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PREFACE

Problems of current interest, related to the navigation of ships in stationary
fields of flow are discussed in this volume. Parts I, II, 111 and 1V deal with theoretical
investigations each concerned with a special type of navigation, as defined in part 1.
In part V the theory has been applied to the navigation of aircraft.

Under the title “Single heading and shortest time navigation”, the parts I—IV
were accepted as a doctor’s thesis by the Philosophical Faculty of the University
of Utrecht. Professor Dr. H. FREUDENTHAL acted as promotor; his interest in Dr. DE
Jong’s work is kindly acknowledged.

The remaining part is a summary of working methods, developed and applied
by the author at Schiphol Airport. The close cooperation and the assistance of many
authorities of the Royal Dutch Airlines, K.L.M., is highly appreciated. Special
thanks are due to Mr. F. C. Bik, Captain of K.L.M., who with enthusiasm and
ingenuity contributed to the development of various ideas.

Dr. W. BLEEKER, head of Scientific Research stimulated the study and discussed
various phases of the project with the author.

The Director in Chief

C. J. WARNERS.
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PART 1
GENERAL CONSIDERATIONS
Introduction

In this part a general treatment is presented of the motion of a ship in a
stationary two-dimensional aero- or hydrodynamic field of flow. Properties of the
motion are derived, which because of their navigational aspects form the basis of
a special system of navigation, viz. aeronavigation.

Since many of these properties are of great practical interest both for navigation
at sea and in the air the word ship will be used as a collective for all kinds of air-
craft, ships, missiles etc.

Throughout the assumption is made that the internal forces (engines) are in
equilibrium with the frictional and gravitational forces as well as all other forces
operating on the ship so as to ensure a constant speed with respect to the surrounding
medium. Furthermore it is assumed that the structure of the ship is such that the
internal forces operate along the main axis of the ship.

With respect to the surrounding medium such a ship will move in the direction
of the main axis. With respect to a fixed coordinate-system however the ship will
deviate from the direction of the main axis and follow a course determined by the
resultant motion of the ship and the flow.

In general the true velocity ¢ of the ship surpasses the velocity of the flow, but

the hypothetical case in which ¢ is smaller than the velocity of the flow will not
be excluded.

1. The stationary field of flow

The two-dimensional aerodynamic flow will be described in local, i.e. Eulerian,
coordinates. At an arbitrary point P within the field of flow the intensity and direction

-
of the flow are defined by the vector u. The velocity components u; and u, are functions
of the coordinates x, and x,. So the equations for the stationary field of flow can
be written:

uy = f (x1, Xp),

Uy = g (X1, xp)

where the functions f'and g are arbitrary one-valued bounded functions of x; and x,.
Depending on the properties of these functions singularities and discontinuities

may exist in the flow. For instance any point, where J and g vanish simultaneously,

may be a vortex point, a col, a source point etc. Unless stated otherwise the functions

Jfand g are assumed to be continuous.

Because a vector is defined by direction and magnitude two sets of lines can be
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introduced of equal vector direcuon and vector magnitude respectively, which

together define the field of flow unambiguously. The lines of equal vector direction

are called isogones or isoklines and the lines of equal vector magnitude isotachs.
In aeronavigation the isotachs are of special importance. The isotach u =

+ \/f2 +g¥=cor § = & = 1, where c is the true velocity of the ship and ¢ the
u

velocity parameter, will be called the /imiting isotach.

The limiting isotach devides the field of flow in a number of connected regions,
in which the velocity of the flow is either greater or smaller than c. In stationary
flow stream-lines and trajectories coincide. In general the flow will be neither non-
divergent nor irrotational. If, however, the flow is non-divergent, then a stream-
function p may be defined, such that

op

l{l = S
Xy

I, n
oy
Uy = — ——.
Ix,
The lines » = constant represent the stream-lines of the flow.
If the flow is irrotational, then a velocity-potential ¢ may be introduced, such that

0
U, = 2,

0Xx; (. 2)

Uy = —.
Xy

Finally, if the field is both non-divergent and irrotational, both the stream-function
y and the velocity-potential ¢ exist.

P d
Then u = l = _(’L,
X, X
(I, 3)
dy hl
Uy = — — = —.
dx; 0X,

These relations for ¢ and g are the differential equationsof Cauchy-Riemann.
Both o and g satisfy the differential equation of Laplace:

Py | Dy
AL - = 0,
a2 Xt @ 4
Ny W i
pe=L 4 E =0
X, Xy

The lines y — constant and the lines ¢ = constant are perpendicular to each other.
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2. The steering equations

When a ship moves in a field of flow, it will deviate from its proper course with
respect to an observer in a fixed system, in other words, the axis of the ship does
not coincide with the direction, in which it moves with respect to the fixed system.
The motion of the ship with respect to the fixed system is given by the vector sum of

-

the true velocity vector ¢, which indicates direction and velocity ¢ of the ship relative
—>
to the surrounding medium and the stream vector . The equations of motion of

the ship with respect to this fixed system are:

dx;
W, = L=y ¢ Ccos
7 1 ¢ @5
dx, . ’
Wy = —= =1y, + csiné
2 2+
- = >
or in vector notation: w=u-+c 1, 6)

where w (w;, w,) is the speed vector of the ship with respect to the fixed system. & is
the angle between the axis of the ship and the positive x;-axis. This angle will be
called the heading.

If the flow pattern is governed for instance by a deep cyclone, rotational fields
of flow may be used as a first approximation of the real flow and in that case it is
advisable to introduce polar coordinates.

The equations in polar coordinates r, « can be derived from the equations in
rectangular coordinates by means of a polar transformation. It is, however, sim-
pler to derive these equations directly by means of a vector diagram (fig. I, 1).

,-(di:_-:ua—}—csin(E—U-),

L7
U 4 ccos(E— o)
da '

The equations (I, 5) and (I, 6) uniquely
—>

determine a vector field for w except at
the points where & is indefinite and at the

g
points where w is a zero vector, i.e. at the
points where simultaneously

uy +ccosé =0 and u, + csiné = 0.

These points lie on the limiting isotach,

¢
foru® +u?2 =2 =¢2or- — ¢ = 1
(u and c positive). “ Fig. I, 1.
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Points where w is either indefinite or a zero vector are singular points of the system.

—
Supposing the field of flow u is known, then, according to the equations 1,5 or

I,7 three main groups of problems may be distinguished:

1. If the heading £ is given as a function of x; and x, the equations I,5 and 1,7 may
be integrated and the solutions x; = x,(t) and x, = x,(¢) represent the trajectories
along which the ship will travel with the given heading. For practical reasons
the trajectories will be called pressure-pattern trajectories, particularly in view
of the application to aerology where standard pressure-surface topographies
determine the structure of the flow.

2. If on the other hand a curve is prescribed along which the ship has to be manoeu-

W, vred, the heading & can be derived from
L,5 or 1,7 at every point of the trajectory.
In this sense the equations may be con-
sidered as steering equations. If along
the curve

fdﬁ = p (%3, Xp),

dx,
dx dx
then Hcf = p (%1, Xp) d_tl

This relation yields a goniometric

equation for £, which at any point is

satisfied by two values of & (¢ may be

) imaginary). If the values of & are real,
the ship can be manoeuvred along the
curve in two distinct ways.

3. Finally it is possible that a functional
relation exists between a beforehand
unknown heading & (x;, x) and an
unknown trajectory. Then by means
of the equations 1,5 or 1,7 and this
functional relation both heading and
trajectory may be calculated.

To this group of problems belongs the
“variation problem of aeronavigation”
This is the problem dealing with the
pressure-pattern trajectories between two
given points P and Q, for which the time
of travel is an extreme.

Apart from these groups of problems
other groups of problems arise, when
the field of flow itself is unknown. For
Fig. I, 2,b. instance it may be required to let a ship

Fig. 1, 2,a.
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travel with a given heading
along a prescribed trajectory
and the problem will be to
find out, what the structure
of the field of flow must be
to satisfy this requirement.
In part 1V a detailed ana-
lysis of such a problem is given.

3. The indicatrix. Regions of
limited and unlimited ma-
noeuvrability

In an arbitrary field of flow
there are limits to the manoeu- Fig. 1, 2,c
vrability of a ship with a given
true velocity c. In particular when this velocity is smaller than the velocity of
the flow the ship cannot be directed along every prescribed curve.

In order to investigate what possibilities may occur the concept of the in-
dicatrix of Carathéodory will be introduced. Let a circle i with radius ¢ be

—
drawn around the terminal point of the stream vector u, Then the vector connecting

the terminal point of ¢ with the starting point of u is the sum vector w, the speed
vector of the ship with respect to the fixed system (fig. I, 2, a, b, c). The circle
i with radius ¢ will be called indicatrix and the associated starting point of the stream

-
vector u the corresponding base point G. This nomenclature is justified because
this circle can be shown to be the indicatrix of the variation problem of aeronavi-
gation (cf. part III).

When &> 1 the base point lies inside the indicatrix (fig. 1, 2, a).

When ¢ << 1 the base point lies outside the indicatrix (fig. I, 2, ¢).

When & = 1 the base point lies on the indicatrix (fig. I, 2, b).

e - —_
Let the vector u be projected upon c. Then the sum vector of ¢ and the component
5 o =
of u along ¢ will be called the vector of the effective true velocity c,.

The effective true velocity itself will be defined, not as the length of its vector,
but by the relation:

1- —

cc=c+zc.u=c+ulcos§~:~uzsinf d,38)

Thus the length of the vector ée is equal to the absolute value of Co
It follows from fig. I, 2 that ¢, is always positive, when &> 1. If ¢ = 1, then
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¢, may be either positive or equal to zero. When ¢ < 1, ¢, may be either positive
—
or negative. If the speed vector w at G is tangent to i, then ¢, = 0.

Consider a trajectory p through G and its tangent g at G (fig. 1, 2, c). Let the

— _—

points of intersection of g and i be W, and W,. With the tangent vectors w, = G Wy
—_ —

- —_
and w, = GW, correspond two vectors ¢; and ¢,, which are symmetrical with respect
to the normal n of p at G (symmetry property).

—_ —
When G lies inside 7, w; and w, have opposite directions. When G lies on i, one
— —
of the vectors w is a zero vector. Finally when G lies outside /, the vectors w; and

-

w, have the same direction. They coincide, when w is tangent to i. In this case
— - e

¢, and ¢, also coincide and are perpendicular to the speed vector w. If ¢ is made to

rotate about the terminal point of u, w will not always rotate through the complete

angular interval (0 — 2%). For if the base point lies outside the indicatrix, w
can only rotate through an angle determined by the tangents from the base point
to the indicatrix. The angle between these tangents will be called the [limiting

—

angle. The line elements coinciding with the extreme positions of the vector w
will be called the anomalous line elements. From an arbitrary point P within the
field of flow a ship can only move into the limiting angle; this point can be reached
only from the opposite angle. At P the manoeuvrability is now said to be limited.
Since the position of the base point with respect to the indicatrix depends only on
the velocity parameter ¢ and since the lines # = constant or, because of the constancy
of ¢, the lines ¢ = constant, represent the isotachs the following regions may be
distinguished in the field of flow. In the regions, where 6> 1 the base point lies inside
the indicatrix and the manoeuvrability is unlimited. In the regions where & < 1 the
base point lies outside the indicatrix and consequently the manoeuvrability will be
limited. In the regions where & = 1 the manoeuvrability is also limited. Re-
gions with £ > 1 are called regions of unlimited manoeuvrability. Regions with & <1
are called regions of limited manoeuvrability.

Both regions ¢ > 1 and ¢ < 1 are bounded by the limiting isotach & = 1, or by
regions where £ = 1.

1t follows that three different types of field of flow can now be defined. If in a field
of flow ¢ is everywhere > 1, i.e., if the true velocity is everywhere greater than the
velocity of the flow, then the manoeuvrability will be unlimited throughout the field.
If on the other hand ¢ is everywhere either = 1 or < 1 or < 1, then the manoeuvra-
bility will be limited throughout the field. If & varies in the field between values > 1
and < 1, then the field will contain both regions of limited and regions of unlimited
manoeuvrability.

At any point in the field of flow the anomalous line elements may be drawn and
curves constructed, which at every point contain such a line element, in the same
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way as stream-lines are constructed from the line elements along the stream direction.
These limiting curves can be found by integration of the steering equation subject
to the condition that the effective true velocity ¢, = 0.

Line elements lying inside the limiting angle are to be called regular and those
lying inside the supplementary angles singular line elements, according to C ar a-
th éodory. Admissible trajectories therefore only consist of regular or anomalous
line elements.

In a region of unlimited manoeuvrability all curves are admissible trajectories
because all line elements are regular. On the other hand in a region of limited
manoeuvrability any arbitrary curve may consist of sections which are either
admissible or inadmissible. Any such section is bounded by two successive tangent
points of the curve with limiting curves, provided the tangent point is not a point
of inflection on the curve. Limiting curves consist of anomalous line elements,
except at the points where ¢ = 1, and are admissible trajectories.

Between the admissible trajectories in both regions ¢ << | and > 1 a gradual
difference exists. For according to the theory of the indicatrix there are two ways of
manoeuvring along any admissible trajectory. In regions of limited manoeuvrability
both manoeuvres are in the same direction, but in regions of unlimited manoeuvra-
bility they are in opposite directions.

However there is only one way of manoeuvring along the limiting curves. Similarly
only one manoeuvre is possible for the case & — I, for the total speed w = 0 with
the second manoeuvre.

4. Limiting curves. Manoeuvrable strips
Along a limiting curve ¢, = 0 or according to 1, 8:
¢+ 1y cos & - u, sin £ = 0. 4,9

Multiplying the equations I, 5 with cos & and sin & respectively and adding them
together one obtains:

dx,

dx, .
cos & —= sin =0 I, 10
£ 7 + sin& = ( )
—
or in vector notation: c.w=0.

This equation expresses the fact that, when manoeuvring along a limiting curve,
the true velocity vector is always normal to the curve.
After squaring T, 9:

(€® — 1,2) cos 28 — 2uu, cos & sin & -+ (Ic'-’ — %) sin?% =0
and eliminating the heading & by means of I, 10 one gets:

dx,\® dx, dx dx;\?
2,2 (4r2 2uguy 2 2 ) (ST I, 11
(C “ ) (a’t) Rl (C ] ) (dt) )
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dx d . . ; |
If everywhere —d?l = 0, this equation reduces to the differential equation for the
limiting curves:

2
(c2 — uf) (%) + 2u,u, % 42— u? =0 (1, 12)
1 “*1

The discriminant is
A = du2u? — 4 (2 — 1,?) (2 — ws?)
¢
= 4% (1,2 + uy> — %) e=-
u
= 4e2ut (1 — &%)

In the field of flow there are two sets of limiting curves. These are real if A >0
or e < 1, ie. in regions of limited manoeuvrability. In regions where & = 1 both
sets coincide. In regions of unlimited manoeuvrability, where & > 1, both sets are
imaginary.

It is obvious that in a given field of flow not all curves through two given points
P and Q can be admissible trajectories, unless the entire field is a region of unlimited
manoeuvrability. The admissible trajectories through P and Q are contained within
a certain strip. However not every curve within this strip will be an admissible trajec-
tory. Such strips will be called manoeuvrable strips. If O is lying in the neighbourhood
of P the strips are bounded by the limiting curves through P and Q.

A complete description of the manoeuvrable strips in the different types of field
of flow is not possible without a penetrating mathematical analysis. Here the dis-
cussion will be confined to one special case and some examples.

Consider a field of
flow of limited ma-
noeuvrability, e <1.
Suppose that the two
sets of limiting cur-
ves in the whole field
of flow form two
fields of curves, each
curve of one set inter-
secting a curve of the
other set in one point
only.

Let through a given
point P be drawn the
two limiting curves g
and h (see fig. 1, 3).
The arcs g; and /i
form the boundary of
Fig. 1, 3. a sector-shaped area
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H,. The admissible trajectories with P as starting point are contained in H,. The
trajectories with P as terminal point are contained within the complementary
manoeuvrable sector H,, bounded by the arcs g," and h,". Let Q be a point in
sector H;. Through Q the limiting curves g, and h," have been drawn, which
form the boundary of the complementary sector J,. All trajectories with P
as starting-point and Q as terminal point, for instance the trajectory consisting
of g, and hy’, are contained within the common section of H; and J,, bounded
by g1, i, go' and /1y, This section will be called a manoeuvrable strip (P Q). If Q is
lying in H,, P can be reached from Q and a manoeuvrable strip (Q P) exists, being
the common section of J; and H,. If Q is lying outside H; and H,, P cannot
be reached from Q and vice versa Q cannot be reached from P. The regions outside
H, and H, will be called the prohibited regions associated with P. Since according to
the properties of the limiting curves the sectors H, and H, have no common section
H,,, it is impossible in this case that for a chosen pair of points P Q manoeuvrable
strips (P Q) and (Q P) exist simultaneously. The case of a double strip may occur,
but an example shows that these strips can be very complicated. Sometimes the
concept of Riemann surfaces may be usefully applied.

Examples.
1. Let a uniform rectilinear field of flow be defined by:
Hy = u it const.
1y = 0.
The differential equation for the limiting curves becomes (See I, 12):

2 €<
(2 —u?) di2 + 2 =0,
dx,
dxy € c
S y € = ~—.
dxy Ve u

The solutions are:

Xg = =+

€
2 ——— X, -+ const. ie. T, 4.
Vi 1 Fig. 1,

These are straight lines which intersect the x,-axis at an angle equal to arc tan + R -

Vi ¢
Take a point P in a field of flow with e<_ 1 and draw the limiting curves g, and 4, through P (fig.
I, 4). The manoeuvrable sectors associated with P are H, and H,. The sectors H,” and H, are the
prohibited regions associated with P. For a point Q in A, with limiting curves g." and h,’ there
exists a manoeuvrable strip (P Q) consisting of the parallelogram PRQS. Similarly there exist
manoeuvrable strips (Q P) for points Q in H,. There are however no regions such that manoeu-
vrable strips (P Q) and (Q P) exist simultaneously for any point Q.

2. Solid rotational field of flow.
From I, 7 and the condition ¢, = 0 the differential equation for the limiting curves in polar
coordinates can be derived in the same way as I, 12:

2
(c2—uy® (d_r) +2ruy uy ar, 412 (cr—u?) = 0. 113
do do
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The solid rotation is defined by: u = 0
ua = kr,  kconst.
The equation for the limiting curves now becomes:

3
(c? — k% (d__r_) + r2c® = 0.
do

dr r
ot gl ( ul ar

= + -
do VEgE 2 Vg g

where a = e is the radius of the limiting isotach circle about the centre of the flow.

The solutions are:

j_\/rz___aé

a
o = -+ bg cos 7 -+ const.

Apparently the limiting curves in a solid rotational field of flow are the involutes
of the limiting isotach circle = with radius r = a = e On this circle the involutes possess

a cusp. Through P (fig. 1, 5) two limiting curves g, and &, have been drawn. g, has a cusp K on 7.
Similarly the involutes g, and /," have
been drawn through a point Q outside
7, i.. in the region of limited manoeu-
vrability. It is obvious that Q can be
reached from P along admissible tra-
Jectories, some of which may intersect
the limiting curves. In fig. I, 5 for
instance Q can be reached along the
trajectory y; but also along the trajec-
tory v, which intersects both g, and g,
Therefore the structure of the ma-
noeuvrable sector H; is rather com-
plicated. However this structure can
be understood by interpreting the na-
vigation as occurring in a Riemann
surface. One takes n superimposed
planes each slit along the involute arcs g,
and /. One binds the edge of one cut to
the opposite edge of the cut of the next
sheet and binds the remaining edge of
the latter to the opposite edge of the
cut of the third sheet, etc. Thus one
obtains for n—cO a Riemann sur-
face of an infinite number of sheets
with the point K as branch-point. The
sector A, consisting of this Riemann
surface covers the whole plane, so that
each point within the plane can be
reached. For instance in fig. I, 5 the
ship can be manoeuvred along the track
. in the top sheet and next by passing
Fig. 1, 5. the cut along g, arrive at Q in the
second sheet. The track y, lies wholly
in the top sheet. Manoeuvrable strips (PQ) and (QP) can be found by considering the Riemann
surfaces of P and Q and their common sections.
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5. Systems of navigation

Consider a field of pressure-pattern trajectories p in a field of flow, such that
one and only one trajectory passes through any point in the field. The true velocity

> o5
vector ¢ is uniquely determined at every point. The vectors ¢ (x;, x,) therefore form
a field which may be interpreted as a “pseudo” field of flow in which the stream
velocity is constant and equal to the true velocity c. In this field “pseudo” stream-

—

lines » may be drawn in the usual manner. Conversely a vector field ¢ (x;, x,)
or a “pseudo” field
of flow with stream-
lines v uniquely de-

fines a field of tra- v
jectories and thereby __ <
a system of navigation "/’ »“’
H V

All fields obtained by ' /‘"“‘
a translation or a - lé" 4”. P
rotation of a given l',’ qg’ ,“1
field ¢ (x,, x;) will be ’/}}4?’ < g_‘

» V2 ! 2> i
considered as defin- <P " S “‘
ing one and the same
system of navigation.
Therefore a system
of navigation as de-
fined above gives rise Fig. 1, 6.
to a triply infinite set
of pressure-pattern trajectories. By imposing certain conditions on the displacement

N
X
YAl
\\Y

A
‘l

\

—

of the vector field ¢ (x;, x,) the triply infinite set of trajectories can be reduced to
a singly infinite set by means of which problems like the construction of the trajectory
through two given points can be solved.

If the trajectories have been given, but without time parameter, then according
> —

to 1, 3 there will be two vectors ¢ and ¢’ at any point, each for a different manoeuvre
along the same trajectory. Therefore also two sets of “pseudo” stream-lines y and

— —
»” exist. According to the symmetry property of the vectors ¢ and ¢’, cf. I, 3 the
trajectories are bisecting curves of the stream-lines » and »" (fig. I, 6).

- —>
If a “pseudo” field of flow ¢ (x,,X,) with |c| = constant has been given, the associated
system of navigation is characterized by the property that at every point in the

field the vector ¢ is tangent to the “pseudo” stream-line » through that point. Because
of this such a system of navigation will be called a rangential system of navi-
gation.
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It is clear that there is an infinity of systems of navigation because the vector

-
field ¢ (x,, x,) can be freely chosen. However by imposing certain restrictions on
this vector field special systems of navigation can be introduced, including some
well-known systems that are used in practice.

1. Stream navigation.
-> —

If the “pseudo” field of flow ¢ (x;, x,) with components ¢; (x;, x,) and ¢, (x,, x,)
possesses a stream-function v’, in other words if

cg=ccosé = -gi,
Xo

© grad ¢ |=c¢ (1, 14)
] dp’
G =csin§{=— -,
X,

a type of navigation results, which will be called stream navigation.

X, , Examples.
q'=const. ¥ = cx, - C, C con-
stant. The vector field
simply consists of paral-
lel vectors and the “pseu-
do” stream-lines are pa-
. rallel straight lines (fig. I,
¥'=const 7).The heading is constant
. throughout the field.
This system is identical
with the well-known sy-
stem of single-heading
navigation. With this sy-
stem there exists only a
Fig. I, 7. singly infinite set ofﬁe_lds
of “‘single-heading trajec-
tories” because only a
rotation of the vector
field gives rise to different
vector  configurations

X1

¢ (xy, Xa).
¥ =cVx2+xi+C,
C constant. Here the
“pseudo” field of flow is
a field of rotation and the
axis of the ship is always
normal to the radius vec-
tor from the ship to the
centre of the field M.
This point M, where the
vector ¢ becomes inde-
: finite, must be eliminated
Fig. I, 8. from the field (fig. I, 8).




ITS APPLICATION IN AVIATION METEOROLOGY 13

The “pseudo” field of rotation admits a doubly infinite set of fields of pressure-pattern trajectories,
because only translations give rise to a doubly infinite set of vector configurations.

2. Potential navigation.
Potential navigation is by definition the type of navigation which arises if the

— — —
“pseudo” field of flow ¢ (x;, x,) with components ¢, (x;, x,) and ¢, (x;, x5) possesses
a potential ¢’, in other words, if

D ’

¢ =ccosf= b%’
! |grad ¢’ | =c¢ {, 15)

. o’

c=csinf =—_1,

X,

The “pseudo” stream-lines are the orthogonal trajectories of potential lines ¢’ =
constant.

