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Chapter 1

Introduction

In this work we do the first part of a meteorological project running in the
Royal Netherlands Meteorological Institute (KNMI) in cooperation with the
Department of Mathematics of the University of Utrecht, by investigating an
autonomous low order atmosphere model introduced by E.N. Lorenz, [3] and
[6]. We hope that this work will clarify in a way the picture of the Lorenz-
84 model which is still poorly investigated and show some of the various
interesting phenomena of the system.

The analysis of the system is necessary in order to be able to develop a cou-
pled atmosphere-ocean model with behaviour that mimics as close as possible
the behaviour of the real climate system. This means that the atmospheric
model must exhibit chaotic behaviour for a range of parametervalues.



Chapter 2

An Atmosphere Model

2.1 Equations of the Lorenz-84 Model

A system describing the large scale atmospheric circulation can be modeled,
according to [3] with a nonlinear system of three coupled ordinary differential
equations.

The equations of this low-order atmospheric model are given in [3] and [6]
by:

X=-Y?-22—aX +aF (2.1)
Y=XY-bXZ-Y+@G (2.2)
Z=bXY+XZ-2Z (2.3)

The independent variable ¢ represents time. The variable X represents the
strength of a large-scale westerly-wind current zonal flow (equivalent to the
meridional temperature gradient). The variables Y and Z represent the am-
plitudes of the cosine and sine phases of a chain of large scale superposed
waves. The parameter F' in eq. (2.1) represents a forcing of the westerly cur-
rent, due to the north-south temperature gradient, while G in eq. (2.2) repre-
sents a forcing by the continent-ocean temperature contrast. The quadratic
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terms —bXZ and bXY in eq. (2.2) and (2.3) respectively represent the
translation of the waves by the westerly current.

The quadratic terms —Y?2 and —Z2 in eq. (2.1), XY and XZ in eq. (2.2)
and (2.3) represent a transfer of energy, from the westerly current to the
waves.

The linear terms —aX, —Y and —Z take energy out of the system, and
represent thermal and mechanical damping.

In this study we will abbreviate the system given by the equations (2.1)-(2.3)
with: |

z=f(z); z(0)==z, where z€R’ (2.4)
Here z is the vector of the variables X,Y,Z, f(z) is a nonlinear vector
function and x; is the initial condition.



Chapter 3

Numerical investigations

3.1 Qualitative behaviour of the system

By equating eq. (2.1) to zero we get the equation of the surface on which
the passing through trajectories have a tangent vector parallel to the YV - Z
plane. This is given by:

X=F—-— = (3.1)

and represents a paraboloid with symmetry axis X and top at X = F. The
paraboloid is illustrated in fig. 3.1.

Outside of the paraboloid the time derivative X is negative. This happens
for example when X is larger than F. So the X variable decreases. Inside
the time derivative X is positive, and X increases. In fig. 3.1 we show this
behaviour with arrows inside and outside the paraboloid.

The intersection of the paraboloid with the X —Y plane and the vector field of
the system on this plane, described by eq. (2.1) and (2.2) for a = 0.25, b = 4,
F =9.0, G = 0.0 are illustrated in fig. 3.2. The solid line in fig. 3.2 with the
number 2 on its top is the isoline where X = 2.0. The solid line with the num-
ber 0 is the intersection of the paraboloid with the X —Y plane. The dashed



Figure 3.1: The paraboloid surface where the vector field is tangent to Y — Z
plane for F' = 9.

lines correspond to negative strength isolines X =-2,-4,-6,...,—14. So
the qualitative behaviour of the system is that the solutions are bounded in
the X -direction under the top of the paraboloid. Seeing this picture one can
imagine a circulation of the system going downwards when the trajectories
come out of the paraboloid and going up from the moment they enter the
paraboloid in lower values of X. This behaviour shows up in the case of a
strange attractor later in this section.
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Figure 3.2: The parabola of the paraboloid surface where the vector field is
tangent to Y — Z plane has on its top the number 0.
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As we can observe by numerical time integrations for different parameters
the system comes to a chaotic region when there is a relatively large temper-
ature gradient between the polar and equatorial zones. For small forcing the
behaviour is regular and we get fixed points and limitcycles.

In fig. 3.3 a colour picture of a strange attractor is illustrated. Here the
trajectory in state-space is drawn, after the transient motion has dissapeared.

The trajectory changes colour according to the absolute value of the westerly
wind X acceleration. The colours choosen are mapped in the form of the
rainbow spectrum. Beginning with black which is the maximum acceleration
we go through the colours dark blue, blue, green, yellow, orange, red violet
to acceleration zero.

Figure 3.3: A strange attractor for a = 0.25, b = 4.0, F = 8.0, G = 1.0,
Xo=24,Y,=1.0, Zy =0.0.
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With this picture we can very well see and qualitatively estimate the
timescales of some interesting processes.

e The energy gain of the westerly wind X by the forcing F',

e the transfer of energy to the superposed waves Y and Z, taking place
when X comes to large values,

e the dissipation process influencing the ¥ and Z values taking place
when X has no more energy to give.

If we take into account that the trajectories travel clockwise arround the X
axis we can see that near the violet area just over the top of the X-axis we
have almost no westerly wind acceleration. This area is also the top of the
paraboloid, fig. 3.1.

From this moment the energy transport takes the major role. Very fast, ap-
proximately proportional to Y2 + Z2 (which is the squared vertical distance
of the trajectory from the X axis) X looses its energy. About halfway down-
wards of the attractor we have the maximum deceleration of X. There the
colour is dark-blue to black.

As X has no more energy to give and the attractors distance from the X-
axis is at about its maximum, the deceleration of X becomes weaker changing
from blue to green and yellow. Now the dissipation process begins to take
place. This process is rather slow, and the trajectory approaches the X axis.

