+ ¢ sarg (Yg) s2n-¢ , € > 0.
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[
For SS( )(c;Y) the asymptotic form is:

X vti u
exp [-i(Yg - = w)] A
w(™) oy T oy u/2 2 q:1 v,8 -q
s @) < e -V g Te (3L, T o )}, (4.56)
for -2 + ¢ S arg (Yg) £ 7 - ¢ , e > 0.

Here
4+
LU 1 5 F(v+2r+s+1) (_1)rau
v ov,s st 7 T(vt2r-s+l) v,2r’
H =
Av'o 1

The AS s have to satisfy a four terms recurrency relation which can be found
’
in MS.

From (4.55) and (4.56), it follows that:

for z » »
_exp [+i(%z - X%l )]
A(z) - 7 |arg (22)] <=, (4.56)
2 %
where & = [Hy - 2] is the vertical wave number without mean flow.

The relationship between A and ¢ means that ¢ tends exponentially to
infinity as 2z » ». This is a consequence of the density stratification.
However, it must be taken into account that the wavelike form (4.56) is
already a good approximation to the solution if the mean flow velocity becomes

negligible with respect to the horizontal phase velocity of the wave.

3
The plus or minus signs in (4.56) correspond to the solutions St( ) and
4
Ss( ) respectively.
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The vertical wave energy flux, at least when the mean background flow is
negligible, may be written as

1 *
F = Py <o W = 5P Re [¢ W ],

w (o)

where the brackets < > refer to the average over one cycle of the wave and po

is the average state density. The asterisk means the complex conjugate.
Equation (4.39) with the temporal and horizontal dependence used here gives:
w=-1 27 ) - (4.57)
With (4.57) the vertical wave energy flux becomes:

Re [52 ¢ ¢,*],

Fw St P 2 (4.58)

where the plus or minus signs correspond to the plus or minus signs in
(4.56). p__ is defined by p_ =p e 2/
00 o] ?g)
Su
v

Thus in the upper half space,

tends asymptotically to an upward-, and
u(*)
S
\Y

to a downward-propagating wave.

4.6. The reflection and transmission coefficients

Suppose there is a source emitting waves at -w, For z » +» , we must only
have an upward-propagating wave. This boundary condition may be satisfied as
seen at the end of the previous section by St(s)(;;Y) . It is then necessary
to find the analytical continuation for values of 2z » -», The physically
meaningful path of analytical continuation is discussed in Booker & Bretherton

(1967), Baldwin & Roberts (1970), and Teitelbaum & Kelder (1985).
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The connection path can be one of the equivalent paths shown in fig. 4.9. We

followed the path indicated by a solid line, allowing us to use properties of
the solutions, as we shall see later.

Im(y)

Figure 4.9 Complex y-plane showing the two equivalent paths for analytical
continuation of the spheroidal wave functions: ---, direct path; , indirect

path used in our calculation; ¥, singularities shifted as a consequence of the
addition of a small dissipation.

3 &
The Ss( ") are only defined for |g| > 1 . First we have to extend the

functions into the unit circle. This may be done with the following relations
(see MS):

TIGD U I IR TR O TIVT gH gt Y

OV im = Lo [ v @) v e veest (v )], (4.59)
sPC) (i) = L [T R @t (o) ¢ 1 WL ast(iv®)] (4.60)
v ’ cosvm v o1 AL ’ .

3t ¢ 2 o lum 2
where s s Y = —_ .
Q y (&3 ) Ty O, (g;Y )
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2
and Vt is a constant, which for small values of Y can be approximated by

1
v I (-vt )
W=y () —= G -0y .
v r (v + )

The connection path can be split into two parts.

First we turn around ¢ = 1 through -2mn. In MS it is proved that:

ps* [1 + (z-1) e-Ziﬂ] = "t psH () ;
v v
accordingly
GsH [1+(;—1)e_2“i] - elvﬂ cosum 6Su(c) i sin(v-p)w T(u-v) ast (2)
v cosvT cosvm T (vtu+t) -v-1 :
Next we turn around ¢ = 0 through +w, which gives
~ i - + 1 i ~
Bs* (g el™ = WL Egk (o,
v v
Inserting (4.63) into (4.64) yields
asH(-g) = - cosum asu(g) ; sinCv=p)n T(u-v) _ivw s ()
v cosvT cosvtm T(v+pt+l) -v-1 :
In the same way an expression for ( r) may be derived.

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

3 u
With the help of (4.59) and (4. 60), we can go back to Su( ) and the result

is the following circuit relation:

3 3 4
ss( Y(-237) = a st( Yz3v) + 8 Sﬁ( Yeiv)

with
. - + =ivw S
o = 2cosum sinvr + i [V e VT -y elvﬂl
= 2 y
2 icos wm
and -1 + -2ivm _ - 2ivm
A ie V" [2cosvm - V' e VT -y S1VT)

2 1icos wvr

(4.66)

(4.67)

(4.68)
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where

I (utvt1) VM (V)
Vv

V' = sin (v+tu)n , (4.69)
I (u-v) VH\)_1 (v)
and
_ r (u-v) V¥ 1M
V = sin (v-u)w A4 . (4.70)

T (u+v+1) v‘\‘) (v)

If we let g » = eqdation (4.66), with the asymptotic forms (4.55) and (4.56),

represents a relation between plane waves.

[
If we take into account that for negative g, St( ) represents the incident

3
wave and SS( ) the reflected one, the coefficients of reflection R and

transmission T become

R = ——0 , (4.71)
1w
eV g
and
T = -i‘ , (4.72)
e AV 8

with a and B defined above.

The parameters are u, Y and A\, but the number may be reduced using the fact
that the horizontal phase velocity of the wave ¢ is much smaller than the
velocity of sound. A good approximation for the velocity of sound in the

2 2

atmosphere is Vs =4 N H, and with this approximation it is possible to

write:
-2 2 2 -
V=5 W s -, ana v = 2058) (4.73)
S S (1-8) S
where
2 2
N D
J : = = and S : = %—.
U (¢}
o)
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Note that this approximation, which can be interpreted as the incompressible
fluid approximation (H » =), has not been used elsewhere in this study. It

is only adopted to simplify the presentation and interpretation.

Thus, essentially, only two parameters are involved: J and the ratio S between

the phase velocity and the maximum velocity of the background flow.

Another useful parameter is the minimum Richardson number of the flow Rim,

3
which corresponds to S = 0.75 and is equal to (%) J.

