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SAMENVATTING

Het weer aan het aardoppervlak hangt nauw samen met de luchtstromingen
op ongeveer 10 km hoogte, boven in de troposfeer. Op die hoogte bevindt
zich de straalstroom, die gekarakteriseerd wordt door sterke westenwinden,
met snelheden in de orde van 50 m/s. Ligging en structuur van de straal-
stroom zijn in grote mate bepalend voor de ontwikkelling van weersystemen,
zoals depressies en hogedruk gebieden. Tengevolge van oneffenheden in het
aardoppervlak, veroorzaakt door de grote bergketens en de aanwezigheid van
continenten en oceanen, vertoont de straalstroom grote slingeringen in
noord- en zuidwaartse richting. Deze slingeringen worden planetaire golven
genoemd. De planetaire golfstructuur vertoont grote dagelijkse variaties.
Ook na middeling over een maand of seizoen vertoont de planetaire golf-
structuur nog belangrijke afwijkingen van het klimatologische langjarige
gemiddelde. Deze afwijkingen of anomali&n zijn van invloed op het algemene
weerbeeld gedurende die periode; ze kunnen bijvoorbeeld de oorzaak zijn van
een warmere en drogere zomer dan gebruikeli jk.

Anomalién in de planetaire golfstructuur kunnen veroorzaakt worden door
afwijkende condities aan het aardoppervlak, zoals anomale zeewatertempera-
turen, sneeuwbedekking en bodemvochtigheid. Recente studies hebben aange-
toond dat er een verband bestaat tussen anomale zeewatertemperaturen in de
tropen en de planetaire golfstructuur. Tijdens E1-Nifio jaren, wanneer in
het tropische gedeelte van de Stille Oceaan grote temperatuurveranderingen
optreden, is de atmosferische circulatie in de tropen volledig ontregeld.
Langdurige droogtes en grote overstromingen door hevige regenval Kkunnen
hier het gevolg van zijn. Anomale Zeewatertemperaturen in de tropen 2ijn
ook van invloed op de structuur van de planetaire golven op de gematigde
breedten. Het effect is echter geringer.

Anomalién in de planetaire golfstructuur kunnen ook het gevolg zijn van
de wisselwerking tussen verschillende meteorologische verschijnselen. Het
is niet alleen zo dat de planetaire golven de ontwikkeling van depressies
en hogedrukgebieden bepalen, maar omgekeerd oefenen deze ook weer invloed
uit op de planetaire golfstructuur. Deze wederzijdse beinvloeding, ook wel
interactie genaamd, tussen de verschillende meteorologische processen,
variérend van de langste planetaire golf tot het kleinste wervelt je, wordt
beschreven door de niet-lineaire termen in de wiskundige vergeli jkingen

voor de atmosferische circulatie. Tengevolge van deze niet-lineaire inter-



actie vertoont de planetaire golfstructuur niet alleen sterke dageli jkse
variaties, maar kunnen ook langdurige anomalién optreden. Strenge winters
of hete zomers hoeven dus niet noodzakelijk een uitwendige oorzaak te
hebben, maar kunnen volledig het gevolg zijn van de interne variabiliteit
van de atmosfeer.

De door de interne variabiliteit veroorzaakte anomalién in de plane-
taire golfstructuur kunnen echter in het algemeen niet vooruit voorspeld
worden. Tengevolge van de niet-lineaire termen zijn de wiskundige verge-
lijkingen, die het verloop van de atmosferische circulatie in de tijd be-
schrijven, zeer gevoelig voor de begincondities. Computermodellen hebben
aangetoond dat kleine veranderingen in de begincirculatie na enkele dagen
al grote verschillen in de berekende circulatie veroorzaken. Dit betekent
dat het zinloos is om uitgaande van de circulatie op een bepaald tijdstip
de circulatie voor een maand later te berekenen, omdat de kennis over de
begincirculatie onvermijdelijk fouten bevat. Voor de atmosfeer bestaat er
dus een eindige voorspelbaarheidshorizon, welke niet verlengd kan worden
door de fouten in de begincondities kleiner te maken.

Deze voorspelbaarheidshorizon, in de orde van een dag of tien, is waar-
schijnlijk niet constant, maar afhankelijk van de toestand van de atmos-
feer. Voor bepaalde circulaties in bepaalde gebieden is de gevoeligheid
voor fouten in de begincondities wellicht kleiner. Recente studies laten
zien dat de grootschalige tropische circulatie tijdens El1-Nifio jaren zich
volgens bepaalde vaste patronen ontwikkelt en wellicht van te voren voor-
speld kan worden. Andere mogelijke situaties met een langere voorspelbaar-
heidshorizon zijn bijvoorbeeld blokkades, wanneer de planetaire golfstruc-
tuur een rug boven West-Europa of de Rocky Mountains vertoont. In deze
situatie wordt de doorkomst van oceaandepressies geblokkeerd en ontwikkelt
zich een hogedrukgebied over het continent. Dit gaat in het algemeen met
mooi weer gepaard. Blokkades kunnen soms wel een maand standhouden.
Sluitende theorién over blokkades ontbreken echter nog op dit moment.

Alhoewel gedurende de laatste decennia de kennis omtrent de dynamica
van planetaire golven aanzienlijk is toegenomen, is het beeld nog verre van
volledig. Met name het effect van de niet-lineaire termen op de dynamica
van planetaire golven wordt nog slecht begrepen. Dit proefschrift poogt een
bijdrage te leveren tot een beter begrip van de niet-lineaire dynamica van
planetaire golven met tijdschalen die variéren van een paar weken tot een

seizoen. Het proefschrift bestaat uit drie afzonderli jke artikelen.



In het eerste artikel wordt de stabiliteit van planetaire golven onder-
zocht. Wanneer de amplitude van een planetaire golf een kritische waarde
overschrijdt, wordt de golf instabiel en begint te breken. Voor geideali-
seerde planetaire golven zijn de kritische waarden en het brekingsmecha-
nisme onderzocht. Dit is gedaan voor de ondiepwatervergelijkingen. Deze
vergelijkingen worden gekarakteriseerd door een dimensieloze parameter F,
Lamb's parameter genaamd. Vaak wordt F = 0 gekozen, in welk geval de on-
diepwatervergelijkingen reduceren tot de barotrope vorticiteitsvergelij-
king. We hebben er echter voor gekozen om F als een parameter te beschouwen
en de stabiliteit van de planetaire golven als functie van F te onderzoe-
ken. Het blijkt dat de stabiliteit van de planetaire golven sterk afhanke-
lijk is van F. De kritische amplitude voor instabiliteit neemt af bij toe-
nemende F. Hier tegenover staat dat ook de groeisnelheden van de verstorin-
gen afnemen bij toenemende F. Een ander belangrijk verschijnsel is de aan-
wezigheid van een nieuw instabiliteitsmechanisme wanneer F groter dan nul
is. Dit nieuwe instabiliteitsmechanisme, zelfinteractie genaamd, gebeurt
via dyade interacties. Dit in tegenstelling tot het gebruikeli jke insta-
biliteitsmechanisme dat via triade interacties verloopt. Onder bepaalde
voorwaarden is het verval tengevolge van zelfinteractie even snel als het
verval tengevolge van triade interacties.

In het tweede artikel is onderzocht wat de invloed is van zelfinter-
actie op het dynamische gedrag van een eenvoudig atmosferisch model. Voor
dit model zijn de evenwichtsoplossingen bepaald. Het blijkt dat zelfinter-
actie de structuur van de evenwichtsoplossingen aanzienlijk kan wijzigen.
Dit gebeurt echter alleen voor onrealistische waarden van de parameters. Of
dit ook geldt voor de echte atmosfeer is op voorhand niet te zeggen, van-
wege de vele vereenvoudigingen die in het model zijn aangebracht.

In het derde artikel is de anomale planetaire golfstructuur tijdens de
El-Niflo winter van 1982/83 gesimuleerd met een barotroop model. Voor dit
model is de stationaire evenwichtsrespons bepaald van een anomale tropische
forcering, welke geschat is uit data. In het bijzonder is gekeken naar de
invlced van de niet-lineaire termen, welke afhankelijk is van de sterkte
van de anomale forcering. Omdat deze slechts tot op een factor 2 nauwkeurig
bekend is, hebben we de respons als functie daarvan bepaald. Voor zwakke
forcering is de respons in goede benadering lineair. De structuur van de
lineaire respons komt vrij goed overeen met de waargenomen anomale plane-

taire golfstructuur. Bij matige forcering verschilt de respons weinig met



de lineaire respons. Wanneer de sterkte van de forcering verder wordt ver-
hoogd treden er op een gegeven moment bifurcaties op tengevolge van de
niet-lineaire termen. Bij bifurcaties ondergaat het karakter van de oplos-
singen drastische wijzigingen bij een kleine verandering in de sterkte van
de forcering. Na de bifurcaties is de overeenkomst met het waargenomen
patroon minder. We moeten hieruit concluderen dat zelfs voor een sterke
El-Nifo gebeurtenis als die van 1982/83 de niet-lineaire termen onbelang-
rijk zijn voor de structuur van de anomale planetaire golven tengevolge van
een anomale tropische forcering.

Alle berekende evenwichtsoplossingen zijn instabiel. Het tijdsafhanke-
li jke gedrag vertoont zowel periodiek, quasi-periodiek als chaotisch ge-
drag. Het chaotische gedrag wordt waargenomen na de saddle-node bifurca-
ties. Uit de tijdsintegraties blijkt dat de (instabiele) evenwichtsoplos-
singen van invloed zijn op het tijdsafhankelijke gedrag. Zelfs in het

chaotische domein 1ijken de tijdsgemiddelde patronen en evenwichtspatronen

sterk op elkaar.



Chapter I

GENERAL INTRODUCTION AND SUMMARY

1. Low-frequency variability of planetary waves

The weather as we experience it in daily life is strongly related to
the air flow in the upper troposphere and lower stratosphere. At the middle
latitudes this air flow is characterized by a relatively narrow band of
strong westerly winds, with maxima in the order of 50 m.s:_1 at an altitude
of about 10 km. The origin of this so-called jet stream is the difference
between the incoming solar radiation at the pole and equator. Warm air from
the tropics ascends and moves poleward. The mid-latitude regions where warm
and cold air meet are called frontal zones. A strong westerly jet develops,
which is caused by the temperature gradient across the front and the rota-
tion of the earth. Inhomogeneities in the earth surface, like the mountain
ridges and the land-sea thermal contrast, cause meanders in the westerly
winds. These meanders, called planetary waves, have length scales in the
order of the earth radius. Position and structure of these planetary waves
determine the development of synoptic-scale weather systems like depres-
sions and anti-cyclones.

An example of the planetary-scale structure of the atmosphere is shown
in Fig. 1. It displays the climatological flow for January at 500 mb. The
main features of this pattern are the two troughs located at the east coast
of both continents. The strongest winds are found at these troughs, where
the distance between the isolines is smallest.

The daily 500 mb maps are very different from the climatological ones.
They display a much more wavy pattern, with large day-to-day variations,
caused by synoptic-scale cyclones and anti-cyclones with typical length
scales of about 1000 km. The synoptic-scale cyclones arise as a result of
instabilities along the frontal zone that occur when the temperature dif-
ference exceeds a critical value. They transport warm and cold air north-
and southward respectively, thereby reducing the temperature differences
across the frontal zone. The synoptic-scale systems have life times of
about a week and are responsible for the weather as we experience it from

day to day. They start developing in the troughs east of both continents,
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Mean 500 mb contours in January. Northern Hemisphere. Heights
shown in tens of geopotential meters.

(After Palmén and Newton, 1969)



where the wind speeds and related temperature differences are largest. They
propagate toward the east across the oceans in the background flow provided
by the planetary waves.

The planetary wave pattern not only varies from day to day, but also on
longer time-scales of a month or a season. The longer time-scale variations
in the planetary wave pattern determine the mean weather; for instance it
may result in a warmer and drier summer than usual. This thesis deals with
the possible causes of the low-frequency variations in the planetary wave
pattern. Long-term forecasts of the planetary wave pattern for certain
areas and periods may be possible if these causes are understood.

Low-frequency variations in the planetary wave pattern can be investi-
gated by simulations with large computer models of the atmospheric circula-
tion, called General Circulation Models (GCM's). In a GCM persistent devia-
tions or anomalies of the planetary wave pattern have been generated as a
result of persistent anomalies in the boundary conditions, like sea surface
temperatures (SST), soil moisture, snow and sea-ice coverage, etc. These
boundary conditions tend to vary on time scales of a month or longer and
may thus influence the atmospheric circulation on long time scales. In many
papers the importance of anomalous SST's for the anomalies in monthly or
seasonal mean circulation was investigated. Simulations with GCM's
(Rowntree, 1976; Geisler et al., 1985; Shukla and Wallace, 1983) showed
that persistent sea surface temperature anomalies (SSTA's) in the tropical
oceans generate anomalies in the global scale planetary wave pattern. From
observational studies, the importance of SSTA's for the atmospheric circu-
lation was already suggested by Namias (1969) and Bjerknes (1966), before
the first experiments with GCM's.

The equations describing the atmospheric circulation are nonlinear, re-
sulting in strong interactions between different scales of motion. Due to
these nonlinearities, prolonged deviations of the climatological planetary
wave pattern occur in a GCM even under constant boundary conditions. This
means that a long hot summer does not necessarily need an external cause,
but may be the sole result of the internal variability of the atmospheric
system. The structure and frequency of the anomalies generated in a GCM
under constant boundary conditions resemble those of the observed ones
(Manabe and Hahn, 1981). These low-frequency fluctuations due to the in-
ternal variability, cannot be predicted ahead in general, because their oc-

currence depends sensitively on the initial conditions. This was first ob-



served by Lorenz (1969) using a simple model of the atmospheric circula-
tion. Studies with more complicated models confirmed his findings. The con-
sequence is that it is generally useless to try to make a detailed predic-
tion of the atmospheric circulation for an extendend period of for instance
a month by forward integration with a GCM, because the initial conditions
inevitably contain small errors. For the atmospheric circulation there
exist a prediction horizon, which cannot be pushed forward by reducing the
initial errors. However, the prediction horizon is probably not a constant
limit, but it may depend on the actual state of the atmosphere. It might be
that the sensitivity to initial errors is less for certain circulation pat-
terns and for certain geographical locations. Recent studies indicate that
the large-scale tropical circulation during El1-Nifio events, when a large
part of the tropical Pacific shows positive SSTA's, develops in a well
behaved manner and may be predicted a long time ahead (Philander, 1983).
Other possible circulation patterns with an extended prediction horizon are
for instance blocking highs, when the planetary waves show a ridge over
western Europe or the Rockies. In this situation, which may last for about
a week to a month, the passage of cyclones, coming from the ocean, is
blocked, resulting in the development of an anticyclone over the continent
with usually fair weather.

Except for these circulation patterns we cannot predict the anomalies
due to the internal variability and we have to confine ourselves to the
ones caused by the anomalous boundary conditions.

Due to their complexity, GCM's do not provide much insight into the
physical mechanisms that cause anomalies. We therefore return to simple
models of the atmosphere, which, hopefully, still contain the essential
physics needed to explain the observed anomalies. The observed long-term
averaged planetary wave structure is approximately equivalent barotropic.
The barotropic vorticity equation (BVE) may thus be a good approximation
for the low-frequency behavior of planetary waves.

When studying the effects of anomalous boundary conditions, one fre-
quently simplifies the BVE by neglecting the nonlinear quadratic terms
among the perturbations of the climatological basic state. This approxi-
mation is justified because the amplitudes of seasonal or monthly mean
anomalies are generally smaller than those of the climatological planetary
waves. With the linear BVE Hoskins and Karoly (1981) showed that Rossby

waves can transport energy from the tropics into the middle latitudes. It
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was shown by Branstator (1985) and Held and Kang (1987) that the extra-
tropical anomalies generated by GCM's in response to tropical SSTA's can be
qualitatively simulated by BVE-models, that are linearized around the zo-
nally varying climatological basic state of the GCM.

Internally generated low-frequency fluctuations are a result of non-
linear processes and need to be studied with the full nonlinear equations.
Nonlinear effects in planetary-scale barotropic flows have frequently been
studied to provide an explanation for the occurrence of blocking highs.
With a simple model based on the BVE, containing only a few degrees of
freedom, Charney and DeVore (1979) demonstrated the possibility for the
existence of more than one quasi-stable steady state. The flow pattern of
one of these steady states displays a wavy structure, resembling a blocked
circulation, whereas the other one displays a more zonal structure cor-
responding with a normal circulation. They suggested that, in the atmos-
phere, transition from one quasi-stable steady state to another is accom-
plished by synoptic-scale cyclones. Indeed,-for a baroclinic model that
explicitly allows the formation of midlatitude synoptic-scale cyclones,
Reinhold and Pierrehumbert (1982) demonstrated regime behavior, caused by
the existence of multiple unstable steady states. Regime behavior is also
observed in barotropic models possessing a larger number of degrees of
freedom (Legras and Ghil, 1985). However, these studies do not provide a
conclusive answer to the question whether observed long-lasting anomalies,
and in particular blocking highs, indeed originate from multiple steady
states. In a careful analysis Tung and Rosenthal (1985) showed that all
these studies suffer from approximations which can be questioned. Regime
behavior in these models disappears for more realistic parameter values.
Studies with more sophisticated models are needed to answer the question
whether or not multiple steady states are relevant for the low-frequency
fluctuations in the atmosphere.

