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ON THE BEHAVIOUR

Of GRAVITY WAVES INA TURBULENT MEDIUM,

WITH APPLICATION TO THE DECAY

AND APPARENT PERIOD INCREASE OF SWELL

BY P. GROEN

Summary

With respect to the decay of gravity waves by turbulence a distinction is
made between “internalty generated” turbutence, which is generated by the
waves themselves, and “externaily generated” turbulence, which exists mde
pendently of the wave motion. The mechanism of the interaction between
“external” turbulence and surface waves is then analyzed and a formula for an
eddy viscosity coefficient is derived that shows a dependence of eddy viscosity
on the wave-length.

On the basis of Richardson’s 4/3-power rule for horizontal eddy exchange
processes, the decay and apparent period increase of a swell, having a given
initial spectral energy distribtition, and suffering no loss of energy by disper
sion, is investigated theoretically. The resuits are compared with observations
and a numerical formula for the vertically averaged eddy viscosity, operative
in the decay of swell, is found by that comparison.
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1. Introduction

In an earlier publication the present author and R. Dorrestein (1950) out
lined a theory of the damping effect of turbulence on swell waves, which was
based on Richardson’s “4/3-power law” of turbulent exchange. K. F. Bowden
(t950) has questioned the applicability of this 4/3-power law to the decay of
swell waves and developed a theory of decay of swell by turbutence from an
entirety different approach. It has already been remarked at an earlier occasion
(Groen 1951) that these two different treatments of the problem may be con
sidered as more or less complementary to each other, since they apply to
two different kinds of turbulence which may act on waves. Indeed, while
Bowden’s turbulence is generated by the waves themselves and is, therefore,
what we may cali internalty generated turbutence or, shortly, “internal turbu
ence”, the turbulence which Groen and Dorrestein have considered may be
called “external turbulence”, since It is supposed to exist independently of the
wave motion, which it damps; it may be due to direct wind influences, present
or past, or to currents in the sea.

The purpose of the present study is to get a clearer insight into the mechanism
of the damping effect of “external” turbulence on free water waves. It will be
shown in what follows, that this mechanism is such as to make it possible, for
a given single wave system and a given horizontally homogeneous field of
external turbulence, to dehne an eddy viscosity coefficient, which has a definite
physical meaning. Its value depends on the scale of the field of motion in a
similar way as, according to Richardson’s “law”, an eddy diffusivity depends
on the scale of the pattern of the diffusing matter. Although it might apriori
be supposed — as Bowden (Lc.) suggested — that this scale, in the case of water
waves, would be determined by the height of the waves as well as by their wave
length, it will turn out that, in the case considered here, our eddy viscosity
is determined by the wave Iength alone, if the field of turbulence is given.

Damping by turbulence is not only responsible for the decay but also for
an effective period increase of the waves with increasing travel distance, since
the selectivity of the damping, acting in favour of the longer components of
the wave mixture, makes the wave length of the dominant wave components
increase as the damping goes on (Groen and Dorrestein l.c.). For treating
the effective period increase theoretically, it is therefore better, physically speak
ing, to consider the wave spectrum than to treat the “significant waves” as if
they were single waves having a continually increasing period, as Bowden has
done, following Sverdrup and Munk (1947).
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2. Qualitative interpretation of the dependence of eddy viscosity on wave Iength

Experience has shown (see f.i. Richardson 1926, Burke 1946 and Stommel
1949) that the diffusion of a cluster of particles in a turbulent medium goes
on in such a way that the effective eddy diffusivity appears to increase with
increasing extension of the cluster. This may be understood in the following
way. 1f the clustet is small, only small eddies contribute to the spreading of the
cluster, since the larger eddies give rise only to a transport of the cluster, more
of less as a whole, which is not called diftusion. 1f the cluster is large, large
eddies too contribute to its spreading, and more effectively so than do the
smaller ones, since the larger eddies have greater eddy velocities. Hence, the
effective diffusivity is greater in the latter than in the former case.

In a similar way it may be seen how a given field of turbulence, having eddies
of various sizes, acts on waves of different wave lengths in different ways. To
start with, eddy friction might formally be treated as an eddy diffusion of momen
tum and a field of wave motion as a field of positive and negative concentra
tions of, say, horizontal momentum. Thus, it is obvious that the wave length is
analogous to the diameter of a diffusing band of matter whereas the wave
amplitude determines only the maximum concentrations of momenturn, which
are analogous to the maximum concentration within the diffusing band of
matter, and wilt, consequently, not have to be expected to enter into the 4/3-
power law, if it hoids for eddy friction.