For very small values of Y and Z equations (2.1) to (2.3) can be approximated
by:

X ~ —aX +aF (3.2)
Y ~-Y+G (3.3)
Z~—2 (3.4)

So the system starts getting energy from the forcing F' with a rate approxi-
mately proportional to the difference of F' — X and the trajectory spirals it
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self up again to the area where we started. Halfway upwards it has about
the acceleration corresponding to the yellow colour.

From eq. (2.1) we can see that X can gain energy only by the thermal forcing
F'. All the other terms on the right hand side of this equation try to damp
this quantity.

3.2 Numerical integration methods

We used two numerical integration schemes to integrate the system in time.
The first is a Runge-Kutta integration scheme with fixed time steps with a
local error of O(h*) [16]. The second is a Runge-Kutta-Fehlberg integration
scheme with fixed or automatically controlled time steps. The latter has a
local error of O(h®). As the results with both integration schemes reproduce
each other we will give in this study only the results of the Runge-Kutta
scheme.

3.3 The Poincaré section

A useful way to visualize a chaotic attractor is the Poincaré section [10], [14].

We know that the variables Y and Z describe a traveling wave. Thus the
trajectories in the X,Y 7 space tend to rotate about the X-axis. This ro-
tational behavior we have already seen in fig. 3.3 were the trajectory moves
in clockwise direction around the X-axis. Somebody could simply take the
Y = 0and the Z = 0 plane as the penetration plane for our Poincaré sections.

Two Poincaré sections, one with Y = 0 and one with the Z = 0 plane
corresponding to the chaotic attractor in fig. 3.3 are given in fig. 3.4. The
parameters used are taken from [6].

We got these Poincaré sections by marking every point of the trajectory
passing the Y = 0 and the Z = 0 plane respectively. So we have ploted the
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penetration points in the in and out direction. Note that the pattern (figure
3.4 ) is typical for chaotical systems and indicates the fractal structure of the
attractor.

Very interesting to see in see picture 3.4 (a), is that the Poincaré section of
one single trajectory consists of three domains. Since a chaotic attractor
has no periodicity the points never repeat and the structure gets denser and
denser as integration time grows but without changing the shape seen in the
picture. In order to understand these Poincaré sections better, we show in

Figure 3.4: Poincaré section of a strange attractor for a = 0.25, b = 4.0,
F=80,G=1.0,X,=24,Y = 1.0, Z; = 0.0. a) intersection with the
Z=0 plane, b) intersection with the Y=0 plane.

fig. 3.5 the Y Z-projection of the phase portrait of the strange attractor.
Paying attention at the places where the trajectory crosses the axis and at
the density of the lines there, we can qualitatively see the relation to fig. 3.4.
For larger positive values of ¥ we also see that the trajectory crosses the Z
axis rarely. The intersection points correspond to the small isolated pattern
we get on the top of fig. 3.4 (a).
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Figure 3.5: The Y Z-projection of the phase portrait of the strange attractor:
a=0.25,b=40,F=80,G=10, Xy =24, Yy, =1.0, Zy =0.0.

3.4 Bifurcation analysis of the equilibrium
solutions |

3.4.1 The equilibrium solutions and their stability be-
haviour

We first consider the steady-state solutions of eq. (2.4). Equating the time
derivative to zero they are given by:

fl@)=0. (3.5)

It can be shown that the steady-state solution are given by the equations:

aF - X)1-2X+(1+)X?) -G%=0 (3.6)
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bXG
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Y

(3.7)

Eq. (3.6) is a polynomial of order 3 in X with real coefficients. So there are
two possibilities of solutions of X for a given set of parameters a, b, F' and G.
The first possibility is three real solutions. The second is one real and two
conjugate complex solutions for X.

A simple way to solve the above system of algebraic equations without even
solving the cubic, is to give values of X and F' and calculate G from eq. (3.6)

[3]
If we rewrite eq. (3.6) in the form:
G =+y/a(F — X)((1 - X)2 + b2X?) (3.9)

we see that there exist two real solutions of G of the same value but opposite

sign.

Denoting that the term

(1 - X)2+ 82X
on the right hand side of eq. (3.9) is always positive we see that real solutions
are only possible for X smaller than F'.

Since in eq. (3.7) and (3.8) G is found to be a factor in front of expressions in
X there exists a symmetry in the steady state solution about the X — F'-plane
so that each equilibrium point: X,Y, Z, G, F' has a symmetrical equilibrium
solution X, -Y,—-Z,—G, F.

We can linearize our system (2.4) at an arbitrary equilibrium point as follows:

€:Je_§_

o . . . e s
where { =z —z, and J = 5% is the Jacobian matrix at the equilibrium

point. The index e denotes the equilibrium point. Our system has the
Jacobian matrix:
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—a =2y =27
J=1Y-b7 X-1 -=-bX (3.10)
b +27 bX X-1

The matrix is real, nonsymmetric and of order three.

The eigenvalue problem for the linearized system at an arbitrary equilibrium
point, leads us to the following equation:

|J — sI| =0. (3.11)

where s denotes the eigenvalues and I is the unitary matrix. Calculating the
left hand side of eq. (3.11) we get the characteristic equation which is in our
case of third order in s. Again we can say ‘that two types of eigenvalues are
possible:

e Three real eigenvalues or

e One real and two conjugate complex.

Similar to the symmetry of the equilibrium solution to the F-X plane, we
have also symmetry of the stability behaviour of the system to the same
plane.

