o3

eld

: Y

o b~

¥ Sy

5 U 3
nm i e m L ” lpav * s
ce = AN S o

2L e T m - S

v e



Scientific report = wetenschappelijk rapport; WR 9g - 03

De Bilt, 1999

PO Box 201

3730 AE De Bilt
Wilhelminalaan 10

De Bilt

The Netherlands

Telephone + 31(0)30-220 69 11
Telefax + 31 (0)30-221 04 07

Author:  Fred C. Bosveld

UDC: 551.506.24
551.584.41
551.501
(492)

ISSN:  0169-1651

ISBN:  90-369-2163-5

© KNMI, De Bilt. All rights reserved. No part of this publication may be reproduced, stored in retrieval systems, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher.



The KNMI Garderen Experiment,
Micro-meteorological observations 1988-1989.

Corrections

Fred C. Bosveld



Contents

1 Introduction . ...... ... . . .
2 Errors in the net radiation measurements . ...............
2.1 Introduction . ........ ... . ... ... ... ... ... .
22 Correcting a tilted net radiation sensor . ...........
2.3 Radiation influence of the mast. .. ........... ...
3 The structure parameters of the wind. . ......... ... .. ..
3.1 Introduction . ....... ... ... ... . ... .. ... .. .
32 Definition of the structure function for wind . . . ... ..

33 Converting from time coordinates to space
coordinates . ........................ . .. . ..

34 The influence of increased dissipation variance at

smaller scales . ........... ... .. ... ... .. .. .
4 Error sources in the measurement of the structure parameter
of the vertical wind with a sonic anemometer. . ........ ...
4.1 The effect of line averaging on measured structure
parameters of a turbulent windfield

5 High frequency loss in flux estimates due to line averaging.
51 Introduction . ........ ... .. ... .. .. . ... ...,
5.2 Relation between Co-spectrum and structure
function . ...... .. ... ..
53 Loss of covariance due to line averaging in terms
of the structure function . .......... ... .. .. . . ..
54 Loss for a path perpendicular to the main wind . . . . . .
5.5 Results .. ... ... ... ... ... ...
6 Low frequency loss in fluxes due to a finite averaging
HMe. . ..o
6.1 Introduction .. ... . ..o o
6.2 Low frequency spectral loss . .............. ... .
6.3 Results ... ... ... ...
7 Corrections for zero-crossing jump in the sonic anemometer
windspeed . ........... ... .. L
7.1 Corrections for covariances with the vertical wind . . . .
7.2 Corrections for the structure parameter of the
vertical wind . . ... ... L
73 Parametrisation of the frequency of ZEro-crossing
8 Angle dependence of the Sonic Windspeed . .......... . ..
8.1 Introduction .. ... ... .. .
8.2 Windtunnel measurements

8.3 Comparison with fielddata ... ........ ... .. .. ..
9 On the expectation value of functions of multi-dimensional
Gaussian distributed random variables



Mast interference . ........ ... ... . . ... . . .. . 43
10.1  Sensitivity of cup anemometers for horizontal wind
gradients . ... ... o 43
Cup anemometer overspeeding corrections . ... ... ... .. ... 45
ILTIntroduction .......... ... .. . . .. . .. . . 45
1.2 Cup anemometer dynamics ... ... ... ... .. . 45
113 Scaling laws of 6, and C,> . ... ... .. .. .. .. 46
11.4  Dynamical cup model ......... . .. ... .. . . 47

115 Overspeeding derived from field data . . . ...... . 47



1 Introduction

During the period 1988-1989 KNMI has run a forest micro-meteorological research site at the
Speulderbos near the small town of Garderen, The Netherlands. The measurements were performed
in the context of ACIFORN (Acidification of Forests in the Netherlands) a sub-project of the
Dutch Additional Programme on Acidification. Measurements were performed along a 36 m tall
open structured mast. They include: a) profile measurements of wind, dry-bulb temperature and
wet-bulb temperature, b) fast response turbulence measurements of wind, temperature and humidity
and c) shortwave incoming radiation, net radiation and infrared radiation temperature. Details on
the site and the measuring program are described in Bosveld et al. (1998). This report deals with
various corrections which are performed on the data.

Outdoor measurements of meteorological variables are always prone to uncertainties. An important
difference with the laboratory situation is that outdoor experiments can not be repeated under the
same conditions. Therefore it is of importance to check instrumental performance at the time of the
experiment. This can be achieved by on-line data output. To perform quality checks it is of
importance to have some kind of redundancy in the measurements. Despite the best efforts one is
at times confronted with instrumental problems in the data only after the experiment, at the time

that a more thorough data analysis is performed. This problems can be called the nightmare of the
instrumentalist.

A number of sources of uncertainties can be discriminated. Uncertainties arise because of the
inherent statistical nature of atmospheric turbulence. This aspect is thoroughly described in the
literature (Lumley and Panofsky, 1964) and will not be treated further here. Uncertainties arise
because instruments often do not measure exactly the variable that we need. For example
instruments that measure turbulent fluctuations have limited response at the high frequency side of
the spectrum. Often data can be corrected for this kind of uncertainties within certain limits. Other
uncertainties arise because of mall-functioning of instruments. In the best case one may discover
the source of mall-functioning and prove that the error is reproducible and can be quantified. If this
is not the case one is probably able to estimate the magnitude of the uncertainty. One is then left
with data that are more uncertain then intended, and one may hope that objectives of the
investigation can still be met. If none of this is the case one can only reject the data.

Some straightforward data checks and corrections are described in a separate technical report
(Bosveld et al., 1998). They include treatment of cup anemometer calibrations, an in situ
calibration of the Ly-o fluctuation hygrometer, offset and drift in the observations of dry- and wet
bulb temperature differences and calibration of the sonical temperature. In this report we
concentrate on more complex corrections. They involve two ‘nightmares of the experimentalist’.
One is related to a tilted net radiometer described in Chapter 2, the other is related to a mall-
functioning D/A-converter in the wind unit of the sonic anemometer described in Chapter 7. In
Chapter 3 the theory of the structure parameter of the wind is treated. It proves to be an interesting
quantity in its own right because it gives direct information on the structure of inertial subrange
turbulence. Moreover, it can be used to quantify various instrumental uncertainties especially, those
that are related to limited response at the high frequency end of the spectrum. Chapters 4 is
devoted to the the measurement problems of the structure parameter of the wind. Related to this is
Chapter 5 on the influence of line averaging on eddy-correlation observations and Chapter 11 on
cup-anemometer overspeeding, including an experimental verification of overspeeding. The short
Chapter 10 gives an indication of mast interference with wind speed measurements. Chapter 8
treats the calibration of the sonic anemometer. A procedure is derived to correct the instrument for



transducer shadow effects. Chapter 6 treats the problem of low frequency loss in eddy-covariance
measurements, due to finite averaging time. Were possible use is made of the redundancy in the
data to check on the correctness of the various corrections applied. This dictates the sequence of

corrections and determines, at least partly, the order in which the various topics are described in
this report.



2 Errors in the net radiation measurements

2.1 Introduction

Net radiation measurements are known to be susceptible to a number of errors (Halldin et al.,
1992). Of these the most notable are: difference between calibration conditions and field
conditions, differences in sensitivity to short wave radiation and long wave radiation, sensitivity to
aging of the dooms, difference in radiation properties of the supporting mast compared to the
surface and sensitivity to tilt in particular when the direct sunlight component is large. For the
current data-set two problems were especially important.

A systematic underestimation of net radiation (Q) of 8% was found. For specially selected overcast
cases an independent estimation of net radiation was obtained. Observed short wave incoming
radiation together with an estimated albedo of 0.10 was used. Net long wave cooling was assumed
to be small and constant over the day for these selected cases. Accuracy of the Kipp pyranometer,
with which short wave incoming radiation is measured, is well established making it likely that the
net radiometer was in error. For other experiments comparable deviations were found for the the
Funk-type net radiometers used at KNMI. This led to an investigation of the KNMI calibration
standard for net radiation. Kohsiek (1996) compared a pyranometer with the net radiometer used as
a calibration standard at KNMIL. He found by comparing the responses during a shadowing
experiment during a clearsky day that the standard underestimated short wave radiation by 6%. All
net radiation data were corrected accordingly. The remaining discrepancy of 2% might well come
from aging of the domes during the one month interval between replacement of the domes.

The second problem relates to a tilt of the net-radiometer of several degrees out of the horizontal

plane. The main part of this appendix is devoted to developing a correction procedure for this
error.

2.2 Correcting a tilted net radiation sensor

The Funk net radiation meter is mounted on a boom that can be rotated to the mast in the
horizontal plane for maintenance purposes. The instrument was levelled when the boom was
rotated inward. In the course of the experiment it was realised that the rotation axis of the boom
was not strictly vertical. The error in Q due to a tilting of the instrument is almost entirely
attributable to the effect on the direct shortwave radiation. The diffusive radiation components does
not contribute significantly to this error. Let 8, be the tilting angle of the instrument then for homo-
geneous diffuse light it can be shown that the measured net radiation is cos(B;) times the actual net
radiation. For a tilt of 5° this result in a deviation of 0.5%.