Examples.

@’ = ex, -+ C, Cconstant. The potential lines form a set of parallel straight lines and the “pseudo™
field of flow is again a field of translation. The system of navigation
is that of single-heading navigation (fig. I, 7).

¢ = c\/xl‘"+ x,* + C, C constant. The potential lines form

a family of concentric circles centred on O (fig. I, 9). The vector ’ \
— —

field ¢ consists of vectors ¢ directed towards O. (O itself must be I \

eliminated from the field). This system of navigation is also called @

point navigation. The set of fields of trajectories belonging to this

system is doubly infinite since only translations produce different \,

vector configurations.

If the “pseudo” field of flow possesses both a poten-

tial and a stream-function, i.e. if AT
Fig. T, 9.
oy’ dp’
c1=ccos§= l:l’
0X; X,
s | grad 3’| = | grad ¢’ | = ¢
C2=C5in£=_ l=__’
oX;  dxy

no new system is introduced since the only solution yields the system of single-
heading navigation (fig. I, 7).

3. Evolute navigation.

—>

Consider a “pseudo” field of flow ¢ (x;, x,) with | c | = constant, in which the
“pseudo” stream-lines » are straight lines. If sufficiently prolonged these straight
lines envelop a curve hence-forward called steering curve and indicated by the
letter S (fig. I, 10). If p is the trajectory through P the figure resembles the figure
of an evolute of a curve, in this case of the trajectory p. Because of this similarity
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the corresponding system of navigation is called evolute navigation. However, if
the steering curve is an elementary curve, for instance a circle (fig. I, 11) or an ellipse
it is preferable to speak of circle navigation or ellipse navigation respectively. A
straight line as steering curve has no meaning, unless the field of flow contains a
straight stream-line along which the ship happens to travel.

o

Fig. 1, 10. Fig. 1, 11.

A special type of evolute navigation is obtained, when the steering curve
degenerates into a point, the steering point. This system is again a system of point
navigation. When the steering point coincides with the terminal point Q of the tra-
jectory PQ, a method of navigation obtains, popularly called dog-heading naviga-
tion. In air traffic the steering point is identical with a radio beacon. The axis of
the ship is now always directed towards the radio beacon at the terminal point. If
the steering point is at infinity the navigation is again a single-heading navigation.

In general there exists a steering curve corresponding with the navigation along
a given pressure-pattern trajectory. Consider an arbitrary trajectory p through P,
whose tangent varies continuously along the trajectory (fig. 1, 12). Let 4 be a point

on p and a a straight line through 4 and along the vector c. When A moves along
p the straight lines a envelop a curve S, which is the steering curve associated with
p- If on the other hand the steering curve S is given in the field of flow the trajectory

p through P can be followed by making.c coincide at every point with the tangent
to S.

According to I, 3 two manoeuvres along p are possible, so two straight lines a
and @’ may be drawn through 4. For every trajectory therefore two complementary
steering curves S and S’ are found. The trajectory p itself is, according to the sym-
metry property of I, 3 a bisecting curve of the families of straight lines a and a'.
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If p happens to be a limiting curve
both families a and &’ coincide and
so do the steering curves S and S’
Moreover the steering curve S will
also be the locus of the centres of
curvature of the trajectory and there-
fore the evolute of the limiting curve.

If the trajectory p is situated in a
region where ¢ = 1, then only one
steering curve exists since the other
one has degenerated because the

associated speed vector w is zero.
It is not always possible to define

a system of evolute-heading navig-

ation by choosing a steering curve, so that everywhere the true velocity vector

Fig. 1, 12.

c is uniquely determined. It is conceivable that at a point of the field different
tangents to the steering curve can be drawn. If the steering curve is the boundary
of a convex region and the “pseudo” stream-lines consist of the straight half lines

which envelop the steering curve and if ¢ is pointing to the tangent point, the field
¢ (x,, x,) is always unique. The choice of an arbitrary steering curve requires special

arrangements to define uniquely a field c (1, xp).

6. Construction of pressure-pattern trajectories

If the method of navigation has been defined by the heading £ (x,, x,) the steering
equations I, 5 must be solved in order to find the trajectories. This cannot always
be done analytically so that often the trajectories can be determined only approxi-

mately by means of graphical and numerical methods of integration.
—_

At every point in the field of flow the equations I, 5 define a sum vector . The

trajectories are identical with the “stream”lines of the field w. These “stream”lines
may be drawn by free-hand extrapolation.

Trajectories through two given points P and Q.

If the method of navigation is defined by a unique “pseudo”field ¢ (x;, x,) there
exists a corresponding field of trajectories in the field of flow. According to the
definition of a field only one trajectory passes through any point P in the field of
flow. If subsequently the “pseudo’field is displaced as a whole by means of a solid
rotation and/or translation the system of navigation remains the same according

—>

to I, 5. If all translations and rotations of the rigid field of ¢ are allowed, a corres-
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ponding triply infinite set of fields of trajectories is hereby introduced. For instance,
when using the system of evolute navigation a triply infinite set of fields of trajectories
can be generated by translation and rotation of the steering curve.

By imposing certain restrictions on the translation and rotation the triply infinite
set of fields of trajectories can be reduced to a singly infinite set. In that case a singly
infinite set of trajectories passes through any point P in the field of flow.

Often the system of navigation itself reduces already the number of degrees of
freedom. For instance with single-heading navigation only a rotation of the “pseudo™
field generates a field of trajectories, which therefore is only singly infinite.

If the conditions for a singly infinite set of fields of trajectories are given it may
now be required to find the trajectory which passes through two given points P and
Q in the field of flow. In order to solve this boundary-value problem consider the
family p of trajectories through P with P as starting point and also the family ¢
of trajectories through @ with Q as terminal point, both families being associated

-
with the given configurations of vectorfields ¢ (x;, xo) (fig. I, 13).

Fig. I, 13.

If there exists a trajectory p of the set p which passes through Q, then this trajectory
is a common trajectory of both sets p and g, which corresponds with one fixed

-
“pseudo” field ¢ (xy, xp)-

Let next a time function W be defined, such that at any point P, on a trajectory
p, W is equal to the time of travel of the ship from P to P, along p. The lines W =
constant will be called time fronts. The figure consisting of all trajectories through
P and the set of curves W = const. is said to be complete in analogy with the same
figure consisting of extremals and transversals, which occurs in variation theory
and is called “the complete figure” after Carath éodory. In the same manner
a time function W, may be defined, such that at any point O on a trajectory ¢,
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W, is equal to the time of travel of the ship from Q, to Q along ¢. In order to dis-
tinguish both types of time fronts for a given point P the time fronts W — const.
will ‘be called post-time fronts and the time fronts W, = const. pre-time fronts.

The figure consisting of the trajectories g and the pre-time fronts W, = constant
is now also complete and is called complementary complete figure.

Consider next the trajectory p passing through both P and Q. For an arbitrary
point R on p the sum of the values of the time functions W and W, is constant and
equal to the values of W@ at Q and of W¥ at P.

Consider next an arbitrary trajectory p, through P and a point 7 on p,. Let ¢,
be the trajectory of the family g, which passes through T. The trajectory PTQ now

consists of a trajectory PT corresponding with a certain vector configuration ¢’ (x;, x,)
—_—

and a trajectory TQ corresponding with another configuration ¢’ (x;, x,) of the
same system of navigation. Therefore the trajectory consisting of two different

trajectories associated with two different vector configurations ¢’ (x;, x,) and

-
¢” (x1, x;) of the same system of navigation is called a “composite pressure-pattern
trajectory” with T as “composite point™.

Fig. 1, 14.

Along the composite trajectory the time of navigation is equal to WT - wT.
Those points T for which W7 + WT = WQ — WP will be called T*. If both sets of
time fronts have been drawn one can find the locus of points T*, for which W + W,

2
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— const. = WP — WP, It is obvious that this locus contains the points of the com-
mon trajectory p through P and Q.

The trajectory through two given points P and Q associated with a certain method
of navigation is a section of the locus of the points of intersection of post-time fronts
W = constant and pre-time fronts W, = constant, for which the sum of the values
of W and W, is constant and equal to the value of W at Q or the value of W, at P.
The value W@ = WP is the time of navigation along the trajectory. The remaining
section of the locus consists of composite points for which the time of navigation along
composite trajectories is equal 1o the time of navigation along the trajectory through
P and Q itself.

In fig. I, 14 curves have been drawn through the points of intersection of the
lines W = constant and W; = constant, for which the sum of the values of W and
W, is constant, but not equal to WQ or WY. These curves 1 are loci of composite
points, for which the time of navigation along composite pressure-pattern trajectories
is constant and equal to the sum W + W;. These curves therefore possess a property
corresponding with the property of an ellipse, where the sum of the distances from
a point on the ellipse to the foci is constant. So the curves 1 may be called “focal”
curves with foci P and Q. The set of curves 1 may be regarded as a confocal set.
Among these there are curves, for which the time of navigation along composite
pressure-pattern trajectories is shorter then the time of navigation along the pressure-
pattern trajectory p through P and Q.

If W (x;, x») and W, (x;, x,) are continuous and DE/, 2 resp. Ml, Lig}

hR ST S S ox; X
exist and are continuous in the whole field (except in P and Q), the stationary points
of W = W -+ W, are found by solving simultaneously

2 W
LU 1 CALE 0,
X, Xy
DK + bgll — 0.
sz Xy
: . = 2 (W, W, h I
Those points therefore will be found on the curve AW 0, which is the

2 (xl, x2)
locus m of tangent points of the pre-time fronts W, = const. and the post-time
fronts W — const. The character of the stationary points will be determined by
the sign of LW R ( 2w )2
X0, I

2

On the curve m the time function W' is defined by W' = W - W;. The function
W' may have several isolated minima for instance at the points Ly, Ly, L, . . . Let
L, be the point, where W' has an absolute minimum. Then this point is the com-
posite point for the composite pressure-pattern trajectory, which, with the given
method of navigation, gives an absolute minimum for the time of navigation with
respect to all other composite pressure pattern trajectories through P and Q and
the pressure-pattern trajectory p through P and Q itself.
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In part III, which deals with the variation problem, a similar figure will be
found, but there the time fronts W = constant and W, = constant, for which W4
+ Wy = WQ = W are tangent to each other and the curve connecting their points
of contact is the extremal through P and Q.

If @ is made to coincide with P one considers the trajectories with P as starting
point and as terminal point. Fot both sets of trajectories again the sets of time
fronts W = constant and W, = constant can be drawn. The curves 1 passing through
the points of intersection of the sets of time fronts W — constant and W, = constant
are now loci of composite points R for composite pressure pattern trajectories
PRP along which the time of navigation is constant and equal to W + W,. If for
instance in aviation the range of various types of aircraft is determined by a maximum
time of navigation, the curves 1 are the boundaries of regions, within which these
aircrafts using the given method of navigation can operate from and back to
their base.

7. Some special construction methods

In practice it is important to have a quick and elegant construction method and
a very quick one exists, if both the given field of flow and the “pseudo” field possess
a stream-function. In this case the addition method of Maxwell for superposed
vector fields can be applied. Let the field of flow have a stream-function p:
oy
S 0X,
oy

Uy = —
dx,

-
and similarly the “pseudo”field of ¢ a stream-function '

If both fields are superposed, then according to the steering equations the sum
vector > 5>

w (g, W) = u ¢,
A+ )
Ax,y ’
and Wy = — M
X,

or w,
d, 16)

—_
It follows that y 4 y' is the stream-function of the sum field w (x1, x5).
The stream-lines p + v' = constant therefore represent the trajectories.



20 THEORETICAL ASPECTS OF AERONAVIGATION AND

Therefore if stream-lines of both fields of flow are drawn at unit intervals, the
trajectories will be found by connecting the points of intersection of the y and
y'-lines, for which y + 9’ is constant. The stream-lines of the sum field have also
unit intervals and the speed of a ship in the field of flow with respect to a fixed
system is determined by the magnitude of the gradient of g + ' in the sum field,
according to the formula:

W2 = %Miz_;_ 2+ 90 {grad. (y + ¥")}*

Xy X

The same addition method may be applied, if both the given field of flow and
the “pseudo” field possess a velocity-potential, in other words, if potential-navigation
methods are used.

Let the field of flow have a velocity-potential ¢:

op
U =
! bxl’
g lest2®
i Xy

and similarly the “pseudo” field ¢ (¢, ¢;) 2 velocity-potential ¢':

D ’
cl — l,
X,
D ’
P M i
Xy

If now both fields are superposed, then according to I, 6 the sum vector w (wy, Wo)

becomes:
- > —

w=u-+te¢,

et
Nl

_d(@+¢)
Xy 1

w2=§b(¢+¢’)g2+ %a(qz +¢')§2= {grad (@ + 9P

Xy Xy

W,y

da 1n

Wo

=

It follows that @ + ¢’ is the velocity-potential of the sum field. So if the iso-
potential lines ¢ + ¢’ = constant are drawn, the trajectories are the orthogonal
—

trajectories of these potential lines and the speed w along those trajectories is deter-
mined by the magnitude of the gradient of ¢ + ¢’ in the sum field.
If the stream-navigation method is used in a field of flow with a stream-function
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and if the triply infinite set of “pseudo” fields can be reduced to a singly infinite
set, the trajectory through two arbitrary points P and Q can be found by applying
the addition method of Maxwell in such a manner that the sums of the values
v and v’ at P and at Q are equal. So the given “pseudo” field is displaced and/or
rotated in the prescribed manner until pP 4- P = y@4 40,

The curve joining the points of intersection of stream-lines for which the sum v + '
= 9P + 9P, is the trajectory. It may occur that more than one trajectory is found
for the given navigation method.

¥~ const, n

Fig. I, 15.

The method may be demonstrated for a tangential navigation system with a

“pseudo” field given by the stream-function Y = c Vx;? 4+ x2 (fig. I, 15). The
“pseudo”-stream-lines are concentric circles. The field of flow is given by an arbitrary
stream-function y. In this field two points P and Q are given. In fig. I, 15 stream-
lines of both fields have been drawn at unit intervals. Since the “pseudo” field is
rotational-symmetric a singly or doubly infinite set of “pseudo” fields can be formed
by means of translations only.

To reduce the number of *““pseudo” fields the translations must be restricted, for
instance by moving the centre M of the circles along a prescribed curve n. The
trajectory is now found by moving M along », untill PP 4+ P = Q@ L ¢Q The
“sum line” p + ¢ = pP - P is the trajectory asked for.
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There may be several points on 1 for which the condition is satisfied, so that
several trajectories through P and Q are found with the given method of navigation.

Notes.

Because of the symmetry of the addition method of Maxwell the interpretation
of the method may be reversed in those cases, where the stream velocity u of the
given field of flow is constant.

So if u — constant — | grad v | and ¢ = constant = | grad " | the sum lines
p 4 9 = constant can also be interpreted as the trajectories in a field of flow
->

¢ (x;, Xo) corresponding with a method of navigation defined by the “pseudo”

=
field u (xy, X3).

Often the structure of the field of flow is such, that it can be regarded as the sum
of two or more simplified fields of flow each with a stream-function. Such a field may
also be constructed using the addition method of Maxwell, provided certain
conditions are satisfied (1).

For instance an irrotational circular motion may be combined with a non-divergent
recti linear motion from a source to yield a field of flow, in which streamlines and
trajectories are logarithmic spirals, which all end in coinciding centers of the con-
stituent fields. If a “pseudo” field for a tangential navigation system is superposed
on this composite field, the order in which the addition method is applied may
be arbitrarily chosen. The “pseudo” field may first be added to the circular field
and the recti linear field to the sum field. Or the “pseudo” field may be added first
to the recti linear field and the circular field to the sum field. Finally the “pseudo”
field may be added directly to the field consisting of logarithmic streamlines, obtained
by superposing the circular and the recti linear fields.

If potential navigation (potential ¢') is applied to a field of flow with a velocity-
potential @, the construction of a trajectory through two given points P and Q is
not so simple because the trajectory asked for is the orthogonal trajectory through
P and Q of the sum lines ¢ + ¢’ = constant.

8. A theorem for the time of navigation

According to I, 16 the sum lines y = y + y' = constant represent the trajectories
associated with a stream navigation in a field of flow with a stream-function. The
time of navigation 7 may then be obtained by measuring an area.

The speed w of the ship with respect to a fixed coordinate system is determined
by the gradient of y:

w=|gradyp |.
The time of navigation along a trajectory is given by:
Q
T= 515 = lim & as

W a0 W
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where /\ s is a line element on the pressure-pattern trajectory v = constant.
Consider next two adjacent sum lines or, in other words, two adjacent pressure-
pattern trajectories y and y — /\y (fig. I, 16) and let a point S be given on the
trajectory u. At this
point the normal is
drawn to the trajectory
P . Putting the
length of the normal
equal to /\n one may
write:

5. I

T=I1limZX s

As—>0 y Fig. 1, 16.
Dp—>0

or, il the summation is carried out for a constant value of /v, T becomes:

|
T=1lm-—X As.An
As=0 AW
A=

1
=Ilm—=X A0
As—>0 [NI’

Aig—>0

where /. O is a surface element between the trajectories y and ¥ — AN

. 1
or T = lim . 0.
a0 AP

Here O is the area of the strip bounded by the lines y = constant and % — /\p

- constant and the normals through P and Q.

So if the value of Ay is chosen sufficiently small the time of navigation T is ap-
proximately equal to the area of this strip divided by /oy

Tw o (, 18)
Ap
If for instance /.y = 1, the time of navigation is approximately equal to the
area of the strip between the pressure-pattern trajectories y and p — 1:

T wv 0. {, 19

Similarly it may be shown that the time of navigation is approximately equal
to the area of the strip between the trajectories y and y -+ Ay, divided by /\y. The
areas of both strips may be measured and the mean of the values taken. Or the
area of the strip between the trajectories y — Ay and y + Ay may be measured
and divided by two. Examples are given in part II.



PART 1I
SINGLE-HEADING NAVIGATION

Introduction

Single-heading navigation is certainly one of the simplest methods of navigation.
The ship remains always parallel to itself and is carried freely by the flow. The
heading £ is constant throughout the manoeuvre. In part I, 5 it was shown that
single-heading navigation could be classified both as stream navigation and as potential

navigation. The pseudo field ¢ (x,, x,) consists of parallel equidistant straight lines
as stream-lines, ' = constant. The parallel equidistant straight lines orthogonal
to these are isopotential lines ¢’ = constant (see fig. I, 7). It has also been shown
that single-heading navigation is a special case of evolute navigation or rather of
point navigation with the steering point at infinity.

Since a translation of the field .c-(xl, X,) leaves it completely unchanged, the method
of single-heading navigation is defined by the given ¢ field and the configurations

which result from a rotation of the ¢ field. The single-heading trajectory passing
through the starting point P and the terminal point Q is therefore unambiguously
defined for a given heading &. It is, however, possible that several single-heading
trajectories pass through P and Q, but for different values of the constant heading.

Apart from its simple steering principle single-heading navigation has in practice
also other advantages and is therefore in many cases to be preferred to other methods
of navigation. For instance in aviation, the lateral drift may often become so large
that zones of bad flying weather are avoided. Generally also the time of navigation
along the single-heading trajectory is shorter than the time of navigation along
the geometrically shortest route, i.e. the chord PQ, which subtends the single-heading
trajectory PQ. Another advantage is that, both if the field of flow is slowly changing
with time and if the actual flow pattern differs slightly from the forecast flow pattern,
the radius within which the ship approaches the terminal point Q, remains small,
a constant heading appropriate to the forecast flow pattern being used.

Furthermore single-heading navigation is important for the planning of even
better routes, for instance of the trajectory along which the time of navigation is
a minimum (part IV).

In the present part the most important properties of single-heading navigation
in stationary fields of flow are dealt with on the basis of stream navigation.

1. Single-heading navigation in stationary fields of flow

The description of the methods of navigation, given in part I, can be repeated
almost literally. For every point in the field of flow a complete and a complementary
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complete figure of single-heading trajectories and time fronts can be drawn. If a
single-heading trajectory exists from a given point P to another point O, this trajectory
is a section of the locus of the points of intersection of time fronts W = constant
of the complete figure of P and W; = constant of the complementary complete
figure of Q for which the sum of the values of W and W, is constant and equal
to the value of W at Q or the value of W, at P. The value W@= W% is the time
of navigation along the trajectory. The remaining section of the locus consists of
composite points for which the time of navigation along composite single-heading
trajectories is equal to the time of navigation along the single-heading trajectory
through P and Q itself.

Here also focal curves exist and points for which the time of navigation along
composite single-heading trajectories from P to Q is an absolute minimum.

The description of the complete figure for single-heading trajectories will however
not be carried further, since in this chapter only fields of flow with a stream-function
will be considered.

2. Single-heading navigation in stationary fields of flow with a stream-function

Fields of flow with a stream-function v (x;, X,) are most important in practice.
In aerology for instance the field of flow in a pressure surface in a narrow strip
about a latitude circle in middle latitudes can be fairly accurately described by means

- g

2w sin @,
w the angular velocity of the rotating earth, g, the latitude (assumed constant)
and z the height of the pressure surface. The theory developed in I, 7 can be directly
applied if the single-heading navigation is conceived as a stream navigation with
a stream-function g’ (xy, x,), | grad v’ | = ¢.

of the stream-function y = z, where g is the acceleration of gravity,

I. Single-heading trajectories.
If the x;-axis is taken parallel to the pseudo stream-lines ¢’ = constant, ¢’ becomes

(apart from an additive constant) ¥ = - ¢ x,. According to I, 16 the equation
of the single-heading trajectories is:

w + v’ = constant or
W (xy, Xp) = cxy, = A, A constant (I, D

The trajectories can be constructed by means of the addition method of M a x-
well If both fields  and ' have been normalized in the same manner, then
the lines connecting the points of intersection of stream-lines, for which v + 3’
= constant, are single-heading trajectories.

I1. Single-heading trajectories through two given points P and Q. Formula for the drift.

Since the single-heading navigation is determined by the %’ field and the configur-
ation resulting from a rotation of this field, the single-heading trajectory from a
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given point P to another point Q can be found by turning the %’ field until the sum
of the values of the stream-functions at P and Q are equal. When p? + y'P=yQ4-y'Q,
the single-heading trajectory is the sum line connecting the points for which

P+y =P Ly = 90 Ly (1, 2)
/W
/\/

3

Fig. II, 1.

Consider now figure 11, |. The orientation of the pseudo field for a single-heading
navigation is determined by condition I, 2. Let the coordinate system be adjusted

to the pseudo field, such that the positive x;-axis coincides with the pseudo stream
s

vector ¢. The stream-function ' of the pseudo field is then given by 3’ = cx,.

Draw the perpendicular from Q to the pseudo stream-line through P and let
the base-point of this perpendicular be Q. Then sin 6 = —Q}—,%— = %", where 0 is the
angle between the pseudo stream-lines and the chord PQ and d the distance from
P to Q. From 11, 2 it follows that:

111 ) |
Xy == E(’I’ Q—ypPy= . (»F — Q).

So: Sin) & sl (pP — Q). a1, 3)
cd

The drift angle 6 therefore can be calculated from the difference between the values
of the stream-function y of the given field of flow at the starting point and at the
terminal of the trajectory.

Substituting ¢ = — —g— z in 11, 3 one gets
2w sin ¢,
205z gP
ST, AMLATEL IR bl i)

2wsing,,  cd
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Fig. 11, 2.

This is the well-known formula of Bellamy for aeronavigation (2). Applying 11, 3
to the single-heading trajectory from Q to P one has:

sin &' = ld(zpo — Py = —sin 4§, or ¢ = — 4 (see fig. 11, 2). (11, 4)
¢

111, Concentration points.

In a field of flow with a stream-function y the following property holds:

The single-heading trajectories through two given points P and Q for different true
velocities ¢ of the ship intersect each other at the same points R;. The points R; lie
on the chord PQ.

Consider fig. 11, 2. If the x;-axis is taken along the chord PQ, the stream-function
v’ for single-heading trajectories from P to O can be written:

Y = — ¢ (X, cOs § — X, sin §),
where 6 is the drift angle.