That means that the equilibrium solution X, Y, Z, F, G has the same stability
behaviour as the equilibrium solution X, =Y, —Z, F, —G. This can be shown
very easily: If :
—a =2Y =27
J=|Y-bZ X-1 -bX
Y +72 bX X -1

is the Jacobian of the system at the fixed point X,Y, Z, F), G then:

—a 2Y 27
J =] -Y+bZ X -1 =bX
=Y -7 bX X -1

17



is the Jacobian for the fixed point X, -Y, -2, F, —G.

It can be shown that:

ay; G2 Q13 ay; —0Gi12 —Qi13
Qg1 Q22 Q23 | = | —Qg1 Qa2 Qo3
az1 dasz ass —asy, asz as3

Thus also:
|J —sI|=1|J" — sl

and we get the same characteristic equation for J and J~.

3.4.2 Special equilibrium solutions
The unforced system (F = G = 0)

If our system is not forced from outside (F' = 0, G = 0) we can see from
eq. (3.6) to (3.9) that the system has a single equilibrium point which is
the trivial solution X =0, Y = 0, Z = 0. The stability behaviour of this
special solution can be derived by linearizing eq. (2.4) at this point, which
immediately leads to a completely decoupled system of differential equations:

X = —aX (3.12)
Y =-Y (3.13)
Z=-2. (3.14)

We see that the linearized system has only dissipation terms left. The eigen-
values of the system there are —a, —1, —1 and the trivial solution represents
a stable node.
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The system without an oceanic-continental contrast

In the absence of an oceanic-continental contrast G = 0 the equilibrium
solution derived from eq. (3.6) is:

X=F (3.15)
Y =0 (3.16)
Z =0, (3.17)

and is located on the straight line given by eq. (3.15)-(3.17). So for a given F'
there exists only one equilibrium state. The stability behaviour of it can be
found by applying eq. (3.15)-(3.17) to the Jacobian matrix J, of eq. (3.10).
We get:
—a 0 0
J=| 0 F-1 —bF |. (3.18)
0 bFF  F —1

Here we see that the variable X is decoupled and its eigenvalue is the constant
systemparameter —a independent from the forcing by F.

The characteristic equation of the matrix in eq. (3.18) has the form:
(s+a)[(s—F+1)2+ (bF)} =0 (3.19)

and we get the eigenvalues:

S1 = —a (320)
§2,3 = F—-1 iij (321)
(3.22)

where j = +/—1.

So we have one real and negative eigenvalue and two conjugate complex
eigenvalues which depend on F. In figure 3.6 we see how the eigenvalues of

19
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Re
Figure 3.6: The behaviour of the eigenvalues by variation of F' for the special
path of equilibrium solutions G =0, X = F,Y =0, Z = 0.

the system change position in the complex plane by variation of F'. Note
that the eigenvalue s; has a fixed value and that the conjugate eigenvalues
39 and s3 move on a straight line through the points —1, 07 and 0, £47 in the
complex plane.

For F' = 0 we can verify our result from above for the trivial solution. For
0 < F < 1 all real parts of the eigenvalues are negative. Hence for this range
of F the solution trajectories will go to the equilibrium solution F' = X which
is a stable focus. At F' =1 we have a Hopf bifurcation. The real parts of the
conjugate complex eigenvalues change sign. For F' = 1 we have a center and
for F' > 1 we get unstable foci.
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3.4.3 Numerical bifurcation analysis

We have written a program in FORTRAN-77 which has the following algo-
rithm:

e Calculates using eq. (3.9) G(X, F') over a grid of points in X and
F direction. This already can generate us the surface of equilibrium
solution in the GF'X-space.

e Calculates Y and Z from eq. (3.7) and (3.8). This can generate us the
surface of the equilibrium solution in the XY Z-space.

e Calculates using eq. (3.10) the Jacobian matrix J, at each equilibrium
point.

e Solves for each Jacobian matrix corresponding to each equilibrium point
the eigenvalue problem. For each point we get a triple of complex
eigenvalues. This gives us information about the local stability of the
solution at each equilibrium point.

o We separate the equilibrium points in groups, according to their sta-
bility. This allows us to plot the points on the surface with different
colours according to their stability behaviour.

With this program we can generate a bifurcation analysis of the equilibrium
solutions with two bifurcation parameters running. Thus we can get three
dimensional plots by using one of the variables X, Y or Z and the two
bifurcation parameters F' and G. If we keep the bifurcation parameter F
fixed we can also do a one-dimensional bifurcation analysis (see also [1])
in the G-X plane. Further we can also find out the stability of a single
equilibrium point defined by the pair F' and X.

From these plots we can get useful information about our system. For a given
pair of parameters F' and G we can:

e Find how many equilibrium points exist. (one or three)
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Figure 3.7: A one-dimensional bifurcation analysis using G representing the
oceanic-continental contrast as the bifurcation parameter.

e Find what the stability behaviour of these points is.

e See if the equilibrium points will change their stability behaviour if we
change slightly one or both bifurcation parameters. These can have big
influence in the dynamical behaviour of our system.

A one-dimensional bifurcation analysis

Holding F' constant we can do a bifurcation analysis of the equilibrium so-
lutions using as the bifurcation parameter the oceanic-continental contrast
G. In figure 3.7 we see a coloured version of the bifurcation analysis done by
Houtekamer [1]. The bifurcation diagram is for F' = 8. The horizontal axis
is for the bifurcation parameter G while the vertical for the variable X. In
the diagram G takes values more or less between —20 and 20 while X takes
values between —3 and 8. Before we proceed we will make some definitions
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which will help us to understand better the meaning of the colours plotted
in the bifurcation diagrams. We have separated the equilibrium points in
groups of the form:

nlSnQC’

where S stands for Stable, C' stands for Complex. n; gives the number
of stable eigenvalues that is the number of eigenvalues with negative real
part and can take the values 0,1,2 or 3. ny gives the number of complex
eigenvalues, that is the number of eigenvalues with non vanishing imaginary
part. As complex eigenvalues can appear only as a conjugate pair ns can get
only the values 0 or 2.