The direct sunbeam gives rise to a larger error in the net radiation. Let K, be the direct short wave
flux density perpendicular to the beam then the error can be written as:

80 = K, (& - )%, @1

where, €, is the unit vector perpendicular to the horizontal plane, & the unit vector perpendicular

to the surface of the instrument and € the unit vector parallel to the sunbeam. Let h be the
elevation of the sun above the horizon and @, the azimuth relative to north (positive over east).

Finally let @, be the azimuth of direction of tilt. In terms of these angles and retaining only first



order terms in 6, equation (2.1) results in:
80 = -6, K, cos(9,~0,) cos(h) (2.2)

For the estimation of direct solar radiation we use the algorithm derived by De Jong (1980) ( see
also Velds, 1992). This algorithm gives an estimate of diffuse solar radiation as function of time
averaged global radiation. The algorithm is tested on a data set obtained in De Bilt, the Netherland.
Here we modify this algorithm for the use of direct solar radiation. The global radiation is split in
its diffuse and direct component:

K' =K

dir

sin(h) + KM (2.3)

The extra-terrestrial values of K* and K, are K, and I, respectively where K, = Iesin(h). I, is the
solar constant and varies only a few percent throughout the year due to variation in the distance of
the earth to the sun. The "De Jong’ algorithm then relates the ratio K‘L/KO to the ratio K, /I,. Table
2.a summarises the algorithm. The accuracy is circa 100 W m>

To estimate tilt angle and tilt azimuth from the observed net radiation we need an independent
estimate for the net radiation. Since not all the components of the radiation balance are measured
we have to rely on some parameterisation of terms in the radiation balance. The radiation balance
or net radiation Q,,, is given by:

Q=K' -K"+L' LT (2:4)

where K* is the short wave incoming radiation, K" short wave outgoing radiation, L* long wave
incoming radiation and L' the long wave outgoing radiation. Of this components short wave
incoming radiation is measured and the infrared radiation temperature of the forest is measured
from which the long wave outgoing radiation can be derived.

Short wave outgoing radiation is parameterised with an albedo of 0.10. For the downward
longwave radiation we rely on a model for cloud free conditions given by Brutsaert (1975) which
relates L* to T, and e, the temperature and water vapour pressure at screen level:

1/7

e
L' =124 - oT? (2.5)

a

For cloudy skies the situation is more complicated. Cloud base temperature and cloud cover
fraction becomes important. Thus we limit to clear sky conditions. We are now in a position to

derive an independent estimate of the net radiation for clearsky conditions in terms of measured
quantities:

KYK, K,./1,
<022 0
0.22 - 0.35 6.4%(X-0.22)
0.35 - (1.47-R)/1.66 (1.6°X-0.47)
> (1.47-R)/1.66 R

X = Kl/K0 and R = 0.847 - 1.61 sin(h) + 1.04 sin’(h)

Table 2.a Algorithm to derive direct sunlight form global radiation observations.
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e
Q. =(1-r K*+124| 5| o7~ T* (2.6)
mod T « 8

a

Figure 2.1 shows results for one clearsky day. Figure 2.1a shows the observed net radiation and
short wave incoming radiation together with the modelled net radiation and a modelled short wave
incoming clearsky radiation K'!(mod) with low atmospheric water content and low turbidity
according to Raaf (1987). It is observed that global radiation is relatively low indicating high
turbidity and thus relatively low direct solar radiation. Figure 2.1b gives for an eye fitted tilt and
azimuth of tilt the estimated deviation in the net radiation. A line is drawn for the modelled
deviation. Furthermore the difference between observed and modelled net radiation are displayed
before and after correction for this tilt. The eye-fitt tilt and azimuth is obtained by varying tilt and
azimuth of the model net radiometer such that a good correspondence is obtained between the
modelled (with De Jong direct solar radiation) and the observed deviation. All days with a clearsky
period of at least several hours were investigated resulting in a series of tilt and azimuth values
throughout the year. It appeared that these values stayed approximately constant within periods
where no handling with the instrument occurred. For each period with no instrument handling a tilt
and azimuth was determined. Corrections were performed accordingly.

2.3 Radiation influence of the mast.

Here we investigate the influence of the supporting mast on the net radiation instrument. The
instrument is mounted on a 2.5m long boom which itself stick horizontally out of the top of the
mast in the direction 120° relative to North, positive over East. The mast itself has a triangular
base with sides of 1.2m. It can be shown that for a isotropic diffuse radiance, homogeneous
distributed over the side of the mast, the relative contribution of the mast to the radiation
measurement is d/(2nb), where d is the width of the mast and b is the length of the boom. This
amounts to a fraction 0.1. As an order of magnitude estimate let us assume that the irradiation on
the mast side is equal to the shortwave incoming radiation. Let us further assume a transparency of
the construction of 0.5 and an albedo of 0.5, whereas the albedo of the vegetation is circa 0.10. As
an order of magnitude we have that a fraction 0.05 of the radiation field is increased with 0.4
times the global radiation. Thus an extra 2% of the global radiation is added to the upward
shortwave radiation. It must be noted that for low solar elevation in the morning the contribution
can be higher especially when turbidity is low and thus direct solar radiation is high. Figure 2.2
shows comparable graphs as Figure 2.1 but now for a day with high direct solar radiation. It is
observed that after tilt correction a deviation of maximal 30 W m™ remain. This is most likely
caused by mast interference. No correction is performed for this mast radiation effect.
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Figure 2.1 Departure in net radiation due to tilt for a clear day with high turbidity. A) Observed
and modelled radiation components together with the clearsky short wave radiation of Raaff, B)
deviations
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3 The structure parameters of the wind.

3.1 Introduction

Structure parameters and the closely related structure functions are convenient quantities to obtain
statistical information about the smaller scales of turbulent quantities. Temperature and moisture
structure parameters are used in describing propagation of electromagnetic waves (Tatarski, 1967)
and acoustic waves through the atmosphere (Weil, 1991). In micro-meteorology they are used to
derive surface fluxes indirectly with Monin-Obhukov similarity relations (Kohsiek, 1982: Kohsick
and Bosveld, 1987; Fairall et al., 1990). Structure parameters of wind can be used obtain indirect
estimates of momentum transport and dissipation of turbulent kinetic energy by assuming the
presence of an inertial subrange in the kinetic energy spectrum. One could say that the use of
structure parameters in micro-meteorological practice is a convenient way to get some spectral

information. The measurements can easily be processed on-line to average values over a desirable
time interval.

There are two fundamental interpretation problems with structure parameters, one related to the
Taylor hypothesis used to transform from the time domain to the spatial domain, and one related to
the increased intermittency on smaller scales of the dissipation. These will be treated in this
appendix. Measurements of structure parameters in the atmospheric surface layer sets high
demands on the spatial and temporal resolution of the instruments. If this demand are not satisfied
important corrections have to be applied for spectral loss. This is the topic of the next appendix.

32 Definition of the structure function for wind

For horizontal homogeneous conditions the structure function of a velocity component A along an
arbitrary direction in space is defined as:

Wm=<Wmeﬁw G

where the brackets denote averaging over a horizontal surface, y is some position in space and x is
the separation in space. a denotes the fluctuation of A around its average value <A>. The structure
function relates to the autocorrelation function R, according to:

R, (0 = <a(y+x)a(yy> = R (0) - %Df(x) (3.2)

where R (0) is the variance of q.

For spatial separations x in the inertial subrange, i.e. x much smaller then the scale /. on which
energy is produced and much larger then the viscous length scale 1, a scaling law for D can be
derived by observing that the only physical relevant scales are the energy dissipation rate ¢ and the
spatial separation x itself. From this we conclude on dimensional grounds that:

D;(x) ~ (ex)? (3.3)
The structure parameter of the windcomponent A is defined by:
Cl(x) = DJ(x) x 2 ~ g (3.4)

In the inertial subrange we may expect C,’ to be independent of x and according to Equation (3.3)

9



to be proportional to 2/3™ power of the dissipation rate. Moreover when the condition of isotropy
is satisfied the constant of proportionality only depends on the angle between the average
windvector and the direction along which the wind component is measured.

33 Converting from time coordinates to space coordinates

In practice we measure a time series at one location. To derive information about the spatial
turbulent structure some assumptions have to be made. It is common practice to assume the Taylor
hypothesis applicable. Firstly we assume that for statistically ~stationary and horizontal
homogeneous conditions time and space averaging may be interchanged. In that case the structure
parameter can be derived from a time series of two spatial separated sensors. The next step is to
derive the structure parameter from a time series of one sensor alone by applying Taylor
hypothesis. This is not strait forward. Since the measurements are taken in a turbulent field the air
is advected with variable speed through the sensor. To have a constant separation in space we need
a variable separation in time. The consequences of this effect is studied by Lumley (1965) and
Wyngaard and Clifford (1977) and applied for spectra, i.e. wavenumber and frequency domain.
Here we will follow their lines but now for the space and time domain.

