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SURFACE ON THE ATMOSPHERE

ERRATA:

2nd line from bottom should read: a. composition (amongst which
distribution of moisture).

Line 11 — ”KM- types” should read: K- types”.
20th line from bottom read errors instead of mistakes.

Equation (2.8.3) should read:
ki=R(1-pSnR)? (2.8.3)

Equation (2.8.5) should read:
2 3 H
R_—('—'*-) ke 22 Sn + -.}kau—*“{l + +4("i> kCSn)J
Ugqa Uy I Uga )

(2.8.5)

Line 6 and line 16 — k¢ Sn > 1 should read: "k ¢ Sn < 17.
Equation (2.8.11) should read:

1 1
U - klné'—klng 1+ Snk@—1|
2.8.11)

For equations (2.8.3) and (2.8.5) see errata for page 30 and 31,
respectively,
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CHAPTER 0
INTRODUCTION

A complete description of the meteorological processes necessitates a good
insight into the thermodynamics and aerodynamics of the boundary phenomena.
Although in recent years meteorological studies have testified to this better
insight, the theories have somewhat lagged behind, and, with respect to the
boundary phenomena, have not yet taken full account of them. This situation
is not so much to be attributed to insufficient data of the boundary area — for
compared with the data on higher air layers the former come out favourably —
as to the lack of insight into the structure of the boundary phenomena, a
complicated structure indeed, which is mainly caused by the great irregularity
of the earth’s surface and soil condition.

Gerhardtand Jehn (1950) arrived at the same conclusion when they
state: ““Studies of the atmosphere near the ground are certainly facilitated by
the mere ability to make measurements, but they are simultaneously hindered
manyfold by the complicating factors introduced by the presence of a boundary
layer™.

Even a good insight into the boundary phenomena will not make it exactly
easy to describe atmospheric processes sufficiently well. Our investigation then,
must be regarded as an attempt to penetrate the structure of the boundary
layer and to indicate ways and means for an improved insight into the trans-
formation of air masses.

In the first chapter processes and properties playing a part near the earth’s
surface will be discussed so as to secure a rational basis to build upon.

By introducing a classification of the energy balance of the earth’s surface
it will be possible to classify the whole territory of boundary phenomena and
to survey the extent of a complete investigation in this field.

The second chapter will deal with the convective heat transmission of the
earth’s surface, and it contains a discussion of what way this phenomenon is
related with other factors and defines the structure of the atmospheric surface
layer. By atmospheric surface layer is understood the lower 25 m of the atmo-
sphere, in contrast to the atmospheric boundary layer which extends to about
1000 m.

In the third, the final chapter, the transformation of the properties of the
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iir as the result of the interaction at the surface will be discussed. This dis-
sussion will not be restricted to the surface layer alone, the entire air mass that
lirectly participates in the process will be considered. The equations usually
lescribing this transformation can only be solved graphically. Only in the cold
iir mass will it be possible to solve some problems appoximately by analysis.
Since a complete investigation into this matter would be extremely exhaustive,
only a few problems have more or less completely been worked out. An im-
sortant means to facilitate the calculations of the transformation is the coéffi-
sient of heat transfer which is introduced in the beginning of the third chapter;
-his calculation could be made because of the special structure found in the
itmospheric surface layer when the latter is unstable.



CHAPTER 1

ENERGY AND MASS TRANSFER AT
THE EARTH’S SURFACE

1.1 The surface of the earth

When speaking of the earth’s surface we mostly have some idea of what we
mean. The idea will soon become somewhat vague when a more exact definition
is wanted; then a clear cut picture of the earth’s surface will be highly necessary.

In the following considerations we have endeavoured to do so. There exists
a surface which indicates the transition between the solid mass which belongs
to the earth and the air which belongs to the atmosphere. Strictly speaking this
surface is the earth’s surface. However, it is not easy to study this surface
because it is exceptionally freakish and this will only be done when one wishes
to consider its fine structure. Especially if the study is limited to macroscopical
phenomena one will get another idea of the earth’s surface. This transition
surface will therefore be called boundary surface and by earth’s surface we
understand then the average height where the boundary surface is to be found.
The earth’s surface will be in most cases an almost horizontal level which cuts
through the boundary surface in a freakish way. This definition of the earth’s
surface blurs each detail of the boundary surface; for this reason it will be
important to distinguish the average deviation of the boundary surface from
the earth’s surface as complemental information for the earth’s surface. This
average deviation we call geometric roughness of the earth’s surface. Besides this
geometric roughness we have the aerodynamic roughness of the surface, a
property which in many cases may be deduced from the geometric roughness,
especially when the surface shows no vegetation (e.g. sand and water stretches).
The aerodynamic roughness is connected with the wind profile and can often be
determined from it.

When there is dense vegetation it is necessary to take into consideration a
transition zone between earth and atmosphere. This transition zone has a great
influence on the transport of heat and vapour. The above mentioned definition
of the earth’s surface can be formally maintained, but is, in fact, only of little
significance in this case. Now it is possible to extend the earth’s surface to the
bare earth and to understand by transition zone the average height of vege-
tation. The geometric roughness of the surface is here no longer of importance,
while the aerodynamic roughness will be determined mainly by the uppermost
vegetation limit.

It is furthermore important to talk of homogeneous surface when the geo-
metric roughness is constant over the whole considered territory and of in-
homogeneous surface when this condition does not exist.
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Finally we can differentiate between changeable and unchangeable surfaces
in so far as the wind is able to transform the surface or not. Thus seen, change-
able surfaces are for example water surfaces, cornfields and, more generally,
surfaces where wave phenomena may appear through influence of the wind.

When no further indication is given we shall from now on understand by the
surface of the earth a homogeneous unchangeable surface without transition
zone. This surface is best suited for an analytical treatment of the physical
processes in its environment. All other surfaces include extra complications
which will be touched upon only here and there.

1.2 Properties and processes, which play a part in the energy and mass transfer
near the earth’s surface

The complex of physical phenomena at the earth’s surface is determined by
a number of properties and processes. These properties and processes can be
described by quantities. We shall now trace especially those quantities which
play a role in the energy- and mass economy at the surface and differentiate
between quantities that can be determined independently, as e.g. temperature
and wind velocity, and quantities that can be determined dependently only,
as e.g. the heat flux from the earth’s surface to the air. In the first case it is not
necessary to know other quantities, while in the latter case it is necessary to
calculate the whole energy balance. In principle, this difference does not charac-
terize the quantity concerned but shows in how far the technique of measuring
is limited, and is therefore of importance to the verifying of theoritical obser-
vations. In 2.12 we will come back to this.

The following properties can be determined independently:

Of the earth’s surface:

1. geometric roughness
b. absorption coefficient; (absorptivity)
contact coefficient.

Of the air:

temperature
humidity
wind velocity
pressure
lapse rate
viscosity.

Of the ground:

a. composition (among which division of moisture)
b. temperature

iz

™o a0 op
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c¢. thermal conductivity
d. specific heat
e. density.
Furthermore there are processes at the earth’s surface which can be investi-
gated independently:
a. radiation
b. evaporation and condensation (sublimation)
c. precipitation
d. heat flux to and from the soil
e. transfer of momentum as a result of the shearing stress at the surface.

To be determined only dependently are:

aerodynamic roughness (see 2.13.2 and 2.13.3)

vertical gradient of wind velocity 1)

coefficients of eddy transfer (see 2.5)

mixing length (see 2.6 and 2.8)

heat flux from the earth’s surface toward the air (see 1.9).

paooe

Usually only few quantities of this total are measured, namely those that are
of direct importance to the comfort of mankind and for agricultural produc-
tivity. These are: temperature, humidity, wind velocity, precipitation and
sunshine. For the description of the structure of the atmospheric surface layer
and the examining of the transformation of air masses, these quantities alone
are of relatively little significance and therefore it is essential to take the flux
of energy and mass at the earth’s surface into consideration. It is not a simple
matter to measure all the above mentioned quantities simultaneously. Even if it
were possible to succeed in this, it would be difficult to get a deeper insight into
the phenomena near the surface of the earth. Therefore it is important to make
a thorough study of the mutual coherence of the different quantities, to examine
this coherence theoretically and experimentally and as a result to compose a
scheme of measuring which yields maximal information with minimal exertion.
It is possible that the usual series of observafions will fit in with the results of
such study, the outcome of the observations would then be advanced. It would
supply a want when a survey were given of the instrumental consequences and
those of measuring techniques, which are the result of the correct observing
of the different quantities.

1.3 The energy balance (heat balance)

Considering that the earth’s surface itself does not possess any heat capacity
it is possible to give a very simple equation for the energy balance viz. the same

1) However, it is conceivable that a measuring instrument will be developed for mea-
suring the vertical gradient of wind velocity.
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amount of energy must flow toward the surface as is withdrawn from it. This
energy flux can be divided in different parts. The most important are:

1. the energy flux from the soil, g,

2. the energy flux toward the air g,,., as a result of contact of the air with the
surface

3. The net radiation of energy at the surface, ¢,.
The balance is now represented by

9s = Ya,e + g (]3'])
whereby the energy flux is considered positive in the direction of the positive
z-axis. It is clear that 2 of the 3 terms from (1.3.1) determine the third term.
We shall make use of this for the classification (see 1.6).
These 3 energy fluxes can be divided again individually:

g, exists at a land surface of an energy flux as a result of conduction of heat,
of an energy flux as a result of distillation (displacement of moisture) and of a
weak energy flux as a result of convection. At a water level we find energy
transport mainly as a result of heat conduction and convection, while here an
energy flux can also occur as a result of radiation.

da.e consists of conduction and convection of heat g, and of energy of evapo-

ration g, (see remark at 1.9). As a rule g, and g, are balanced separately. This
has not been done here due to a main division and a subdivision of the heat
balance (see 1.6).

g, consists of various components:
. the direct and indirect irradiation of the sun g,
. irradiation of the atmosphere g,,
. reflection of the earth’s surface g,;
. radiation g,4 of the earth’s surface
. absorption by photosynthesis g,s.

wn bW N -

Often a separate balance is made of it viz. the balance of radiation (see
Albrecht (1933); Geiger (1950) and 1.9):

G =4qn + g + 4r3 + Gra -+ Grs (13.2)

In the above consideration no account has been taken of the energy flux g,

which occurs because of precipitation. In fact to the right member of equation
(1.3.1) g, has yet to be added:

Gs = 4qq, e =+ qr -+ qp (133)

For the sake of clearness this has not been done. Moreover the giving of an
energy balance in the form (1.3.3) is only theoretically possible during precipi-
tation as the determination of the separate components is virtually impossible,



1.3 5

(see 1.9). As soon as the intensity of precipitation is of some importance, g, in
the right member of (1.3.3) will predominate with respect o ¢q, . and g,.

1.4 The mass balance (water balance)

In the same way as the energy balance has been drawn up so, a mass balance
of the earth’s surface can be given. The earth’s surface does not posses any
mass, nor has it any heat capacity. Thus it is necessary that just as much mass
flows toward the surface as is withdrawn from it.

The mass balance exists of the following components:
1. transport of mass from the soil m
2. evaporation of the surface m,
3. precipitation on the surface m,,.

In equation: (when m > 0 is taken in the direction of the positive z-axis):
my =m, + m, (1.4.1)

The mass balance is closely connected with the energy balance. ¢, will en-
tirely be determined by m, and for the determining of g it is even necessary
to make up the mass balance (see 1.9). A part of g, corresponds with mj,
and g, will be determined mainly by m,.

1.5 Considerations of the heat- and water economy of the earth’s surface

So far we have written of energy and mass in order to express ourselves
physically correctly. However, it is much more natural to speak of heat and
water, when energy and mass are meant. Although it is not quite correct, we
shall do so now for clearness sake.

It may be of importance to make up the average values of the different
terms of the equations (1.3.3) and (1.4.1). The average of these terms can bc
made simultaneously about the surface or about the time. In both cases inter-
esting information may be obtained.

The average of the surface is of importance to the transformation of the air
mass existing above this surface, when the size of the surface o is of synoptical
scale. If the average of the whole earth’s surface could be calculated, it would
be interesting to consider the values of

l/ofq,do; 1/o [msdo; 1/o I‘qa,, do; /o /‘q, do;1/o [m,do and 1/o Ilmp do.

If e.g 1/o/q,do<o
this would mean that the earth as a whole absorbs more heat than it yields,
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orif lfo I.m,do >—1/o /‘mp do this would mean that the atmospherc as a

whole has an increasing content of water vapour. Such temporary changes in
the heat and water economy might be of great influence on the synoptic
weather picture. For the present, considerations concerning this will as yet be
of a speculative character.

The averages of time may also bring about interesting aspects. The peculi-
arity of a land surface would then present itself, that the horizontal heat flux
in regard to the vertical one is negligible. The result is that when at two different
moments the enthalpy of the ground is the same, the average value of gs over
the period between those two moments is zero. Thus it is possible to control
the applied measuring method. As a rule it will not be possible to neglect the
advection in the sea, and therefore it will be also over long periods g, = 0.
The sign of g, denotes whether the sea as an average yields heat to the air or
absorbs from it. It does not indicate if the sea as an average is warmer or
colder than the air, because the structure of the atmosphere is quite different
in both cases, see 2 and 3.1.

The meaning of the average values of the other terms of the equations (1.3.3)
and (1.4.1) is rather obvious. The sign of g, denotes whether the radiation or the
irradiation predominates; the sign of da. Whether the air absorbs heat from
the earth’s surface or yields heat to it. Even then we may not say that the air
as an average is colder or warmer than the surface of the earth. The making
up of g, gives less direct information and is more suitable to detail study. The
sign of m, furthermore denotes whether the evaporation is greater of less than
the precipitation.

The equations (1.3.3) and (1.4.1) are not sufficient to describe the entire heat
and water economy of the soil and the air, because in that case the heat and
water supply has not been taken into consideration. In 3.2 we shall go further
into this. Nevertheless the average quantities as outlined above can give us
certain characteristics of occuring climates (see 1.8).

1.6 Classification of the heat balance

As has been remarked in the introduction, it is reasonable to make a classi-
fication of the possible types of the heat balance so as to be able to oversee the
boundary phenomena at the earth’s surface. Here we shall build on the work
of Geiger. Geiger (1950) classified the heat balance in two types: the
radiation type R and the irradiation type I, which correspond with ¢, > 0
and g, < 0 resp.. These types were amply treated by him, because they are
especially suitable for the study of microclimatological phenomena. Research
in microclimatology was engaged in these types especially see e.g. Fransilla
(1936) and others.
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The typology of G ei g e r can be extended when we take also into consider-
ation ¢, and g,. Since g; is determined when g, and g, are known (according
to (1.3.1)), it will be sufficient only to classify the direction and the size of g,
and ¢,.. When ¢,, >0 we speak of cold mass K and when ¢, < 0 of
warm mass W. This definition is not quite in accord with the definition which
is used jn synoptic meteorology. Here namely is spoken of cold mass when
g, > 0 and of warm mass when g, < 0. However seen from an energic angle,
it is more convenient to work with our definition, because then K or W denotes
whether the enthalpy of the air increases or decreases.

We now come to the following classification:

. Gae>0; ¢ >0and g, > ¢ type KR —»¢; >0
cGae>0; g >0and g > g, type RK —-¢,>0
< Gae >0; g <Oand|gg >lg.| type KI —g,>0
. Gae >0; g, <0and|gl| > gl type IK —g; <0
. Gae <0; g, > 0and |g, >lg| type WR —¢g; < 0
. ae <0; ¢, >0and|gl > |g,.ltype RW —g, >0
. Gae <0; g < O0and|g.l >lgl type WI —¢, <0
. ae <0; g, <Oand|q| > l|ga.ltype IW —g¢;< 0
These 8 types form the main division of the possible energy balances. A survey
of this is given by Fig. 1.6.1.
We can now distinguish the rain-type P as soon as g, 0. P corresponds
with g, > 0 or with g; < 0 as a result of which the fol-

0O~ N AW —

lowing two types can be denoted: W 'qux
9. g,>0type Kp >¢, >0 wh R
10. g, < 0 type Wp =g, < 0 (see 1.9)
A subdivision will be obtained by a closer observation wI k1 Yo
of the components g, and g, of g,.. When g, > 0 (thus
with the KM- types) there are two possibilities viz: o e

l.g,andg, >0and 2.g, < Oand g, > 0, whereg, > 1qal.
At most surfaces the combination ¢, < 0 and g, >0
does not exist because no condensation can occur at a surface that is war-
mer than the adjacent air, unless that surface is very hygroscopic, e.g. a salt
surface. These exceptional cases will not be dealt with here.

When gq,, < 0 (as with the W-types) there are likewise two possibilities:

l. g, and g, < 0 and 2. ¢, < 0 and ¢, > 0, where |g,| > lq.!.

The sign of g, denotes whether the air is stratified stable or unstable. This
will be elaborated in chapter 2. So we have with the K-types unstable, as well
as stable types, while the W-types are always stable.