In figures 4.10 and 4.11 the variations of |R| and |T| are indicated as a
function of S for some values of Rim. Note that the values of S for which the

maximum of |R| and |T| are reached are greater than 0.75, i.e. Rig > Ri.

IR|
1.5¢ d
1.0
0.5}
0 i L i |
0.25 0.50 0.75 1.00
S=c/U0

Figure 4.10 Variation of the reflection coefficient |R| as a function of

S = ¢/Uy, for three different values of the minimum Richardson number of the
mean flow: —, Ri = 0.143; ---, 0.1; ..., 0.07.
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1.0

0.5t

Figure 4.11  Variation of the transmission coefficient |T| as a function of
S = c/Uo, for three different values of the minimum Richardson number of the
mean flow: ——, Ri = 0.143; ---, 0.1; ..., 0.07.

Overreflection starts with Rim = 0.143, while at the critical level

Ri, = 0.169. Lower values are found for one critical level. Jones (1968)
calculated Ri, = 0.113; Eltayeb & McKenzie (1975) obtained 0.115 and Van Duin
& Kelder (1982) 0.132. The background mean flow considered by Jones and
Eltayeb & McKenzie was formed by matching constant shear layers, which implies
that the Richardson number is constant in each layer. The value given by Van
Duin & Kelder for the hyperbolic tangent profile corresponds to Ric = Rip. The
higher value found with two critical levels can be explained by the fact that,

as we shall show, the upper critical level acts as a source of wave energy.
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In regions where U=+0 , (4.58) does not represent the total vertical energy
flux. Another term which represents the advection by the wave field of the
kinetic energy of the mean flow is needed (Hines & Reddy, 1967; Lindzen, 1973)
and this leads to:

Fp = Py W *+ o Uuw . (4.74)

In fact, what we need is a quantity whose flux is conserved across the jet
except at critical levels. We could as well use other quantities such as
horizontal wave momentum (Eliassen and Palm, 1962) or wave action (Bretherton,
1969; Andrews & Mthtyre, 1978; Grimshaw, 1984). In the present case the flux
of these quantities agrees with the flux of total energy as defined above up
to a multiplicative constant.

The horizontal perturbation velocity (4.43) reads:

Z

=

which allows us to write the vertical energy flux as follows

o

Fg = % yz Real [iwo ¢Z*] . (4.75)

Near the upper critical level where g-1 > 0 and Ri, > ¥, ¢(z) can be written
as

1+ip 1-ip
¢ = exp [2%%] [P(z-1) 2 . Q(g-1) 2 1,

where P and Q are complex constants.

This last expression used in (4.75) gives

+ Q1 2 2
FE = Poo ﬂﬁ% NZ [Pl = fal 1,

+
where FE is the vertical energy flux above the critical layer.
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The analytical continuation of ¢ for g-1 < 0 through -w is

T+ip 1-ip
o=[-iPe" (1-0) 2 - iqQe ™ (1-) 2 ] exp [D—gﬁ] ,
which gives
- poonu 1 2 -2um 2 +2um
Fg = gap we L 10l e LA T

where FE is the vertical energy flux evaluated below the critical level.
With the condition of only an upward propagating wave above the upper critical
level, FE has to be positive and this implies F. negative: the upper

E
critical level acts as a source of energy.

For Ric < ¥% it is not possible to prove the same statement, but numerical

calculation shows that FE always remains smaller than Fg (Teitelbaum &

Kelder, 1985). Hence there is again a netto positive flux of vertical energy
at the upper critical level.

The propagation of an internal gravity wave through a jet type flow
encountering two critical levels has also been solved numerically (Teitelbaum
& Kelder, 1985). The results are in case of overlap consistent with those
obtained analytically. We quote here some interesting results from these
numerical calculations. If the profile which gives |R| =1 (Ric = 0.169;

Ri, = 0.143) is modified in its upper part by taking a constant mean flow
above its maximum, the upper critical level is suppressed. In that case, the
reflection coefficient becomes |R| = 0.91.

The transmission coefficient depends on Ri, and on the profile of the flow. If
the mean shear of the flow below the critical levels is not very strong, the
absolute value of the transmission coefficient |T| can be closely
approximated by |T| = exp [—21r(Ric - Z)%] . This is consistent with Booker &
Bretherton's results in the sense that the two critical levels are apparently
acting independently and each critical level is transmitting the wave with the
Booker & Bretherton transmission factor exp [-w (Ric-x)g]. If the shear is
strong (low value of Rim), then even for large values of Ric, ]TI becomes
lower than the product of the transmission coefficients because the wave is

partially reflected below the critical level. As an example, the case
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Riy = Rig, = 5 gives |R| = 2.9 x 107, [T] = 1.29 x 107", Note that this
value of |T| corresponds to the product of two separated critical levels.
With the same Ri, = 5, but Riy = 0.12, the results are |R| = 0.86 and

IT| = 3 x 107,

Comparison of our reflection coefficients with those found by Drazin et al
(1979) for the triangular jet shows that our values are much lower. This can
be explained by the reflection at the knees of their broken-line profile (see
e.g. Jones, 1968; Eltayeb & McKenzie, 1975).

4,7. One critical level

When the horizontal phase velocity of the wave equals the maximum of the mean-
flow velocity there is only one critical level. Mathematically, the two
regular singularities of (4.51) are merging in one irregular singularity.
However, when a small dissipation term is added the irregular singularity
splits into two regular ones. Thus the case of one critical level has been
reduced to the case of two merging critical levels.
Let us start with two critical levels and let ¢ ~» Uo' i.e. S+ 1., From
(4.73) it is clear that Y2 » 0, p » i® and A » -2J. We calculated the values
of Rand T in this limit.

