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PREFACE

Problems of current interest, related to the navigation of ships in stationary
fields of flow are discussed in this volume. Parts 1, II, l1[ and IV deal with theoretical
investigations each concerned with a special type of navigation, as defined in part 1.
In part V the theory bas been applied to the navigation of aircraft.

Under the title “Single heading and shortest time navigation”, the parts 1—1V
were accepted as a doctor’s thesis by the Philosophical Faculty of the University
of Utrecht. Professor Dr. H. FREUDENTHAL acted as promotor; his interest in Dr. DE
JONG’S work is kindly acknowledged.

The remaining part is a summary of working methods, developed and applied
by the author at Schiphol Airport. The close cooperation and the assistance of many
authorities of the Royal Dutch Airlines, K.L.M., is highly appreciated. Special
thanks are due to Mr. F. C. BIK, Captain of K.L.M., who with enthusiasrn and
ingenuity contributed to the development of various ideas.

Dr. W. BLEEKER, head of Scientific Research stimulated the study and discussed
variotis phases of the project with the author.

The Director in Chief

C. J. WARNERS.
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PART 1

GENERAL CONSIDERATIONS

Introduction

In this part a general treatment is presented of the motion of a ship in a
stationary two-dimensional aero- or hydrodynamic field of flow. Properties of the
motion are derived, which because of their navigational aspects form the basis of
a special system of navigation, viz. aeronavigation.

Since many of these properties are of great practical interest both for navigation
at sea and in the air the word ship will be used as a collective for all kinds of air
craft, ships, missiles etc.

Throughout the assumption is made that the internal forces (engines) are in
equilibriurn with the frictional and gravitational forces as well as all other forces
operating on the ship so as to ensure a constant speed with respect to the surrounding
medium. Furthermore it is assumed that the structure of the ship is such that the
internal forces operate along the main axis of the ship.

With respect to the surrounding medium such a ship will move in the direction
of the main axis. Witli respect to a fixed coordinate-system however the ship will
deviate from the direction of the nam axis and fotlow a course determined by the
resultant motion of the ship and the flow.

In general the true velocity c of the ship surpasses the velocity of the flow, but
the hypothetical case in which c is smaller than the velocity of the flow will not
be excluded.

1. The stationary field of flow

The two-dimensional aerodynamic flow will be described in local, i.e. Eulerian,
coordinates. At an arbitrary pointP within the field of how the intensity and direction
of the flow are defined by the vector u. The velocity components u1 and u2 are functions
of the coordinates x1 and x2. So the equations for the stationary held of flow can
be written:

u1 =f (x1, x9),
112 = g (x1, x2)

where the functionsf and g are arbitrary one-valued bounded functions of x1 and x2.
Depending on the properties of these functions singularities and discontinuities

may exist in the flow. For instance any point, wheref and g vanish simultaneously,
may be a vortex point, a col, a source point etc. Unless stated otherwise the functions
f and g are assumed to be continuous.
Because a vector is defined by direction and magnitude two sets of lines can be
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introduced of equal vector direcuon and vector magnitude respectively, which

together define the field of flow unambiguously. The lines of equal vector direction

are called isogones or isoklines and the lines of equal vector magnitude isotachs.

In aeronavigation the isotachs are of special importance. The isotach tt =

+
f2 ± g2 c, or = 1, where c is the truc velocity of the ship and the

velocity pararneter, will be called the limiting isotach.

The limiting isotach devides the field of flow in a number of connected regions,

in which the velocity of the flow is either greater or smaller than c. In stationary

flow stream-lines and trajectories coincide. In general the flow will be neither non

divergent nor irrotational. 1f, however, the flow is non-divergent, then a stream

function 9- may be defined, such that

t1— ,

— (1, 1)
—u) — —

-

The lines constant represent the strearn-lines of the flow.

1f the flow is irrotational, then a velocity-potential 9- may be introduced, such that

uI — —,

x1
(t, 2)

uo =

-

Finally, if the field is both non-divergent and irrotational, both the strearn-function

o and the velocity-potenrial exist.

Then = -- =

x2 x1
(1, 3)

- xI x.2

These relations for ‘çv and are the differential equations of C a u c h y - R i e rn a n n.

Both p and 92 satisfy the differential equation of L a p 1 a c e

A + 2
=

- (1,4)
2 2

A —
+ = 0.

X1 ?X2

The lines constant and the lines = constant are perpendicular to each other.

illiltil ULii1i.Ï
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2. The steering equations

When a ship moves in a field of flow, it will deviate from its proper course with
respect to an observer in a fixed system, in other words, the axis of the ship does
not coincide with the direction, in which it moves with respect to the fixed system.The motion of the ship with respect to the fixed system is given by the vector sum of
the true velocity vector c, which indicates direction and velocity c of the ship relative

-
to the surrounding medium and the stream vector ii. The equations of motion of
the ship with respect to this fixed system are:

dx1
IlJ 111 + C COS

(1, 5)dx
119 — = U2 + C 51fl

- -*
or in vector notation: w = u + c (1, 6)
where 1V (w1, w2) is the speed vector of the ship with respect to the fixed system. is
the angle between the axis of the ship and the positive x1-axis. This angle will be
called the heading.

1f the fiow pattern is governed for instance by a deep cyclone, rotational fields
of flow may be used as a first approximation of the real flow and in that case it is
advisable to introduce polar coordinates.

The equations in polar coordinates r, c can be derived from the equations in
rectangular coordinates by means of a polar transformation. it is, however, sim
pier to derive these equations directiy by means of a vector diagram (fig. 1, 1).

da
1• -= u + c sm ( —

(1,7)

= u + c cos ( —

The equations (1, 5) and (1, 6) uniquely
-

determine a vector field for 11’ except at
the points where is indefinite and at the

points where w is a zero vector, i.e. at the
points where simultaneously

u1 + c cos e = 0 and u + c sin = 0.

These points lie on the limiting isotach,

for u12 + u02 = u2 = c2, or 1
(u and c positive). ii

Fig. 1, 1.
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Points where ii’ is either indefinite or a zero vector are singular points of the system.

Supposing the field of flow ii is known, then, according to the equations 1,5 or

1,7 three main groups of problems may be distinguished:

1. 1f the heading is given as a function of x1 and x2 the equations 1,5 and 1,7 may

be integrated and the solutions x1 = x1(t) and x2 = x2(t) represent the trajectories

along which the slip will travel with the given heading. For practical reasons

the trajectories will be called pressure-pattern trajectories, particularly in view

of the application to aerology where standard pressure-surface topographies

determine the structure of the flow.