Fig. 1.6.1
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The sign of g, denotes whether condensation or evaporation occurs. With
the K-types we always find eva- poration, while with the W-types evaporation
as well as condensation may occur. The subdivision

= 'q‘Ku has now been composed as follows:
. unstable cold mass Ku
stable cold mass Ks
W Y] warm mass with condensation Wc
warm mass with evaporation We.
! Fig. 1.6.2 gives a survey of this subdivision. The
Fig. 1.6.2

quadrant bordered by (g, = 0;4, < 0)and(q, = 0;4, < 0)
is not filled entirely, because every g, < O determines a minimum value of

9g<o by q9q >0
L " -
ar
19a,e|
RWe¢ RWe RKs RKu
)
We R We R Ks R Ku R
o
+ol-n = o —— |
9a
WeI Wel Ks I Ku I os
-1
IwWe IWe IKs IKu
I reCd
Fig. 1.6.3

ge < 0. The curve indicating these minima is dependent of thc air temperature
and the wind velocity.

The problems connected with this will not be dealt with.

Fig. 1.6.3 gives us a survey of the whole classification of the heat balance
with exception of the precipitation typcs.

1.7 Discussion on the heat balance types

A complete description of the different types and of the situations con-
nected with it would lead us too far. Therefore we shall go into this only spa-
ringly, especially in connection with the research that has already been done
in this field.
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Types KuR and Kul. At the earth’s surface energy is being withdrawn by
convection as well as by evaporation; here the energy flux toward the air is
greater than the radiation or the irradiation. These types will occur after a cold
wave, where the radiation is suppressed by clouds. Above the sea these types
occur frequently in certain places, e.g. the Gulf Stream. When radiation is
small in regard to the energy flux toward the air, it will be possible with certain
simplifying assumptions to calculate the transformation of temperature and hu-
midity of the air. In chapter 3 this will be dealt with more in detail and special
attention will be paid to the investigations of Burke (1945) and Frost (1949).

The types KsR and KsI are of a quite different character. These types, just
as the other Ks types are rather scarce. The temperature of the earth’s surface
lies between the wet bulb and the dry buld temperature of the air. In that case
the heat flux from the air toward the surface can be smaller than the energy
flux from the surface toward the air, as a result of evaporation, namely when
the earth’s surface is sufficiently moist. These types will show up mostly when
dry air flows over a water level, e.g. desert air over sea. As far as we know no
special investigations have been made about them.

Over land the types RKu and RKs are always transition types toward RWe.
Above sea it is possible for these types to maintain themselves for a longer
time; then their character is such that the air, as an average, will have the
feature of cold mass. So the air is of colder origin.

The radiation types IKu and RWe or RWc occur often; these types pre-
dominate when we have clear radiation-wheather above land. Different research
workers have studied the phenomena which belong to these types:

1. the occurrence of free convection (see 2.9 and further)

2. the occurrence of ground frost, Br u n t (1932), G r o ¢ n (1947) (thcoretical
investigations), Kessler and Kaemfert (1940) and others (measure-
ments).

3. the occurence of fog.

Investigation of the whole balance of thesc types has been made by
Albrecht (1933), Fransilla (1936), Jehn and Gerhardt (1950),
Peerlkamp (1944), Rider and Robinson (1951) and others.

The types WcR, WeR, Wcl and Wel occur when warm air invades. Here
we often find fog and stratiform clouds as a result of which radiation will be
of little importance. The convective heat transmission is here smaller as a rulc
than with the K-types, because of the stable stratification of the atmosphere.
The calculation of the transformation of the properties of the air will be
exceptionally complicated by this stable stratification (see 3.7). As far as we
know these types have not specially been investigated either.

Above land the types IWc, IWe and IKs are as a rule transition-types toward
IKu. However, there are certain circumstances where these types above land
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can maintain themselves for a longer period, viz. during thawing conditions,
when the earth’s surface is covered with a layer of snow. Here the well defined
condition of the earth’s surface can be applied for calculations of transforma-
tion. Above sea these types can maintain themselves longer, the same as with
the types RKu and RKs. The type IKs will occur only when the air is particu-
larly dry and warm, as eg. with fohn-wheather.

The types Kp and Wp are apart from the 16 types discussed so far and will
often cause discontinuities in the course of these types. The type Kp will occur
most, because rain usually comes from, and goes through layers of the atmos-
phere wich have a lower temperature than the surface. However, especially in
winter we find decided Wp types, viz. when rain falls on frozen ground.

As an illustration il is interesting to follow the course of the types on a
clear day, when the radiation types predominate. As example we have taken
the observations in the central part of Finland by Franssila (1936). On
the 7th-8th of August 1934 we found there an almost cloudless day with
practically no wind. The following table of the succession of different heat
balance types has been composed from the heat balance measurements by
Franssila on that day.

TABLE 1

Time Type Time Typc
7th till 8th 8.00-16.40 IKu Wc R

of August 16.40-17.30 Kul Wcl
17.30-18.50 Ks I Aug. 8th 6.10-6.35 We [

‘ Ks R I We

18.50-20.20 R Ks IKs

? R We
20.20- 6.10 R Wc 6.35-8.00 I Ku

This table shows clearly how much the radiation types RWc¢ and IKu
predominate, (almost 20 out of the 24 hours), while, and this fact is of more
importance, nearly the whole exchange of energy takes place in this period.
The rest of the time is divided in 10 types, whereby it is remarkable that the
transition from IKu toward RWec lasts almost four hours, whereas the transition
from RWc toward IKu takes place in about 25 minutes. So the transition in
the evening is much more gradual than the one in the morning. It is noteworthy
too, that 12 out of the 18 types occur once in 24 hours.

The great changes in the types of the heat balance make this typology also
on account of their intricacy unsuitable for present use. It is, useful however,
to make up average values over a shorter or longer time, as was discussed in 1.5.
From this it is possible to make up the character of the air mass in spite of
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predominating radiation weather (clear weather). Here the average over
24 hours can be of use.

1.8 Consideration of the possible meaning of the given classification to the climate
description

It is not intended to try to develop in this place a climatology, but rather
to open some perspectives on this matter. The possible importance of it
Jjustifies in our opinion a short interruption of our argument.

On account of the above it must be possible to give a climate description
on an energetic basis. The making up of averages about the time, as has been
discussed in 1.5, gives us certain predominating types, which are characteristic
for the place where the averages have been made. In this case we shall have
to investigate especially over which periods must be averaged in order to obtain
a differentiation as great as possible. When a very long period is considered,
some years for instance, then with land surfaces, as we have seen in section 1.5,
gs will become equal to zero and the types will then come on the thick-drawn
line of Fig. 1.6.3 and the possible differentiation will be limited.

The advantage of such a climate description is that the climate will be brought
more in relation with the physical processes at the surface and less with the
vegetation. It is conceivable that by doing so the climate may be connected
with the heat economy of the troposphere and that in this way at last a better
insight in the general circulation will be obtained.

Another aspect of a climatology based on the heat and water economy of
the earth’s surface, is the possibility that from this climatology we could definc
the quantity of change of climate which a region will undergo when irrigation,
deforestation or planting would be applied extensively. Here it will be necessary
to have a good insight also into the microclimatological changes.

1.9 The measuring of the different energy fluxes

The principal reason why so few systematic investigations have been madc
in the sphere of the energy balance is the fact that it is difficult and intricate to
measure the different energy fluxes. Albrecht (1932), (1933), (19502) has
done much work in this field.

The determining of ¢, can be done in different ways:

1. Directly by means of a heat flux meter. Albrecht (1932) has developed a so
called “Warmeumsatzmesser™, which has been improvedbyFransilla. An ob-
jection against this heat flux meter is that it changes the structure of the ground,
because periodically a heat flux is directed through it at the place of measuring.

An other type of heat flux meter has been developed at the Technical Uni-
versity at Delft by M ulder (1951). This heat flux meter can be used aptly
during short periods. During longer periods this instrument has drawbacks,
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as the measuring disk obstructs the humidity transport in the ground, on
account of which the structure of the ground will be influenced by the presence
of the disk.

2. A method which considered from the measuring technique, is simple, but
otherwise intricate, has been applied by Jehnand Gerhard t(1950). With
this method the temperature of the ground at different depths has been registered
till such depth where the temperature change with the time is negligible. With
the aid of these registrations the enthalpy of the ground can be calculated
at different moments, when the specific heat and the density have also been
determined.

3. Thanks to the fact that it is now possible to measure the coefficient of
thermal conductivity of the ground without structural changes of it with the
help of the non stationary method (as has been applied by de Vrie s (1952)),
it is possible to measure ¢, also continously in a more or less trustworthy way.
However, this way of measuring and the working out are intricate. So this
method is suitable to fundamental investigations, but not to routine work.

The determining of g, can be done well only with the use of a so-called
radiation balance meter, which indicates directly the net radiation. Such an
instrument has been developed by Albrecht (1933). It is possible to
determine the noctunal radiation with the aid of an “actinometer’” and to make
corrections of the difference of temperature between the meter and the surface
and of the absorptivity of the surface; however, even then the possibility of
considerable mistakes remains.

G4 can be determined with the aid of equation (1.3.1) when g, and ¢, have
been measured already. Properly speaking in this case g, will be made closing
entry of the balance. It is more desirable to determine g,, independently.
Doing so would enlarge also the accuracy of the whole balance. In order to
determine g, , independently the components g, and g, have to be determined
separately.

g. can be determined with the water balance, which has already been noticed
in 1.4. To do this it is necessary to measure my, m, and m,. As long as it does not
rain the determining of g, means the measuring of the loss of weight of a ground-
sample, which can lose moisture only by evaporation. The surface condition
of the sample has to be as good in agreement with the environment as possible.

Riderand Robinson(195]), because of the equality of the coefficients
of eddy transfer, (see 2.5) determined by use of g,, also ¢,, by making a closc
fit of the two temperature and moisture profiles. The g,, acquired in this way,
was tolerably well in agreement with the g,, which was obtained as closing
entry of the heat balance.

When the structure of the atmospheric surface-layer has been sufficiently
investigated at different stabilities, it should be possible to determine g, and g,
from the profiles of wind velocity, temperature and humidity.
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The determining of the g, is the most difficult of the energy fluxes, discussed
in this section. However, in a certain way this quantity is one of the most
important too, because it is definitely important to the structure of the atmos-
pheric surface layer, see chapter 2.

g,» as has been remarked in 1.3, is difficult to determine. The reason of it lies
in the fact that various measurements cannot be made during precipitation.
Thus it is impossible to carry out useful measurements, while from observations
on different heights of temperature and moisture, no conclusions can be drawn
about heat and moisture transport. It is furthermore very difficult to make
up m, from the water balance, because with weight measurements m, and m,
cannot be separated. The only quantity that can be measured more or less
reliably is g, (as long as there is no precipitation). From the process of g, before,
during and after a shower of rain, in combination with g, and ¢, . before and
after the shower, some conclusions about g, can be made. In most cases, during
rain, it will be allowable to neglect g, and ¢, .. So when the vertical temperature
and humidity gradient is small, g, ¢,,.
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CHAPTER 2
ANALYSIS OF THE ATMOSPHERIC SURFACE LAYER

2.1 Introduction

In 1.9 the fact was pointed out that a good insight into the structure of the
atmospheric surface layer can considerably simplify determining the energy
fluxes g, and g,. It is these very energy fluxes, which are conclusive for the
transformation of air masses. Moreover, it is of importance to have a thorough
knowledge of the atmospheric surface layer for many microclimatological
investigations. Naturally numerous investigations have been made in this field.
A good survey of the most important of these has lately been given by
Priestley and Sheppard (1952). It is remarkable that all these in-
vestigations have yielded somewhat unsatisfactory results so far. Possibly one
of the causes is the fact that most investigations confine themselves too much
to detail studies without trying to give a more comprehensive theoretical
analysis. Lettau (1949) has developed a more complete theory, however,
which will be dealt with further in 2.6 and following.

When investigating atmospheric turbulence one often comes up against the
fact that nearly every assumption which is made in order to develop a theory,
appears to be untenable during further analysis. Consequently, one is prompted
to try and work with ever more fundamental concepts and as a result ever
greater difficulties are encountered.

Of course a fundamental analysis is essential in order to build up an entirely
satisfactory theory. However, it may be profitable to develop in a less exact,
but more tentative manner, a theory, which is useful and capable of practical
application. The exact basis of the theory may then be developed afterwards.
In working thus, however, it is necessary to proceed with great caution,
especially in interpreting possible results. The above mentioned theory by
Lettau(1949) is a typical instance of a case in which this caution was in-
sufficiently observed.

Starting from special assumptions we have attempted in this chapter to give
a more or less complete model of the atmospheric surface layer. In doing so
we have especially built on the mixing length theory of Prandtl (1935) (see 2.4).
The profiles of velocity and temperature and the transfer of momentum and
heat, which belongs to it, are especially considered. Once these are known, it
is possible to treat the diffusion of water vapour and other mass, without giving
rise to considerable new difficulties (see also 2.13.5).

Various investigators (Batchelor (1950), Inoue (1952) and others)
have raised grave objections against the concept of the mixing length and have
shown the inadequacy of this concept in certain cases. In its place they have
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put forward the so-called statistical theory of turbulence. However at present
this statistical theory is only applicable to ‘“homogeneous” media such as an
adiabatic atmosphere, but not to “inhomogeneous’ media in which convective
forces occur. It therefore seems to us that the rejection of the concept of the
mixing length is at least premature, in particular because this concept has
shown its usefulness in adiabatic conditions.

2.2 Definitions and assumptions

2.2.1 The atmospheric surface layer

By atmospheric surface layer we understand the part of the atmospherec
bordering upon the surface of the earth and in which, approximately, the verti-
cal transfer of heat and momentum may be considered constant with height.
According to Et t e 1 (1933) this layer extends on an average for about 25 m.
The thickness of the layer depends on the velocity of the wind and the roughness
of the earth’s surface, see also 2.3.3. The surface layer forms a part of the
atmospheric boundary layer, which extends to a height of approximately
1000 m. Higher up the friction at the surface hardly makes its influence felt.

2.2.2 Steady States

In order to keep the equations as simple as possible, only steady states are
considered. This means that the various quantities in one and the same place
are on an average constant as to time. We now assume that such averages of
the various quantities exist and have a real physical significance. A consequence
of this assumption is, that the various quantities can be split up into a mean
component and a purely turbulent component, which as to time, is zero on
an average.

This is expressed as follows; e.g.:

u=u-+u'; p=p+ g etc.and u’ =p' =0 etc.

That this splitting up is not obvious, but that an assumption has to be made
respecting it, has been pointed out by various authors. For this we refer to the
paper by Priestley and She p pard (1952). Furthermore it is accepted
that the mass flow takes place in the x-direction, so that gv = pw = 0 and
pu #=0.

2.2.3 Air is considered as an incompressible medium

2.2.4 It is supposed that along the whole surface layer turbulent friction is
great with respect to the purely viscous friction, consequently K> ». Only in
the lowest centimeters this will not be quite correct.

2.2.5 It is assumed that the rurbulence is completely developed for the main flow.

Upy X
This means that Re, = Q-;— > 10° in which x is the distance from the edge
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of the surface where this starts getting homogeneous to the measuring-point
and in which pu,, is the mass flow. For it we may take e.g. the mean mass flow

h
over the layer of the atmosphere considered so gu, = 1/h [ pu dz in which /

is the height up to where the layer extends. The value 10° of Re, as boundary
for completely developed turbulence will be further explained in 2.13.4.

2.2.6 The coordination system is chosen in such a way that the mean mass
flow takes place in the direction of the x-axis and that the z-axis is at right
angles to the earth’s surface.

2.3 The basic equations

Generally speaking the equations describing the structure of the atmospheric
surface layer are:

The equation of continuity

o H =0 2.3.1
5 TV (ov) =0, (2.3.1)
the equation of state
p =0 RT, (2.3.2)
the Navier-Stokes cquations
a—\” ->( d > ,"< l : -> 4 > 2 13
at—l—vgra.v)-- _va |—r/\v|3V.Vv, (2.3.3)
Fourier equation
2(eT) | » A
"+ 3 VeT=—AT. - (2.3.4)
ot ¢

This last equation is a special case of the first law of thermodynamics.

To these may furthermore be added equations for diffusion, which always
show the form of (2.3.4) and in which 4/c, ¢ must be replaced by the coefficient
of diffusivity and T by the concentration of the diffusing matter. As in these
diffusion phenomena no convective forces of any significance are met with,
except in special cases for water vapour, these may be left out of consideration
in the first instance, see 2.13.5.

The above mentioned equations can be considerably simplified by means
of the assumptions from 2.2, in which also the physical meaning of the various
terms is emphasized.