Applying the addition method of M axwell one obtains the following expres-
sion for the single-heading trajectories from P to Q:

— ¢ (xy €05 0 — Xy 8in 68) + p (xy, Xs) = 4,
where v is the stream-function of the given field of flow and A is constant. Substituting
the coordinates of P (o0, 0) in this expression one finds that 4 = y (o, 0).
So — ¢ (x5 cos 6 — x; sin 8) + p (xy, X5) = w (0, 0). {1, 5)
The stream-function 9" for single-heading trajectories from Q to P with drift
angle ' = — 0 becomes:
P’ = ¢ (x5 cos 6 + xy sin J).
Applying the addition methode of Maxwell one obtains for the single-
heading trajectories from Q to P:
¢ (x5 €08 6 + x; sin ) + p (xy, x,) = B.
Substituting the coordinates of P (0,0) in this expression one finds that B = v (o, 0).
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So ¢ (x5 cos 0 + Xy sin 8) + v (x3, Xo) = v (0, 0). (11, 6)

The points of intersection R; of both single-heading trajectories are found by
equating II, 5 and II, 6:
2¢c xpc08 6 = 0.

So if 6#%: x; = 0.

The points of intersection R, therefore lie on the chord PQ.
Substituting x, = 0 in II, 6 one has:

cxy sin 6 + p (xy, 0) = v (o, 0),
o (0, 0) —y (d, 0)
cd

or dp (53, 0) + (v, — d) p (0, 0) — x, v (d, 0) =O. (L7

This is an equation for x,, the solutions of which give the points R;. It may be
noted that the equation II, 7 for the points of intersection R; is independent of the
true velocity c¢. Therefore in a given field of flow all single-heading trajectories
from a given point P to a given point Q and vice versa intersect each other at fixed
points R; on the straight line PO, whatever the value of the true velocity c. The
existence of such “points of concentration” may be of considerable importance
for air traffic control in aviation (see fig. 11, 3).

or + L4 (Xl’ 0) =Y (0’ 0)’

Fig, II, 3.

If v (d, 0) = v (o, 0), equation II, 7 reduces to:

LY (xla 0) =Y (Oa 0)'

The points of concentration on PQ are then found at those points, where the
value of y is equal to the value at the starting point or terminal point. In other
words the points of cencentration are the points of intersection of the stream-line
v = (0, 0) and the straight line PQ. They can be found immediately in the field
of flow without constructing a single-heading trajectory. The number of points
of intersection of the streamline v = v (0, 0) with PQ, P and Q not inclusive, is,
according to a algebraic theorem, at the most one less than the number of zero-
points between P and Q of the differential quotient f’w i.e. the number of maxima

1
and minima on the stream-line w = vy (o, 0) relative to the chord PQ.

The points P and Q are also concentration points. The points R, and P and Q
are interchangeable, for if the starting point and terminal point coincide with points
R; then P and Q become concentration points for the set of single-heading trajectories
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through those two points. If two or more concentration points coincide, the single-
heading trajectories are tangent to each other at these points (fig. I, 4).

Fig. II, 4.

IV. Single-heading trajectory through a singular point.

In fields of flow with a stream-function 9 (x;, x,) singular points may occur,
2% and z% vanish simultaneously. In aerology for instance singular points

1 2
occur where the height z of the chosen standard pressure surface has a maximum,
minimum or stationary value, corresponding to the centres of anti-cyclones, depres-
sions and cols.

For a critical value ¢, of the true velocity the trajectory PQ will pass through
a centre L. B

In figure 11, 5 the orientation of the pseudofield ¢, is such that PS is the pseudo
streamline through P. PS is also the x;-axis of a coordinate system. Draw through
Q a line QT parallel to PS and drop the perpendicular LM, which intersects QT
at N. Now according to II, 1, the single-heading trajectory is given by ¢ + ¢ x,
= A,A constant along the trajectory. Since the single-heading trajectory must pass
through P (o, o) it follows

that
A — P, ~NNL

p + ex, = yP.

where

or

The point L must also lie
on the single-heading tra-

jectory:

PE 4 X = yF,

where x, is the ordinate of -
L:% — ML (L7
So
P__ oL
ML= "%
c

k
Furthermore if 4, is the
drift angle QPS then
MN = d sin §,.
According to 11, 3: Fig. I, 5.
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P___ .,Q
MN =¥ "%

ck
MN _ wP—po
ML yP — L

b

and (11, 8)
The value of this ratio depends only on the values of the stream-function
p at the starting point, the terminal point and the singular point.
Since —ﬁ%i’ = Q;' the point S on QL can be determined. Then ML is also known
and it follows that:
P — yL
, = —— IL 9
=L a1, 9
V. The time of navigation.
If the addition method of Maxwell is applied, the time of navigation T,
may be obtained according to partl, 7 by measuring or calculatmg the area
of a strip between two neighbouring sum lines » = y -+ ' and P+ Awp

Ty = lim —-l—_ NN (11, 10)

AG—-0 Ay
where Opy is the area enclosed by the single-heading trajectories pand p + Ay
and the normals from
P and Q to the tra-

jectory p + A (see

also fig. I, 6).
VI. Symmetry pro-
perty.
— Because of the sym-
/—'7’" i) i o
.”‘///{’III‘I,/'I.III/’HI”"""‘ T= Maxwe 11 the

single-heading trajec-
tories in a wuniform
field of flow can also
be interpreted as
pressure-pattern tra-
jectories of a stream
Fig. 11, 6. navigation in a uni-
form recti linear field
of flow. If for instance the stream velocity of the given uniform field is equal to u
and the true velocity of the ship equal to c, the single-heading trajectories are also
trajectories for a ship with a true velocity  in a uniform recti linear field with stream
velocity c.
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Examples.
Single-heading navigation in uniform circular Sflow.
The stream-function v is: 9 = u v x,® 1+ x,*, with u constant. In polar coordinates: ¢ = ur,
Ug = It u, = 0.

According to formula II, 1 the equation for the single-heading trajectories is
u \/xl" + x.f—}- Xy =T,

where ¥ is a parameter, or in polar coordinates:

Y

r=——2>%1
- ¢ sin a

ai 1n

This may be written:

=g

r=— . @ € =

’ l‘ ’
1+ g
€ COS ( G)

where « is the velocity parameter defined in part I, 1. The solution now consists of a singly infinite

set of conics with z as parameter, the centre of the circular flow as focus and an eccentricity given
i
c

by ¢ - The trajectories also form a set of similar curves with the origin as centre of similitude.

u
The following cases may be distinguished:
a) Uniform circular flow with unlimited manoeuvrability (¢ > 1). Here the single-heading trajectories
are hyperboles.
b) Uniform circular flow with limited manoeuvrability (e<< 1). The single-heading trajectories
are ellipses.
©) Uniform circular flow with ¢ = 1. The single-heading trajectories are paraboles. 1
In the first case the common asymptotic directions through the origin, defined by sinox — — —,
are also integral curves of II, 11 and are obtained, when P-==0. €
According to II, 2 the trajectories can be constructed by means of the addition method. This
has been shown in fig. II, 7 for case a.
The time of navigation can be computed by means of II, 10. First the equation of two neighbouring

trajectories must be found. The trajectory % is given by r —— ¥ and the trajectory ¥ + AP

P AP u-+ csine
u+ csina’

For a sufficiently small value of A% the area O A of the strip between these sum lines is approxi-
mately equal to the difference between the areas of the sectors OP’Q’" and OPQ (fig. I1, 7).

by r' =

Q [v]
P (p + Ay Yt 2
zsl — ) dy — _
OV‘/’ 'J ¢ r') da 1}}-,[ %(u—}- csina)® (v csin a)? o
Q P .
—1 f 3 2P AP (A% 2
N p Wu+csinef  (u+ csinaf

According to 1I, 10 the time of navigation is:

Q

Q
. 1 - P iy do i
Top =1 — 3 A —  _da+3(AYPR | —— (.
& A-,:-,T)O Aw% w!(u%— csinaz)zda Fa(4yy ;J-(ll-’r ¢ sin «)*
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77 4 ~ | N W
1 7 77T 7R N N W ¥
1 7 7 : A N W
(k]
> /\
e =t Ul Wb N 7 I~ I~ —_
Fig. 11, 7.

When taking the limit for A% — O this reduces to:

Q _ Q
Ton = .[ —w——d“ b f !

Fi (u + c¢sin a)® F u-t csina
Q 2
= f r_ do = —— x area of sector OPQ (see fig. II, 7).
P ¥ Yy

So Tsp = —;)- » area OPQ.

Applying the symmetry property to a single-heading navigation in a field of uniform circular
flow the following results are obtained (cf. 11, 2; VI).

a’ In a uniform rectilinear field of Jimited manoeuvrability the pressure-pattern trajectories associated
with a circular stream navigation are hyperboles.

b In a uniform rectilinear field of unlimited manoeuvrability the pressure-pattern trajectories
associated with a circular stream navigation are ellipses.

¢’ In a uniform rectilinear field, where # = ¢, the pressure-pattern trajectories associated with a

circular stream navigation are paraboles.
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Fig. 11, 8.

Solid rotational flow.
The stream-function y is: p = I% (x* + x,%). The single-heading trajectories according to II, 1

are given by ‘I;f(xl2 + %) + cxy = A with A constant, or in polar coordinates:
r*+ 2arsina+ P = 0. Pa parameter, a — I.i

This represents a set of concentric circles with its centre M on the limiting isotach r = a. For
any other heading the solution remains formally unchanged and the figure has only to be rotated
through an angle about 0. The doubly infinite set of single-heading trajectories consists of all the
circles centred on the limiting isotach, r a(e=1).

Here also the single-heading trajectories can be constructed by means of the addition method
of Maxwell (fig. II, 8). The symmetry property however cannot be applied because the field is
not uniform. Although the time of navigation can also be calculated directly by integrating along
the trajectory, it will be seen that for circles centred on the limiting isotach the time of navigation
is self-evident. For the sum field of a solid rotation and a simple translation is again a solid rotation
centred on the limiting isotach and with the same velocity as the original field. Since the figure of
the single-heading trajectories is identical with that of the given field of flow, the stream-function
of the sum field % = u -+ 9’ has the same form as Y. Now p = Iic . r%, 5o in the sum field P = g R?,

where R is the distance measured from the centre of the sum field.
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According to II, 10: T, lim ! (o]
s . sh, = s .
Ap—0 Ay P

The area OA7 of a strip between two neighbouring “single-hcading circles” ¥ and P
is equal to R.¢". A R. (sce fig. 11, 8).

Since AY = kR AR,
_ P AT
Opp = = Ay.
X I q)l . q)l
So: Ten — lim — . AY 3
i Vig—->a Ay k k

which is self-evident.

ETC.



PART HI
THE VARIATION PROBLEM IN AERONAVIGATION
Introduction

The problem of finding the path which minimizes the time of travel of a body
travelling with a constant true velocity from a point P to a point Q in a moving
fluid arises in different forms of several branches of physics. One of the best-known
problems is found in the theory of light, where according to the Law of Fermat the
path of a ray of light is a minimizing extremal with respect to all adjacent paths.

This law is based on the minimizing property of the path of a ray with respect to
Q
the integral fn - ds, where n is the refractive index of the medium under con-

P

sideration. If n is constant throughout the medium the rays are all rectilinear, but if
n is a function of the space coordinates, i.e. if the medium is non-homogeneous, they
are curved. If a discontinuity exists in the medium, for instance at the boundary
surface of two media with different refractive indices, the rays will be refracted.
This refraction is governed by the Law of Snellius: sin i = constant, or
the numerical aperture, which is the product of the refractive index and the sine
of the angle of refraction i, is constant along the path of a ray. If the boundary
surface is impermeable to light the rays will be reflected according to the law of
reflection: the angle of incidence is equal to the angle of reflection.

If the refractive index n is a function not only of the space coordinates, but also
of the direction of a ray of light, in other words if the medium is neither homo-
geneous nor isotropic, the analogy with the variation problem of aeronavigation
is complete. For this is the problem of finding an arc, which minimizes the line

Q
intregal f {1_;, where w is the total speed of the ship, which depends both on the
w

P
position of the ship and on its heading. Non-isotropic media in which the velocity

of light depends on the direction hardly occur in nature. A special case is that of
crystals with double refraction.

The analogy between the Law of Fermat and the variation problem of aeronavig-
ation was pointed out by Frank 3.

The laws of refraction and reflection also occur in aeronavigation though in a
modified form. Also the principle of Huygens described in his “Traité de la
lumiére” (1690) is found again in aeronavigation. The figure of rays of light and
wave fronts is shown to correspond with the complete figure of time fronts and
extremals.

Although the problem of aeronavigation was first studied by Giblett, who
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worked out a method of constructing extremals (4), Zermelo (5) was the first to
for mulate the problem as a problem of the calculus of variation, in a lecture at Prague,
titled: “Ueber der Navigation in der Luft als Problem der Variationsrechnung”.
The solution of the problem, now known as the “Navigation equation of Zer-
melo” applies to non-stationary plane currents. In his text-book “Variations-
rechnung und partielle Differentialgleichungen” Carathéodory gives a
solution of the same problem, but now for stationary ocean currents (6). This
solution is derived by means of 2 Hamilton function.

Since the present problem belongs to the simplest class of problems of the calculus
of variations, the navigation equation of Zermelo is derived in this chapter
using the Euler-Lagrange differential equation. A second interpretation of
the problem is given by means of the theory of Hamilton-Jacobi, and the
theory of the indicatrix and the complete figure of Carathéo dory in order
to illustrate the connection between this problem and the principle of Huygens.

In the present treatment the principles of the calculus of variations are applied
without proof.

1. The navigation equation of Zermelo

The variation problem may be formulated as follows:

Given two points P and Q in a plane stationary field of flow, to find the pressure-
pattern trajectory along which a ship will travel from P to @ in the shortest possible
time.

Since the solution of the problem so formulated has to satisfy certain boundary
conditions at P and at Q it is for the present not certain that such a pressure-pattern
trajectory exists. N

The flow will again be defined by means of a vector field u (uy, up) where u; and

> —>
u, are the flow-distribution functions u; (x;, X2) and us (xy, x,). The true velocity

vector ¢ (¢ cos &, c sin £) has a constant magnitude.

— — — —

The sum field is again a vector field w (w1, wy) with w = v + ¢

In general the integral for the time of navigation has the form:
T = [F (n %30 30, %) df

where F must be a positive homogeneous function of the first order.
Supposing that everywhere X, = o one may write for T

T = [ fxs, %0, p) s, (UL, 1)
where according to I, 5:
p T _mesine dxy (11, 2)
wy, X, U +ccosé dx;
1 1

According to I, 5: ==,
Wy u; + ccosé

dx . . .
and T = I—L—, where £ is related to u;, u, and p by the steering equation.
u; -+ ¢ cos
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It is supposed that f, , f, and f,, exist and are continuous. Primarily is is supposed

that u (xy, x,) is defined and continuous with continuous derivatives in the whole
field of flow. The present variation problem differs from the classical problems in so
far as the variation of p is bounded in an interval Pr < p < p, where p, and p,
correspond to the tangents to the indicatrix through its base point (see fig. I, 2c).
Besides p is determined implicitely by £. With each value of p correspond two values
of §, except for p = p, and p = p, with only one value & = £, and & = &, respectively
which satisfy the relation ¢, = ¢ + uy cos & + u, sin & = 0. So, if & varies in the
interval &, £ &, for which ¢, = o or £ varies in the interval & <& ¢, for
which ¢, <o, p varies in the interval P1<p <p, Now f and J»» have ¢, in the
numerator. See III, 5 and III, 13. Therefore ¢, = 0 must be excluded.

From the above considerations it is clear that the problem can be solved seperately
for the case that everywhere along the trajectories ¢, > o with & <& <&, and for
the case that everywhere along the trajectories ¢, << o with &, <& <§£,. However,
it will be shown that for ¢, > o only minimizing extremals can exist and for ¢, <0
only maximizing extremals (see III. 2). Now supposing e is a minimizing extremal
through the points P and Q with time of navigation T, while y is an admissable
trajectory through P and Q in the neighbourhood of e (with everywhere ¢, > 0)
and time of navigation T,, then T,>T,. Along y a second manoeuvre is possible
with everywhere ¢, < 0 and time of navigation 7. Since for this manoeuvre along

— —

v at every point the total speed w = |u -+ ¢ | is smaller than the speed for the
first manoeuvre along , it follows that always 7,'> T, > T,. Therefore e is also
a minimizing extremal for all trajectories in the vicinity of e, along which ¢, < o
(62 <& < &). A similar result is found for maximizing extremals. Summarizing
one finds that the extremal e is a maximizing or minimizing extremal for all tra-
Jectories in its vicinity, along which either ¢, <o, or ¢,> o.

The problem remains unsolved if along the trajectories the sign of c, changes,
in other words if the trajectories contain anomalous line elements (0 <& < 2=).

In order to get an extreme value for the time of navigation T the first requirement
is that the trajectory is an extremal, in other words the trajectory must be a solution
of the Euler-Lagran ge differential equation:

d
Se.— (Klf;, = 0. (111, 3)
Writing 111, 2 in the form p = Y2 and taking x;, x, and p as independent
Wy

variables, partial differentiation with respect to these variables leads to the following

expressions: ! ow
0=w, 2 __ hl,

Xy Xy

on oW,
=W —2 — iy 1,

X5 X,

¢ (wy cos & + w, sin &) o

. 11, 4
w2 op ( )
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Now according to I, 8 and I, 5 the effective true velocity is:
¢, = ¢+ uycosé + upsing = (ccos& + u)cosé + (csiné + up) sin& —
= w, cos & + w, sin &.
From the last relation of III, 4 it follows that:
U owt
op ccﬂ'

The two terms of the Euler-Lagran ge differential equation 111, 3 become:

PRI S sin at, 5)
w2 op owyt p ¢,
1 le
S = rah

Substituting these terms in the Euler-Lagrange differential equation one

gets, 1 dwy d siné

or : DL”‘—d( ! )=o, (11, 6)

wy 0x,  dt \wycotané + wp
1 dw sin & cos & dw dw sin2 W, dw W d&
i ) )
Wy X, c, X1 %, c, 1ax, %%, dt
Using the second relation of III, 4 and substituting for ;‘l’?:
Xg

((l;’: = sm&cosl;'b——}—s 125—7——

2

(ce‘.! — Wy, sin E cOS E —_ W22 sin 25) bw,
b
Xy

wy
dé Wy f 0w

P W,
2 — sin& cos § 1 sin2g 202 cos? 25in& cos€ -
dt X, x4 3 DX, Wy dxg

Using the second relation of 1il, 4 again, the equation finally becomes:

dé _ ow Wy
dr Dxl

Wy b}

n§ -+ ( ) sin& cosé — 33_"_1 cos 2. 1115, 7)

X2

oXy bx2

Now differentiate the components w; = u; + ccoséand wy = Uy + ¢ sin & partially
with respect to x; and x;:

W 9 . 2
1= .il. —csiné i,
X, 90Xy Xy
W du ) o
P - et S c 51n§ > s

X, Xy Xy
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oW, du. d

2 2 L ccos& - J ,
Xy X, dx,;
Wy OUy

= | ccosé D—E
Xy Xy OXy

Substitution of these terms in equation 111, 7, finally leads to the well-known
navigation equation of Zermelo:

s duy .,
— = —=gin2¢&
dr dx, : 5+<

ou;  duy
0x, X,

) siné cos & — g”l cos? £ (I, 8)

2

The extremals of the variation problem are determined by this equation and
the steering equation.

If at a given point the coordinate
system is so chosen that the x,-
axis coincides with the direction
of navigation, then the navigation | e=—=cmd oo
equation reduces to <

dE ot ady

_-=— 11, 9
dt DXy ( )

———

for sin & = o, cos & = 1.

2"
According to 111, 7 the navig- { -
ation equation also reduces to 1
& dw ———= |
@ am e

where 1w, is identical with the Fig. 1, 1.
effective true velocity.

This result may be interpreted as follows: Along an extremal the ship must be
navigated in such a manner that the change of the heading per unit time is equal to
the shear of the effective true velocity or to the shear of the Sflow component in the
direction of the main axis. The Ship must be steered in such a manner that its axis
turns towards the direction in which the tail component decreases or the head com-
ponent increases (fig. 111, 1).

If both sides of the navigation equation III, 4 are divided by cos? &, this equation
may be written in the form:

&
=Y a2 1 (ﬁ _ %) tan fearoll (111, 10)
X 0X; X, OXy

In addition to the navigation equation of Zermelo, which contains an ex-
pression for the rate of change with time of the heading along the extremal, one
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can also derive an expression for the rate of change of the effective true velocity
¢, along the extremal.

After a calculation similar to the one required for the derivation of the navigation
equation, an expression is obtained for this rate of change with time of ¢, along
an extremal. This calculation will not be reproduced here, but the result is given

below:

oy RIZ2S

 sin2é{ . (I, 11)

Xo

ic—“ =c, 3b—ulcos2§ 4+ (
dt Xy

The equation states that the sign of ¢, does not change along the extremal. For

RI72ANN
4+ —") sin& cos &
X, 0Ny

one can write [:Ict_p — A()c,, where the coefficient 4 of ¢, is a function of ¢ only
along the extremal. Suppose in a t-interval (o, 1,) ¢, = o. Since A (¢) is bounded:

.. d .
A (1) > — k (k positive). That means TICI—E > — ke, or ¢, > c0)e*®> 0. This

isin contradiction with the supposition ¢, > 0. 1f at a point of the extremal ¢, is positive
(negative), c, will be positive (negative) everywhere along the extremal. Therefore
the following theorem holds:

The sign of the effective true velocity along an extremal is permanent.
de,

Along the limiting curves ¢, = 0 and — (0. This means, that the limiting

curves are solutions of I, 11 and may be considered as solutions of the navigation

equation of Zermelo.
As ¢, <0 only occurs in regions of limited manoeuvrability the extremals along

which c. <0 will not leave this region.

Some special properties.
In irrotational fields of flow a second interpretation of the navigation equation

is possible. Since gul = b_ug, the simplified navigation equation of Zerme lo
X X1
I, 9 may be written:
s dup
dt Xy

In words: In irrotational fields of flow the rate of change of the heading with
time along an extremal is equal to the shear of the flow component at right angles

to the main axis.
If the right hand side of the equation III, 11 is identically equal to zero, c, will
de,

be constant along every extremal. The identity = = 0 occurs, when all the
. . . . . du ou
coéfficients on the right hand side are identically equal to zero, so —b—l = a—? =0
Xy X5
and D_ul + D_u_z. = (.

dxy 09X
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1t follows from the first two relations that , and u, are independent of x; and x,
respectively, so one may write:

u; = F(xy) -1,
u, = G (x;) + m, where / and m are constants.

The third ralation requires that
F'(x) = — G’ (x).

This can only be achieved if both derivatives F'(x,) and —G’ (x;) are equal to
one and the same constant k:

F(x)) = — G (x)) = k.
The solution for the field of flow is therefore:

uy = kxy + 1,
Uy = — kxy + m. (I, 12)

-

The field of flow u (uy,u,) in which the effective true velocity along the extremals
is constant, therefore consists of the superposition of a translation u; = /, u, = m
and a solid rotation u; = kx,, u, = —kx, with angular velocity k. As such a super-
position is equivalent to a simple displacement of the field of rotation one finally
finds:

Both in a field of solid rotation and in a uniform rectilinear field of flow the effective
true velocity is constant along every extremal. _,

In the trivial case in which no field of flow u exists the navigation equation of
Zermelo reduces to the indentity:

df =
dt
or& is constant along an extremal. Substituting for £ in the steering equation one has:
dx.
“2 — tan & — const.,
dx,

the solution of which consists of straight lines making an angle & with the x;-axis.
This solution applies to the problem of finding the trajectories along which a body
moving at a constant true velocity ¢ will travel in the shortest possible time from
apoint P to a point Q. It also expresses the principle of Fermat for homogeneous
isotropic media, where the true velocity is identical with the velocity of light.

2. The Legendre condition

Minimizing and Maximizing extremals.