The time domain structure function is defined as:

D (A = (a(y,t+An)-a(y,n)) (3.5)

where overbar denote a time average. Let us assuming that the advection fluctuations are
dominated by the large scales L of the turbulence and that the structure of the small scale (x, UAY)
is independent of the large scale advection fluctuations. Wyngaard and Clifford (1977) state that
there is some evidence for this assumption. The time average can be rewritten into an integral over

the distribution of all possible wind velocities (P(«)) and changed to the spatial formulation of the
structure function:

DA = [du Pw) DT v (3.6)

where U is the main wind vector and u the deviation from the main wind vector. To evaluate the
integral a three dimensional Gaussian distribution of the windvector u is assumed with variances
deviation 6,7, 6., 6’ and one non-zero covariance, i.e. <uw>. The structure function is assumed to

have a 2/3 power law behaviour. Applying the method of Gaussian averaging described in Chapter
9. we have up to third order:

2 2 2
l Gll 1 G v 1 GW
+ +

o0 3% 30

For the current forest site a reasonble approximation is o, = 3 6,2 thus the two corresponding
terms in Equation (3.7) cancel. For the forest site the standard deviation of the wind direction for
neutral conditions is circa 0.3 rad, this amounts to an overestimation of the space based structure
function by the time based structure function of circa 3%. The remaining factor is approximately

equal to the 2/3"™ power of the ratio of the average length of the windvector and the length of the
average wind vector:

D>(An = DXUAH1 - (3.7)

2

D (&) = DXU,, A (3.8)

Thus by deriving structure parameters from time series we have to apply Taylor-hypothesis with an

advection speed equal to the average length of the wind vector. Structure parameters are derived
accordingly.

10



34 The influence of increased dissipation variance at smaller scales

In the studies of Kolmogorov (1962) and Obhukov (1962) the influence of intermittency of
dissipation is put forward. The variance of dissipation increases when going to increasingly smaller
scales. This effect is found to be a function of the ratio between the energy containing scale L and
the scale under observation. The consequence is that

<ef> = <e>P for Bzl (3.9)

This makes the scaling law given in Equation (3.3) ambiguous. Several statistical models are
developed, see Kolmogorov (1962), Frisch, Sulem and Nelkin (1978). Anselmet et al. (1984)
compared the models with observations. For all models the second order structure function leads to
the form

D;(x) ~ (ax)z’»*[i]“” (3.10)

x
Anselmet et al. find for the exponent W, a value of -0.05. The consequence is that the structure
parameter as defined in Equation (3.4) depends on the lag x even in the inertial subrange and
increases with increasing lag. For lag ratios of 2 and 4 the increase is 3.5% and 7% respectively.
Translating this to atmospheric sublayer measurements there will be a weak dependence on the
measuring height and stability since these are directly related to the dominant length scale. For
neutral conditions we have 3.5% increase for a 2 times lower measuring height keeping the lag x
equal.

11
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4 Error sources in the measurement of the structure parameter of the
vertical wind with a sonic anemometer.

We identify four ways in which the measurements of fine scale wind turbulence are distorted by a
sonic anemometer. Here the analysis is performed for the Kaijo-Denki DAT-300 sonic
anemometer. Some aspects may differ for other types of sonic anemometers.

a) Filter characteristic of the D/A converter.
b) Line averaging along the transducer path
) Time delay between upward and downward measurement of the velocity components.

d) Sample and hold of the D/A converter

All this effects are in a sense low-pass filters which affect the sensitivity for small scale turbulence.
The method to treat this losses is by transforming to wavenumber domain and calculate spectral
transfer functions for each error source. Then with a prescribed turbulence spectrum the total loss
can be calculated. An alternative way to estimate the effect of losses is by calculating the effect on
the autocorrelation function directly. A disadvantage of that method is that subsequent losses at
different places in the measuring system have to be treated simulatiously. An advantage is that it
leads directly to expressions in terms of flux or variance loss.

We start from the relation between the structure function and the correlation function. From
Equation (3.2) we have:

D/(x) =2 (R (0)-R, (x)) @D

Thus the structure function is the difference between the total variance and the autocorrelation at
lag x. The first term contains all spatial scales down to the smallest, whereas the latter contains
only scales of the order x and larger. This means that filtering with a characteristic spatial scale of
[ smaller then x will mainly affect the variance and only slightly the lagged autocorrelation. The
effect on the lagged autocorrelation is of the order (I/x)*. The filtered variance is in effect the
average over the autocorrelation function over a region of the order / around lag x = 0. Using the
results of the previous appendix and for / within the inertial subrange we can estimate the loss of
variance to be of the order C,/**. In formula we have:

o
"/‘«
=
p—
i

D)1 +0(1J>—BC£1 (4.2)
X

/3 )
() = Cx) -(143(1] +0(_l]) (4.3)
X X

B is a constant which depends on the precise filtering that is applied. Equation (4.2) shows that the
spectral loss in the structure function is independent of the lag x, provided x is much larger then /.
This provides an interesting way to diminish the effect of filtering on the structure function. Let X
and x, be two lags in the inertial subrange then the difference between the filtered structure

functions for these two lags is equal, up to second order, to the difference in the unfiltered struc-
ture functions. Thus we have

a
=
~

|

2

, Dx)-D ¢
C‘; - (1(x2) u(xl) (]+O[1J) (44)

273 23 -
X X X



This opens the possibility of correcting structure parameter measurements for high frequency loss
without tedious correction procedures. To proceed we will describe this tedious correction
procedure for one of the error sources, i.e. line averaging. We have choosen this example because
it also gives results relevant for estimation of high frequency variance losses as will be described
in Chapter 5. To calculate the total loss the effects have to be treated simultaneously. This is
described in Van der Ploeg (1995), together with the software used to perform the corrections on
the data. Figure 4.1 shows the comparison between the two methods for the structure parameter of
the vertical wind according to (4.4) and according to Van der Ploeg (1995).

4.1 The effect of line averaging on measured structure parameters of a turbulent windfield.

When measuring wind speeds with a sonic anemometer there will inevitably be some line
averaging involved along the transducer path. Here we shall derive the corrections for this effect
on the wind structure function under the assumption of homogeneity and local isotropy. In an

isotropic turbulent windfield it can be shown (Hinze, 1959) that the correlation wind tensor is
given by:

RA = {fin-g)}- g1 @.5)
r,

I'is the unit tensor 7 is the seperation in space. This form is the most general second rank tensor
which can be build from 7 alone. The functions f and g are related through the continuity
equation. f(r) describes the correlation function for the wind component along 7, whereas g(r)

describes the correlation for a wind component perpendicular to 7. For the inertial subrange it can
be shown that the functions f{(r) and g(r) are:

Sfir)

1]

AO)-2cem
3 (4.6)

8(r) g(O)f%Cfrz’3
where the index L indicates the component perpendicular to the separation vector 7. We observe
the well known 4/3 ratio between correlation loss as a function of distance for the lateral and
longitudinal components. fl0) and g(0) are related to the variances of the fluctuations. The
variances are dominated by the large scale fluctuations of the turbulence. For wall bounded shear
flows the turbulence is not isotropic on the large scale and thus this terms do not fitt into the
isotropic framework. For our purpose, the analysis of the structure functions, we are only interested
in deviations from this variance and thus in the end the large scale contributions cancel.

Assumed is that the structure functions are measured in the time domain and transformed with
Taylor hypothesis to the spatial domain along the direction of the main wind speed vector given by
the unit vector €. One transducer pair of a sonic anemometer defines a direction €, along which
the wind is measured. In principle the transducer A then measures the average over the transducer

path of U, = U-¢,. The geometry of the problem is cylindrical symmetric with cos(8), the cosine
between the two directions as a parameter. For U, we derive from Equation (4.5) with the identity:

—-

;I

€, — €, = cos’ 4.7
p

(¥

R, (r0) = RAA(O)—%Cfr”3 (1—%c0526) (4.8)
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and we find
cl=clqa f%cosze) (4.9)

The result of a measurement along the transducer path can be written as:

12
0,(7= [U,(Frse)ds (4.10)

=12

Since the structure functions are measured, with the Taylor hypothesis, as seperations x along the
mean wind directions we write down the particular autocorrelation function:

12112

Rux€) = o [ [dsds! & Rlss 12,82,

Sk (4.11)
dn (I1-n)) & Rmie, +xé,)-¢,

1

Substituting Equation (4.5) and using the identities
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where p = [/x, we arrive at:
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R,(x&) = R, (0) - iﬁl(p,cose)
T 14C08 (4.13)
) / [mp) +2mpeos® +1]+/ sin%6

2/3

1
I(p.cos) = fdn(l aul
4 [(p)? +2mpeosd+1]

First we shall examine the limiting behaviour of the integral.

The loss of variance due to the line averaging is obtained by letting x go to zero, or equivalently p
grow without limit:

27 2

lim I(p,cosB) = = (4.14)
S peos®) = g5
which results in:
; Cy
R(0) =R, (0) - L2+ (4.15)
2 80 1-'/,cos’®
With Equation (4.9) we observe that the variance loss is independent of direction.
The limit for large separations i.e. p small is after straight forward approximation:
, %+_l%cosze ~5_54¢os“9)
Ié.a/\(xé.u) = RAA(O) - ——CAZ)CZ/3 l+p2 (4.16)
2 |
1-_cos°0
4
For transducers parallel and perpendicular to the main wind respectively we find:
R (xé&) =R (0) - e Lol p?
2 72 (4.17)

2 54

the coefficients of the second order terms suggest that this approximations are accurate down to
rather small values. For one special case we can test this suggestion. For the parallel case (8 = 0)

we can test this suggestion rigorously ecause an exact solution to the integral in Equation (4.13)
can be found:

! 3
H(p.cos(8=0))=2 fdn (1-n /(1 mpy (4.18)
|

For p < 1, ie. [ < x, we find after some transformation of variables

5 1 1
R (x&) = R (0) - _C/x* (1 —_pZJ

3 1(9
Ip.D)=" | 2 [(1+p)*P+(1 =p)¥3-2 O<p<l 4.19
(p,1) 4p2(40[( p)+(1-p) ]J <p< (4.19)
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For p =1

the exact solution give 0.021 for the correction term, whereas the second order
approximation give 0.019. Thus indeed the second order effect remains small for p up to 1.