2.3.1 The equation of continuity

The equation (2.3.1) may be split up into two equations, one for the mean
state and one for the purely turbulent state:
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2 +divlev+p'v)=0 (2.3.5)

dp’ A >, T
% Fdivie' VY 'V — o' V) (2.3.6)

The equation of pure turbulence may be left out of consideration because it is
of no importance for our further argument. We shall also do so with the

equations (2.3.3) and (2.3.4). 99
As furthermore only steady states will be considered, in thha_t =0 and

moreover gv = gw = 0, compare 2.2.2, equation (2.3.5) becomes

a oy I t
e teu)=0
or

eut o'W =£() (2.3.7)
Moreover, it is of importance to remark that when gw =g w +o'w =0
in case a vertical density gradient prevails, p’w’ == 0 so that
_ 1—
w=— 3 o'w (2.3.8)

So the possibility exists that there is a mean vertical velocity component
without mass flow in this direction. w, however, is not perceptible owing to
its small quantity. Even in case of large density differences and strong turbu-
lence we keep w << 1 cm/sec.

It is easy to see that there must be a correlation between ¢’ and w'. For if we
start from the theory that on the whole a vertical motion caused by turbulence
takes with it an eddy which is in equilibrium with its surroundings, this eddy
on account of the existing mean gradient will show a deviation in density
which is proportional to said gradient and to the distance covered by this eddy.
This distance again will be proportional to w’. So there is a correlation between
w’ and g’, which may be expressed as:

o'W =c w? =0 (2.3.9)
As various authors (Ertel (1942, 1944), Schmi tz (1947)) start from the

theory that w = 0 should be valid, they arrive at the conclusion that p'w’ = 0.
Though Calder (1949), points out in above mentioned qualitative manner

that o'’ £ 0, he opposes these authors but he does not arrive at equation
(2.3.8), on the contrary, in continuing his argument he commits the error
himself: w — 0. The way it is dealt with above clearly shows where the in-
correct reasoning of Ertel and Schmitzis to be found.

An analogous qualitative observation as given for p'w’, may also be given

for é’u', we shall revert to this in 2.3.3.
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From considerations of symmetry we may accept that no correlation exists
between g’ and V', so that o'v' = 0.

2.3.2 The equation of state

As the density, temperature and pressure variations are small with respect
to the mean values (see Cald er (1949)), the equation of state (2.3.2) may be
written in the form:

bl = (2.3.10)
? o

Calder morcover shows that L < € and =
p e T

So that we have left over in first approximation
Ql Tl

(2.3.11)

e T
As moreover in the bottom 25 metres of the atmosphere the difference

between T and 0 and between T’ and 0’ is very small, henceforth we shall
only make use of potential temperature because the gradient of the potential
temperature is the gauge of the stability. As a fair approximation we therefore
have:

o' 0’ 0

e 0 T

233 The Navier-Stokes equations

The Navier-Stokes equations may be treated in a manner analo-
gous to that of the equations of continuity. We leave out of consideration the
Coriolis force, which is neutralized by a component of the gradient force
and take into account only the component of the gradient force in the direction
of the main flow.

Taking into consideration (2.3.1), the equations of the mean flow become:

op 2%u

7
a—z(guw) i + 7 7a2 (2.3.13)
All the terms in the y-direction are on an average zero, (2.3.14)
0 — op i o*w
and =Sl W) et et B g e
az(ew) az gg I 177 622 (2'3']5)

By means of (2.3.8) we can write for the last term of (2.3.15)

4 o 4 2
382~ 3" 520"
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Now E w' in the surface layer is practically constant, because this correlation

o'w') will

coefficient is a measure for the heat transfer see 2.3.4. So th 57

be negligible. So we retain:

oy ——2 23.16

5, @V) =—75-—ge (2.3.16)

Let us now consider correlation coefficients puw and g_lﬁ These may be
written as follows:

puw =@ + o)+ u)w+w) =
—puw+ou w +upw wou +ouw =

Taking into account (2.3.8) this becomes:

—ou'w +wo'u' +o'u'w 2317
and
owt=(g +o)(w+w)t=pgw + oW+ 2wo' w +o'w?t=

—owi—pw 4o w? (2.3.18)

Of the terms occuring in (2.3.17) and (2.3.18) g u’w’ and p w'? are great with
respect to the other 4 tcrms That these 4 terms are small can only easily be
grasped from the term g %, because w'2 > w'

That the other 3 terms are small may be seen by means of the following
qualitative line of argument (see also 2.3.1).

We shall first observe u'w’. Because a velocity gradient in vertical direction
prevails, an eddy which originally had the mean velocity, will show a deviation
with respect to this mean, as soon as it undergoes a vertical motion. On an
average a vertical motion will carry with it an eddy having the mean velocity
u(z). The deviation u’ therefore will be proportional to the gradient ouloz
and to the distance covered by the eddy. This distance again will be propor-
tional to w’. So there is a correlation between ' and w’, which may be for-
mulated as:

u'w =cow'?20 (2.3.19)

By virtue of such a consideration Prand t1 (1932) introduced the mixing
length for turbulence as turbulence strives to become isotropic, he supposed
that u’ as well as w’ are proportional to / 2u/9z. In this way he arrived at the

e 3u
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We see that u' as wel as o’ correlate with w’ so it is obvious to introduce

a third relation, analogous to (2.3.9) and (2.3.19):
o' =cgo'w =cw'? 0 (2.3.21)
The factors ¢, and ¢;, unknown for the rest, will be of the order of magnitude

one.
For the first two terms of the right-hand side of (2.3.17) we may now write

c,ow'2 and — c;@w® in doing so it is clear that caw'2> cy W' from which it
appears that w o'y’ is small.
The correlation coéfficients p’u’w’ and p'w’® will both be of the order

w'3 & 0. These terms therefore may undoubtedly be neglected.
We now substitute what we have left into the Egs (2.3.13) and (2.3.16)

& — op 2%u
and = o7
—= p ==
= 2y — E
62(6 w'?) 5, 8¢ (2.3.23)
These equations may be integrated, when we assume that ai is constant
with height: _
—— 10p ou ou
Ww=—--"z va—z——v(a—z)o (2.3.29)
and 2
ow'?=p(0)—p(z)— g] odz (2.3.25)

The latter equation expresses, as is known, that the vertical turbulent motion
causes a pressure rise with regard to the static pressure in the free flow.

ou
Now the equation (2.3.24) is particularly interesting to us. The term v(éi_z)
0

1
is the shearing stress at the earth’s surface 7, divided by p. The term Q az. zis

negligible as to small z. Er t e1(1933) has pointed out that this is the case
up to heights of 25 m, so for the very field in observation, see 2.2.1.

u
As soon as there is any turbulence the term » o is negligibly small with

respect to #’w’. So a near approximation for (2.3.24) in the bottom 25 m of
the atmosphere is:

T Tg g (2.3.26)
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2.34 The Fourier equation

By treating (2.3.4) in the same way as the Navicr-Sto k e s equations
the following equation for the mean heat flux is obtained:

2 A oT
= 2
P (owT) ¢, o2 (2.3.27)

The equation for pure turbulence has again been left out of consideration.
Equation (2.3.27) integrated yields:

AoT AfeT
pwT =— ' —— (2.3.28)

In this 1(67_‘ /82), = q, is the heat flux at the surface and as the steady state
is being considered, this is constant in the layer under observation. Furthermore

A oT
the term o 22’ which indicates the heat flux by pure conduction, is of some

(4
importance only quite close to the earth’s surface, but for the rest negligible.

So we get
gl =1 (2.3.29)

Cp
The term pwT can be writen as:
owT —gwT +owT +To'w + wo'T' + p'WT =
bij means of (2.3.8) and (2.3.12) this is:

=0 ! ,<1 T—-I2) [ ‘n'? ( 3 3 )

In it T"2/T? is very small with respect to 1 and K,'é'_z is again of the order of
w8 and consequently negligible (see 2.3.3).
We have left over:

owl =g w'T’ (2.3.31)
This substituted in (2.3.29) gives
= Ga
wT =— (2.3.32)
G0

On the strength of the equations (2.3.11) and (2.3.12) we may also write for
the bottom layer of the atmosphere:

Ty a
wl =—= 2.3.33
e ( )
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2.4 The velocity profile in an adiabatic atmosphere without density gradient

. o0 f
In the special case that the atmosphere is adiabatic i.e. P 0 equation

(2.3.26) can be solved. For H a m ¢ 1(1943) has proved what had already been
postulated by v. Kdrma n (1930) that

. ou\t [ [o*u\?
u'w =—k2 (a—z> / (62_2> (2.4.1)

Fitted to (2.3.26) this gives:

ou\2 | 0%u
— 2
k(az> / Py Uy (2.4.2)
intcgrated:

Lol (24.3)

0z kz

— +c
Uy

The integration constant ¢ cannot be determined by taking z = 0, for then the
ou

term » Py is no longer negligible. We therefore introduce a distance z,, which

can be determined from observations and which is connected with ¢ as follows:

kz, . . . .
Cise— this substituted into (2.4.3) gives:
*
ou Uy
0z k(z-+z,)

Now the well-known form of Rossby and Montgomery (1935) has
been found.
Integration of (2.4.5) gives:

(2.4.5)

u 1
Z = In(z + z,) -+ constant
Also in this case the integration constant should, in fact, not be deduced from
the condition u = 0 if z — 0. If we do so after all the error will probably
not be great; we then get:

u 1 z+z

z+4+z,
" =zIn — 5,75 log . (2.4.6)

The z, in the numerator and denominator therefore need not be exactly alike.
This is not important however, because the z, of the numerator has only a
slight significance, for as a rule we have z > z,. The z, in the denominator on
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the other hand is of great significance, it being the measure for the roughness
of the earth’s surface and leaving its mark on the whole velocity profile.

The equation (2.4.6) is in good agreement with the observations. Prandtl
(1932) was the first to represent the logarithmic velocity profile for the bottom
layers of the atmosphere. Best (1935), Sver drup (1936), Paeschke
(1937), Rossby and Montgomery (1935, 1936) have found a satis-
factory agreement with the observations. A good survey has been given by
Deacon (1949); more theoretical considerations have been given by
Calder (1949b) and Sutton (1949 a and b). Sheppard (1947) has
{ried to obtain yet another extra confirmation of the theory by a direct measur-
ing of the shearing stress.

Thanks to the relation proved by Hamel (1943) (Eq. (2.4.1)) it was not
necessary in the above mentioned derivation to make use of the mixing length
introduced by Prandtl and so it was possible to arrive at the equation
(2.4.6) by a more exact way. At the same time the concept of the mixing length
has thus obtained a thorough basis. This concept, which was drawn up for
the atmospheric turbulence by Pra nd t1on the analogy of Maxwell’s model
for an ideal gas, in which he arrived at the relation (2.3.20), was greatly sup-
ported by the similarity hypothesis of v. Kdrm 4 n (1930).

v. Karm4n came to the relation:

dul oz

' g

(2.4.7)

By the proof of (2.4.1) these considerations are justified, for when we sub-
stitute, (2.4.7) to (2.3.20) we get, as is well known, the equation (2.4.1) (sec
further remarks 2.13.3). By working out equation (2.4.7) by means of equation
(2.4.5) we get the well-known relation

| =k(z+ z,) (2.4.8)

We can now use this equation, which at first was assumed by Pran dtl,
as a definition for / in the adiabatic atmosphere.

2.5 The transfer equations

It is much more difficult to calculate the profiles of velocity and temperature
when the atmosphere is diabatic, so when the gradient of the potential tempe-

rature 8 0/8z 0. Equation (2.4.1) is no longer valid now and we can no
longer solve equation (2.3.26). The cause of it is found in the fact that as soon
as an eddy is placed in surroundings of a different temperature a force is exerted
on this eddy which asserts its influence on the turbulence present.

As soon as a gradient of the potential temperature is extant eddies will
continue to be drawn out of their thermic equilibrium (see 2.3.1) by which the
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entire structure of the surface layer is influenced. So the structure is determined
not only by equation (2.3.26) but also by equation (2.3.33):

W' = —u,? (2.3.26)

A t— qﬂ

Wl =-——= 2.3.33
o ( )

These equations (the so-called transfer equations), which indicate the flux
of momentum and heat respectively, should be considered in their mutual
connection. So the problem we have now to face is the solving of the corre-

lation coefficients w’'u’ and w'0’. This will only be possible in an exact way,
when the theory of turbulence has been further developed. In doing so, possibly
the so-called similarity hypotheses may be used, which have been given by
Kolmogoroff, Onsager, Heisenberg and v. Weizsidcker
independent of each other. Up to the present this theory has only been useful
for fluids in which no convective forces assert themselves and can therefore
only be applied for the adiabatic atmospherc. Whether the logarithmic profile
has already been derived along these lines, is not known to us.

Considering this state of things we have thought it advisable to follow a less
exact way to arrive at a solution. A stimulus for doing so has been given by the
theoretic confirmation of the model of the turbulence by Prandtl (1937),
sce 2.4. By extending the idea of mixing length and by applying a formal
distinction of turbulence into friction turbulence and convective turbulence
it proves possible to describe the velocity- and temperature profiles. It should
be borne in mind that the mixing length by no means pretends to say anything
regarding the precise structure of turbulence, but merely indicates a kind of
effective sphere of action.

If we now return to the transfer Eqs (2.3.26) and (2.3.33), we see that we
cannot do much with them in this form.

These equations are usually written, (in imitation of Schmidt (1917) and
Taylor (1915) in the following form:

ou

](,,, 32 = u*2 (2.5.1)
and =
9a
" =g (2.5.2)

which gives a formulation analogous to that for the flux of momentum and
heat in the laminar flow. (Schmid t has not used K, and K, but 4,, =K, 0
and 4,, = Kj o).

In doing so the correlation coefficients w's’ and w’0’ have been replaced by
K, ufoz and K}, 90/0z. So now the difficulty has been shifted from the corre-
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lation coefficients to the coefficients K the so-called coefficients of eddy transfer.
In virtue of the consideration that turbulence was supposed to transfer the
various properties of air in a similar way, it was formerly generally accepted

that
K, =K, =K. (2.5.3)

Unamity on this point has entirely disappeared during the latter 10 years.
Eq. (2.5.3) is now being strongly challenged on theoretical grounds by Ertel
(1942, 1944) and Priestly and Swinbank (1947), while Swinbank
(1951) and Pasquill(1949) claim to have proved experimentally that K}, = K,,,.
On the other hand measurements by Rider and Robinson (1951) have
shown that K;/K,, = const. Moreover R. and R. argue that this constant can
only be equal to one.

Of an entirely different nature is a theory by v. d. Held (1947), which
contains an argument in favour of the validity of (2.5.3). Starting from the
model of turbulence as given by Prand tl, v. d. Held regards the elements
of turbulence as molecules with an infinite number of degrees of freedom. He
then follows up the analogy between the molecular viscosity v and the eddy
viscosity K,, and between the molecular thermal diffusivity a and the eddy
conductivity K,, making use of the well-known nondimensional Pran dtl

number defined by Pr = »/a. A relation exists, derived from the kinetic theory
of gases, between Pr and the number of degrees of freedom of the molecules:
n-+2
P =43

where # is the number of degrees of freedom.

It follows that for n = oo, Pr = 1 or if we may extend the analogy between
molecular and turbulent motions:

Ko
Pr=—=1o0 K, =K, =K (2.5.3)
K,

From the above it will be obvious that no unanimity exists on this point.
In the following Eq. (2.5.3) will be used, bearing in mind that the ratio K,/Kj,
while not necessarily equal to one, will be approximately constant with height
for a given profile.

Substituting Eqs (2.5.3) in (2.5.1) and (2.5.2) we obtain:

ou :
Ka—z = Uy (25'4)

20 :
K— = e 2.5.5)

oz Cp0
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These equations contain three unknowns viz. K, and 0. Therefore a third
relation must be found in order to solve these equations. In the following
sections an attempt is made to find such a relation.

2.6 Frictional (mechanical) turbulence and convective turbulence

In an adiabatic atmosphere the turbulence is entirely due to friction at the
earth’s surface. As soon as a heat flux exists turbulence will either increase or
decrease through the liberation or absorption of convective energy, respectively.
We may now make a formal distinction between turbulence caused by mechanic-
al friction, the frictional or mechanical turbulence and turbulence caused by
convection, the -convective turbulence. The problem is to write this formal
distinction in an equation. This equation will have the general form:

total turbulence = frictional turbulence -} convective turbulence (2.6.1)

It was Richards on (1920) who for the first time more or less succeeded
in achieving this by means of energy considerations. The chief result of
Richardson’s analysis is the definition of the Richardson number
Ri as a measure of the stability of the atmosphere.

go 0_/82
= T (0ujoz)

Mcasurements by Deacon (1949) Pasquill (1949) and others have
shown that this number can be used as a stability parameter.

A disadvantage is, however, that R/ varies with height. Moreover, in this
form the description of the components of turbulence is still incomplete.
Attemps at a more complete description of both components of turbulence
have been made by RossbyandMontgomery(1935)andbyLettau
(1949).

Though the approach of these authors is quite different yet the supposition
which they made may be brought into a comparable form.