We may, however, consider things in a less formal way. It is dear that eddies
which are small in comparison to the wave length cause an internal friction and,
consequently, a loss of ordered wave energy, or a decay of the waves. Eddies,
however, which are large as compared to the wave length, only cause local
changes of phase velocity and group velocity. Short waves that have passed
through such an eddy may, after leaving its sphere of action, have undergone
a refraction, but will not, on the average, have lost energy thereby. To long
waves however, eddies of such a size, if small in comparison to the wave length,
will again act as turbulence elements that cause an effective internal friction;
so, they contribute to the damping of those waves, and more effectively so than
do the smaller eddies, because the larger eddies have greater eddy velocities.

In this way, it is seen, at least qualitatively, how, in the case of waves being
damped by external turbulence, an eddy viscosity coefficient may depend on
wave length in a similar way as, in the case of diffusion of spreading dots or
bands of matter, the effective eddy diffusivity depends on the diameter of such
concentrations of matter. It remains to be shown that it is indeed possible to
define such an eddy viscosity coefficient, or, shortly, “eddy viscosity”, as a
physical quantity which, for any given single wave system and a given field of
turbulence, bas a definite value. This will, for a simple sort of turbulence, be
shown in the next two paragraphs.
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3. Kinematic analysis

Suppose a field of turbulence is given, which is described by turbulent velocity
components i (x, v, z, t), (x, y, z, t) and i (x, y, z, t) in the x-, y- and z
directions, respectively; the z-axis is supposed to point vertically upwards. This
field of external turbulence is supposed to be horizontally homogeneous and
stationary, which means that the time-averages of i2, 2, t’2 are independent of
x and y, whereas the horizontally averaged values j2, 2, 2 are independent
of t. Now, suppose further that surface waves have run into this field of turbu
tence. The total velocity field is now described by the velocity components
U(x, y, z, t), V(x, y, z, t), W(x, y, z, t). We suppose that the waves, apart from
the perturbations and distortions that are caused by the turbulence, are plane
harmonic deep water waves running in the x-direction; this means that

U = U0 e cos (kx oit), (1)

W = U0 sin (kx — oit), (2)

V =0, (3)

where the horizon tal bar over U, V and W now means averaging over y. In the
following we shali continually use such “y-averages”, since the undisturbed wave
motion velocity field is independent of y; we shail design these averages by a
horizontal bar.

For U, V and W we may now write

U = U + u, V = v, W = W + w, (4)
where

u=u+?i,v=v,w=w+Çe. (5)

It is dear, that u and iv are not indentical with the “external” turbulent
velocity components t and 4’, since the latter displace water particles, which,
by inertia, take their wave motion velocities with them to their new places, so
that a ,,secondary” velocity perturbation field i’i, v is induced, which is addi
tional to the “primary” (external) field , , 4’ and which depends on the wave

motion velocity field U, W; in the y-direction no additional velocity pertur
bation is induced, since the wave motion velocities have no components in that

direction (V 0).
The distinction between u, w and i, 4’ becomes most dear, if we consider

the case of a primary turbulence which is purely horizontal: 4’ 0. In this
case ii’ + 0, nevertheless, because horizontal displacements of water particles

change the W-field, so that W + W, or w + 0; in this case we have: iv = w.
We shail start our investigation with this simplest case.
1f the distortions of the velocity field by turbulent displacements were only

small as compared to the wave length, we might write: z’i = 8U/8x,
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= — W/8, where (x, y, z, t) is a measure of the displacement in
the positive x-direction. More generally, however, we may write:

U(x,y,z, t)—i(x,y,z,t) = U(x—,y,z, t),

W(x,y, z, t)— i’(x,y, z, t) = W(x— z, t),

whence:
û = U(x—,y,z, t)— U(x,y,z, t),

= W(x—E,y,z, t)— W(x,y,z, t).

The “free path lengths” E and are now forma!!)’ defined by (6) and (7)
and may therefore differ from each other. They are functions of x, y, z and t

and are in some way correlated to ï (x, y, z, t). Where û is positive, and

will more probably be positive than negative, which means that z and z,
will be positive.