Kok and Opsteegh (1985) demonstrated that the statistical effect of the
synoptic-scale transient eddies is large for the seasonal-mean circulation
patterns despite the smallness of these terms in the time-averaged momentum
balance. In simulating observed anomalies for the El1-Nifio event of 1982/83
they found that the statistical effect of transient eddies was most import-
ant in explaining the observed anomalies. Their study indicates that even
for a strong E1-Nifio event as the one in 1982/83, the extratropical anom-

alies are mainly due to the internal dynamics.
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Resonant amplification of a natural mode of oscillation as an explana-
tion for observed anomalies has been suggested by several investigators.
Simmons et al. (1983) demonstrated that the 300 mb climatological January
flow is barotropically unstable. Linear stability analysis revealed a
fastest growing perturbation which resembles the Pacific North America
(PNA) teleconnection pattern. This pattern, consisting of a wave train with
a low over the central Pacific, a high over the northern part of North
America and a low over Florida, is a predominant anomaly pattern in the
atmosphere. It was discovered from observational data by Wallace and
Gutzler (1981). Simmons et al. (1983) demonstrated that this PNA pattern
only needs to be triggered by a small forcing, but that it grows on the
instability of the planetary-scale flow. Similar results were found by
Frederiksen (1983) with a multilayer model. He showed that the structure of
the fastest growing perturbation depends on the static stability parameter.
The results of Geisler et al. (1985) with a GCM supported these results.
Held and Kang (1987), using a slightly different basic state, did not find
this behavior. Apparently the stability of planetary-scale flows is rather
sensitive to small changes in the flow patterns.

Others (McWilliams, 1980; Verkley, 1984; Malguzzi and Malanotte-
Rizzoli, 1984) have suggested the importance of nonlinear localized solu-
tions of the unforced inviscid BVE for the explanation of observed anom-
alies, in particular blocking highs. Until now only a few nonlinear solu-
tions of the BVE have been discovered analytically. However, from a numeri-
cal study Branstator and Opsteegh (1989), showed that solutions of the
nonlinear BVE are abundant in phase space.

Although during the last decade substantial progress has been made in
the understanding of the possible causes for low-frequency fluctuations in
the planetary waves, the picture is still far from complete. As discussed
above, it has recently become clear that barotropic processes may be im-
portant. This motivated further study of the dynamics of barotropic planet-
ary waves. The present thesis consists of a collection of three separate

papers on this subject.
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2. Outline of this thesis

In the first paper (Chapter II) the stability of barotropic planetary
waves is investigated. As mentioned before, studies by Simmons et al.
(1983) and Frederiksen (1983) show that the climatological monthly mean
flow is barotropically unstable and that the fastest growing perturbations
might be relevant for the observed anomalies. These numerical studies,
important as they are, do not provide much theoretical insight into the
barotropic instability problem. Gill (1974) and Baines (1976) investigated
for the BVE the stability properties of simple flow configurations. They
found that the stability of a pPlanetary wave can be described by con-
sidering only the most unstable triad. These triads, consisting of the
planetary wave and two perturbations, become unstable when they are close
to resonance, i.e. when the sum of the frequencies of the waves that form
the triad is almost zero.

We have investigated the stability of planetary waves for the shallow-
water equations (SWE) instead of the BVE. In the nondimensional SWE a
single parameter F = aZQZ/gHe appears, called Lamb's parameter, in which a
is the radius of the earth, Q its angular velocity, g gravity and He the
equivalent depth. In the past most investigators have simply chosen F = o,
which reduces the SWE to the BVE. We have decided to treat F as an unknown
parameter. Hence we have investigated the sensitivity of our stability cal-
culations to variations in F. The stability of planetary waves displays a
sensitive dependence on F. The amplitude of the planetary wave for which
instability occurs, decreases when F is increased. However, the growth rate
and phase speed of the perturbations also decrease with increasing F. The
instability of simple planetary scale flows occurs within the triad closest
to resonance. In addition a second instability due to dyad interactions
exist. This instability, called self-interaction, is caused by the fact
that, in contrast to the BVE (F = 0), for F > 0 the normal modes of the SWE
(Hough functions) are no longer exact solutions of the nonlinear SWE and
will naturally decay. In the case of self-resonance the decay is rapid and
comparable to the decay rates caused by barotropic instability. Outside the
area of self-resonance, the decay is slow and the Hough functions can be
considered as approximate solutions of the full nonlinear SWE.

The effect of self-interaction on the bifurcation diagram of a low-

order model based on the SWE is investigated in the second paper
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(Chapter III). Charney and DeVore (1979) demonstrated for a low-order model
the possibility of saddle-node bifurcations due to topographic instability.
Others (Charney and Straus, 1980; Legras and Ghil, 1985) investigated the
effect of barotropic and baroclinic instability. For the model we in-
vestigated, we found that self-interaction generates saddle-node as well as
Hopf bifurcations. Moreover self-interaction significantly affects the
steady-state curve originating from topographic instability. This occurs
only for large values of the forcing. Whether for the real atmosphere self-
interaction is important remains unclear, because of the many simplifica-
tions made in this study.

In the third paper (Chapter IV) we analyze the effect that the non-
linear terms have on the structure and strength of extratropical anomalies
that are excited by anomalous tropical forcing. Studies by Lau and Lim
(1984), sardeshmukh and Hoskins (1985), Kang and Held (1986), and Hendon
(1986) all show that the nonlinear response to tropical forcing is in
qualitative agreement with the predictions of linear theory. In these
studies the effect of the nonlinearities is to modify the structure and
amplitude of the stationary waves, whereas the positions of highs and lows
remain relatively unaffected. The nonlinear response is computed by per-
forming time integrations. In addition to this we have computed the non-
linear steady-state response of a barotropic model based on the BVE to
anomalous tropical divergence forcing. This forcing was estimated from the
anomalous observed outgoing long-wave radiation during the El1-Nifio winter
of 1982/83. Because the amplitude of this forcing may be wrong up to a
factor of two, we computed the steady states as a function of the strength
of the anomalous forcing. For weak forcing the response is approximately
linear. For stronger forcing the nonlinear terms become increasingly im-
portant. The linear response compares well with the observed anomalies. For
moderate strength of the forcing, the structure of the response displays
only minor changes compared to the linear response. Further increment of
the forcing causes saddle-node bifurcations resulting in multiple steady
states. Due to the bifurcations significant changes occur in the structure
of the response pattern. As a result, the agreement with the observed anom-
alies decreases. From this we conclude that the atmospheric response to
even a very strong El1-Niflo event like the one in 1982/83 is approximately
linear. In accordance with other studies (Sardeshmukh and Held, 1984; Kang

and Held, 1986; and Hendon, 1986) the main effect of the nonlinearities is
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to modify the structure and amplitude of the planetary waves, with rela-
tively small changes in the position of the pressure cells.
All computed steady states are unstable. Time integrations display

periodic, quasi-periodic as well as chaotic behavior. Chaotic behavior is

observed after the saddle-node bifurcations. This chaotic behavior is still

governed by the (unstable) steady states. Even in the chaotic domain the

time-mean patterns resemble the response patterns of the computed steady
states.

15



3. References

Baines, P.G., 1976: The stability of planetary waves on a sphere. J. Fluid.
Mech., 73, 193-213.

Bjerknes, J., 1966: A possible response of the atmospheric Hadley circula-

tion to the equatorial anomalies of ocean temperature. Tellus, 18,
820-829.

Branstator, G., 1985: Analysis of general circulation model sea-surface

temperature anomaly simulations using a linear model. J. Atmos. Sci.,
42, 2225-2254.

Branstator, G., and J.D. Opsteegh, 1989: Free solutions of the barotropic

vorticity equation. Submitted to J. Atmos. Sci.

Charney, J.G. and J.G. DeVore, 1979: Multiple flow equilibria in the
atmosphere and blocking. J. Atmos. Sci., 36, 1205-1216.

Charney, J.G. and D.M. Straus, 1980: Form-drag instability, multiple equi-
libria and propagating planetary waves in baroclinic, orographically

forced planetary wave systems. J. Atmos. Sci., 37, 1157-1176.

Frederiksen, J.S., 1983: A unified three-dimensional instability theory of

the onset of blocking and cyclogenesis. II: Teleconnection patterns.

J. Atmos. Sci., 40, 2593-2609.

Geisler, J.E., M.L. Blackmon, G.T. Bates and S. Munoz, 1985: Sensitivity of
January climate response to the magnitude and position of equatorial

Pacific sea surface temperature anomalies. J. Atmos. Sci., 42,

1037-1049.

Gill, A.E., 1974: The stability of planetary waves. Geophys. Fluid. Dyn.,
6, 29-47.

Held, I.M. and I.-S. Kang, 1987: Barotropic models of the extratropical

response to El-Nifio. J. Atmos. Sci., 44, 3576-3586.
16



Hendon, H.H., 1986: The time-mean flow and variability in a nonlinear model

of the atmosphere with tropical diabatic forcing. J. Atmos. Sci., 43
72-88.

’

Hoskins, B.J. and D. Karoly, 1981: The steady linear response of a spheri-

cal atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38,
1179-1196.

Kang, I.-S. and I.M. Held, 1986: Linear and nonlinear models of stationary

eddies in the upper troposphere during Northern summer. J. Atmos. Sci.,
43, 3045-3057.

Kok, C.J. and J.D. Opsteegh, 1985: Possible causes of anomalies in seasonal

mean circulation patterns during the 1982/83 E1-Nifio event. J. Atmos.

Sci., 42, 677-694.

Lau, K.M. and H. Lim, 1984: On the dynamics of equatorial forcing of

climate teleconnection. J. Atmos. Sci., 41, 161-176.

Legras, B. and M. Ghil, 1985: Persistent anomalies, blocking and variations

in atmospheric predictability. J. Atmos. Sci., 42, 433-471.

Lorenz, E.N., 1969: The predictability of a flow which possesses many
scales of motion. Tellus, 21, 289-307.

Malguzzi, P. and P. Malanotte-Rizzoli, 1984: Nonlinear stationary Rossby
waves on nonuniform zonal winds and atmospheric blocking. Part I: The

analytical theory. J. Atmos. Sci., 41, 2620-2628.

Manabe, S., and D.G. Hahn, 1981: Simulation of atmospheric variability.

Mon. Wea. Rev., 109, 2260-2280.

McWilliams, J.C., 1980: An application of equivalent modons to atmospheric

blocking. Dyn. Atmos. Oceans, S, 43-66.

Namias, J., 1969: Seasonal interaction between the North Pacific ocean and

the atmosphere during the 1960's. Mon. Wea. Rev., 97, 173-192.

17



Palmén, E. and C.W. Newton, 1969: Atmospheric circulation systems. Academic

Press, New York.

Philander, S.G.H., 1983: El Nifio Southern Oscillation phenomena. Nature,
302, 295-301.

Reinhold, B.B. and R.T. Pierrehumbert, 1982: Dynamics of weather regimes:

Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 1105-1145.

Rowntree, P.R., 1976: Response of the atmosphere to a tropical Atlantic

ocean temperature anomaly. Quart. J. Roy. Meteor. Soc., 102, 607-625.

Sardeshmukh, P.D. and I.M. Held, 1984: The vorticity balance in the upper

atmosphere of a general circulation model. J. Atmos. Sci., 41, 768-778.

Sardesmukh, P.D. and B.J. Hoskins, 1985: Vorticity balances in the tropics

during the 1982-83 ENSO event. Quart. J. Roy. Meteor. Soc., 111,
261-287.

Shukla, J. and J.M. Wallace, 1983: Numerical simulation of the atmospheric

response to equatorial Pacific sea-surface temperature anomalies.

J. Atmos. Sci., 40, 1613-1630.

Simmons, A.J., J.M. Wallace and G.W. Branstator, 1983: Barotropic wave

propagation and instability and teleconnection patterns. J. Atmos.
Sci., 40, 1363-1392.

Tung, K.K., and A.J. Rosenthal, 1985: Theories of multiple equilibria. A

critical reaximination. Part I: Barotropic models. J. Atmos. Sci., 42,
2804-2819.

Verkley, W.T.M., 1984: The construction of barotropic modons on a sphere.
J. Atmos. Sci., 41, 2492-2504.

Wallace, J.M. and D.S. Gutzler, 1981: Teleconnections in the geopotential

height field during the Northern Hemisphere winter. Mon. Wea. Rev.,
109, 784-812.

18



Chapter II

*
BAROTROPIC INSTABILITY OF PLANETARY-SCALE FLOWS

Abstract

The relevance of barotropic instability for the observed low-frequency
variability in the atmosphere is investigated. The stability properties of
the shallow-water equations on a sphere are computed for small values of
Lamb's parameter (F = aznz/gHe) where a is the earth's radius, Q its
angular velocity, g gravity and He the equivalent depth.

For small values of F these equations describe the horizontal structure
of external and deep internal modes that are basically barotropic in the
troposphere.

The stability of simple zonal flows, as well as free and forced
planetary Rossby waves has been computed as a function of F. This is done
numerically using a hemispheric spectral model with a T13 truncation. For
F = 0 we have tried to interpret the numerical results by analytically
computing the stability properties of the flow when only one triad is
considered. The results show that for increasing F the critical amplitudes
for instability decrease slightly, but in the area of instability both
growth rate and frequency of the perturbations decrease with increasing F.
The horizontal structure of the perturbations changes only slightly. In
most cases the instability process occurs within one triad which is the
triad closest to resonance. An analysis in terms of unstable triads seems
equally relevant for zonal and for nonzonal flows. The stability properties
of the observed 400 mb Northern Hemisphere winter climatological flow show
the same dependence on F as found for simple flow patterns: both growth

rate and frequency of the perturbations decrease for increasing F.

* Published in Journal of Atmospheric Sciences, 1988, 45, 2789-3016, with
J.D. Opsteegh as co-author
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1. Introduction

Since the studies by Eady (1949) and Charney (1947) on baroclinic in-
stability, the barotropic instability mechanism has long been considered of
minor relevance for the interpretation of observed flow patterns in the at-
mosphere. The theory for the appearance and growth of the so-called weather
systems was completely based on the baroclinic instability mechanism. Both
structure and growth rate of observed weather systems could be explained by
linking them to the most rapidly growing perturbations of the baroclinical-
ly unstable quasi-stationary planetary scales of motion (Frederiksen,
1983a).

This does not mean that the usual weather systems are the only type of
perturbations that grow on the energy of the background flow. It may well
be that less rapidly growing modes emerge as well, but that they are, in
general, obscured by the rapidly growing high-frequency eddies. If these
slowly growing perturbations have low phase speeds, we can make them
visible by applying a filtering technique to suppress the high frequencies.
Indeed, on monthly or seasonal mean maps, anomaly patterns appear with a
larger spatial scale. These perturbations are often called teleconnection
patterns (Wallace and Gutzler, 1981). They are sometimes linked to local
anomalies in tropical sea surface temperatures (SST) (Horel and Wallace,
1981). However, Simmons et al. (1983) and Frederiksen (1983b) showed that
these patterns can be interpreted as growing modes of a barotropically
unstable planetary scale flow. Therefore, for the explanation of atmo-
spheric variability on longer time scales, the barotropic instability
mechanism may have some relevance. Numerical studies on barotropic in-
stability of complex observed flow configurations like the afore mentioned
ones -important as they are- do not provide much theoretical insight into
the barotropic instability problem.

The simplest equations appropriate to study the barotropic instability
mechanism are the shallow water equations (SWE). The dynamical properties
of solutions of the unforced inviscid SWE on a rotating sphere are
determined by a single nondimensional parameter F = aZQz/gHe, called Lamb's
parameter, where a is the earth's radius, Q its angular velocity, g gravity
and H, the mean equivalent depth. For F = 0 the SWE reduce to the baro-
tropic vorticity equation (BVE), whereas the limit F + « corresponds to the

equatorial beta-plane approximation (Longuet-Higgins, 1968).
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In reality, the atmosphere is a stratified fluid, which, in general,
cannot be described by the equations for a homogeneous fluid. Only when
nonlinear advection can be neglected, can separate equations for the
vertical and horizontal structure of a stratified flow be derived. The
horizontal structure is then described by the linear SWE. In these equa-
tions, a separation constant c, = \/gHe appears. When the advection terms
cannot be neglected, or when they appear in linearized form, the use of the
SWE cannot be justified a priori. As we are only interested in instabili-
ties due to horizontal shear of the velocity field, we nevertheless feel
that a study of the stability properties of the SWE has some relevance for
barotropic instability in the atmosphere. In using these equations we are
faced with the problem of making a choice for the equivalent depth. In the
past most investigators have simply chosen He = «, which reduces the SWE to
the BVE. We have decided to treat He as an unknown parameter. Hence, we
will investigate the sensitivity of our stability calculations to varia-
tions in He and thus in Lamb's parameter F.

For the BVE (F = 0), Kuo (1949) demonstrated that barotropic in-
stability of zonal flows is associated with the existence of inflection
points where the gradient of absolute vorticity vanishes. Recently Ripa
(1983a) generalized these results by demonstrating that for F > 0 a neces-
sary condition for instability of a zonal flow is the vanishing of the
absolute potential vorticity gradient somewhere in the fluid.

Lorenz (1972) suggested the importance of barotropic instability for
planetary waves. For the BVE on a finite beta-plane with cyclic boundary
conditions he demonstrated that free planetary waves become unstable when
they exceed a critical amplitude which depends on wavenumber. For an
infinite beta-plane, Gill (1974) showed that planetary waves are always
unstable, due to the existence of resonant triads. On a spherical domain,
most free planetary waves are neutrally stable below a certain critical
amplitude, because, as a consequence of the cyclic boundary conditions,
resonant triads do not exist in general (Baines, 1976). The importance of
barotropic instability for the conversion of eddy kinetic energy to zonal
kinetic energy has been investigated by Hoskins (1973). He found that
growing perturbations only contain zonal flow components if the total
wavenumber of the planetary waves is larger than 5. Baines (1976) pointed
out that triad interactions among waves are more important than the wave

zonal flow interactions studied by Hoskins.
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The barotropic instability of planetary waves for the equatorial beta-
plane (F+~) has recently been analyzed in a series of papers by Ripa (1981,
1982, 1983bc) and Boyd (1983ab). In this case the normal modes are no
longer exact solutions of the full nonlinear SWE and consequently a normal
mode generates a harmonic by self-interaction. When the harmonic is at re-
sonance with the primary wave, the decay due to self-interaction is com-
parable to the decay time scale for barotropic instability. In the case of
self-resonance, the initial decay of the waves can be described by con-
sidering a two component system for the dyad interactions between the
primary wave and its harmonic (Boyd, 1983a,b). Outside the domain of self-
resonance, the decay time scale due to self-interaction becomes very large.