Whether an extremal arc is a minimizing or maximizing extremal arc it is necessary
that along the extremal arc the condition of Legendre is satisfied. Along a
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. 1 [
minimizing extremal arc the expression Fy = — f, = —f,, > 0should hold.
Xy Wy
Along a maximizing extremal arc it is necessary that F, << 0.
. . sin . .
Partial differentiation of f, — e with respect to p gives:
Ct’
f P ! D siné 9 i
ooptt yp o dp wycotané - w,
cotan & Ay Dy .w; : b3 )
sin? & op Ep sin®& 3p .
ct
0 .0 P 2
Now M csing —E, Mo ¢ cosfb—f, % _m ,
op op op op o}y c.c,
1 wy? ]
) Fl = — =1 = . I, 13
1 w3 flm wydc ¢ 3 ce? ( )

As the sign of F; is entirely determined by the sign of ¢, the effective true velocity
along a minimizing extremal arc must be positive and along a maximizing extremal
arc the sign must be negative. According to 111, 11 the sign of c, is the same along
the entire extremal. Therefore the extremal can be a minimizing extremal, if at
one point on the extremal ¢, > 0 and a maximizing extremal if at one point on the
extremal ¢, <<0. Since according to chapter I, 3 the sign of ¢, is indicative of the
navigational character of the field of flow the following results may be mentioned:

In a field of flow of limited manoeuvrability or in fields of flow with both regions of
limited and unlimited manoeuvrability minimizing and maximizing extremals can exist.
Since ¢, <0 only occurs in regions of limited manoeuvrability, maximizing extremals
can only lie in regions of limited manoeuvrability.

In a field of flow of unlimited manoeuvrability (c,> 0) maximizing extremals do
not exist.

For anomalous line elements on limiting curves along which ¢, = 0 the expression
F; has no significance.

1t is stated once more that these results hold for admissable trajectories along
which everywhere ¢, <0 or ¢, > 0. Trajectories along which the sign of ¢, changes,
that is, trajectories which for ¢, = 0 contain anomalous line elements, are excluded.

The limiting curves may be regarded as extremals. This is trivial because in its
own vicinity a limiting curve is the only trajectory, which exists between two of
its points. The limiting curves cannot be varied for if a ship moving along a limiting
curve abandons the curve at any point it can not get back to it but for a long way
round.
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3. The Jacobi condition. Fields of extremals. Weak and strong extremes.
Absolute extremes

For an extremal arc e through the points P and Q to be a minimizing or a maxi-
mizing extremal arc it is generally necessary that, in addition to the Legendre con-
dition being satisfied, P and Q are lying in between two comjugate points. In a
few cases, however, Q may coincide with a conjugate point of P. The conjugate
point of a point P on an extremal e is identical with the first tangent point of e with
the envelope of the set of extremals trough P, often called focal curve. The condition
to find this point is equivalent with the well-known Jacobi condition.

When the envelope of the set of extremals through P is known, an “improper”
Jield of extremals with P as nodal point can also be defined. For this field is formed
by extremal arcs with P as starting point and their first tangent points with the
envelope as terminal points.

Since in aeronavigation the time of navigation depends on the direction of travel
along the extremal one can also consider the set of extremal arcs through P with
P as terminal point. On any extremal arc with P as terminal point a point P may
be found for wich P is the conjugate point. The points P again lie on the envelope
of this set of extremal arcs. Therefore a second field of extremal arcs through P
may be considered, consisting of extremal arcs with P as terminal point and their
first tangent points with the envelope as starting points.

In this manner fwo improper fields of extremals can be found through any given
point P.

Since in the present variation problem both minimizing and maximizing extremals
may occur, a distinction must also be made between sets of minimizing and sets
of maximizing extremals. Both for the minimizing and maximizing extremals both
improper fields described above can be defined. Therefore a total of Jour improper
fields of minimizing and maximizing extremals respectively can be found with nodal
point P. Two by two the fields are determined by the sign of ¢, For c,> 0 two fields
of minimizing extremals are found, for ¢, <0 two fields of maximizing estremals.

The case of four fields of minimizing and maximizing extremals with nodal point P
only occurs in regions of limited manoeuvrability. The fields may partially overlap.
It these four fields have a common section and if a point Q is chosen in that section
there will be at least two minimizing and two maximizing extremals passing through
P and Q, each with a definite sense of direction.

Fields of maximizing extremals always lie entirely within the region of limited
manoeuvrability of a field of flow because according to 111, 2 maximizing extremals
cannot leave this region. Therefore, if an arbitrary point Q is given in the region
of unlimited manoeuvrability, only minimizing extremals will be found between
P and Q.

The minimizing or maximizing properties of an extremal are sensitive to the
way in which the trajectories are varied. Therefore two types of extremes can be distin-
guished. An extremal furnishes a weak extreme for the line intregral, if there exists
a neighbourhood N in x, x,, p-space of the elements (x,, x,, p) on the extremal,
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such that the value of the line integral along the extremal is either greater or smaller
than the value given by every other admissible trajectory, whose elements lie in
the neighbourhood N. An extremal furnishes a sirong extreme for the line integral
if there exists a neighbourhood F of the points (xy, x,) on the extremal such that
the line integral along the extremal is either greater or smaller than the value given
by every other admissible trajectory interior to F. Now consider an extremal arc
e between two conjugate points P and Q. Suppose that e in the neighbourhood
N of e can be embedded in a field of extremal arcs. Then the calculus of variation
shows that these arcs yield a weak relative minimum if F; = L%{ >0, 0rc,>0
[

at any point on the admissable trajectories within N and a weak relative maximum
if F, <0, or ¢, < 0 at any point on the admissable trajectories within N. However
this condition is automatically fulfilled, because by solving the navigation problem
only those trajectories were admitted for which at any point ¢, > 0, or ¢, < 0.

It can be easily shown by means of the well-known E-function of Weier-
stras (c.f. part III, 8) that under the same conditions the extremal arcs also
yield a strong relative minimum or maximum.

In practice the chief problem is to find

not just a minimizing extremal between

P two points P and Q, which furnishes a

relative minimum for the integral of the

c * Q time of navigation, but rather the ex-

tremal, for which the value of the inte-

gral is an absolute minimum with respect

to all trajectories through P and Q within

Fig. 111, 2. the region B, in which the variation
problem is defined.

Let an arbitrary minimizing extremal e be given with starting point P and conjugate
point P (fig. 111, 2). Every arc PQ of this extremal furnishes a relative minimum
for the time of navigation provided Q lies between P and P. If Q moves along the
arc PP, then, according to a theorem by D ar b o ux, there is a point Q* between
P and P such that the arc PQ* furnishes an absolute minimum for the time of
navigation if Q lies between P and Q*, but only a relative minimum if Q lies between
Q* and P. The point Q* is the point of intersection of the extremal arc e and a second
extremal arc PQ not in the neighbourhood of e, but along which the time of navigation
has the same value as along e. The locus of all points Q* on the extremal arcs of
an improper field of minimizing extremals with nodal point P is an important curve,
which may be used to decide whether along a minimizing arc PQ the absolute mini-
mum can be realised. In chapter 1II, 6 it will be shown how this curve can be con-
structed using the complete figure of Carathéodory.

The curve connecting the points 0* in a field of extremals plays a similar role
with respect to the absolute minimum as the envelope of the improper field with
respect to the relative minimum.

o)

ol
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4. Example

The extremals in a uniform rectilinear field of flow.
The field of flow is defined by the equations u, — k, u, = 0.

The navigation equation of Zermelo becomes: ;{g = 0 and the solution is

& = £, = constant. So the extremals in a uniform recti linear field of flow are simply
single-heading trajectories. The trajectories are found by integrating the steering

€q

uation after substitution of & = &;:

x, =k + ccosé&,,
X, = csiné,.

The solution is X, =k(1 4 ecosé&y)t

x, = ke (sin&y) ¢,

c. .
where ¢ = % is the velocity parameter.

Therefore the extremals are straight lines. de
It follows from the navigation equation for c,, which here reduces to —° = 0,
that ¢, remains constant along an extremal. The value of c, is given by:

- —

c,=c¢c+-u.c=c+ kcosé& = k(e -+ cosf).
c

Improper fields with nodal
point P.

The fields consist of sets
of straight lines with P as
common point.

1I.

Three cases may be dis-
tinguished:

« L Uniform recti linear fields
of unlimited manoeuvra-
bility (¢ > 1). In this case
Fig. 11T, 3,a. Fig. 11, 3,b. there are two improper

fields of minimizing ex-
tremals (c,> 0). The sets of straight lines cover the entire interval 0 — 2n)

(fig. II, 3a, b).

Uniform recti linear fields of limited manoeuvrability (¢ << 1). The sets of straight

lines cover a sector bounded by the limiting straight lines g1 and hy which are

defined by the condition ¢, = 0 or cos & = — &.

Since c, can be either positive or negative there exist according to part 11I, 3

two fields of minimizing and two fields of maximizing extremals (fig. 111, 4a, b).

A point Q within the sector bounded by g, and /, can be reached from P both

along a minimizing and along a maximizing extremal. Conversely P cannot be

reached from Q (fig. 11, 4a).
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III. Uniform rectilinear fields in which the stream velocity is equal to the true
velocity ¢ (e = 1).
The limiting angle is now equal to z. In these fields ¢, = 0. Only minimizing
extremals exist. There are also two improper fields of minimizing extremals
(fig. 11, 5a, b).

Fig. 11, 4,a.

Fig. 11, 4,b.

In all three cases no conjugate points are found on the extremals. For the extremals
have no envelope, excluding the limiting curves g, and h,, which themselves may
be regarded as the limit-
ing extremals. Since the
region B, in which the
g =M &N variation problem is de-
fined, must be contained
within the manoeuvra-
< p P < ble sector H,, if navi-
gation from P is consi-
R . dered, or in.the sectqr

ot Lo H,, if navigation to P is
considered, it is entirely
covered by the improper
fields of extremals with P
as nodal point. Therefore
the minimizing and maximizing extremals furnish an absolute extreme for the time
of navigation.

The boundary value problem can always be solved in this case since through
any two points P and Q only one minimizing or maximizing extremal PQ or oP
can be constructed, provided one of the points lies in the manoeuvrable sector
of the other.

Fig. I11, 5,a. Fig. 111, 5,b.
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5. The theory of Hamilton-Jacobi, the theory of the indicatrix and
the complete figure of Carathéodory

By means of the theory of Hamilton-Jacobi a second solution of the
variation problem can be found, which presents a very clear picture and which in
special problems admits a simple interpretation. This theory also contains the
elements required for a quick graphical construction method and clarifies the con-
nection which exists between the present variation problem and the principle of
Huygens in the theory of light. Using the results of this theory the navigation
equation of Zermelo can be derived in an elementary manner.

Hilberts invariant integral.

Consider a field of extremals and an arbitrary rectifiable curve y within the field
through two points P and Q. Then the line integral

J = fy {f(xlv Xa, P) — pr (xy, Xy, [7)} dxy f1) (g, xy, 12} dx,,

where p refers to a line element of a field extremal at a point on y, is independent
of the path of integration and only depends on the position of the terminal points
Pand Q. Thisis Hilberts invariant integral, which, in case y coincides with

a field extremal e, reduces to the ordinary fundamental integral f S G, Xy, p) dx,.

If P is kept stationary and Q is allowed to vary, the valueof Hilberts invariant
integral J is a function of the coordinates of Q only and one may write:

J = W (x, x,) + a constant.

The value of the integral J along an arbitrary curve y is determined by the values of
W at P and Q respectively:

Jpo = Wo — W,.
The integral J may also be written:

w
J = f del+de2’
y X Xy
QW
where — = f—pf,
o, S—rt,
W
ax, TV

In the present problem W is identical with the time of navigation and therefore
will be called time function.

According to III, 5 f, and J— pf, may be expressed in ¢ and c,:

sin & 1 Wy sin&  w,cos& -+ w sinf — w,siné  cosé&
fm= ’f—an=—_-2*’= ! 2 2 =

e, Wy owoc, wic, c,
50 W _cosé ng W _sin £ (111, 14)

0x; c, Xy C,



48 THEORETICAL ASPECTS OF AERONAVIGATION AND

From these relations two important properties can be derived, the gradient
property and the property of transversality.

1. The gradient property.
Eliminating the heading & from the relations 111, 14 one finds:

IWN2 W2
2 V(O WYL,
“ %(an) +<bx2>§

or| (grad W) = -l;. (111, 15)
p

[

The relation states that: the gradient of W is equal in magnitude to the reciprocal

absolute value of the effective true velocity c,.
It follows that, if a set of curves W = constant is drawn at unit intervals, the

distance between the curves is proportional to c,.

11. The property of transversality.
Eliminating the effective true velocity c, from the relations III, 14 one finds:

W 3 QW
cosé — —sinf — =0,
Xy Xy
/’
Vd
/s
s
-
7
-
-
”~
- ol
/I
It i
Je r
0,]' ”
.)t /
7 € T
/
7’ T~ -
7/ e -
// %( e —— ——
c -
/AT
-
/ <,
A o ey S -

Fig. I1I, 6.
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or in vector form: ¢ x grad W= 0. (111, 16)

In words: The vector of the true velocity ¢ associated with a line element on a field
extremal e is perpendicular to the curve W = constant through its Starting point
(fig. III, 6).

If the field formed by the true velocity

>

vectors ¢ is regarded as a pseudo field of
flow, relation III, 16 may be formulated as
follows:

> The stream-lines of the pseudo field of flow
c associated with a field of extremals are the
orthogonal trajectories of the set of curves
W = constant.

A close connection exists between the
field of extremals and the curves W —
constant. This connection will now be
examined by means of the concept of trans-
versality.

Let a point P (x,°, x,°) be given on an
arbitrary extremal e and an arbitrary curve y passing through this point (fig. III, 7).
The curve y is now said to intersect the extremal transversally if the transversality
condition:

Fig. 111, 7.

f(xlos x% p) + (i’ —P) [ (1%, x50, p) =0,

where p refers to a line element on the extremal and p to a line element on the curve
y, is satisfied at P.
In the present problem

1 Wi ] Wil We sin &
f= —_ = P = —= and f;, = —
Wy Wy Wy o

—_
where w; and w, are the components of the sum vector W of the stream vector and

the true velocity vector, associated with a manoeuvre along y. So the condition
here becomes:

1 W, Wy sin &
-+ (_2 — _2) e o,
wy Wy wy/ ¢,
or wi (1w, COSE + wy siné) + wy W, sin€ — w, W, sin & —0
W . W . cC, ’
w, (w, cos W, sin
or 1 ( 1 E + 2 5) i 0.

wywc,
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So the transversality condition finally reduces to:
Wy cos & + wy siné = 0,

or in vector form: o
w.c=0.

-
w is the sum vector directed along the tangent of the curve y. The true-velocity

—_—

vector ¢ is associated with the extremal through P. The curve y therefore intersects

»

the extremal transversally at P, if the vector ¢ at that point is perpendicular to the

curve. Since, according to 1II, 16, the vector ¢, associated with a line element on
an extremal e, is perpendicular to the curve W = constant through its starting point,
it follows that the curves W = constant intersect the extremals of the field transversally.
In other words, the curves W = constant are the transversals of the field extremals.

The lines W = constant are called geodesically equidistant lines. The set of field
extremals and the set of geodesically equidistant lines together form the complete
figure of the variation problem according to Carathéodory(7).

The methodes, described by Galton (8), Giblett (4), Bessemoulin
and Pone (9), can be regarded as graphical integration methods for the con-
struction of this complete figure (see part V).

The description of the problem now corresponds completely to the description
of the principle of Huygens.

In non-homogeneous isotropic media for instance, which are characterized by
a refractive index n, which only depends on the plane coordinates x; and x, the
path of a ray of light from a point P to a point Q is determined by the curve which

Q Q

. - . ds.. . .
furnishes a minimum for the “optical length”: § = [ n.ds orf if v is the ratio
v

P
of the velocity of light in the medium to the velocity of light in vacuum.

Here also the solution of the variation problem can be interpreted in two
ways (10):
1. Using Lagrange’s differential equations one obtains the equation of motion
for a ray of light:

-

d T
i (nt) = grad n, where ¢t is the tangential unit vector.

2. Using the theory of Hamilton-Jacobi one finds:
a. the gradient property:
(grad S)? = n®
b. the orthogonal property:
The path of a ray of light intersects the set of lines S = constant perpendicularly.
The lines S = constant are wave fronts.
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Since the above summary applies to a two-dimensional problem the analogy
with the variation problem in aeronavigation is obvious. With the first interpretation
corresponds the navigation equation of Zermelo together with the steering
equation, while the properties deduced by means of the theory of Hamilto n-
Jacobi are equivalent to the gradient property and the property of transver-
sality. The reciprocal value of the effective true velocity is analogous to the refrac-
tive index and the geodesically equidistant lines correspond with the wave fronts.
Because the optical length S is equivalent to the time of navigation W, the
geodesically equidistant lines will therefore be called tine Jronts. The complete figure
of time fronts and extremals corresponds with the Jigure of rays of light and wave
Jronts associated with the principle of Huy gens.

For example the figure of wave fronts and rays of light emitted by a point source
corresponds with the complete figure of time fronts and extremals for an improper
field of extremals with a nodal point. Since in aeronavigation P may be a nodal
point of four improper fields of extremals, four complete figures may be constructed
about P.

6. The complete figures and the boundary problem

By means of the complete figure of an improper field of extremals the problem
of constructing an ex-
tremal though two given
points P and Q can be
solved in an elegant
manner.

Consider an extremal
e through P and Q, ,
which for the sake of :
convenience  will be \
assumed to be a mini-

mizing extremal with P ==X W=W, +W,—const, >
as starting point and Q

as terminal point (fig. Fig. I1L, 8.

111, 8).

The minimizing extremal belongs to the improper field of minimizing extremals
with P as starting point, but also to the improper field of minimizing extremals with
Q as terminal point. With these fields are associated two complete figures, the time
fronts of which are defined by the time functions W, and W,. These time functions
are normalized in such a manner that W, and W, are equal to zero at P and Q
respectively and positive elsewhere. The value at Q of the time function W, associated
with the complete figure for P is equal to the time of navigation along the minimizing
extremal e. Similarly the value at P of the time function W, associated with the
complete figure for Q is equal to the time of navigation along the extremal e, so:
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T= W]_Q = WzP.

But also the sum of the values of the time functions W, and W, at any point
R on the extremal arc e must be equal to the time of navigation T, so along the
entire arc e the relation:

WiR 4+ WyR=WwQ=W,F=T {m, 17)
must hold.

Conversely it follows that the minimizing extremal is the locus of the points of
intersection of time fronts W, = constant and W, = constant, for which the sum
of the values of W, and W, is equal to the value of W, at Q and of W, at P.

Because of the transversality of time fronts and extremals, the transversal directions
in both complete figures through any point on the minimizing extremal must coincide.
This means that at any point on the minimizing extremal the associated time fronts
W, = constant and W, = constant must be tangent to each other. These properties
also hold for maximizing extremals and may be summarized in the following
theorem:

The extremal through two given points P and Q is the locus of the tangent points
of the time fronts belonging to the complete figures associated with P and Q, for which
the sum of the values of the time functions is constant and equal to the sum of the
values at P and Q.

In figure III, 8 curves may be drawn through points of intersection of time fronts
for which W, = W, + W, = constant, which are important in practice. The time
of navigation along curves composed of two extremal arcs with a corner or
composite point on such a curve remains constant if the composite point moves
along this curve (W, = constant). The time of navigation T is then equal to W..
Similarly as described in I, 6 the curves W, = constant, which form the loci of
composite points of composite extremal arcs PQ along which the time of navigation
is constant, can be regarded as focal curves with P and Q as foci. Since all curves
W, = constant have these foci in common, they form a confocal set.

Fig. TII, 9.
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It is obvious that fig. III, 8 is to be considered as an idealized picture of fig. I, 13.

In III, 3 the occurrence was discussed of a point Q* on the extremal arc PQ, at
which the extremal arc ceases to furnish an absolute minimum for the time of navig-
ation. If Q lies beyond Q* the extremal arc PQ only guarantees a relative minimum
with respect to adjacent trajectories. According to a theorem of Darboux o*
is the point of intersection of two extremals, not in each others vicinity, along which
the time of navigation is the same. Dar b o u x also showed that this point coincides
with a double point of a time front. Therefore the curve connecting the points Q*,
which in an improper field of extremals plays a similar role with respect to the
absolute minimum as the envelope of the improper field of extremals with respect
to the relative minimum, consists of the double points of the set of time fronts,
which forms part of the complete figure associated with the improper field of
extremals.

In fig. 1II, 9 a set of time fronts such as frequently occur in practice has been
drawn together with the “double line” »,. This figure is of great importance in
practice.

7. Hamilton’s partial differential equation

The gradient property and the transversality property are characterized by two
equations which were derived from the components of grad W by elimination of
£ and c, respectively. Since the effective true velocity ¢, also contains the factor &
the components of grad W may be regarded as functions of & (cf. IIT, 14). Elimination
of & then leads to a first-order partial differential equation, which is called Hamil-
ton’s partial differential equation, and which in aeronavigation may be regarded
as the second solution of the variation problem.

The elimination of £ is carried out in the following manner:

From the gradient property it follows that:

V(_aW)2+ (aW)z_ 1 1
a{ dxy ce_-c—l—u, cosé - up sin&’

According to the property of transversality the following relation holds:

cos & 2 tiginig 2 g,
X, RE
QW
2 2 Py
2 V(i—w) +<§‘W) Y% av?/xz MW '
% Y2 c—- + (111 — + u, —) sin &
X, 0x; 0X,

Now according to 1II, 14 and 15
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14
Xy

VEET - (2)

Substituting this in the above equation one obtains:

sin & =

1
2 W2 ’
CV(ﬂ/> -+ (b ) uliy_*_uzil/
X, 0Xa Xy X,
W2 WoaWw &
or (cz—uf) (—) —2u,u, WD - (cz—uzz) (EK) + 2uy oW + 2u, 2 W—l =0.
dx; dx; 0X,y Xy X, T Xy

(111, 18)

This is Hamilton s partial differential equation for the variation problem of
aeronavigation.

In vector form: clgrad W|=1—u.grad W. (111, 19)

The general solution of the variation problem as given by theEuler-Lagrange
differential equations and, in particular, by the navigation equation of Zermelo
together with the steering equation can now also be derived by means of Hamil-
ton’s partial differential equation.

For if W (x; x,, o) is an integral of Hamilton s partial differential equation

P . . W .
and if o is not an additive constant, the relation o B = constant furnishes a
o

doubly infinite set of extremals for the variation problem.

If in W (x;, Xp, ®) o is assumed constant, then W (X1, X,, «) represents the set of
transversals of the extremals W, (x;, Xp, &) = f. For a given value of «, W (x15 Xa, @)
and W, (x;, Xs, ) determine a complete figure.

The complete integral of equation III, 18 contains two constants, one of which
is additive, because the equation does not contain W itself. Therefore the solution
can be written in the form W = W (x;, X, @) + b or F = W — W (x;, Xy, a) —
b = 0. In the (W ; x; ; x,) space this solution represents a doubly infinite set of
integral surfaces. The envelopes of every singly infinite subset of this doubly infinite
set form a general solution of the differential equation. According to a theorem
due to Kneser (11) the extremals in the (x;; x;)-plane are the projections of the
characteristics, which are the limiting positions of the curves of intersection of
adjacent integral surfaces. All characteristics passing through one point form an
integral surface called integral conoid. A complete figure for a point P in the (xy; X2)-
plane then consists of the projections of the above characteristics and of the curves
of intersection of surfaces W = constant and the integral conoid. Since F contains
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an additive constant the integral conoids with their tops on the normal in a point
in the (x;; x,)-plane are equal and similar as well as homologous. A displacement of
the conoid perpendicular to the (x,; Xy)-plane makes no difference except that the
time function W on the time fronts will be differently normalized. The projecting
tangent planes of an integral conoid are also integral surfaces because they form
the envelope of a set of homologous, equal and similar integral conoids centred
on a normal. The true contour, the tangent curve of this envelope and the conoid, is
again a characteristic and therefore the projection of this characteristic, which is the
envelope of the set of time fronts in the (x1; xo)-plane, is the limit of the extremals.

The lines of regression of integral surfaces are important in view of the Jacobi
condition. For instance the characteristics on an integral conoid with top P in the
(x;5 x,)-plane envelop a curve, a line of regression, the projection of which coincides
with the envelope of the extremals through a point P, i.e., the locus of the points
P conjugate to P.