Example:

350C means that we have 3 stable eigenvalues and no conjugate complex
eigenvalues. So these eigenvalues lie on the negative real axis. The colours
have the following meaning:

e yellow - (unstable)
One real part negative (not vanishing) and two positive (also not van-
ishing). Two eigenvalues are conjugate complex.
Abbreviation: 152C

e black - (unstable)
All real parts positive (not vanishing) Two eigenvalues are conjugate
complex.
Abbreviation: 052C

e blue - (unstable)
Two real parts negative (not vanishing) and one positive (also not van-

ishing) Two eigenvalues are conjugate complex.
Abbreviation: 252C

e red - (stable)
All real parts are negative. Two eigenvalues are conjugate complex.
Abbreviation: 352C

23



From the diagram we see that for the special case that F' = 8.0 it is possible
to have three or one equilibrium solutions. For |G| < 1.367 the system has
only one equilibrium which is an unstable focus. For |G| > 17.77 we have
again only one equilibrium solution which is a stable focus. In between, that
is for 1.367 < |G| < 17.77 we have three equilibrium solutions, which can
have different stability behaviour as follows:

e two stable (3S2C) - one unstable (152C)

e all unstable, (two 1S2C and one 252C)

e one stable (352C) - two unstable (one 252C or 0S2C and one 1S2C)
This fact has a big influence on the dynamical behaviour of the system and

plays also an important role in our investigation to find a chaotical region in
the parameter space F' and G.

From this picture we can see two Hopf-bifurcations which occur at the points
where the equilibrium solution curve changes colour as follows:

1. from black to blue (0S2C to 252C)

2. from red to yellow (352C to 1S52C)
The latter is the most important one because here the equilibrium point
changes from stable to unstable.

In fig. 3.8 we see four one-dimensional bifurcation diagrams for four different
values of F'. From the coloures in this four plots we can see that by increasing
F from 0.5 to 8.0 new types of stability behaviour of the equilibrium arise.
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Figure 3.8: Four one-dimensional bifurcation diagrams for four different val-
ues of F' representing the north-south gradients. The bifurcation parameter
representing the oceanic-continental contrast is G.






A two-dimensional bifurcation analysis

If we take many one-dimensional bifurcation diagrams for different values of
F' and put them together in the direction of the F' axis then we can get a
two-dimensional bifurcation diagram. The surface of the a two-dimensional
bifurcation diagram in the GF X-space is illustrated in figure 3.9. We can
see that it passes through the origin and that it has a symmetry on the F-X
plane. Because of the discretization and the plotting of coloured points in a
three dimensional space, the surface is not very well visible, but if we imagine
that the yellow lines on the top of the images belong to the top of the surface,
the black and the blue lines to the middle part of the surface and the yellow
on the right and the red lines to the bottom then we qualitatively can see
what happens by changing the parameters. We also see that for large values
of F' a yellow area appears for negative X values. We also notice that the
origin has a violet color because it is a stable node. The dark blue spot seen
in the upper picture, at the point where the yellow upper surface is closest
to the origin is the place in parameter space where the Hopf bifurcation is
taking place for ' = X = 1.0 and G = 0 in fig. 3.6. If we compare the
colours of the line going through the origin and through this dark blue point
then we see how the bifurcation of fig. 3.6 is visualised. The line is the
upper bound of the two-dimensional bifurcation surface and represents a one
dimenional bifurcation analysis for F' = X and and G = 0, see also [1] p.3-4.

We also observe that for large values of G' the system has one stable equi-
librium solution for negative values of X. So G stabilizes the system, but
as X < 0 represents easterly winds this parameter area has no physical rele-
vance.

We also can observe that for very small values of F' we get stable equilibrium
points.






Figure 3.9: Two images of the two-dimensional bifurcation analysis from to
different view points. F' and G are the bifurcation parameters. The grid used
is in the range: 0.0 < F <8.0,-50< X <80
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3.5 Lyapunov stability of the system

In order to make conclusions about the stability and especially the global
stability we use the following Lyapunov function:

V(X,Y,Z2)=X?>+Y?+ 7%= R%. (3.23)

This simple function is positive definite and represents a sphere of radius R
centered at the origin. The derivative:

. OV . OV, OV .
V—ﬁY—F—a?Y-{-a—ZZ

is in our case:

d(R?) 1 2 2 2 2 2
pre ——2—[a(2X —F)?+Q2Y -G)*+(22)" — (aF*+G?)]  (3.24)
If we set the right hand side of eq. (3.24) equal to zero it describes an
ellipsoid, and has the form seen in picture 3.10. We can easily verify that
this ellipsoid passes through the point 0,0,0 since for this point the right
hand side of eq. (3.24) is zero. Denote that the ellipsoid is shifted from the

E .

origin over a distance 7 in the direction of the X-axis and % in the direction

of the Y-axis.

By testing the value of an arbitrary point which is not on the ellipsoid surface
we conclude that the Lie derivative of the system is negative definite outside
of the ellipsoid, vanishes on it and is positive inside of it.

If we thus define a sphere centered at (0,0,0) and completely enclosing the
ellipsoid, and take any trajectorie outside of S we know that it will penetrate
the sphere and remain inside of it [6]. Since also for ||z|| = oo, V(z) — oo
we can say that the global flow will be attracted by the sphere. This means
that our system is bounded and we can definitely say that as ¢ — oo the
variables X,Y and Z will be in S.
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Figure 3.10: The ellipsoid surface gained from the Lyapunov function
V(X,Y,Z)=X*+Y?+Z?for F=28.0and G = 1.0.