From Stirling's formula for gamma functions it follows that

T(p+v+l) = e_uuuW%(Zw)2 (4.76)
and
Flu-v) = e M* YV %(2n)2 (4.77)

for u » ieo, From (4.61) it may be inferred that for Y » 0

vH 2v+1 _
v . (%) ( r( v+g))2. (4.78)

vH-y-1 F(v+%)



Moreover, if we put u = iM then

yie(M-iv)n

sin(v+tp)r = % , (4.79)
sin(v-p)m = -Zie(M+iv)" , (4.80)
cos um = %', (4.81)

From (4.76) - (4.81) it can be derived that

. . 2v+] 2
v~ %ie(M—lv)ﬂ (%E) [F(-v+§)) .
F(v+§)

Taking into account that p =i ND/UOd and Y + Dl1d, we can write

V+ - -y eMTrF , (4.83)
_ 'eMn
v ~ - 5F (4.84)
where
2, 2vtl _ 2
Pe (R (k) (4.85)
o F(v+§)

Introducing (4.83) and (4.84) in (4.67) and (4.68) to calculate o and B8 , and
using these results in (4.71) and (4.72), we obtain for the reflection and

transmission coefficients

R - 8in vm + ¥i [F-1el\)Tr - F e_lvnl

= = - — (4.86)
i[1 + Z(F 1e21vn +Fe 21vw)]
-Mw 2
T-= e-1 giszs = -2ivm, ° (4.87)
1 + %(F ‘e + Fe )
In the limit S » 1, that is Y + 0, we can deduce from (4.53a) that
A A
v R RO+ U2 = =Y -k - 8J)72, (4.88)

which shows that v takes on a finite value in this limit.
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From (4.87) it is clear that as S » 1, the transmission coefficient T » 0.
The wave is not transmitted. This result is consistent with Booker &

Bretherton's result, as, for S » 1, Ric + o,

Numerical calculation with (4.86) shows that |R|* s 1.

Hence a wave propagating through a jet with two merging critical levels will
not be overreflected, but only partially reflected and not transmitted.

Figure 4.12 shows that |R| decreases with increasing values of Rim.

IR|
1.0

05r

Figure 4.12 Variation of the absolute value of the reflection coefficient as
a function of the minimum Richardson number of the mean flow in the case of
two merging critical levels.
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4,8. Conclusion

This work was motivated by the frequent observations of jet-type background
winds in the atmosphere and the fact that planetary waves are seen as

stationary jets by short-period gravity waves.

In such a background flow a gravity wave can have two critical levels or only
one with specific characteristics. In this study we have shown that the two
critical levels do not act independently to determine the behaviour of the
travelling wave. In fact, some of the energy transmitted through the lower
critical level can be reflected at the upper one, which acts as a source of
wave energy. Then the downward energy flux is added to the energy already
reflected at the lower critical level and can produce overreflection, with Ric
higher than in the case of only one critical level. We found overreflection
with Ri, = 0.169, the critical levelt located at S = 0.86. On the other hand,
even for values of RiC as low as 0.1, and with RiC = Ri_ (S = 0.75), neither

m
overreflection nor overtransmission occurs.

The transmission coefficient is different from the product of the transmission
coefficients of the two critical levels when 0.25 £ Rim < 1 because the wave

is partially reflected below the critical levels by the strong shear.

The results found for asymmetric jets show that the upper critical level can

affect the reflection of the wave.

The case of a wave having only one critical level at the maximum of the
background flow has been solved as the limit of two merging critical levels.

In this case the transmission becomes zero and no overreflection can occur.
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CHAPTER 5

PROPAGATION OF INTERNAL GRAVITY WAVES IN A ROTATING FLUID WITH SHEAR FLOW

5.1. Introduction

Over the past few decades many authors have studied the phenomenon of
overreflection in a stratified fluid in shear motion. Overreflection is
defined as an absolute value of the reflection coefficient larger than one.
This phenomenon in relation to internal gravity waves in a non-rotating

fluid was first treated by Jones (1968). He found that overreflection does
not occur for values of the Richardson number at the critical level Ric larger
than 0.115 at least when the transmitted wave is a propagating one. Eltayeb &
McKenzie (1975), in an analytical study, obtained results for a broken-line
wind profile, consisting of a constant shear layer imbedded in two layers of
constant wind. Van Duin & Kelder (1982) later made an analytical study of a
hyperbolic tangent or Epstein type wind profile, a model without the
disadvantages of discontinuities in the derivatives of the wind field. They
found that overreflection does not occur for values of Ri, above 0.132.
Acheson (1976) has given a review of the phenomenon of overreflection.
Teitelbaum & Kelder (1985) have studied a jet-type wind profile in which the
wave encounters more than one critical level. Their results show that in that
case no overreflection occurs for values of the minimum Richardson number of
the flow above 0.143 while Ri, = 0.169. Instability as a consequence of
multiple overreflection was investigated in a series of papers (Rosenthal &
Lindzen part I, part II, 1983; Lindzen & Rosenthal part III, 1983 and Lindzen
& Barker, 1985).

In a rotating fluid there appear to be three critical levels. These levels are
encountered by the wave at the heights where the background wind is such that
the Doppler-shifted frequency is equal to zero or to plus or minus the
rotation frequency. Hence rotation causes a splitting up of critical levels
analogous to the Zeeman splitting of spectral lines by a magnetic field. This

case was also first studied by Jones (1967). He found that the vertical flux
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of angular momentum is constant everywhere in the fluid except at the critical
levels. By ignoring rotation the resulting solutions appear to be in error
only at levels where the Doppler-shifted and Coriolis frequencies are
comparable. He considered numerically only the case that the Richardson number
is equal to 1.

Yamanaka & Tanaka (1984) made an analytical study of these so-called internal
inertio-gravity waves (waves with frequencies near the rotation frequency) in
an incompressible rotating flow with a constant shear layer. Tai (1983) has
investigated the relation between overreflection and instability in a rotating
fluid. In all the studies cited above the Boussinesq approximation was used.
Our objective was to calculate overreflection and overtransmission in a
rotating fluid and to analyse the sensitivity of the results for certain

approximations.

A large part of this chapter has been published previously (Teitelbaum, Kelder
& Van Duin, 1986).

5.2. The wave equations in the Boussinesq and hydrostatic approximations

5.2.1. The Boussinesq approximation

We shall adopt a model which was used by Jones (1967). The model is a planar
one. Viscosity is ignored and the adiabatic equation of state is used. The
fluid is supposed to be rotating around the vertical axis (the z-axis) with
angular velocity f/2 where f is the so-called Coriolis parameter.