As a general property of the field of the turbulent velocity components
u, iv we may state that, since they arise from the cooperative action of the
primary turbulence field i, ‘, which is homogeneous with respect to x, and the

wave motion fleïd U, W, which is periodic in x with wavelength L, any mean

quantity, characteristic of the fie]d ii, ii, such as u2, itii and the like, will also
be periodic in x with wavelength L, if not independent of x or zero. We shalt
make use of this general property of the field ii, ii’ farther on.

4. The energy equation and the eddy viscosity

Now we shaÏl develop the energy equation for our velocity-fleïd. We do
this in the classical way, following Reynolds (see f.i. Lamb 1932, p. 675), by
starting from the equations of motion of an incompressible fluid in the foltowing
form:

8U l8p U2 8UV auw

-- =——--—-;-—---,
lap auv av2 avw

at ay ax ay az

aw lat, auw avw aw2

8t 8z
g,

where p = pressure and = density, which is assurned to be a constant;
molecular viscosity and extraneous forces, other than gravity (g), have been
left out of consideration; the fluid is supposed to be incompressible. By
substituting (4), averaging and using (3), we find
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0F bi, aF o oÜ oi’

_T (8)

l3i, JW8 0W 0w2

Ot 8z — — —
—g.

In deriving (8) and (9) we have used the fact that, according to the adopted
wave model and the horizontal homogeneity of the primary turbulence field,
all averages are independent of y.

Using the continuity equation for the U, W-field,

OCT 0W
—+ =0,
8x Oz

we transform (8), (9) into

/8 — 8 — 8 \ — 1 8i, 8u2 8iii
(—+U—+W--I U=—-—-—---—--- (10)
\8t Ox OzJ j8x Ox Oz

/8 —8 —0\-- 18i, Oüii 0w2
(11)

\Ot 8x Ozj 8z Ox 8z

Multiplying (10) by U, (11) by W and adding, we obtain the energy equation

1 cl 2 —

-- 1 — 8i, —

(U +W)=_W_(U±W)+

— /0j Oüii\ — /0üii 8w2\
— ut—+—-—)—wt—-—±—— (12)

\OX Ozj \OX Ozj,
where

ti 0 —0 —8
U+ W.

The first two terms of the right hand side of(12) represent the work done by
gravity and by pressure forces per unit of time, per unit of mass. In small
amplitude deep-water waves, as described by (1), (2), (3), these terms cancel
each other at any point, as the theory of such waves shows. (In shallow water
waves, they do so at any level, when integrated over one wave length in the
x-direction). So, we are left with

1dEc —tdu2 Oüii\ —/Oüii Ow
-——=—UI—-+ —I—w(—-+——dt \8X OzJ \8x 8z

where = (U + W) is the kinetic wave energy per unit volume. We
integrate both sides of this equation horizontally over one wave-length, from
x =x0 to x =x0 +L =x0 + 2t/k, and vertically from z =—oo to the
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dli’
L _2

_/ t _-jdxdz==_f / cosk—1)-——+z(cosk----l) ——+
0—00 0—00

x x

/aÜ’\2 — /aW\2)
—2tk’ sin kl 1 —2iik’ sin kH —1 dxdz

\0xJ \8x7

Ç /aÜ\2 /a\2è

=1 t ûk1sin k 2Ç] + 2-) «lxdz =

0-Do

q
/Ü2 8W\2?

=f/Kiz(z)2) + 2(r) dxdz, (18)

where we have taken the averages of the forms wi.th tt and to be equal to
the corresponding averages with ti and and to depend on z only, since they
are supposed to be wholly determined by the primary turbulence field.