Consider an integral conoid in the (W: X1, Xp)-space with its top at a point P
in a field of flow in the (x,; Xy)-plane W = 0. Consider next a second point Q in
the field of flow and let the normal at O on the (x;; x,)-plane intersect the integral
conoid at a point Q". Through Q' passes the time front W — WQ, where WQis
equal to the distance QQ'. Consider now at Q' the integral conoid with top Q.
One of the characteristics on this conoid is the characteristic through P and Q’ of
the conoid with top P. If at every point on the characteristic a tangent plane to the
conoid with top P is constructed these tangent planes and the characteristic itself
form a so-called characteristic strip. Since every integral conoid is composed of
characteristic strips it follows that also the integral conoid with top Q' contains
the characteristic strip through P and Q'. In other words, the integral conoids with
tops P and Q' are tangent to each other along the characteristic through P and Q.
If now the characteristics of both conoids as well as the curves of intersection of
the conoids with planes W — constant are projected onto the (x;; x,)-plane the
projection figure is the complete figure for the boundary value problem, described
in chapter III, 6. This method again shows that the extremal through P and Q is
the locus of tangent points of time Sronts associated with the complete figures for P
and Q separately.

Through any point of intersection Q' on the normal at Q on the (x,; x,)-plane
and the integral conoid with top P passes a characteristic PQ’. The projections
of these characteristics are extremals through P and Q, each of which guarantees
a relative extreme for the time of navigation. Therefore the number of extremals
through two points P and Q is equal to the number of points of intersection of
the normal at Q on the (x,; X,)-plane and the integral conoid with top P. The extre-
mal furnishing an absolute extreme for the time of navigation corresponds to the
characteristic through P and the Jirst point of intersection Q' on the normal
through Q.

If two points of intersection Q’ coincide, the normal through Q intersects a
double curve on the integral conoid. In that case Q lies on the locus of the
double points of the set of time fronts associated with P. This locus is the



56 THEORETICAL ASPECTS OF AERONAVIGATION AND

projection on the (x;; x,)-plane of the
double curve on the integral conoid (see
fig. III, 9).

, Examples.

1) In the trivial case in which no field of flow
exists the problem corresponds with the prin-
cipleof Huy gens in homogeneous isotropic
media.

Substitution of w; = 0, u, = 0 reduces III,

18 to:
LA W 1A W
dx; ox. s

or: (grad W)* =

A solution of this equation can be written
down at once:

1 .
W (x, X, &) = — (x; Sin ot — vy COS o).
c
where o is a non-additive constant. A doubly

infinite set of extremals is now given by the
relation W, = B = constant, or:

1 .
—(x; cos & + x,sin o) = B.
¢

The extremals therefore are straight lines.
1 .

The set of transversals: = (x, sin o — x, cos &)
c

- constant is now orthogonal with the set of

1 : .
extremals — (x, cos & — X, sin @) = constant.
c

The gradient property and the orthogonatl
property associated with the principle of
Huygens and described in chapter III, 5
apparently derive from a specialization of the
variation problem in aeronavigation.

Fig. 111, 10.

In a (W; x,; x.)-space a set of integral surfaces is given by:

1 .
W = — (x, sin & — X, €OS «).
c

On these plane surfaces, characteristics are found by intersecting the planes with the planes
2
"ﬁ = 0 or l (x, cos o+ X, sin «) = 0.
dat c

Since for any given value of « the plane DD_W ~ 0 is perpendicular both to the integral plane
o

1 . " . ; .
W = — (x, sin & — x, cos a) and to the (x;; x,)-plane, the characteristics are straight lines which
¢
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make an angle ¢ = arc tan — with the (x,; x,)-plane.The integral conoid is found after elimination
c

of « from both equations. The resulting equation for the integral conoid is: W = 1y X2 4 X2,
c

The integral conoid therefore is a cone with the W-axis as axis. The complete figure for the origin
consists of the projections of the characteristics (conic generators) and the circular cross-sections
of the cone and the planes W = constant.

2) In a uniform recti-linear field of flow #; = k, 1, = 0Ha milto n s partial differential equation

reduces to:
2 2 b k4
3 () 4 R - (2 )
dx, Ox, oxy
It is not so simple to find at once an integral W (x,, x,, ) of this equation. However, from the

treatment in part IIT, 4 it follows that the time fronts, associated with the improper fields of
extremals are circles given by the equation:

(xy — Wk)? + x.2 = Wi

.0 d . . ]
After solving for W and calculating D_W and a_”!’_ the results can be substituted in Hamil-
Xy Xa

ton’s partial differential equation and shown to satisfy this equation.

In fig. III, 10 the complete figures have been drawn for the four possible improper fields of
extremals with nodal point P in the case of a uniform recti linear field of flow with limited ma-
noeuvrability.

8. Comparison of times of navigation

It is possible to calculate the difference in time of navigation between a manoeuvre
along an extremal and a manoeuvre along an admissable trajectory by means of
the well-known E-function of Weierstrass. For if the extremal e through

Fig. 111, 11.

the points P and Q can be embedded in a field of extremals and if the trajectory,
for which the time of navigation is to be compared with the time of navigation
along the extremal, lies entirely within the field (fig. 111, 11), the difference in time
/\ W is given by:
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Q Q
A W= }'f(xl: x‘lyﬁ) dxl = fc _f(xla Xoy P) dxla
P P

where Xx;, x, p refers to a line element on y and x,, x,, p to a line element on e. Ap-
plying Hilberts invariant integral, one may write the second term as follows:

Q Q
fﬂf(xl’ X, p) dXy = fy {f Gy x5 ) + (B — p) S (51, X2, p)} dx,.
P P

Q Q
So: AW= J)‘ Edt = Jy {f Gers Xg, p) — f (51, X, p) — (p — P) S (31, X, p) } Xy,
P P

where E = x; { f(xy, Xg, p) —f (X1, X0, p) — (p — p) f, (x1, xs, p)} is by definition
the excess function of Weierstrass.
According to 111, 2 and III, 5 the terms become

! o
f(xla Xo, P) s ) f(xl, Xa, P) = —,
W Wo
Wy = W sin &
])__’ P_:" fﬂ(xl’xzap):— y
Wy Wy c,
where w;, £ and ¢, refer to the extremal and w; to the trajectory y.
-y 1 We Wy sin
SO: E:;vlg:____<_:-__g E;
c,

wowy wowW

Substituting for ¢, = w; cos & 4 w, sin & one gets

wy (wy €os & w, sin &) — W, (wy cos E-+w, sin &) — wyw; sin &+ wew, sin &

E *
Wy c,
or:
E_ 08 E (wy—wy) + sin & (wy, — w,) _
Ce
cos& (i + ccosé —uy —ccosé’) + siné (u, + csiné — u, — ¢siné’)

C

where the heading & is associated with p and & with ;
g cil—cos@E —o}

¢

So: (111, 20)

Finally the time difference becomes

Q
aw= [,z C=aly, ar, 21)
P
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This formula can be used in practice, where the time difference is an important
factor. For instance in aviation the time difference gives an idea of the economic
efficiency of flying along the minimizing extremal usually called “minimum flight
path”. By means of the excess function, it can also be decided whether an extremal
yields a relative strong maximum or relative strong minimum. Since the sign of
E is entirely determined by the sign of c,, one finds the same results when applying
the condition of Legendre (cf. part 111, 3).

9. The indicatrix

Carathéodory introduced a curve in the calculus of variation, which
shows much resemblance to the indicatrix of Dupin in differential geometry
and by means of which it is possible to derive many properties geometrically (12).
This curve, also called indicatrix, is defined by the equations:

X — xl = ’i2
F’ F’
where X and Y are coordinates in a rectangular coordinate system PXY at an
arbitrary point P of the region B, in which the variation problem has been defined,
and F is the basic function of the variation problem 6fF(x1, Xgy Xy, Xp) dt = 0.

However since F = )'clf(xl, Xy, p), if 5(1> 0, the equation for the indicatrix
becomes:

2 142
Xy -5 +% _ ____;fz/’ (i1l 22)
Y
h ——4 v
where P=y
Y
or Xf (x], Xo, X) — . (U1, 23)

Since it is unnecessary in the present problem to write the result explicitly in X
and Y, formula 111, 22 will here be used.

1 Wy L -y .-
In the present problem f= — and p = —=. So the indicatrix for aeronavigation
becomes: " "

X2+ 7Y2= w2+ w?

or in vector notation:

ro— (fig. 1, 2a, b, o).

It follows that the indicatrix for the variation problem in aeronavigation is a circle
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e —
with radius c centred on the terminal point of the vector u. The starting point of u
is the base point for the indicatrix.
Therefore the entire indicatrix is convex.

. . c .
According as the velocity parameter ¢ = — is smaller or greater than one or
u

equal to one the base point lies outside, inside or on the circle. This property has
been made use of already in part I, 3.

It is known that the concept of tranversality and the E-function of Weier-
strass can be derived in a simple geometrical manner from this figure.

Besides the set of time fronts can be constructed by means of the indicatrix, which
comes to the same thing as the construction methodsof Galton(8)and Giblett
(4). If the construction of the time fronts is regarded as a contact transformation,
then this construction can be
realized by means of “redu-
ced” indicatrices. This method
will not be further gone into.
However, the indicatrix is
encountered in many other
problems as well, some of
which will be discussed.

10. The law of refraction due
to Von Mises

If the variation problem is
continuous, i.e. if the funda-
mental function f (x;, x,, p) is
continuous, discontinuous so-

Fig. 11, 12. lutions consisting of broken
extremals made up of a finite
or enumerable infinite number

of extremal arcs, can only exist when the indicatrix has double tangents. Since
however in the present problem the indicatrix is convex no discontinuous solutions
can be found if the fundamental function f'(x;, x,, p) is continuous. If on the contrary
the fundamental function is discontinuous then discontinuous solutions do occur.

The problem then bears some resemblance to the law of refraction due to Snel-
lius in the theory of light. -

If in the field of flow a line exists along which the stream vector u has a discon-
tinuity, the variation problem becomes a discontinuous variation problem. On the
“frontal” line the extremals will then have a corner. In the region of the field of
flow in which f is continuous the extremals are integral curves of Zermelo’s
navigation equation. At the corner the following condition known as the corner
condition must be satisfied (see fig. III, 12):
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U—=rlp+54=GT—pl)p+14
Here f and f are the fundamental functions backward and forward of the frontal

line respectively, p is the backward and p the forward direction of the extremal

arc at the corner. p and g are the direction cosines of a line element along the frontal
line.

The various terms have the following values:

cos & sin &
f—pr=T f”=c—e
= — cosé& sin &’
J—ph=—] 1= e

Substitution of these terms in the corner condition leads to the relation:

cosép+sinéqg  cosé& p+ sin &'g
c, ¢, '

The numerator on the left-hand side is the scalar product of the unit vector along

-

the frontal line and the unit vector in the backward direction of ¢. The numerator
on the right hand side is the scalar product of the unit vector along the frontal line

and the unit vector in the forward direction of c.
These scalar products are equal to the sines of the angles between the true velocity

vectors ¢ on either side of the frontal line respectively and the normal to the frontal
line. If these angles are i and r respectively the corner condition can be written:

This law is known as the law of Von Mises (13). Von Mises derived
this Jaw in a complicated manner by means of a geometrical treatment. This law
of refraction is entirely analogous to the law of refraction due to Snellius. The
law of refraction may be formulated as follows:

At a line of discontinuity, the ratio of the sine of the angle of refraction on an
extremal, (i.e. the angle between the vector of the true velocity and the normal to the
Jrontal line) and the effective true velocity is constant.

For the sake of completeness it must be noticed that Von Mises also suc-
ceeded in deriving the navigation equation of Zermelo by means of a transition
to the limit of the law of refraction for a continuous field of flow, using the condition

sin i . .

d( - ) = 0 as a starting point.
e
If an improper field of extremals is given with nodal point P, the extremals which
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intersect a frontal line, may be continued on the other side of the frontal line. In
this manner a complementary field of extremals is obtained behind the frontal line.
The original field and the complementary field together form a field of broken ex-
tremals.

11. Reflection

It will be obvious that in aeronavigation also a law of reflection must exist analogous
to the well-known law of reflection in the theory of light. The problem may be formu-
lated as follows:

When for operational or other
reasons a ship must call at an
arbitrary point on a boundary g,
it is desirable to find the (broken)
extremal along which the ship
can be navigated in the shortest
possible time from a given point
P to another point Q (fig. III,
13). Coincidence of P and Q is
not excluded.

In case the composite curve
PRQ, R on g, satisfies the above
requirements, then the arc PR is

Fig. 111, 13. an extremal for the fundamental

integral. Similarly the arc RQ is

an extremal for the fundamental integral. Finally at the corner R a condition set

up by Weierstrass must be satisfied. This condition requires that at R the

values of the excess functions E (x,, X,, p, p) and E (xy, X,, p, p) on the arcs PR and

RQ respectively are equal. Here p, p and p refer to line elements along the extremal
arcs PR and RQ and along the boundary g respectively.

This condition can be given a simple geometrical interpretation by means of
the indicatrix.

Let i be the indicatrix with base point R (fig. III, 14). Draw the tangents at R
to the extremal arc PR and to the boundary line g. These intersect i at T and R,
respectively. Let the tangent at T to i be ¢ and the base points of the normals from
R and R, to 1, N and N,. Then according to a known property of the indicatrix

~

Co,

————— —
a— —_—

W=W,+ W,

2

. N
E (xy, X, p, p) is equal to ;
1Vy
Continue RR, to the point of intersection S with 7 and draw through S the second

tangent #, to i. Let the tangent point be T;. The base points of the normals from
. RN
R and R; to ¢, are M and M,. Since L
RM, RN,
of Weierstrass for “reflection”, E (x; Xy, p, p) = E (%3, Xy, P, P), is satisfied

it follows that the condition
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if the line RT, is tangent to the
extremal arc RQ at R. If O coincides
with P, the extremal arcs PR and
RQ are not in general coincident.

The point R can be found by
means of the set of focal curves b
in the complete figure for the points
P and Q (see part III, 6 and fig. I,
13).

Consider a focal curve b tangent
to the boundary line g at a point R.
The time of navigation along the
composite extremal PRQ is now either
longer or shorter than the time of
navigation along any composite ex-
tremal P R’ Q, if R’ is a point on g
in the neighbourhood of R. The time of navigation will be shorter along P R Q than
along P R’ Q, if in a neighbourhood of R the tangent arc of b lies within the region
B, but longer, if the tangent arc of 4 lies outside the region B.

If g has several tangent points in common with the confocal set of focal curves,
then an absolute extreme for the time of navigation with respect to all composite
extremals with composite point on g will be furnished by the extremal “‘reflected”
at the tangent point, where the sum value W — W, + W, is smallest or largest.
In the special case, in which O coincides with P, the “reflected” extremal PRP can
be found in the same manner.

Fig. 11, 14,

12. The variation problem in fields of flow with forbidden regions

Generally the variation problem will be defined in a region B covering the
entire plane. However, for
special reasons one may
obliged to limit this region
and to consider some parts
of the field of flow unsui-
table for navigation.

In air trafficit is conceiv-
able that because of moun-
tain ridges, bad weather
zones, forbidden flight re-

Fig. 111, 15. gions etc. a diversion must

be made and that naviga-

tion will be restricted to a region B bounded by several boundary lines g. In such a
case the points P and Q may happen to be situated so unfavourably with respect to
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a boundary line g that the trajectory through P and Q along which the time of navi-
gation is a minimum, contains part of this boundary line (fig. 111, 15). If the problem
is positive regular, several conditions must be satisfied for such a trajectory to exist.
These conditions are also sufficient conditions for the existence of the extremal.
Fields of unlimited manoeuvrability will only be considered.

The trajectory PRSQ (fig. I1I, 15) is a solution for the problem, if the following
requirements are satisfied (Bliss):

L. The arcs PR and SQ are extremals for the variation problem and all necessary
and sufficient conditions for a strong extreme (Jacobi, Legendre,
Weierstrass) are satisfied.

11. The arcs PR and SQ are tangent to the boundary line g.

I1I. For PRSQ to be a minimizing trajectory the curvature of the extremal e,
tangent to g at an arbitrary point T of RS must be such, that in a neighbourhood
of T the extremal lies entirely within the region B, irrespective of the way in

which the convex or concave side of the boundary

line faces the region B.

If these three conditions are satisfied a minimizing

trajectory PRSQ exists.

Example.

Let a uniform rectilinear field of flow with unlimited manoeu-
vrability be given within a region B bounded by a boundary
line g (fig. 1II, 16). Now construct the minimizing extremal
through two points P and Q, if the straight line PQ intersects
the boundary line g.

Since the extremals in this field of flow are straight lines,
the required minimizing trajectory will be composed of straight
lines and arcs of the boundary line g. Draw a tangent from P
to g and similarly a tangent from Q to g. Let the tangent points
be Rand S. At any point T on the arc RS the minimizing extremal
tangent to g lies entirely within B in a neighbourhood of T,
so that condition III is satisfied. Since the conditions I and II
are also satisfied the composite curve consisting of the tangents
PR and SQ and the arc RS on g is the required minimizing
trajectory.

Fig. 111, 16.

13. Derivation of the navigation equation of Zermelo from the theory
of the complete figure

The navigation equation of Zermelo in the simplified form III, 9 can be
derived from the complete figure associated with a field of extremals.

Consider a time front W = constant (fig. III, 17) and a section PP' = A X; on
this time front (the x;-axis of the coordinate system coincides with the normal
at P to W — constant). Then draw the normals PP, and P'P;’ to the time front W,
such that PP, = ¢, At = (¢ + w) A tand PPy = (¢, + A c,) Nt=

(C+u1+Au1)At-
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PP, is then a section of the time front W -~ A W = constant. The heading on
this time front is determined by the direction of the normal to the front.

Fig. 111, 17.

Consider triangle P,P;," R, where P;R = PP’. The angle P,'P;R — arctan At At
or, if A r is small:

X2
VAN /S BWAN 4
Af=—2"050
A x,
or LE__Lm
At A Xy
If finally the limit is taken for ,\ 7 — 0, one finds the relation
dé Yy
dt X,

which is the simplified form of the navigation equation of Zermelo (see III, 9).



PART 1V
SINGLE-HEADING EXTREMALS
Introduction

When single-heading navigation was introduced for the first time it was taken
for granted that the resulting trajectories themselves were extremals and that con-
sequently along these trajectories the time of navigation would assume an extreme
value.

Although in general the time of navigation is shorter along a single-heading
trajectory than along the geometrically shortest route, it is only in fields of flow
with a particular structure that the single-heading trajectories are minimizing or
maximizing extremals. Nevertheless certain properties of the extremals can be
derived by means of the single-heading trajectories.

In several articles on aeronavigation it is often stated that only in uniform recti
linear fields of flow the single-heading trajectories are at the same time extremals.
This is inferred from the navigation equation of Zermelo in its simplified
form (I, 9):

d& o duy
dt Xy
If here oy is identically equal to zero irrespective of the heading & the field of
Xz
flow is uniform and rectilinear and the equation reduces to:

d.

_§ = 0,

dt

which means that & is constant along an extremal. The single-heading trajectories
in a uniform rectilinear field of flow are straight lines and these straight lines are
at the same time extremals.

This description is incomplete. For a proper investigation it will be necessary
to take the original navigation equation of Zermelo asa starting point.

But in order to investigate the structure of the fields of flow, in which all or selected
single-heading trajectories are at the same time extremals, one may also use H a-
milton’s partial differential equation. Both equations must lead to the same
results. From various considerations, however, it appears that Zermelo’'s
equation is easier to handle than Ham ilton’s partial differential equation,
unless a particular part of the theory is investigated, which is more closely related
to the theory of Hamilton-Jacobi.

The single-heading trajectories, which at the same time are also extremals, will
be called single-heading extremals.
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1. Fields of flow, in which all extremals are single-heading extremals

In the investigation of this part the result will be derived both by means of

the navigation equation of Zermelo and by means of Hamilton's partial
differential equation.

The navigation equation of Zermelo is III, §:

d&  du,

oy du,
dt  dx,

0X; X,

- . d .

sin %& |- ( ) sin & cos & — 21 coge &
X,

The single-heading trajectories are characterized by the equation:

dt
If all single-heading trajectories are to be also extremals, the coefficients on the
right hand side of the navigation equation must be identically equal to zero or:

3"2=3u1=0 Dul__bu2=0

0X; X, ’ 0X; X,

From the first relation it follows that u, is independent of x; and u,

independent
of x,, so one may write:

= F(x), uy = G (x,)

where F and G are arbitrary functions with first partial derivatives.
The second relation requires that:

W (xy) 3G (xp)
X3 dx,

This is only possible, if both sides are equal to a constant k.

), G

OXy 0Xy

k.
The solution of these equations is:

F(x)) = kx; + 1, G (x) = kx, + m,

where / and m are constants.

Therefore the equations for the field of flow, in which all single-heading trajectories
are extremals, are:

w = kx; + |,
Uy = kxo + m.

This field of flow is composed of a convergent or divergent field u; = kx,, u,

= kx,
(k negative or positive) and a uniform rectilinear field U =1, uy = m.
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The resultant field is identical with the component convergent or divergent field
and is merely displaced with respect to the former.

The above results may be summed up in the following theorem:
All extremals are single-heading extremals in convergent or divergent fields of flow
& = 0, 7 = kr and in uniform rectilinear fields of flow.

In fig. IV, 1, a, b, c the three possible fields of flow have been drawn.

!
JT N

Fig. 1V, l,a. Fig. IV, 1,b.

The above theorem will next be proved by means of Hamilton’s partial

differential equation. Since along an extremal the vector ¢ is perpendicular to a
time front W — constant, the transversal line elements along an extremal in a field
of flow, in which all extremals are single-heading trajectories, will be parallel to
each other. Considering in particular a set of single-heading trajectories with the
same constant heading one finds that the
associated set of time fronts W = const. consists
= of parallel straight lines (fig. 1V, 2). Since all
single-heading trajectories are extremals irrespec-
— — tive of the heading, every straight line in the
Fig. IV, 1.c. field of flow must belong to a set of time fronts
W = constant. So W must be of the form
W {x, cos o + X, sina + f (@)}, where B is a constant, determined by the angle
o between the straight line and the x;-axis.
Differentiate partially with respect to x; and x,:

W

- =cosu. W,

Xy

QW .
—=sina. W.

Xy

W' is the derivative with respect to the argument x; cos a =+ X, sin o -+ B (o).
Substituting these partial derivatives in Hamilton’s partial differential equation
III, 19 one obtains:
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W' =1—(uycos a + uy sina) W',
or W’ (c + uy cos o + uy, sin a) = 1.
In this equation such functions must be substituted for the unknown quantities

W', uy, uy and B, as to satisfy the equation identically for all values of «. In addition
u, and u, must be functions of x, and x, only.

=

A

]

1 Sy
T ey « | /// [
_t ///
—+T 4T 4+
Fig. 1V, 2.

Differentiate again partially with respect to x; and x,:

1
—cosa+ —Esina=——_ . W cos «,
1 X1 w2
du duy . 1 .
—lcosoc—}-—zsnnoc:————,.W”.sma.
X, X, w2

The subtraction of the second equation divided by sin « from the first equation
divided by cos « gives:
OUy  duy Ouy

du
+ —tan & — —! cotan o« — =0
0xX; X X, AXy

In order to satisfy this equation identically for all values of « the following
relations must hold:

duy bu2=0 duy  du;

0y dx, T ax,

These are the same relations as those derived above from the navigation equation
of Zermelo.

The equations for the field of flow are:
Uy =kxy +1, uy = kx, + m

with / and m arbitrary constants.
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Substitution of these equations in Hamilton’s partial differential equation
leads to:
1

¢+ Tcos a4 msin a .
k TP -+ x; cos o + X, SIn o

’

Since W' is a function of the argument x; cos & - X, sin « +- B (), it follows that:
¢+ lcoso + msin«
k |

¢+ lcosa -+ msina

; Sl

This expression is an integral W (x;, X,, o) of Hamilton’s partial differential
equation. According to IIL5 the extremals can be found directly from the relation:

D ()

2) W=}In( +xlcosoc—+—x25ina).
c

QW
—— = const. = y.
hl-4

The differentiation yields a linear relation between x; and xp. 7 he extremals
therefore are straight lines.

The argumentation based on Hamilton’s partial differential equation is
more complete than that based on Zermelo’s navigation equation in so far,
that it enables one to find the sets of time fronts # = constant associated with
the single-heading extremals with the same constant heading.