A geostrophically balanced mean flow Uo(z) is directed along the x-axis and
varies with z only

a—y-— = -fUO Py- (5.1)
This is valid only if UO/R < f where R is the radius of the earth.
The background pressure po is assumed to be in hydrostatic balance

Bpo
EE— = - 8 po. (5.2)



The vertical structure of the background density s is given by

BlnpO
az - = - B‘ (5.3)

From (5.1), (5.2) and (5.3) it follows that

a&np du

0 f 0
37 " % (dz B Uo). (5.4)
Assuming that there are perturbations superimposed on the background state so
small that the equations may be linearized, applying the Boussinesq
approximation and looking for solutions of the form

A(X;yrz,t) = K (z) ei((ﬁt - kx - ly)’

Jones (1967) derived for the vertical velocity w the following ordinary
differential equation:

202k ) Wy aw
Q

42 .
[0z - r2] S5 + [2if1 - = o

dz

. du_ 2
{[N* - 2] (k2 + 12) + Zi%&i (52 +
a?u,
[ak + if1] o } w=o. (5.5)

Here k and 1 are horizontal wave numbers, w is the wave frequency and Q is the
Doppler-shifted frequency defined by Q: = w - k Uo'
N2 is the square of the Brunt-Vdisila frequency, in the Boussinesq

approximation equal to gB.

In deriving equation (5.5) Jones apparently assumed that 8 is independent of y
on the basis of the Boussinesq approximation. However, we shall show that this

is a separate assumption based on an approximation which is independent of the
Boussinesq one.
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Differentiating equations (5.3) and (5.4) with respect to y and z respectively
two expressions are obtained which must be equal i.e.

d?u du

o -g =2
(dzz U, ~ B 52 ). (5.6)

- 38
oy

oy
|l
N |

A Taylor expansion of B(z,y) around y=0 yields

B(z,y) = B(z,0) + 2_5(2’0) Y+ eee o (5.7)
The y dependency of B(z,y) may be neglected if
3B '
|8(z,0)| > |5§(z,o) y| - (5.8)

An expression for %%(z,o) is obtained from (5.6)

d2u du
- Ba,0) - L2 - B0y o) - 82,0 T (5.9)

Hence the condition (5.8) is satisfied if
£ dzUO 38 dUo
| e (dzz - SE(Z’O) UO(Z) - B(z,0) a;—) y | << |8(z,0)] . (5.10)

At a good approximation it is true that

dzUo dUo

|EE?—| << IS(Z,O) EE”

and (5.11)
du

E)
|_£

az(z,o) Uo(z)] << |B(z,0) 529 .

From (5.10) and (5.11) the condition that the y dependency of B(z,y) may be
neglected reads

f dUo

dUo -4 -1 f dUo
A reasonable value of 5— is 10 ' s ', then IE a;—| is smaller than 107! if y

is smaller than 1000 km.
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In the derivation of Jones it is assumed that the Coriolis frequency is
constant, this is the so-called f-plane approximation. In fact f is a function

of y and this approximation gives another restriction on the range of values

of y.

5.2.2. The hydrostatic approximation

The hydrostatic approximation was discussed in chapter 4. Here we will include
rotation. The derivation of the equations is only slightly different from that
in chapter U4 and therefore the formulas will be given without comments. The

symbols have the same meaning as before (cf. U4,1).

The momentum equations now reads

u,  du, du, ¥du 30 _ .
A A T T (5.13)
z
and
v v v ¥ 3v 99 _
At F UtV 3y + W az* + 5y + fu = 0. (5.14)

The continuity equation becomes

*
ou , 9v . W _ W_ _
3x By L 0. (5.15)

Finally the thermodynamic energy equation reads

* *
Gru vl B B oowed o, (5.16)
9z 9z

where N is the Brunt-Vaisdla frequency.

% *
Suppose a development around a static solution Uo(z ),@O(z ,y) that is

U =U + u!
o
v =0+ v!
*
w =0+ w
= +
[} @o 1]
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The static solution has to satisfy the geostrophic balance
*
—_— = =fU(z), (5.17)
o]
and the hydrostatic condition

-—*-=T . (5.18)

The first order perturbations have to satisfy the following set of equations

(the prime and asterisk are from now on omitted)

%% + Uo %% + W %;9 + %% -fv=20, (5.19)
%+Uo%¥+%+fu=o, (5.20)
%*3—;*%-§=0’ (5.21)
(%+UO%§)%~f—Z—:9v+Nzw=o. (5.22)

The only y-dependent coefficient is the Brunt-V&is&la frequency N, given by

R R dTo KTO
N2 = q (dZ * 4 ) . (5.23)

We will derive a condition under which it is only slightly dependent on y.

From (5.23) it is clear that N? depends on y through a dependency of T0 only.
Combining the equations (5.17) and (5.18) yields

fdu
- o

T H
%;9 R dz ° (5.24)

A Taylor expansion of T (z,y) around y=0 yields

3To
To(z,y) = To(z,o) + 32_(2’0) VAR (5.25)
The y dependency of T0 may be ignored if

oT
0
Iay (z,0) y| « T, (z,0). (5.26)
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oT
Equation (5.24) yields an expression for 5—9(2,0):

BTO H dUo

3y (z,0) = - R f qz (5.27)

The scale height H was defined in chapter 4 and is taken in this case as

R To(z,o)
H=— . This implies that condition (5.26) reads
f dUo
lE = y| << 1. (5.28)

With this condition the y-dependency of the Brunt-Vadisdld frequency may be
ignored.
Notice that the condition (5.28) is exactly the same condition as Jones used

(ef. 5.2.1). Here the f-plane approximation has also been used implicitly.
Hence the remark made after (5.12) is also valid here.

With this approximation solutions can be found of the form

A . _ B Z_
f(x,y,z,t) = f(z) el(wt kx = 1y) + 2H

If this form of solution is inserted into equations (5.19) - (5.22), an

ordinary differential equation for the vertical velocity can be derived.

du
d3w 2f2%k o dw
2 _ 2 : - ——
(Q f ) de + [21fl ) ] dz dz
du du,
2iflk (EETJ dzuo k(Q% + £2) =
2 2 2 _—Ys s
+ [ N2 (k2 + 12) + 5 + (11f + k) o + oo
QZ_fZ
- S b w=o0. (5.29)

The difference between this and the Boussinesq equation (5.5) lies in the term
between the parentheses. In (5.29) the term contains N2 (k? + 12) instead of
(N2 - @2) (k% + 1%) as in the Boussinesq case. As was argued in chapter U the
hydrostatic approximation is in fact a low-frequency approximation that is

2 << N2 and this explains the difference. Furthermore in equation (5.29) two

2 2y dU 2_p2
k (2 + £f2) "o and & f

extra terms appear: Ha iz Iz
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These terms take into account the background variation and are ignored in the

Boussinesq approximation (scale height H tends to infinity).