2. 1f on the other hand a curve is prescribed along which the ship bas to be manoeu
vred, the heading can be derived from

t 1,5 or 1,7 at every point of the trajectory.
In this sense the equations may be con
sidered as steering equations. 1f along
the curve

dx0
= p (x1, x2),

dx2 dx1
then

This relation yields a goniometric
equation for , which at any point is
satisfied by two values of E ( may be
imaginary). 1f the values of are real,

the ship can be ;nanoeuvred along the
curve in two distinct ways.

3. Finally it is possible that a functional

relation exists between a beforehand
unknown heading (xi, x2) and an
unknown trajectory. Then by means

of the equations 1,5 or 1,7 and this
functional relation both heading and

trajectory may le calculated.
To this group of problems belongs the

“variation problem of aeronavigation”
This is the problem dealing with the

pressure-pattern trajectories between two

given points P and Q, for which the time

of travel is an extreme.
Apart from these groups of problems

other groups of problems arise, when
the field of flow itself is unknown. For

ïnstance it may le required to let a slip

Fig. T, 2,a.

Fig. 1, 2,b.
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travel with a given heading
along a prescribed trajectory
and the problern will be to
find out, what the structure
of the field of how must be
to satisfy this requirement.

In part 1V a detailed ana
lysis of such a problem is given.

3. The indicatrix. Regions of
limited and unilmited ma
noeuvrabillty

In an arbitrary field of flow
there are limits to the manoeu- fig. 1, 2,c.vrability of a ship with a given
true velocity c. In particular when this velocity is smaller than the velocity ofthe flow the slip cannot 5e directed along every prescribed curve.

In order to investigate what possibilities may occur the concept of the indicatrix of C a r a t h é o d o r y will 5e introduced. Let a circie i with radius c be
drawn around the terminal point of the stream vector u. Then the vector connecting
the terminal point of c with the starting point of u is the sum vector w, the speedvector of the ship with respect to the fixed systern (fig. 1, 2, a, b, c). The circie
1 with radius c will be called indicatrix and the associated starting point of the stream
vector ii the corresponding base point G. This nomenciature is justified becausethis circie can 5e shown to be the indicatrix of the variation problem of aeronavigation (cf. part III).

When a> 1 the base point lies inside the indicatrix (fig. 1, 2, a).
When < 1 the base point lies outside the indicatrix (fig. 1, 2, c).
When e = 1 the base point lies on the indicatrix (fig. 1, 2, b).
Let the vector be projected upon Then the sum vector of cand the component

of u along c will be called the vector of the eij’ective truc veÏocity ç.The efictive true velociti’ itself will 5e defined, not as the length of its vector,but by the relation:

C c +—c . ii = c + ti1 cos ± usin (1,8)c

Thus the length of the vector ç is equal to the absolute value of c.
It folfows from fig. 1, 2 that ce is always positive, when > 1. 1f e 1, then
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Ce may be either positive or equal to zero. When £ < 1, Ce may be either positive

or negative. 1f the speed vector w at G is tangent to 1, then c 0.

Consider a trajectory p through G and its tangent g at G (fig. 1, 2, c). Let the

points of intersection of g and i be W1 and W2. With the tangent vectors w1 GW1

and W? = GW correspond two vectors c1 and c0, which are symmetrical with respect

to the normal n of p at G (symme try property).

When G lies inside i, ‘t’ and it’s have opposite directions. When G fles on i, one

of the vectors iv is a zero vector. Finally when G lies outside i, the vectors iv1 and

w2 have the same direction. They coincide, when iv is tangent to 1. In this case

c1 and also coincide and are perpendicular to the speed vector w. 1f c is made to

rotate about the terminal point of ii, w wilt not always rotate through the complete

angular interval (0 — 2n). For if the base point lies outside the indicatrix, w

can only rotate through an angle determined by the tangents from the base point

to the indicatrix. The angle between these tangents will be called the limiting

angle. The line elements coinciding with the extreme positions of the vector w

will be called the anomalous line elements. From an arbitrary point P within the

field of flow a ship can only move into the timiting angle; this point can be reached

only from the opposite angle. At P the manoeuvrability is now said to be limited.

Since the position of the base point with respect to the indicatrix depends only 0fl

the velocity parameter e and since the lines u = constant or, because of the constancy

of c, the lines e constant, represent the isotachs the following regions may be

distinguished in the field of flow. In the regions, where s> 1 the base point ties inside

the indicatrix and the manoeuvrability is unlimited. In the regions where e < 1 the

base point lies outside the indicatrix and consequently the manoeuvrability will be

limited. In the regions where £ 1 the manoeuvrability is also limited. Re

gions with £ > 1 are calted regions of unli,nited inanoeuvrabillty. Regions with £ < 1

are called regions of limited inanoeuvrability.

Both regions e> 1 and £ < 1 are bounded by the limiting isotach e = 1, or by

regions where r 1.
it follows that three different types of field of flow can now be defined. 1f ina field

of flow e is everywhere > 1, i.e., if the true velocity is everywhere greatef than the

vetocity of the flow, then the manoeuvrability will be unÏimited throughout the field.

1f on the other hand e is everywhere either = 1 or < 1 or <1, then the manoeuvra

bility will be limited throughout the field. 1f £ varies in the field between values> 1

and 1, then the field will contain both regions of limited and regions of unlimited

manoeuvrability.
At any point in the field of flow the anomalous line elements may be drawn and

curves constructed, which at every point contain such a line element, in the same



ITS APPLICATION IN AVIATION METEOROLOGY 7

way as stream-lines are constructed from the line elements along the stream direction.These ilmiting curves can be found by integration of the steering equation subjectto the condit jou that the ejfective truc velocity Ce 0.
Line elements lying inside the limiting angle are to be called regular and thoselying inside the suppiementary angles singu/ar line elements, according to C a r a

t h é o d o r y. Admissible trajectories therefore only consist of regular or anomalousline elernents.
in a region of unlimited manoeuvrability all curves are admissible trajectoriesbecause all line elements are regular. On the other hand in a region of limitedmanoeuvrability any arbitrary curve may consist of sections which are eitheradmissible or inadmissible. Any such section is bounded by two successive tangentpoints of the curve with limiting curves, provided the tangent point is not a pointof infiection on the curve. Limiting curves consist of anomalous line elements,except at the points where r = 1, and are admissible trajectories.
Betwecn the admissible trajectories in both regions 1 and r> 1 a gradualdifference exists. for according to the theory of the indicatrix there are two ways ofmanoeuvring along any admissible trajectory. in regions of limited manoeuvrabilityboth manoeuvres are in the same direction, but in regions of unlimited manoeuvrability they are in opposite directions.
However there is oniy one way of manoeuvring atong the limiting curves. Similarlyonly one manoeuvre is possible for the case c 1, for the total speed w 0 withthe second manoeuvre.