Lim and Chang (1983) argued that teleconnection patterns, with their
barotropic structure in the troposphere, are not necessarily external modes
but may equally well be considered large equivalent-depth internal modes.
They studied the energy propagation properties of these deep internal modes
and found that energy propagation is significantly affected by the choice
of the equivalent depth. This may also be true for the barotropic instabi-
lity problem. Simmons et al. (1983) used the BVE to . study the teleconnec-
tion problem; i.e., they only considered instability of the external modes.

In this paper we study barotropic instability of observed atmospheric
flow configurations for values of F representing the external and the deep
internal modes. In order to better understand the results we start by
studying the stability of very simple flow configurations. We have numeri-
cally computed the stability properties of simple zonal flows as well as
free and forced planetary Rossby waves as a function of F. This is done
using a hemispheric model with triangular truncation T13. For F = 0 we have
also studied the stability of these flow patterns analytically by assuming
that the instability process occurs within one triad. Comparing the results
it is found that the instability of the gravest rotational modes for physi-
cally relevant growth rates of the perturbations can be described by con-
sidering a single triad.

Sections 2 and 3 of this paper deal with the basic equations, Lamb's
parameter, and the description of the model. Section 4 is devoted to the
stability of simple zonal flows, while sections 5 and 6 analyze the stabi-
lity of free modes and forced stationary waves, respectively, and also dis-
cuss the consequences of self-interaction. In section 7 we will present the
results for the climatological winter 400 mb flow. A discussion of the re-

sults will complete this paper.
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2. The shallow-water equations

In nondimensional form the shallow-water equations on a rotating sphere

may be written

gﬁ = ~V.V(C + £) - (¢ + £)D, (la)
t

g% = -V + T - VL [Rxv(C + 1)) (1b)
3 _ 3 ys - ep - D

50 = V-V - D - 2. (le)

where ¢, D and ¢ are the relative vorticity, horizontal divergence and per-

turbation geopotential respectively; f is the planetary vorticity; 3 is the
>

horizontal velocity and k is the vertical unit vector.

Nondimensional variables are defined as follows:
C =¢*/Q; D = D*/Q; ¢ = ¢*/a?Q2; t = t*Q; £ = £*/Q.

where a and Q are the radius and angular velocity of the earth, respect-
ively, and the asterisks denote the dimensional variables.

The only nondimensional parameter in (1) is Lamb's parameter

a2Q?

gH

F =

The normal modes of the linear SWE are the Hough functions whose structure
and phase speed depend on F. They consist of two types of waves with quite
different properties: (a) east- and westward propagating gravity waves, and
(b) westward propagating rotational waves of the Rossby-Haurwitz type
(Kasahara, 1976).

Before proceeding, we will briefly discuss the SWE and their normal
modes in the limit of small and large F. In the limit F » 0 the phase speed
and the structure of the rotational modes become equal to those of the

normal modes of the BVE which are spherical harmonics. This can be seen

from (l1). For finite perturbations of the geopotential, the divergence D
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approaches zero if F » 0 and (l) reduce to

rrall v‘b'V(C + £), (2a)

v .V
0 = -v2(¢ + —ZL‘k) - V.[kxv (¢ + £)], (2b)

v

’ (2C)

where ;¢ = ﬁxv¢ is the nondivergent velocity in which { is the stream
function.

Equation (2a) is the BVE, which is decoupled from the non-linear
balance equation (2b) and the equation for the geopotential (2c).

For large F, the energy of the normal modes is concentrated near the
equator (Longuet-Higgins, 1968). Therefore, in the limit for F » = the SWE
can be approximated to first order by the equations for the
equatorial B-plane, for which the normal modes have been calculated by
Matsuno (1966).

The dependence on F of structure and phase speed of the normal modes of
the SWE has been investigated by Longuet-Higgins (1968).

Using the integral constraints for enstrophy and kinetic energy,
Fjértoft (1953) demonstrated that for F = 0 the (energy-weighted) average
wavenumber squared is conserved. Combining Fjértoft's theorem and the
conservation of angular momentum, the stability of planetary waves with
n S 2 can be ensured (Baines, 1976). Ripa (1982) showed by generalization
of Fjértoft's theorem that for F¢ << 1 this result is still valid. However,

for F¢ ~ 0(1), no general statement about the stability of planetary waves

can be made.

3. Numerical stability analysis

The stability of planetary scale flows is investigated by deriving the
perturbation equations and next linearizing these equations around the

basic flow.
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The perturbations are expanded in spherical harmonics, e.g.,

_ m _ m m im\ (3)
COupt) = B GOV = 5 ()BT (We

in which Yﬁ(x,u) are the spherical harmonics and P:(p) the associated

Legendre polynomials defined by

(20 *+ 1y(n - m)!]% (1 - pZ)%m qntm (w2 = )P
2 (n + m)! L dun+m H :

Here N and 6 are longitude and latitude respectively and p = sinef.

(4)

m —
P (w) = [

After projecting the linearized perturbation equations on Y:, we get an

infinite set of three ordinary linear differential equations for the coef-
m

ficients Cz, Dn and ¢§ . This infinite set has been truncated to a TI13
truncation, where we have retained only the antisymmetric components in the
vorticity and symmetric components in the divergence and geopotential. This
results in perturbations that have no cross equatorial flow. The coupling
integrals appearing in the linearized perturbation equations have been com-
puted numerically using the transform method (Bourke, 1972). Substituting
perturbations whose time dependence is of the form eimt we arrive at the
eigenvalue problem. Eigenvalues with a negative imaginary part correspond
with growing perturbations.

If we linearize around a state of rest, the eigenvectors are the normal
modes of the truncated system. As an example, Fig. 1l displays for zonal
wavenumber 2, the vorticity and divergence pattern of the gravest rotation-
al mode for three different values of Lamb's parameter, i.e., F = 0.275,
2.75 and 27.5. The concentration of energy towards the equator for in-
creasing values of Lamb's parameter is clearly seen. For F = 0.275, the
vorticity structure is almost identical to the structure of the spherical
harmonic Yg(x,p), which is a normal mode for F = 0, while for F = 27.5 the
absolute maximum of the vorticity is displaced about 30° towards the
equator.

The frequencies of all modes decrease for increasing values of Lamb's
parameter. For F approaching zero, the frequency of the rotational modes
approaches the frequency of the normal modes of the BVE.

Because we expand the variables in spherical harmonics, which are not

the normal modes of the SWE except for F = 0, any truncation distorts the
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Fig. 1. Stereographic plots of the vorticity and divergence patterns of
the gravest rotational mode with zonal wave numer 2 for three
different values of F.

Solid line: relative vorticity
Dashed line: divergence

a: F = 0.275; b: F = 2.75; c: F = 27.5
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structure and frequency of the normal modes of the SWE. In order to see to
what extent the modes of the T13 truncation are different from the Hough
functions, we have compared them with the modes calculated by Longuet-
Higgins (1968). The eigenvalues of the modes calculated by Longuet-Higgins
are correct within an error margin of 0.01%.

The gravest modes of the T13 truncation are virtually the same as the
Hough functions for all values of F. For large F the modes at the edge of
the truncation show distortion. For instance the difference in phase speed
between the (5,13) rotational mode of the T13 truncation and the same mode

calculated by Longuet-Higgins for F = 27.5 is 20%.

4. Zonal flow instability

4.1 Sufficient conditions for stability
Ripa (1983a) derived sufficient conditions for the stability of a baro-
tropic zonal flow u in geostrophic balance. In nondimensional form these

conditions may be formulated as follows:

If there exists any value of a such that

(acos® - u) %5(%—2—55) 20, (5a)
and
(acos® - u)? (% + ¢), (5b)

then the flow u(6) is stable.

The choice of u as a function of 6 is restricted by the requirement
that 1 + ¢F > 0. By choosing a = max(u/cos®) or q = min(u/cos®) the fol-

lowing weaker conditions for the stability of the zonal flow can be found:

9 &+ f .
ae(l " ¢F) does not change sign, (6a)
and
1
u u G+ oF
max(cose) - mln(cose) s mln{_‘ESEE‘"} (6b)
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From these criteria we can derive the limiting forms for the nondiver-
gent BVE (F = 0) and for the equatorial B-plane equations (F =+ =).

In the limit F = 0 condition, (6b) is always satisfied, while condition

(6a) reduces to
9 .
ae(C + f) does not change sign. (7)

Condition (7) is often referred to as the Kuo instability criterion.
For F + = the perturbations are all equatorially trapped modes, so that

we can make the approximation cos6 » 1, which reduces stability condition
(6b) to:

max(u) - min(u) < min((% + ¢)%). (8)

Here we have to remember that for F + « we still have the requirement
1 + ¢F > 0.

In the derivation of these stability criteria no assumptions have been
made about the structure of the perturbations (Ripa, 1983a). Therefore,

these criteria apply equally well for

shear instability: CC'">=<KD">=<C¢">=0
and
inertial instability: E—C' = Q—D' = §—¢' =0
AN an an :
The primed variables are perturbations and < > denotes the zonal aver-
age.

For inertial instability an independent stability criterion can be de-
rived (Ripa, 1983a):

The flow is inertially stable if

(f + 2u tan®)(f -

cise %a(ucose)) 2 0. (9)

For the equatorial B-plane this criterion may be simplified to:

Jou
f(f - 5;) 20, (10)
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which is the classical criterion for hydrodynamic instability (Holton,
1979).

From now on we shall call instability due to the violation of condi-
tions (6a), (6b) and (9), Kuo instability, gravity wave instability and
hydrodynamic instability, respectively. In this paper we will not deal with
gravity wave instability.

Figure 2 displays the amplitudes of the P? and Py flow for which con-
ditions (6a) and (9) are violated. The plus and minus sign of ¢y cor-
respond with easterly and westerly flow at the equator respectively. The
amplitudes for Kuo instability decrease for increasing values of F. The hy-
drodynamic instability criterion is independent of F. The Kuo instability
criterion is violated more easily when the Cg and Cg components have nega-

tive sign. This asymmetry is caused by the planetary vorticity appearing in
(6a).

4.2 Numerical stability analysis

Baines (1976) investigated the linear stability of zonal flows for the
nondivergent BVE on the sphere by numerically solving the eigenvalue prob-
lem. The zonal flows he studied consisted of a single Legendre polynomial
P;. For these flows the critical amplitudes for instability are clese to
the Kuo instability criterion. The kind of instability he found was shear
instability. Extending the work of Baines (1976), we have investigated the
stability of zonal flows for different values of F. We represent the vor-
ticity € of the zonal flow by a single Legendre function and ¢ is calcu-
lated from the nonlinear balance equation.

By numerically computing the eigenvalues from the linearized perturba-
tion equations the critical amplitudes of the P} and Py flow can be found
beyond which instability in the T!3 truncation occurs.

Within the range of positive values of 1 + ¢F no unstable rotational
modes were found for the +Pg flow. As will be explained below, this is due
to the absence of an effective triad for instability of the +Pg flow when
only the symmetric modes are considered. The crosses in Fig. 2a are the
numerically computed critical amplitudes for Kuo instability of the —P:
flow. They show good correspondence with the Kuo instability criterion. The
computed critical amplitudes are somewhat larger than the amplitudes de-

rived from the Kuo instability criterion, but display the same dependence
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on F. Here we have to recall that the Kuo instability criterion only marks
necessary conditions for instability.

The crosses in Fig. 2b are the numerically computed critical amplitudes
for unstable rotational modes of the Pg flow. They agree well with the Kuo
instability criterion.

Figure 3a, b display the computed growth rates as a function of F, and
the amplitudes of the Pg and Pg flow, respectively. The critical amplitudes
decrease for increasing F, but the growth rates also decrease. The thick
dashed lines in Fig. 3b separate the areas where different perturbations
have largest growth rates. For large F the -Pg flow is unstable for a small
range of amplitudes.

The frequency of the fastest growing modes is shown in Fig. 4. It can
be seen that for all amplitudes of the Pg and Pg flow the frequency de-
creases with increasing F, however, the rate of decrease depends strongly
on the amplitude of these flow components.

The structure of the fastest growing perturbation is rather insensitive
to the particular value of F. Large changes occur only at the transition
from one perturbation to another, indicated by the thick dashed lines in
Figs. 3b and 4b.

Summarizing, we state that when F is increased from zero, zonal flows
tend to become unstable at smaller amplitudes. The structure of the growing

perturbations undergoes only minor changes but growth rate and frequency

are strongly dependent on F.
4.3 Instability of zonal flows by the method of triad interactions

In several papers (Lorenz, 1972; Gill, 1974; Baines, 1976), the stabil-
ity of planetary waves was investigated with severely truncated systems. It
was shown that in many cases it is possible to get a good estimate of the
growth rate and structure of perturbations that grow on a single unstable
planetary wave by considering only a few component system. The most severe-
ly truncated system consists of one triad, i.e., the primary wave and two
perturbing waves. On an infinite B-plane the relevant triad is resonant and
on the sphere it is the triad closest to resonance.

The stability of zonal flows has never been investigated in terms of
triad interactions. This may be ascribed to the fact that on an infinite

B-plane resonant triads for which the primary wave is a zonal flow compo-
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nent do not exist. This is a consequence of Fjdrtofts theorem. Also for
marginally unstable zonal flows, the growing perturbations have large gra-
dients in a narrow critical layer. In the spectral domain, one needs many
components in order to adequately resolve the structure of the perturba-
tions in the critical layer. However, for physically relevant growth rates,
the critical layer broadens to a zone with a smooth behaviour of the per-
turbations in this zone. It may therefore be possible to study the insta-
bility of zonal flows by considering only one or a few triad interactions.
For F = 0 we will try to interpret the numerical results by analytical-

ly computing the stability properties of the flow when only one triad is

considered. The relevant equation is the BVE

£+(a—\k§£]—('a—\k£)+zg—;g=0.

at an ap ap on (1D

The eigensolutions of the linearized equations are the spherical har-
i(m K—wyt)

monics: Py(p)e y , Where we for simplicity have introduced the nota-

tion of Platzman (1962): y = n + im

y'
They obey the dispersion relation, wy = —2mycy, with
n(n +1)°
Y y v

The evolution equation for small perturbations to a solution {, of
this equation, neglecting quadratic terms among the perturbations is given

by

0! 3G, Ay 3¢" 3y, 9y, 8¢ 3y’ 8¢, 2y
ot * op 9N * CH G N - VRPN - (ap a + Zak =0 (12)

where the primes denote the perturbation variables. If €, is a zonal flow,

(12) becomes:

8¢ aC, A 3y, 3¢ ay!
st “ ) -G e = o (13)

We now restrict the zonal flow to one single Legendre polynomial

Co(u) = CyPy(u). This leads to:
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dp
3&! y ! y 38¢'! ' _
TR CM el v (e ¢, o)t - O (14)

If we expand the perturbations in spherical harmonics,
C'np,t) = § SACI) SHCTDR
a

and project (14) on YB’ we arrive at the equations for the coefficients of

the perturbations:

dg!
— B _ . ' ; - '
T 21mcﬁcB + %1m¢y E(ca cy)CaKqu (15)
where
+1 dp
KcBy = J_lPdPB ng dy is the coupling integral.

The most severe truncation of this infinite set of equations results in

two equations for the perturbations Ca and CB, which form a triad with the

zonal flow Cy:

d¢
a _ . oy _ _
el 21mcaca ‘/zlmcy[(cy Ca)caKaay+ (cy cB)CBKde]
(16)
dCs
T - 21chCB - %1mcy[(cy— CB)CBKBBY+ (cy— ca)caKaBy]

together with the equations for their complex conjugates Ea and EB' In

these equations the primes have been omitted. On substituting solutions

with a time dependence of the form elwt, (16) has nontrivial solutions only
if

w* - w2{A? + Cc? + 2BD} + [A2C? + B2D? - 2ABCD} = 0 (17)
where
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A= m[2cq - (cy - c)CK ); B = - m(cy - CB)CYK;

D = - m(cy - cu)CyK;

and

Growing perturbations exist if (17) has complex roots, which occurs

when

[2(cd— CB) - Cy[(cy- ca)Kaay_ (cy— CB)KBBY]] + (cy- ca)(cy— cB)C;K2 < 0.

This occurs if Cy is situated inside the interval formed by

. -, wa - (A)B
: m(p £ Vq) (18)

V1,2

when p? + q is positive and outside this interval when it is negative.

In this equation

’

w, = —2mc_, ©g= -2ch, p = - (cy— Ca)Kaay + (cy— cﬂ)KBBY

and
q = (cy- Ca)(cﬁ - cy)Kz.

The numerator at the right-hand side of (18) is the frequency differ-
ence of the two perturbations, which for two different perturbations never
equals zero. Resonant triad interactions with a zonal flow as primary wave
are thus impossible and the zonal flow is stable below a critical am-
plitude. For the triad interactions the critical amplitude depends on the

amount of off-resonance, w - and the strength of the nonlinear inter-

ﬁ’
action terms in the denominator.

Due to Fjértoft's theorem, only a few growing perturbations exist for
the gravest meridional modes. For instance, for the Pg flow only two un-

stable triads are possible:
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(0,3) and (0,3
(1,4) (2,4)

The amplitude for which the Pg flow is unstable in each of these triads
is computed from (18). The triad formed with the (1,2) and (1,4) component
displays the rather unexpected behaviour that it is only unstable for
negative values of Cg between -0.31 and -4.37. The triad formed with the
(2,2) and (2,4) component is stable between €y = -0.49 and +1.11.