5.3. The singularities of the equation

For a background wind profile that is a monotonic function of height, Jones's
equation and the hydrostatic equation both have three singularities, one for
zero shifted frequency as in a non-rotating system and the other two where the
‘ Doppler-shifted frequency equals *f. The first singularity was studied by
Booker & Bretherton (1967) and will be referred to hereinafter as the B.B.
singularity. The other two were studied by Jones (1967) and will be referred
to as the J. singularities.

When compressibility is taken into account two new singularities appear and,
moreover, the B.B. singularity is split up into two as was shown by Eltayeb &
Kandaswamy (1979). In the hydrostatic approximation compressibility is also
taken into account but these singularities do not appear as the acoustic
branch of the acoustic-gravity waves is suppressed (see chapter 4.1). Hence
the acoustic waves cause these extra singularities.

It has been shown by Jones (1967) that in a rotating system the vertical flux
of angular momentum is independent of height, except at the critical levels. A
way to obtain such a fixed quantity is outlined below for a second-order

linear differential equation in the Helmholtz form
"+ q(z) vy =0, (5.30)
where ' denotes differentation to z.

The derivative of the Wronskian of the solutions § and its complex conjugate

*
y have to satisfy the following equality

d * *

o ' - vl =-21Imaq(z) |y]2. (5.31)

If the function q(z) takes on real values only and |¢|? is finite then the
*
Wronskian W(y,p ) is independent of height.
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A differential equation of the form
¢" + a(z) ¢' + v(z) ¢ =0, (5.32)

can be transformed in the form (5.30) with the Liouville transformation

Z 1] 1
¢(z) = v(z) e_zof a(z')dz . (5.33)

The analogue of (5.31) for equation (5.32) reads

f®Re a(z') dz'
Ll [~ a lo]* + we,eD | ] -

/%Re a(z')dz’

-2 In (b(z) - 202 - 2lz)y 0 o). (5.34)

Hence if

Im (b(z) - 5‘52) -az,(f)) -0, (5.35)

then the quantity G defined by

OfZRe a(z')dz' M
G: = e {-Im a(z) |¢]% + W(o,0 )} , (5.36)

is independent of height.

Straightforward calculations show that equations (5.5) and (5.29) both satisfy

condition (5.35) and the quantity G turns out to be the same. G can be written
as

£ 1U'(2)

£ ¥
G = Re [ Qz IVJI2 + i(1 - F) W'W :]0 (5037)

Tai (1983) has proved that the quantity G is proportional to the vertical flux
of angular momentum.

The changes in this flux across the critical levels have been calculated by
Tai (1983) for Jones's equation.
This author has shown that for the J. critical levels there is a jump.

However, for the B.B.-critical level this is not always the case.
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The B.B.-c¢critical level at 2=z, corresponds with a regular singularity in the
differential equation. With the Frobenius method a solution can be found of
the form

- 3 3
W==E, [y, log L, L wc1 (cc) + w02 (cc)] + E, Z, wcl (;c) . (5.38)

where Cc =2z - zc, E, and E, are arbitrary constants, wc and W are analytic

1 2
functions which equal unity when cc=0, and
d2UO
du_ d2u —_—
_ k2+12 dN o o _ ,, dz?
Y1 = 37 N %" @ @ N ) |z=z . (5.39)
] c
dz

If v,=0, z, is an apparent singularity. In Tai (1983) it is shown that, with

the branch cuts taken as discussed there, the jump in the flux is equal to

G -G, =71 +L) |E, |2 ¥ (5.40)
+ kz 1 2 .

c c

where G _ is the value of G for z < z, and G _ is the value of G for z > z

c’
and ¢ ¢
d2u d3u
du oy —2  N=—2
Y, = - sgn (k =°) [ dz _ _dz - 4z 1] (5.41)
2 dz du du du zZ=2 :
(==2)2 =2 (=2)® ©
dz dz dz

Hence, if Y,=0 then there is no jump in the vertical flux of angular momentum
at the B.B.-critical level.

In the hydrostatic equation the J. singularities are the same as in Jones's
equation. In fact these singularities are determined by the coefficients of
the first derivative and these are the same in both equations.

However, the condition for having an apparent singularity in the hydrostatic

equation is not the same. Working analogously, we found this to be

a2y
dU_ 42U N2 —2 du
dN 0 0 dz? 1 s 0.2 _
Nt~ T@ a2 au_ " H (N* - (577707) |Z=Zc = 0. (5.42)
dz
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du
Compared with (5.41) an extra term % (N2 - (522)2) appears. This is due to

taking into account the background variation of the density.
It will be shown that the difference in the type of singularity can cause

differences in the reflection and transmission coefficients.

5.4. The method of solution

To solve the hydrostatic or Jones's equation analytically is relatively
difficult. Yamanaka & Tanaka (1984) were able to express solutions in terms of
thé hypergeometric functions for a special case with a constant wind shear and
applying both the hydrostatic and the Boussinesq approximations. For a
reflection and transmission problem these solutions are not useful because
these solutions far from the critical levels cannot asymptotically be
approximated by plane waves. Here we take a numerical approach. We have chosen
a tangent hyperbolic background wind profile with the B.B.-critical level at
the inflection point.

Accordingly, Jones's equation has there an apparent singularity while the
hydrostatic equation has a logarithmic one.

We used two different numerical approaches. In the first we introduce a small
imaginary component for the frequency, the singularities have then shifted
from the real axis and integration along the real axis is possible. We start
the calculations above the critical levels, far enough to give a good
approximation of a constant background wind, with an upward-propagating plane
wave. The equation is then integrated backwards by the method used by Bulrisch
& Stoer (1966) down to a distance below the critical levels where the
solutions are again closely approximated by plane waves. Only then can the
solution be broken down to give an incident and reflected wave and the
reflection and transmission coefficients calculated. The integration step
length is automatically changed when the desired accuracy is not obtained. For
example, the minimum step length near the critical levels can be as low as
10—10 of the total integration path with in total not more that 500 steps.
The second numerical method is similar to the first but instead of using an
imaginary component for the frequency, a Frobenius expansion is made at each

critical level to match the solutions by analytic continuation.
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Owing to the accuracy and efficiency of the integration routine only two terms
in the Frobenius expansion were needed. The difference between the results

obtained by the two different methods turns out to be less than 1%.

5.5. Results

With Jones's equation overreflection and overtransmission were fcund even for
values of Ri, above 0.25. Ri, is the Richardson number at the B.B.- critical
level located at the inflection point and it is also the minimal value of the
Richardson number for the tangent'hyperbolic wind profile.