Fig. IV, 3.

For a discussion of the extremals in a uniform rectilinear field of flow the reader
is referred back to part III, 4.
In a convergent or divergent field of flow F = kr, o = 0, the limiting isotach is

a circle with radius r = T It can be shown that all minimizing and maximizing



ITS APPLICATION IN AVIATION METEOROLOGY 71

extremals through a point P, which are straight lines or line segments, are contained
within the sector bounded by the tangents from P to the limiting isotach (fig. 1V, 3).
P is again the nodal point of four improper fields of extremals, whereas a point P

within the circle r = %l is the nodal point of two improper fields only.

Since all maximizing extremals lie entirely in the region of limited manoeuvrability
the corresponding line segments will end at the limiting isotach. The four different
improper fields of extremals, two of which with P as starting point, and the other
two with P as terminal point, are taken together in one figure (fig. 1V, 3)

The heavy lines are maximizing, the thin lines minimizing extremals.

All extremals furnish an absolute extreme value for the time of navigation.

2. The field of extremals and the set of single-heading trajectories
through one point

Consider an improper field of extremals with an arbitrary point P as nodal point
and the (singly infinite) set of single-heading trajectories originating from this point.
The latter covers a region, which partially overlaps the field of extremals.

An extremal and a single-heading trajectory will be tangent to each other at P,
if’ they have the same initial heading. However, some directions may be found at
P, for wich the tangent point transforms into a point of osculation.

Since the heading of a single-heading trajectory is constant by definition, this
can only happen, if the heading of the tangent extremal does not change in the
vicinity of P.

From the navigation equation IlI, 8 written in the form 111, 10:

dtanf  du,

dt oy

du ou, du
tan® & - (—1 — —‘) tan& — L
0X; Oy Xy

it follows that for an extremal having a three-pointic contact with a single-heading

. d tan & . .
trajectory at P, _d—% must be equal to zero at P. Since the coefficients on the
4

right-hand side of the above equation have definite values at P, this right hand side
represents an ordinary quadratic in tan &, which vanishes, if tan £ is equal to either
of the roots of the quadratic. With these two values of tan & correspond four values
of§ :&,,& + m, & and &, + &, which may be complex. Therefore an extremal throngh
P with one of these “optinmum headings” as initial heading will have a three-pointic
contact at P with a single-heading trajectory with the same heading. The corres-

ponding true velocity vector ¢ must be directed along one of the four line elements
defined by the values £,, &, + =, Eand &, + 7.
Since at every point of the field of flow two values are found for tan &, two sets

. . dx,
of curves can be constructed, for which at every point p = d—' = tan &.
1
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These curves will be called zero-shear lines.

The investigation of the fields of flow with single-heading extremals will be con-
siderably simplified by using these auxiliary lines.

At each point P on the zero-shear lines two line elements can be found of the
corresponding extremals, which have a three-pointic contact with a single-heading
trajectory. Therefore four curves can be constructed, one for each optimum heading
&, & + @, &, &5 -+ m, which at every point contain such a line element. These curves
are called osculation lines.

3. Zero-shear lines

At every point of the field of flow the line elements of the zero-shear lines are
determined by the relation:

250 tan &,

X

where £ is an optimum heading.
Therefore the differential equation for the zero-shear lines is:

duy (dx2)2 (Dul s Duz) dx, duy _ 0 av, 1
x; \dx, WX, I/ dxy DXy ’ f

At any point on a zero-shear line the relation IV, 1 holds for the extremals which
are tangent to the corresponding osculation lines through that point. Since according

d tan ! :
to III, 9, d—tf at every point on an extremal is equal to the shear of the com-

ponent of flow along the direction of c, which here vanishes, a zero-shear line can
also be defined as follows:

A zero-shear line is a curve in the field of flow, such that at every point on the curve
the shear of the component of flow along the tangent is equal to zero (fig. 1V, 4).

Fig. 1V, 4.

The zero-shear lines will not always be real. At any point of the field of flow it
depends on the sign of the discriminant /\ of the quadratic IV,1 whether the optimum
headings are real or imaginary.
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The discriminant is:
N (%_3“2)2+4M 2y

2%, A%, 0%y

1v, 2
Xy 00X, ( )

Depending on the sign of /\ the following properties can be derived: In a field
of flow or in a region of a field of flow, where A > 0, the optimum headings are
real.

In a field of flow or in a region of a field of flow, where /A < 0, the optimum
headings are imaginary.

In a field of flow, where /\ = 0, or on the curve in a field of flow, which divides
the field of flow into regions, where /A > 0 and regions, where /\ < 0, the optimum
headings are real and coincide two by two. ‘

Therefore in an arbitrary field of flow the zero-shear lines will lie entirely in the
region, where /\ = 0,

In a field of flow, in which a velocity-potential is defined, the zero-shear lines intersect
each other perpendicularly.

This can be shown as follows. T

A field of flow has a velocity-potential g, if the field is irrotational, i.e. if 372 = D_xl

1 2
The components v, and u, of the stream vector are the partial derivatives of the
velocity-potential with respect to x; and x, respectively, (see I, 2):

ul..—:_b.g,u:D_(p

T P
The zero-shear lines are determined by the differential equation:

b (@)2 + (b“’tp " 32<p> dx, A

dx; x5 \dxy w2 ax2/ dxg - dx; 0x,

It follows that at every point the product of the roots of this equation is equal
to — 1. Therefore the zero-shear lines must be perpendicular to each other.
In some fields of flow one may find that at a point, along a curve, or everywhere

in the field, dtang = 0 for any value of &. This will be the case, when the coefficients

duy du ou du . . .
—*, —2 and — — —2 are simultaneously or identically equal to zero.

X, X, WX, Xy
1 2
Since A = (b'—ul — %> -+ 4D—ul i D_u_z’ /A vanishes simultaneously with these
0X) X, Xy X

. : dtan
coefficients. The points, where d

= 0, lie either on the curve /A = 0 in fields,

where the sign of /\ is not permanent, or in fields of flow, where A\ = 0.
The coefficients are identically equal to zero in convergent (divergent) fields of

flow o = 0, ¥ = kr and in uniform rectilinear fields. In these fields the zero-shear
lines are trivial.
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4. Fields of flow, in which single-heading extremals exist

If one or both sets of zero-shear lines consist of parallel straight lines, then the
single-heading trajectories with a corresponding optimum heading &, which is
dtang_ 0 and 2

t Xy
-along a straight optimum-heading line and so the navigation equation of Zer-
melo is satisfied:

constant, are extremals. For both = 0 if the x-;axis is taken

dtané duy

. = 0.
dt DXy

A single-heading trajectory with the optimum heading &, is then a single-heading
extremal. The single-heading extremals are identical with the osculation lines, which
correspond to these zero-shear lines. Moreover according to the property of transversa-

lity, part I1I 5, formula I, 16, the true velocity vector ¢ along an extremal is perpen-
dicular to a transversal, so all straight lines, which intersect the set of parallel straight
zero-shear lines perpendicularly are transversals or time fronts of the set of single-
heading extremals.

<
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Fig. 1V, 5.

A complete figure then consists of one of the sets of osculation lines, and the set
of lines perpendicular to the rectilinear zero-shear lines. In fig. 1V, 5 the lines W
= constant are time fronts, the lines r are straight zero-shear lines and the curves
e are the corresponding osculation lines or single-heading extremals.

With a given constant optimum heading &, and the associated constant optimum
heading &, + 7 correspond two complete figures with mutually parallel sets of time
fronts W = constant. Since at the most two sets of straight zero-shear lines are
possible there can be no more than four complete figures of single-heading extremals.
Therefore at the most four single-heading extremals can pass through any point.
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Depending on the existence of one or two sets of parallel rectilinear zero-shear
lines the following result can be found:

A. If one of the sets of zero-shear lines consists of parallel straight lines, two single-
heading extremals determined by the optimum headings &, and &, + 5 will pass
through any point P in the field of flow.

B. If both sets of zero-shear lines consist of parallel straight lines, four single-heading
extremals determined by the optimum headings &,, & + =, & and &, + 7 will
pass through any point P in the field of flow.

C. If both sets of zero-shear lines consist of parallel straight lines, both sets coinciding,
the four single-heading extremals passing through any point P in the field of flow
will also coincide two by two.

The structure of the field of flow, in which any of these three cases occur, can
be analysed by calculating the roots of the quadratic 1V, 1 and by putting these
equal to a constant.

Although this subject matter can be fully worked out, here only the special case
of a field of flow with a stream-function y will be considered in view of the application
to aerology.

5. The theory of single-heading extremals in fields of flow with a stream-
function

According to I, I such a field of flow is defined by a stream-function v (x;, Xo).

0 d
Uy = w, y = — ¥,

09X, 0x,

The stream-lines are the lines ¢ = constant and the intensity of the flow at
any point is determined by the magnitude of grad . If the velocity components
u; and u, are given as functions of x, and x,, the stream-functions can be deter-
mined by integrating the above partial differential equations. It is, however,
more convenient to define a stream-function y first and to derive the velocity com-
ponents u; and u, afterwards by partial differentiation of .

The stream-function y can be represented by a surface in the (x;, x,, y)-space. The
streamlines y = constant are then the projections of the curves of intersection of
planes paraliel to the (x,, x,)-plane and the y-surface.

In order to determine the structure of the fields of flow with a stream-function,
in which single-heading extremals occur, one may study this structure from a dif-
ferential-geometrical point of view, by means of the y-surface in (x,, x,, ¥)-space.
This method in particular enables one to obtain a good survey of the various
possibilities.

By means of a three-dimensional representation in (x;, x,, y)-space “‘y-surface
models” can be constructed of the required fields of flow. These models are of
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particular value for the application of the theory in practice. When the actual field
of flow is given, an attempt may be made to recognize in the y-surface associated
with this field, one of the y-surface models, in which single-heading extremals
exist. If such a similarity is obvious the theoretical considerations based on these
models will apply to the actual field of flow.

The analysis will be based on the definition of zero-shear lines.

Consider again the differential equation IV, 1 for the zero-shear lines. After
substitution of the expressions.

0
o 2
90Xy
u2 = — bl’
bR
this equation transforms to:
2 2 2 2
¥y (d_X2> o, Oy dx Wy (111, 3)
dx,% \dx; X Xy dXy dXE

Whether the zero-shear lines are real or imaginary depends on the discriminant
/v, which, but for a factor 4, is equal to:

_( bzw )2 Dzw bzw
X, X, 2x,2 dxp?

At every point on the y-surface the sign of /\ determines whether the point is
an elliptic, a hyperbolic or a parabolic point.

The region of the field of flow, where /\ > 0 corresponds with a region of hyper-
bolic points on the y-surface. In this region the zero-shear lines are real.

The region of the field of flow, where /\ < 0 corresponds with a region of elliptic
points on the yp-surface. In this region the zero-shear lines are imaginary.

The boundary line between the regions of the field of flow, in which /\ has a
different sign, corresponds with a line of parabolic points or a “spinodal” line on
the y-surface. Therefore the projection of the “spinodal” line on the (x,, x,)-plane
forms the boundary of the region of the field of flow, where the zero-shear lines
are real.

Among the y-surface models there are some, which contain only hyperbolic points.
At all points on these surfaces the rotal curvature or Gaussian curvature is negative.

; 1 b %
The total curvature is defined by — /. = ——. g, and g« are the principal radii
of curvature. 0 ’2’ 2

In the corresponding field of flow the zero-shear lines are real everywhere. y-
surface models, which contain only elliptic points, i.e. surfaces, whose total curvature
is positive everywhere, have only imaginary zero-shear lines in the corresponding
field of flow. Finally surfaces, on which /. = 0 correspond with fields of flow,
with only real and straight zero-shear lines, which two by two coincide.
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Also in non-divergent fields of flow it is possible that at certain points, along

i . d tan
certain curves, or everywhere in the field £—

0, for all values of £. At such

%y 2%y Dy

points the equalities: —— = —- = _~"  — 0 must hold.
a2 dxE dxg X,
These exceptional cases arise:
1) At certain points on the projection of the spinodal line /\ = 0.

2) On certain curves in fields of flow, whose corresponding y-surface is a developable
surface, A\ = 0.

3) In uniform rectilinear fields. Here the corresponding y-surface is a plane.
Apparently the second case may occur in fields of flow, in which four single-

heading extremals which two by two coincide, pass through every point. In these

. . .. dtan
fields curves exist, along which the condition £

= 0 is satisfied for everyé.

These curves are themselves extremals of the field.

In addition to the zero-shear lines now consider the asymptotic lines of the y-
surface. The differential equation for the projections of the asymptotic lines on the
(x;, x,)-plane is:

(it Py d

My
—_— . +—=0. Iv, 4
dx,2 \dx, 0x1 0xy dx;  dx? ( )

When one compares this equation with the differential equation for the zero-shear
lines:

=0,

2y (d_x2)2 _ 2y dx, n R

x,% \dx; dx; Xy c?l x>

it will be seen at once that both sets of curves are perpendicular to each other, since
the roots of both equations are reciprocal and opposite. Two by two the products
of the roots are equal to —1.

There are two sets of asymptotic lines on the y-surface. Whether these are real
or imaginary depends again on the sign of A. The following theorem may now
be formulated:

The zero-shear lines are the orthogonal trajectories of the projections of the asymptotic
lines.

There are two orthogonal sets, which are real or imaginary according to the

. Ry \2 Wy Dy o .
sign of A\ = (——) — -3 ' — being positive or negative.
Xy X, ;2 dx,?

The boundary of the real zero-shear lines and the projections of the real asymptotic
lines is the projection on the (x,, x,)-plane of the spinodal line on the y-surface.

By means of the orthogonality of the sets of curves the w-surface models of the
required fields of flow with single-heading extremals can now be found. For if in
the field of flow a set of single-heading extremals exits, one of the sets of zero-shear
lines must consist of parallel straight lines. With this set corresponds a set of pro-
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jections of asymptotic lines, which consists of parallel straight lines perpendicular
to the parallel zero-shear lines. The projections of asymptotic lines are the time fronts
of the complete figure associated with the set of single-heading extremals.

On the y-surface accordingly a set of asymptotic lines must exist, which can be
projected as a set of parallel straight lines on the (x;, x,)-plane. The nature of the
y-surface is entirely determined by this condition.

Again three cases are possible:

Case A. One of the sets of zero-shear lines consists of parallel straight lines. Similarly
one of the sets of projections of asymptotic lines consists of parallel straight
lines. In the field of flow two single-heading extremals pass through every
point.

Case B. Both sets of zero-shear lines consist of parallel straight lines. Similarly
both sets of projections of asymptotic lines consist of parallel straight lines.
In the field of flow four single-heading extremals pass through every point.

Case C. If both the sets of zero-shear lines and the sets of projections of asymptotic
lines consist of straight lines and coincide, four single-heading extremals,
which two by two coincide, pass through every point.

Case A.

Fields of flow with a stream-function, in which two single-heading extremals pass
through every point.

One of the sets of asymptotic lines on the y-surface consists of straight lines, which
are projected as parallel straight lines on the (x;, X,)-plane. The y-surface is then
a ruled surface whose generators lie in parallel projecting vertical planes. For one
of the sets of asymptotic lines on a ruled surface consists of the generators of the
ruled surface.
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Now a ruled surface consists of all straight lines, which intersect three given
directrices. If one of these directrices lies at infinity in a projecting plane the generators
are all parallel to this plane and the ruled surface belongs to the class A. So all
ruled surfaces with two directrices and a projecting directive plane satisfy the conditions
of case A The straight lines are projected as parallel straight lines and the true velocity
vector for the single-heading extremals is at right angles to the projecting directive
plane (fig. IV, 6).

Case B.

Fields of flow with a stream-function, in which four single-heading extremals pass
through every point.

Both sets of asymptotic lines on the y-surface now consist of straight lines, which
are projected as parallel straight lines on the (x;, X,)-plane. The only y-surfaces, which
have this property, are the elliptic and hyperbolic paraboloids. In general there are two
sets of straight lines on a quadric, which are either real or imaginary. In the present
case however both sets of generators have a directive plane, so the quadric must
be either an elliptic or a hyperbolic paraboloid. The directive planes of the elliptic
paraboloid are imaginary, so the asymptotic lines, their projections and the optimum
heading lines are also imaginary. In the corresponding field of flow four imaginary
single-heading extremals pass through every point. The directive planes of the
hyperbolic paraboloid however are real, so the asymptotic lines etc. are also real. In
the corresponding field of flow four real single-heading extremals pass through
every point.

The position of the y-surface concerned must be such that the directive planes
are perpendicular to the (x;, x,)-plane. Therefore the axis of the elliptic or hyper-
bolic paraboloids must be perpendicular to the (x;, x,)-plane.

Fig. 1V, 7.
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Fig. 1V, 8.

So the conditions of case B are satisfied by the elliptic and hyperbolic paraboloids,
whose axis are perpendicular to the (x,, x,)-plane (fig. 1V, 7).

The true velocity vectors for the single-heading extremals are at right angles to
either of the projecting directive planes.

Figure 1V, 8 shows the case in which the directive planes are perpendicular.

Case C.

Fields of flow with a stream-function, in which four single-heading extremals, which
two by two coincide, pass through every point.

Again both sets of asymptotic lines on the y-surface consist of straight lines,
which are projected as parallel straight lines on the (x; x,)-plane; however both
sets now coincide. Surfaces on which the asymptotic lines coincide are developable
ruled surfaces. The total curvature of these surfaces is everywhere zero and the
generators are at the same time double-counting asymptotic lines. Therefore the
y-surfaces, which satisfy these requirements, are developable ruled surfaces with
a directive plane. It may be shown however that such developable ruled surfaces
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are cylindrical surfaces. Not all cylindrical surfaces can be used for case C, but
only those, whose intersection with the projecting directive plane consists of one
straight line only (fig. TV, 9 and 1V, 10).

Fig. 1V, 9.

On the generators, which connect the points of inflection on the lines ¥ = const.,

2 2 2
the relations v v v 0 hold at every point for every £.
a2 2 dxg o,

Fig. IV, 10.

The projections of these generators consist of the straight lines, which connect
the points of inflection of the stream-lines.

-
Since the vector u is constant along these lines both in direction and magnitude,
6
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£ must be constant for navigation along these lines. So these straight lines are single-
heading trajectories. But they are also extremals, for the navigation equation of
Zermelo is satisfied by

dtan §
a

0.

So the straight lines, which connect the points of inflection of the stream-lines
are also single-heading extremals (e, and e, in fig. IV, 10).

If the generators of the cylinder are parallel to the (3,1, X5)-plane, the corresponding
field of flow will be rectilinear. (fig. IV, 11).

Fig. IV, 11.

The true velocity vectors for the single-heading extremals are again at right angles
to the projecting directive plane.

Of the quadratic cylinders only the parabolic cylinder is admissible, because
tke elliptic and hyperbolic cylinders are not one-valued, since their intersections
with a projecting plane consist of fiwo straight lines.

In fig. IV, 12 the case of a parabolic cylinder has been sketched with the two
single-heading extremals through a point P. In fig. 1V, 13 the single-heading extre-
mals have been constucted for a cylinder parallel to the (x, x,)-plane.

If the field of flow also possesses a velocity-potential @, in other words, if the
field possesses a stream-function y and velocity-potential @, the zero-shear lines
must be perpendicular to each other. That means that the projecting directive planes
also must be perpendicular to each other. Therefore this case can only occur in B
(fig. IV, 8).

It may be noted that the uniform rectilinear fields of flow also belong to the
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category of these fields. The corresponding y-surface is a plane and all straight
lines may be regarded as asymptotic lines. Therefore the sets of projections of

w—g 5 4 32100123 4 5 6 ¥ —surface

Fig. 1V, 13. Fig. 1V, 14,

asymptotic lines become indefinite. The same applies to the sets of zero-shear lines.

Therefore all single-heading trajectories in such a uniform rectilinear field will be
single-heading extremals (fig. IV, 14).



PART V
APPLICATION IN AVIATION METEOROLOGY
Introduction

In this part special attention is paid to the application of the theoretical con-
siderations given in the four previous parts.

The navigational use of meteorological information in aviation is still continuing
to expand. Especially during the last decades practical use of altimetry and pressure
pattern techniques have increased the safety and economy of long range flights.
The development of these methods is also still in progress. It seems of great value
to describe some techniques which enable meteorologists and navigators to improve
pre-flight, in-flight and post-flight operational activities.

The theoretical aspects of aeronavigation can be put into use with success if the
navigation is not restricted by any operational limitations and if separation of air
traffic in horizontal dimensions is allowed. By determining the most suitable flight
path it is now possible to improve comfort, safety and economy of most flights.
As a consequence aeronavigation has been recognized by traffic control authorities
as an acceptable reason for deviating flights from direct routes in overland and
overseas operations.

1. General

The different techniques involving a more scientifique solution of routes and
compilation of the accessary flight plan are derived from the theoretical aspects
given in part I, IT and III. Some precautions must be taken, however, in interpreting
the results. There investigations were based on a stationary field of flow in a plane,
while the true velocity c, from now on called true air speed, was assumed to be
constant. In reality the field of flow is non-stationary and it has to be studied on
a curved surface, i.e. the geoid. Moreover, the true air speed varies between certain
limits dependent on the long range cruising system, the flight level and temperature
distribution. The field of flow is represented by means of different types of upper
air charts. For instance in aequatorial regions the wind distribution is represented
in constant level charts by means of stream-lines and isovels or isotachs. It is generally
agreed however to use pressure contour charts in extra-tropical and polar regions.
These charts represent the instantaneous conditions on a surface of constant pres-
sure. Their physical properties are properly known: for instance the direction of

—

the windvector u is determined as a first approximation by the tangent to the contour

lines and the magnitude by the slope of the pressure surface according to the geo-
strophic windequation:
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g dz

U= —‘5._. =
2w sin @ dn

where g is the acceleration of gravity, w is the angular velocity of the rotating
earth, @ is the latitude, n the distance normal to the contours and z the geopo-
tential of the pressure surface.

Wind speeds in pressure contour charts may also be given by isotachs.

One of the outstanding advantages of the pressure contour chart is that the flight
nearly takes place in a constant pressure surface as the flight level of the aircraft
is adjusted with a pressure altimeter.

In practice the pressure contour charts of selected constant pressure surfaces
are used, for instance the 850, 700, 500, 300 and 200 mb charts corresponding
roughly to heights of 1500, 3000, 5500, 9000 and 12000 m. For aeronautical purposes
it is often not allowed to neglect the change of the field of flow with time. Since
in long range flights 10 to 15 hours of flight time are common, the “fixed time”
pressure contour and constant level charts give an erroneous picture of the circum-
stances along the route. To eliminate partly the errors *composite” pressure contour
charts or “composite” constant level charts may be introduced, which give a “con-
tinuous” representation of the wind distribution in such a way that the situation
in an arbitrary point of the route is nearby the expected situation at the time the
aircraft will be at that point. In composite charts the wind distribution is determined
by stream-lines and isotachs and if certain conditions are fulfilled the wind can
approximately be determined by means of contours and the geostrophic wind-
equation. Unless stated otherwise, the techniques to be described however are
demonstrated in fixed time pressure contour charts.

1. Chart projections to be used.

The projection of the earth’s surface on a plane necessarily introduces deformations.
Consequently a simultaneous conservation of conformity and equivalence is im-
possible. Primarily for meteorological and navigational procedures a conservation
of angles is necessary (bearing, heading, wind-direction etc.). Moreover it is preferable
to maintain the equivalence as well as possible, in other words it is recommended
that the scale factor only varies between narrow limits. That is why it is customary
to use conformal maps which are almost equivalent, especially in the working areas
The best known charts which fulfill these conditions are: for equatorial region
the cylindrical Mercator projection, for extra-tropical regions the Lambert conformal
conic projection (with standard paralleles at 30 and 60 degrees North) and for
polar regions the polar stereographic projection. If a great number of flights is
concentrated in a relative narrow band between two stations the most suitable
chart to be used is the oblique Mercator projection (Kahn’s projection). In order
to have a handy chart for the application of the techniques to be described, a scale
of chart is recommended between 1 : 10.10% and 1 : 15.10%. In this publication the
different construction methods are demonstrated in Lambert conformal charts with
standard parallels at 30 and 60 degrees North and scale 1 : 10.108.
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IL. Grid navigation.