The difficulty of putting an equation of the form of (2.6.1) into a formula
principally lies in the fact that we have but few points to go by. Practically
only the force or the acceleration which is exercised on an eddy, when this
eddy has a temperature difference 0" with its surroundings can clearly be stated,
viz: g 0'|T.

On an average this quantity will have a value, which will be possible to
write as follows:

Ri (2.6.2)

. . 180/ 8z
mean convective acceleration = g N (2.6.3)

in which / is the mixing length bearing on the total turbulence. So here we have
a quantity indicating in what measure convection contributes to turbulence.
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Rossbyand Montgomery as well as Lettau built on this point
of contact; the first two authors taking a proportional constant, by writing for
the mean convective acceleration:

o0/oz
[ — /_
T

Besides this convective acceleration we must now attempt to express the
total turbulent acceleration and the turbulent acceleration which is caused by
friction, to be able to write Eq. (2.6.1) entirely in the dimension of acceleration:

Be (2.6.4)

total turbulent acceleration — turbulent acceleration caused by friction -+
turbulent acceleration caused by convection (2.6.5)

It is obvious to express the total turbulent acceleration in the coefficient of
cddy transfer K and the mixing length /. We then obtain:

total turbulent acceleration = K?//® (2.6.6)

This has been done by R. and M. as well as by Le t ta u. The main difference
between these authors is seen in the formulation of the turbulent acceleration
caused by friction. R. and M. give for it:

turbulent acceleration caused by friction = K2/I3 (2.6.7)

in which K; is the transfer coefficient as it would be if only friction were to
cause the turbulence. By means of equations (2.4.5) and (2.5.4) this may be

written: Ky = kuy (z + 2,) (2.6.8)

In our opinion Eq. (2.6.7) gives only a slightly consistent and therefore only
slightly convincing formulation of friction turbulence. So according to
Rossbyand Montgomery (1935) Eq. (2.6.5) becomes: (Eqs (2.6.4),
(2.6.6) and (2.6.7) substituted in (2.6.5))

K®  Kp 1062z
Y R

(2.6.9)

The proportional constant f has been introduced to express the uncertainty
of equation (2.6.9). In analogous equations to be given henceforth such a
proportional constant has not been taken along in order to keep the treatment
as simple as possible. In possible experiments this should, however, be taken
into account.

Lettau’s(1949) formulation is more consistent. His reasoning is more or
less as follows. In one special synoptic situation a certain friction will arise,
that causes turbulence at the earth’s surface when there is no heat flux, con-
sequently in adiabatic conditions. The friction velocity belonging to it we shall
call u,,, in which index a indicates that the quantity relates to the adiabatic
state.
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Likewise we have the transfer coefficient K, = ku,, (z + z,) according to
Eg. (2.6.8) and the mixing length [, = k (z + z,) according to Eq. (2.4.8).
Now when the situation changes merely because a heat flux sets in, then this
change must be entirely ascribed to convective turbulence caused by the heat
flux. Eq. (2.5.6) should therefore be written as follows: (Substitute (2.6.4) and
(2.6.6) in (2.6.5))

K2 K,? 180/oz
R —g = (2.6.10)

A drawback of the reasoning is that in case of a diabatic atmosphere the
friction must then be split up into a pure friction part causing friction turbulence
and a part which conduces to convective turbulence. It is more logical to hold
friction at all times entirely responsible for friction turbulence. We then come
to the following formulation of Eq. (2.6.5):

K K# 1a0/oz

3 I# —& T
in which Eq. (2.6.8) applies to Ky and Eq. (2.4.8) applies to /r as well as to /,.
This last sentence might be considered a new assumption. It appears to us,
however, that we had better to define the quantities of frictional turbulence
in this way, as otherwise the difference between frictional turbulence and
convective turbulence loses its significance.

We are fully aware that Eq. (2.6.11) is based on a weak foundation and that
a further motivation would not be superfluous. To do so however, we must
in the first place have a better insight into the structure of turbulence.

So far all formulations of the general Eq. (2.6.1) have been given in the
dimension of acceleration, because the convective term is easiest written in this
form. No further arguments, however, can be put forward why it is this very
dimension in which the best formulation could be given. With as good a reason
and in an analogous way we are able to give a formulation of (2.6.1) in the
dimension of energy or energy per unit of mass. Such an equation would
appear as follows:

(2.6.11)

K* K®  I2afjez
T R (2.6.12)

Some consequences of the various formulations of (2.6.1) will be treated
n 2.8.

Although we have now drawn nearer to a solution of the problem, a new
sariable / has been introduced and therefore a fourth relation is required
seside the relations (2.5.4), (2.5.5) and one of the formulations of (2.6.1). Before
leriving such a relation considerations of similarity are introduced in order to
‘educe the number of parameters and to define a suitable stability parameter.
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2.7 Similarity and stability

From the well known logarithmic law (Eq. (2.4.6)) a non-dimensional
velocity and a non-dimensional height may at once be derived, viz. U = ufu,

and f= ZJZ“ %o,
(4]

Substituting these expressions in Eq. (2.5.4) and introducing another non-
dimensional parameter R = K/u,z, one gets:
aU__ 1
8¢ R
The similarity between Eqs (2.5.5) and (2.5.4) is brought out by writing
(2.5.5) as follows:

(2.7.1)

o 1 5

57 R 21.2)
~ Vo ~4a
O Uy CpQ

The meaning of 0, may be clarified by identifying the velocity profile and the

temperature profile. This can be achieved by using u, as the unit of velocity
and 0, as the unit of potential temperature. The ratio of the scales of both
profiles is given by u, /0, = o. From this ratio and u,, 0, can be at once deter-

mined:

0
where 9 = and 0, =

6, = u,/o 2.1.3)

The problem is now to determine R as a function of height and stability,

so for instance
R =R (L, R) (2.7.4)

It has been shown experimentally that Ri can be used as a stability para-
meter, see (2.6.2). A disadvantage is however, that Riis an unknown function
of height. Therefore it is desirable to find another stability parameter which
is independent of height. That such a quantity must exist may be deduced
from the fact that if Ri is known at one height, while u, and 0, are also known,
the velocity and temperature profiles and consequently the rate of change of Ri
with height are entirely determined. One may now try to split Ri in two parts
one of which is independent of height. The easiest way to achieve this is to
express Ri in the quantities defined above. We then find:

90/6z 042

Ri =g= = . 2.7.5
gT(@E/@z)2 gTu*2 ( )

0,z
This is really what we looked for: a term g%* : which is constant
Uy
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with height and a known quantity R which varies with height. Writing:

O 2,
= (2.7.6)
ul2T
it follows that instead of (2.7.4) one may write:
R = R(C, Sn) 2.7.7)

Sn is now used as stability parameter instead of Ri.

The practical significance of this equation is, that if the profiles have once
been determined for one given set of conditions involving a given value of Sn,
then they are also determined for any other set of conditions which yields the
same value of Sn. Furthermore, the number Sn enables us to draw up a survey
of all states of the atmospheric surface layer in which the assumptions of 2.2
are valid.

However, the stability parameter thus defined can only assume its full
importance when the above reasoning has been confirmed experimentally.

2.8 The relation R (£, Sn)

We have now progressed so far that an attempt can be made to define
relation R (¢, Sn). Once this relation is known the profiles of wind velocity and
temperature can easily be calculated by integrating the Egs. (2.7.1) and (2.7.2).
As has been pointed out at the end of 2.6 we need for the calculation of
R (Z, Sn), besides the equation (2.5.4), (2.5.5) and a formulation of (2.6.1) yet
another equation which shows a connection between / on the one side and

K, u and 0 on the other side. It is necessary to make yet another assumption.
Rossbyand Montgomery (1935 made the obvious assumption that
equation (2.3.20) holds good even when the atmosphere is diabatic. In
combination with Eq. (2.5.4) this may be written:

K= 12@ (2.8.1)
oz

By means of equations (2.6.8) and (2.5.4) this assumption can be written in
the following simple form: K ]

Ef = 7/ (2.8.2)
By combining (2.5.4), (2.5.5), (2.6.9) and (2.8.2) we now find:
R=kl{t+30-BklSpttt (2.8.3)
1
An unsatisfactory solution because for positive values of Sn > m the

the right-hand side of (2.8.3) becomes complex. Qualitatively there is not a
single indication why such a critical value should appear in the unstable field.
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Neither do the profiles which can be calculated by means of (2.8.3) show a
good agreement with the observations.

Holzman (1943) has applied an approximation in the working out, by
which a form was found which could be handled somewhat better. He has,
however, introduced no alteration in the assumptions.

Lettau (1949) started from the assumption that the vertical turbulent
wind component w’ changes on an average proportionally to /, owing to which
K becomes proportional not to /, but to /2. Thus he comes to the equation:

K [y
= (1—> (2.8.4)

in which the index a refers again to the adiabatic state. By means of
Lettau’s assumptions we find, by combining the Eqs. (2.5.4), (2.5.5),
(2.6.10) and (2.8.4):

¥
R—" prpsn s 1kt +<1 + 4i’ikcs,z> s (2.8.5)
Uya Uy ( Uga
In it occurs a new parameter Viz. u, /u,,. In order to define this parameter it
is necessary to consider the entire boundary layer, because a change of u, by
the appearance of a heat flux is linked up with a structure change of the
boundary layer.

A problem is introduced by it which is beyond the scope of this research;
a problem that in our opinion need not be introduced (see 2.6). At the same
time a practical objection to Lettau’s theory now makes its appearance
viz. that in testing this theory it is necessary that the synoptic situation remains
constant for a long time, so that u,, can at least be determined. Lettau
finds a satisfactory agreement of his theory with the observations. This
agreement, however, is by no means convincing, because the observations
used by him are all of them incomplete, so that it was always possible to
fit in the missing quantities as favourably as possible. At most we may say of
this theory that the observations do not exclude it.

Building on Lettau’s starting point for the equation (2.8.4) we would
formulate this assumption as follows:

K 1\2
= = 8.6
Ky (4’) G

By means of the equations (2.6.8) and (2.5.4) a form may be given for it
analogous to (2.8.1): Ky = [* du/oz.

Now by combining the equations (2.5.4), (2.5.5) and (2.6.11) with (2.8.6) we
find: (see figure 2.11.1)

R=Ik2{2Sn+ 3k + (1 +4kSn) | (2.8.7)
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An equation showing much resemblance to (2.8.5) and giving about the same
form of the profiles. By substituting this equation in (2.7.1) and by integrating
we get: (see figure 2.11.3)

_ [+ 4k ESmE— 11[(1 + 4k St + 1]

Tk + 4 ESnF +I[(L + 4k Sm)f — 1]
2(1 + 4k £ Sn)* 2(1 + 4k Sn)Y) ) 288
[1 -+ 4k ESmiE [1 + (1 + 4k Sn)t |3 2R
As long as k { Sn > 1 equation (2.8.8) may be approximated by:
1
U=§lnC—ZSn(C—]) (2.8.9)

in which the well known logarithmic profile has been retrieved amplified by a
correction term.

A particularly simple relation R (¢, Sn) is obtained when the assumptions
(2.6.12) and (2.8.6) are combined with the equations (2.5.4) and (2.5.5): (see

T4t e ) R=kC+ Sn(k ) (2.8.10)
This equation substituted in (2.7.1) and integrated yields: (see figure 2.11.4)

U=%1n§—%§l+8nk(§—l)$ (2.8.11)

This equation too can be approximated as long as Sn k { > 1 now, however,

by means of 1
U:-k-lné'—Sn(C—]) (2.8.12)

So we find here another correction term than in equation (2.8.9). Of the
solutions (2.8.8) and (2.8.11) it may be said that the observations so far do not
preclude that they are in agreement with them.

An advantage of these solutions over that of L e tta u is that they can be
verified more easily and so possibly have greater applicability as a provisional
theory.

From what precedes it clearly appears that there is a great number of possi-
bilities to arrive at a relation R (¢, Sn) and it seems that by no means all forms
of this relation that have a chance of succeeding, have as yet been given.

Yet without further comment it may be seen from various combinations that
they cannot suffice. Thus e.g. the assumption of Rossby and Mont-
gomery (2.8.2) in combination with (2.6.11) states, that K and / would
decrease in case of increasing instability, which is contrary to observation,
whereas the same assumption combined with (2.6.12) gives no solution what-
cver. Furthermore it is possible to more or less confine the field where the
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correct solution is to be found by considering the equation for the energy of
the turbulence.

Calder?) (1949) has further elaborated the energy consideration by
Richardson and derived the following equation:

_ u\?  gq,
s <a—z> 1 cp?__ °F

0 =
——w'(p'+ Yeu)+w(p + tevI) - w(p' + Jow? =0 (2.8.13)
o0z

The last three terms express a diffusion of the turbulent kinetic and potential
energy. Probably these terms are small with respect to the others. If we neglect
these terms we see that the terms of Richardson (the first 2) need only
be amplified by a term for the molecular dissipation D, which may also be
seen qualitatively. We have then left:

~ . (U g4
e Ku (a?) + o D (2.8.14)
In the special case that g, = 0 we can write for D, by means of the equations
(2.5.4) and (2.6.8): LN
D=2 (2.8.15)
k(z+ z,)

It is now possible by means of the equations (2.5.4) and (2.5.5) to come to
a relation R (£ .Sn), by assuming a certain course of D as a function of
stability.

In doing so, no use is made of the assumptions given previously and there-
fore not of the mixing length either. Reversed it is possible to calculate the
course of D by means of the solutions (2.8.8) and (2.8.11).

The simplest assumption therefore to be made respecting D is, that equation
(2.8.15) holds, independent of stability. Working out equation (2.8.14) by means
of it we find: ke

R=1—kCSn

(2.8.16)
integrated this gives:
1
U= A Ine—Sn(¢—1) (2.8.12)
by which equation (2.8.12) has been recovered.
Presumably D will on the whole increase in case of increasing instability,

so with increasing Sn,and D = constant will only occur as a first approximation.
As a matter of fact equation (2.8.10) satisfies in this respect. Equation (2.8.7)

1) Kano (1950) derived more or less the same equation indepedent of Calder.
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shows at first a decrease of D for small Sn and D does not increase until we
have a greater Sn. So it seems that for small values of |Sn|, equation (2.8.11)
gives a better description of the profiles than equation (2.8.8). In 2.9 and 2.10
we shall consider the equations (2.8.7) and (2.8.10) also for greater values of [Sn|.

A synopsis of the various theories mentioned above and the corresponding
relations R (£, Sn) is given in Table IL.

The relations R (&, Sn) given here do not hold for all conditions in the
atmospheric surface layer. Thus for Sn > 0, there is a field where convection
turbulence prevails to such an extent that free or natural convection establishes
itself, (see 2.9) and for Sn < O there is a field where turbulence is entirely
subsided and where only laminar flow still occurs, see 2.10.

In the following sections we shall observe more closely in connection with
both these transitions the equations (2.8.7) and (2.8.10), worked out in the
figures 2.11.1 and 2.11.2 respectively.

2.9 Free and forced convection

2.9.1 Definitions

A good deal of confusion prevails in the various branches of physics as to
the conception of convection. The terms used up till now in which the word
convection occured such as convective force and convective turbulence have
been sufficiently explained when quoted, see 2.6. As soon, however, as free
and forced convection is spoken of, or convection without further comment,
a more precise definition is certainly desirable. For our purpose we have thought
it best to link up with the terminology in use in the field of heating technique.

Thus we understand by forced convection the heat transmission in a flowing
medium at right angles to the mean flow direction, the force of friction being
greater than the convective force, and by free convection the vertical heat
transmission, the convective force being greater than the frictional force. Free
and forced convection may appear in a laminar as well as in a turbulent flow.
So we can distinguish: laminar and turbulent forced convection and laminar
and turbulent free con- vection respectively.

Now it is possible to translate the terms which are used in meteorology into
the above defined conceptions:

Laminar forced convection hardly occurs in meteorology, therefore no
denomination is given for it.

Turbulent forced convection corresponds with furbulent heat flux.

Laminar free convection (e.g. cells of Bénard) is often expressed by
steady state convection.

For turbulent free convection various conceptions are used. Often one
simply speaks of convection. When the flow form is especially considered (e.g.
for glider pilots) we speak of thermic.
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When turbulent free convection is very evident, so that it gives rise to
cumulus clouds the term penetrating convection is often used. Thus the con-
ceptions forced and free convection have been sufficiently circumscribed for
our further argument.