For the structure function we find:

] C
Dx) =D (x) - L.2T_ "

oo (4.20)
2 80 1-Y cos’®
This form confirms the reasoning that lead us to the sim

ple correction method described in
Equation (4.4)






5 High frequency loss in flux estimates due to line averaging.

5.1 Introduction

In the literature several studies can be found on the spectral loss due to line averaging and sensor
seperation. Almost all these studies are concerned with the loss in variance of scalars and
velocities. The reason is that for these quantities the three dimensional structure function or if you
like the three dimensional wavenumber spectrum in the inertial subrange can adequately be
described with the assumption of isotropy. This assumption greatly simplifies the form of the
spectrum. This exercise has been done by Kaimal et al. (1968) for the wind components and for
scalars by Andreas (1981) and Kohsiek (1984).

Moore (1986) suggests that the loss in for example the temperature flux <wt> can be described in
spectral terms by the product of the square root of the transfer functions for c,’ and o transfer
function. As shown by Kristensen and Fitzjarrald (1984), hereafter called KF84, this can not be
correct. The reason is that the transfer functions depends on the three dimensional spectrum of the
quantities under consideration and this spectrum is not known for fluxes. This is because a flux
spectrum can not be isotropic and in practice we have only access to the one dimensional spectrum
in the mean wind direction. To make progres KF84 tries to find a simple non-isotropic vectorial
spectrum. They start with the assumption of rotation symmetry around the vertical axis, allowing
for a vertical flux. Consequently the horizontal fluxes are zero due to mirror-symmetry. This is
Justified somewhat by observations since the cross-spectrum of <ur> tends to fall off more quickly
then do <wr> (Kaimal et al., 1972). Together with the condition of divergence free flow they arrive
at an expression for the three dimensional spatial cross spectrum for w and s, where now s is an
arbitrarily scalar quantity:

2

. (5.1)
0.(K) = Alk.k,) I—F

Although the form has already been greatly restricted it is still not tractible due to the dependence
of A on two variables. They then assume that A is only dependent on k. In the inertial subrange A
falls of with a 7/3 + 2 power of k.

Here we try to analyse the problem of line averaging in terms of spatial correlation. First we derive
an expression for a path in the direction of the mean wind. This is the situation where we have
information from time series of point measurements. Then we use the spectral vector model of
KF84 to assess the difference when the path is perpendicular to the mean stream, typical for flux
measurements. The present analysis is typical for a temperature flux measured with a sonic
anemometer where w and s are measured along the same transducer path.

5.2 Relation between Co-spectrum and structure function

We the co-spectral form defined by KF84 based on Kaimal (1972) for the inertial subrange:
Co(k) = Bz<ws>(lk|2)™ | kz » 1 (5.2)

where B is a stability dependent parameter. For the flux we have



<ws> = fCo(k) dk (5.3)
0

The spectrum is related to the along wind direction thus we can relate the spectrum to the structure
function with lags in the along wind direction:

wy

D, (x&) = 2R, (0)-R, (x7)) = 2 [Co, (b1 ~cos(kx))dk (5.4)
0

By substituting the inertial sub range form for the co-spectrum and realising that for x << z the

precise form for small wavenumbers become unimportant for the evaluation of the integral we
have:

37
D (x&) = 2B<ws>[ﬁ]‘ fy (1 -cos(y)dy x<z (5.5)
: 2 )
Numerical integration of the integral gives 1.523.
53 Loss of covariance due to line averaging in terms of the structure function

Analogous to the derivation in appendix 4 we can obtain an expression for the flux loss:

d<ws> = ﬁ I-n)D, (nle )dn (5.6)
0

Substituting Equation (5.5) results in:

/3

S<ws> = 2'1.523'&B[£J“<ws> (5.7
70 |\ z

We now have to find the magnitude of B. This can be derived from the co-spectrum given by
Kaimal et al. (1972) in the frequency domain (n):

C ) = 162

» = G <ws> H(z/L) f* n! (5.8)
g

with H(z/L) = 1 for unstable cases and H(z/L) = 1+6.4 z/L for stable cases. f 1s the dimensionless
frequency nz/U. Converting to wavenumber domain with dk = 2p/Usdn we find B = 1.62 H(Z/L).
Thus finally we have for the flux loss due to line averaging along a path parallel to the main wind:

/3
d<ws> = 0.65-H(z/L) [i]‘ <ws> (5.9)
z
In  the same way an expression for the stress <uw> can be derived:
i /3
d<uw> = 0.22-G(z/L) (_I <uw> (5.10)
b4

where (;(z/L) = 1 for unstable cases and G(z/L) = 1+7.9 z/L for stable cases.
54 Loss for a path perpendicular to the main wind

The previous analysis is based on the one-dimensional spectrum and the structure function in the
along wind direction. To get expressions for a path perpendicular to the main wind we need the
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one dimensional co-spectrum for <ws> or the corresponding structure function in the vertical
direction. The full correlation vector is related to the full three dimensional spectrum through:

R(7) = fﬁ 0, (K)e *7 d3f (5.11)
where i denote one of the velocity components u,v or w.

For the along wind direction we have the relation between the correlation function for <ws> and

the corresponding one dimensional spectrum F',; which is in fact 1/2 Co,, from the previous
paragraph:

Ryl = [dkie ™ ([ dkdi 6,0
- fdkle“kr‘F}g(kl)

For the direction perpendicular to the wind we have the relation between the correlation function
for <ws> and the corresponding one dimensional spectrum F°,:

R (zé) = fdk3e —lk”ﬁff dkxdk2¢3s(k)
- fd/ge Rk,

To evaluate the one-dimensional spectra we use the axisymmetric spectral model of KF84 for the
inertial subrange:

(5.12)

(5.13)

b0 = A 1_% (5.14)
Ak) = yﬁk;
After some algebra we find:
Fit = yn 22D g
3 PCD4+2) ) (5.15)
Fistk) = ey kT

Using p = 7/3, the flux spectrum value, we find that the vertical spectral correlation is 3/5" of the

along wind spectral correlation. The same will hold for the corresponding structure functions in the
inertial subrange:

D.(veé,) = %st(.veﬁ) (5.16)

5.5 Results

For the current location we can now estimate flux losses due to line averaging. We take [

= 0.2 m and z = 18 m above the displacement height. For neutral conditions a loss of 0.1 % is
found, for stable conditions at z/L = | we find 0.7 % and for z/L = 2 we have 1.2 %. Thus in all
cases the loss is negligible. For the stress we cannot give definite values. To derive results for
<uw> an axisymmetric spectral tensor have to be found. This is not attempted here. From the
previous paragraph we find that for the along wind case loss in the stress is a factor 3 smaller than
for the scalar flux. Thus it seems save to assume that fractional losses in <uw> will be smaller than
for the scalar flux and therefor be also negligible.
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6 Low frequency loss in fluxes due to a finite averaging time.

6.1 Introduction

Turbulent transport in the turbulent surface layer takes place over a wide range of frequencies.
Especially variances of horizontal wind and scalars in the surface layer during convective
conditions have large contributions in the low frequency range. For the vertical wind speed this
contributions are much smaller because the vertical wind speed is constraint by the surface. The
extension of co-spectra of scalars or horizontal wind and vertical wind at the low-frequency end
are somewhere between this two extremes. Kaimal et al (1972) give surface layer spectra and co-
spectra for various stabilities.

In micro-meteorogy it is common practice to determine eddy-correlation surface fluxes on a time
scale of an hour and perform some kind of detrending on the data. This can be a linear detrending
or by taking a shorter averaging time and subsequently averaging over a series of these fluxes. The
time scale of an hour is a compromise to reach a statistical stable estimate of the flux (see Lumley
and Panofsky, 1964) on the one hand and the need to have approximately stationary conditions on
the other hand. By detrending the problem of stationarity is somewhat relaxed. But in practice one
is not sure that the trend is part of low frequency contributions to the turbulent flux.

Here we are interested in the loss of the low-frequency contribution to the flux due to finite
averaging times. This will be determind on the basis of the spectra presented by Kaimal et al.
(1972). In recent years there has been speculation about meso-scale contributions to the vertical
flux due to terrain contrasts or circulation patterns relate to cloud streets. This topic is far from
being solved and will not be treated here

6.2 Low frequency spectral loss

Let w(z) and (1) be stationary turbulent time series of the vertical wind speed and a scalar quantity
respectively, both with zero mean. Let us denote by < >; an average over a period T and by { } an

average over an ensemble of < >, averages. A turbulent flux over the period T without detrending
is then determined according to:

+772
F CT = _1_ f(w —<w>))(c-<c>,)dt (6.1)

-12

Writing out the product and perform an ensemble average we arrive at:

<712 +T12
g _ | / (! 6.2
FNY = F, F_Tf/zdt_rf/zdt w(tyc(t") (6.2)

where F is the actual flux. The second term on the right hand side represents the spectral loss due
to a finite averaging time. Equation (6.2) can be written in terms of the time correlation function
R,.(1), which due to the stationarity of the time series depends only on the time difference t© = t-t’.