Tai (1983) found, by analytical methods, overreflection regardless of the
value of the Richardson number when only two of the critical levels were
present. In contradiction to our results the same author found by numerical
methods that overreflection for layers with three critical levels is possible
only for values of the Richardson number lower than 0.2402. This result was
obtained subject to the condition that the transmitted wave was a propagating
one. We suppose that the difference with Tai's result is due to the fact that
he has not fully explored the influence of the different parameters.

We found that overreflection and overtransmission are very sensitive to the
value of the ratio ; between the Coriolis parameter f and the wave frequency
w « For certain values of % resonant overreflection occurs; i.e. the
reflection and transmission coefficients tend to infinity and there is no
incident wave. This resonant overreflection occurs even for values of Ric
higher than 0.25. Figure 5.1 shows the values of ; as a function of Ri, for
which resonant overreflection occurs.

The results obtained using the hydrostatic equation differ from the above. For
example we found no resonant overreflection. Overreflection and overtrans-
mission again occurred for values of Ri, larger than 0.25.

Some of the results obtained using the two equations are illustrated in figure
5.2. For two values of the Richardson number at the critical level at the
inflection point of the hyperbolic tangent wind profile, i.e. Ri, = 0.30 and
Ri, = 0.65, the values of the reflection coefficient as a function of E are
demonstrated for both approximations. For small ;'s the reflection

coefficients tend to the same values.
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Figure 5.1 The values of f, as a function of Ric, for which resonant
overreflection occurs.
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Figure 5.2 Variation of the absolute value.of the reflection
coefficient |R|, as a function of the ratio f between the angular velocity f
and the wave frequency w» .Conventions as in the previous figure.
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Calculating the reflection coefficients without rotation with the help of
formulas given in Van Duin & Kelder (1982) values are obtained of |R| = 0.43
for Ri, = 0.30 and |R| = 0.13 for Ri, = 0.65. From figure 5.2 it is clear that
these values correspond to the limiting values for } + 0. This is reasonable
because this limit means that the rotation frequency becomes much smaller than
the wave frequency.

For larger values of ; the difference between the two approximations
increases with a maximum at the value for which resonant overreflection occurs
in the Boussinesq approximation. From figure 5.2 it can be inferred that the
range of values of } for which overreflection occurs decreases with increasing
Ri,.

The difference in the results is due to the fact that, at the B.B. critical
level, Jones's equation has an apparent singularity and the hydrostatic
equation a logarithmic one. This difference is caused by the variation with
height of the background density which is neglected in the Boussinesq
approximation. This is confirmed by taking, in the hydrostatic approximation,
the limit for very large values of the scale height. At this limit, expression
(5.42) becomes identical to (5.41) and the singularity likewise becomes an
apparent one. Numerically the results of Jones's equation are then obtained,

as should be expected.

5.6. Conclusions

Overreflection and overtransmission of a gravity wave propagating in a layer
with a sheared wind field in an inviscid, adiabatic, stratified and rotating
fluid was studied. Our results show that, in contradiction to the non-rotating
case, overreflection occurs for values of Ric above 0.25.

The transmission and reflection coefficients appear to be strongly dependent
on the ratio between the rotation frequency and the wave frequency. For the
range of this ratio for which overreflection occurs, different results are
obtained using the Boussinesq and hydrostatic approximations. For example,

resonant overreflection was found in the Boussinesq approximation only.
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The results obtained here indicate that care must be taken in applying certain
approximations to atmospheric problems. We are inclined to the opinion that
the hydrostatic approximation is better in describing the propagation of

gravity waves through a critical layer certainly if the rotation of the fluid
is taken into account.
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CHAPTER 6

ON THE REFLECTION OF TIDES IN THE UPPER ATMOSPHERE

6.1. Introduction

Observations of winds in the upper atmosphere indicate the presence of strong
tidal movements. The classical theory of atmospheric tides, that is without
the inclusion of mean winds and meridional temperature gradients, is able to
explain some major features of the observations (Chapman & Lindzen, 1969;
Kato, 1980).

Some problems, however, are still not completely solved. One of them is the
structure of the semidiurnal tide at and above 100 km height. Observations
show a strong influence of the higher order modes (Fellous et al., 1975; Ahmed
& Roper, 1983), whereas the theory predicts the dominance of the 2.2 mode
(Chapman & Lindzen, 1970). One way to solve this discrepancy is indicated by
Lindzen & Hong (1974). They introduce a zonal wind profile, and the
interaction of the semidiurnal modes with the wind leads to a weakening of the
2.2 mode and an enhancement of the higher order modes.

Another way to explain the observations is to take into account the reflection
of the semidiurnal modes, Fellous et al. (1975), Stening (1977), Stening et
al. (1978). In this paper we will pursue the theory of reflection on a
realistic temperature profile. The same problem was treated earlier, e.g. by
Teitelbaum (1973), whose solution of the reflection problem leads, via the
Mathieu equation, to qualitative results. However, the method followed here
provides a basis for more comprehensive conclusions, because the results are
quantitative. Vial et al. (1985) used a numerical method. They also discussed

the influence of different standard profiles on the reflection of tidal waves.
The scheme of this chapter is as follows. In section 6.2 a short account is

given on the derivation of the differential equation describing the vertical

propagation of the semidiurnal modes.
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In section 6.3 the calculation of the reflection coefficients for a class of

refractive index profiles is discussed. In section 6.4 the method is applied

to the reflection of the semidiurnal modes.

6.2. The differential equation for the vertical propagation

An extensive discussion of the derivation of the differential equation for

tidal waves can be found in Chapman & Lindzen (1969) and Kato (1980). Here,

oniy a sketch will be given. It is convenient to introduce the quantity

- -1 dp
G(z, 6, ¢, t) = T dt (6.1)
o
where Po is the unperturbed pressure,

p ig the tidal perturbation in pressure,

Y = EB is the ratio of the specific heats,
t isvtime,

z 1is height,

8 1is colatitude ,

¢ 1is longitude

Suppose that the longitude and time dependency is periodic and, moreover, that

the restriction is made to consider only tides migrating with the sun; then G

can be written as

. 2T
10(53 t+ ¢)

G(z, 8, ¢, t) = 1 G'(z, 8) e , (6.2)

with

g=1

=1, 2, 3, ¢ceees and t is in hours.

The function G°(z, 8) has to satisfy a linear second-order partial

differential equation that can be solved by separation of variables.