2.9.2 The transition between free and forced convection

By means of a rather rough qualitative reasoning Taylor has succeeded in
cxpressing the transition between free and forced convection His reasoning
more or less comes down to this:

We again observe an eddy, which, with respect to its surroundings has an
other potential temperature. When this eddy furthermore has a characteristic
length /, a vertical force will be exercised upon it (see also 2.6) for which we
shall be able to write something like:

0!
—J13
—eg / (2.9.1)

As soon as the eddy possesses a certain velocity w’, a frictional force will
be exercised upon it, which is proportional to the velocity gradient w'/l’ at
the edge of the eddy, to its surface /’2 and to the intensity of the turbulence,
which latter quantity is characterized by the coefficient of eddy transfer. For
the frictional force we therefore get a relation, looking more or less like this:

’

w
ll

We now have various possibilities, viz. the convective force may be greater,
cqual to or smaller than the frictional force. In the first case the vertical motion
is accelerated and we can speak of free convection. It is possible to maintain
the motion if there is a sufficiently great negative gradient of the potential tempe-
rature, so that the convective force, the frictional force, and the attendant
turbulent exchange continues to prevail. In the second case there is a balance
between the two forces so that the eddy will have a constant motion. There
we have the transition between free and forced convection. In the last case the
frictional force prevails, by which the eddy will be checked and will further
disintegrate by the turbulent exchange. Then we speak of forced convection.

The relation of the two forces is therefore a criterion for the form which the
convection will assume. There is little sense, however, in making out this rela-
tion for one single eddy, because we are especially interested in the mean state.

Now by replacing the momentary quantities in the equations (2.9.1) and
(2.9.2) by means and subsequently dividing the two equations by each other,
we get a parameter, which looks like this:

14 80/a
Kz/f Z _Gr 2.9.3)

oKI?— =pKI'w (2.9.2)
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This relation closely resembles the number of Grashof from the theory
of heat transmission. We have therefore called this number Gr’. In virtue of
what precedes we may now expect that there will be a definite critical value
of this number, indicating the transition from free to forced convection.

We now observe that the left-hand side of equation (2.9.3) can also be ob-
tained from equation (2.6.11) as well as from equation (2.6.12) bij dividing the
second term of the right-hand side by the left-hand side.

If we assume that in the transition between free- and forced convection the
frictional turbulence is equal to the convective turbulence, than according to
cquation (2.6.11):

Kp* [ a0}oz
IQ =—s—= (2.9.4)
and according (o cquation (2.6.12):
K* 1*a0/oz
e —g = (2.9.5)
In both cases we find:
Gr'=—1 (2.9.6)

At the same time it is possible to give a critical value of Ri. By combining
(2.9.4) with (2.6.11), (2.8.6), (2.8.7) and (2.7.5) we find: Ri = —8.
and bij combining (2.9.5) with (2.6.12), (2.8.6), (2.8.10) and (2.7.5) we find:
Ri =—2,

In the following we shall investigate whether these results have any conse-
quences for the assumptions (2.6.11) and (2.6.12) and hence for the equations
(2.8.7) and (2.8.10).

2.9.3 Extension of the relation R({, Sn) to the field of free convection

Taylor (1931) succeeded in deriving a relation for the field of frec con-
vection, with which, by means of the foregoing, the form of the velocity profile
may be deduced. For he observes that as soon as an eddy can accelerate its
motion on account of a prevailing of the convective force, the frictional force
will increase together with the velocity, owing to which the two forces will
again approach each other. The convective flow will establish its own balance,
as this flow causes the turbulence to increase to such a degree that the convéctive
force is about equal to the frictional force. This means, (see 2.9.2) that in the
field of free convection will hold:

Gr' = constant &~ — % 2.9.7)

In working this out by means of equations (2.9.3), (2.7.6) and (2.7.2) we find:
1\4

R? =2 Sn(—) (2.9.8)

(4]
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From observations by Johnson and Heywood (1938) (scc Sutton
(1948)) it has been derived that

K = constant z 175

or
R(:)¢1% (2.9.9)
When we try to fit this relation closely to equation (2.8.7), we see that this
can be done for a value of Ri = — 8, in which way the same critical value of Ri

is found along a quite different line as is obtained by means of equation (2.9.4)
for the transition from forced to free convection. This fit brings out that
for the field of free convection holds:

R =047 8n 075 ;175 (2.9.10)
and after integration of equation (2.7.1) and fitting to (2.8.8)
U=—575logSn+1—28(Sn )07 2.9.1H)

A slightly less favourable result is obtained by fitting equation (2.9.9) to
(2.8.10). This yields Ri ~ — 10, whereas Ri —— 2 had been found with equation
(2.9.5). It is, however, possible that the transition from forced to free convection
takes place gradually and that in the process a stretch of Ri =—2to Ri =
— 10 is passed through. This adaptation gives for the field of free convection
the relation:

R = 0.358n075 175 (2.9.12)
after integration of (2.7.1) and fitting to (2.8.11)
U=—5751og 2k Sn + 1.9—3.8(Sn {)~075 (2.9.13)

So it appears to be possible by means of the assumptions (2.6.11), (2.8.6) and
(2.9.4) as well as by the assumptions (2.6.12), (2.8.6) and (2.9.5) to come to
a complete notion of the unstable surface layer, so when Sn > 0.

By means of the first series of assumptions the transition from free to forced
convection is more elegantly described than by means of the second series,
which is a consequence of the assumption, that Gr' > — 1, see (2.9.6). If we
alter this assumption slightly by taking Gr’ = — % the second series of assump-
tions gives a more elegant adaptation. Careful observations will be able to give
considerable indications in what direction the solution must be sought.

2.10 The transition from turbulent to laminar flow

It is widely known that in the stable atmosphere, turbulence may entirely
subside. Richardson’s original research was especially aimed at in-
vestigating under what circumstances turbulence disappears owing to stable
conditions. During this research he came to the formulation of the parameter Ri
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(see equation (2.7.5)). On theoretical grounds he gave a critical value Ri, =1
for the disappearance of turbulence.

Many subsequent investigators have occupied themselves with this problem
and arrived at different values for Ri,,, varying from 0,04 tot 1 (see Sutton
(1949b)). Without bringing into further discussion the various investigations,
we will yet bring forward a single aspect of the transition from turbulent to
laminar flow.

As soon as turbulence begins to subside, there will be a moment when the
molecular viscosity can no longer be neglected with respect to the coefficients
of eddy transfer. The last part of equation (2.7.5) is then no longer correct.
Instead of it we can now write:

U )
Ri=—SnK+1 . AL

e T (2.10.1)

When turbulence has entirely disappeared, we have K = 0 and this equation

passes on into:
» y
= — Sn. Pr —— (2.10.2)

Uy Z, Uy 2,

v
Ri =—Sn- -
a

by which a final value of Ri has been found. For a stationary state this final
value is constant with height and may consequently be derived from the
profiles, for then the temperature as well as the velocity in the laminar field
increases linearly with height.

It is easy to see that this final value of Ri under various circumstances may
be quite different, owing to which it certainly is not a critical value. The fact
that Ri is dependent on the extent to which turbulence is subsided, is the cause
that this number cannot be easily handled as a criterion for the transition from
turbulent to laminar flow. It seems to us that the criterion for this tran-
sition can be best expressed by k £ Sn by means of which quantity Ri
can always be defined in a single integration according to the equations (2.8.7)
and (2.8.10). As long as K > v this quantity is not dependent on whether the
turbulence subsides or not. If we now consider the equations (2.8.7) and
(2.8.10) for Sn < 0 we see that in both equations R at first increases with height
until a2 maximum value is attained. For equation (2.8.7) this maximum is found
on the line k & Sn = —3/,; and for equation (2.8.10) on the line k { Sn = —13.

Beyond this maximum R decreases until for equation (2.8.7) when & {Sn——1
this number passes from real to complex. In equation (2.8.10) we find a gradual
decrease of R until in case of k £ Sn = — 1 the value zero is reached.

The transition obtained by equation (2.8.10) is physically more acceptable
than that of equation (2.8.7). Especially the transition to a complex value of R
cannot be attributed to a physical phenomenon, but is solely a mathematical
consequence of the equations (2.6.11) and (2.8.6).

Here too, however, the final word rests with observation.
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2.11 The £-Sn diagram

In the three preceding sections we did give a more or less simplistic, but yet
a complete notion of the structure of the surface layer in view of the equations
(2.8.7) and (2.8.10). In the figures 2.11.1 and 2.11.2 these equations have been
worked out.

By choosing k { as abscis and Sn as ordinate a clear insight in the states
occuring in the surface layer may be given. The line Sn = 0 runs through the
middle of the figure and divides them into two fields viz. te stable field (Sn < 0)
and the unstable field (Sr > 0).

Furthermore lines of constant k { Sn have been drawn, lines in agreement
with a constant Ri, as long as (2.7.5) holds. Certain critical values of k & Sn
indicate in the stable field, where transition from turbulent to laminar flow will
be possible and where R is maximal, whereas in the unstable field a critical value
of k  Sn shows the transition from forced to free convection. By means of the
lines of constant k { Sn lines of constant R may easily be constructed. For the
field of free convection use has been made of the equations (2.9.10) and (2.9.12)
for the figures 2.11.1 and 2.11.2 respectively. It is also possible to draw lines
of constant U in these figures by means of the equations (2.8.8) and (2.8.11).
For the sake of surveyability this has been omitted and instead of them two
new figures have been composed, in which /n ¢ has been taken as abscis and U
as ordinate. From these figures 2.11.3 and 2.11.4 the form of the profiles
clearly stands out.

2.12 Experimental verification

There is a great need of observations, which are so complete that the theorics
can be tested. So far no observations have come to the knowledge of the author,
which are sufficiently complete for this purpose. The experimental confirma-
tions, which Le t ta u claims to have found for this theory, cannot in fact be
accepted as such, since the observations which he used could be made to fit
the theory because they were incomplete (see 2.8).In order to confirm a theory
it is necessary that a Il quantities are measured and that no unknown
quantities are inferred from the theory.

On the basis of the preceding considerations it is possible to formulate an
observational programme which is sufficiently complete. Starting from the
principle that Sn and the shape of the velocity and temperature profiles must
be measured independently and further that conditions of section 2.2 must be
fulfilled as fully as possible, it appears that the theory can be tested if the follow-
ing points are satisfied:

1. It is important to have the disposal of two very large fields with different z,,
the surfaces of which must be as uniform as possible in order to ensure a
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constant value of z,. Moreover these fields should change as little as possible
in the course of time so that the observations can be reproduced. The mini-
mum extent of the fields is determined by Re,. There are reasons to suppose
that Re, must be > 10° (see 2.13) for the profiles to be fully developed.
This value of Re, corresponds with a distance of 2-5 km. There are not
many places on earth where uniform areas of such extent are found, which
are indifferent to change in time. However, it is possible that the salt-deserts
in the U.S.A. satisfy these requirements.

2. The surface drag must be measured directly and in such a manner that the
surface is not disturbed, for an accurate determination of u,, is of fundamental
importance for testing the theory. No doubt considerable experimental diffi-
culties will be encountered, but in our opinion these should not be insurmount-
able.

3. Complete measurements of the heat- and water budgets are required for
independent determination of ¢,, a quantity which likewise is of fundamental
importance for testing the theory. The experimental difficulties associated with
these measurements have been largely overcome.

4. Finally it is necessary that measurements of wind velocity, temperature and
humidity are made at different heights, e.g. at 0.10, 0.20, 0.50, 1.00, 2.00, 5.00,
10.00 and 20.00 m. Here also the experimental difficulties have been largely
overcome.

2.13 Some remarks

2.13.1 The analysis presented above by no means claims to be a complete
description of the atmospheric surface layer, but it contains a first fundamental
step from which further progress can be made. There are many problems
bordering on the problem discussed, which are just as fundamental and which
may have even more practical value, once they have been solved. Some of these
problems are:

a. in which manner do the velocity- and temperature profiles change during
transition from one field to another with a different value of z,.

b. what is the influence of the surface roughness on the flux of heat.
c. what are the critical values of k& { Sn.

d. in which manner do the profiles vary as a function of the heat flux, other
factors being equal.

e. what is the structure of the atmosphere throughout the surface layer.

Although many authors have studied these and similar problems, no really
satisfactory results have been obtained so far.
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2.13.2 The roughness parameter

The roughness of the earth’s surface forms a problem in itself. In the above
the roughness parameter z, has not been further discussed. In fact the analysis
presented is only valid for land surfaces not covered by vegetation. As soon as
the surface is covered by vegetation the roughness parameter ceases to be the
sole determining surface parameter and a second parameter is required, which
might be called the zero point displacement. The surface of the earth will
now no longer coincide with the level where # = 0 from Eq. (2.4.6). The differ-
ence between both levels is generally denoted by d.

¢ =aieio must then be replaced by ¢ =ﬂ
Zy Zo
Another problem arising from the surface roughness is the dependence of z,
on the wind velocity. When the surface is covered by high vegetation the wind
velocity will exercise a considerable influence on the surface. The same applies
to a water level.

2.13.3 Rough and smooth surfaces

In deriving equation (2.4.6) the situation ciose to the surface has been
systematically blurred by introducing the roughness parameter z,. We have not
gone further into the matter because the earth’s surface is practically always
aerodynamically rough, which has been proved by Calder (1949).

For aerodynamically smooth surfaces, however, a slightly better dctailed
solution can be given for the velocity profile:

a
——-/n"*—+55
U,

Extensive observations on rough and smooth surfaces have been made by
Schlichting(1937) in which he arrived at the following criteria:

rough flow ﬁ*vi' > 2.5

transitional flow 2.5 > 2> 0.13

smooth flow u*’,za < 0.13

2.13.4 Re,

It is not easy to make out at what value of Re, the turbulent flow along the
surface has been fully developed. A first essential indeed is that the bound-
ary layer really extends over the bottom 25 m in the atmosphere.
Schlichting (1951) calculates the thickness of the boundary layer
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of a smooth level plate with parallel flow, starting from the equation:

2 2545 In (1 4 8.93 ”—*;—Z>

Uy

z+ z,

2o

Uy Z
when in doing so we replace(l + 8.93 %) by = { we nearly recover
equation (2.4.6).

This adaptation very probably is admissible. For z, / | cm the boundary

U, 2, .
layer, therefore, must extend to ¢ s 2500 or *v a~ 280. Then Schlich-
ting (1951 p. 399) finds:

Re, ~ 7.5. 108
It is, however, probable that in case of a rough surface the boundary layer
will be developed faster. So presumably the requirement that

Re, > 10°

if the turbulence in the surface layer must be fully developed, will be on the
safe side in most cases.

2.13.5 Convective forces owing to humidity differences

Because water vapour has a different density from air, convective forces may
arise too, owing to humidity differences in the air. As a rule these convective
forces are small with respect to the convective forces caused by temperature
differences in the air. An estimation of the two convective forces can be made
as follows: If g, is the density of dry air and g, the density of water vapour,
the density of moist air is
. 0 =01+ % (01— 02)
in which y is the mixing ratio. Now when an eddy has a humidity deviating with
respect to its surroundings e.g. y + ' this eddy will have a deviation in density:

o' =1 (ea—a)

Admittedly humidity differences and temperature differences, cannot be
fully compared. A point of contact, however, is obtained by observing the
enthalpy of the air. When 2 eddies have the same deviation in enthalpy with
respect to the surroundings, and one of the eddies has this deviation on account
of a deviation in humidity content, and the other eddy on account of a tempera-
ture deviation, the convective forces will be in the following proportion:

" (00— 0.) O
=)0 o5
—o0
So cases are certainly conceivable, in which convective forces owing to humidity
differences may not be neglected.
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CHAPTER 3

SOME CONSIDERATIONS ON THE TRANSFORMATION
OF AIR MASSES

3.1 Introduction

The influence of the earth’s surface on the atmosphere is mainly restricted
to the troposphere. Albrecht (1950) shows in a paper on the heat ba-
lance of the troposphere that the troposphere may be considered as a part
by itself of the atmosphere, which practically has no transfer of heat and water
vapour to the higher layers of air.

In the troposphere dynamic phenomena occur owing to the transfer of
energy at the earth’s surface. The course of these phenomena, as it appears,
can be understood for the greater part without taking into account the stearing
action emanating from the earth’s surface. It appears that various atmos-
pheric processes have such a great inertness and experience so slight a transfor-
mation that their dynamics for a long time are in agreement with those of an
energetically closed system. The dynamic meteorology has mainly occupied
itself up to the present with the investigation of the processes in this form.
However, it is clear that to obtain a good insight, the gradual transformation,
owing to contact with the earth’s surface, must also be taken into account. In
the dynamic meteorology a link is missing as it were. In the last few years there
has been a growing consciousness of this situation and there is a tendency to
more general investigations of the atmospheric problems. In this direction some
qualitative considerations have been given by Bleeker (1949, 1950). The
changes taking place in an air mass are of two kinds. In the first place by
direct contact with the earth’s surface and in the second place by physical
processes in the air. Excepting the radiation of the sun outside the troposphere,
all quantities, playing a part in transformation, stand in mutual interaction.
This renders the theoretic treatment exceedingly complicated, owing to which
we are more less compelled to simplify matters, so as not to get into a labyrinth.