T
- L. _l (6.3
P = Fo 1 _J;dr (-0 R, )

In the surface layer it is found that R is symmetric and the integral timescale is defined as:



-
J =___" R d (6.4)
B R ar

we —o0o

If T>>J, . we have:
J
F} = F. (1-—2) (6.5)

The integral timescale is related to the spatial integral scale through the wind speed according to
L, = J,U. The integral length scale in the surface layer is a function of height z and stability C.
By introducing the dimensionless integral length scale [, ({) = L, /z, we arrive at:

FY =F. —ZW(C)'%) (6.6)

In the literature cross-spectra are given rather then correlation functions. Thus to proceed we

rewrite the loss term in terms of frequencies. The cross spectrum and correlation function are
related by:

R0 = [SLpe = df
- 6.7)
SLp = (R, @y

From this we derive that §,(0) = J,.. By substituting Equation (6.7) into Equation (6.3) and
perform the time integration we arrive at a spectral representation of the loss:

2T

Loss = f Sn{,(f)-i(“;n"_fpdf -2 f Swf;(f)-(l—g)df (6.8)
e 0

It is observed that a low pass filter is applied to the spectrum. The filter is represented graphically

in Figure 6.1. Also an triangular approximation to the filter is represented with which further
integration can be performed.

y=sin?(x)/x?

a I
On n 2n 3n 4an

Figure 6.1 High pass filter together with its triangular approximation.

To proceed we use the surface layer spectra given by Kaimal et al. (1972). The general form of the
cross-spectrum in terms of the dimensionless frequency n = fz/U is:
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Figure 6.2 Dimensionless integral length scale as function of stability for stress and for heat flux
(based on Kaimal,1972).

ES“T“(]() = S)t:'(n) = _;—F -

C[\a}’ (6.9)
1+n- ]
- .

Here the formulation is modified to be in line with the normalisation over the entire frequency
domain instead of the half infinite domain used by Kaimal. It follows that §",(0) = [, F. and thus
a=2[ .

It can be shown that the maximum of the function nS",(n) is at n = 1/(21,.). This makes it possible
to estimate /.. for different stabilities from the graphical representation of the spectra given by

Kaimal. Figure 6.2 shows the results of this estimation. The two curves are conveniently
parameterised as:

‘IUN'U Ll“l‘ 6.7
llnr(c)= =
z oz 14678 (6.10)
l (C) Jw!U Lw! 50
S BTy 14
We are now in a position to evaluate the loss integral:
1 2 p
Loss = ZxF(fdy l+y_x (I-y)
0 p-1 (6.11)
fT IW('Z
T Xy
Resulting in:
Loss = FA1+ L P~ (1, PV (6.12)
L xp2 2y

This complicated looking expression approaches yF. for X going to 0, in concord with the limiting
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case given in Equation (6.6). Figure 6.3 shows the fractional loss as a function of x for the flux
spectrum case, p = 7/3.

c4 ——

0.3

Loss

0.2 /

e

0.1 7

d

0.0 0.1 0.2 0.3 0.4 0.5

X

0.0

Figure 6.3 Low frequency spectral loss as function of y = L, (O)z(UT).

From the limiting case we see that for u. the absolute loss is approximately independent of wind
speed:

[ zu
uuncory = u_ - 2__" (6.13)

2T U
6.3 Results

For the current location we have z=18m above the displacement height, z, = 2 m and 7 = 600 s.
For neutral conditions we have for the momentum flux X = 0.20/U, which results in a loss of 16%
at U=1ms"' and a loss of 6% at U = 3 m s' In absolute sense we have an
underestimation of u, by 0.018 m s'. Losses in calar fluxes are 80% of the stress losses.
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7 Corrections for zero-crossing jump in the sonic anemometer windspeed

A close inspection of the recalibration results of the sonic anemometer after the experiment
revealed a subtle error in the D/A converter of the sonic anemometer electronics causing a jump of
0.14 m s in the wind signals when crossing sign. To be precise the windspeed is correct for
positive values and 0.14 m s to low for negative values. Here the consequences are derived for

covariances involving the vertical wind velocity and for the structure parameters of the vertical
wind.

7.1 Corrections for covariances with the vertical wind

Let us quit generally assume that the measured vertical windspeed (W) and the true vertical
windspeed (W) are related by:

W=W+F(W) (7.1)

To investigate the influence of the deviation F(W) on the variance of W and the covariance of W
with some other turbulent quantity C we split the quantities in mean and fluctuating parts:

W=<W>+w
W=<W> + (7.2)
C=<C>+c

where the brackets denote some sort of averaging, in our case averaging over time. The variance of
W and W are then related by:
e 2 (7.3)
<O>=<ww>+2<wF(W)> +<{F(W) ~<F(W))’>
The covariance between C and W and W respectively are related by:
<we>=<we> +<F(W)e> (7.4)

In the following it will be understood that Sw) = F(<W>+w) = F(W).

Let p(w,c) be the joint probability distribution of w and ¢, then the second term on the r.h.s of
equation (7.4) can be written as:

<fw)e>= f f Fwyep(w,e)dwde (1.5)

To proceed we assume that the two turbulent quantities w and ¢ follow a joint bi-Gaussian
distribution (see Panofsky and Dutton, 1984):

(2 Eypar Me
o, G,0, (7.6)

1 w

plw,c)= Exp |-

216 6 {1-R?2 2(1-R?)

where R is the correlation coefficient between w and e.
Substituting this in equation (7.5) and scaling variables according to:

w=0C,
=y (1.7)
Siw)=Aw-g(w)
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where Aw is a characteristic velocity scale for the deviation in w, gives:
o 2 2
<f(w)r>=—_fd(o g() fdyfy Exp _ o7y ~2Ray (7.8)
2(1-R?)
2y 1-R*?

The coordinate translation Y — y+Ro creates a perfect square of Y in the exponent of equation
(7.8):

l 2
<f(w)c>=_0—fdme g((,o) fa’y (Y+Rw) Exp 7_7“_ (7.9)
2ny 1-R?2 21-R%)

after which the integral over y can be performed. Note that the uneven component in the last
integral over y sums to zero. With the identity:

oo 1,
f T ee/m (7.10)

we find then:

npes=C f doe ™ g(@)o (7.11)
Noting that Rowo, = <wc> by definition we can rewrite this into:

<flw)c >—<wc>

fa’w e (co)co (7.12)
o, 21t e

The integral is normalised which assures that it will be of the order 1. We can test equation (7.12)
by substituting g(w) = w and Aw = o,, we then find <f{iw).c> = <wc> which is true in this case. It
is observed that only the anti-symmetric part of g(®) contributes to the integral. Dependent on the

form of g(w) it can be advantageous to split the integral in a positive and negative part and then
substitute y = Yaw™:

(g2 )-g(+/23) (7.13)

For the case of a jump at w = 0 we find:

<flw)c

w

<fw)e>=0.40<we> Y (7.14)
()

w

In practice <W> is not equal to zero due to offsets in the electronics and due to flow obstruction
around the sonic probe or misalignment of the sonic probe. If <W> is not zero we have a jump at
w = -<W>. This will decrease the <f{iw).c>, however in practice <W> is much smaller then o, and
therefor we can neglect this effect and assume that the jump occur at w = 0.

7.2 Corrections for the structure parameter of the vertical wind

The structure parameter of the vertical wind is derived by taking at regular time intervals T two

samples separated by a short time interval Ar. From such a series of N samples the structure
function is derived:
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N
D,f(At)z%E [w(nT A -w(nt)f (7.15)
n=1
If the number of zero-crossing between two samples from which the difference are taken is odd, an
artificial contribution is added to the sum of equation (7.15). Let us denote the chance that an odd
number of zero crossings occur between to samples with lag Ar by P (Ar). We can discriminate up
going and down going crossings. In both cases the artificial jump acts to increase the difference

between the subsequent samples. The contribution to the sum in equation (7.15) for both these
cases then is:

W+ AT) WD) 128w [ w(14T) —w(0) | +(Aw)? (7.16)

This leads to the expression for the distorted structure function:

D(A) = DAY + P (Ar) 2aw<|w(z+An)-w(®) |>+Awy) (7.17)

It is now the task to derive an expression for Py(Af) in terms of measured quantities.
7.3 Parametrisation of the frequency of ZEro-crossing

Here we shall analyse the problem in terms of the more fundamental spatial point of view. We
define the number of zero-crossings per unit length of the vertical wind w(x) by Ny(0). Let 1| be the
Kolmogorov length scale. We can assume that the smallest separations between subsequent zero-
crossings are of the order of M. The chance Py(x) that an odd number of Zero-Crossings occurs
between two samples of w separated by x << m is xNy(0). For separations much larger then the
integral length scale L, Py(x) = 0.5. It is convenient to define Ny(x) as the chance that an odd
number of zero crossings occur between two samples at lag x divided by the lag. For small values
of x, Ny(x) approaches N,(0). For large values of x, N(x) goes to zero inversely proportional to x.