In a hemispheric model with symmetrical perturbations, the triad formed
with the (2,2) and (2,4) components is neglected and consequently unstable
triad interactions for the +Pg flow do not exist. This explains why for the
+Pg flow in the hemispheric T13 model, unstable perturbations were not
found. The growth rate and frequency for the (1,2), (1,4) perturbation as a
function of the amplitude of the Cg component are displayed in Figs. 5a and
S5b. These were computed from (17). For comparison the results of the T13
model are taken from Fig. 3. The critical amplitude for the occurrence of
instability within the triad is -0.31, which is only slightly different
from the critical amplitude in the T13 system (-0.29). When Icgl is smaller
than 2.0 the dependence of the growth rate of the perturbation on C: is
very similar to the results obtained with the T13 truncation. For very
large values of Icgl the growth rate in the Tl13 truncation depends linearly
on Cg, whereas for the triad it goes to zero. The frequency of the fastest
growing mode in the T13 truncation depends more strongly on the amplitude
of Cg. The structure of the growing perturbations is very similar; 97% of
the kinetic energy of the perturbation in the T13 truncation is in the
(1,2), (1,4) components.

This example illustrates that, analogous to planetary waves, the insta-
bility of zonal flows can be approximated by considering only one triad,
namely, the most efficient triad. For very large values of the zonal flow,
more components are needed for an adequate description of its stability
properties. The most efficient triad is defined as the one with the
smallest critical amplitude. This critical amplitude is determined by the

amount of "off-resonance" and the strength of the nonlinear interaction

terms.
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5. Free planetary waves

In this section we will investigate the stability of the (2,3) wave
superimposed on a zonal flow which is in solid body rotation. We will first
consider the case where F = 0 and secondly F > 0.

For F = 0, the numerically computed growth rates (o) as a function of
the amplitude of the (2,3) wave (A) and the strength of the solid body ro-
tation ({{) are displayed in Fig. 6. The critical amplitude for instability
(the line o = 0) depends linearly on Cg. This is different from the situa-
tion on a B-plane where the stability of a planetary wave is independent of
the strength of the uniform zonal flow on which it is superimposed (Lorenz,
1972). For values of A larger than 0.4 the dependence of ¢ on A and Cg is
rather complex, displaying local minima and maxima.

Similarly as in the case for the zonal flow we will analytically com-
pute the stability of the (2,3) wave by considering only the most efficient

triad.

Inserting in (12) the expansion for a single spherical harmonic super-

imposed on a solid body rotation:

i(m A-w t)
Y
CoOMH,t) = COR%(p) + € B (p) e Y (19)
Yyvy
which obeys the dispersion relation:
w =-2mc - /(’/z)m ¢o(c - %) (20)
Y Yv Y Y

we arrive at the following perturbation equation:

ilm Ao t)
ag' . y 3¢’
— - imc C P e _—
ot YYVYY I

dP i(m A0 t)

R A
lewer) ve e ] 2
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dP i(m A-w t)

_Y, Y v 8¢
+ [HeoV(37,) + cYCy & ]ax
i(myk-wyt) 3y By
- (im C P )— + 2— =0 , (21)
1my y ye p N

where we have used the identity ¥ = -c ¢ , and P2(p) = /(’/2)p.
Yy
Following Lorenz (1972), we will analyze the stability of this flow in
a coordinate system moving with the phase velocity of the primary wave. We

therefore apply the following coordinate transformation:

Equation (26) then transforms into

ac im Ko ac dp im ko 2y
= - (mcCPe ' )= +[cVC/)+c —Le Y 4 2]
ot YYVYY ou ! 2 y dp CL
dP im ko 2 im Ko 3y
Yy v y
+c [2 +V(3/ )¢ + ¢ —Ze - (im C P e )—/ = 0. (22)
y[ 2’ y du ]ax Yvyy ou

1]
Next we expand the perturbations into spherical harmonics:

C'(Ngyp,t) =) Cé(t)YG(Ko,u)
a

and project (22) on Y . We then arrive at the equations for the

B

coefficients of the perturbations:

dg!

_E. = -9 ' - 3 o - i ' -

T 1mBC3(cy cB)(/( /0 60 +2) -3 Cy ) Ca(cy cO‘)KMy
where ol EEX dPa

Koy = [1 Ps(maPa W " mE, Eﬁ—)du (23)
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Similarly as for the stability of a zonal flow we can derive from (23)
an expression for the critical amplitude of the primary wave y within a

triad formed with two perturbations a and B. Growing perturbations exist if

{ma(ca- cy) - mB(cy— CB)}z
C; > 4l %/(3/2)C2)2 (c = ¢ )(e - ¢ )K? ) (24)
a vy 'y B

This equation includes the result of Baines (1976) derived for a free

Rossby wave in a medium at rest. The part of the numerator between brackets
reflects the resonance condition. It is equal to zero if w + w_ + @ = 0.
The critical amplitude for instability at off-resonance, i.e., when

w, + wB + wy # 0 depends on the amount of off-resonance and the strength of
the nonlinear interactions, which are determined by the coupling integral
K.

From (24) we can see that the stability of the planetary wave is also
linearly dependent on the strength of the solid body rotation on which the
wave is superimposed. This is in agreement with the previous numerical
results. The difference between these results and the results for the
B-plane is due to the fact that the modification of the phase speed of the
wave by the zonal flow is dependent on wavenumber for a spherical domain,
while on the B~-plane it is not.

By computing o for the (2,3) wave in all possible triad interactions it
appears that the most efficient triad is formed with the (1,2) and (l,4)
wave. Figure 7 displays for this triad o as a function of A and C?.

For small values of A the growth rate computed by considering only the
most efficient triad is in good agreement with the numerical results for
the T13 model (Fig. 6). When A becomes larger than 0.4 the growth rates be-
come noticably different in the two truncations. Thus for realistic values
of the amplitude of (2 the instability process can essentially be described
as an interaction among waves in only one triad. This result is similar to
what we derived for zonal flows. It has also been demonstrated by Baines
(1976) for a large number of planetary waves in the absence of a solid body
rotation.

We will now proceed to the case where F > 0. The eigenvectors of the

linearized SWE are the Hough functions, which can be written as
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Fig. 7. Analytically computed growth rates for the ¢2 wave superimposed on

a solid body rotation as a function of Cg and for F = 0.
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B
Cie t Cy(u)

i(m A-w t)
Hy(x,u)e LA Yo

B e , (25)
Dy(u)

B
¢y(u)

where y is the mode number and BC » Bp and B¢ the meridional structure
of £, D and ¢ for this mode. Extensive computations of these Hough
functions in dependence of F has been performed by Longuet-Higgins (1968).

After expanding the variables in Hough functions

¢ (Nu,t)
D (\,p,t)| =7 Aa(t)Hd(X,u) (26)
¢ Ovu,t)|  ©

and projection on HB(X,p), we arrive at the evolution equation for the

coefficients of the expansion

d

“TA(t) = -imw A+ i Y T, A A 27

dt B( B BB ) Bay a’y 27)
a,y

where HBay are the coupling integrals for the Hough functions. For F > 0

the couping integrals nBYY # 0, and consequently the Hough functions are

not exact solutions of the nonlinear equations.

A single unperturbed mode y generates a secondary mode B by self-inter-
action. In case of self-resonance, i.e., w + & + w. = 0 the energy trans-
fer to the secondary wave is most efficient.

Because of the wave rule (my+ my+ mB = 0) for the coupling integrals to

be nonzero, there are two possibilities for self-resonance:

1) Second Harmonic Resonance (SHR), which occurs if a primary wave vy

is at self-resonance with its first harmonic B:

2w(my,ny) = w(m ,nB)

B

m,2 = 2m

B Yy’
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2) Long wave/short wave Resonance (LSR), which occurs if:

w =0and m = 0.
Y

In this case the primary wave is at self-resonance with the zonal flow.

For an equatorial B-plane, Boyd (1983b) has demonstrated that in a
resting mean state, SHR is only possible between a Rossby primary wave and
a Rossby harmonic wave or between a westward traveling primary gravity wave
and a westward traveling gravity harmonic; LSR occurs for Rossby waves
superimposed on a zonal flow which makes them stationary (w = 0).

Before proceeding to a numerical stability analysis of the Hough modes
we will first study their evolution in time close to resonance. The time
evolution can be described by the interaction of the primary wave y and its

secondary mode B (Boyd, 1983b):

da

EEX = - imw A - iTA A,

dag (28)
Fraaliniie imbBAB - iIA;,

where Ay and Aﬁ are the amplitudes of the primary and secondary wave,

respectivel and I =TI =10
P Y Byy  yyB’

of mathematical simplicity we choose a coordinate system moving with the

secondary wave AB. Equation (28) then becomes:

the interaction coefficient. For reasons

dA'
—Y - -im w'A' -iIA'A!
dt YvYYy Yy B
(29)
dA!
B _itar2
at 1IAy

where the primes denote the variables in the moving coordinate system. In
case of self-resonance, w; = 0. Equation (29) can be reduced to a second-

order differential equation for the perturbation A :

B

dzAB dAB
qce + 21(my(a~)y + IAB)E =0 (30)

where the primes have been ignored. The initial conditions are:

dA

- —B i1z -
AB 0 and o= iIAZ where A, Ay(O).
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The solution to (30) is:

)
AB t )

TR + i/(1l - a?) tanh[-t*./(l—az) + i arctan[yTT—%—;;s)] (31)

where

m w *
a ==Y and t = Ia,t.

IA,
Figure 8a,Ab displays the time dependent behaviour of the amplitude and

phase of A = TK%T for different values of a.
In case of self resonance (a = 0), (31) reduces to
*
A = -i tanh(t ) (32)

and all the energy of the primary wave is irreversibly transferred to the
secondary wave, which is 90° out of phase with the primary wave.

For 0 < lal < 1, all the energy of the primary wave is still trans-
ferred to the secondary wave, but the rate of energy transport becomes
smaller for increasing a. The phase difference between the secondary and
the primary wave in the final state approaches zero for lal =+ 1. If
tal > 1, the energy of the primary wave is no longer irreversibly trans-
ferred to the secondary wave, but instead a vacillation exists between the
two waves. The amplitude and period of the vacillation decrease for in-
creasing a. For a = 4, the maximum amplitude of the secondary wave is only
25% of the primary wave. The result for a = 0 was also derived by Boyd
(1983b) for the equatorial B-plane.

Close to the resonance point a = 0, the Hough modes are no longer even
approximate solutions to the shallow water equations. This means that for
small values of a a stability analysis can only be interpreted in terms of
the sensitivity of the evolution of the flow pattern to initial errors. In
other words it provides information about the predictability of initial
states that are represented by Hough modes. For large values of a, we may
assume that the Hough modes are approximate solutions.

For the T13 truncation we have investigated the stability of the "(2,3)"

Hough mode superimposed on a solid body rotation as a function of F.
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Resonance occurs for a = 0.
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Fig. 10. Growth rate (a) and frequency (b) of the most rapidly growing

perturbations with m odd as a function of F and A for Cg = 0.
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The growing perturbations contain either wave components with m odd or
m even. When only antisymmetric modes in { are considered, perturbations
with m even are always due to dyad interactions, whereas perturbations with
m odd result from triad interactions. For F = 0, in which case dyad inter-
actions are impossible, only growing perturbations with m odd exist, a re-
sult which can also be derived from Fjdrtoft's theorem. The maximum growth
rates for both types of perturbations are shown for F = 2.75 in Fig. 9a
(m odd) and Fig. 9b (m even). This value for F corresponds to a scale
height of 8 km which seems reasonable for barotropic flow in the atmos-
phere. The growth rates are shown as a function of the strength of ¢¢ and
A. Comparing Fig. 9a with Fig. 6 we see that for small values of Cg there
is a substantial reduction of the critical amplitude, but the increase of
the growth rate with increasing amplitudes of the mode is slower. This is
in agreement with the results of the stability analysis of zonal flows. The
arrow in Fig. 9a marks the critical amplitude computed from (24) for
¢¢ = 0, when the frequencies of the Hough modes at F = 2.75 are inserted.
For the coupling integrals in this equation we have used the values for
F = 0. The fact that the critical amplitude found in this way, compares well
with the numerically computed critical amplitude suggests that for
F = 2.75, a triad interaction approach is also approximately valid, and
that the drop in the critical amplitude at €} = 0 can almost completely be
ascribed to the change in the frequencies. This is further confirmed by
inspection of the most rapidly growing perturbations, showing the dominance
of the "(1,2)" and "(1,4)" modes. The much stronger increase in the criti-
cal amplitude for increasing Cg at F = 2.75 is probably due to changes in
the normal mode structure. For F = 0 the structure of the normal modes are
spherical harmonics and independent of Cg. For F = 2.75 these structures
change noticeably with increasing ¢y

The critical amplitude for the perturbations with m even (Fig. 9b) ap-
proaches zero for €7 = 0.3, for which the "(2,3)" mode is stationary and
has LSR. The growth rates are much smaller than for perturbations with m
odd. Only for large values of (% does the growth rate due to dyad inter-
actions become increasingly more important.

Figure 10a, b displays the growth rate and frequency of the most rapid-
ly growing perturbations for m odd as a function of F. In this experiment,
Cg = 0. The critical amplitude is zero when F is approximately 3.5, for

which the triad formed with the "(1,2)" and "(1,4)" mode is resonant. Also
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for this value of F the increase of o with A shows a minimum. The frequency

decreases and shows a stronger dependence on A for increasing values of F.
The critical amplitude for perturbations with m even (not shown) ap-

proaches zero for increasing F; however, the growth rates for these types

of perturbations are much slower.

6. Forced stationary waves

In this section we will investigate the stability of forced stationary
waves by assuming that we have appropriate forcing terms in the equations,
such that the considered wave has zero frequency.

In the atmosphere, stationary waves are forced by different forcing
mechanisms, including orographic, diabatic and nonlinear wave forcing. As a
first approximation we will assume that the stationary planetary waves are
forced by a prescribed forcing. The forcing term needed to keep the wave
stationary is simply calculated as a residual term in the momentum equa-
tions to keep the time derivative equal to zero.

The vorticity of the forced stationary wave is described by a single
spherical harmonic, the divergence is set to zero, and the geopotential is
calculated from the nonlinear balance equation. This has the advantage that
the structure of the waves is the same for all values of Lamb's parameter,
in contrast to the structure of free waves which depend on F.

For different amplitudes of the (2,3) wave, we have numerically com-
puted its stability as a function of the strength of the solid body rota-
tion. For F = 0, the growth rate o as a function of ¢} is shown in Fig. lla
and 11b for 1€3! = 0.2 and 0.4, respectively. Figure lla displays two peaks
in the growth rate for €y = 0.3 and 0.45, the latter one being dominant.
When IC3! is increased from 0.2 to 0.4 (Fig. 1lb), the peaks in o become
larger and broader and the one at {2 = 0.3 shifts to a smaller value of the
solid body rotation. Also, new peaks appear that are significantly smaller

than the first two.

Again we will try to interpret the results for F = 0 in terms of triad

interactions.

Because of the constant forcing term, the evolution equation for small
perturbations to the stationary wave is the same as for free planetary

waves and is given by (12), where Y, is now a stationary wave.
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For a stationary wave consisting of a single spherical harmonic

superimposed on a solid body rotation, (21) reduces to

im A
ag! . y a¢!'
— - im ¢ P e —
ot Y ycy Y oy

dP im N
al
clever) e gte Vg
dP im N im A
Y .Y 13¢'_ . y 3y’ ' _
[#eov(3/,) + ¢l © I3 im ¢ B e TR T (33)

Expansion of the perturbation in spherical harmonics and projection on

Y gives

B

Tt -imBCé[J(s/z)Cg(% - cs) - 2cs] - %1cy § c (cy- ca)KBay' (34)

Comparing (34) with (23) for a free wave, we see that the equations are

identical for

& = WD =) (35)
Yy v

For this value of the solid body rotation, the free wave becomes sta-
tionary and consequently the artificial forcing term is zero.

Reducing the infinite set of equations to a triad consisting of the
primary wave y and two perturbations a and B, we find after substituting

int . X
solutions of the form e * , that nontrivial solutions exist if:

w2 + (A -C)w+ (AC - BD) =0

where

>
1]

ma{/(’/z)cg(% -c) - ZCG} B Vzcy(cy - CB)K

(36)

Q
[

ms{/(°/2)c2(% - CB) - 205} D %Cy(cy - ca)K

Growing perturbations exist if this polynomial in w has complex roots,

which occurs for
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(m V70820 - e - 2e.] + m [V(3/)E8Ch - c) - 2¢,1}

C; > (37)
(ca- cy)(cy~ cﬁ)K

In contrast to the situation for free waves, we can always find a value
of ¢} such that the critical amplitude is zero. This can be understood if

we consider the resonance condition of a forced stationary wave:

w +w =0 (38)

where w, and wB are the natural frequencies of the perturbations a and B.

Because w and wB depend differently on (9, every triad formed with the
wave y becomes resonant for a particular value of the solid body rotation.
A particular triad will always have two resonance points that are due to
the sum and difference of the absolute value of the frequencies.

The critical amplitude for which the triad becomes resonant is

m.c. my
SRS m-2mc +m- 2m.c, (39)
a aa B BB

For the forced (2,3) wave, resonance with the (1,2) and (1,4) wave oc-
curs for ¢} = -1.633 and 0.452, while resonance with the (1,2) and (3,4)
wave occurs for ¢ = -0.027 and 0.307.

Comparing the positive values with those for which Fig. lla displays
maxima in o, it is evident that the peaks can be attributed to resonant
interactions in single triads. This is confirmed by investigation of the
structure of the fastest growing perturbations in the T!3 model at
G} = 0.3 and 0.45. They are dominated by the (1,2) and (3,4) waves at
¢y = 0.3 and by the (1,2) and (1,4) waves at ¢} = 0.45. The small peaks
appearing in Fig. 11b when the (2,3) wave is increased from 0.2 to 0.4 do
not correspond with resonant triads. They are due to more complicated in-
teractions.

Next we will try to understand the shift in the resonance peak in
Fig. llb. Inspection of the growing perturbations for this peak reveals an

increasing contribution of the (1,4) wave for increasing amplitudes of the
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primary (2,3) wave. Similarly the growing perturbation of the other reson-
ance peak at £} = 0.45 displays a contribution from the (3,4) wave, al-
though this contribution is much smaller. Apparently there is a mutual in-
teraction between the two triads.