These simplifications may be introduced by two methods. In the first place
we can start from mean states and by them design a stationary image of the
atmosphere. This has been done by Albrecht (1950) which has yielded
interesting results. Detail studies have been made by Wexler (1944) and
others. i

In the second place the problem may be approached from the non stationary
angle by starting from a simplified physical image. This always refers to detail
problems. The significance of this approach is that in this direction the missing
link of the dynamic meteorology must be formed to obtain a better insight
eventually into the complicated momentary state of the weather. Only few
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investigations have been made in these directions, especially by Bur ke and
Frost. In this chapter also attention is mainly directed to this aspect of
transformation. In chapter 2 it was emphasized that the transfer between
atmosphere and the surface of the earth is considerably more intensive in
unstable conditions than in stable ones. Because the periods of these conditions
are on the average nearly equal, a consequence of it is, that the earth’s surface
as a whole cedes more sensible and latent heat to, than it absorbs from the
atmosphere. By continuous radiation of especially the topmost layer of the
troposphere this heat again yields to space. The influence of evaporation in
this process is twofold, in the first place the water vapour content of the air
is increased by it and concequently the rate of radiation and in the second
place a great quantity of condensation heat is eventually liberated by it, when
condensation sets in, whereas the cloud formation, which then asserts itself,
again greatly influences radiation.

3.2 The heat- and water balance of the troposphere

To be able to observe more in detail the significance of the phenomena at
the earth’s surface with respect to the atmosphere, it is desirable to give a
formulation of the heat- and water balance of the troposphere.

In a rather general form we can draw up the following equations: firstly,
an equation of the sensible heat

4 0 0 9
g+ =[ %ua(;f ) va(;i ) 4 a(gf )—-(],'—-q.,'gdz 3.2.1)

4

in it /1 is the height where the stratosphere begins, g,” is the more absorbed than
liberated radiation energy per unit of volume, likewise ¢,’ is the liberated
condensation heat per unit of volume. This equation renders the water budget
of a vertical column of air with a section which is the unit of surface and which
extends from the earth’s surface to the stratosphere. Secondly, an analogous
equation may be made out for the latent heat g,:

h

g =/

o

9x oy O ,
L(”E} -+ V5y + 7,) + g, rdz (3.2.2)

By the side of above mentioned equations a third equation may be given
rendering the water balance.

dm "oom om om’ o
V| ( a;+"a—y+"a;'—'qL‘)": (3:2.3)

here m' is the quantity of water per unit of volume contained by the air.
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These equations should be considered in connection with the equations
(1.3.1) and (1.4.1).
For the sake of completeness the equations applying to the soil may be
added. Thus
Fo(co T
g = / _ﬂ) dz

o (3.2.4)

-d

for a land surface holds, in which ¢ is a level where temperature may be con-
sidered constant.
For a water level holds,

_/9 JLel) | ol D )\,
4= ox ay ot Ir

(3.2.5)

d
in which g,’ is in this case the difference between radiated and absorbed energy.
Whilst eventually another equation may be given for the water transfer
from the soil to a land surface:

dm, f (3 (um”) - o(vm") 6m’) =

a

o 2y N (3.2.6)
For a water level this equation has no practical value.

The influence which the transition from water to ice exercises, has not been
taken into account in the above mentioned six equations. In principle this can
be formulated in an analogous way. The whole, however, gets more complicated
and less surveyable so that it has been dropped.

It is obvious that working out the equations given above is not possible
analytically on account of their generality, whilst graphic elaboration is ex-
tremely cumbrous and requires an exceedingly large quantity of observation
material. As these equations, however, are of fundamental significance for the
physics of the troposphere it may yet be very useful to make a systematic
investigation into their elaboration.

In what follows we shall confine ourselves only to the direct transfer of heat
and mass from the earth’s surface to the atmosphere, whilst the processes in
the atmosphere which are rendered by the quantities ¢," and g," from equation
(3.2.1) are left out of consideration. Special attention will be paid to the
unstable condition, to the K-types therefore of chapter 1, because in them the
structure is much simpler than in stable conditions.

3.3 The coefficient of heat transfer and the coefficient of mass transfer

When the atmospheric surface layer is unstable, this layer at the same time
is a transition layer. By it we wish to express that this layer forms practically
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the whole resistance to heat and mass transfer. Above this layer the air has a
homogeneous character owing to the intensive mixing, i.e. along the entire
field where the mixing extends, practically a constant potential temperature and
a constant mixing ratio prevails. As the surface layer has a slight heat capacity
with respect to the layer above, it may be neglected and we shall only take
into account the heat resistance. In the field of heat transmission, see e.g.
Mc. Adams (1951) and others, this is a very usual procedure. Here it is
assumed that the heat flux from a surface to the medium bound to the surface
is proportional to the temperature difference between surface and medium.
In our case this assumption amounts to the following:

g = (6, —0,,) 3.3.1)
Here the proportional constant o is the so-called coefficient of heat transfer,
In order to investigate how far o is really constant, we must eliminate 0o — 0,
and g, from (3.3.1) by means of the equations which can be determined by
means of section 2.7:

0
Ga=—1isCp0 - * (3.3.2)
LS

Ooo — 0, =0, f(Sn) (3.3.3)
Because (Jo has a final value only in case of unstable condition, we had rather

start from the equations for free convection in determining f/ (Sn). Here, by
taking { = oo, f(Sn) according to equation (2.9.11), is:

1
S (Sn) = _l}]" Sn+ 1 (3.3.4)

It is also possible to determine f(Sn) by means of equation (2.9.13), but we
have omitted this for the sake of surveyability and because we have slightly
more confidence in equation (2.9.11) than in equation (2.9.13). By substituting
equations (3.3.3) and (3.3.2) into (3.3.1) we now get as a result a general

formulation:
_ Uy GO

a9 = m (335)

or by substituting (3.3.4) and (3.3.2) to (3.3.1):
o ="*1—C”" (3.3.6)

1 —% In Sn

This shows that o is not constant, as Su as well as v, in case of a uniform
mainflow and z,, are dependent on ¢,. Now this dependence will be of slight
significance for a small Sn and a strong main flow. This will especially be the
case when the logarithmic profile extends for about the entire surface layer.
Above the surface layer the similarity between temperature and velocity profile
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1
disappears. This is a consequence of the fact, that the term — 5a—iz from

(2.3.24) can no longer be neglected. A consequence of this is, that the potential
temperature approaches a final value, whereas the velocity continues increasing
over a large field. (The influence of the Coriolis force and the direction
change of the wind has in this case been left out of consideration; the conse-
quence of this simplification is not essential for the argument given here).
That the potential temperature is practically constant with the height above
the surface layer, as soon as the atmosphere is unstable, is a fact of experience
given by many observations (see Johnson and Heywood (1938)). Now
the question is what value will f(Sr) assume as a limit in case of a very slight
unstable condition (so in case of very small positive values of Sn(Sn < 5.1074),
when the roughness of the earth’s surface is given.
It appears to us that a reasonable estimation of it is obtained by taking:

S(Sn) = ;tln Co (3.3.7)

z
in which ¢, = ? . in it z, corresponds with the height of the surface layer.

o
In this way a constant value of f(Sn) has been obtained. Furthermore for such
small values of Sn, u, may also be considered as independent of g,, so that
under these circumstances o is indeed a constant, which is proportional to
u, and therefore to the wind velocity. Now when u, is the velocity on level z,
we may write without committing too great an error:

a=mmﬂg
(In Cp)?

From this it appears that « is dependent not only on the velocity u, but also
on the roughness, as might be expected. An important part is played by e in
the calculations in the following sections.

In a way analogous to the one in which the coefficient of heat transfer has
been defined, a coefficient of mass transfer may be introduced. The equation
for the mass transfer may be written in a form analogous to (2.5.5):

(3.3.8)

dr__ 4

P 3.3.9)
. . — e
S —_—= =13
When in doing so we call ok i (3.3.10)
we can write for (3.3.9) analogous to (2.7.1):
1y 1
Dullts _ (3.3.11)

d¢ R
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Furthermore we can give for the mass transfer an cquation analogous to
cquation (3.3.1):
e

7 = #(te— 2o0) (.3.12)

where x is the coefficient of mass transfer.
By combining the equations (3.3.11) with (3.3.12), equations analogous Lo
(3.3.5), (3.3.6) and (3.3.8) respectively may be drawn up:

_ Oply
% =7(Sn) (3.3.13)
” =—ﬁ’l—"*—— (3.3.14)
1— % InSn
0p Up K?
% = TYAL (3.3.15)

3.4 Temperature transformation and moisture transformation

An air mass is principally characterized by its temperature and moisture
content. The transformation of an air mass amounts to the transformation of
its temperature and moisture. In general temperature and moisture transfor-
mation can only be treated in their interaction, which, on the whole, is a
particularly complicated problem. In the first instance the temperature diffi-
rence between the air and the earth’s surface determines the velocity of the
processes (heat transfer as well as evaporation and with them temperature and
moisture change of the air). However because heat is withdrawn from the
earth’s surface by evaporation, the enthalpy of the soil changes and then again
the temperature difference between air and earth’s surface is influenced. Owing
to this the moisture content of the air therefore exerts an indirect influence on
the velocity of the processes. Moreover, there is still another way in which the
moisture content of the air causes an indirect effect, viz. as soon as conden-
sation in the air sets in. This changes the structure of the atmosphere in such
a way, that this too influences the velocity of the processes. Now in the special
case, that the enthalpy of the soil is so great that the transfer of heat to the air
does not effect the surface temperature in first approximation and that moreover,
no condensation in the air sets in, the temperature transformation and the
moisture transformation may be treated independently of each other. This has
been done in 3.5. Under certain circumstances there appears to exist a complete
similarity between temperature and moisture content, which considerably
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simplifies the calculation. This can only be so when the surface temperature
is a constant in time as well as in place.

As soon, however, as differences or changes occur in the surface temperature,
similarity is only possible in approximation, viz. as long as the mixing ratio
at the surface is a linear function of the temperature:

%(z=0)=a|T(z=0)—a) (3.4.1)

By looking for a suitable adaptation of the constants a; and a, in the
temperature stretch in observation, equation (3.4.1) over a stretch of ca 10°C
is serviceable with a maximum error in y of ca 5 9.

As we have continually to deal with differences of temperature and moisture
content the constant a, may be eliminated:

Ax=aANTra N0 (3.4.2)

According to the equation of Clapeyron (see Holmboe, Forsyte,
G ustin (1945)) the constant ay, is

0.622 L 0, %
——p T

in which g, is the maximum mixing ratio at the temperature 7,, for which
latter quantity must be taken somewhere about the mean temperature of the
stretch in observation.

When condensation in the air mass sets in a drastic change in the structure
of the atmosphere takes place, owing to which the transformation calculation
becomes very difficult.

@ (3.4.3)

3.5 Transformation of the cold air mass above the sea

3.5.1 Transformation of the cold air mass with a constant temperature of the
sea level

We have now progressed so far that an attempt may be made to calculate
the change of temperature and the mixing ratio of an air mass which flows
over a warmer sea level. The sea has been especially chosen for it because sea
water has such a great heat capacity compared with air, that the temperature
of the sea level may in first approximation be considered constant with time.
A second advantage of the sea is that we have a homogeneous surface.

The problem of the temperature change is determined by the equations
(1.3.3), (3.2.1) and (3.3.1), which are supplemented by boundary conditions viz.
the original condition of the layers of the air mass and the surface temperature
distribution of the sea. Simple, but yet acceptable boundary conditions are:

a. the original air mass has a constant lapse rate.
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b. the state of the air mass on arrival at x = 0 (i.e. the coastline) is constant
with time.
c. the surface temperature of the sea is the same for every x.

The solution of the problem can be made exceedingly simple by further
assuming that:
Ist. the mean wind direction is constant with the height in the x-direction.
2nd ¢, = ¢q.” = g, = 0 up to that height 4, in which the influence of ¢, is felt.

By the assumption that the temperature of the sea water is constant with
time, equation (1.3.3) may be left out of consideration and there remains (by
combining (3.2.1) with (3.3.1)):

h
@ (0,—boo) = [ {u a(c”a(;o‘”) G ‘;to‘”)gdz (3.5.1)

o

2(c0 )

o may be neglected, whilst the following

of this equation the term

simplification is finally made:
00
0 (0,— 00) = ¢, puh—— (3.5.2)
ox
The height /# up to which the air rises is dependent on the original lapse rate
of the air mass. If we call the difference between this lapse rate and the adiabatic
lapse tate , (y therefore is the lapse rate of the potential temperature), we can

write down the following equation for A:
oo (%) = 0o (0) = y 11 (x) (3.5.3)
By substituting this into (3.5.2) and by eliminating « by means of equation
(3.3.8), we get:
k*y  optp

8000
ny gu lo—lo0) = (oo —loo )5 (3.5.4)

We now further assume that
QU = 0plUp (3.5.5)

which means that mass flow is constant with height. This assumption probably
gives a better approximation than the assumption, that velocity is constant
with height. According to (3.5.5) velocity therefore must vary with height
inversely proportional with the density. This gives a velocity profile of the
following shape (see Holm b oe and others 1945):

z

(c,—¢y) 0o % 1 —(1 —

U = u, (3.5.6)

z )Cp/cn— CV)

)

¢ Voo
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By means of assumption (3.5.5) equation (3.5.4) can be casily integrated. If in
doing so we introduce the following quantities:

Oc0 — 00 (0) 14 k \?
e ™ imolng) 65

As a result we then find:
h(l—9H +9+&=0 (3.5.8)

In figure 3.5.1 the course of equation (3.5.8) has been represented.

lﬂ
/ ’ f //
4 /1A
/| L/
i JLIAL ] <N
A T
' e
12 ,/ // //
o b/ lyc;"
-, ¥ A
{ // / |t
L~ =L —
[o):] l/ / /)
LT
g2 14/ Forym O Eq:3.5.3.__
//% For y# O Eq: 3528
04
oall
(o) Q2 o4 Q6 o8 10 12 iA 16 18 20 22 24

Fig. 3.5.1

The change of the moisture content (i.e. mixing ratio) is detcrmined by (3.5.8)
and an equation analogous to (3.5.2):

L Oxgy oh

# (o —Yoo) = 0uh—5- =+ 0 (oo — 1 (0) 5 (3:5.9)
in which the last term indicates the discontinuity in mixing ratio between
the original air and the air already warmed up. An analogous term is missing
in (3.5.2), because the air rises until the original potential temperature is equal
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to that of the warmed up air, a circumstance by which height / is determined,
see equation (3.5.3). For the latter equation we can also write:

(8o — 600 (0)) 9

(3.5.10)
4

if we now further introduce =————_" = 7, a quantity analogous to ¥, we
Jo— Xoo (0)

can write for (3.5.9) by means of (3.5.10), if we assume that y, (0) is constant

with height:
dd

7
This equation together with (3.5.8) determines the humidity transformation.
By eliminating & we get:
d 1— 9 —
Zz_fg_%"ﬂ(l—':)) (3.5.12)
with the boundary condition
n =0 when ¥ =0 (3.5.13)

1—77—0 (3.5.11)

Bij application of a development in a series: # —a, | a; U  a, 0* + .. ..
(3.5.12) can be solved:

1—49
n=—p In(1-9)+1 (3.5.14)

By means of (3.5.8) therefore the relation between i and & has been fixed,
which can rendered by way of a diagram in a simple manner. Generally speaking
21 (0) will not be constant with height. The problem may be extended rather
easily by taking instead of y,(0) is constant:

1 (0) = 200 (0) + 0 A (3.5.15)
We then find instead of equation (3.5.12):
dn e/

in which
00— 00 (0)
Y (o— %00 (0)) (3.5.17)

This equation may be solved in a way analogous to (3.5.12). This with
boundary condition (3.5.13):

n =(l—b) -':1;1) In(l—9) + 1% + by (3.5.18)
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] | | This equation has been rendered in Fig.
2 Ea: 3.5.2 for some values of b.

q: 3.5.18 o
| In the special case that b =1 we get
1 = ¥, that means that then, there is a
complete analogy between temperature

J_ / /// transformation and humidity transfor-
L / / mation. In this case therefore y;, (0)
[ ,V must comply with the relation (which
o6 s follows from (3.5.15) and (3.5.17)):
TAVAP: é Yo— %00 (0)
ks — o~ ACO -
04 /‘J Xh (O) = Xco (0) i 90_ 000 (0) Y h
1/ // v (3.5.19)
0.2 .
1TV /7/ The calculation of the temperature
/4 = and humidity change above the sea
od o R becomes very simple when the original
-9 condition of the air is already adiabatic
Fig. 3.5.2 to a height /i, whilst a distinct inversion

is found at this height. We may then
assume that /1 is all but constant, in doing which equation (3.5.2) can be at
once integrated by means of the assumption (3.5.5). Taking into account
cquation (3.3.8) this gives:

Do — 0, — (oo O)— O exp— >~ K21
oo — VYo (oo()— o)exp(_'h(lné-l")zs

With an adiabatic atmosphere the mixing ratio will generally be constant
with height, so that we also have:

(3.5.20)

Yoo — Xo = (oo (0) — xo) exp — Z ) (3.5.21)
A h (InCp)

3.5.2 Transformation of the cold air mass with a sea level temperature which
increases linearly with x

In this problem only the boundary condition ¢ from 3.5.1 is slightly altered,
viz, the temperature of the sea level is:

0, =0,0) + f.x (3.5.22)

By substituting this boundary condition into (3.5.2) and by moreover
eliminating / with (3.5.3) we get the equation:

cou

0o(0)— o + f.x = =

EY/
(Yoo — oo () 5 > (3.5.23)
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Now by introducing by the sidc of ¥ and & (sce equation (3.5.7)):

S {In Ep\?
l/) T y< k (3.5.24)
we get (sce equation (3.3.8)):
dd & |
E" D + i 1 (3.5.25)

The boundary condition in it is d =0 if £ = 0 and o is a parameter. This
equation may be solved by means of the following substitution:

1
& =X—; and ¥ =XY (3.5.26)
This gives:
e o YdY c
n —. —‘I’— Y —71° +

When f > 0, so when the surface temperature increases by an increasing x,
then we have p > 0 therefore also v + } > 0. The solution may then be
worked out to:

! Y434+ w

X =—3h(—Y:—Y — I/ C
S R T T ey R
(3.5.27)
Substituting the boundary condition, gives for C:
1 14y 1
C=—1%thyp-+ 1)( Ay

21+ 4yt (1 dy)i—1
By transforming back and slightly remodelling (3.5.27) we get as a solution:
i+ 1P—0Ep+ D—9 9l +

L 2yl
(I+4pt " 206p+ 1)—9)1 + 49t + 1

0 (3.5.28)

In Fig. 3.5.1 some curves for p — constant are drawn.
When p — 0, equation (3.5.25) may be directly integrated to the already
well-known result:
h(l—9) +9+&=0 (3.5.8)

This equation may easily be derived from (3.5.28) if we first divide by .
Ashas been stated in 3.4 the change of humidity content can only be given in

first approximation when the surface temperature increases linearly with x,

because y, does not increase linearly with temperature. We now make use of the



60 3.5.2

approximation formula (3.4.2). This combined with (3.5.22) therefore becomes
the boundary condition for the moisture content.