The problem of zero-crossings in a turbulent signal is closely related to the theory of extreme
values. In general terms it is the chance of exceeding a certain threshold value for a stochastic
signal with a given autocorrelation function. Rice (1945) shows that the number of zero crossings
is related to the variance of the first derivative of the signal and the variance of the signal itself. It

can be shown that the total number of zero crossings per unit length is related to the Taylor
microscale:

(0
Nyoy = L mae _v2 1 (7.18)
T o, T oA

He also notes that the distribution of lengths between subsequent zero-crossings is a more difficult
problem and lacks a general solution. This distribution determines the behaviour of the function
Ny(x). Obviously this is related to the behaviour of the spectrum at all different scales. In our case
we are interested in the behaviour of No(x) in the inertial subrange. We may hope to derive a

scaling law for this range since only a limited number of parameters define the structure of the
inertial subrange.

Let us argue as follows. The energy containing eddies have a length scale of z and a velocity scale
of o,. At length scales one octave smaller there are two times more eddies. This increase in
number and decrease in size continues through the inertial subrange down to the viscous scale.
This is the concept of the energy cascade. The large eddies advect the smaller eddies. The large
scale eddies has zero crossings. In regions of these eddies where the vertical velocity is large,
smaller eddies are not capable of inducing zero crossings. In regions where the vertical velocity
approaches zero smaller and smaller eddies are capable of inducing Zero-crossings.
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Close to a large eddy induced zero-crossing we have a velocity field due to this large eddy that
deviate from zero linearly with the distance y from the zero-crossing:

WL(.\')*'XGW (7.19)

<

Eddies of scale x in the inertial subrange have a characteristic velocity scale given by the square
root of the structure function

v(x) =D (x) = C_ x' (7.20)

By equating the velocities w,(y) and v(x), a region y is found were eddies of size x are capable of
inducing zero-crossings. The number of eddies of scale x in this region is y/x, and with the
observation that this give the number of zero-crossings over a distance of order z we have for the
number of zero-crossing density induced by eddy size x, denoted by a small letter n:

C
nyx) - 2 x (7.21)
Eddies much smaller then x will in general contribute an even number of zero-crossings. On the

other hand summing Equation (7.21) over the octaves larger then x doesn’t affect the scaling law,
it only gives a larger constant of proportionality. Thus we have the scaling law.

C
Nyx) = B % x 28 (7.22)
GW
where the constant B is introduced. It can be shown that the inertial subrange expression for Ny(x)
approaches Ny(0) for x several times m the Kolmogorov length scale. This is consistent with the

idea that zero-crossings can be induced by scales down to the kolmogorov scale. For the chance of
having an odd number off zero crossings we have:

D, (7.23)

c
Py(x) = B Gw x =B

W w

On the basis of 15 days of 5 Hz sampling in november 1993, the zero crossing frequency over half
hour intervals were determined for six different time intervals T ranging from 0.2 to 1.2 s. With
Taylor hypothesis the frequencies were transformed in wavenumbers. Figure 7.1 shows Ny(x)
scaled on C, and ¢, as function of lag x, together with the -2/3,, power law with a constant of
proportionality 3 = 0.3. It is observed that the measurements follow the scaling law over a
remarkably large range considering the measuring height of 18 m above the displacement height.
Only for lags smaller then 0.8 m deviations occur. This shows the influence of limited response of
the sonic anemometer which has a path length of 0.2m.

The relation between the average absolute difference between subsequent w-samples and the
structure function was investigated on the basis of the same sample registration. If the difference
were Gaussian distributed we would have <| w(t+1)-w(r) | > = 0.798-D,,. A slightly different factor
of 0.72 was found, indicating that the distribution of w(t+1)-w(t) has more pronounced tails as can

be expected in intermittent flow. If this observation is used in equation (7.17) together with
equation (7.23), we end up with:

D (1)=Dy(1) (1+1.44B

D
Ay 32D Ay (7.24)
G |

w W

It is observed that the correction of the structure function is independent of the sample time. For
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Figure 7.1 Dimensionless zero-crossing chance density as function of lag

the structure parameter we find:

) c
Cl=Clv) (1+1.44p2%),p S
o, o, (Ut)"”

(Aw)?

Corrections are performed on the data by solving Equation (7.25).

(7.25)






8 Angle dependence of the Sonic Windspeed

8.1 Introduction

The problem of flow distortion induced errors in sonic anemometer measurements has received a
lot of attention in the literature. The windvector at the measuring paths of the sonic anemometer
deviate from the free stream wind vector because of transducer shadowing, flow distortion by the
supporting frame and the flow obstruction of the boom the sonic probe is mounted on. Kaimal
(1979), Hanafusa et al. (1982) and Wyngaard and Zhang (1985) discuss the transducer shadow
effect for several sonic anemometers. The lather conclude that the Kaijo Denki improved
transducer shape gives deviations in the response only for angles of onflow smaller then 30°. Here
we concentrate on the KAJO DENKI (DAT-300) probe configuration, which has this improved
transducer shape and evaluate the angle response of the sonic anemometer.

Windspeed measurements are taken along the transducer paths A.B and W. The horizontal
transducers A and B have an angle of 120° relative to each other. The design is such that flow
distortion is minimal when the sonic probe is turned into the wind. In the Speulderbos experiment
the sonic-anemometer was not turned into the wind automatically. The turning was performed now
and then depending on the importance of the measuring period. Consequently there are a lot of
data in the data set were the angle ¢ between the mean wind direction DD and the sonic axis DD
is larger then 30° the angle above which significant deviations of the wind speed are to be
expected. Here we seek to describe this angle response in a physical transparent way in order to be
able to interpret calibration results and to correct 10 minute average values.

A transducer pair has a rotational Symmetry axis going through the heart of the transducers. This
suggest that the angle response of a single transducer pair without frame and boom can be
described as a function of the angle of onflow and windspeed. Let O be the angle of onflow
relative to the transducer, where 6 = 0 is parallel to the transducer path. It may be expected that
the response of the transducer to the component of the wind parallel to the transducer is highest
when 8 = 90° and gradually decrease when the angle of onflow becomes more parallel, due to
shadowing effects. As long as the wind direction is well within the opening angle of the sonic we
may ignore the mutual interference of the transducer pairs and the interference with the frame of
the sonic. Thus for angles of onflow not to close to an azimuth 60° and elevations well below 45°
say, we may expect that the whole response characteristic of the system can approximately
determined from the angles of onflow 8, (v=A, B or W) and the undisturbed windspeed U,. We
then define the response function H(6,.U)) as:

U, = Ucos(8,)7,6,U) (8.1)

The response function will be symmetric around 6 = 0° and around 6 = 90°. Kaimal (1979)
introduced a parametrisation of the transducer shadow function which fulfils these requirement.
Here we use an adapted version for which the meaning of the parameters is more clear:

-a, -a,sin’(Q)
e

£8) = ay-a,-£ (82)

e -1

It is easy to show that a, is the response value at © = 90° and q, - q, is the response value at 9 =
0°. The parameter a, determines the angle at which half of the response change occurs. Windtunnel
measurements are used to determine the parameters for each transducer pair at three wind speeds.
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8.2 Windtunnel measurements

The sonic anemometer was calibrated following a method described by Kraan and Oost (1989).
The calibration was performed for U, = 6, 12 and 18 m s'. For each windspeed azimuth ranges
from -90 to +90° in steps of 5° and elevation ranges from -22.5 to +22.5 in steps of 2.5° At each

position the three transducer wind speeds where measured and the angle of onflow 0, was
calculated.

Figure 8.1 shows the difference between the measured A-sensor windspeed and the free stream
windspeed parallel to the A-sensor as a function of the angle of onflow. Free stream windspeed is
U =6 ms'. Shown are data for three different elevations. Data are corrected for the zero crossing
Jump described in a previous chapter. The most left points of each curve corresponds to azimuths
of 60 and 55° It is observed that the three curves coincide for all but these azimuths. For the
azimuths larger then 50° apparently frame interference occur, making it impossible to correct
measurements in this region with only transducer response functions.

Equation (8.2) is used for a regression analysis of the calibration data. It is extended with a fourth
parameter which represents a possible offset. Data are corrected for the ZETO-Crossing jump as
described in chapter 2. Only data with azimuth between -50 and +50° are used. Table 8.a
summarises the regression results for the three transducers pairs and for the three wind speeds. It is
observed that the coefficients are not very sensitive for the windspeed. Significant differences
occur between the different transducer pairs. Figure 8.2 shows the deviation of the cosine response
for the A-sensor at U, = 6 m s™' as a function of the cosine of the angle of onflow. Also shown is
the regression curve as given in Table 8.a.