3.6 Lagrange-stability of the field

If we write eq. (1.1)-(1.3) in the general form:

z=f(z); zeRz(0)=g (3.25)

where the vector function f is given by

f(z) = (h(z), f2(z), fs(z)) (3.26)

we can easily give the divergence of the vector field calculating the following
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equation:

_0fi  Ofs  0Ofs
=% + 3y + 57 (3.27)

Hence the divergence of the vector field of the Lorenz model is

div

div=—a—2+2X (3.28)

So the time derivative of an infinitesimal volume-element V is:
V =Vdiv=—-V(a+2—2X) (3.29)
We see that it would shrink for

a
X<1l4+-=
+2

This means that all the volume-elements, on trajectories of the system which
are bounded under the plain

a
JY:1+§,

will end to attractors with zero volume.

Extending the Lorenz-84 equations (2.1)-(2.3) by equation (3.29) we get sys-
tem:

X=-Y2_7%2_4gX+aF
V=XY -bXZ-Y+G

(

(
Z=bXY+XZ-2Z (3.32
V=-V(a+2-2X), (

We are interested in integrating this system of four ordinary differential equa-
tions for the case where an attractor has regions of positive and negative
divergence and follow the change of the volume V in time.
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Figure 3.11: On the left the strange attractor for: a = 0.25,b = 4.0, F' = 8.0,
G =10, Xg=24, Y5 =1.0, Zy = 0.0. On the right a plot of X versus time.

In fig. 3.11 we see the case of the strange attractor which definitely has a
part in the region where X is greater than 1+% = 1.125 and the divergence is
positive. Despite of this fact we can see in fig. 3.12 where a time integration
of the system (3.30)-(3.33) has been done, using the parameters a = 0.25,
b=4.0, F =80,G=1.0, Xy =24, Yy =10, Z; = 0.0, that the volume
may rise in the parts where the divergence is positive as for example in the
beginning of the integration, but it rapidly approaches zero as soon as the
trajectory visits for a while the region where the divergence is negative.

0.2 K

6
MONTHS

Figure 3.12: The evolution in time, of a small volume-element V' for a = 0.25,
b=4.0, F=80,G=10,X,=24,Y,=1.0, Z, =00, =0.1
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3.7 The Lyapunov exponents of the system

The Lyapunov exponents of the system eq. (2.1)-(2.3) can be determined
using the algorithm described by Wolf et. al [15]. The Lyapunov exponents
describe the mean rate of exponential divergence of initially neighboring tra-
jectories. For a stable fixed point the Lyapunov exponents are just the real
parts of the eigenvalues of the Jacobian matrix evaluated at the fixed point.

Generally a positive value denotes a divergence of the trajectories and thus
a sensitive dependence of the system on initial conditions. Negative expo-
nents denote convergence of the trajectories. A zero Lyapunov exponent
corresponds to direction tangent to the flow.

For a three dimensional dynamical system, the following situations of Lya-

punov spectra are possible:

e (--,-) ... fixed point or steady state solution,

e (0,-,-) ... limit cycle or periodic solution,

(
(
(0,0,-) ... torus,
(

e (+,0,-) ... strange attractor.

In table 3.1 we have calculated some Lyapunov exponents for three different
types of attractors found in the Lorenz-84 model.

We have used two Lyapunov exponent programs written by two different
persons. Both of them use the Wolf algorithm. For both programs we found
out that in the case of a fixed point the calculated Lyapunov exponents are
actually the eigenvalues of the Jacobian matrix evaluated at the fixed point
multiplied by a factor of In2. For F' = 0.5 and G = 1.0 the eigenvalues of
the Jacobian matrix evaluated at the fixed point have been computed by an
eigenvalue problem-solver.
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F| G Al A2 A3 attractor
0.5 1.0 | -1.197209769 -1.197209769 -1.995052786 | fixed point
451 1.0 0.000198715 -0.095899931 -0.096623759 | limit cycle
8.0 1.0 | 0.228140234 -0.000037541 -0.553264344 | strange attractor

Table 3.1: The Lyapunov exponents for a fixed point (F' = 0.5), a limit cycle
(F' = 4.5) and a strange attractor (F' = 8.0).

They are:

s1 = —0.8299 + 1.6206;
sy = —0.8299 — 1.6206
s3 = —1.3830 (3.34)

We can easily verify that a multiplication of the Lyapunov exponents in the
first row of table 3.1 by {n2 ~2 0.69314 gives the real parts of the eingenvalues
s1 to s3. So one should be carefull by using the Wolf algorithm, if one wants
to determine the exact eigenvalues of fixed points. The results should be
multiplied by the factor In 2. As we will see later in this work this observation
has no influence in calculating the Kaplan-Yorke dimension of attractors
using the Lyapunov exponents.

3.8 Lyapunov exponents in a system with
competitive attractors

In nonlinear dynamics we often have the situation that a system has for
certain parameters more than one positive attractor. Each attractor has his
domain of attraction and we could say that it competes with the others in the
state-space, in order to attract the surrounding trajectories. We speak about
competitive attractors, [10]. We know from Lorenz [6] that he observed dif-
ferent types of attractors for the same parameters but slightly different initial
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F| G Al A2 A3 attractor
6.0 | 1.0 | -0.000040324 -0.091933386 -0.093591715 | limit cycle
6.0 | 1.0 | 0.000857145 -0.350613345 -0.875247853 | limit cycle

Table 3.2: The Lyapunov exponents for a system with competitive attractors.
The only difference between the two calculations is the initial condition for
the integration.

conditions and concluded by this that the system can have basin boundaries
or separatrixes. Table 3.2 gives an example of two competitive limit cycles.
The upper limit cycle has the initial condition Xy = 2.4, Y5 = 1.0, Zy = 0.0
while the other has Xy = 2.5, Yy = 1.0, Z3 = 0.0. The two limit cycles are
shown in fig. 3.13.
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Figure 3.13: Two limitcycles in a system with competitive attractors.
a=025b=40,F=6.0,G=10,Y,=1.0, Z, =0.0.
Green limitcycle: Xy = 2.4, blue limitcycle: Xy = 2.5
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3.9 The Kaplan-Yorke-Dimension of the
chaotic attractors

Mathematicians have developed different methods to define the dimension of
attractors in nonlinear dynamics. One way to describe the dimension of an
attractor is given in [12] and is called the Kaplan- Yorke dimension.