1f we compare (18) with the classical formula for the internal energy loss of
a two-dimensional field of motion by molecular viscosity (see f.i. Lamb, 1.c.,
p. 580):

dE’ au 2 aw 2 au aw\2?
_// c1xdz =// v 2(_) + 2(r)

+ +) 5dxdz, (19)

we see that tik’ sin k (20)

plays the role of an effective kinematic viscosity coefficient, the ,,eddy vis
cosity”; the index h reminds us of the fact, that the eddies of the primary
turbulence field that gives rise to this eddy viscosity are essentially horizontaÏ.
The same fact causes a term corresponding to 2 (8W/az)2 of (19) to be absent
in (18), while only part of the term (8U/8z + aW/ax)’ of (19) is present in (18),
where we have:

taw\2 awtau aw
21— =—l——+———\ax) ax\az ax

Considering formula (20), we see that, if would everywhere be sufficiently
small as compared to L/2r = l/k, the expression for K,, would become

K,=ti (21)

which is a well known formula for the eddy viscosity in a velocity field where
the gradients of the mean velocity are sufficiently constant over a space interval
of the order of magnitude of the “mixing length”. Since, however, k needs
not to be small in our case, we shali have to accept formula (20).

From the above analysis we see that, for the sort of turbulence con sidered
here, an eddy viscosity coefficient exists for any simple harmonic wave system
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and that this “eddy viscosity” depends, within any given level (z), on the wave

length only (if the field of turbulence is given, as we have supposed).
Since, for deep water waves, the integrand of(l$) does not depend on x and

neither does E, we may drop the integration over x in (1$). Furthermore, we
define:

dE

dt dt -,

-00

where E may be called the mean total wave energy per unit area of the sea
surface (since any loss of wave energy is supposed to originate as a loss of
kinetic wave energy). We have:

dE U2 W’2?
— =O/K112() ± 2() dz. (22)

The bar over d/clt bas heen dropped now, although the meaning of this
differential operator bas remained the same as it was.

Up tili now we have only considered horizontal turbulence, giving rise only
to horizontal exchange of momentum. 1f there is also vertical turbulent ex
change, characterized by a “vertical” eddy viscosity K2, the energy equation
would be:

dE Ç bU\2 awtau 8w’?0L
tt9W\ aUtaü 8W\)

+K 2(—±-—(——±-I dz=
\8 8z\8z 8xJ

q /aÜ\2 /0W\2?

q 1W 2

=
/10 /K/I?2-) + 2) clz, (23)

where, for sea waves,
l<it<2, (24)

since, in general, K < K,, in the sea.

5. Dependence of the eddy viscosity on wave length

We shali now consider, for a moment, formula (20) for K,. for any given
value of the wave number k = 2 r/L the con tributions to the average of
fik1 sin k will mainly come from combinations of i and having Jj not much
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larger than r/k = L/2, since contributions from larger -values, where sin k
oscillates between —l and +1, will tend to cancel each other to a large extent.
In this qualitative way we may see that K,, will have larger values for large
wave lengths than for small wave lengths. A more quantitative evaluation of
the dependence of Kh on L can only be made if we know more about the
turbulence spectrum. We shail confine ourselves here to a few further qualitative
remarks. 1f we put

_________

ik-1 sin ke = zÏ,

where 1 denotes a sort of mean free path or mixing length, we may, on account
of what bas been said above and on dimensional grounds, take 1 to be pro
portional to L. Now, if we suppose a statisticl equilibrium to prevail between
the eddies of various sizes, we have, according to theory (see f.i. von Weizsâcker
1948): rl 1113, so that K,, -.-‘ L413, in our case.

For the surface layer of the sea. the validity of Richardson’s 4/3-power rule
for horizontal turbulence has more or less been confirmed by observations on
eddy diffusion (Richardson and Stommel 1948, Stommel 1949, Inoue 1950).
We shail therefore assume it to hold for our eddy viscosity too, in the surface
layer. It is, however, not probable that it hoids also at subsurface levels, unless
the field of horizontal turbulence be threedimensionally homogeneous, since
the horizontal eddies at subsurface levels have probably a stronger coupling
to the eddies of overlying water layers than to eacb other, so that a statistical
equilibrium should not be expected to prevail within each separate level. In fact,
we shali assume that the dependence of Kh on z may be expressed in the follow
ing form:

X,, =L413 92(2nz/L), (25)

(2rz/L) being a monotonously increasing function of z. Formula (25) is based
on the idea that the larger eddies, which are operative for the longer waves,
diminish less rapidly with increasing depth than the smaller eddies, which are
operative for the shorter waves. As we shali see presently, assuming this form
is aequivalent to assuming that the effective, verticallv averaged horizontal
eddy viscosity is proportional to L413.