In order to investigate this more closely we have analyzed the set of
equations containing both triads. The system of equations contains four
components, i.e., the primary wave and three perturbations instead of four,
because the (1,2) component belongs to both triads. This set of equations
can still be examined in an analytical way.

The method is the same as for a triad, but now a system of six equa-
tions for the perturbations and their complex conjugates has to be solved.

int
If we again assume perturbations of the form et? this leads to a sixth-

order equation in w:

w¢ + a,w* + a,w? +a, =0 (40)
with
a, = giA + g3B + g2C + 2{-g%g2g3 - 8,8,Pr - £,8,Pq * g,8,qr},
a, =A+3B+C+2{gir + g3q+ g2p+ pg+qr + pr},
a, =gi +g7 +gi+2(p+gq+r),
where

g, = mi{J(=/2)c3(% -e) - 2ci}, i=1,2,3,
p = %(ca)z(ca— cl)(ca— cz)Klzasza’
q = %(Cd)z(ca- cl)(ca— cﬂ)KlaaK’la’
r =% (e - cz)(e = e3)Ky, Koy .

Here, a is the primary (2,3) wave and 1,2 and 3 indicate the spherical

harmonics (1,2), (1,4) and (3,4), respectively.
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The roots of (40) have been calculated for different values of
Ca as a function of (). The maximum growth rates are displayed in Fig. 12.

For small amplitudes of the (2,3) wave, the peaks of maximum growth
rate occur at the resonance points for both triads, which are indicated by
arrows. For larger amplitudes of the (2,3) wave both peaks display a shift
with respect to the point of resonance although the shift of the peak due
to resonance of the triad formed with the (1,2) and (1,4) wave is hardly
noticeable. The shift of the other peak is similar as the shift noticed in
the T13 model. The effect of increasing the number of components beyond
four on the stability of the (2,3) wave is thus rather small.

In the remaining part of this section we will consider the case that
F > 0. Because the frequencies of the normal modes depend on F (not shown),
the position of the resonant peaks also depends on F. For F = 2.75, reson-
ance with the "(1,2)", "(3,4)" components occurs at ¢% -0.042 and 0.244,
and with the "(1,2)", "(1,4)" components at {% = -0.56 and 0.322.

For F = 2.75 we have computed the stability properties of a forced sta-
tionary "(2,3)" wave for I{2l = 0.2 and O0.4. The results are displayed in
Fig. (13a, b). The stability analysis has been performed for discrete
values of ¢, starting at ¢¢ = 0 and with increments of 0.0l. Except for
the solid lines, Fig. 13a, b only shows the growth rate of the fastest
growing perturbations. Crosses and dots indicate growing perturbations with
m odd and m even, respectively.

The two largest peaks in Fig. 13a are due to resonances of the triads
formed with the "(1,2)" and "(3,4)" and "(1,2)" and "(1,4)" modes, which
are indicated by the arrows a and b, respectively. All the growing modes
resulting from these resonance peaks are connected by dashed lines.

It should be remarked that the (1, 2), (3,4) dashed curve cannot be re-
solved accurately as it is based on only one point. So the maximum may be
somewhat larger than the computed value.

Comparing with the case for F = 0, we notice that the large peak due to
resonance of the triad formed with the (1,2) and (1,4) wave has become a
factor of 2 smaller. The other resonance peak displays a small increase in
amplitude.

The solid line in Fig. 13a represents growing perturbations due to dyad
interactions. This curve was computed with increments of Cg of 0.002. Arrow
¢ indicates the value of {j for which LSR occurs. The perturbations, having

zero frequency, attain their maximum growth rate at ¢ = 0.304 for which
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Fig. 12. Analytically computed growth rates for the forced stationary (2,3)

wave as a function of Cg. The growth rates are computed for dif-

ferent amplitudes of the (2,3) wave.
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the "(2,3)" mode is stationary. Growing perturbations with smaller growth
rates resulting from more complicated interactions occur for values
of {9 between 0.06 and 0.15.

Increasing the amplitude of the "(2,3)" wave to 0.4, the wave becomes
unstable for nearly all values of ({ (Fig. 13b). However, the largest peaks
are still due to resonant triad interactions and dyad interactions.

Increasing Lamb's parameter induces instability, because of the relaxa-
tion of Fjértoft's theorem. This is best illustrated for the "(1,2)" wave
(not shown), which is absolutely stable for F = 0. For F = 2.75 and
I€z1 = 0.4, unstable perturbations exist for certain intervals of ¢, while
for F = 5.5 the "(1,2)" wave is unstable for almost the entire interval of
C}. Inspection of the growing perturbations shows large contributions from
higher zonal and total wavenumbers. The consequence is that for increasing
values of Lamb's parameter the effect of truncation becomes more serious,

and more components have to be retained in order to adequately describe the

stability of planetary waves.

7. Stability of observed flows

In order to investigate the effect of Lamb's parameter on the stability
of observed flow patterns, we have numerically computed the stability of
the mean winter climatological 400 mb flow. We have used the wind climato-
logy as derived by Oort (1983). From the winds we have computed the stream-
function pattern. The divergence was set to zero and the geopotential com-
puted from the nonlinear balance equation. We performed the calculations
for a TI13 truncation and treated the climatology as a forced stationary
flow pattern.

Figure l4a, b displays the growth rate and frequency of the three
fastest growing modes as a function of F. Depending on the particular value
of F, different modes have fastest growth rates. For small values of F,
mode 1 is the most rapidly growing mode. It has an e-folding time of about
20 days for F = 0, which decreases rapidly with increasing F. The period of
this mode increases from 40 days for F = 0 to 50 days for F = 8. Figure 15a
displays one-half a period of this mode for F = 0. As would be expected, it
has some resemblance to the fastest growing perturbation as found by
Simmons et al. (1983) for January 300 mb climatological flow pattern, al-

though the growth rate is much slower. Here we have to remember that we
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flow as a function of F.
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Fig. 15. Streamfunction patterns of the most rapidly growing perturbations
for the observed 400 mb winter climatology for F = 0 (a) and F = 8
(b). Shown is one-half a period. The difference between two suc-

cesive streamfunction plots is 1/12 of a full period.
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have used a 400 mb climatology that is likely to be less unstable. Apart
from that, the results may depend on the particular truncation used.

Figure 15b displays the fastest growing mode for F = 8 (mode 2). Most of
the variability in this mode is concentrated along a ray that runs from
60°E across the north pole to 120°W. It does not have much variability over
the central Pacific. The period of this mode is of the order of 100 days.
For F > 10, mode 3 (not shown) is the most rapidly growing mode, but it has
a rather high frequency.

Our findings for observed flow patterns are in agreement with the re-
sults for simple flow configurations. Increasing Lamb's parameter has a
profound influence on the stability characteristics of the observed flow.
Both the frequency and growth rate of the perturbations decrease for in-
creasing values of F. The decrease in growth rate is not uniform for all
perturbations. As a consequence, we find different modes with fastest

growth rates in different ranges of F.

8. Conclusions

The stability of simple planetary scale solutions of the shallow-water
equations was analyzed for small values of F. Increasing F results in
smaller critical amplitudes but growth rate and phase speed of the per-
turbations decrease with increasing F. A linear stability analysis of the
mean winter climatological 400 mb flow showed the same dependence on F.

Instability of simple planetary-scale flows often occurs within one
triad, which is the triad closest to resonance. This most efficient triad
approach applies to the instability of simple zonal flows but only for
physically realistic values of the amplitudes. In the area of marginal in-
stability it fails because many modes are needed in order to describe the
structure of the perturbation across the critical line. For very large
values of the amplitude, the most efficient triad approach again fails. The
reason for this is not clear. Accordingly, a description of the instability
process of free and forced planetary waves within one triad applies only

for realistic values of the amplitudes of the waves and not for very large

values.
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By considering a single triad it is easy to understand why the stabil-
ity of forced stationary waves superimposed on a zonal flow is so sensitive
to the strength of the zonal flow. Variation of the zonal flow strongly af-
fects the resonance conditions and thus the stability of the triads. If we
generalize this picture to the atmosphere, where the low wavenumber spec-
trum is dominated by stationary waves forced by combined orographic and
diabatic forcing, sudden changes in the amplitudes of these waves could be
explained by small variations of the zonal mean flow. If F is increased,
the values of zonal flows for which the growing perturbations display
maximum growth rates change and, as was the case with free waves, the
growth rates become smaller.

When F > 0, the normal modes (Hough functions) are no longer exact
solutions of the nonlinear shallow-water equations and they will naturally
decay. Outside the domain of self-resonance, the rate of decay is small
with respect to the time scale of barotropic instability. In case of self-
resonance, the decay can be described by dyad interactions and occurs on
the same time scale as barotropic instability. Within this range a conven-
tional stability analysis of Hough modes has to be interpreted in terms of

the sensitivity of the evolution of the flow pattern to initial errors.
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Chapter III

BIFURCATIONS IN A BAROTROPIC LOW-ORDER MODEL WITH SELF—INTERACTION*

ABSTRACT

For finite equivalent depth, the shallow-water equations (SWE) exhibit
instabilities based on dyad interactions. This process is called self-
interaction. In the present paper we investigate how the stationary states
of a low-order spectral model based on the SWE on the sphere are affected
by self-interaction. This is done by computing the bifurcation diagram for
increasing strength of the forcing in one of the vorticity components. The
instabilities occurring in this low-order system are topographic instabil-
ity and self-interaction. Self-interaction generates saddle-node as well as
Hopf bifurcations, resulting in multiple steady-states and limit cycles.
For large values of the forcing self-interaction significantly affects the
steady-state curve originating from topographic instability. Extrapolating
these results to the real atmosphere, self-interaction may influence the

atmosphere's nonlinear behavior.

* Submitted to Journal of Atmospheric Sciences with J.D. Opsteegh as co-
author
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1. 1Introduction

In Haarsma and Opsteegh (1988) (Chapter II of this thesis) the stabil-
ity properties of the shallow-water equations (SWE) were investigated. In
that paper we demonstrated the existence of an instability mechanism,
called self-interaction, which originates from dyad interactions. For
infinite equivalent depth (He+ @), in which case the SWE reduce to the
barotropic vorticity equation (BVE), this instability process vanishes.

In their pioneering study Charney and DeVore (1979) demonstrated the
existence of multiple steady states due to saddle-node bifurcations in a
low-order model containing topographic instability only. Since then many
studies have been devoted to the analysis of nonlinear low-order models in
which various types of instability occur. Topographic instability was
combined with either baroclinic instability (Charney and Straus, 1980;
Reinhold and Pierrehumbert, 1982) or barotropic instability (Legras and
Ghil, 1985; Kallen, 1981).

In this paper we combine topographic instability with self-interaction.
We are interested in the following two questions: What type of bifurcations
occur in a model with self-interaction only and what is the effect of self-
interaction on the bifurcation diagram that originates from topographic
instability? The latter question is inspired by studies of Reinhold and
Pierrehumbert (1982) and others, who showed that the bifurcation diagram
due to a single instability mechanism can be drastically changed when a new
instability mechanism is introduced. In Haarsma and Opsteegh (1988) we dis-
cussed the relevance of the SWE for the large-scale low-frequency motion in
the atmosphere. The SWE describe the horizontal structure of a stratified
flow, like the atmosphere, only when nonlinear advection is small. So they
are probably too simple to study all aspects of the lower frequencies in
the atmosphere. Nevertheless the choice of a finite equivalent depth is
probably more realistic than simply assuming that He % «, in which case the
SWE reduce to the frequently studied BVE. If this is true, then self-inter-
action might be an important instability mechanism for the large-scale low-
frequency motion in the atmosphere.

In section 2 we describe the low-order spectral model. A summary of
self-interaction is presented in section 3. In section 4 we present the
bifurcation diagram when self-interaction is the only instability mechan-

ism. The bifurcation diagram when topographic instability and self-interac-
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tion are combined is discussed in section 5, followed by the conclusions

and a discussion of the results in section 6.

2. Model

The nondimensional SWE on a rotating sphere, including forcing,

dissipation and topography are given by:

%% = - V.V(C *E) - (¢ + £)D + G, - ¢, (1a)
B vagp s YY) - v.qkx¥(c + £)] - ep, (1b)
% 3N - 6 - (b - -2

5t =~ V-V - ¢) - (0 - 00D - 2, (1e)

where ¢, D and ¢ are the relative vorticity, horizontal divergence and
perturbation geopotential respectively, ¢h is the geopotential of the
topography, f the planetary vorticity, v is the horizontal velocity field,
ﬁ the vertical unit vector and Gf the vorticity forcing. The vorticity as
well as the divergence equation contain a Rayleigh friction term with
friction parameter €.

The nondimensional variables involved in (la - 1lc) are defined as

follows:
* * * * *
¢=C/Q; D=D /q; $=¢ /a?Q%; t =t Q; £ = ¢ /Q, (2)

where a and Q are the radius and angular velocity of the earth
respectively. The asterisks denote the dimensional variables. The only
nondimensional parameter in (1) is Lamb's parameter:

a2Q?

) (3)
gH,

F =

where H, is the equivalent depth and g is gravity. As shown in Haarsma and

Opsteegh (1988) the SWE reduce to the BVE in the limit F -+ 0.
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For convenience we rewrite (lc) as:

% _ _ 2 _nhy L _ _ D2
ot - V.v(¢ F) oD - (1 n)F. (14d)

*
where n = ¢h/(gH ) is the topography scaled by the equivalent depth.
e

We express the variables of (1) in a series of spherical harmonics. The
expansion is truncated at a certain wavenumber, thereby reducing the set of
three partial differential equations to a finite set of 3N ordinary differ-
ential equations, where N is the number of spectral components retained in
the truncation. We have only considered the asymmetric components in the
vorticity and the symmetric components in the divergence and geopotential,
thereby excluding cross equatorial flow. The special form of truncation we
have chosen in the different experiments will be outlined in the discussion
of each experiment. For all experiments the Rayleigh friction € is

1.90 107% s-l, which corresponds to an e-folding time of 6 days.

3. Self-interaction

In this section we will give a short review of self-interaction. A more
extensive treatment can be found in Boyd (1983a,b) and in Haarsma and
Opsteegh (1988). The normal modes of the SWE are Hough functions (Longuet-
Higgins, 1968). For F = 0, they reduce to spherical harmonics, which are
the normal modes of the BVE. The spherical harmonics are exact solutions of
the nonlinear BVE, but for F > 0 the normal modes of the linear SWE are not
exact solutions of the nonlinear SWE. So they decay without the necessity
of being perturbed. The decay is such that a single Hough mode y generates
a secondary Hough mode B. This is called self-interaction.

In general self-interaction is weak and the decay of a Hough mode is
slow compared to the decay rates resulting from barotropic instability by
wave triads. So Hough modes can be considered approximate solutions of the
nonlinear SWE. However when the phase speed of the primary Hough mode

equals that of its secondary mode, the decay into that mode is fast. This

is called self-resonance.
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We distinguish two types of self-resonance:
1. Second Harmonic Resonance: occurs when the phase speed of the primary

wave with zonal wave number my equals that of its second harmonic com-

ponent (2my)

2. Long wave/short wave resonance: occurs for stationary primary Hough

modes. They decay into zonal flow components.

4. Bifurcations due to self-interaction

In this section we investigate what type of bifurcations occur due to
self-interaction. We choose F = 2.75, which corresponds to an equivalent
depth of 8.103 m for the atmosphere. The restriction to self-interaction
can be accomplished by choosing a spectral truncation that excludes
barotropic instability by triad interactions. Such a choice is possible
because of Fjértoft's theorem (1953). This theorem states that there can be
no energy and enstrophy transport in one direction of the wave spectrum.
Therefore the only unstable triads are those satisfying the following

inequality for total wave number n:

n_ < ny < nB, (4)
where the subscript y denotes the primary wave and a and B the perturba-
tions. The spectral truncation used in this section is shown in Fig. 1. The
crosses indicate the vorticity components, whereas the divergence and geo-
potential are denoted by circles. The modes retained in this spectral trun-
cation are the zonal modes "(0,1)" and "(0,3)", and the wave modes "(2,3)"
and "(2,5)". Because of (4), barotropic instability is impossible for these
modes. The only possible type of self-resonance is longwave/shortwave re-
sonance, which occurs when the "(2,3)" or the "(2,5)" mode becomes sta-
tionary resulting in resonant decay into the zonal flow. Second harmonic

resonance is impossible because of the absence of modes with m = 4.

The vorticity equation (la) is forced in the (0,1) and (2,3) component:

* *

G. = ¢ PIOnw) + ¢ RIOMW). (5)
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Here P?(k,p) is the associated Legendre polynomial, where \ is longitude,
B = sin¢ and ¢ is latitude. The coefficient C:* denotes the strength of the
forcing in the (m,n) component. The steady states were computed at the
prescribed value of €& (friction) for increasing Cg*, keeping Cj* at a fixed
value. This was done for Ci* = 0.7 1072 and Cg* = 2.8 10 . These values
correspond with a maximum vorticity forcing at 35°N of 0.37 10—12 s_2 and
1.48 10_12 s_2 respectively. We will denote these two wave forcings as weak
and strong wave forcing respectively. For the computation of steady states
we used the pseudo-arclength method as described by Legras and Ghil (1985)
and Haarsma and Opsteegh (1989) (Chapter IV of this thesis).

Figure 2 displays the projection of the steady-state curves on the
(2,3) vorticity component for weak wave forcing (curve a) and strong wave
forcing (curve b). The weak wave forcing curve shows a peak at
Cf* = 0.78 10—2. For this value of Cg* the strength of the (0,1) component
in the solution is 0.30. This is the value for which the "(2,3)" mode
becomes stationary, resulting in resonant excitation of this mode by the
wave forcing C:*. The (0,3) component (not shown) of all computed steady
states remains very small (< 0.3 10_2), the energy transfer from the
"(2,3)" mode to the zonal modes due to self-interaction is balanced by the
dissipation. Bifurcations do not occur for weak wave forcing; all computed
steady states are stable.