If we know the Lyapunov exponents of the attractor, we can easily calculate
this dimension through the equation:

SN
A1)

DKY = _7 + (335)

where Ay > Ay > ... > A, are the ordered Lyapunov exponents and j is the
integer defined by the conditions:

i+l
S A >0,5 A <0
=1 =1

In our case the possible dimensions are:

e fixed point ... 0,
e limit cycle ... 1,
e torus... 2,

e strange attractor ... < 3.

For table 3.1 we have calculated the corresponding Kaplan-Yorke dimensions
Dyy which are given in table 3.3.
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F| G Al 22 23 Dxy
0.5 | 1.0 | -1.197209769 -1.197209769 -1.995052786 | 0.000096599
45| 1.0 0.000198715 -0.095899931 -0.096623759 | 1.002072109
8.0 | 1.0 | 0.228140234 -0.000037541 -0.553264344 | 2.412285187

Table 3.3: The Kaplan-Yorke dimensions Dy corresponding to table 3.1.

3.10 The Correlation-dimension of the
chaotic attractors

The Correlation-dimension [13] takes into account the regions of the attractor
in which the system remains for the longest time. So if the system has a
very inhomogeneous attractor, that is many regions are poorly visited, then
the correlation dimension D, will be much smaller than the Kaplan-Yorke
dimension Dgy. This means that the correlation dimension D, is from the
dynamical point of view more relevant than the Kaplan-Yorke-Dimension
Dy [2).

The relation between the Correlation-dimension and the Kaplan-Yorke di-
mension is:

D, < Dgy ‘ (3.36)

The definition of the Correlation-Dimension (D.) is:

]
D, = lim 08¢ (€)
e—0 ]oge

where
- Mo zg) |z — 5] < e}
Cle) = N(N —1)

Here we integrate our dynamical system in time and after the transient we
take in constant time distances NN points z; on the attractor. We use any
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Curve | F| G| D,
(a) |0.5]1.0|0.000
(b) |4.51.0]1.029
() |80]1.0]2289

Table 3.4: The parameters for three different attractors.

norm such as the euclidian or the maximum norm to define a measure for
the distance between these points. Each pair of points which has distance
smaller than € is counted to C(e). The correlation dimension is given by the
slope of the curve

Cle) = f(e)

in a log-log plot as € approaches zero.

In figure 3.14 we see such a plot obtained for N = 40000 and 41 different
values of e. The three curves (a), (b) and (c) correspond to three different
parameters of F' given in table 3.4.

For small values of F' we get fixed points. The slope of the curve is zero and
we get a horizontal line such as line (a). As F' increases we come to a domain
where limit cycles can appear. The dimension of a limit cycle is one and
thus the slope is also one like in curve (b). In the chaotic regions we have
taken the parameters F' = 8, G = 1.0. From the slope of curve (c) we find
the Correlation dimension 2.289. If we compare it with the Kaplan-Yorke
dimension Dgy = 2.41 on table 3.3 for the same parameters and initial
conditions, we see that eq. 3.36 is valid and that the chaotic attractor is
slightly inhomogenous.
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Figure 3.14: log C(€) vs. loge plot: (a) for a fixed point, (b) for a limit cycle
and (c) for a strange attractor. The slopes are estimates for the Correlation-
dimension D,.

3.11 The influence of the parameters on the
transient motion

In general we know that the timescale of the atmosphere is in the order of
some weeks to some months. The LORENZ-84 model has in many cases of
parameter pairs F' and G and initial conditions Xy, Yy and Z, a transient
motion in the order of this timescale. This is for example the case for F' = 6.5
and G = 1.2 for which in figure 3.15 the atmospheric meridional temperature
gradient X is plotted versus time.

But there are cases in the F' — G parameter space where the system behaves
like having an extremely long timescale. After many longtime integrations
with several parameters and initial conditions we came to the conclusion that
the LORENZ-84 system can also have transient motions in the order of years
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Figure 3.15: The transient motion for: @ = 0.25, b = 4.0, ' =6.5, G = 1.2
takes the time of five months. The initial conditions where Xy = 2.5, Y; = 2.5
and Zo = 0.0.

to decades.

For the parameters F' = 5.0 and G = 1.0 for example we have taken as
initial condition a cloud of points positioned on a three dimensional grid and
observed their motion during a longtime integration. We observed that the
transient motion of the points depends on the initial conditions and that it
can be in some cases extremely long, that is in the order of ¢ = 3000 to
t = 5000 so about 40 to 70 years. After this extremely long time those points
end on a simple limit cycle. For short time integrations the motion of the
cloud appears to be chaotic.

During this long transient period the Poincaré sections have a fractal struc-
ture and integrations over a grid of 421 initial points in order to find the
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Lyapunov exponents give us reason to believe that we have a system with
competitive attractors consisting of a limit cycle and a strange attractor. So
one should be very carefull in drawing conclusions about the system from
the result of relatively short time integrations.