6. Evaluation of the energy loss and apparent perfod 1 ncrease of deep water
waves on the basis of a supposed validity of the 4/3-power rule

Substituting (1) and (2) in (23) and using (25), we find:

dE /2r2
— = 2n U J Kh e2’dz = 8 22L_2,io UL4I3 1 q(kz) e21(zdz =

-00 -00

8 2 L2 ifL4/3E = $ 32 1r213 îifE, (26)
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where f is a weighted average of (kz), defined by

/ (kz)e2kzdz =f /ekzdz,

-00 -00

and where E denotes the mean total wave energy (= twice the mean kinetic
energy) per unit area of the sea surface. Using the above formula means using
a vertically averaged value of K, (L,z), which we shali cali K* (L) and which
is equal to fL4’3. In order to get an idea of the relation between K* and the
surface value K,,(L, 0) q(O) L43, we might assume, as a working hypothesis:

q (2 rz/L) = 99(0) em 2z/L (rn > 0)

which would imply that

299(0) t rn\

= 2 + m’
or: K,(L, 0) = -1— ï)fL4I3 >JL43 = K* (L). (27)

We shali now apply formula (26) to the energy loss of free, rnonochromntic
surface waves traveling over deep water with the group velocity C =
= (Lg/2r)1/2. Then we have, according to (26),

cIEL — 2 dEL — 4(2 9r)5/2 11/EL
dx C dt g’12L716

so that
EL (x) EL (0) eCLXL0, (2$)

where cc = 4 (2-r)5/2 nfg’/2; the subscript L denotes that the energy of waves
with wave-length L is meant. The energy is taken per unit area.

From here on WC follow the sarne reasoning as used by Groen and Dorre
stem (1950). We take L716 = 2 as the independent variable and describe a
continuous wave energy spectrum by means of an energy function E , x),
such thatE(2, x) d2 is the wave energy belonging to the 2-interval 2 to 2 + d%.
As an analytical representation of the initial wave spectrum we assume the
following form:

E(2, 0) = A 2 (29)

where ci and 1, are positive constants, as yet unknown. According to (2$), then:

E(2,x) = A )— e(x)/. (30)

We shali assume the square of the “significant height” of the waves to be
proportionat to the total energy of the spectrum. The significant wave length
or period, however, needs not to correspond to the value of 2 where E(2, x)
has its maximum. According to resuits of statistical investigations (see Pierson
et al. 1953), we may take the significant period to be V’% tirnes the period
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corresponding to the wave frequency at which the energy spectrum, expressed
as a function offrequency, has its maximum.

Using cv = 2r/T».’ %_3/7, instead of the frequency (1/T) itself, we have:

E(2Qv), x) d2 = E(2(w), x) dcv const. E(2, x) 210/7 dcv = E* (u, x) dcv.

Consequently, the maximum of the spectrum function E* (cv, x) as a function
of frequency corresponds to the maximum of E(2, x) 2b017. According to (30),
this maximum is found by solving the equation

a + 10/7) 1 + (b + c x) 2 =0

for 2, which yields:

2
— a — 10/7

The significant period T becomes now:

b + ccx 3/7 (b_+_ccx317

g) a—10/7]
—T0

b )
where

/‘ 1/2 / b \3/7

T0 =—) 10/7)
(32)

is the initial significant period.
It should be borne in mmd that a tacit assumption underlying these deduc

tions is, that at the beginning of the decay distance a steady state prevails, for
otherwise, if(29) were an initial spectrum function at one moment, the function
(30) would not describe a spectrum at one moment, since the various compo
nents forming (29) have different travel times over the distance x. In other
words: we have assurned that no dispersion is operative.

By integration of (30) the total energy is now found to be

tb + cx\
E10 =E0j

b ) ‘ (33)

where E0 is the initial total energy:

= A / 2aeb/d2 = A hl-aP(a_ 1).
0

Accordingly,
F1 fb+cx\LEf/

___

12 (34
H0 b )
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H0 being the initial significant height. Combining (34) and (31), we find:

Ix (I\(l_a)
(35)

H0 \T0/

7. Tentative comparison with observations

Although we know that not all of the turbulence, affecting swell waves, is
of the “externally generated” type, we shail assume an eddy viscosity propor
tional to L413 to be applicable more or less generally and shali therefore try
to compare the resuits of the preceding section with observations.