4. Limiting curves. Manoeuvrable strips

Along a lirniting curve c 0 or according to 1, 8:

c+it1cos42+t,2sin42=0. (i,9)
Multiplying the equations 1, 5 with cos 42 and sin 42 respectively and adding themtogether one obtains:

cos42+sin42==0 (t,l0)di dt

or in vector notation: c. w 0.

This equation expresses the fact that, when manoeuvring along a limiting curve,the true velocity vector is always normal to the curve.
After squaring 1, 9:

(c2 — t,2) cos 242
— 2111112 cos 42 sin 42 ± (c2 — it22) sin 242

= 0
and eliminating the heading 42 by means of 1, 10 one gets:

(c2 — 112)
(2)2±

2u1u0 2
± (c2 1122)

(i)2

0 (1, 11)

t
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1f everywhere 0, this equation reduces to the differential equation for the

limiting curves:

(c2
— u1)

()2

+ 2u1u2 + c2 — = 0 (1, 12)
dx1 dx1

The discriminant is

A = 4u12u92 — 4 (c2 — u2) (c — u2)

= 4c2u2 (tt12 —1-- u22—c2) e

— 4e2ttt (1 — e2)

In the field of flow there are two sets of limiting curves. These are real if A > 0

Of £ < 1, i.e. in regions of limited manoeuvrability. In regions where r 1 both

sets coincide. In regions of unlimited manoeuvrahility, where r> 1, both sets are

imaginary.
It is obvious that in a given field of flow not all curves through two given points

P and Q can be admissible trajectories, unless the entire field is a region of unlimited

manoeuvrability. The admissible trajectories through P and Q are contained within

a certain strip. However not every curve within this strip will be an admissible trajec

tory. Such strips will be called inanoeuvrable strips. 1f Q is lying in the neiglibourhood

of? the strips are bounded by the limiting curves through F and Q.
A complete description of the manoeuvrable strips in the diffetent types of field

of flow is not possible without a penetrating mathematical analysis. Here the dis

cussion will be confined to one special case and some examples.
Consider a field of

flow of limited ma
noeuvrability, e < 1.
Suppose that the two
sets of Jimiting cur
ves in the whole field
of fiow form two
fields of curves, each
curve of one set inter
secting a curve of the
other set in one point
only.

Let through a given
point P be drawn the
two Jimiting curves g
and Ii (see fig. 1, 3).
The arcs g1 and I’
form the boundary of

a sector-shaped area
Fig. 1, 3.



ITS APPLICAT1ON IN AVIATION METEOROLOGY 9

H1. The admissible trajectories with .1’ as starting point are contained in III. The

trajectories witli P as terminal point are contained within the complementary

manoeuvrable sector H0, bounded by the arcs g1’ and h1’. Let Q be a point in

sector H1. Through Q the limiting curves g2’ and h2’ have been drawn, which

form the boundary of the complementary sector J2. All trajectories with P

as starting-point and Q as terminal point, for instance the trajectory consisting

of g1 and h0’, are contained within the common section of 111 and J2, bounded

by g1, h1, g2’ and h2’. This section will be called a manoeuvrable strip (P Q). 1f Q is

lying in JJ2 P can be reached from Q and a manoeuvrable strip (Q P) exists, being

the common section of J1 and 112. 1f Q is lying outside H and H, P cannot

be reached from Q and vice versa Q cannot be reached from P. The regions outside

H and 112 will be called the prohibited regions associated with P. Since according to

the properties of the limiting curves the sectors H and H have no common section

H12, it is impossible in this case that for a chosen pair of points P Q manoeuvrable

strips (F Q) and (Q P) exist simultaneously. The case of a double strip may occur,

but an example shows that these strips can be very complicated. Sometimes the

concept of R i e Iii a n n surfaces may be usefully applied.

Examples.
1. Let a uniform rectilinear field of flow be defined by:

= u tt const.
uo_ = 0.

The differentiat equation for the limiting curves becomes (See 1, 12):

Icix \2

(c — u2) t —) + c2 = 0,

clx0 e C

dx1 — Ii

The solutions are:

E
x2 = 4- x 4- const.

These are straight lines which intersect the x1-axis at an angle equal to arc tan 4- rr=r.

Take a point P in a field of flow with E< 1 and draw the limiting curvesg1 and Ii through P (fig.

1, 4). The manoeuvrable sectors associated with P are H1 and H. The sectors H1’ and H.’ are the

prohibited regions associated with P. For a point Q in H1 with limiting curves g5’ and Iie’ there

exists a manoeuvrable strip (P Q) consisting of the parallelogram PRQS. Similarly there exist

manoeuvrable strips (Q P) for points Q in H2. There are however no regions such that manoeu

vrable strips (P Q) and (Q P) exist simultaneously for any point Q.

2. Solid rotational field of flow.
From 1, 7 and the condition Ce = 0 the differential equation for the limiting curves in polar

coordinates can be derived in the same way as 1, 12:

(c2 —
(cfr’2

+2rur t1
.2 (C2_ur2) 0.

Fig. T, 4.

(1, 13)
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The solid rotation is defined by: tir = 0

ua kr, k const.

The equation for the limiting curves now becomes:

(cO_ kr2)
()2

± rc2 = ci.

(Ir rc
or = — - = + —

d /k2r2_c2 Vr2_as

where a = is the radius of the limiting isotach circie about the centre of the flow.

The solutions are:
V’r2_a2 a

= + ± bgcos± const.
0 1

Apparently the limiting curves in a solid rotational field of flow are the involutes

of the limiting isotach circie T with radius r = a = --. On this circle the invotutes possess

a cusp. Through P (fig. 1, 5) two limiting curves g1 and h1 have been drawn. g1 has a cusp K on T.