A very interesting phenomenon in comparing the Lyapunov exponent pro-
gram and the Correlation dimension program for the parameters F' = 5.0
and G = 1.0 is the following:

Integrating in time with our Runge-Kutta fourth order scheme using a time
step h of 0.01 and the initial condition Xy = 5.0, ¥y = 2.5 and Z; = 0.0 we
found the transient motion to be in the order of ¢ = 600 or about 8 years.
After that time the system came to a limit cycle.

A long time integration with the same values using the Lyapunov exponent
program which starts evaluating the Lyapunov exponents after the ¢ = 5, so
before the transient motion is gone, gave as the result at ¢ = 5000:

A1 = 0.18992, Ay = —0.04195, A3 = —0.41941

and a Kaplan-Yorke dimension Dyy of 2.3528. This is surprising since the
Lyapunov exponent program had about the time of ¢ = 4400 running on a
limitcycle. Even more surprising was that for ¢ = 10000 and ¢t = 25000 as
we can see in the first row of tabel 3.5 the Kaplan-Yorke dimensions were
still far away from 1.0 which is the dimension of the limit cycle. So the
convergence of the Lyapunov exponents and thus also the convergence of the
Kaplan-Yorke dimension evolves very slowly and takes the time in the order
of centuries. Apparently this transient effect has a overwhelming influence
on the convergence of the Lyapunov exponents.

Using a Lyapunov exponent program which starts determining the Lyapunov
exponents after the transient motion, at ¢ = 750 we found a slight improve-
ment in the convergence of the Lyapunov exponents. The Kaplan-Yorke
dimensions are given in the second row of table 3.5.

For the same parameters and initial conditions we computed the Correlation
dimension using 5000 points at a time distance of one time unit. We included
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t = 5000 | t = 10000 | £ = 25000
Transient included 2.3528 2.1029 1.4496
Transient excluded 2.3006 1.9992 1.3236

Table 3.5: The Kaplan-Yorke dimensions calculated by a program which:
(a) includes the transient motion and (b) waits until the system reaches the
attractor, before it starts evaluating the Lyapunov exponents.

the initial transient motion in the data. The result was very positive for the
reliability of the Correlation dimension program. In figure 3.16 we see the
log C(e) vs. loge plot of the correlation dimension program. The slope of
the linear part of the plot was found to be 1.01.

-1

logC(e) =t

11 L 1 1 1 L 1

-8 -7 -6 -5 -3 -2 -1 0

loée
Figure 3.16: A log C'(€) vs. loge plot for 5000 points and a total integration
time ¢ = 5000. Note that the transient motion was not deleted.

It is clear that one should start determining the Lyapunov exponents after the
transient phase of the integration. This is especially true when determining
the Kaplan-Yorke dimension. But as we observed the improvement of the
convergence is not essential.
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3.12 A chaotic region for the LORENZ-84
model

From the meteorological point of view it is very important to find the regions
of the system where the behaviour is chaotic, as this is what happens with
the atmosphere in nature. In order to find a domain in the F, G-parameter
space with fully developed chaotic behaviour we have calculated for several
pairs of these two parameters the Lyapunov exponents and the Xaplan-Yorke
dimension for a large number of initial conditions. A similar investigation
has been done in [8]. As initial conditions we have taken a huge grid of
21 x 21 = 441 points on the Z = 0 plane within the range —5 < X < +5
and =5 < Y < 45 and a discretization of 0.5 between two points. The
integration scheme was RUKU fourth order with the time step h of 0.01.
The total integration time was in the order of 140 years, so extremely long
compared to the usual time scale of the atmosphere.

1.5 — T T

05

i
053

K e -0.5 0 05 1 15
Figure 3.17: Projection of a limit cycle in the Y Z-plane and its symmetrical

solution. The continued line is the limit cycle for X,Y, Z, G, F. The dashed
line gives the limit cycle for X, -Y, -Z, -G, F.
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Parameters F=15 F =80 F =85 F =90 F =95
G=0.9 | Dgy=1.00| Dgy =237 | Dgy =1.00 | Dgy = 1.00 | Dgy = 1.00
G=10 | Dxgy=100| Dxy =242 | Dxy =2.26 | Dy = 1.00 | Dgy = 1.00
G=1.1 Digy =238 | Dxy =242 | Dgy =2.24 | Dgy = 1.00 | Dgy = 1.00
G=12 | Dygy =214 | Dy =1.00 | Dgy =1.00 | Dgy = 1.00 | Dgy = 1.00
G=13 | Dgy =1.00| Dy =2.35| Dgy =2.28 | Dy = 2.10 | Dgy = 1.00
G=14 | Dgy =0.00| Dgy =0.00 | Dgy =1.00 | Dgy = 2.11 | Dgy = 1.00

Table 3.6: A domain in the parameter space F' — G with chaotic behavior.
The integration time ¢ = 10000 corresponds to approximately 137 years.

The fact that our dynamical system eq. (2.1)-(2.3) has symmetrical solutions
simplifies our investigation very much. If (X (¢t), Y (¢), Z(¢), G, F') is a solution
of eq. (2.1)-(2.3) then (X (t),-Y(¢t),—Z(t),—G, F) is also a solution of the
system. Thus if we find all the attractors the system has for specific values
of G and F', we also found all the attractors the system has for the values
—G and F. The latter attractors in the X, Y, Z- space will be symmetrical
about the X-axis to the first. So no investigation for the pairs —G, F' are
necessary if we know the results for G, F.

In figure 3.17 we see from the Y Z-projection of the phase portrait the sym-
metry of attractors for G, F and —G,F. Here we see a limit cycle (solid
line) for Xy, Yy, Zy, G, F and its symmetrical limit cycle (dashed line) for
Xo, Y5, =2y, —G, F.