Sverdrup and Munk (1947) have, on a semi-empirical basis, deduced that
—

(T/T65, which by comparison with (35), would yield: a — 3.3.
Later observations, however, (see f.i. Bretschneider 1952) have shown that the
period increase goes on less rapidly than according to the graplis of Sverdrup
and Munk.

Bretschneider (l.c.) has tried to fit the decay data into a 3-parameters-repre-
sentation, according to which the decay and period increase are not determined
by x and T0 alone (as according to Sverdrup and Munk 1947), but depends
also on x/f, F being the fetch length of the generating area from which the
waves originate. The observations seem not, however, to fit that representation
very much better than the simpler two-parameters-representation, where
H/H0 and T/T0 are functions of the dimensionless quantity 2rx/gT02 x/L.
For a given value of x/T02, the observed values of H/H0 and T/T0 show
considerable scattering, it is true. Moreover, if we take average values of H/H0
and T/T0 for any fixed value of x/T02 and plot corresponding pairs of average
values H/H0 and T./T0, thus found, against each other, we donot find a
re]ation of the general form IJ/H0 = (TX/T)Y with constant t; this can most
easily be seen on a double-logarithmic diagram, where it appears that log
(H/H0) is not a linear function of log (T/T0), as it would be according to (35),
if our parameter a is to be a true constant. But here we should remember that
many of the observational data have been inftuenced by dispersion and
angular spreading, which we have left out of consideration. Since dispersion
and angular spreading tend to lower the significant wave height, whereas, at
some fixed place, at sorne time, the abserved significant period can, by disper
sion, as well be smaller as larger than it would be there without dispersion,
we might, in order to compare our result with observations, proceed as follows.
1f we plot the observed values of T/T0 against x/T02, we can draw a sort of
mean curve for T/T0, representing a function of x/T02, which we denote by
T/T0. 1f we now plot the observed values of H/H0 against the values of
T/T0 corresponding to the (x/T02)-vatues concerned, we can draw a srnooth
line that forms a sort of upper limiting curve to the observed values of H/H0,
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apart from very few occasional exceptions. The points of this curve are likely
to correspond to those cases of swell where dispersion and angular spreading

have had the least influence on the decay. For any value of 7’JT0 the curve
gives a value of H/H0 which we shail denote by (ff/H0)* and now we may

compare (H/Ho)* as a function of T/T0 with equation (35). A first, prelimi
nary (and rather rougli) analysis of the data collected by Bretschneider (Lc.)
shows that, if H/H0 and T/T0 are plotted on a double-logarithmic diagram,
a limiting line can be drawn that is fairly close to a straight line and may (at
least for not too small values of H/H0) be roughly represented by the old
formula of Sverdrup and Munk, referred to at the begin ning of this section.
Therefore we shali, for the present, retain the valtie of a that was derived
there: ci = 3.3.

It follows now from (32) that

b = cT073, (36)

where c = (ci — 10/7) (g/r)7/6 = 7 m7/6 sec713.
By formula (36) the eqtiations (31) and (34) have now become representations

of T/T0 and H/H0 as functions of x and T0. These representations bear a
strong formal resembience to the representations which Sverdrup and Munk
arrived at from an entirely different approach. [ndeed, equation (31), for
instance, may be written as follows:

T t o’. x\317
(37)

whereas Sverdrup and Munk found:

T j/ 27r x’2
l+f3-)

c being a geophysical quantity, proportional to the turbulence parameter f
and fi being a numerical constant. For not too large values of (T/T0) — 1
the formal difference between (37) and (3$) is even smaller yet, since (37) then
becomes:

3 x
(37a)

and (38):

(3$a)
g

Sverdrup and Munk found to be 0.9 x 10, but later observational data,
already referred to above, show that fi must have about half that value, ij’the
empirical relation between T/T0 and x and T0 is to be represented in the form
of (38) or (3$a).
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By plotting and averaging the observed values of •T/T0 against x/ T0713, it is
possible to find, by comparison with (37) or (37a), an average value of and
thereby of the turbulence parameterf We found cc = 5.5 x lO m”6 to give a
reasonable fit with the T/T0-averages for not too large values of x/T07/3. This
yields:

g’12c(
iîf—

4(2r)5I2
= < 1Orn213 sec’,

(l<n<2)

so that we have now
nK’ = 4.5 x 1 O6 (m2/3 sec’) L413, (39)

(1< ii <2)

where K* denotes the vertically averaged horizontal eddy viscosity operative
in the decay of waves of wave length L. It should be kept in mmd here that
these values off have been computed by discarding the effectof air resistence
on the decay of swell and by treating the turbulence that is effective in the
decay process as if it were all of the “external turbulence” type, i.e. as if the
turbulence-as-a-whole followed the 4/3-power rule; which is, perhaps, not too
bad a supposition, after all (see the next paragraph).