Therefore,

g _ > o o
G(z, 8) = L L.n (z) en (8) , (6.3)

n=1
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where each eno satisfies the Laplace's Tidal Equation:

la2y?

gh,

g o g
Fleo, (8)) = o, (8), (6.3a)

where

193 ( sin @ g_) _ 1 (g £2+ cos®s g2 )
sin 8 38 ‘f2-cos?8 236 f?-cos?e ‘f f2- cos?e sin2%8’’

a is the radius of the earth and hg is the separation constant, called the

equivalent depth.

The solutions Ono are known as Hough functions. The Lno(z) satisfy

2

g g g
dL dL K J
H LI (%g - 1) dg + _lg (%g + k) Lno =+ .__ll_g , (6.4)
dz h YgHh
n n
where H = scale height,

Y-1

K = —

=,

g

Jn = thermal excitation of the tides.

The equation (6.4) is often called the vertical structure equation.
This equation can be transformed into a Helmholtz equation by introducing the
reduced height x defined by

B dz!
x = Oj H(z')

and by using instead of I_.no the function yno defined by

X) = e Ln"(z(x))

ol

g
yn(

The Helmholtz equation reads then

=, (6.5)



The particular solution of this equation can be written as
- _ 5

K o} 0 2

OJ G, (x,xo) Jn (xo) e dx . (6.6)

g
thn

yno(x) =

where Gno(x,xo) is the Green's function for the mode and the temperature

profile in question.

The excitation, however, takes place predominantly below 50 km height (see
fig. 6.1). Therefore, tidal waves above this height can be considered as
freely propagating waves.

height (km)

l slo l 80
mW/kg

Figure 6.1 Height profile of the Hough component of the heating for the Jz
mode (Groves, 1982).

The propagation equation then takes the form
2
o
dy
n 1 dH 1 g _
axz + ['—0 (cH + E) 'E] y, =0 . (6.7)

h n
n

119



Let u(x) be the invariant of differential equation (6.7), that is

1 dH 1
ui(x) = 5 (xH + a) T (6.8)
h
n
p can be interpreted as the square of the refractive index. If the refractive
index is constant, then the differential equation (6.7) has two kinds of

elementary solutions, namely if u > O then

o i Zx -iugx
y, = e’ T + Be , (6.9)

and for u <0

y ¥
yn° - ce{TWEx g (6.10)

If u is not constant, the solutions of (6.7) generally cannot be expressed in
elementary functions. In that case the WKB approximation can be a good
substitute. Anyway, if strong reflections occur, the WKB method fails (Nayfeh,
1973). Because strong reflections can be expected we looked for a method not

suffering from this restriction.

First we will discuss the behaviour of the refractive index for tidal waves in
a model atmosphere. As most important model we have chosen the Mean Reference
Atmosphere of the CIRA (1972). This model is suitable for heights between 30
and 500 km and is independent of season. It is considered to be representative
for middle latitudes. The height dependence of u in (6.8) appears in the
term

dH ‘
KH*E;, (6.11)

formed by the scale height and its derivative. In figure 6.2 the value of
(6.11) is given as function of the reduced height for the Mean Reference
Atmosphere. The flattening of the curve between 30 and 50 km and above 200 km
is characteristic. From this curve the profiles of the refractive index for
each of the tidal modes can be determined. We shall restrict ourselves to the

semidiurnal modes. In figure 6.3 the graph of u is drawn for the 2.2 mode.
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(3%)
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——sxH+=—(km)
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Figure 6.2. kH + g—}: versus the reduced height for the Mean Reference

Atmosphere of CIRA 1972. The real height is given in parentheses.
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Figure 6.3. The value of the square of the refractive index for the 2.2 mode
versus the reduced height.
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The curve for the 2.2 mode shows negative values over a large height interval.
At these heights only evanescent waves can exist, and strong partial
reflection can be expected.

In the next section an analytical approach to describe reflection in an

inhomogeneous medium will be outlined.

6.3. Reflection of waves in an inhomogeneous medium

An analytical description of wave propagation in an inhomogeneous medium is
possible for a limited number of profiles of the refractive index, see e.g.
Ginzburg (1961) and Brekhovskikh (1980). One of these is the Epstein-Eckart
profile, Epstein (1930) and Eckart (1930), in formula

2

X -
e(x) = a, + a, tanh == + a, cosh

51 (6.12)

Rl

where € 1s the square of the refractive index, a,, a, and a, are constants
and 1 is a length scale.

There are two obvious special cases of this profile namely

as; = 0, ¢(z) = a, + a, tanh E% , (6.13)

called the transitional Epstein profile and

2

a, =0, e(z) = a, + a, cosh (6.14)

~|
=%

called the symmetric Epstein profile.

A characteristic of the profiles is that for large values of x, € takes on
constant values, while in the neighbourhood of z = 0 the greatest change in
value takes place in a domain with a width determined by 1.

If the square of the refractive index is described by the Epstein profile then
the wave equation can be solved analytically. Here, only a sketch of the
solutions will be given; the complete treatment of the problem can be found in
the original literature (Epstein, 1930; Eckart, 1930).
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Epstein and Eckart start with
2
SE+ et yx) -0, (6.15)

Define k, and k, as

O (6.16)
and
I C (6.17)

The equation (6.15) can be transformed into a hypergeometrical differential
equation.

By putting

p = % ,u=¢e andy=(1+wdd®r, (6.18)

one obtains

d*f

u(t + u) 3+ [+ 2a+ D+ 2a + 1] %ﬁ + (a*+b+d)(a-b+d)f = 0 ,  (6.19)
where a =1l va,- a, ,

b = il va,+ a, ,

d=Y%-%v/1 + 161%a,.

The second order linear differential equation in (6.19) has three regular
singularities at 0, -1 and « respectively and is known as the
hypergeometrical differential equation. In the neighbourhood of the
singularities solutions exist in the form of power series. Hence we obtain the

following solutions f, to fg:

around u = 0 f,, f, valid for |u|] <1,
around u = -1 f3, f, valid for |ut1| <1,
"around" u = ® fs, fe valid for |u| > 1 .
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Explicit expressions for the functions f,to fy can be found in e.g. Erdelyi
et al. (1953).

For these solutions analytical continuation can be found, and solutions can be
constructed that are everywhere defined. The way of analytical continuation
has to be found on physical grounds. The starting point, however, was a second
order linear differential equation, which can have no more than 2 independent
solutions. Therefore, linear relations exist between the solutions. These
relations, called circuit relations, have been calculated by Gauss (Epstein,

1930). One of these relations is
f¢ = Af, + Bf, , (6.20)
where A and B are gamma functions and are given in Erdelyi et al. (1953).