Similarly the involutes g2’ and h’ have
been drawn through a point Q outside
T, i.e. in the region of limited manoeu
vrability. It is obvious that Q can be
reached from f along admissible tra
jectories, some of which may intersect
the limiting curves. In fig. 1, 5 for
instance Q can be reached along the
trajectory y but also along the trajec
tory which intersects bothg1 andg’.

Therefore the structure of the ma
noeuvrable sector H1 is rather corn
plicated. However this structure can
be understood by interpreting the na
vigation as occurring in a Rieuian,i
su,face. One takes n superimposed
planes each stit along the involute arcsg1
and h1. One binds the edge of one cut to
the opposite edge of the cut of the next
sheet and binds the remaining edge of
the latter to the opposite edge of the
cut of the third sheet, etc. Thus one
obtains for n—-ct a R ie man n suc
face of an infinite number of sheets
with the point K as branch-point. The
sector H1 consisting of this Riemann
surface covers the whole plane, so that
each point within the plane can be
reached. For instance in fig. 1, 5 the
ship can be manoeuvred along the track

Y2 in the top sheet and next by passing

Fig. 1, 5. the cut along g1 arrive at Q in the
second sheet. The track Yi lies wholly

in the top sheet. Manoeuvrable strips (?Q) and (QP) can be found by considering the R i e m a n n
sttrfaces of P and Q and their common sectios.

(<1
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5. Systems of navigation

Consider a field of pressure-pattern trajectories p in a field of fiow, such that
one and oniy one trajectory passes through any point in the field. The truc velocity

vector c is uniquely determined at every point. The vectors c (x1, x2) therefore form
a field which may be interpreted as a “pseudo” field of flow in which the stream
velocity is constant and cqual to the truc velocity c. In this field “pseudo” stream

lines v may be drawn in the usual manner. Conversely a vector field c (x1, x9)
or a “pseudo” field
of flow with stream
lines v uniquely de
fincs a field of tra
jectories and thereby
a system of navigation
All fields obtained by
a translation or a
rotation of a given

field c (x1, x.2) will be
considered as defin
ing one and the same
system of navigation.
Therefore a system
of navigation as de
fined above gives rise fig. 1, 6.
to a triply infinite set
of pressure-pattern trajectories. By imposing certain conditions on the displacement

of the vector field c (x1, x2) the triply infinite set of trajectories can bc reduced to
a singly infinite set by means of which problems like the construction of the trajectory
through two given points can be solved.

1f the trajectories have been given, but without time parameter, then according

to 1, 3 there will be two vectors c>and at any point, each for a different manoeuvre
along the same trajectory. Therefore also two sets of “pseudo” stream-lines v and

v’ exist. According to the symmetry property of the vectors andc’, cf. 1, 3 the
trajectories are bisecting curves of the stream-lines v and v’ (fig. 1, 6).

1f a “pseudo” field of flow c (x1,x2) with c = constant has been given, the associated
system of navigation is characterized by the property that at every point in the

field the vector c is tangent to the “pseudo” stream-line v through that point. Because
of this such a system of navigation will be called a tangential system of navi

v

gation.
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It is dear that there is an infinity of systems of navigation because the vector

field c (x1, x2) can be freely chosen. However by imposing certain restrictions on
this vector field special systems of navigation can 5e introduced, incïuding some
well-known systems that are used in practice.

1. Stream navigation.

1f the “pseudo” field of flow c(x1, x,) with components c1 (x1, x0) and c (x1. x2)
possesses a stream-function ‘, in other words if

a type of naviation resuits, which will 5e called strewn navigation.

= cx’ + C, C con
stant. The vector field
simply consists of paral
lel vectors and the “pseu
do” stream-lines are pa

_________________________________

rallel straight lines (lig. 1,
‘=const 7).Theheading is constant
— throughout the field.
— This system is identical
— with the weIl-known sy

stem of sin’te-heading
. nai’gation. With this sy

stem there exists only a
singly infinite set of fields
of”single-heading trajec
tories” because only a
rotation of the vector
field gives rise todifferent
vector configurations

c(x1, x0).

= c /x12+ ;--- c,
C constant. Here the
“pseudo” field of fiow is
afietdofrotation and the
axis of the ship is always
normal to the radius vec
tor from the ship to the
centre of the field M.
This point M, where the
vector c becomes mde
finite, must be eliminated
from the field (lig. t, 8).

c1 = c cos =

x2,

sin e — —,

grad “ 1 c (1, 14)

Con st.

fxwnptes.

__________________

v
fig. 1, 7.

Fig. 1, 8.

1 LLJIii.IifL_jL] — L uit. .1.L
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The “pseudo” field of rotation admits a doubly infinite set of fields of pressure-pattern trajectories,
because only translations give rise to a doubly infinite set of vector configurations.

2. Potential navigatioli.
Potential navigation is by definition the type of navigation which arises if the

“pseudo” field of flow c (x1, x2) with components c1 (x1, xa) and c0 (x1, x) possesses
a potential cp’, in other words, if

Ci=ccos=
X1

grad cp’ = c (1, 15)
c2 = c sin = —

,x2

The “pseudo” stream-lines are the orthogonat trajectories of potential lines tp’ =

constant.

Examples.
92’ = cx1 ± C, C constant.The potential lines form a set of parallel straight lines and the “pseudo”

field of fiow is again a field of translation. The system of navigation
is that of single-heading navigation (fig. 1, 7).

= cVx1i + x22 + C, C constant. The potential Jines form
a family of concentric circles centred on 0 (fig. 1, 9). The vector

field c consists of vectors c directed towards 0. (0 itself must be
eliminated from the field). This system of navigation is also called
point liavigation. The set of fields of trajectories belonging to this
system is doubly infinite since only translations produce different
vector configurations.

1f the “pseudo” field of flow possesses both a poten
tial and a stream-function, i.e. if

fig. 1, 9.
,, 92’c1=ccose= —=—,

?3x2 &
grad ‘

= 1 grad 92’ c
c2 csin = — — —,

&1 &2

no new system is introduced since the only solution yields the systern of single
heading navigation (fig. 1, 7).