In 1942 flightlieutenant K.C. Maclure developed the system of grid navigation,
which was introduced to avoid the singularity of the longitude-latitude lattice near
the north pole. He was able to put the system to test in 1945 during the navigational
exploration pole flight with the R.A.F. aircraft “Aries”.

Grid navigation is defined as navigation with respect to a set of parallel lines
which is superposed on a chart with a given projection. The scale of the chart in
the superposed part can be considered constant. This means that the superposition
should be carried out on a conformal map which is as equivalent as possible. The
parallel lines are called grid meridians, one of the meridians, a standard meridian,
is taken as line of reference in respect to the original chart projection. The orientation
of the grid is determined by the choice of the standard meridian. For instance the
standard meridian can be chosen parallel to one of the edges of the chart. If the
chart projection contains straight meridians, for instance the Lambert conic pro-
jection or the stereographic projection, the standard meridian can coincide with
one of the straight meridians. As an example chart IV shows a grid on the Lambert
chart for the North Atlantic region in which the Greenwich meridian is accepted
as standard meridian. The direction of the parallel grid meridians determines grid
north.

Angles are referred to the grid meridians and grid north. For instance the true
heading referred to the meridians of the projection chart and true north now changes
into grid heading referred to the grid meridians and grid north.

The magnetic heading being the sum of true heading in one of the terminalpoints
of a segment and variation in the midpoint of a segment becomes the sum of grid
heading in one of the terminalpoints of the segment and the grid variation ot grivation
in the midpoint of the segment.

Since the grid overlay on a map can be considered as a transformation certain
auxiliary lines should be transformed simultaneously. For instance the lines of
equal magnetic variation, or isogonals which are loci of points for which the angle
between a geographic meridian and the magnetic meridian is constant, should be
transformed into lines of equal angle of grid variation or isogrivs, which are loci
of points for which the angle between the grid meridian and the magnetic meridian
is constant. According to the transformation the grivation in any point is the algebraic
sum of the angle of variation and the angle between a grid meridian and a chart
meridian, or convergence in that point. In virtue of this property the isogrivs can
be found by adding graphically the isogonals and lines of equal convergence (after
having normalized both sets of lines properly).

Although originally grid navigation was used for polar regions the system can
be introduced with success also elsewhere, mainly because of two reasons:

1) Introduction of a grid considerably simplifies the interpretation of the theory,
since it is easy to adjust a rectangular coordinate system to the grid.

2) At a given point of the chart angles can be measured by parallel displacement
of a protractor until one of the standard meridians passes the midpoint of the

protractor. (See fig. V, 1).
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Fig. V, 1.

Moreover it is possible by means of a computor to compile some quantities of
a flightplan in conjunction with the construction of any flight track. If the steering
agency is a magnetic compass the flightplan for any track will contain elements
like grid heading and grivation in stead of true heading and variation.

1I1. Construction of special types of pressure pattern trajectories.

At present pre-flight planning is based on techniques which make use of all kinds
of templates in order to compute flight times along various tracks. After having
examined a few routes, the most suitable one is selected. However, to find the most
favourable route for a given system of navigation, a greater number of routes should
be studied and such a task is laborious and time consuming. The construction of
the complete figure as described in part I, 6 associated with any system of navig-
ation gives a better survey of the behaviour of such routes.

From the foregoing paragraphs it is evident that the theory developed in part
I can be transferred in practice without great deviation from the results stated there,
if the navigational procedures are based on composite analyses or composite prognostic
analyses of upper air circulation on charts with a conformal and almost equivalent
projection overlaid with a grid.

If necessary the true air speed is assumed to be constant. The true air speed regularly
surpasses the wind speed. Therefore, according to I, 3 the airflow can be considered
as an unlimited manoeuvrable field of flow. Moreover it is supposed if not otherwise
stated, that the flight altitude is maintained constant throughout the flight. The
systems of navigation defined in part I, 5 can be introduced without alterations.
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The systems should only refer to the superposed grid of the chart. Systems, such
as stream navigation, potential navigation and evolute navigation can easily be
realized and under certain conditions be adapted to purely technical navigation
systems.

The structure of the airflow is rather complicated and it is well-nigh impossible
to express the airflow mathematically. The construction of flight tracks can therefore
be carried out only approximately by means of graphical methods of integration.
Owing to this limitation any track will be subdivided into a number of segments,
for instance segments of equal length, segments of an equal number of degrees
and hourly segments.

Consequently each track should be considered as a multiple composite track.
In practice flights are made along prescribed routes, e.g. great circle, thumbline,
Lindy line and composite tracks with one or two turning points. Sometimes the
heading is given as a function of time, for instance in single heading navigation
(change of heading with time is equal to zero).

The construction of a trajectory for a given system of navigation as defined in
I, 5 can be accomplished by constructing the post-time fronts W associated with
the point of departure P and the pre-time fronts W, associated with the point of
destination Q. The appropriate trajectory through P and Q is a section of the locus
of points for which the sum value W + W, is equal to the sum value W + W,
in point P or, which comes to the same, the sum value W + W, in point Q.

1V. The minimum flight path computor.

As the construction of pressure pattern trajectories by methods described in
part I, II and III is laborious without aids, a computor has been designed by
F. C. Bik, captain of the K.L.M., Royal Dutch Airlines and the author (14).

This computor enables the navigator to construct the minimum flight path (see
part V, 2) and to determine the quantities that form part of the accessory flightplan.
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The computor may also be used successfully however for navigational purposes
along other flight paths.

The instrument consists of two parts (I and 1I) of transparent material (see fig.
V, 2). Part I shows a “wind disk” A with a groove B for plotting the wind vector,
which can revolve along its periphery. Slide C contains a distance diagram for
various chart latitudes based on the scale factor of the projection used. The zero
point of the diagram coincides with the centre of the rotating disk. In groove D
the true air speed (air distance per hour) can be plotted and ground distances can
be measured.

Part II consists of a protractor E which can be shifted along slide C. The edge
F of the protractor is perpendicular to slide D. The intersection on the distance
diagram indicates the true air speed, given in terms of distance per hour along 55
degrees latitude. This distance is projected into groove D (point S). The protractor
may be turned 180 degrees into slide C, dependent on the direction eastbound or west-
bound as used on the chart. The principle of the computor is based on a subdivision
of the track into segments per unit time, for instance hourly segments. The computor
can be used mainly for three purposes, notably for constructing the unit time seg-
ments, for measuring angles (headings, bearings) and measuring distances. The
use of the computor will be described for two cases.

Case A The heading is known.

First adjust the true air speed by shifting protractor E along slide D in such way
that edge F indicates the true air speed (air distance per hour) for a given latitude.
Next put the protractor on the map until point S coincides with a point on the
map, in which the heading is defined and until groove D points into the direction
corresponding to the given heading (fig. V, 3). After that, disk A is rotated till groove
B points into the direction of the mean wind vector along the segment MS. In this
position the endpoint P of the wind vector is plotted. Then SP is an hourly segment.
In a contour chart the diskis rotated until groove Bis parallel to a contour line.To mea-
sure the magnetic heading: keep the computor exactly in this position and move the
protractor along slide D until one of the grid meridians crosses the centre of the
protractor and read the grid heading. Read the mean grivation of the segment SP
and add this value to the grid heading in order to find the magnetic heading.

The distance of the segment MS or ground distance can be measured with the
computor by means of the distance diagram.

It should be noted that for instance on a Lambert chart the segments refer to circle elements

approximately, whilst the flown segment approximates a rhumbline element; the measured distance
is therefore somewhat shorter than the distance actually flown.

Case B The track is known.

Put the protractor on the map in such way that point S coincides with a point
of the track and turn the computor about S until the endpoint of the wind vector
coincides with another point of the given track. In this position the heading is deter-
mined as described in case A.
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V. Examples.

The graphical construction method is demonstrated for a navigation along com-
posite greatcircle tracks between P(restwick) and G(ander), in a 700 mb analysis
(See chart. 1). The wind distribution is determined by the contours and by figures
indicating the wind speed. After drawing an arbitrary set of great circle arcs through
P, one determines the successive hourly points by applying the minimum flight
path computor according to case B. The same manipulation is done in reversed order
along great circle arcs through destination G. Drawing smooth curves through the
hourly points these curves represent the post-time fronts W and the pre-time fronts
W,. Both sets determine the complete figure for navigation along composite great
circles. As the time of navigation along the great circle PG is equal to 11h 25m, the
curves W, have been properly normalized by starting in G with the first time front
W, = 25 minutes. The great circle PG is running through points of intersection
of time fronts W and W; for which the sum value W + W, equals 11h 25m. Other
points of the locus are composite points of composite great circle tracks along
which the time of navigation also is 11h 25m. The area enclosed by the locus contains
points for which the associated composite great circle tracks yield a navigation time
which is smaller than along the great circle PG. Selecting a composite point in this
area the time of navigation along the associated composite track is considerable
reduced. One gets a good survey of the times of navigation if focal curves / are drawn.
In chart I the focal curves for 10h 55m, 10h 25 m and 9h 55 m have been drawn. The
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composite point or points for which the time along composite great circle tracks
is a relative or absolute minimum (relative to adjacent composite great circle tracks),
will be located at the curve m joining the tangent points of time fronts W = constant
and W, = constant. In most cases more than one critical composite point exists,
but the location in some cases needs a more detailed analysis. The critical point
in this example is at 61.00 N, 36.50 W with a navigation time of 9h 43 m, which
is 1h 42m less than the time along great circle PG. The selection of a suitable compo-
site point without graphical construction methods is a matter of experience and
routine. In practice other factors like weather conditions, the direction in which
a pressure system is moving, play a part in locating such a point, but it is clear from
the picture that the location of the composite point in an area, bounded by the focal
curve along which W + W; = 9h 55m hardly effects the total navigation time.

In the same 700 mb analysis a similar construction method has been carried out
for single-heading navigation from Prestwick to Gander (Chart 2). The curves
W and W, = constant represent a complete figure for navigation along composite
single-heading tracks. The single-heading track through P and G is running through
the points of intersection for which W + W, = constant = 10h 15m. The critical
points for which the time of navigation is a relative or absolute minimum in respect
to adjacent composite single-heading tracks are found at the curve m, which is the
locus of the tangent points of time fronts W = constant and W; = constant. The
minimum time is equal to 9h 41m. Finally in the same 700mb analysis the minimum
flight path has been constructed according to methods described in part V, 2,
which yields a minimum time of 9h 40m (Chart. III). The minimum composite
great circle track also shown in this chart fits in with the minimum flight path and
the time difference is negligable (3 minutes). Some of the important time data have
been assembled in table I. The figures /\ T in the second column represent the
differences in time in respect to the great circle navigation time.

TABLE 1.
Prestwick-Gander T AT

Great circle track 1ith 25m —
Minimum composite great
circle track %h 43m 1h 42m
single heading tr;(m " 10h 1; | th 10m
minimum composite single
heading track Sh 41m th 44m
minimum flight path 9h 40m 1h 45m

The upper air analysis in which some of the construction methods were demon-
strated, has a simple structure because of the well developed depression. When
there is a more complicated structure of upper air flow similar results are found.

By means of the minimum flight path computor it is easy to compile a flightplan
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along a prescribed route, if grid navigation is used. An example of a flight analysis
is given in table II, which contains the data for a flight along the great circle west-
bound from Shannon to Gander with a Douglas D C 6B, operating a constant
indicated air speed cruising system at 10.000 ft flight altitude. Before sampling
the data a 700 mb composite prognostic chart is constructed. (See chart 4).

After having drawn the great circle, the minimum flight path computor is used
starting in Shannon with a mean true air speed during the first hour (including
climb) of 191 kts, read from cruising tables or graphs. After adjusting the computor
in the manner described in case B the first hourly segment is plotted, grid heading
and grivation are read and substituted into the corresponding column of the flightplan.
Next the second hourly segment is determined, using a true air speed of 209 kis,
grid heading and grivation are read, written into the columns and so on. This pro-
cedure is repeated until a segment covers the endpoint. The values of the magnetic
heading are found by adding algebraically the values of grivation and grid heading.
The other data of the flightplan like distance, accumulated distance, accumulated
time, air temperature, altitude, true air speed, indicated air speed, break horse
power, revolutions per minute, brake mean effective power, fuel flow per hour,
accumulated consumption, gross weight are inserted into the columns in the con-
ventional way. During the flight the fuel consumed, fuel aboard and gain loss are
substituted in order to get an impression of the progress of the flight and in order
to determine the deviations of flightplan data.

2. Minimum flight path navigation

1. Survey.

A flight along the geometric shortest route, that means along a great circle arc
is not necessary the fastest and most economic flight. Flights along other routes
than the great circle, such as rhumbline, composite track, single heading track,
have improved economic profits to a large extent, but the choice of these routes
lean on experience rather than on scientific principles. Theoretically it has been
proved that along] all paths between two points there is one which provides an
absolute maximum benefit. This path is three-dimensional. It is obvious however,
that the construction of and the navigation along such a path will as yet meet with
too many difficulties. For the time being a two dimensional solution to the problem
under certain conditions can be found.

In this respect flight paths are to be constructed along which some quantity reaches
an optimum value. Dependent on the final result that is aimed at, the optimum
flight path may be given various interpretations. For instance a minimum fuel
path may be regarded as an optimum flight path if along such a path the fuel con-
sumption that goes with a certain cruising system, is a minimum, and the payload
consequently a maximum. A minimum flight path may be regarded as an optimum
flight path, if the time of travel along such a path is a minimum. If the fuel consumption
increases approximately linear with time the minimum flight path can be said to
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approximate the minimum fuel path. In this part the minimum flight path will
be taken as the primary factor for any economical longe range flight. Up to now
a number of construction methods have been published which are very laborious
because the use of dividers, slide rules, protractors and so on is involved. The mini-
mum flight path computor puts all these tools into one device and a working method
has been developed which enables a rapid and practical construction of the path
and compilation of the accessory flightplan.

The theory on which the construction method is based has been described in
part III. With reference to this theory an explanation will precede the new method
by following the historical development. In 1872 Francis Galton devised an empiric
method for the construction of the most favourable route for sailing ships (8). On
the principles thereof Giblett, in 1924, based his method for air ships (4). Another
interpretation was given by Bessemoulin and Péne in 1949, adding an important
feature which made it possible to draw the minimum flight path through the points
of departure and of destination (9). All these methods ultimately relate to the con-
cept of time fronts and extremals described in parts III, 5 and III, 6. The time
fronts were called “isodic lines” by Galton and “isochrones par sol” by Bessemoulin
and Péne. Other methods are developed which refer to the simplified form of the
navigation equation of Zermelo III, 9. Two of them, one by J. S. Sawyer (15) and

one by I. I. Gringorten (16) make use of the shear term oy but in view of the
Xy

difficulty to measure this term these methods are laborious and cumbersome.

The method described below is an extension of the method of Bessemoulin and
Péne. The properties of the extremals of parts IIT, 5 and III, 6 can be translated for
the minimum flight path and can be summarized as follows:

L. The minimum flight path connects the tangent points of the time fronts W —

constant, associated with the starting point P and the complimentary time fronts
W, associated with the terminal Q, Jor which the sum of W and W, is constant
and equal to the sumvalue at P or Q.

IL. The time of travel along the minimum Slight path from P to Q is equal to the
value of W in Q or in other words equal to the value of Wy in P.

HI. The minimum flight path intersects the time JSronts transversally. As a consequence
the property holds:

Ma. Along the minimum flight path the heading of the aircraft is perpendicular to
the time fronts.

Iv. lgrad W | = | grad W, | =

1
=

[

where the effective true air speed c, is equal 1o the sum of the true air speed ¢
and the tail component of the wind.

Essentially the methods of Galton-Giblett and Bessemoulin-Péne can be regarded
as contact transformations, since the time fronts are built up successively by drawing
certain envelopes, which are generated by points of a previous envelope (fig. v, 4).
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II. The method of Bessemoulin and Pone.

The time unit is chosen as one hour. The point of departure is P. About point P
draw a circle ¥, with radius equal to the true air speed during the first hour (fig. V,
4). From several points on circle ¥; draw the wind displacement vectors P; 4;,
0, B,, R, C; etc. The points 4, B, C, are then located on the first time front W
— 01, reached by an aircraft in one hour. Draw circles with a radius equal to the
true air speed during the second hour about some points of W = 01, for instance
A, B, and C;. These circles are enveloped by a curve V. From some points of ¥,
the wind displacement vectors for the second hour are plotted, notably Py As, Qs Bo,
R, C, etc. The points 4, B, C, etc. will be located on a curve W = 02, which can

Fig. V. 4

be reached by the aircraft after the second hour. This process may be repeated
as required. For reasons of simplicity the destination Q is located on the time front
W =n-+1.PAAy ... Ay; PBiBs. .. By; PC,C,C; . .. C, are flight tracks which
approximate minimum flight paths through P. The circles with radius equal to the
true air speed of the aircraft are tangent to the envelopes V; ¥, etc.; that means
that the true air speed vector, or heading of the aircraft is perpendicular to the
time fronts W = 01, 02, 03, . .. n. This property was already proved in part IIL
In order to find the minimum flight path which is passing the destination Q, the
construction is started in point Q by applying the procedure in reversed direction.
From Q plot the wind displacement vector in opposite direction QQ,. Drop from
0, the perpendicular on time front W = n. The foot B, of this perpendicular is a
point of W = n on the required track. Repeat this method to find B, on W = 01
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and until the point of departure P is finally reached. The minimim flight path between
P and Q@ is the track PB, B,B, . . . B, Q; the associated true air speed vectors (headings)
PQ,, B, Q, are perpendicular to the time fronts (W =0 W =01, W = 02 etc.

III. The method of Galton and Giblet:.

This method can be described in a similar way (fig. V, 5). After drawing the indi-
catrix W = 01 (chapter III, 9) for the point of departure P, the indicatrices ¥, for
several points of W = 01 can be drawn. These indicatrices V', determine an envelope,
which is time front W = 02. For several points of time front W = 02 the process
is repeated and so on.

Fig. V, 5.

Both methods described are more or less complimentary. They differ in as much
as the heading in the method of Bessemoulin and Péne is perpendicular to the
previous time fronts and in the method of Galton-Giblett is perpendicular to the
Jollowing time fronts. Taking the limit for the time A\ W — 0 both methods merge
into each other.

It is clear from the properties mentioned in V.2 I, 1L, III, I1Ta and IV that the
construction of time fronts and minimum flight paths can also be performed by
not starting the contact transformation from the point of departure but by starting
the contact transformation from the point of destination (fig. V, 6). Let O be the
destination and let the time unit again be one hour. Draw about Q a circle V with
radius equal to the true air speed. From several points on circle ¥ draw the wind
displacement vectors P, 4,, 0, B, and R, C,, in opposite direction. The points 4,B,C,
are then located on the first complementary time front W, = 01, on which the air-
craft will be before reaching Q in one hour. Next draw the circles with radius equal
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to the true air speed about some points of time front W; = 01, for instance the
points 4, B, and C,. These circles are enveloped by a curve V,. From any point
on V, the displacement vectors Pp4, ;, 0,B,_1, R,C,_, are plotted in opposite
direction. The points 4,_;, B, 3, C,_; are then located on the complimentary time
front W, = 02, on which the aircraft will be before reaching destination @ in two
hours. This process may be repeated until point of departure P is contained within
the set of time fronts W = 01, 02 . .. n + 1. For simplicity P is just located on time
front W; = n + 1. The tracks QA4, Ap 5 ..., @B, B,,...0C,C,;...are flight
tracks which approximate minimum flight paths through destination Q. In order
to find the minimum flight path through P and Q plot the wind displacement vector

&
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Fig. V, 6.

PQ,. From Q, drop the perpendicular on time front W, = n. The foot B, on this
time front is a point on the required track. Plot from B, again the wind displacement
vector B;Q,_, and drop from @, _, the perpendicular Q,_; B, on time front W; =n—1
and so on, until point B, on time front W; = 01 is found and until finally the point
of destination is reached. The track PB;B,...B,Q is the required track. Again
one can observe that the latter method differs from the method of Bessemoulin and
Péne inasmuch as the headings along the track are perpendicular to the following
time fronts, instead of being perpendicular to the previous time fronts.

Taking the limit for the time unit /A W — 0 both methods yield the same minimum
flight path. It was shown theoretically that the minimum flight path for A W —0
connects the tangent points of the time fronts W = constant and the complimentary
time fronts W, = constant for which W + W; is equal to W + Wyin Por W+ Wy
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in Q. In figure V, 4, 5 and 6, W+ W, = n + 1 hour. Summarizing there are three
important solutions to the problem of finding the minimum flight path through
point of departure P and point of destination 0.

1) By constructing the time fronts W = constant, associated with the point of departure
P and plotting the minimum flight path starting from destination Q.

2) By constructing the complimentary time fronts W, —= constant associated with
destination Q and plotting the minimum Slight path starting from the point of
departure P.

3) By constructing the time fronts W = constant, associated with point of departure
P, the complimentary time fronts W, = constant, associated with destination Q
and connecting the tangent points of time fronts for which W + W, is equal to
the sum value in P or Q.

Which of these methods is to be preferred depends on the priority of factors
which play a part in pre-flight planning. The first method is suitable to have a good
survey of times of navigation along minimum flight paths which are plarined from
the same point of departure to different places of destination. Such a consideration
may be important in respect to the terminal weather conditions. The second method
is suitable for having a good survey of times of navigation along minimum flight paths
which are planned from different points of departure to the same destination. This
procedure is worth while in case a company is operating several longe range flights,
for instance transatlantic flights from different aerodromes. The third method can
be issued if both factors mentioned above should be studied. Apart from this a
detailed analysis is obtained for comparison of the times of navigation along composite
minimum flight paths by means of focal curves.

Minimum flight path navigation is most suitable for areas where navigation is not restricted
by airways etc.

Transoceanic flights lend themselves extremely well to these procedures since the navigation on
board an aircraft is mainly expressed in units per hour, preferable from the moment of take-off (ground
speed, fuel flow, altimetry, position and weather reports). It is self-evident to design a technique
of flight planning which fits in with the hourly time base of the construction and which also fits
in with the hourly navigational administration en route (fight log).

The minimum flight path may serve as a flight log, also by plotting the hourly positions in the
chart which gives a better impression and a more accurate picture of the progress of the flight (pic-
tural ““how goes it”). The collection of data required for flight planning is also simplified by the
hourly zones of the flight path. The intended flightplan track is omitted, because the track as given
for the determination of the aircraft heading, is no longer of importance. Zonal information as
wind direction and wind speed, effective component and wind correction angle are not needed,
because. these data are inserted in the upper air chart.

It will be clear from this summary that the first method of construction (time fronts associated
with the starting point and minimum flight path from destination) should be preferred above the
two other methods.

a. Construction of time Sfronts (fig. V, 7).

Read from cruising tables and graphs the true air speed for the first hour, which is a weighed
mean value of the air speed during the first hour with climb included. Adjust this value on the
computor for the correct latitude and put the computor into the upper air chart in such way, that
point S in groove D is located at the starting point P. Rotate wind disk 4 until groove B coincides
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Fig. V, 7.
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with the mean direction of the isohypses for the first hour and plot in this groove the average wind
vector.

The wind speed is read in the chart from the figures which indicate these speeds. Turn the computor
about point § = P and plot the wind vector again. In this way a number of points is found for the
first time front W = 01. Next read the true air speed from cruising tables and graphs for the second
hour. This speed is a function of cruising system, temperature, height and weight. Adjust the air
speed to the computor and shift the computor until S is located somewhere on the time front W
= 01 and until edge F is tangent to the time front.

In this position rotate again wind disk A and plot the wind vector. Repeat this plotting for a
number of points on W = 01. The plotted points are then located on time front W = 02. This
procedure is continued for the successive time fronts W = 03 .. ., until the system of time fronts
covers the destination Q.

b. Plotting the minimum flight path.

Starting in destination Q plot the average wind displacement vector of the last hourly zone in
opposite direction by means of the wind disk A. Move the computor until the plotted point appears
in groove D of slide C. Next shift and rotate slide C until the edge F is tangent to the previous
time front and plot this tangent point on the chart. The tangent point is a point of the required
track. From this point the same manipulation is carried out and repeated until point of departure
P is reached. An important element in the method is the possibility to measure the heading simultane-
ously with the plotting of the minimum flight path.