It is observed that the fitt is reasonable over the whole range. Some remarks can be made however.
The response of the sensor is not symmetric around 6 = 90°. A significant improvement of the
parametrisation can be made if we allow the orientation of the transducer to be varied in the
regression. From this it is found that apparently the opening angle of the horizontal transducers A
and B is not 120 but 124.5°. improving the standard deviation of the residuals from 5 to 4 cm ™.
It seems that flow obstruction around the probe induces this apparent rotation. More pronounced is
the result for the vertical sensor where a tilt of 0.7° out of the plane of symmetry of the probe is
found. Figure 8.3 a and b show the regression results for a tilt of 0 and 0.7° respectively.

8.3 Comparison with field data

To investigate the consistency of the windtunnel results on the angle dependence of the sonic
anemometer with in situ measurements we compared the sonic wind speed with the cup anemom-
eter wind speed. Before comparing this measurements some precautions have to be made. Since the
sonic was situated at 30 m height and the two neighbouring cup-anemometers at 24 and 31 m
height respectively we used an interpolation scheme based on surface layer scaling to arrive at a
cup-anemometer speed at 30 m. Time averaged cup anemometer measurements give the mean
length of the wind vector or scalar wind, <U>. The averaging algorithm for the sonic windspeed
was such that it produces the length of the mean windvector, <U>. Comparable wind speeds for

both instruments can be derived by splitting wind speeds in mean values and fluctuations according
to:

Udny = <U> + u/ (1)
Udn) = <Us> + u/ (1) (8.3)
Vi) = v/ (1)

Where U is the absolute windspeed, Uy is the longitudinal component of the windspeed and V; the
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Figure 8.1 Response of one sonic-transducer (A-sensor) as a function of angle of onflow for three

elevation.

transversal component of the windspeed. Since:

Uref (m/s) sensor offset a0 al | a2 o, (m/s)
(m/s)

6 A -0.123 1.072 0.090 2.6 0.04
12 A -0.294 1.073 0.084 32 0.08
18 A -0.509 1.069 0.089 39 0.12

6 B 0.020 1.083 0.131 1.1 0.05
12 B -0.041 1.082 0.126 1.5 0.08
18 B -0.019 1.079 0.129 1.9 0.11

6 " 0.017 1.042 0.189 0.1) 0.04
12 W 0.107 1.077 0.285 0.1) 0.09
18 W 0.158 1.072 0.297 (0.1) 0.13

Table 8.a Regression results for the three transducers of the sonic anemometer at three wind speeds
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Figure 8.2 Response of one sonic-transducer (A-sensor) as a function of angle of onflow together
with regression curve.

we find by substitution and averaging:
US> + o, =<Up? + 0y, + 0y (8.5)

To investigate the response functions data were selected from the period 1 April to 31 December
1989 with windspeed at 36 m larger then 3 m s and wind direction outside the interval (-45:45°
to avoid interference of the mast. To have a well defined angle of onflow data were selected with
standard deviation of the wind direction less then 10°. Cup anemometer measurements were
corrected for overspeeding (see appendix 11), but the small wind direction fluctuations implies
only a small overspeeding correction. Figure 8.4a shows the sonic windspeed divided by the cup
windspeed as a function of ¢ the angle of on flow relative to the sonic-frame. A significant angle
response is observed. Figure 8.4b show response functions of the form defined by Equation (8.2)
for the A-sensor and the B-sensor together with the same ratio as in Figure 8.4a but now with the
sonic windspeed corrected for the angle response. The response functions were fitted on-eye, the
coefficients are given in Table 8.b. The coefficients compare reasonable with the windtunnel
results. The cup anemometers were calibrated in the KNMI windtunnel and the sonic anemometer
was calibrated in the TNO-windtunnel. It is observed that the absolute wind speeds differ 2-3% in
absolute science. A reason for this difference can be the unknown fill factor for the LUW-cup

KNMI-windtunnel combination which was assumed to be equal to the larger KNMI-cup
anemometer.

As observed by Grant and Wats (1989), the fluctuating wind direction within a 10 minute interval
results in a response which is an average over the response functions. By the assumption of a tri-
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Gaussian distribution of the windvector it can be

shown by a method described in Chapter 9 that

for an average wind vector lying in the horizontal plane up to third order in the fluctuations the

response is equal to the average over the response

(U+c“,+cv,+cw),
(U+o,,-0,,+0,),
(U-c,,,+cv,+cw),
(U-0,,-0,,+0,).

sensor a0 al a2
A 1.06 0.13 2.5
B 1.04 0.13 2.5

function values calculated for the wind vectors:

Table 8.b Response function coefficients of on-eye fitt.
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9 On the expectation value of functions of multi-dimensional Gaussian
distributed random variables

In the practice of turbulence research it is often necessary to evaluate expectation values of
functions of random variables (x). If the random variables obey a Gaussian distribution the integral
can be approximated by Taylor expansion and evaluated straightforward. However, the necessity of
evaluating the derivatives of the function can be a disadvantage. Here we develop a method to
evaluate the integral by 2" function evaluations at the corners of a cube centred around the mean
value of x, where N is the dimension of the problem.

Let fix) be an analytic function from R" to R, where x is a stochastic N-dimensional vector. We
define the functional G,(f) as the average over the Gaussian distribution defined by A:

G = fdx Ve T ) (9.1)

where the integral is over the whole N-dimensional space, A is a N-dimensional symmetric positive
definite matrix and the stochastic variable x has a zero mean value for this distribution. We can
make a Taylor approximation on Sfaround x = 0:

fx) = f0)+Y 9, A0) x %E 3, fl0) x,.xj+%z 34 A0) xxx,40(x%) 9.2)
i i ij.k

and evaluate the integral for each term separately. It is observed that all the odd terms vanish due

to the symmetry of the Gaussian function. There remains:

. 1 2
<j>=f(0)+5%: d;; fl0) R, 0,0,+O(c*) 9.3)

where R, is the correlation coefficient for the variables x; and x, and the o’s are the standard
deviations of the components of the stochastic vector x.

The problem now to be solved is to find for a fixed matrix A a set of P points {x} in R and
coefficients a, such that for every function:

Y afix)=<> + Ox ¥ 9.4)
I=1 .

Equation (9.4) itself can also be expanded in Taylor terms and subsequent terms can be equated to
Equation (9.3):

P PN PN
1 2
<f>=z a,f0) + E alz xl,iaﬂo) = alz xl.leJaiJﬂO) +
/=1 =1 el 295 A (9.5)
e o :
ik

If we choose a point x, together with its reflected counterpart -x, and asign the same coefficients to
these points we see that with such a choice the odd terms corresponding to this points vanish. A
particular convenient set are the point at the corners of the hyper cube centred around the origin,
iven by (+0,,+0,,....,+G,). Note that each point has its reflected counter part. With this selection of
points the variance terms are also automatically fullfilled since the correlations R, are all 1. There
remains the N(N-1)/2 co-variance terms and the zero order term to be equated. The number of free
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parameters , is equal to the number of point pairs Q = 2*'. In order to have no over determined
problem we should have:

N(Nf])+]

=2V >
e 2

Z =

(9.6)

It is found that for N=1,2 and 3 the number of coefficients is equal to the number of equations to
fulfil. For higher dimensions the problem becomes under-determined. For such case we can add
extra constraints between the coefficients to make the problem well defined.

Here we present the solutions for N = 3 the case which of most interest for us. One point of each
pair are listed.

points
+G1 +<51 +0| +Gl
p_‘y_z‘}g = +G2 > +0.2 ’ _62 ’ 762
+G, -0, +0, —-0,
equations

a,+a,+a,+a, = 1
a,+ta,-a,—a, = R
a,-a,+a,-a, = R__
a,-a,-a,+a, = R

solution

a, = %(1 +R +R _+R )
a, = J(1+R_-R _-R )
a, = }(1 -R R -R.)
a, = %(1 R R _+R )

4

It is observed that the coefficients are expressed in terms of the correlation coefficients between the

variables. When the function f has symmetries it is strait forward to diminish the number of
calculations.
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10 Mast interference

To investigate the influence of the mast on the wind measurements data were selected with angle
of onflow less then 40°, windspeed larger then 3 m s and standard deviation of the wind direction
less then 10°. The latter selection criterium is imposed to avoid to much reliance on the
overspeeding correction which will be discussed in paragraph 11 and to have a well defined angle
of onflow relative to the mast. The two wind instruments are situated under slightly different
angles relative to the mast. The sonic anemometer is at 165° and 2.8 m and the cup anemometer is
at 174° and 2.5 m relative to the centre of the mast. Figure 10.1 shows the ratio of angle response
corrected sonic windspeed and overspeeding corrected cup anemometer windspeed as a function of
wind direction. It is observed that for wind direction in the interval (-30:+60°) serious deviations
takes place. But even for the interval (60:180°) deviations of 1 to 2 percent are observed.

Noting that the cup anemometer and sonic anemometer positions relative to the mast are only
slightly different one may wonder why the instrumental responses are so different for flow along

the mast. A possible explanation is that Cup anemometers are sensitive to horizontal windspeed
gradients.

10.1 Sensitivity of cup anemometers for horizontal wind gradients

The balance of forces on a cup anemometer can be written schematically as:
pODjU-V()Z—pOD_(U+VF)2 =0 (10.1)

where O is the cross section area of the cup, p is the density of air. U is the wind speed and V., is
the speed of the cup. D, and D are the drag coefficients for the open and closed side of the cup
respectively. The first term is the drag force on the open side of the cup that moves with the wind,
the second term the drag force on the closed side of the cup that moves against the wind.