Xo— %o (0) = a, fx (3.5.29)

in it @, may be considered slightly dependent on the stretch in observation.
Substituting (3.5.29) into (3.5.9) and then eliminating # by means of (3.5.10)
and g, (0) by means of (3.5.15) yields:
D Zg + (n—bd) %Z— pE&+n—1=0 (3.5.30)
in which
@0 O — 0o O) 4
(% (0) — 100 ) 2y

In the special case that b = 1, # = » is valid again and so we recover
cquation (3.5.25).

In case we have b == | then the equation (3.5.30) and (3.5.28) together with
the boundary condition ¥ = % = 0 if £ = 0, states the problem. This system
is difficult to solve.

3.5.3 Comparison with the calculations by Burkec and Frost

B urkc (1945) as well as Fr ost(1949) made a calculation for the trans-
formation of air above a reclatively warm sca level with the same boundary
conditions as those given in 3.5.1 and 3.5.2.

B urk e starts from practically the same shape of the atmosphere as is given
in the beginning of 3.3, in which he makes usc of Rossby and Mont-
gomery’s(1936) equation:

T =0 Q" up? (3.5.31)

where ¢? = 2.6, 1073, if u, is measured at about {5 m. In doing so he comes
to the following coefficient of heat transfer:

o% = Cp 0 Up P* (3.5.32)
if we compare this with (3.3.8) then we must write:
k
P = Inz_b (3.5.33)

Thus the above value of ¢ corresponds with a z, lying between 0.7 and
0,8 cm, which is a plausible value for moderate winds. For the rest Burke’s
calculation reads slightly different from ours because he makes somewhat
different assumptions, which give a less simple solution.

Frost starts from quite another shape of the atmosphere. He does not
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make use of a coefficient of heat transfer, but starts from the conjugate power
law:

u z m
— = (—) and K —=mz!'=""z,>"u, z;™ (3.5.34)
U z

in which he takes for z, =1 cm and m =1/,.

It is self-evident that the subsequent calculation is more complicated than
those given in 3.5.1 and 3.5.2. Two serious drawbacks adhere to Frost’s
method, viz. the similarity between the velocity profile and the temperature
profile is extended over too large a field and the original lapse rate of the air
is not taken into account. A consequence is, that this method cannot be used
for distances larger than 550 km. Furthermore F r o s t extends his calculation
by starting from a temperature which increases linearly with x, instead of
starting from a constant surface temperature. So its solution must be com-
pared with equation (3.5.28).

By means of Burke’s observations, which Frost also used for his
calculations, it is possible to compare the various results with each other.
These observations are summarized in Tables 1II and IV. In working out the
equations (3.5.8) and (3.5.28) the quantity ¢? = (k/In {,)? could reasonably be
fitted to observation. A reasonable fit was obtained by taking ¢? = 2. 1073,
This value is smaller than the value which B ur k e takes for it (see equation
(3.5.33)) which is a consequence of the fact that B ur k e refers the measured
wind velocity to the geostropical wind velocity, whereas here equation (3.5.6)
has been made use of. It is also of importance to draw attention to the mean
sea level temperature, from which B ur k e starts viz:

CICEEC 0539
which temperature is used for distances smaller than 650 km. For distances
larger than 650 km B ur k e uses the ultimate temperature as the mean sea
level temperature. Thanks to the fact, that the boundary temperatures of the
sea level are given in Table III, we can here compare equation (3.5.28) and
Frost’s method with equation (3.5.8) and B ur k e ’s method. In order to
avoid making the table too large, only the deviations with respect to the
observed temperature change of the various methods are compared with each
other.

In Table IV only the mean sea level temperature according to Burke is
given, so that only equation (3.5.8) can be applied here.

The following conclusions may now be drawn from the tables:

1. By means of equation (3.5.8) and the mean sea level temperature better
results are obtained than with equation (3.5.28) and a constant gradient of
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TABLE 11
Length Average At\ét:;age
of over lapse rate radi erlft' of e Observed
Nr | water | of potential gsea st 0@ -000)| 05-000(0) |0s(x)-0c0(@)]  temp.
trajectory temp. ’ change
x. 1075 10 fempy
: V- f.108
1 3.55 0.53 0.70 7.0 8.0 3.0
2 3.70 1.00 2.16 16.5 22.5 14.0
3 4.20 0.64 1.67 9.5 14.5 8.5
4 4.30 0.69 1.63 8.5 13.5 7.5
5 4.40 0.71 0.68 13.0 15.0 7.5
6 4.90 0.73 2.04 15.0 22.5 11.5
7 5.00 0.87 0.60 15.5 17.5 10.5
8 5.00 0.75 1.80 18.0 25.0 14.0
9 5.20 0.72 1.25 14.0 19.0 12.0
10 5.50 0.70 1.27 14.0 19.0 1L.5
11 5.55 0.86 2.25 16.5 26.0 19.0
12 5.55 0.94 1.44 13.5 19.5 13.5
13 5.60 0.50 0.18 7.0 8.0 7.0
14 5.60 1.18 1.96 17.0 25.0 18.0
15 5.90 0.74 1.36 12.0 18.0 12.0
16 6.20 1.05 1.77 15.0 23.0 16.0
17 6.30 0.90 0.71 17.0 20.5 14.5
18 6.80 0.64 1.69 11.0 19.5 22.5 15.0
19 7.80 1.42 1.60 16.5 26.0 29.0 21.0
20 7.80 0.67 1.80 11.5 22.0 26.0 18.5
21 7.80 0.88 1.54 13.5 2215 25.5 17.5
22 8.00 0.77 1.43 14.0 22.5 25.5 17.5
23 8.00 0.91 1.43 13.5 22.0 25.0 17.0
24 9.00 0.60 .55 18.0 16.5 22.0 13.5
25 9.60 1.10 1.15 15.0 23.0 26.0 21.0
26 11.10 1.18 1.22 16.0 26.0 29.5 24.0
27 12.20 1.29 0.98 17.0 26.0 29.0 24.0
28 12.40 0.68 1.01 10.0 19.5 22.5 16.5

the sea level temperature. This indicates that the assumption of a constant
surface temperature gives a better approximation than that of a constant
temperature gradient.
2. With Frost’s methods slightly better results are obtained than with
Burke’s method and equation (3.5.8), which is a consequence of the better
fit Frost can make owing to the smaller field which he observes.
3. For distances larger than 650 km it is better to work with the ultimate
temperature 0, (x) than with 0,.
4. With equation (3.5.8) practically the same results are obtained as with
Burke’s method. From this it appears that by means of the method devel-
oped in this chapter it is not so much an improvement which is obtained as
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- e Deviation
deviation Deviation Deviation Deviation | Deviation from Frost’s
from from Eq. from Eq. from Burke’s from Burke's method;
:quation (3.5.8) based (3.5.8) based method based | method based constant
(3.5.28) on 0, on 0, (x) on 0, on 0 (x) gradient of
sea level temp.
2.5 2.5 2.0 1.5
-1.0 -0.5 - 1.0 - 1.5
-0.5 0.5 0.0 -0.5
1.5 1.5 [.5 0.5
2.0 2.0 2.0 1.0
1.5 2.0 1.0 1.5
1.5 1.5 0.5 -0.5
0.5 1.0 0.0 0.0
0.0 0.0 0.0 - 1.5
0.5 1.0 1.0 -0.5
-3.5 0.0 -25
-0.5 0.5 -0.5
-1.0 - 1.0 - 1.0
-1.0 0.0 0.0
0.0 0.5 0.0
0.0 0.5 0.5
0.0 0.0 0.0
-3.0 -2.0 -0.5 -2.0 - 0.5
-2.5 0.0 1.5 0.5 1.5
-4.0 - 3.0 0.0 - 3.0 -2.0
-1.5 -1.0 - 0.5 - 1.0 0.5
-2.0 - 1.5 - 0.5 - 1.5 0.0
-1.0 -0.5 1.0 - 1.0 0.5
-1.0 - 1.0 1.5 - 1.5 2.0
-3.0 -2.0 - 0.5 -2.0 0.0
-3.5 -2.0 0.0 - 2.5 - 1.0
-2.5 - 1.5 0.5 - 1.5 1.5
-2.0 -0.5 1.0 -0.5 1.0

considerable simplification. This is clearly illustrated by the fact, that the line
9 = 0 from Fig. 3.5.1 is equivalent to the 6 figures given by Bur k e at the
end of his paper. Another advantage is that the method given here is entirely
analytic, whereas B ur k e has to make use of graphic integration to arrive

at a solution.

Remarks

1. The observations 23, 24, 25, 32, 47, 52, 53 and 54 from the table IV have
not been stated quite correctly by Burke, so that they cannot be safely

compared. The observation 60 has been incorrectly worked out by Frost.

2. It is conceivable that the method of calculation may be improved by also
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TABLE IV
Average
Length lapse n Deviation| Deviation| Deviation
Nr wca)lt;eorvg' ra_ rate of 0"_0;0 © o?:;r;ed from from from
=Tory potential 00(x)-0c0(0)| chan g'e equation | Burke’s | Frost’s
Y. 10 temp. | ° &3] (3.5.8) | method | method
. y. 10
I 9.25 0.80 21 17 -1 -1
2 14.80 0.60 31 23 0 0
3 18.50 0.53 22 17 2 I
4 10.20 0.20 1l 4 3 4
5 18.50 0.80 20 16 3 2
6 10.20 0.40 8 6 1 0
7 10.20 0.87 24 18 0 1
8 9.25 1.27 27 23 -1 0
9 12.90 0.47 23 1 -3 -1
10 12.90 0.67 22 20 -3 -2
1 10.20 1.00 26 22 -1 -1
12 7.90 0.73 14 12 -1 -1
13 12.50 0.87 16 14 0 0
14 6.50 1.13 17 12 2 ]
15 7.40 0.73 17 12 1 1
16 12.90 0.47 24 20 -3 -2
17 8.00 0.75 9 8 0 0
18 9.25 0.47 5 5 0 0
19 9.25 127 18 18 -2 -2
20 9.25 0.87 12 11 0 0
21 11.10 0.80 11 11 -1 -1
22 9.25 0.60 23 13 3 3
23 9.25 0.40 29 17 -1 -4
24 7.40 0.60 16 15 -3 ~-4
25 7.40 0.67 18 17 -4 -4
26 11.10 0.93 27 20 1 1
27 8.70 0.27 14 7 1 2
28 9.25 0.60 20 16 -2 -2
29 10.20 0.93 5 7 -2 -2
30 8.30 0.40 15 8 2 2
31 25.90 1.13 32 28 2 2
32 20.40 0.67 24 23 -2 -1
33 8.30 0.67 5 4 1 1
34 15.70 0.93 15 14 0 0
35 10.20 0.60 13 8 3 3
36 12.90 0.74 12 9 2 2
37 8.30 0.67 5 4 1 1
38 7.40 0.67 5 3 2 2
39 8.30 0.53 2 1 1 1
40 11.10 0.47 3 2 i 1
41 8.30 0.80 7 5 2 2
42 12.90 0.53 12 11 -1 -1
43 12.90 0.93 13 10 2 2
44 18.50 0.53 16 13 1 1
45 12.00 0.53 18 12 2 2
46 11.10 0.33 19 il 1 I
47 4.25 0.87 4 1 3 3 1.0




3.5.3 65
TABLE Iv (continued)
Average
Length - L b= A s
of over rl;tgsgf 04-000(0) | Observed D?X;zmon D (}::)ar;lon D t}\rl:)a;:llon
Nr »\}gggrt;a- potential 0 (x)—cé;o ©) c‘;g:}%é equation | Burke’s | Frost’s
x. 107 ten}[(:;.n g (3.5.8) | method | method
Y.
48 11.60 0.87 13 10 2 2
49 20.70 0.53 19 17 -1 0
50 3.30 0.53 14 8 0 0 -1.0
51 13.35 0.60 8 5 1 -1
52 11.20 0.80 24 17 2 2
53 15.35 0.27 15 15 -4 -4
54 11.75 0.33 26 18 -3 0
55 9.65 0.93 37 29 -4 -3
56 10.90 0.93 17 15 0 0
57 15.05 1.20 34 27 2 2
58 16.40 0.80 31 27 -1 -1
59 8.30 0.73 28 24 -5 -5
60 2.40 0.27 6 4 -1 0 -0.5
61 6.80 0.47 19 10 1 2
62 8.30 0.80 24 18 -1 -1
63 16.40 0.47 16 10 3 4
64 5.05 0.47 6 4 1 1 -1.0
65 8.20 0.50 22 17 -3 -1
66 3.20 0.47 3 3 0 0 -1.5
67 15.30 0.67 18 14 1 1
68 4.00 0.60 5 4 0 0 -1.5

taking into account the mean wind velocity, because z, is dependent on it.

3. The reasonable agreement of equation (3.5.8) with the observations enables
us to state the value of the coefficient of heat transfer «. Because we have
accepted @2 = 2. 1073, we can write for equation (3.5.32):

a2,

15 Uy

in which u, in m/sec must be taken. In Table V some values of « in case of
various values of u, have been given for orientation.

3.6 Transformation of the cold air mass above land

The transformation of the cold air mass above land
is far more difficult to calculate than that above the
sea. This is due to the fact that the surface tempe-
rature can no longer be considered as constant with
time. Now equation (2.3.3) begins to play a part and
together with it also (3.2.4). As a rule the capricious-

TABLE V

up (m/sec) | alk cal/m*h°C)

N —
cCownN—

b =
W 00 W —
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ness of the land surface will render it impossible to make a calculation yet it
seems sensible to us to give a calculation, which indeed is based on a consi-
derable simplification, but which under a few special circumstances may cer-
tainly be fitted in and by means of which useful data could be derived from
the earth’s surface (e.g. « and x). As to the temperature transformation we
take for granted that the following conditions have been fulfilled:

a. at the time that £ = O the air as well as the soil have the same potential
temperature for all x > 0 and all z << 4: 0(t = 0) = T (¢ = 0), whilst the
air for x < 0 has the temperature 0 (0).

b. the atmosphere is adiabatic to a height #, at which height an inversion is

found (the same condition as the one underlying equation (3.5.23)).

the earth’s surface has a constant roughness.

. the soil has a constant composition i.e. 4; and (cp), are constant.