3. Evolute navigation.
Consider a “pseudo” field of flow c (x1, x9) with c j = constant, in which the

“pseudo” stream-lines v are straight lines. 1f sufficiently prolonged these straight
lines envelop a curve hence-forward called steering curve and indicated by the
letter S (fig. 1, 10). 1f p is the trajectory through P the figure resembies the figure
of an evolute of a curve, in this case of the trajectoryp. Because of this sirnilarity

t

p’=const.
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the corresponding system of navigation is called evolute navigation. However, if
the steering curve is an elementary curve, for instance a circie (fig. 1, 11) or an ellipse
it is preferable to speak of circte navigation or ellipse navigation respectively. A
straight line as steering curve has no meaning, unless the field of flow contains a
straight stream-line along which the ship happens to travel.

P

A special type of evolute navigation is obtained, when the steering curve
degenerates into a point, the steering point. This system is again a system of point
navigation. When the steering point coincides with the terminal point Q of the tra
jectory PQ, a method of navigation obtains, popularly called dog-heading naviga
tion. In air traffic the steering point is identical with a radio beacon. The axis of
the ship is now always directed towards the radio beacon at the terminal point. 1f
the steering point is at infinity the navigation is again a single-heading navigation.

in general there exists a steering curve corresponding with the navigation along
a given pressure-pattern trajectory. Consider an arbitrary trajectoryp through P,
whose tangent varies continuously along the trajectory (fig. 1, 12). Let A be a point

on p and a a straight line through A and along the vector c. When A moves along

p the straight lines a envelop a curve S, which is the steering curve associated with

p. 1f on the other hand the steering curve S is given in the field of flow the trajectory

p through P can be followed by making c coincide at every point with the tangent
to S.

According to 1, 3 two manoeuvres alongp are possible, so two straight lines a
and a’ may be drawn through A. For every trajectory therefore two compleinentwy
steering curves $ and S’ are found. The trajectoryp itself is, according to the sym
metry property of 1, 3 a bisecting curve of the families of straight lines a and a’.

S

Fig. 1, 10. F16’. 1, ii.
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1f p happens to be a limiting curve
both families a and a’ coincide and
so do the steering curves S and S’.
Moreover the steering curve S will
also be the locus of the centres of
curvature of the trajectory and there
fore the evolute of the limiting curve.

1f the trajectoryp is situated in a
region where = 1, then only one
steering curve exists since the other
one has degenerated hecause the

associated speed vector iv is zero.
It is not always possible to define

Fi 1 12a system of evolute-heading navig- g.

ation by choosing a steering curve, so that everywhere the truc velocity vector

c is uniquely determined. It is conceivabÏe that at a point of the field different
tangents to the steering curve can be drawn. 1f the steeritig curve is the boundary
of a convex region and the “pseudo” strearn-lines consist of the straight half lines

which envelop the steering curve and if c is pointing to the tangent point, the field

c (x1, x) is always unique. The choice of an arbitrary steering curve requires special

arrangements to defitie uniquely a field c (x1, x2).

6. Construction of pressure-pattern trajectories

1f the method of navigation has been defined by the heading e (x1, x2) the steering
equations 1, 5 must be solved in order to find the trajectories. This cannot always
be done analytica]ly so that often the trajectories can be determined only approxi
mately by means of graphical and numerical methods of integration.

At every point in the field of flow the equations 1, 5 define a sum vector w. The

trajectories are identical with the “stream”lines of the field w. These “stream”lines
may be drawn by free-hand extrapolation.

Trajectories througÏt tivo given points 1’ and Q.
1f the method of navigation is defined by a unique “pseudo”field c (x1, x2) there

exists a corresponding field of trajectories in the field of flow. According to the
definition of a field only one trajectory passes through any point P in the field of
flow. 1f subsequently the “pseudo”field is displaced as a whole by means of a solid
rotation and/or translation the system of navigation remains the same according

to 1, 5. 1f all translations and rotations of the rigid field of c are allowed, a corres

P.

t

]
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ponding triply infinite set of fields of trajectories is hereby introduced. For instance,

when using the system of evolute navigation a trip]y infinite set of fields of trajectories

can be generated by translation and rotation of the steering curve.

By imposing certain restrictions on the translation and rotation the triply infinite

set of fields of trajectories can be reduced to a singly infinite set. In that case a singly

infinite set of trajectories passes through any point P in the field of fiow.

Often the system of navigation itself reduces already the number of degrees of

freedom. For instance with single-heading navigation only a rotation of the “pseudo”

field generates a field of trajectories, which therefore is only singly infinite.

1f the conditions for a singly infinite set of fields of trajectories are given it may

now be required to find the trajectory which passes through two given points P and

Q in the field of fiow. In order to solve this boundary-value problem consider the

family p of trajectories through P with P as starting point and also the family q

of trajectories through Q with Q as terminal point, both families beitig associated

with the given configurations of vectorfields c (x1, x0) (fig. 1, 13).

1f there exists a trajectoryp of the setp which passes through Q, then this trajectory

is a common trajectory of both sets p and q, which corresponds with one fixed

“pseudo” field c (x1, x2).
Let next a time function W be defined, such that at any point F1 on a trajectory

p, W is equal to the time of travel of the ship from P to P1 along p. The lines W =

constant will be called time fronts. The figure consisting of all trajectories through

P and the set of curves W const. is said to be complete in analogy with the same

figure consisting of extremals and transversals, which occurs in variation theory

and is called “the complete figure” after C a r a t h é o d o r y. In the sarne manner

a time function W1 may be defined, such that at any point Q1 on a trajectory q,

Fig. 1, 13.

L[J. IiLiIWJIL .z iiLLJIU]
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W1 is equal to the time of travel of the ship from Q1 to Q along q. In order to dis
tinguish both types of time fronts for a given point P the time fronts 1V const.
will be called post-time fronts and the time fronts W1 = const. pre-time fronts.

The figure consisting of the trajectories q and the pre-time fronts W1 constant
is now also complete and is called complementary complete figure.

Consider next the trajectory p passing through both f and Q. For an arbitrary
point 1? on p the sum of the values of the time functions 14’ and W1 is constant and
equal to the values of WQ at Q and of WÇ at P.

Consider next an arbitrary trajectory p through P and a point T on p1. Let q1
be the trajectory of the famity q, which passes through T. The trajectory PTQ now
consists of a trajectoryPlcorresponding with a certain vector configuration c’ (x1, x2)
and a trajectory TQ corresponding with another configuration c” (x1, x) of the
same system of navigation. Therefore the trajectory consisting of two different
trajectories associated with two different vector configurations c’ (x1, x) and
-

c” (x1, x9) of the same system of navigation is called a “composite pressure-pattern
trajectoly” with T as “composite point”.