In table 3.6 we show the Kaplan-Yorke dimension of the attractors found as
a function of F' and G for a small window in parameter space.

Special remarks about the table: For F' = 7.5, G =1.0, F =8.5, G =0.9
and F' = 9.0, G = 1.2 we get a weak stable limit cycle and the convergence
of the Kaplan-Yorke dimension evolves very slowly. Even after ¢ = 40000 or
about 550 years many integrations of the 421 initial points give in each case
Kaplan-Yorke dimensions close to but not exactly 1.00.
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Definitely there are chaotic windows in the parameter space. We assume, but
we can not guarantee due to the discretization, that there is a small chaotic
window in the region 8.0 < F' < 8.5 and 1.0 < G £ 1.1, which could be
extended for the practical use to 7.6 < F' < 85 and 1.0 < G < 1.1 as the
transient motion for /' = 7.5 and G = 1.0 is extremely long and irregular.

We also remark that despite of the weak convergence of the Lyapunov ex-
ponent program in some cases, we did not use the Correlation dimension
program although we have seen its reliability for such cases, because the
calculation time for the latter is very long.
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Chapter 4

Discussion

We have observed that even though the Lorenz-84 atmospheric model looks
very simple it shows a variety of interesting dynamical phenomena. Very
special in the investigations was the sensitivity of the system to parameter
variations and the complexity of the attractors found in it. Fixed points,
simple limit cycles, higher subharmonic limit cycles and chaotic attractors
have been found. We observed that the system shows regular behaviour for
low values of forcing (F,G) and that the irregular behaviour appears for
larger values of the forcing terms and comes in windows in the parameter
space.

In section 3.4.1 we mention the symmetry properties of the equilibrium so-
lution and also the symmetry of the stability behaviour for positive and
negative G.

From our one and two dimensional bifurcation analysis of the equilibrium
solutions in section 3.4.3 we have observed a variety of stable and unstable
equilibrium solutions which will have a large influence on the dynamical
behaviour of the system. One should always have the diagrams in mind
when searching for a chaotic region.

In section 3.5 we have shown that the global flow of the system is bounded
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and remains within a sphere centered at the origin. In section 3.6 we saw
that we can separate the state-space by the plane X = 1 + £ in a domain
with positive and a domain with negative divergence. Attractors which go
through both domains seem to end to zero volume when ¢ goes to infinity.

In section 3.7 we warn the reader that the Wolf algorithm gives for fixed point
attractors not exactly the real parts of the Jacobian matrix evaluated at the
fixed point. The factor In 2 should be multiplied to the result. If this factor
is also found in calculations of limit cycles and strange attractors we remark
that it has no influence in the calculation of the Kaplan-Yorke dimension if
we see eq. (3.35) in section 3.9. In section 3.8 we have seen that competitive
attractors are possible. In our various integrations we have observed only
coexistence of limit cycles, but not coexistence of a strange attractor and a
limit cycle or other combinations.

In section 3.9 and 3.11 we experienced that long integration times greater
than ¢ = 10000 are necessary in order to determine the Kaplan-Yorke dimen-
sion of attractors accurate enough . Sometimes when we have weak limit
cycles even ¢t = 40000 which corresponds to five and a half centuries is not
enough time for the Lyapunov exponents to converge. The Kaplan-Yorke
dimension of chaotic attractors was in general between 2.10 and 2.42, de-
pending on the parameters. As we have noticed, starting evaluating the
Lyapunov exponents on the attractor, that is after the transient motion, im-
proves slightly the convergence of the Lyapunov exponents but the following
question is for us still open: How could the algorithm to determine the Lya-
punov exponents be improved in order to get faster convergence and thus
reduce the calculation time?

In section 3.10 we experienced that the chaotic attractors are slightly inho-
mogenous by comparing the Correlation dimension with the Kaplan-Yorke
dimension. A number of 40000 points on the attractor is recommended for a
very good approximation of the Correlation dimension. The disadvantage of
the Correlation dimension program is that it needs a long time to integrate
comparing it to the Lyapunov exponent program.
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In section 3.11 we observed that the system can have extremely long tran-
sient motion behaviour for some cases in the parameter space. Here one
must do long time integrations to observe whether or not the attractor goes
to a limit cycle or to a chaotic attractor. We still do not know what the
exact explanation of this long transient effect is, when it occurs and which
attractors (stable and unstable) are involved in this effect.

In the previous section 3.12 we have investigated a chaotic regime in the F'G-
parameter space. We have seen that it is not easy to find a chaotic region
over a large range of parameters and the relevant questions would be: Is
it possible that we could find better chaotic regions with larger windows of
irregular behaviour in the time dependent problem?

We also mention that because of symmetry properties of the system, ex-
plained in section 3.12, table 1 in [8] should be symmetric for positive and
negative values of G. Also because of the long transient behaviour of the
system for some parameters, discussed in section 3.11, we have to correct
table 1 in (8] for the cases F' = 5.0, G = 1.0 and F' = 8.0, G = 1.2, since after
the transient motion the system has converged to a limit cycle. We also have
to correct the case F' = 6.0, G = 1.0 of the same table where according to
section 3.8, two competitive limit cycle attractors are observed in the system.
This is also verified by calculations of Lorenz in [6] p.381.

We also warn the reader from the typing error in page 3, eq. (4) of the [1]
paper. There eq. (4) should have the form:

(1-X)G

Y:(1—2X+(1+b2))<2)‘

Finally we assume that there are still many effects in the Lorenz-84 atmo-
spheric model which would be worthwhile to investigate. An interesting
question would be: What types of bifurcations are involved in the transition
to chaos in this model?
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