To interpret relation (5.20) we will consider the asymptotic behaviour of the
solutions involved. Let vy,, ..... » Y¢ De the solutions corresponding to
| P respectively. For very large negative values of x, that means,

according to (6.18) for u approaching zero:
v 0 = (e r(w) () eX,

which can be interpreted as an incoming plane wave from below. The same
asymptotic procedure applied to y, yields

-ik,x
y2(:) e e,

and this can be interpreted as a downward reflected plane wave.

If x, and according to (6.18) also u, take on very large positive values, then
ik
ys(:) e 2%,

which represents an upward propagating plane wave. Hence, equation (6.20) can
be interpreted as a relation between the incoming, the reflected and the
transmitted waves. This implies that a reflection coefficient R can be defined

as the ratio between the asymptotic values of the reflected and incoming

waves.

124



The result is:

r(2a) r(-a-b+d) r(-a-b-d+1)

R = F(=2a) T(a-b*d) T(a-b-d+1)

(6.21)

We have obtained an expression for the reflection coefficient in terms of

gamma functions,

that are simpler than the hypergeometrical functions

The work of Epstein was later extended by many authors. One extension, that of

Rawer (1939), is very suitable for describing tidal wave propagation. The
profile of Rawer has the form
_ _ (dp,? _ exp p(x) _ exp p(x)
e(x) = (dx) [Ki + % - X, 1+exp p(x) * (1+exp p(x))? ]+ (6.22)
2
d°p ,dp _ 3 (d’ , dp
t [dx§ / dx 2 (dxz / dx) P
where K,, K, and K, are constants
and
e>* B, sX
p(x) = xo X + A, + — 1n(1 + b,e”"). (6.23)
SX s
a,te

X0, A,, B,, a,, b; and s are also constants.

If A,=B,=0

then equation (6.22) again represents the Epstein profile.

For the Rawer profile (6.22), the reflection coefficient equals

r(y=1) T(1-8) I(1+a-Y)

(6.24)

N

by

R= "7 rO-p) 1@
with

a = %1+ (1+uk1)y2 + (1+uK3)Z - [1+4(k, - Kz)]g} ,
B o= 3{1 + (144K + (1+4K,)% + [144(K, - K,)]

Y = 1+ (1+4K)% .
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Formulae (6.22) and (6.23) define a large class of profiles of the refractive
index for which analytical solutions are possible. In the next section we will
look for the best approximation of the refractive index profiles of the tidal

waves by (6.22) and then apply the results of this chapter.

6.4. Results

The approximation of the refractive index profiles of the semidiurnal tidal
modes by the functions described in (6.22) and (6.23) requires some
calculations. The approximation is done in least squares sense. Two examples
of the curves obtained are shown in figures 6.4 and 6.5. In figure 6.4 the
square of the refractive index of the 2.2 mode and its approximation are

drawn.

©—*x

15+

o

10 —su(x)

Figure 6.4. Solid line: the square of the refractive index of the 2.2 mode.
Dashed line: the approximation by Rawer's function.
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Figure 6.5 Solid line: the square of the refractive index for the 2.4 mode.
Dashed line: the approximation by Rawer's function.

In figure 6.5 the same has been done for the 2.4 mode. The agreement between
the approximations and the profiles computed from the Mean Reference
Atmosphere is rather good. Hence it is permissible to substitute the
approximating functions into the Helmholtz equation for the propagation of the

tidal modes. The reflection coefficients can then be calculated. The absolute
values of some reflection coefficients are given in Table 6.1:

Table 6.1
mode |R|
2.2 0.98
2.3 0.31
2.4 0.08
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These values indicate that for this temperature profile the 2.2 mode is nearly
completely reflected, that the 2.3 mode is also strongly reflected, but the
2.4 mode is only slightly reflected. Higher order modes are so weakly

reflected that their reflected wave can be ignored.

The temperature profile, however, is dependent on season, latitude and
exospheric temperature. To test these dependencies we calculated the
temperature profiles for July and January from the CIRA 1972, for 50°N and an
exospheric temperature of 1000 K.

The absolute values of the corresponding reflection coefficient are summarized
in Table 6.2.

Table 6.2
mode |R|
July January
2.2 0.99 0.89
2.3 0.88 0.42
2.4 0.74 0.19

Hence, in summer the reflection, especially of the higher modes, is
substantially higher. The influence of the latitude was determined by
calculating the values of |R| for January and 1000 K exospheric temperature
for 0° (the equator) too. The values of |R| were somewhat higher: 0.96, 0.55
and 0.30 for the 2.2, 2.3 and 2.4 modes respectively. Finally, we varied the
exospheric temperature and calculated the reflection coefficient for January
for 50°N and an exospheric temperature of 1500 K. We found 0.81, 0.06 and 0.02
for the 2.2, 2.3 and 2.4 modes respectively.
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Hence, a higher exospheric temperature leads to lower values of the reflection

coefficient, especially for the higher order modes.

6.5. Conclusions

In this paper analytical solutions has been given for the equation describing
the vertical propagation of the semidiurnal modes through the mesosphere and
lower thermosphere.

These analytical solutions offer the possiblity to calculate the wave function
for every height. We restricted ourselves to the calculation of the reflection
coefficients. It was shown that the reflection coefficients can be expressed
in gammafunctions.

The Mean Reference Atmosphere of the CIRA 1972 was used as a model. For this
model it turns out that the 2.2 semidiurnal tidal mode is nearly completely
reflected whereas the 2.3 mode is reflected for 31% and the 2.4 mode for only
8%. The reflection of the higher order modes appears to be negligible. This
implies that with increasing height the character of the semidiurnal tidal
wave gradually shifts to the higher order modes. In the mesosphere
interference by a superposition of tidal modes will be important. This agrees
with observations see e.g. Stening (1977, 1978) and Ahmed & Roper (1983), but
is not predicted by the classical theory of atmospheric tides (Chapman &
Lindzen, 1970). The results are valid for the Mean Reference Atmosphere that
is thought to be representative for middle latitudes and is independent of
season.

However, the dependence on season, latitude and exospheric temperature proved
to be considerable as was demonstrated by calculating the value of IRI for
other reference atmospheres. Consequently, this sensitivity of the reflection
for the temperature profile causes a large variability in tidal structure in

the mesosphere and thermosphere.
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