The results for strong wave forcing (curve b of Figure 2) show signi-
ficant differences with those for weak wave forcing. The projection of the
steady-state curve on the (2,3) vorticity component now displays two peaks
instead of one. Both peaks are folded, resulting in multiple steady states
for Cg* between 0.37 102 and 0.39 10”2 and between 0.86 10~ 2 and
1.13 1072, In contrast with the weak forcing case the (0,3) component (not
shown) now attains a considerable amplitude with maxima in the order of
0.6.

At the turning points (points A, B, C and D) a saddle-node bifurcation
occurs, where a real eigenvalue changes sign. The steady states at the re-
turning branches of the curve (between A and B, and C and D) are unstable,
possessing a single positive real eigenvalue. The stationary growing per-
turbations display contributions from the zonal as well as the wave compo-

nents.

73



Fig. 3 Meridional structure of the topography.
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Fig. 4 Projection of the computed steady state curve on Cg for F = 10_5.

The meaning of the symbols indicating the stability of the steady

states is the same as in Fig. 2.
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Hopf bifurcations, which occur when a pair of complex conjugated eigen-
values crosses the imaginary axis, show up at the points a, B, y and A. At
point A the Hopf and saddle-node bifurcation coalesce: The complex con-
jugated eigenvalue with positive real part at the interval between a and A
becomes identically zero at A and changes into the purely positive real
eigenvalue at the interval between A and B. Like the growing perturbations
due to the saddle-node bifurcations, the limit cycles due to the Hopf bi-
furcations display contributions from the zonal as well as the wave compo-
nents.

These results demonstrate, that like topographic-, barotropic- and

baroclinic instability, self-interaction is able to generate saddle-node

and Hopf bifurcations.

5. Bifurcations in a model with topographic instability and

self-interaction

In this section we investigate how the introduction of self-interaction
affects the bifurcation diagram that originates from topographic instabil-
ity. First, in 5.1, we compute the steady states for a model with topogra-
phic instability only. Subsequently we compute in 5.2 the steady states
when self-interaction is added. In that section we also present an analysis

of the observed differences between the steady-state curves of these two

experiments.
5.1 Topographic Instability

In order to exclude self-interaction, we set F at a very small value
(F = 10_5). The spectral truncation is the same as used in the previous
experiment. The topography is represented by the (2,2) and (2,4) compo-
nents. They are indicated by triangles in Fig. 1. We choose n: = 0.122
and ni = 0.077. This results in a mountain with zonal wave number two and
a meridional structure such as depicted in Fig. 3. The maximum amplitude
of n is 0.2, which is attained at 43°N. The possible interactions between

the topography and the wave components are given below:
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Due to the topography energy flows from the zonal into the wave components
and vice versa.

In contrast to the previous experiment with self-interaction, the
vorticity equation (la) is only forced in the (0,1) component:

*
G_ = ¢ PO(n,p). (6)

f 1
No forcing is applied at the (2,3) component. The wave modes are solely ex-
cited by interaction of the zonal flow with the topography. We have com-
puted the steady states for increasing Cg*. The projection of the steady-
state curve on the (0,1) component of the vorticity is shown in Fig. 4. It
displays a number of turning points or saddle-node bifurcations. The three
saddle-node bifurcations where the steady-state curve returns are indicated
by I, II and III. The returning branches of the curve are unstable, pos-
sessing a single positive real eigenvalue. Due to the folds in the steady-

state curve, at least three steady states exist s1mu1taneously between
*

¢s,
¢

shown) display local maxima at II and I respectively, whereas both compo-

-2
1.54 10 and C° = 3.48 10 -2 and five between C: = 0.64 10 -2 and

-2
0.90 10 . The amplitudes of the (2,3) and (2,5) component (not

nents attain their absolute maximum close to III. At this point both compo-
nents are approximately 90° out of phase with the topography, resulting in
a large form drag. For Cg* larger than 1.9 10—2, beyond the last fold in
the steady-state curve, both components are approximately in phase with the
topography. For these states the form drag is small, and consequently an
increment of Cg* mainly results in an increment of Cg.

Hopf bifurcations are observed after the second and third fold at
Cg* = 0.71 1072 (point a) and Cg* = 1.63 10_2 (point y), resulting in

growing perturbations between a and B, and y and 8.
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5.2 Topographic instability and self-interaction

In order to allow self-interaction we now choose F = 2.75, and repeat
the experiment of the foregoing section. We will refer to the experiment
with F = 2.75 as B and to the experiment of the previous section as A.

The projection of the steady-state curve on the (0,1) vorticity com-
ponent is displayed in Fig. 5. Comparison with the steady-state curve for
experiment A (Fig. 4) shows that for Cf* smaller than 1.3 10”2 both curves
are very similar to each other. This is also the case for the (2,3) and
(2,5) components (not shown). The bifurcations I and II occur for approxi-
mately the same values of C:*. Significant differences exist for larger
values of Cg*. In B, bifurcation III occurs for a much smaller value of
Cg* (1.32 10_2). The peaks in the (2,3) and (2,5) components at this bifur-
cation point are also much smaller than in experiment A. Apparently at
larger values of Cg* self~-interaction facilitates the formation of bifurca-
tions due to topographic instability, by transferring topographically in-
duced wave energy back into the zonal flow component. For still larger
values of Cf* a completely new foli in the sE;ady—state curve appears due
to a saddle-node bifurcation at ¢ =2.010 (Iv).

The Hopf bifurcation in experiment A, after the second fold disappears,
whereas the Hopf bifurcation after the third fold now occurs at
Cg* = 0.95 1072 (point y) resulting in growing perturbations for Cg*
between 0.95 1072 and 1.13 10™2 (point 8).

The introduction of self-interaction thus causes significant changes in
the steady-state curve of experiment A. In order to investigate the rela-
tive contribution cf both topographic instability and self-interaction for
each of the bifurcations in the new steady-state curve, we performed a sta-
bility analysis of the steady states for the linearized equations without
the topographic term. The result is shown in Fig. 6. The steady states on
the returning branches of bifurcation I and III are all stable, while the
states on the returning branch of II are only partially unstable, dis-
playing much smaller growth rates than the original ones. From this we
conclude that all these three bifurcations originate from topographic
instability. The topographic origin of the first two bifurcations is in
agreemeni with the already observed fact that the steady-state curve for

small Cg is very similar to the one in experiment A, which allows only

topographic instability. Also the third bifurcation, although significantly
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Fig. 5 As Fig. 4, but now for F = 2.75.
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Fig. 6 As Fig. 4. Shown is the stability of the steady states when the

topographic forcing is removed.
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modified by self-interaction, still originates from topographic instability.
The growth rates on the returning branch of bifurcation IV hardly change
when the topographic term is removed. This new bifurcation is thus entirely
caused by self-interaction. Fig. 6 also shows that the Hopf bifurcation
beyond III at Cg* = 0.95 10—2 has disappeared when the topographic term is
removed, revealing that the origin of this bifurcation is topographic
instability.

In order to obtain a better understanding of the origin of the bifurca-
tions and the changes in the steady-state curve due to the introduction of
self-interaction, we will use Pedlosky's (1981) analysis of topographic
instability. In the analysis of Pedlosky, which is valid when nl/° <1,
the structure of the topographically forced wave is approximately equal to
that of a free wave. The nonlinear interactions only determine the ampli-
tude of the wave. The saddle-node bifurcation where the steady-state curve
retuns, occurs when the zonal flow is slightly stronger than the zonal flow
for which the free wave is stationary (super resonant flow) (Figs. 1 and 2
of his paper). In Pedlosky's analysis the zonal flow is only in second
order affected by the nonlinear interactions. In our experiment, where
n = 0.2, the forced zonal flow component is strongly modified by inter-
actions; the amplitude of the (0,3) compcnent is comparable to that of the
(0,1) component. Despite the strong nonlinearities, we will try to inter-
prete our results in terms of his analysis.

We computed the frequency w of the eigenmodes of the zonal symmetric
part of the computed steady states. The structure of the eigenmodes changes
constantly along the steady-state curve, but they can always be identified.
For the BVE in solid body rotation they reduce to the spherical harmonics
(2,5) and (2,3). In the following we shall denote these modes as mode 1 and
mod 2 respectively. Fig. 7a displays for experiment A (F = 10™°) the fre-
quencies of mode 1 (curve a) and mode 2 (curve b) as a function of the
(0,1) vorticity component of the computed steady states. The arrows I, II
and III indicate the position of the saddle-node bifurcations where the
steady-state curve returns. Mode 1 becomes stationary for Cg = 0.093, which
is somewhat smaller than 0.095 for which the first saddle-node bifurcation
occurs.

In agreement with the analysis of Pedlosky this saddle-node bifurcation
thus occurs for slightly super resonant flow. This mode is also stationary

for Cg = 0.175 and CT = 0.192. Again these values are somewhat smaller than
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Fig. 7 Frequencies of the modes of the zonal symmetric part of the
computed steady states for F = 1072 (a) and F = 2.75 (b). The
frequencies are displayed as a function of Cg of the computed
steady states. The arrows indicate the bifurcations where the

steady state curve returns.
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the values of Cg for which the other two saddle-node bifurcations occur:

¢S = 0.209 (II) and Cg = 0.200 (III). It follows that all three bifurca-
tions in the steady-state curve occur when mode 1 is super resonant. Mode 2
is stationary for Cg = 0.327. However, the steady-state curve does not show
a corresponding fold due to saddle-node bifurcations. Apparently in this
case the Rayleigh friction is too strong in comparison with the topographic
forcing for bifurcations to occur.

The frequencies of the two modes for experiment B are displayed in
Fig. 7b. Similarly as for experiment A the first three bifurcations in the
steady-state curve, which originate from topographic instability, are con-
nected to super resonance of mode 1. The values Cf for which this mode
becomes stationary i.e. 0.104, 0.153 and 0.167 are approximately the same
as in experiment A.

The new bifurcation (IV) occurs at ¢y = 0.578, which is somewhat larger
than the value for which mode 2 becomes stationary (Cg = 0.545). In con-
trast to experiment A, the introduction of self-interaction thus causes a
saddle-node bifurcation when mode 2 is super resonant.

Compared to experiment A, mode 2 becomes stationary for a much larger
value of Cg. Also, the frequency of this mode does not show a linear in-
crement with Cg. Instead the curve displays a bent close to the point where
the mode is stationary. Self-interaction thus strongly influences the fre-
quency of mode 2. This is caused by the fact that self-interaction is
causing a large feedback of wave energy into the (0,3) component of the
zonal flow, thereby altering the frequency and structure of the eigenmodes
of this zonal flow. Fig. 8, displaying the projection of the steady-state
curve on the (0,3) vorticity component for experiment A and B, clearly
shows the large differences in the amplitude between A and B. In experiment
A the Cg component decreases rapidly after bifurcation III,*whereas in
experiment B, this component increases monotonously with Cg until bifur-
cation IV. For large values of Cg* self-interaction thus completely changes
the distribution of energy between zonal and wave components. Moreover,
Fig. 8 shows that in both experiments the value of Cg is approximately the
same for the first three bifurcations. This is also the case for the (0,1)
component (Fig. 7). The reduction in Cg* for which bifurcation III occurs,
is thus connected to the smaller amplitudes of the wave modes. As discussed
before, this reduction is caused by self-interaction which makes excitation

of large wave modes impossible.
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Fig. 8 Projection of the computed steady-state curve on Cg for F = 10~
(a) and F = 2.75 (b).
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*
Summarizing we state that for small Cg self-resonance does not signi-

ficantly affects the steady-state curve originating from topographic insta-
bility. For larger values of C;* (>1.3 10_2), self-interaction signifi-
cantly reduces the value of Cg for which bifurcation III occurs. A new
bifurcation, entirely caused by self-interaction, emerges for still larger
values of Cg*. In agreement with the quasi-~linear theory of Pedlosky we
demonstrated that, although in our experiment the flow patterns cannot
strictly be considered as quasi-linear, saddle-node bifurcations due to
topographic instability as well as self-interaction occur when the zonal

flow is slightly super resonant.

6. Conclusions and discussions

The shallow-water equations including topography contain three insta-
bility mechanisms, i.e.: topographic instability, barotropic instability
and self-interaction. In Haarsma and Opsteegh (1988) the last two in-
stability mechnisms were investigated. There it was shown that they can be
described by triad and dyad interactions respectively and that the critical
amplitudes for instability as well as the growth rate and frequency of the
growing perturbations depend on Lamb's parameter F. For F = 0, in which
case the shallow-water equations reduce to the barotropic vorticity equa-
tion, self-interaction is impossible.

The effect of topographic instability on the bifurcation diagram was
first studied by Charney and DeVore (1979). For a low-order model they
demonstrated the possibility of saddle-node bifurcations due to topographic
instability. Others have studied the effect of barotropic instability
(Kallén, 1981; Legras and Ghil, 1985) and baroclinic instability (Charney
and Straus, 1980; Reinhold and Pierrehumbert, 1982).

Following these studies we have investigated what kind of bifurcations
can be generated in a low-order model with self-interaction. We demonstra-
ted that like the other instability mechanisms self-interaction generates
saddle-node as well as Hopf bifurcations.

We next investigated how the introduction of self-interaction affects
the bifurcation diagram which originates from topographic instability. For
small Cg* self-interaction does not significantly affect the steady-state

curve originating from topographic instability. Significant changes appear
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*
for Cf larger than 1.3 10-2. In absence of topography this value of
*

Cg would result in a zonal flow of about 100 ms"l at midlatitude. For the
atmosphere this is an unrealistically large value. Whether or not self-
interaction is important for the real atmosphere is still unclear. This can

only be answered by investigating more realistic models of the atmosphere.
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Chapter IV

NONLINEAR RESPONSE TO ANOMALOUS TROPICAL FORCING*

Abstract

We have investigated the nonlinear steady-state response of a baro-
tropic model to an estimate of the observed anomalous tropical divergence
forcing for the El-Nifio winter of 1982/83. The 400 mb climatological flow
was made a forced solution of the model by adding a relaxation forcing. The
Rayleigh friction coefficient (g = 20 days_l) was chosen such that this
solution is marginally stable. The steady states were computed as a func-
tion of a dimensionless parameter a, that governs the strength of the ano-
malous forcing. The computed steady-state curve deviates markedly from a
straight line, displaying a fold and an isolated branch. The linear steady-
state response pattern (a << 1) compares well with the observed pattern.
After the fold at a = 0.65, the agreement is smaller. A further increase
in a after the fold results in saturation of the response. The streamfunc-
tion patterns of the isolated branch display unrealistic large amplitudes.

Time integrations show that the steady states govern the time dependent
behavior despite their unstable nature. The resulting time-mean patterns
are very similar to the steady states. Periodic, quasi-periodic and com-
plete chaotic behavior are all three observed.

Increasing the Rayleigh friction coefficient to £ = 10 days_1 results
in a disappearence of the fold as well as the isolated branch. Like for
e = 20 days_l, the agreement between the steady-state response and the ob-
served pattern decreases when a is increased. From these results we con-
clude that the atmospheric response to even a very strong El1-Nifo event

like the one in 1982/83 is approximately linear.

*
Submitted to Journal of Atmospheric Sciences with J.D. Opsteegh as co-author.
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1. Introduction

The impact of the release of tropical latent heat for extratropical
anomalies on time scales longer than a few weeks was suggested first by
Bjerknes (1966). The results of recent experiments with linear steady-state
models supported Bjerknes' ideas (Opsteegh and Van den Dool, 1980; Webster,
1982). Hoskins and Karoly (1981) provided a theoretical explanation for
these teleconnections in terms of dispersion of Rossby waves from the
tropics into the middle latitudes. From observations Horel and Wallace
(1981) found that the occurrence of the Pacific North America (PNA) pattern
in the Pacific was related to El1-Nifio years. More recent studies with
General Circulation Models (GCM's) (Geisler et al., 1985; Blackmon et al.,
1983; Kang and Lau, 1986) and observational studies (Mo and Livezey, 1986;
Lau and Boyle, 1987) confirmed the relation between tropical forcing and
large-scale low-frequency anomalies in the extratropics.

Concerning the role of transients in generating extratropical anomalies
there is less agreement. Budget calculations indicate that the
contributions from transients are small (Sardeshmukh and Hoskins, 1985; Lau
and Boyle, 1987). However, several investigators have pointed out, using
model simulations, that despite the smallness of these terms they can
significantly modify and strengthen the observed midlatitude anomalies (Kok
and Opsteegh, 1985; Kang and Held, 1986).

The contribution of the barotropic instability of planetary waves to
the explanation of persistent extratropical anomalies was discussed by
Simmons et al. (1983). Using a model based on the barotropic vorticity
equation, they showed that the fastest growing mode of the unstable cli-
matological time-mean flow could be linked to observed teleconnection
patterns. A similar result was obtained by Frederiksen (1983) with a multi-
level model. He found that the structure, growth rate and frequency of the
fastest growing perturbations are primarily dependent on the static stabi-
lity parameter. These ideas were supported by Geisler et al. (1985) and
Branstator (1985), who showed that certain anomaly patterns are generated
by a variety of tropical forcings, indicating the existence of barotropi-
cally unstable modes.

Another approach was followed by Reinhold and Pierrehumbert (1982) and
Legras and Ghil (1985), who investigated simplified nonlinear models of the

atmosphere and demonstrated that in the chaotic domain these models exhibit
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regime-like behavior. In experiments with GCM's (Manabe and Hahn, 1981;
Lau, 1981) persistent large-scale anomalies from the time-mean circulation
occur when the boundary forcing is kept constant. These studies suggest
that in order to fully explain low-frequency variability in the atmosphere
one has to consider the nonlinear interaction among the planetary waves.
Sardeshmukh and Hoskins (1985) explicitly computed the contributions from
the nonlinear terms in the vorticity budget for the El-Nifio winter of
1982/83. They showed that the nonlinearities in the advection and stret-
ching terms contribute significantly to the vorticity budget. Following the
suggestions of Sardeshmukh and Hoskins the main goal of this paper is to
analyse the importance of the nonlinear terms for the extratropical
response to a tropical forcing.