Solving for V, gives:

D -D
V.=_ ".U=pU (10.2)
‘ D +D

From the calibration result and geometry (Bosveld et al., 1998) we find for the LUW cup
anemometers p = 0.3.

Let U, = VJp be the windspeed given by the cup anemometer at an actual windspeed of U when
no gradient is present. Let AU the horizontal windspeed difference over the diameter of the cup

anemometer, AU positive for larger windspeed at the open cup side. We then have for the force
balance:

D |Uu+tav-Lw avy| - D u-Lavs L sav) (10.3)
+ 2 p c C 2 p C ¢

where AU, is the bias in cup anemometer windspeed. From this it is immediately clear that AU, =

1/(2p) AU. This gives for the LUW-cup anemometer a bias of 1.7 times the windspeed difference
over the cup anemometer.



parameters a, is equal to the number of point pairs Q = 2"'. In order to have no over determined
problem we should have:

+1 (9.6)
It is found that for N=1,2 and 3 the number of coefficients is equal to the number of equations to
fulfil. For higher dimensions the problem becomes under-determined. For such case we can add

extra constraints between the coefficients to make the problem well defined.

Here we present the solutions for N = 3 the case which of most interest for us. One point of each
pair are listed.

points
+(51 +<jl +Gl +(51
Piazs = |*02|, [¥02 ], |70y, | O,
+0, ~0, +0, E
equations

a1+a2+a]+a4 =
(l] +(lz*(l] *(14 =
al—a2+a}—a4 =

N

xR -

a, ‘(12—613'%14 =

solution

Q
1]

l( l +R,\,\' +R,\‘,: +R\.v:)
2 %( ] +R<x.\' ﬁR.\“Z _R\'J)
7 = %(1 —R“,*’R_r‘: _R)',z)
= -17(] 7R,\,\'_R.\.: +R\'~3)

S
1 1]

Q
|

It is observed that the coefficients are expressed in terms of the correlation coefficients between the

variables. When the function f has symmetries it is strait forward to diminish the number of
calculations.
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11 Cup anemometer overspeeding corrections

11.1 Introduction

The cup anemometer is normally used to measure an average over a certain time interval of the
length of the horizontal wind speed vector. However, the cup anemometer is not an ideal instrum-
ent. When exposed to a variable wind as is the normal situation in the atmosphere a cup anemom-
eter overestimates the average wind speed. This overspeeding occurs because the time constant of
the instrument for adaption to a changing windspeed is inversely proportional to the windspeed. It
is therefor common to use a distance constant ly to describe the aspects of the dynamical
behaviour. A step of increasing windspeed is more quickly followed by the measuring device then
a step of decreasing wind speed. A second cause of overspeeding is the influence of the vertical
wind on the cup rotation speed. The drag that cup experience depends on the direction of onflow
and is influenced by wake interference of the other cups in the configuration. For pure horizontal
winds the cups of the instrument resides partly in each others wake. When a vertical wind is
present the cups come out of the wake and experience a different drag force. Experimental results
indicate that this drag increase is more profound on the open side of the cup then on the closed
side. Consequently the instrument overestimates the horizontal wind in the presence of vertical
velocity fluctuations. In this section the theory of cup anemometer overspeeding will be described
and the consequences for the measurements will be discussed.

1.2 Cup anemometer dynamics

A general treatment of cup anemometer dynamics is given by Wyngaard at al. (1973). They show
that the system can be described by 8 parameters which fulfil several constraints. Coppin (1982)
determined these parameters for several different types of cup anemometers. Kristensen (1993)
gives an excellent review of the problem and show the simplification that can be made for surface
layer turbulence. Here we follow his work.

The relative overspeeding is to a good approximation given by:

+oo 272 2
5 - l+lA U‘2 i F ke 220 (1.1)

= 1+k 2U

where:

A A length scale which is small,

L response length,

U windspeed,

W, coefficient characterising the discrepancy from the elevation the cosine response,

c,’ variance of the vertical wind,

F (k) longitudinal wind spectrum in wave number domain,

k wave number.

Here some smaller effects are ignored of which the most important are stress bias and bias due to
asymmetric elevation response. Kristensen (1993) shows that under normal surface layer conditions
and normal instruments these effects are small relative to those described in Equation (11.1).

The first term on the r.h.s of Equation (11.1) is the u-bias. It shows that the instruments bias is
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determined by the high frequency part of the spectrum and the response length of the instrument
sets the length scale below which fluctuations are not followed well by the instrument and
contribute to the overspeeding. The second term is proportional to the vertical velocity variance
and contains no dynamic response characteristics of the instrument.

Spectral characteristics of the horizontal wind in the roughness-layer

The spectrum of the horizontal wind is a more difficult subject. Of course the spectra in the
surface layer of the atmosphere are well described in the literature (Kaimal et al., 1972). But
spectra for the roughness layer are scarce. Here we assume that the turbulence has an inertial
subrange extending to scale larger then the response length of the cup anemometer. Moreover it is
assumed that the turbulence is isotropic in this spectral region. These assumptions are justified to
some extend in the chapter about structure parameters of the vertical wind.

In the inertial subrange the spectrum F, is given by:
F (k) = %a,gw;kw (11.2)

where ¢ is the energy dissipation rate and o, is the Kolmogorov constant for the longitudinal

spectrum. If an inertial range exists we can substitute this formula into Equation (11.1) and
integrate to arrive at:

273 2

= To L mO (11.3)

‘/3_ I+A U2 2 U

The dissipation can be estimated from the structure parameter of the vertical wind through the
relation:

C; = 4.0lo,g” (11.4)
Combining this last two equation gives the overspeeding in relatively easy measurable quantities:

R 1 CHE o

& =401 -
J3 A u? 2 U2

(11.5)

Thus to estimate the overspeeding of a cup anemometer at a certain level in the profile we need to
know at that level the windspeed, the variance of the vertical wind and its structure parameter.

1.3 Scaling laws of ¢, and C, >

The variance and structure parameter of the vertical wind speed are measured at one level (30 m).
To perform the overspeeding correction for other levels in the wind profile we have to rely on
scaling relations for these quantities. Above the roughness layer Monin-Obhukov similarity theory

apply. For this correction procedure we shall assume that the same relations hold in the roughness
layer.

For the variance of the vertical wind Panofsky and Dutton (1984) recommend:
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.

where z is the height above the displacement height. The structure parameter scales according to:

,
2

C.z
__ = f(z/L) (11.7)

U

*

This shows that even for neutral conditions there is a height dependence. This makes the influence
of the two terms in the overspeeding correction for wind difference measurement different. The
stability function for C,? is derived in Chapter ?. From these relation and given eddy correlation

measurements on the 30 m level we can now derive the corresponding values for the levels in the
wind profile.

1.4 Dynamical cup model

To get confidence in the overspeeding estimates described above we applied a dynamical model of
the cup anemometer to a 5 Hz sample registration of 15 days of sonic anemometer data. This is the
model described by Kristensen (1993) from which he derives his expressions for overspeeding.
Comparing the output of the cup model with the original sonic anemometer signal gives us the
model based overspeeding for roughness layer turbulence conditions. Instrumental characteristics
are taken from Bosveld et al.(1998). The response length /, is 1.4 m and the tilting parameter

#,=1.0. Figure 11.1 shows the dynamical cup model overspeeding versus the overspeeding
calculated on the basis of Equation (11.5).

I.5  Overspeeding derived from field data

A more rigorous validation of the correction procedure is obtained by comparing angle corrected
sonic windspeed measurements with cup anemometer readings. It may seem that some cyclic
dependency occur here since overspeeding corrected cup anemometer data are used in deriving the
angle dependency correction of the sonic anemometer. Indeed it is a iterative process to arrive at
the results, but to avoid this cyclic dependency as much as possible here only sonic anemometer
data are used with angle of onflow less then 30° this ensures that corrections for angle response
are small. In the derivation of the angle response of the sonic anemometer only cup anemometer
data were used with standard deviation of wind direction less then 10°, ensuring that overspeeding
corrections were small in that case.

From Figure 10.1 it is observed that only for with wind direction between 180 and 250° the mast
and boom interference is small and constant. Thus only data within this wind direction sector were
accepted. In this subset data with wind direction standard deviation smaller then 10° where used to
obtained a linear regression between sonic and cup anemometer windspeed. This regression was
applied to all sonic anemometer readings in the subset.

Figure 11.2 shows the measured overspeeding, i.e. the difference between uncorrected cup
anemometer values and sonic wind speeds, versus the modelled overspeeding, i.e. the difference
between uncorrected and corrected cup anemometer wind speeds. It is observed that the measured
overspeeding is slightly smaller (12% on the average) then the modelled overspeeding. This 12%
amounts to approximately 1% difference in terms of windspeed result. In the light of the
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Figure 11.1 Overspeeding estimated from a dynamical cup anemometer model versus the
overspeeding estimated from o, and C,2

instrumental limitation this result seems to confirm the correctness of the proposed overspeeding
correction procedure. What remains is the uncertainty about the scaling behaviour of o, and C,’ in
the roughness layer.
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