C. Determination of grid- and magnetic heading, distances etc.

Apart from the contourlines the upper air charts also contain grid meridians and isogrivs. If
the system of time fronts have been drawn and the plotting of the track is taking place, grid heading,
grivation and magnetic heading are determined simultaneously as soon as an hourly segment has
been obtained.

After shifting and rotating slide C until edge F is tangent to a previous time front, the computor
is kept in this position and the protractor E is moved over slide C until the centre M is located
on the grid meridian. Then read from the grid meridian the grid heading and interpolate the grivation
in the midpoint of the segment. The sum of grid heading and grivation is the magnetic heading.
The ground distances of the hourly segments between the points of intersection of the minimum
flight path and time fronts can be measured with the distance diagram of the computor.

If terminal Q is not exactly located on the last time front but between two time fronts, interpolation
must be applied. In this case plot a fraction of the wind vector, which fraction is determined by the
flight time between O and the last time front before Q. If for instance Q is located halfway between
the time fronts, a displacement equal to half the wind velocity is plotted and the construction is
applied accordingly. The setting of the computor remains unchanged for the second and following
hours because the change of true air speed at flight altitude is negligible in most cases. Other flight-
plan data like break horse power, brake mean effective power, revolutions per minute, fuel flow,
gross weight etc. are obtained in conventional way by means of the cruising tables and graphs.

Chart 5 gives an example of a flight from Shannon (Ireland) to Gander (New-Foundland) as
it was actually performed on August Ist 1951 using a constant indicated air speed cruising system
of 205 kts. Table III on the opposite page gives the accessory flightplan data for the minimum
flight path. The planned time of departure was set at 01.00 gmt. The composite prognostic 700 mb
chart valid from 03.00 until 12.00 gmt shows a deep low at 56.30 N 40.00 W, valid for 09.00 gmt
and a second low at 62.00 N 13.00 W, valid for 04.00 gmt. The time front for the first flying
hour was constructed with a mean true air speed of 191 kts (temperature at 700 mb —5°C).

The other time fronts were found with a mean true air speed of 209 kts (mean temperature at
700 mb —3° C) at 10.000 feet flight level.

The setting of the true air speed of 209 kts on the minimum flight path computor was taken at
55°N. The minimum flight path was running on top of the low. The pre-computed minimum flight
path time is 9h 03m.
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The flight time from Shannon to Goosebay should be 9h 15m. The total distance measured is
1842 n.m., which is 126 n.m. longer than the great circle distance Shannon-Gander. The flightplan
time along the great circle, which was found by the method described in V. 1. V was 9h 55m, 52
minutes more than the flight time along the minimum flight path. For the air traffic clearance a
composite pressure pattern flight was mentioned with turning point at 58.00 N 40.00 W.

The information for air traffic control such as the crossing of 13°, 20, 30%, 40° and 50°W was
found by interpolation between the time fronts and gave respectively 01.00, 02.30, 04.00, 05.30
and 07.35 hrs after take-off. The take-off time was 01.33 gmt. This time was used as the hourly
time for position and weather reports. On the chart the actual flight track is shown and the winds
aloft, obtained with altimetry and radio means.

The total distance covered was 1890 n.m., 48 n.m. more than the intended track and 174 n.m.
more than the great circle distance. The total time from Shannon to Gander range station was
9h 05m, giving a wind component of 0 kts and a time difference with the intended minimum flight
path time of 2 minutes.

In spite of the small deviation of the actual track from the intended track the headings of the
initial flightplan were sustained in order to apply the rule: “‘Stick to your headings”, except during
the last flying hour where a correction angle of 10 degrees was applied, determined by measuring
the angle between the actual position of 09h 33m and the intended position on the minimum flight
path at the same time.

Gander was reached without further corrections. A reanalysis on the actual map showed indeed
that the flown track was a very close approximation of the actual minimum flight path (More details
are given in (14)).

IV. Other construction methods.

It is obvious from the gradient property III, 15 that the construction of time
fronts and ultimately of the minimum flight path can be accomplished by using
the equation

|gradW|=-1—.

e
Let the time unit be again one hour and let W = i be a given time front. The distance
between two successive fronts at any
point of the line W = i is then equal
to the sum of true air speed and tail
_»  wind (taking a head wind as a nega-
Ql = . . .

tive tail wind).
; L / Therefore a good approximation of
D] the construction of a time front can be
C achieved if at a given point R of time
front W = i a distance is put equal to
the sum value mentioned above. In
order to accomplish this procedure a
template of transparent material can be
A \ \ Dy used consisting of a plate 4 with groove
\ * B and a small bar C, which can move

QQJ

[

along two slides D, and D, (fig. V, 8).
On plate 4 a set of concentric circles
Fig. Vv, 8. is drawn centred about point M which
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is also the midpoint of groove B. The radii of the circles correspond to 10, 20, 30 n.m.
distances on the chart for a certain mean latitude, dominating the working area. The
edge F of bar C'is normal to the groove and the distance from the edge to the midpoint
indicates the true air speed, which is readable from two distance diagrams on slides
D, and D,. Adjusting the template to the true air speed, one places the template
on the chart so that the edge is tangent to the time front W = i in a point R. In
this position the average wind vector is indicated within the set of concentric circles
and a normal is dropped onto groove B. The foot is plotted on the map and this
foot is approximately located on time front W = i + 1. This procedure is repeated
for a number of points R located on the given time front. Since the point of departure
P can be considered as a degenerated time front W = 0 the construction is also
valid there. The construction can be completed by applying the methods described

Fig. V, 9.

earlier. This method is suitable for getting qualitatively a good impression of the
minimum flight path by means of a simple device.

The construction of the minimum flight path by using the time fronts associated
with the point of departure or using complimentary time fronts associated with
destination can be interchanged. This is demonstrated in fig. V, 9. The upper air
chart is turned upside down on a light table. At the same time the direction of the
wind is inverted. That means that for instance a low is interpreted again as a low.
In this case the construction of the minimum flight path by using the time fronts
associated with the point of departure P is changed into a construction using the
complimentary time fronts associated with P and the construction using the com-
plimentory time fronts associated with destination Q is changed into a construction
using the time fronts associated with Q. This inversion can be very useful in order
to simplify construction techniques.

V. Time front patterns.
As was stated in part III the structure of the system of time fronts can be rather
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complicated and, like in optics, give rise to refraction, diffraction, reflection and
induction of caustics.

This may cause the possibility to find two or more minimum flight paths between
two points P and Q. The property of the minimum flight path to yield a minimum
flight time in that case must be interpreted in respect to admissable trajectories
which run in a neighbourhood of the flight path.

Let e; and e, be two minimum flight paths through P and O which are not run-
ning in each other’s neighbourhood (fig. V, 10).

Suppose that the conjugated points P and P are located beyond Q. Then e, yields
a relative minimum
flight time T; in respect
to admissable trajecto-
ries which run in the
neighbourhood E;. Si-
milarly e, yields a rela-
tive minimum flight
time T, in respect to
admissable trajectories
running in the neigh-
bourhood E,. If there
are no other minimum
flight paths between P
and Q, one of them, say
e, yields an absolute mi-
nimum flight time, ex-
cept if @ islyingona
double line m, which is
the locus of double
points of the system of
time fronts associated
with P.

Fig. V, 11. In that case 77 = T,
so e; and e, are equi-
valent, concerning flight time. Some of the patterns will be studied more in detail.

A. Induction of a caustic.

Fig. III, 9 shows the induction of a caustic occuring frequently in practice. The
caustic possesses a cusp or focus in point F (see also fig. V, 11).

The picture may be interpreted as the projection onto the (x; ; x,) plane of the
regression line and conic point of the integral conoid W associated with point of
departure P in (W ; x; ; x,) phase space. The time front passing through focus F
shows a nodal point. The following time fronts possess cusps at the branches A4;
and A, of the caustic and double points which are located on the double line m.
According to Lindenberg the family of the minimum flight paths through P which
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are associated with this pattern of time fronts consists of two groups, each of which
form a field of minimum flight paths (fig. V, 12). The minimum flight paths of the
first group Gy, are tangent to branch 4,. The minimum flight paths of the second
group G, are tangent to branch
A,. Both groups are separated
from each other by the minimum
flight path which runs from P
to focus F.

In upper air charts the time
front pattern with caustics often
occurs, especially in two cases:

1) At the rear of a closed vortex
associated with a depression
or anticyclone.

2) In a region with a strong windshear (frontal zone, jetstream).

Both cases have been demonstrated in fig. V, 13, Fig. V, 13a'shows the caustic
and focus F at the rear of a “low” L. Fig. V, 13b shows the caustic curve and
focus F in a frontal zone with a strong windshear.

Special attention should be paid to the location of point of destination in respect
to the time front pattern. For instance in a closed area C (fig. V, 11) one can dis-
tinguish four possibilities.

Fig. V, 12.

1) destination Q is located at a double line m. There are two equivalent minimum
flight paths, one belonging to group G, and one belonging to group G, which
both yield the same time of navigation.

2) Destination Q is located within the sector bounded by the double line m and
branch 4, of the caustic. There are two minimum flight paths, one belonging to

Fig. V, 13,a. Fig. V, 13b.
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group G, and one belonging to group G, the second of which yields an absolute
minimum time of navigation.

3) Destination Q is located within the sector bounded by the branch A4, of the
caustic and the double line m. Again there are two minimum flight paths, one
belonging to group G, and one to group G, the first of which yields an absolute
minimum time of navigation.

4) The destination is located beyond the sector bounded by the caustic. There is
one minimum flight path through P and Q belonging either to group G, or
group Gs.

If destination Q is located at branch 4, then Q is the conjugated point of P on the

minimum flight path belonging to group G;. If O is located at branch 4,, Q is the

conjugated point of P on the mini-
mum flight path belonging to group
G,. If Q coincides with focus F, Q is
the conjugated point of P on the mini-
mum flight path between P and F,
which belongs neither to group G,

Q nor to group G,.

It is interesting to note that the
caustic may degenerate into a point
or focus (fig. V, 14). In that case there
is an infinite number of minimum flight

Fig. v, 14. paths through P and Q each giving the

same time of navigation.

The construction of this pattern causes no difficulties in practice. To find a point of the branches
A, or A, the minimum flight path computor is to be moved along the previous time front in such
way that the edge F of the protractor is gliding along the front. At the same time one looks at the
movement of the midpoint of the wind disk. At the moment that this midpoint comes to a stand-
still the point which causes a cusp of the next time front has been reached. This point is located
at one of the branches of the caustic. The same procedure is repeated for the next time fronts.

If destination Q is located at the double line m both relative minimum flight
paths are equivalent concerning time. On the other hand other factors, like weather
conditions, may be different along both paths. As soon as two or three double
points of m have been found, it is easy to locate destination Q in respect to the
p-ttern and to conclude which minimum flight path yields the greatest benefit.

In chart V, the induction of the caustic takes place at the rear of the “low”, situated
at 56.30N 40.00W. Destination Gander is located outside the caustic. So there is
only one minimum flight path between Shannon and Gander.

B. Refraction pattern. ”

If a line exists in the upper air chart along which the wind vector  has a dis-
continuity the minimum flight paths through a point P are refracted along the dis-
continuity line. The refraction is governed by the law of von Mises, described in
part III, 10. For aircraft flying at a low altitude such a line of discontinuity
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exists along the intersection of a frontal surface and a constant pressure surface.
A similar line of discontinuity may be introduced if an aircraft for any reason
changes from one altitude to another for instance with the purpose to avoid an
area of bad weather or to fly over a mountainous area. In such a case the charts
should contain two or more analyses, which are separated along a discontinuity
line, for instance a 700 and 500 mb analysis, separated along the boundary of a
region of bad weather (fig. V, 15).

In order to construct a refracted minimum flight path the concept of the complete
figure of time fronts and minimum flight paths again can be introduced. It will
be obvious that the time fronts are refracted also along the discontinuity line. In
preparing the complete figure graphically no difficulties arise. Chart 6 shows a
section of a surface map with a
depression some hundred miles
west of Scotland moving east
slowly. Interpreting this chart as
to represent the air circulation
Just above the friction layer the
occlusion may be interpreted to
represent the line of disconti-
nuity. The time fronts and mini-
mum flight path have been con-
structed from point of departure
at Schiphol airport to destination
Prestwick, valid for a flight at
low altitude with a constant true
air speed of 100 knots.

Fig. V, 15.

C. Diffraction pattern.

It may occur that in aviation the operations are restricted by mountain ridges,
bad weather zénes, forbidden flight regions etc After the region has been delineated
the problem arises to find the track along which the time of navigation is a minimum.
It was shown in part III, 12, that the minimum flight path now consists of sections
of minimum flight paths which are tangent to the boundary of the region and parts
of the boundary itself. The pattern of time fronts shows much resemblance to the
diffraction of all kind of waves around an obstacle. Fig. V, 16 shows this pattern,
with point of departure P, around the convex region B. The minimum flight path
e, through P is tangent to the boundary g in point R,. Another minimum flight
path e, through P is tangent to the boundary g in point R,. Up to the tangent points
R, and R, the time fronts have been indicated by full lines. After that they have been
represented partly by full lines, partly by dotted lines on each side of the minimum
flights paths e, and e,. The dotted portions have no real physical meaning. G being
the area bounded by e, and e, and & an arbitrary point Q, located within G cannot
be reached along a member of the family of minimum flight paths associated with P.

Supposing e¢,” and e,” are minimum flight paths through Q which are tangent to

8
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Fig. V, 16.

g in the points S; and Sj, one of the minimizing tracks between P and Q consists
of the arc PR, along e, the arc R,S; of the boundary g and the arc S,Q alonge,’.
Another minimizing track consists of the arc PR, along e,, the arc R,S, along g
and the arc S,Q along e,’.

1t should be noted however, that along the arcs R, S, and RS, along g the boundary
condition IIT of part III, 12 must be fulfilled. This is difficult to test. The diffraction
pattern demonstrates that more than one minimum flight path through two given
points may occur.

D. Reflection pattern.

Supposing that for operational or other reasons the aircraft must call at an
arbitrary point on a boundary g,
the problem arises along which track
between two points the time of
navigation is a minimum. The pro-
blem bears much resemblance to
the reflection of light upon a mirror.
As a result of the reflection on g of
the minimum flight path (see part
III, 11) the time fronts will be re-
flected as shown in fig. V, 17. The
condition for reflection however is
rather complicated. Therefore it is
easier to construct the time fronts W
associated with points of departure Fig. v, 17.

8*



116 THEORETICAL ASPECTS OF AERONAVIGATION ETC.

P and the complimentary time fronts W; associated with destination Q. Considering
the focal curves of the complete figure one of the focal curves must be tangent to
g (see part ITL, 11). After the tangent points have been determined, the broken extre-
mal can be found by using the set of time fronts W and W, separately.

3. Single-heading navigation.

1. Definitions.

Single-heading navigation is defined as a system in which the heading is constant
during the flight. The heading should be taken relative to a conformal and almost
equivalent map overlayed with a grid. In this respect the system should be called
single grid heading navigation. The orientation of the standard meridian of the
superposed grid does not influence the system but the choice of the projection chart
has some meaning. Without wind the single grid heading track is a straight line
on the chart. So the meaning of a straight line on the chart indicates the type of
single grid heading navigation. For instance, if a Lambert conical projection is
used, the straight line on the chart for distances not more than 2000 n.m. is approxi-
mately coincident with the great circle. The single grid heading navigation then
may be called great circle heading navigation. Using a Mercator chart the straight
line represents a rhumbline. Then the single grid heading navigation may be called
rhumbline heading navigation. In practice the invariant grid heading should be
corrected by applying the grivation in order to navigate with a magnetic compass.

Single grid heading navigation necessarily introduces a variable magnetic heading
navigation. Flying a constant magnetic heading the single heading navigation is
called a single magnetic heading navigation.

I1. Construction of single heading tracks.

In literature different methods have been described in order to construct single
heading tracks (2) (17). These methods are based on the formula of Bellamy (see
part II, 2). However, the proposed methods are laborious and approximative. Using
pressure contour charts in mid latitudes the air current in a narrow strip about a
latitude circle can be fairly accurately described by means of the stream-function

The addition method of Maxwell for superposed vector fields can be applied im-
mediately after the stream-functions have been properly normalized.

Introducing a grid heading and classifying a single heading navigation as a stream
navigation the pseudo stream-function becomes:

’ g !
M= %
2wsing,

z’ being any auxiliarly height.
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¢ being the true air speed,assumed to beinvariant along the track, then approximately

——] Aw’

R with Ay’ being the increment of the pseudo stream-function ¢’ and An
n

_ sl
2wsing,,
the normalization is expressed by the condition Ay’ = Aw. The distance between
_ &
2wsing,,
crement of geopotential in the pressure contour chart.

being the distance between two adjacent stream-lines ¢’. Since Ay =

2,

two adjacent parallel lines then becomes An = /\z, where Az is the in-

The distance An may easily be determined by using a geostrophical wind scale measuring the
distance An for a fictitious wind velocity of ¢ knots.

After An has been determined, one draws the parallel lines with mutual distance
/An on a transparent sheet of paper and one labels the function ' with increment
Avy" = Aw. For different values ¢ of true air speed corresponding sets of equidistant
straight lines may be drawn. The construction of the single grid heading track now
proceeds as follows:

The auxiliary chart is put on a light table and the pressure contour chart is placed
upon the sheet and rotated in such way that the sum value y + ¢’ in the point of
departure is equal to the sum value y 4 %’ in the point of destination. Both charts
being in the right position one to another the single grid heading track can now
be drawn by connecting the points of intersection of the v and y'-lines. The grid
heading is determined by measuring the angle between the grid meridians and the
parallel lines of the y'-field. The method is demonstrated in chart 7 which represents
a 700 mb analysis, the same as used in charts 1, 2 and 3. A single grid heading flight
has been planned starting from Prestwick with destination Gander, with a true
air speed of 200 kts. The corresponding transparent sheet with parallel lines has been
prepared with an increment Ay’ = Ay = 4 decametres for ¢ = 52°. Select an
arbitrary straight ¢’-line passing through Prestwick:

p=rkz =300k v =—20k k=-L5 __ y4y =2840%
2w sin 52

Since in Gander y = 2990 k, the value of y’ in Gander must be 3’ = (2840 —
2990 k = —150 k. Therefore the 700 mb chart should be turned until the straight
line ' = —150 k is passing through Gander. In this position the curve connecting
the points of intersection of contour lines and pseudo stream-lines represents the
single-heading track asked for. The single-heading track corresponds with the track
in chart 2, constructed by means of the complete figure. The same procedure can
be followed for a single grid heading flight from Gander to Prestwick. The con-
struction can be carried out in a few minutes.

1lI. Some applications.
In part II, 2 it was shown that all single heading tracks through the points of
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departure and destination for different values of the true air speed intersect each
other in some fixed points, provided the addition method can be applied.

In chart 8, a 500 mb chart, the single-heading tracks have been constructed by
means of the addition method for true air speed values of 500, 300, 200, 100 and
70 kts. The tracks intersect each other in point R, located an the great circle through
Prestwick and Gander. The total number of concentration points is according to theory
at the most one less than the number of maxima and minima of a contour line,
provided such a contour line passes the point of departure als well as the point
of destination. In general it can also be stated roughly that the number of concentration
points is at the most one less than the number of axes of ridges and troughs, which
intersect a straight line through points of departure and of destination. Chart 8 shows
two axes which fulfil the condition, one associated with a trough and one associated
with a ridge. So in this case there is maximally one concentration point. It should
be clear that the single heading tracks from Gander to Prestwick eastbound also
intersect the concentration point R.

A similar addition method may be applied to find the track associated with a
single true heading navigation or rhumbline navigation. Drawing the rhumbline
through points of departure and destination, (for instance Prestwick and Gander)
this line can be taken as a base line of a set of parallel equidistant rhumblines. The
same distance A n for the increment /\y’, as used in great circle navigation, can
be used to draw a set of lines “parallel” to the baseline. After the set of lines has
been drawn on a transparent sheet of paper the function ' with increment /\y’ can
be labelled and the addition method can be applied without any difficulty, taking
into account, that the navigation behaves like a stream navigation (fig. I, 15). It
can be noted that for instance on a Lambert conformal projection with standard paral-
lels at 30° and 60° N, the rhumbline which is used as baseline of the auxiliary field of
flow is approximately identical for east- and westbound flights with a latitude circle
through point of departure. As a matter of fact each latitude circle is a rhumbline.
Chart 9 shows another 500 mb contour chart. With a true air speed of 150 kts the
single grid heading or great circle navigation tracks and the single true heading
or rhumbline navigation tracks both from Prestwick to Gander and vice versa
have been constructed by means of the addition method described above. Point
R is a concentration point located at the great circle Prestwick Gander.The maximum
jumber | of concentration points is again one since there are two axes of troughs
and ridges crossing the great circle between both places. By accident there is also
a concentration point R, for the rhumbline navigation located at the rhumbline
through Prestwick and Gander but theoretically it is not necessary that such a point
exists, except if a contour line is passing both endpoints.

The figures 'along the track indicate time marks. From these figures it is evident
that the great circle navigation track is in both directions faster than the rhumbline
navigation track.

As was stated in part IV some practical rules can be derived from the single-
heading navigation in order to study the minimum flight path navigation. In certain
circulation patterns the single-heading track is a close approximation of the minimum
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flight path and even in a few cases each single-heading track is identical with a mini-
mum flight path, for instance in a uniform rectilinear air current.

As was shown in part IV, there are in general four single heading tracks passing
through an arbitrary point, which have a three pointic contact with a corresponding
minimum flight path. These tracks are determined by the optimum headings &,
£ +m, & and & + 7. As a result the following rule may be given for short flight
distances, shorter than a few hundred miles:

For short flight distances there are in general four directions in which the single
heading track is a very close approximation of the minimum flight path.

If the concept of a stream-function v is accepted, these points are found in those
parts of the countour chart, where the corresponding points at the y-surface are

hyperbolic points. In

I parts of the contour
chart where the corres-
ponding points at the
y-surface are elliptic
points, the optimum
headings become ima-

= //\ 7 : C  ginary and in that case

the rule has no signifi-
P cance. In exceptional

/ 0 X cases the optimum

(N /\ headings & and & be-

/ come equal, the rule

A \/ / A B then applies to two di-

rections only and finally

Fig. V, 18. it is possible that in cer-

tain points & becomes in-

definite which means that the rule applies to all directions. It was shown in part 1V

that in special air currents some selected single-heading tracks at the same time

become identical with a minimum flight path. One of these patterns should be
examined more in detail in view of some interesting applications.

When the standard pressure surface is similar to a cylindrical surface and when
accordingly the topography of the constant pressure surface consists of contour
lines, which originate from a contour line by shifting it parallel into the direction
of an arbitrary axis (see fig. IV, 10), then the single-heading track, determined by
the optimum heading perpendicular to the axis is at the same time a minimum flight
path and the single-heading track which deviate from this one, will in any case
tend to run approximately along the associated minimum flight path provided that
the deviation is not too wide. So if a similarity exists between the flow pattern and
the “cylindrical pattern” one can immediately study the behaviour of a mimimum
flight path qualitatively by considering the single-heading track with the optimum
heading perpendicular to the axis. The airflow in constant pressure surfaces as a
matter of fact with the concept of meandering, often behaves like such a “cylindrical
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airflow” with axis of troughs and ridges as projections of the cylinder generators.
When the structure of the airflow is more complicated, then it is still possible to
recognize some areas where the airflow looks like a cylindrical airflow, and the
minimum flight paths which run in such areas, still tend to run approximately along
the single-heading track. This track is qualitatively easy to identify, for instance
by the addition method or roughly by routine only. In figure V, 18 for instance
there are two minimum flight paths, one running on top of the low L, the other one,
which is located in rectangular 4BCD tends to run along the single heading track,
because in this rectangular the airflow looks fairly well like a cylindrical airflow:
Such speculations may be very useful in practice to have a qualitative idea of the
behaviour of the minimum flight path. After examining the upper air charts in this
way it will be understood that the construction of the minimum flight path meets
with less difficulty in as much the time fronts need not be drawn over a wide area,
and in special cases it may be recommended to fly along the single-heading track,
if both tracks hardly deviate from each other.
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