Within a linear framework, Branstator (1985) demonstrated that the wave
pattern in the climatological basic state affects the steady-state response
to anomalous forcing. By including zonally asymmetric components in the
basic state of a linear model he showed that it is possible to qualitative-
ly simulate the time-mean response of a GCM to a tropical SST anomaly. Mo-
del simulations that include the nonlinear interactions among the planetary
waves, such as those performed by Lau and Lim (1984), Sardeshmukh and
Hoskins (1985), Kang and Held (1986), Hendon (1986) and Held and Kang
(1987), all show that the nonlinear response to tropical forcing is in qua-
litative agreement with the predictions of linear theory. In these studies
the major effect of the nonlinearities is to modify the structure and
amplitude of the stationary waves, while the position of highs and lows
remains relatively unaffected.

In the above mentioned studies the nonlinear response is computed by
performing time integrations. In addition to these studies we have computed
nonlinear steady states of the barotropic vorticity equation (BVE) in
response to a climatological relaxation forcing and an anomalous tropical
forcing. The steady states are computed as a function of a non-dimensional
parameter a which determines the strength of the anomalous forcing. By com-
puting the steady states when a is increased from zero to one we get a gra-
dual transition from linear to nonlinear solutions. The stability of the
computed steady states is numerically evaluated. We next investigated the
relevance of these (unstable) steady states for the time-mean patterns

derived from time integrations.
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The relaxation forcing was determined such that the climatological
400 mb winter flow is a forced solution when the anomalous forcing is ab-
sent. The value of the Rayleigh friction coefficient is chosen such that
this solution is marginally stable. We computed the steady states (varying
a from 0 to 1) for the observed anomalous tropical forcing occurring during
the E1-Nino winter of 1982/83. The forcing was computed by estimating the
anomalous topical divergence from the observed anomalies in outgoing long
wave radiation (OLR). Time integrations were performed for several values
of a. Next we omitted the relative vorticity in the stretching term, which
makes the divergence forcing independent of the solution. By doing so we
were able to distinguish the separate effects of the nonlinearities in the
advection and in the stretching term. As our choice for the value of the
Rayleigh friction coefficient is considered to be quite low, we also in-
vestigated the sensitivity of the solutions to an increase in the friction
parameter.

Sections 2 and 3 of this paper deal with the model equations and the
method for the computations of steady states. In section 4 we present the
steady-state curves, while in section 5 we investigate the relevance of
these steady states for the dynamics of the system by performing time inte-
grations. The effect of the relative vorticity in the stretching term and
the sensitivity of the results to an increase in the Rayleigh friction are

treated in sections 6 and 7 respectively, followed by the conclusions and a

discussion of the results in section 8.

2. Model Equations

We study solutions of the barotropic vorticity equation with forcing

and dissipation:

g% + J(Y,§ + £) + e¢ =F, (1)

where ¢ and f are the relative and planetary vorticity, { the stream-
function, J the Jacobian operator, ¢ is the Rayleigh friction parameter,
and F the forcing. We apply this equation at the 400 mb level. The forcing

is computed from an estimate of the time-mean divergence D at that level:

F =-(¢ + £)D. (2)
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A

We split F into a climatological part F. and a perturbation part F. The
climatological forcing is prescribed in such a way that the observed
climatologifal winter flow Cc is a stationary solution. The anomalous
divergence D is taken to be zero in middle latitudes. In the tropics we
assume that there is a balance between diabatic heating and adiabatic
cooling by upward motion: ocw = -Q/cp. Using this balancehand the continuity

equation V.V = -3w/3p, the perturbation divergence term D in the troppics

can be expressed in terms of the anomalous tropical diabatic heating Q:
D = 9—(6/oc ). (3)
ap P

The anomalous divergence term is computed with (3), using an estimate
of the vertical distribution of 6, from observed OLR data. We have computed
the forced stationary solutions of (1) in response to the total forcing,
i.e. climatological relaxation forcing plus anomalous forcing.

The resulting equation is thus given by:

A

where D is the anomalous divergence in the tropics and F. the climatologi-

cal relaxation forcing:

F. = J(¢C.Cc+ £) + eC,- (5)

The coefficient a in equation (4) governs the strength of the anomalous
forcing. It will be varied from a very small value (10-5) to 1.5. Rewrit~-
ting (4) with the aid of (5) results in a nonlinear equation for the

vorticity anomaly & = - Gt
LI, I ) ¢ IO + el - “ategr ¢+ op. O
(a) (b) (c) (d) (e)

The terms (a) and (b) are the advection of anomalous relative vorticity
by the climatological mean wind and the advection of climatological abso-
lute vorticity by the anomalous wind respectively. Term (c) describes the
nonlinear interactions among the perturbations, (d) is the Rayleigh fric-

tion term and (e) the anomalous tropical forcing respectively. If a<<l then
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Schematic picture of the pseudo-arclength method for the

computation of steady states.

The anomalous solution independent part of the tropical divergence
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the anomalous response is small, consequently the quadratic term (c) can be
neglected; (6) then becomes linear. It must be emphasized that the anoma-
lous divergence is prescribed, but that the anomalous forcing is dependent

AA
on the solution due to the term CD.

The computations are performed with a hemispheric spectral version of

(4) truncated at T13.

3. Computation of steady states

The steady states of (4) are computed using the pseudo arc-length method
of Keller (1978). This method is also used and described by Legras and Ghil
(1985). The pseudo-arclength method is illustrated in Fig. 1. In this figure
¥ is the n-dimensional state vector of the model and a the coefficient, that

determines the strength of the anomalous forcing term. C is the steady-state

curve for which

3L = 6(y,a) = 0 (1)
where G is the nonlinear operator. Point 0 represents the zero solution
corresponding to zero anomalous forcing. Starting from a known steady state
S, corresponding to a particular value of a, we computed a new steady state
S'(Y',a') by linear extrapolation (arrow a in Fig. 1) followed by a Newton-
Raphsen interpolation procedure. Using this method, we can compute succes-
sive points of the steady-state curve C.

By solving (4) for a range of a-values we investigate the sensitivity
of the response to variations in the strength of the anomalous forcing.

The anomalous steady-state responses that are presented have been
normalized by l/a. In the limit a + O the normalized response corresponds
to the anomalous linear steady-state response, while for a = 1 we have the
complete nonlinear response.

The linear stability of each of the steady states is evaluated. The

matrix G\p = 3G/9y is evaluated numerically by forward differences.

G, = {6(v + a9 - G(¥)}/av. (8)
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Fig. 3. Observed anomalous 400 mb streamfunction pattern for the winter of
1982-83. The contour interval is 3.10_6 mzs_l. The zonal compo-

nents are omitted.
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4. Simulation of the E1-Nifio winter of 1982/83

For the computation of the anomalous tropical forcing during the winter
of 1982/83, we used the a data from Arkin (1984). Assuming a linear rela-
tionship he estimated the vertically integrated 6 from the anomalous OLR
fields. North of 20°N the anomalies in 6 are assumed to be zero and only
the zonal wave numbers 1 to 6 are retained.

If we assume that the vertical scale of the heating is 400 mb and that
the mean value of o is 2.5 10_4 Kmsz/kg, then it follows that a heating of
1 K/day corresponds to a divergence of 1076 s-l. However, this estimate for
the divergence is rather uncertain. Kasahara and Da Silva (1986) demon-
strated that the excitation of extratropical equivalent barotropic modes by
tropical heating occurs through nonlinear coupling of the barotropic modes
with the equatorial internal modes, which are directly forced by the tropi-
cal heating. The strength of this forcing depends among other things on the
vertical shear of the basic state. The results of Kasahara and Da Silva
Dias indicate that the magnitude of the divergence forcing may be off by a
factor of two. For linear steady-state models some uncertainty in the
amplitude of the anomalous forcing is acceptable, because only the ampli-
tude of the response depends on it, while the structure remains unaffected.
However, for nonlinear models the amplitude as well as the structure of the
response may depend crucially on the amplitude of the anomalous forcing.
Therefore it is necessary to investigate the nonlinear response over an
interval in a that reflects the uncertainties in the amplitude of the
anomalous forcing.

Figure 2 shows our estimate of the solution independent part of the
anomalous tropical divergence forcing (—fﬁ) at 400 mb for the winter of
1982/83. The maximum and minimum over the Pacific correspond with the ano-
malous Walker circulation with anomalous cooling and heating over Indonesia
and the Eastern Pacific respectively. The main effect of -Ccﬁ in the ano-
malous forcing is to counteract -fﬁ. The amplitude is reduced by about
65 percent. The structure remains relatively unaffected.

For the basic state (wc) we have chosen the mean winter climatological
400 mb flow. We have used the wind climatology as derived by Oort (1983),
from which we have computed the streamfunction pattern. Linear stability
aanlysis of this pattern reveals that the fastest growing perturbation has

an e-folding time of 20 days. By applying linear friction with the same
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Simulated anomalous linear (a = 10_5) 400 mb streamfunction
pattern for the winter of 1982-83. Shown are the patterns for the

zonal mean basic state (a) and for the basic state with the wave

components included (b). The contour interval is 3.10—6 mzs-l.



e-folding time, the basic state is a marginally stable stationary solution
of (4) when ﬁ is zero. The choice of a marginally basic state is based on
the idea that in the real atmsophere instantaneous streamfunction patterns
might be unstable, but that the resulting perturbations drive the time-mean
climatological flow towards a nearly stable configuration.

The observed anomalies in the 400 mb stream function pattern during the
winter of 1982/83 are shown in Fig. 3. In this and subsequent figures, the
zonal components in the anomalies have been omitted. This pattern was com-
puted from daily analyses provided by the ECMWF. The most pronounced fea-
ture of the anomaly pattern is a strong dipole over the Pacific, which re-
sults in increased westerlies near 30°N. A similar weaker dipole, but with

reversed sign, is found over the Atlantic.

4.1 Linear response (a << 1)

The anomalous linear steady-state response to the observed anomalous
forcing is computed by taking a = 10-5. Figure 4a shows the normalized
(multiplied by l/a) response in the streamfunction pattern when only the
zonal components of the basic state ¢c are considered. Comparison with the
observed anomaly pattern (Fig. 3) shows that some of the characteristics in
the observed pattern can also be found in the simulated pattern. The posi-
tive anomaly at 20°N, 165°W is rather well represented, but the negative
anomaly north of it is shifted 30° towards the west. Over the Atlantic the
dipole is apparent, but somewhat weaker and shifted 15° towards the east.
In general, the structure of the anomalies is too elongated in zonal direc-
tion. North of 50°N the linear steady-state response is of low quality. The
pattern correlation coefficient (pcc) for the whole hemisphere is 0.49. The
amplitude of the normalized response is about half of the observed ampli-
tude.

Inclusion of the wave components in the basic state improves the quali-
ty of the linear simulation significantly, as shown in Fig. 4b. The posi-
tion and structure of the anomalies are in better agreement with the obser-
vations. The positions of the negative anomaly over the Central Pacific,
and the dipole over the Atlantic agree much better with the observed flow.
Moreover, at high latitudes the agreement is much better. The improved qua-
lity of the linear simulation is revealed by an increase of the pcc from

0.49 to 0.59. These results agree well with those of Branstator (1985).
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Fig. 5. Projection of the computed steady-state curve on the C: component
for the anomalous tropical divergence forcing -(¢ + f)ﬁ at 400 mb
for the winter of 1982-83.
Symbols indicating the stability properties of the computed steady
states:
X: stable

0: one pair of complex conjugated eigenvalues with positive real

eigenvalue

Q: two pairs of complex conjugated eigenvalues with positive real

eigenvalue

A: three or more pairs of complex conjugated eigenvalues with

positive real eigenvalue.

° o
a as O but with the inclusion of one purely real eigenvalue.
A A
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With a linear steady-state model he simulated the anomalous circulation
pattern occurring in a GCM due to a tropical SST anomaly. The presence of
wave components in the basic state improved the agreement with the anom-

alies in the GCM considerably.

4.2 Nonlinear response

We computed the steady-states for a between 0 and 1.5. The projection of
the computed steady-state curve on the C: component is shown in Fig. 5. By
the Cﬁ component we mean the amplitude of the projection of ¢ on the spheri-
cal harmonic Yﬁ with zonal wavenumber m and total wavenumber n. This projec-
tion is arbitrarely chosen. Its only purpose is to illustrate the bifurca-
tion diagram and to display the stability of the computed steady states. The
steady-state curve deviates markedly from a straight line and displays a
fold between a = 0.60 and 0.69. In addition there exists an isolated branch
for a between 0.59 and 1.23. For a just exceeding zero the solution becomes
unstable; a pair of complex conjugated eigenvalues crosses the imaginary
axis, giving rise to a Hopf bifurcation (point P). At a = 0.49 a second Hopf
bifurcation occurs (point Q). In general the number of complex conjugated
eigenvalues with a positive real part increases for increasing a. The tur-
ning points or saddle-node bifurcations in the steady-state curve (points A,
B, C and D) correspond with a change of sign of a purely real eigenvalue.
All states on the isolated branch are very unstable, possessing eight or
more eigenvalues with positive real part.

We will first discuss the anomalous normalized steady-state responses on
the main branch. The anomalous normalized streamfunction patterns of the
states on the main branch from a = 0 up to the first saddle-node bifurcation
at a = 0.69 differ relatively little from the linear response. Figure 6
shows the streamfunction pattern for a = 0.50, indicated by I in Fig. 5,
just after the second Hopf bifurcation at a = 0.49. The dipole over the
Pacific has moved about 15 degrees eastward, in accordance with the obser-
vations. The largest differences with the linear solution are between 90°W
and 30°E which is the region most remote from the forcing areas. The dipole
over the Atlantic has moved westward and the anticyclone over the Middle
East is weaker and has shifted toward the west. The cyclone over the North
Pacific has intensified. Apart from weakening or intensification of certain

highs and lows, the overall normalized amplitude of the response remains the
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Fig. 6. Normalized anomalous streamfunction pattern of the computed steady

state I at a = 0.5. The contour interval is 3.10°0 m2s~!.
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same. The pcc is 0.58, which is approximately the same as for the linear
wavy basic-state response (0.59).

The normalized anomalous streamfunction patterns of the steady states
at a = 0.65 before and after the fold, indicated by II and IV in Fig. 5, are
shown in Fig. 7a and b respectively. The anomaly pattern of state II is
still very similar to the linear response. The anomaly pattern of state IV
on the other hand, displays significant differences. The most noteworthy
changes are the strong intensification of the anticyclone over Eastern
Canada and the weakening of the dipole over the Pacific. This pattern shows
less correspondence with the observations. The latter fact is reflected by a
drop in th pcc from 0.51 for state II to 0.29 for state IV. The anomaly pat-
tern of state III (not shown) is not very different from that of state IV.
It displays qualitatively the same changes with respect to state II. The pcc
with the observed pattern is 0.39.

An increase in a after the second saddle-node bifurcation (B) decreases
the amplitude of the normalized anomalies. This occurs because the anomalies
themselves saturate for increasing a. Inspection of the total streamfunction
patterns of the steady states reveals that the saturation of the response
after the second saddle-node bifurcation is a consequence of two effects.
Increasing a results in a northward displacement of the zero wind line and
a strengthening of the easterly flow in the areas of strongest forcing. In
addition, due to the change in e, the strength of the anomalous forcing
(& + Cc + f)ﬁ becomes slightly weaker for increasing a. The saturation of
the solution is clearly seen in Fig. 8a and b showing the normalized respon-
ses for a = 1.0 and 1.5 respectively. Without significant changes in struc-
ture, the normalized response decreases for increasing a.

Figure 9 displays the anomalous response associated with a = 1| on the
upper part of the isolated branch. This is indicated by VII in Fig. 5. It is
immediately clear that this response is unrealistic, because it displays
very large amplitudes. All steady states on the upper as well as the lower
part of the isolated branch display this behavior. The large amplitudes are
caused by the disappearance of the tropical easterly winds. This facilitates
energy transport into higher latitudes. Also, due to the difference in &,
the amplitude of the anomalous forcing is three times as large as the anoma-

lous forcing on the main branch.
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Fig. 9. As Fig. 6, but now of state VII at a = 1.0 on the upper part of

the isolated branch.
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5. Time integrations

In order to investigate the relation between the time-dependent be-
havior of the model and the computed steady states, we performed time
integrations of (4) for several values of a. For time stepping we used a
simple leap-frog scheme with a time step of | hour. In all experiments we
allowed a spin up time of two years.

One way of measuring how the system evolves in time, is to compute the
speed of the phase point of the model. The position of the phase point is
given by the spherical harmonic coefficients of the relative vorticity. The
speed of the phase point is estimated from the positions of the phase point
at successive days.

Time integrations for a between the first and second Hopf bifurcation
(P and Q in Fig. 5) demonstrate the existence of a stable limit cycle. The
period of these limit cycles is 32 days, which is approximately the same as
the period of the growing perturbations. Quasi-periodic behavior is ob-
served after the second Hopf bifurcation. The phase point now spiralizes in
a torus. This quasi-periodic behavior is clearly demonstrated by Fig. 10
which displays for a = 0.5, just after the second Hopf bifurcation, the mo-
dulus of the speed of the phase point as well as the distance to the com-
puted steady state. Both are shown as a function of time for a three-year
time integration. Two dominant periods can be discerned with periods of ap-
proximately 34 and 170 days respectively. The first period is almost equal
to the period of 33 days of the fastest growing perturbation. However, the
second period does not bear a clear relationship to the period of 101 days
of the second growing perturbation.

The time evolution of the projection of the phase point on the (}
component, is shown in Fig. 11. It shows the dominant period of 34 days in
which the phase point moves around the steady state, indicated by a dot, on
which a weak oscillation with a longer time scale is superimposed. Inspec-
tion of daily and time-mean streamfunction patterns (not shown) reveals
that the system remains in the neighborhood of the computed steady-state.
The anomalous steady-state and time-mean pattern are nearly the same. The
only noteworthy difference is the diminishing of the amplitude of the
cyclone over the North Pacific with about 40%.