8. Comparison with eddy diffusion

Richardson (1926) has shown that eddy diffusion may conveniently be de
scribed by means of a concept denoted by q (t), where 1 denotes the separation
between two diffusing particles and q means that the number of pairs of particles
having separations of between 1 and t + dl is q (1) dl. In close analogy to the
welt-known Fickian equation of diffusion (in terms of concentration), he
proposed the following equation for describing the process of eddy diffusion
in terms of q (1):

8q 8q
f(l)’

where f(l) is analogous to the diffusivity K of the Ficidan equation. Finalty
he showed (see Richardson 1952, where a correction to the 1926 paper is given)
that, if f(t) follows the 4/3-power rule:

f(l) = l”1, (40)

then the ordinary “eddy diffusivity” K, although it cannot describe the process
of eddy diffusion in a physically adequate way, may be put equal to F(o)/2.4,
where r means the standard deviation of the spreading cluster or band of
matter; in the latter mentioned case, the spreading process and the standard
deviation are considered in one dimension, perpendicular to the axis of the
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band. (N.B.: Richardson’s 1926 paper had: f(o) = 3.03 K; it should, however.
be: f(g) 2.4 K, see his 1952 paper).

Consequently: K = x t413, with = e/2.4.

Now, for horizontal eddy diffusion at the surface of the sea, Stomme! (1949)
has found empirical values of f that follow Richardson’s 4/3-power rule fairly
well, for each series of observations, the value of c in formula (40) not being
the same in al! the series, but ranging from about 6 x 10’ to about 20 x
lO m213 sec1. From this it would follow that the cofactor of (41) ranged
about from 2.5 x 10 to 8 x 10 m213 sec’.

Values of K have also, by various investigators (see f.i. R. Witting 1933,
C. J. Burke 1946, G. F. Mc Ewen 1950, M. Hanzawa 1953), been computed
directly, by means of the Fickian equation of diffusion, from observations on
spreading patches or bands of dye or other matter in the sea. The values thus
found appear to fit in the scheme of formula (41) fairly wel! and yield values
of that are of the same order of magnitude as are those mentioned above.
It has been shown (see E. Inoue 1950) that the applicability of the 4/3power
ru!e extends to very large scale lengths (up to 1O m). Inoue (Ï.c.) has proposed
a value 0.01 cm213 sec1 = 4.6 x l0 m213 sec’ of the cofactor x.

In order to find a way, now, towards comparing the eddy diffusivity (41),
as a function of , with the eddy viscosity (39), as a function of L, we shali
look upon the wave system described by (l)-(3) as a system of parallel bands
of positive and negative concentrations of, say, horïzontal momentum and
treat them as if they ware bands of diffusing matter, having concentrations U
and a distribution of concentrations as described by equation (1). The standard
deviation of one band (lying between x = — L/4 and x = L/4) from its axis
(x = 0) is then easily found to be o = 0.11 L or L = 9 o Applying this to (39),
we find:

n = 0.8 x l0(m2/3 sec’)r4/3

(1< n< 2)

We conclude that the vertically averaged horizontal eddy viscosity K* that
is effective in the observed decay of swell waves seems to be essentially smaller
than the horizontal eddy diffusivity K observed at the surface of the sea.
This difference has at least two causes: first, as has been said, K* is a weighted
average over the vertical, which should be expected to be smaller than the
surface value (see eq. (27)); secondly, the decay data of swell apply to atmos
pheric conditions, prevailing over the decay area, that are rather more quiet
than are the average atmospheric conditions over the ocean (with exception
of the horse latitudes and the doldrums), since such cases of decay under
“quiet” conditions have even deliberately been selected, in order to avoid large
secondary wind effects in the decay graphs, for which they served as a basis.
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