Along the composite trajectory the time of navigation is equal to WT + W.
Those points T for which W’ ± W = W0 = W’ will be called T*. 1f both sets of
time fronts have been drawn one can find the locus of points T*, for which W + W1

2

Fig. 1, 14.
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= const. W’. It is obvious that this locus contains the points of the corn

mon trajectoryp through P and Q.
The trajectory through two given points P and Q associated with a certain method

of navigation is a section of the locus of the points of intersection ofpost-time fronts

W = constant and pre—tilne fronts W1 = constant, for ivizich the swn of the values

of W and W1 is constant and equal to the value of W at Q or the value of W1 at P.

The value W° W’ is the time of navigation atong the trajectory. The remaining

sectton of the locus consists of composite points for ii’hich the time of navigation along

composite trajectories is equal to the time of navigation along the trajectoly through

P and Q itself.
In fig. 1, 14 curves have been drawn through the points of intersection of the

lines W = constant and W1 = constant, for which the surn of the values of Wand

W1 is constant, but not equal to W or Wf’. These curves 1 are loci of composite

points, for which the time of navigation along composite pressure-pattern trajectories

is constant and equal to the sum W + W1. These curves therefore possess a property

corresponding with the property of an ellipse, where the sum of the distances from

a point on the ellipse to the foci is constant. So the curves 1 may be called ‘focal”

curves with foci P and Q. The set of curves 1 may be regarded as a confocal set.

Among these there are curves, for which the time of navigation along composite

pressure-pattern trajectories is shorter then the time of navigation along the pressure

pattern trajectoryp through P and Q.
W W1 W1

1f W (x1, x2) and W1 (x;, x2) are continuous and -—, resp. —,

&r &2 &r X2

exist and are continuous in the whole field (except in P and Q), the stationary points

of W’ = W ± I1” are found by solving sirnultaneously

‘xr xr

± -=o.
Z’x2 Z,x

Those points therefore will be found on the curve ‘
= 0, which is the

(x1, x2)

locus in of tangent points of the pre-time fronts W1 const. and the post-time

fronts W const. The character of the stationary points will be determined by

the sign of 2y’_2

x12 x22 t&1x2)
0fl the curve in the time function W’ is defined by W’ = W + W1. The function

W’ may have several isolated minima for instance at the points L0, L1, L2... Let

L,, be the point, where W’ has an absolute minimum. Then this point is the corn

posite point for the composite pressure-pattern trajectory, which, with the given

method of navigation, gives an absolute minimum for the time of navigation with

respect to alt other composite pressure pattern trajectories through P and Q and

the pressure-pattern trajectory p through P and Q itself.
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In part 111, which deals with the variation problem, a similar figure will befound, but there the time fronts W = constant and W1 constant, for which W-}+ W1 = W are tangent to each other and the curve connecting their pointsof contact is the extremal through P and Q.
1f Q is made to coincide with P one considers the trajectories with P as starting

point and as terminal point. Fot both sets of trajectories again the sets of timefronts W constant and W1 = constant can be drawn. The curves 1 passing through
the points of intersection of the sets of time fronts 1V = constant and W1 = constantare now loci of composite points R for composite pressure pattern trajectoriesPRP along which the time of navigation is constant and equal to W + W1. 1f forinstance in aviation the range of various types of aircraft is determined by a maximumtime of navigation, the curves 1 are the boundaries of regions, within which these
aircrafts using the given method of navigation can operate from and back totheir base.

7. Some special construction methods

In practice it is important to have a quick and elegant construction method anda very quick one exists, if both the given field of flow and the “pseudo” field possessa stream-function. In this case the addition method of M a x w e 11 for superposedvector fields can be applied. Let the field of fiow have a stream-function tp:

u1 =

‘xo

112

and similarly the “pseudo”field of c a stream-function ‘:

t1 — —

ix2

c2 = —

x1

1f both fields are superposed, then according to the steering equations the sumvector
w (w1, it’2) = u + c,

of 1
= +

(1, 16)
and

it follows that p + “ is the stream-function of the sum field w (x1, x2).
The stream-tines p + ‘ = constant therefore represent the trajectories.
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Therefore if strearn-lines of both fields of flow are drawn at unit intervals, the

trajectories will be found by connecting the points of intersection of the r and

‘‘-1ines, for which ? + ?p’ is constant. The stream-lines of the sum field have also

unit intervals and the speed of a ship in the field of flow with respect to a fixed

system is determined by the magnitude of the gradient of + y’ in the sum field,

according to the formula:

L ‘ 2 t( .L ‘ 2

w2 _L’ W) +
—‘ P i ‘ ‘

= {grad. ( + /))}2.

1tx2 ( tX1

The same addition method may be applied, if both the given field of flow and

the “pseudo” field possess a velocity-potential, in other words, ifpotential-navigation

methods are used.
Let the field of flow have a velocity-potential q’:

ii;

u2 =

&

and similarly the “pseudo” field c (c1, c2) a velocity-potential q’:

c1 = —,

co
- Zx2

1f now both fields are superposed, then according to T, 6 the sum vector w (w1, iv2)

becomes:

1V U + C,

—
( + ‘)

w1—
(1, 17)

1v2
‘, (ç + 2+

) 2

{grad (q + 9’)}2.

&1 ?
It follows that ç + ç’ is the velocity-potential of the sum field. So if the iso

potential lines ç + ç’ = constant are drawn, the trajectories are the orthogonal

trajectories of these potential lines and the speed w along those trajectories is deter

mined by the magnitude of the gradient of ç ± 92’ in the surn field.

t1 1f the stream-navigation method is used in a field of flow with a stream-function

IIL tLuiUiI1
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and if the tripty infinite set of “pseudo” fields can be reduced to a singly infinite
set, the trajectory through two arbitrary points P and Q cari be found by applying
the addition method of M a x w e 11 in such a manner that the sums of the values

and ip’ at P and at Q are equal. So the given “pseudo” field is displaced and/or
rotated in the prescribed manner until + ‘‘ = °+ w’°.

The cttrve/oiltillg t/te points of iittersection of stream—/mes for wÏtich t/te sam p H— p’
ip1’ + is t/te trajectory. It may occur that more than one trajectory is found

for the given navigation method.