4, =g, =g, = 0, so that (1.3.3) becomes g, = ¢,.

the pressure at the surface is 1000 mb, which makes

Tz=0=0(z=0)

Furthermore it is supposed that the equations (3.3.8) and (3.5.5) are valid.
Now the equations constituting the problem are:

- e a0

a0 a0
o =0(0s—0,) =cLopttp h p + e oph o (3.6.1)
in which 0, = T'(z =0)
for the surface: qs = 4, (3.6.2)
d for the soil: g 3.6.3
and for the soil: ar % on (3.6.3)
. T or
with boundary condition: % (z=0)=—gq;, (3.6.4)

Then we also have the boundary conditions and the initial conditions which
are given under a:

for the air: Ooo (x =0; 1) = 00 (0) (3.6.5)

for the soil: T(x;z; = ;) =T, (3.6.6)
)

and T(x;—oo0; ) =T, 3.6.7)

X .
We now introduce a new time variable: ¢ = t—; which has been chosen
b

thus, that the front passes at t' = 0 at every place x. The equations (3.6.2),
(3.6.3), (3.6.4), (3.6.5) and (3.6.7) now also hold with ¢’ instead of ¢, because
in the entire T — problem x occurs only as a parameter. Because we move
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along with the air, owing to which # =constant, equation (3.6.1) now becomes:
00 (x, 1"

o (3.6.8)

- 12000 (x,t)—T(x,0, r’)} = C, 0p Up I

and equation (3.6.6) becomes:
T(x,2,00=T, (3.6.9)

By means of the equations (3.6.2), (3.6.3), (3.6.4), (3.6.5), (3.6.7), (3.6.8) and
(3.6.9) the problem has now been entirely stated.
Before proceeding to solve it, we make the equations dimensionless by the
substitutions:
AR Cpoptph _—l,
2a’ ¥ =6 ;2= o &
oo = To + 91(0c0 (00 —T,) and T =T, + 9, (0o (0) —T,)

We then get after elimination of ¢, and q,:

=

for (3.6.3): 00, 80
P (3.6.10)
for (3.6.4) and (3.6.8):
095 (£,,0,7) 0Ly (6y,7) ((3.6.1D
or, o5 @00 —hEGnD a6y
for (3.6.5), (3.6.7) and (3.6.9) respectively:
% 0,7) =1 (3.6.13)
Py (&1, 00,7) =0 (3.6.14)
Py (£, £,0) =0 (3.6.15)
We then apply a L a place transformation 7 — s, in which
Lt & 6 D = 01 G 9)
and _
L19s (61, 0k =82 (61 9)
Thus we obtain:
— o
sy = 9z (because 9, (&, £1,0) = 0) (3.6.16)
09, (£1,0,5)  99y(&1,5) | — — ' ((3.6.17
e UL I NI R Papte
9,0, 5) = 1; (3.6.19)

By (&1, 00, 5) =0 (3.6.20)
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This system can be solved. The solution of (3.6.16) which fulfills (3.6.20) is:

By = A exp (— cn/E)
—AVi=g!
1 09,

Vs O

equation (3.6.17) gives:

so for &; = 0 we get 9,(4,0,5) = —
This, substituted in (3.6.18) gives:

( \}3) o, 4+ 9, =0 (3.6.21)

The solution of this, complying with (3.6.19) is:
5 Vs )
1+4/s

Now we must transform back this function. This is only possible by developing

(&, 5) = exp( (3.6.22)

d; in a series and then transforming back term after term:

= ])n E F (,\/ )11—2
9, (El,s)— E Z o VLT (3.6.23)
Now -2 . _ gt
CAT el i e : (3.6.24)

(C+Vsy s+ +Y s+ H—1
We first try to find the back transformation of
=it 1
+d s—1
In the tables by D oe tsch (1947) we find:

. % n—2
L g(_ié?:_)?})" g =e YL, (1) for n>1

in wich L,_; are the polynomes of Laguerre

= 1
Furthermore L ; % =e¥

s—1

We now get a convolution:

= (S— :}-)"_-l 1 ks -
L lg s+ s— %—; =ei' X le VL, ()] =

= [edte— e=iuL, \(u)du (3.6.25)

o
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Moreover we find in the transformation rules that if

L7 r@i=r(  then
—1 4 o v
V9] .[ i
and _ﬂ_lzf(s -+ 5) = e f(1)

Consequently
—1 1y o vz_ ;
LS Vs+ D= / -\/n ( Y 2v)f(v)(lv
By applying this to the right-hand side of (3.6.24) we find, thanks to (3.6.25):

an—2 2 i
(Vs " <_;_t ) [0 e L ()

—1 I v
L §1 + \/E)"g ;,/ AVETE /s
In it we have written 7 instead of #, in agreement with the original transfor-
mation

.exp (_ ::) fdv

2

;@ .
=m;/ PP\ 4 dv [ e Ly () du =

1 Fd
CEY | _gexl)(_:r>;(lv [ Lot (W du =

dv

by integrating partially we find:

9

1 ® 2

v
~Gor] o (— a7 ) Ly dv

\ 4
substitution w =—- + ields:
2’\/‘[ ‘\/‘L’ y

2 P ) =,
= [ exp (—w2) Ly 24/7 (v —/7) dw

VT
So now we get for the transformed series of (3.6.23):
(— 1y T

9161y =1+ Z 51"'\/ /CYP(_ we )L,,_.,2\, T(W_'\/r)“i”
pe=l vz
(3.6.26)

I
as the back transformed of — l.

This series represents the course of the temperature of the invading cold air
as a function of time and place. The first terms of the series appear as follows
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(The Laguerre polynomes are rational functions, so we can connect the
integrals with the error integral):

= — )
011 =1—4§€ erfc\/r + %%(21' + 1)e* erfL‘\/r— (g)

_§§(2r+5r+ 1)ererfc\/¥—(r+2)(4—r>§§+ (3.6.27)

1

This series converges swiftly and is especially serviceable for calculations in
the first period after an invasion of cold. Equation (3.6.27) is expressed in
Fig. 3.6.1 and 3.6.2. Now in Fig. 3.6.1, the retarded time ¢’ has again been
reduced to ¢ for the following example.
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Fig. 3.6.2
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Example: Suppose 2 = 0.3 kcal/m h °C; o = 10 kcal/m* h "C
a = 0.001 m2/h then 0.9 ¢ =¢'
so if T = I then ¢’ = 54 minutes
If we further suppose: ¢, g = 0.3 kcal/m?® °C; /& = 1000 m
u, = 36000 m/h
then 1.08.10% &, = x
so if & = 1 then x = 1080 km.

x
Now t' = t——u—so when the front has arrived at £, = 1, then 7, = 33.3
b
on the place § =0
The course of the temperature as a function of the place at one and the
same moment is represented by:
T = 33.3 (510 ] 51)

These curves have been drawn for &, = | and &, = 2 in Fig. 3.6.1.

The transformation of the moisture content under the conditions given by
us in the beginning of this section is not interesting because we have assumed
that g, = 0 and consequently no change of the moisture content sets in.

As soon as g, 7= 0, the whole preceding calculation is modified because we
must then use instead of equation (3.6.2):

s = 4a + 4. (3'628)
When equation (3.4.2) may be applied the fraction q./q, =/ is practically
constant and the preceding calculation holds, if we define the dimensionless
time and depth as follows:

(1 +a , a(l +))z

T = i t and £ = -y
Now there is a complete analogy between temperature change and humidity
change. When the mixing ratio is constant with height, which is quite plausible

for an adiabatic atmosphere, we may then write:

(3.6.29)

_ R 0,
Ao Aol |y mitco 9, (3.6.30)

Zoo O — %0 b0 @—0,
and therefore also use (3.6.27) for the calculation of the moisturc transformation.

3.7 Transformation of the warm air mass

The transformation of the warm air mass is much harder to calculate than
of the cold air mass. The stable atmosphere makes it impossible to distinguish
a transitional layer, in which the resistance to transfer of heat and mass is
principally localized.
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According to 2.10 as soon as Sn < 0 from a specified height where k £ Sn
attains a critical value, turbulence must subside and consequently the heat
resistance must greatly increase. Now this only holds for the surface layer and
not above it. Owing to the gradual direction change of the wind above the
surface layer, the turbulence, however, will subside less swiftly, as might be
expected according to the equations (2.8.7) or (2.8.10).

Furthermore it is of importance to remark that, the higher the level at
which k £ Sr attains the critical value the slower the subsidence of the turbu-
lence will take place. A consequence is that a turbulence originated already
before, may still make itself felt for a long time in the field where k & Sn <
(k £ Sn),, owing to which the interaction in this field becomes entirely vague,
at any rate not to be treated with the expedients developed during this investi-
gation. From the above it appears how difficult an analytic treatment of the
transformation of the warm air mass is.

A consolation, however, is that the total transfer in the warm air mass is of
much less importance than that of the cold air mass. Observations, moreover,
give tise to the supposition that, if only |Sa| is small enough (|Sn| < 107%) the
calculation can be made in the same way as for the cold air mass. The transfer
will then be of some importance only in case of a strong wind.

3.8 Some remarks to conclude with

It need not be pointed out that the preceding considerations about transfor-
mation are anything but complete. We have imposed restrictions upon our-
sclves by taking for granted special boundary conditions and initial conditions
as well as by introducing simplifying suppositions, such as « — constant;
z, = constant; stationary flux, etc. Extensions of the initial and boundary
conditions, as have been given in the calculations, practically only bring new
mathematical difficulties, but, apart from the results, offer few new physical
perspectives. Nevertheless it will be of importance for practical purposes, if
an investigation could be made into all calculable combinations, in order to
see in how far changes in frequently occuring situations can be calculated
quantitatively with a fair approximation. It is of importance besides looking
for situations in the atmosphere in which the simple initial and boundary con-
ditions, as given in the preceding calculations, have reasonably been complied
with. So that it is possible by means of observations to collect data of the
poorly known physical quantities o, #, 4, and 4. Finally we will discuss a few
physical phenomena, which assert themselves in case of transformation.

3.8.1 The influence of the increased heat and mass transfer near the coast line

In the sections 3.5 and 3.6 we have continually made use of equation (3.3.8),
which means that f(Sn) = constant, see equation (3.3.7). When cold continental
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air passes the coastline and suddenly comes into contact with a warm sea level,
the lowest layers of this air mass will become particularly unstable and Sn will
assume a relatively great value. Owing to this «, as might be expected, will
become greater than is in agreement with equation (3.3.8). A consequence of
this again is, that especially for small values of x the calculations of 3.5 will
not be correct. The error, however, does not become so serious as might be
expected from the deviation of o with equation (3.3.8), because the sea level
temperature does not remain quite constant owing to the increased heat
transfer. For there will also be a certain heat resistance from the surface to
the deeper layers of the water and it will continue to play an ever greater
part according as the resistance from the surface to the air becomes smaller.

3.8.2 Change of the pressure field on account of the transformation of air masses

The most important aspect of the transformation of air masses appears to be
the change of the pressure field caused by it. Ble e k e r (1950) has devoted
some qualitative considerations to this subject. His considerations are based
on a differential heat liberation from the earth’s surface to the air. Considering
from this point of view e.g. the cold wave above the sea, it appears that, if
the isobars originally were straight and at right angles to the coastline, a curve
of these isobars sets in, which is anticyclonal at the earth’s surface whereas at
a greater height cyclonally curved isobars arise.

The quantitative calculation of this phenomenon is exceedingly complicated,
because there apparently exists an interaction between heat absorption, wind
velocity and wind direction of the air mass. So we should not start from the
assumption that the original air flow remains unchanged during the transfor-
mation, a supposition which has always been tacitly made use of in the calcu-
lations.

3.8.3 The appearance of inversion layers during the transformation of the cold
air mass

1n the calculations of 3.5 has been taken for granted without going furthcr
into the matter, that the warmed air rises to a level where the original air has
the same potential temperature. Actually the air will rise somewhat more,
because the warmed air will posses a certain climbing velocity and thereforc
a certain kinetic energy, which at the specified level has not disappeared without
more ado. As the warmed air will continue to rise somewhat above this level,
this air will get into surroundings where it is relatively cold itself. A consequence
of this again is that an inversion is formed.

The appearance of an inversion in the cold air mass can easily give rise to
a misunderstanding in connection with localizing at greater heights the cold
front preceding the cold wave.
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383

Fig. 3.8.1 gives a schematic representation of a vertical section of the atmos-
phere as it will appear when the cold air has been warmed up in the lowest
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Fig. 3.8.1

layers behind the front along a certain stretch AB. The movement of the front
is supposed in the x-direction.
The apearance of an inversion will have no influence worth mentioning on

the calculations of 3.5.
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SUMMARY

This thesis gives an account of the transfer of energy and mass at the surface
of the earth and of some of its consequences to the atmosphere. A preliminary
analysis concerning the phenomena at the surface supplies a classification of
the different types of heat balances. This classification may be of some impor-
tance in describing the climate. Beside the surface the atmospheric surface
layer extending till ca 25 m is of fundamental importance to the transfer of
heat and mass. Chapter 2 also discusses in which way the structure of the
surface layer is connected with the transfer of heat and momentum at the
surface and with the roughness of the surface. An analysis is given of the
connection between the basic equations and the so-called equations of eddy
transfer whereby it appears to be possible to deduce in a more or less exact
manner the latter equations from the former. The different states of the surface
layer are summarized in a diagram, in which a dimensionless number, the
so-called structure number is used. This structure number is deduced from the
stability analysis of Richardson with the aid of a similarity consideration.
Further by introducing a modification of Lettau’s theory of turbulence, a more
or less complete description of the surface layer has been obtained. Finality,
however, has not yet been reached in this field. Particularly the transition from
turbulent forced convection on the one hand to free convection in the unstable
area and on the other to laminar flow in the stable area requires closer in-
vestigation. Especially the unstable atmosphere is suited to an extension of the
investigation, because in this case nearly the whole resistance to heat and mass
transfer is localized in the surface layer. In the unstable atmosphere it is possible
to introduce a coefficient of heat transfer and a coefficient of mass transfer in
order to facilitate the calculation of the transformation of air masses. So
especially the outbreak of cold air is suited to an analytical treatment. The
transformation of the cold air mass above the sea is the simplest calculation,
because the sea has a homogeneous level and an extremely large heat capacity,
so that as a first approximation the sea level temperature may be considered
as a constant. The transformation of the cold air mass above land is much more
difficult to calculate. A treatment of it is given with some simplifying assump-
tions. No calculations are given for the warm air mass because in this case the
surface layer may no longer be considered as a transition layer. It is necessary
therefore to make an analysis of the whole boundary layer, which extends till
ca 1000 m. Finally some consequences of the applied simplifications are
discussed.
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SAMENVATTING

In dit proefschrift worden de energieuitwisseling aan het aardoppervlak en
cnige van de consequenties, die dit met zich brengt voor de atmosfeer, be-
handeld. Een inleidende analyse betreffende de verschijnselen aan het aard-
oppervlak zelf levert een classificatie van de verschillende warmtebalanstypen
op. Deze typologie kan mogelijk van betekenis zijn bij de klimaatbeschrijving.
Naast het oppervlak is de atmosferische grenslaag welke zich uitstrekt tot ca
25 m hoogte van fundamentele betekenis voor de warmte en stofuitwisseling.
Besproken wordt op welke wijze de structuur van deze grenslaag samenhangt
met de uitwisseling van warmte en impuls aan het oppervlak en met de ruwheid
van het oppervlak. Hierbij wordt een analyse gegeven van de samenhang tussen
de grondvergelijkingen en de zgn. uitwisselingsvergelijkingen en hoe deze
laatste min of meer exact uit de eerste afgeleid kunnen worden. Het blijkt
mogelijk te zijn om de verschillende toestanden die in de grenslaag voor kunnen
komen samen te vatten in een diagram, waarbij gebruik gemaakt wordt van
een dimensieloos getal, het zgn. structuurgetal. Dit structuurgetal is voort-
bouwend op de stabiliteits-analyse van Richardson, afgeleid met behulp van
cen gelijkvormigheidsbeschouwing. Door voorts een modificatie van Lettau’s
turbulentie theorie te geven, blijkt het mogelijk tot een min of meer volledige
beschrijving van de grenslaag te komen, hoewel op dit punt het laatste woord
nog niet gezegd is. De overgangen van turbulente gedwongen convectie ener-
zijds naar vrije convectie in het instabiele gebied en anderzijds naar laminaire
stroming in het stabicle gebied vereisen in het bijzonder een nader onderzoek.
Dec instabicl gelaagde atmosfeer leent zich speciaal voor verder onderzoek,
omdat hierbij vrijwel de gehele overgangsweerstand voor warmte- en stof-
transport zich in de grenslaag bevindt. Het blijkt mogelijk om bij de instabiele
atmosfeer gebruik te maken van een warmteovergangscoefficient en een stof-
overgangscocfficient voor de berekening van de transformatie van luchtsoorten.
De koude inval leent zich dus in het bijzonder voor een analytische behandeling.
Het eenvoudigst te behandelen is de koude inval boven de zee, omdat de zee
een homogeen oppervlak en een bijzonder grote warmtecapaciteit heeft, waar-
door als eerstc benadering de oppervlakte temperatuur constant beschouwd
mag worden. Belangrijk gecompliceerder is de koude inval boven land, waar-
voor een berckening gegeven is met behulp van enige vereenvoudigende aan-
namen. Van de transformatie in de warme massa zijn geen berekeningen gegeven,
omdat hierbij de grenslaag niet meer als overgangslaag beschouwd mag worden,
waardoor cen analyse van de gehele wrijvingslaag welke zich tot ca 1000 m
uitstrekt vereist is. Tenslotte worden nog enige consequenties van de gemaakte
vereenvoudigingen besproken.
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