For a = 0.65, five steady states exist simultaneously. Three of these

states are situated on the main branch, the other two on the isolated
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branch (Fig. 5). One state, indicated by II in Fig. 5, possesses four ei-
genvalues with a positive real part, the other states more than five. Time
integrations for a = 0.65 starting from different points in phase space all
display chaotic behavior. This is illustrated in Fig. 12 which shows the
modulus of the speed of the phase point for a time series started close to
state IV. The signal is dominated by large fluctuations with a characteris-
tic time scale in the order of 30 days. These fluctuations are superimposed
on variations with a longer time scale of about a year. Figure 12 also dis-
plays the distances of the phase point to states II and IV on the main
branch. Both curves exhibit similar behavior. These two curves are strongly
correlated with the speed of the phase point, with correlation coefficients
of 0.57 and 0.48 respectively. The reason for this strong correlation is
that the speed slows down when the phase point moves in the direction of
the steady state along the stable manifold. Close to the steady state, the
phase point is rejected along the unstable manifold increasing the speed of
the phase point. The distances to the states on the isolated branch (not
shown) are almost a factor of 2 larger than the distances to the states on
the main branch, and are poorly correlated with the speed of the phase
point, with correlations of 0.09 and 0.08 for the upper and lower state
respectively. These results do not depend on the starting point in phase
space. Also, time integrations starting close to one of the states on the
isolated branch display the same behavior. The conclusion must be that for
this value of a the states on the isolated branch are unimportant for the
dynamical properties of the model, but that the dynamics is heavily in-
fluenced by the unstable steady states II, III and IV on the main branch.
Although for certain days the anomalous streamfunction patterns deviate
quite strongly from those of the computed steady states on the main branch,
the pattern of the normalized three-year time-mean response, shown in Fig.
13, is very similar to the patterns on the main branch, although the in-
tensity of the time-mean circulation is less. The cyclones over the North
Pacific and Mexico are about 30% weaker, while the large amplitude of the
anticyclone over Eastern Canada is strongly reduced with a factor of two
compared to state II. The anomaly pattern of the three-year time mean shows
a better agreement with the response pattern of state II (before the fold)
than with the response pattern of state IV (after the fold). The pcc's
between the anomalous time-mean pattern and the steady-state responses are

0.91 and 0.81 respectively. The pcc between the anomalous time-mean and
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Fig. 13. Anomalous normalized time-mean streamfunction pattern of a three
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observed pattern is 0.53, which is approximately the same as the pcc for
the response pattern of state II (0.52).

Time integrations were also performed for a = 1.0, for which there
exist three states simulatneously, one at the main branch and two at the
isolated branch. These are indicated by V, VII and VIII in Fig. 5. All
states possess more than five eigenvalues with a positive real part.
Compared with the time integrations for a = 0.65, the speed of the phase
point, shown in Fig. 14, is correlated less with the distance to the main
branch (state V). The correlation coefficient is 0.45. However, the
correlations with the distances to the states on the isolated branch have
increased, with correlation coefficients of 0.30 and 0.31 for states VII
and VIII respectively.

Inspection of daily streamfunction patterns (not shown) reveals that
for most days the amplitudes of the patterns are much larger than for
a = 0.65. The amplitudes are comparable to those of the steady states on
the isolated branch. Also, for most days the easterlies have completely
disappeared. The structure of the daily streamfunction patterns is often
quite similar to the patterns of the states on the isolated branch. The
correspondence between the daily streamfunction patterns and that of the
state on the main branch is rather low. Compared with a = 0.65 the varia-
bility of the streamfunction patterns is larger. The normalized anomalous
time-mean pattern is shown in Fig. 15. Comparison with the anomaly patterns
(Figs. 8a and 9) reveals that due to the large variability the anomaly pat-
tern of the time mean is somewhat less intense than the response patterns
of states VII and VIII on the isolated branch or the anomaly patterns on
individual days, but that the amplitude is still much larger than for the
response pattern of state V on the main branch. The anomalous time-mean
pattern is a mixture of features of the different response patterns. For
instance for the area between the date line and 30°W there is some agree-
ment with the steady states on the main branch, whereas the strong dipole
around 150°E agrees well with the solution on the isolated branch. The cor-
respondence, as measured by the pcc, is larger for the states on the iso-
lated branch (0.68 and 0.70), than for the state on the main branch (0.40).

The pcc of the time mean with respect to the observed pattern is rather low
(0.23).
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110



From these considerations we must conclude that for a = 1.0 both the
solutions on the isolated branch and on the main branch are important for
the dynamics of the system.

It appears that the time mean resembles the average of the two dif-
ferent solutions well and that the speed of the phase point is highly cor-
related with the distance to the time mean with a correlation coefficient
of 0.62. It is possible that the System vacillates in a complicated way be-
tween the two branches of the solution. Another possibility is that there
exists an unstable limit cycle close to the time mean that has a large in-
fluence on the topological structure of the attractor.

Summarizing this section we state that for a < 0.65 the steady-state
response patterns dominate the time-mean patterns of the integrations. For
larger values of a, in the fully chaotic domain, the steady states still
have a large influence on the dynamics of the system. For increasing a the
influence of the states on the isolated branch becomes larger relative to
the states on the main branch. Consequently time mean as well as instan-

taneous streamfunction patterns show less agreement with the observed mean

winter circulation.

6. Simplified forcing

In order to gain some insight into the importance of the circulation
dependent part of the anomalous forcing in (4)

A

¢ = (¢ + &)D, (9)

A

we computed the steady states with ¢D neglected. For convenience we will

A

call this experiment B and the experiment with the D term included will be
referred to as A.

As already mentioned in section 4, omission of the Ccﬁ term in the
forcing makes the amplitude about one and a half times larger, whereas the
structure remains relatively unaffected. Consequently the linear steady-
state response has increased by the same amount, without significant
changes in structure.

Similarly as Fig. 5, Fig. 16 shows the projection of the computed

steady states on the {J component for experiment B. The steady states were
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Fig. 16. As Fig. 5, but now for only the solution independent part of

forcing: -f£D.
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computed again for a between 0 and 1.5. Comparison with Fig. 5 reveals that
the fold in the main branch is much more extensive, which results in
multiple steady states for a between 0.40 and 0.79. The shape of the iso-
lated branch has changed and covers a smaller interval of a ranging from
0.74 to 1.00. Similarly as in A the number of eigenvalues with positive
real part increases for increasing a.

Comparison of the anomalous streamfunction patterns of exXperiments A
and B shows that up to a = 0.4, before the occurrence of multiple steady
states, the only important difference is in the amplitude of the pattern.
It has increased by a factor of about one and a half. This is caused by the
absence of the CCB term, which fgunteracts fﬁ at low latitudes. Below this
value of a the contribution of ¢D is small. The differences between the
response patterns of the steady states just before and after the fold are
also qualitatively the same in both experiments. In both cases the most
striking feature is the intensification of the anticyclone over Eastern
Canada after the fold, together with a westward shift of the dipole over
the Pacific.

Figure 17a displays the anomalous normalized streamfunction patterns on
the main branch after the fold for a = 0.65. Comparison of Fig. l7a with
Fig. 7b, which shows the response at a = 0.65 for experiment A, reveals
that apart from differences in amplitude the responses are still similar.
Significant changes due to the &6 term occur when a is further increased
after the fold. In contrast to the results in A the response for a = 1.0
(Fig. 17b) displays significant differences with the one for a = 0.65,
showing no sign of saturation yet. Most important are the increased ampli-
tude of the anticyclone east of the date line and the dipole at 120°E. The
norhtward displacement of the zero wind line, responsible for the satura-
tion when cﬁ is included, is absent here. There is even an opposite effect
that for increasing a more of the forcing is located in the westerlies.
Saturation is now observed for larger values of a. This is demonstrated by
Fig. 17c¢, showing the rescaled response for a = 1.5. Compared with the
response for a = 1.0 its amplitude has decreased by about a factor of one
and a half, without large changes in structure.

Like in experiment A, the easterlies disappear for the states on the
isolated branch. However the differences in the amplitude with respect to
the states on the main branch are much less now. In A the forcing on the

isolated branch is a factor of three stronger than the forcing on the main
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Fig. 17. Anomalous normalized streamfunction pattern of the steady states
at the main branch in Fig. 16 for a = 0.65 (a), a = 1.0 (b) and
a=1.5 (c).
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branch. This is due to the solution dependent part of the forcing (&6). In
contrast to the results in A the streamfunction patterns of the states on
the isolated branch still have some resemblance to the states on the main
branch after the fold. This is revealed by Fig. 18 showing the streamfunc-
tion pattern of the upper part of the isolated branch for a = 1.0. The
states on the upper and lower part of the isolated branch are again very
similar to each other.

For several values of a we performed time integrations without the Cﬁ
term in the forcing. For values of a below 0.4 all time integrations con-
verge to a stable limit cycle. Between a = 0.40 and 0.70, for which the
main branch displays a fold, time integrations display chaotic (a = 0.55)
as well as periodic behavior (a = 0.70). Just like in A, the steady states
have a large influence on the dynamics of the system.

In order to investigate the effect of the isolated branch, we also per-
formed time integrations for a = 0.90, which is about halfway the isolated
branch. The streamfunction patterns of the steady states for this value of
a are only slightly different from the ones for a = 1.0, displayed in
Fig. 17b and 18 respectively. All three steady states, two at the isolated
branch and one at the main branch, possess five or more positive real ei-
genvalues. As expected the time integrations display complete chaotic be-
havior. The speed of the phase point, displaying large variations, is now
strongly correlated with the distance to the steady states on the isolated
branch, with a correlation coefficient of 0.79, whereas the correlation
with the steady state at the main branch is almost zero. This is in con-
trast to the results in A. In A the correlations of the speed of the phase
point with the main and isolated branch are approximately 0.4 and 0.3 re-
spectively (section 5). Due to the strong dominance of the isolated branch
the time-mean pattern (not shown) is very similar to the states on the iso-
lated branch.

Summarizing this section we have found that for small values of a the
neglect of the Cﬁ term results in steady states that have a structure simi-
lar to those in experiment A. For larger values of a, when the &ﬁ term be-
comes important, significant differences occur both with respect to the

steady-states as well as the time dependent behavior.
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7. Strong friction

One of the results of the foregoing sections, is that the nonlinear
terms do not improve the agreement with the observations. For a < 0.65 the
pattern correlations are more or less the same as for the linear response.
For larger values of a, after the fold in the steady state curve, the
agreement of both the steady-state response patterns and the anomalous
time-mean patterns with the observed anomaly pattern becomes less, as re-
vealed by a decrease in the pcc's. A possible explanation for this result
might be that for the real atmosphere a is less than 0.65, instead of being
equal to one. Another possible explanation is that the damping time scale
is too large. The choice for e (20 days_l) was derived from the assumption
of a marginally basic state. This assumption leads to a large dissipation
time scale. This damping time scale may be physically unrealistic for in-
stantaneous flows but may be appropriate for statistical time-mean flows.
However, given the uncertainty in the strength of the Rayleigh friction we
have investigated the sensitivity of the results to an increase in this
parameter.

We computed the steady-state curve for ¢ = 10 days_l. For this stronger
Rayleigh friction the steady-state curve displays no folds, nor an isolated
branch. Up to a = 1.1, for which a Hopf bifurcation occurs, all steady
states are stable. New bifurcations are not observed for a between 1.1 and
1.5. Time integrations converge to the stable steady states for a < 1.1 and
result in a stable limit cycle for a > 1.1, with a close correspondence
between the time mean and the computed steady states.

The linear normalized response, shown in Fig. 19, displays a slight de-
crease in the amplitude over the forcing area (compare with Fig. 4b) to-
gether with a small eastward displacement of the highs and lows. Away from
the forcing regions, the amplitude of the response is drastically reduced,
for certain areas such as the North Atlantic by a factor of three. The pcc
with the observed pattern shows a small increment from 0.59 to 0.63.

The nonlinear normalized responses for a = 1.0 and 1.5 are displayed in
Fig. 20a and b respectively. The response for a = 1.0 displays only minor
differences with the linear response, the most important ones being the in-
crease response away from the forcing region. The contribution of the non-
linear terms is more significant for a = 1.5 as shown in Fig. 20b. Import-

ant differences are the intensification of the anticyclone east of the date
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PCC

. Pattern correlations of the computed anomalous normalized stream-

function patterns with the observed 400 mb streamfunction for

e = 20 days—l (solid line) and € = 10 days_l (dashed line) as a

function of a.

120



line and the pattern change over eastern Canada and the North Atlantic. In
contrast to the case for € = 20 days—1 the nonlinear response does not show
saturation nor a sharp drop in the pcc for increasing a. The latter fact is
demonstrated in Fig. 21 which displays the pcc's of the response patterns
with the observed 400 mb streamfunction pattern as a function of g for ¢
equal to 10 and 20 clays_l respectively. As mentioned in section 4 the pcc
shows a sharp drop around a = 0.65 for € = 20 days-l. This drop is
connected to the fold in the steady state curve. The pcc for £ = 10 days_l
displays only a gradual decrease from 0.63 for the linear response to 0.53
for a = 1. The drop in the pcc after this value of a to about 0.45, is much
less dramatic and occurs for larger values of a than the drop in the pcc
for £ = 20 days_l.

Although the sharp decrease in the pcc is absent for € = 10 days_l, the
pcc still displays a gradual decrease for increasing a. The fact that for
both values of ¢ the responses for small a give the best results suggest
that the real forcing was significantly smaller than estimated, making the

nonlinear terms relatively unimportant.

8. Conclusions and discussion

In this paper we have investigated the nonlinear steady-state response
of a barotropic model to an estimate of the observed anomalous tropical
divergence forcing for the El-Nifio winter of 1982/83. The 400 mb climato-
logical flow was made a forced solution of the model by means of a relaxa-
tion forcing. The Rayleigh friction coefficient was chosen such that this
solution is marginally stable. Using the pseudo-arclength method of Keller
(1978) we computed the steady states as a function of a dimensionless para-
meter a, governing the strength of the anomalous forcing. For a << 1 the re-
sponse is linear, whereas for a = 1 we end up with the complete nonlinear
response. The computed steady-state curve deviates markedly from a straight
line and displays a fold for a between 0.60 and 0.69. In addition there
exists and isolated branch for a between 0.59 and 1.23. All the computed
steady states turned out to be unstable. In general the number of growing
perturbations increases for increasing strength of the anomalous forcing.

5

The normalized anomalous streamfunction pattern for a = 10 , i.e. the

linear response, compares well with the observed pattern, with a pcc of
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0.59. The wave components in the basic state make a large contribution to
the linear response. This agrees with the results of Branstator (1985).

Before the fold in the steady-state curve the nonlinear responses are
very similar to the linear one. The response patterns of the states after
the fold display large differences with the linear response. The agreement
between the anomalous streamfunction patterns and the observed anomaly
pattern is smaller after the fold. This is revealed by a drop in the pcc
from 0.6 to about 0.3. After the fold, a further increase in a results in
saturation of the response. This saturation is related to the northward
shift of the zero-wind line in the region of strong forcing. The stream-
function patterns of the isolated branch display unrealistically large am-
plitudes. For these solutions the easterlies in the zonal mean are absent
and the forcing is a factor of three stronger than the forcing of the cor-
responding solution on the main branch.

Time integrations for values of o smaller than 0.65 show that the
steady states on the main branch strongly influence the time-mean pattern
of the model despite the unstable nature of these solutions. Periodic,
quasi-periodic and complete chaotic behavior are all three observed. After
the emergence of the isolated branch the states on the main and those on
the isolated branch both have an impact on the time-dependent behavior. The
instantaneous patterns show large amplitudes, similar to those of the
states on the isolated branch. The time-mean patterns show some corre-
spondence with the states on the isolated as well as on the main branch.

In order to investigate the influence of the solution-dependent part of
the forcing (Cﬁ) on the steady-state response patterns, we computed the
steady states also without this term. The forcing is now only linearly de-
pendent on a. The computed steady-state curve displays qualitatively the
same behavior, including a fold and an isolated branch. The anomalous
streamfunction patterns for the steady states on the main branch up to
a = 0.65 after the fold are very similar to the ones that include Cﬁ,
except for an increase in the amplitude by a factor of about one and a
half. This is caused by the absence of the CCS term which counteracts fs at
low latitudes. When a is further increased the solutions become more and
more different to the ones that include CB. Without CB saturation occurs at
much larger values of a. Another effect of the omission of CS is that the

differences between the solutions on the main and isolated branch become

smaller.
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Again time integrations, for values of a before the emergence of the
isolated branch, display the feature that the states on the main branch
strongly govern the time-mean pattern. After the emergence of this branch
the time-dependent behavior is only affected by the states on the isolated
branch.

The fold as well as the isolated branch disappear when the damping time
scale is decreased to 10 days. Up to a = 1 the linear and nonlinear re-
sponse are very similar. Significant changes occur only for larger values
of a. Like for ¢ = 20 days_1 the inclusion of nonlinear terms does not
improve the agreement with the observed pattern. The pcc decreases gradual-
ly for increasing a, although a dramatic drop such as observed for
e = 20 days™! does not occur.

Summarizing we conclude that for values of a before the fold in the
steady-state curve the computed steady states and the time-mean patterns
differ little from the linear response. After this fold, however, the ef-
fects of the nonlinearities become larger and the patterns less realistic.
Although it is hard to estimate the real strength of the forcing, the re-
sults suggest that the estimated forcing (a = 1) is too strong. It is also
likely that a stronger friction than £ = 20 clays-l is more realistic. As-
suming that both the forcing and the damping time scale are too large the
results suggest that the atmospheric response to even a very strong El-Nifio
like the one in 1982/83 is approximately linear.

In agreement with the results of studies by Sardeshmukh and Held
(1984), Kang and Held (1986), Hendon (1986) and Held and Kang (1987), the
main effect of the nonlinearities is to slightly modify the structure and

amplitude of the planetary waves, together with relatively small changes in

the position of the pressure cells.
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