Fig. 1, 15.

The method may be demonstrated for a tangential navigation system with a
“pseudo” fietd given by the stream-function p’ c V’x12 + x2 (fig. 1, 15). The
“pseudo”-strearn-lines are concentric circtes. The field of flow is given by an arbitrary
stream-function ‘. En this field two points P and Q are given. In fig. 1, 15 stream
lines of both fields have been drawn at unit intervals. Since the “pseudo” field is
rotational-symmetric a singty or doubly infinite set of “pseudo” fields can be formed
by means of transtations onty.

To reduce the number of “pseudo” fields the transtations must be restricted, for
instance by moving the centre of the circies atong a prescribed curve n. The
trajectory is now found by moving li along ii, untilt ip + = + ‘0. The
“surn tine” ‘ + v” = “ + is the trajectory asked for.
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There may be several points on ii for which the condition is satisfied, so that

several trajectories through P and Q are found with the given method of navigation.

Notes.

Because of the symmetry of the addition method of M a x w e 11 the interpretation

of the method may be reversed in those cases, where the stream velocity u of the

given field of flow is constant.
So 1f u = constant = grad p 1 and c = constant grad p’ the surn lines

‘p + / = constant can also be interpreted as the trajectories in a field of fiow

c (x1, x) corresponding witli a method of navigation defined by the “pseudo”

field u (x1, x0).
Often the structure of the field of fiow is such, that It can 5e regarded as the sum

of two or more simplified fields of flow each with a stream-function. Such a field may

also 5e constructed using the addition method of M a x w e II, provided certain

conditions are satisfied (1).
For instance an irrotational circular motion may be combined with a non-divergent

recti ]inear motion from a source to yield a field of flow, in which streanilines and

trajectories are logarithmic spirals, which all end in coinciding centers of the con

stituent fields. 1f a “pseudo” field for a tangential navigation system is superposed

on this composite field, the order in which the addition method is applied may

be arbitrarily chosen. The “pseudo” field may first be added to the circular field

and the recti tinear field to the sum field. Or the “pseudo” field may 5e added first

to the recti linear field and the circular field to the sum field. finally the “pseudo”

field may be added directly to the field consisting of logarithmic streamtines, obtained

by superposing the circular and the recti linear fields.

1f potential navigation (potential q’) is applied to a field of fiow with a velocity

potential q, the construction of a trajectory through two given points P and Q is

not so simple because the trajectory asked for is the orthogonal trajectory through

P and Q of the sum lines q + tp’ constant.

8. A theorem for the time of navigation

According to 1, 16 the sum lines = ) ± ijs’ = constant represent the trajectories

associated with a stream navigation in a field of flow with a strearn-function. The

time of navigation T may then be obtained by measuring an area.

The speed w of the slip with respect to a fixed coordinate system is determined

by the gradient of :
w = { grad

The time of navigation along a trajectory is given by:

0
Çds As

T= —=hmE—
W W

P
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where A s is a line element on the pressure-pattern trajectory constant.
Consider next two adjacent sum lines or, in other words, ttvo adjacent pressure
pattern trajectories and

— /z (fig. 1, 16) and let a point S be given on the
trajectory . At this
point the normal is
drawn to the trajectory

— A. Putting the Q
length of the normal
equal to [\n one may
write:

I\S.A1
T lim

As—O
I-so

or, if the summation is carried out for a constant value of A’ T becomes:

T = lim As. An
Aç—-O ‘‘P

lim --zE
As—>O

where AO is a surfacc element between the trajectories ip and

or T = lirn 0.
5,_-u

Nere 0 is the area of the strip bounded by the lines 7’ constant and

constant
and the normals through P md Q

So 1f the value of A is chosen sufficientiy small the time of navigation T is ap
proximateli’ equal to the area of this strip divided b A:

Tu,j.O. (1, 1$)Ap
1f for instance / = 1, the time of navigation is approximately equal to the

area of the strip between the pressure-pattern trajectories i and — 1:

Tcn Q. (1, 19)
Similarly it may be shown that the time of navigation is approximatelyequalto the area of the strip between the trajectories 7 and ij + A, divided by A. The

areas of both strips may be measured and the mean of the vatues taken. Or the
area of the strip between the trajectories — A and + A may be measured
and divided by two. Examples are given in part 11.

Fig. 1, 16.



PART II

SINGLE-HEADING NAVIGATION

Introduction

Single-heading navigation is certainly one of the simplest methods of navigation.

The ship rernains always parallel to itself and is carried freely by the fiow. The

heading is col7stant tbroughout the manoeuvre. In part 1, 5 it was shown that

single-heading navigation could be classified botli as stream navigallon and aspotentiat

navigation. The pseudo field c (x1, x2) consists of parallel equidistant straight lines

as stream-lines, ‘ = constant. The parallel equidistant straight lines orthogonal

to these are isopotential lines ç’ constant (see fig. T, 7). It has also been shown

that single-heading navigation is a special case of evolute navigation or rather of

point navigation with the steering point at infinity.

Since a translation of the field c (x1, x.,) leaves it completely unchanged, the method

of single-heading navigation is defined by the given c field and the configurations

which result from a rotaüon of the c field. The single-heading trajectory passing

through the starting point P and the terminal point Q is therefore unambiguously

defined for a given heading . It is, however, possible that several single-heading

trajectories pass through P and Q, but for different vaÏues of the constant heading.

Apart from its simple steering principle single-heading navigation bas in practice

also other advantages and is therefore in many cases to be preferred to other methods

of navigation. For instance in aviation, the lateral drift may often become so large

that zones of bad flying weather are avoided. Generally also the time of navigation

along the single-heading trajectory is shorter than the time of navigation along

the geometrically shortest route, i.e. the chord PQ, which subtends the single-heading

trajectory PQ. Another advantage is that, both if the field of fow is slowly changing

with time and if the actual flow pattern differs slightly from the forecast fiow pattern,

the radius within which the slip approaches the terminal point Q, remains small,

a constant heading appropriate to the forecast fiow pattern being used.

Furthermore single-heading navigation is important for the planning of even

better routes, for instance of the trajectory along which the time of navigation is

a minimum (part IV).
In the present part the most important properties of single-heading navigation

in stationary fields of fiow are dealt with on the basis of stream navigation.

1. Single-heading navigation in stationary fields of flow

The description of the methods of navigation, given in part T, can be repeated

almost literally. For every point in the field of fiow a complete and a complementary
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complete figure of single-heading trajectories and time fronts can be drawn. 1f a
single-heading trajectory exists from a given point P to another point Q, this trajectory
is a section of the locus of the points of intersection of time fronts W = constant
of the complete figure of P and W1 = constant of the complementary complete
figure of Q for which the sum of the values of W and W1 is constant and equal
to the value of W at Q or the value of W1 at P. The value WO— W1 is the time
of navigation along the trajectory. The remaining section of the locus consists of
composite points for which the time of navigation along composite single-heading
trajectories is equal to the time of navigation along the single-heading trajectory
through P and Q itself.

Here also focal curves exist and points for which the time of navigation along
composite siugle-heading trajectories from P to Q is an absolute minimum.

The description of the complete figure for single-heading trajectories will however
not be carried further, since in this chapter only fields of flow with a stream-function
will be considered.

2. Single-heading navigation in stationary fields of flow with a stream-function

Fields of flow with a stream-function p (x1, x9) are most important in practice.
In aerology for instance the field of flow in a pressure surface in a narrow strip
about a latitude circie in middle latitudes can be fairly accurately described by means

of the stream-function w —

z, where g is the acceleration of gravity,
2w sin

w the angular velocity of the rotating earth, q the latitude (assurned constant)
and z the height of the pressure surface. The theory developed in T, 7 can be directly
applied if the single-heading navigation is conceived as a stream navigation with
a stream-function p’ (x1, x), grad ‘ = c.

1. Single-heading trajectories.

1f the x1-axis is taken parallel to the pseudo stream-lines i’ = constant, ‘ becomes
(apart from an additive constant) ‘ = ± c x2. According to 1, 16 the equation
of the single-heading trajectories is:

‘ + ‘ = constant or

i (x1, x0) ± cx2 = A, A constant (II, 1)

The trajectories can be constructed by means of the addition method of M a x
w e 11. 1f both fields p and p’ have been normalized in the same manner, then
the lines connecting the points of intersection of stream-lines, for which p + ‘

= constant, are single-heading trajectories.

II. Single-heading trajectories through two given points P and Q. Formula for the drf.

Since the single-heading navigation is determined by the p’ field and the configur
ation resulting from a rotation of this field, the single-heading trajectory from a
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given point P to another point Q can be found by turning the p’ field until the sum
of the values of the stream-functïons at F and Q are equal. When ipP ± 1f)’P 1p0 +
the single-heading trajectory is the sum line connecting the points for which

v + “ pP + p’P
= p0 + (II, 2)

Consider now figure 11, 1. The orientation of the pseudo field for a single-heading
navigation is determined by condition II, 2. Let the coordinate system be adjusted
to the pseudo fleld, such that the positive x1-axis coincides with the pseudo stream

vector c. The stream-function ip’ of the pseudo field is then given by / = cx2.
Draw the perpendicular from Q to the pseudo stream-line through F and let

the base-point of this perpendicular be Q’. Then sin (5 =
= where (5 is the

angle between the pseudo strearn-lines and the chord FQ and d the distance from
P to 0. From 11, 2 it follows that:

x2 = (‘ ‘P) — 1 (,f ,Q)

So: sin (5 = ± (P w°) (II, 3)
cd

T/ze drij’t angle (5 therefore can (5e calculatedfrom the d,erence betweeiz the values
of the stream-function p of the given field of fiow at the starting point and at the
terminal of the trajectory.

Substituting .‘ = — —4—-—-- z in 11, 3 one gets
2w sin ç,,,

a -Q—ZP
sinb=

2w sin 92,, cd

Fig. II, 1.
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This is the well-known formula of Bellamy for aeronavigation (2). Applying II, 3
to the single-heading trajectory from Q to P one bas:

Sifl (5’ = ± (w° —

= sin 6, or 6’ = — 6 (see fl. II, 2). (11, 4)
cd

III. Concentration poin ts.
In a field of flow with a stream-function i the following property hoids:
The single-heading trajectories through two given points f and Q for diffrc’nt truc

velocities c of the ship intersect each other at the same points R. The points R1 lie
on the chord PQ.

Consider fig. 11, 2. 1f the x1-axis is taken along the chord PQ, the stream-function
‘ for single-heading trajectories from P to Q can be written:

=
— c (x cos 6 x1 sin 5),

where 6 is the drift angle.
Applying the addition method of M a x w e 11 one obtains the foltowing expres

sion for the single-heading trajectories from P to Q:
— c (x cos 6 — x1 sin 6) + v (x1, x0) =

where v is the stream-function of the given field of flow and A is constant. Substituting
the coordinates of P (o, o) in this expression one finds that A = ‘ (o, o).

— c (x2 cos 6— x1 sin 6) ± p (x1, x.) p to, o). (II, 5)

The stream-function “ for single-heading trajectories from Q to P with drift
angle 6’ = — 6 becomes:

= c (x2 cos 6 + x1 sin 6).

Applying the addition methode of M a x w e 11 one obtains for the single
heading trajectories from Q to P:

c (x2 cos 6 + x1 sin 6) + (x1, x2) = 3.

Substituting the coordinates of F (o,o) in this expression one finds that B
= p (0, o).

Fig. 11, 2.

So

t
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So c (x2 cos ± x1 sin 5) + p (x1, x2) = i (0, o). (II, 6)

The points of intersection ]?i of both single-heading trajectories are found by
equating II, 5 and II, 6:

2e x9 cos = 0.

Soif ö: x2=0.

The points of intersection R therefore lie on the chord PQ.
Substituting x2 = 0 in II, 6 one has:

ex1 sin ô + p (x1, o) p (o, o),

or
(o, o) — (d, o)

± (x1, o) = (o, o),
cd

or , (x1, o) + (x1 — d) p (o, o) — x1 i (d, o) = 0. (II, 7)

This is an equation for x1, the solutions of which give the points R. It may be
noted that the equation II, 7 for the points of intersection R1 is independent of the
true velocity c. Therefore in a given field of flow all single-heading trajectories
from a given point P to a given point Q and vice versa intersect each other at fixed
points R on the straight line PQ, whatever the value of the true velocity c. The
existence of such “points of concentration” may be of considerable importance
for air traffic control in aviation (see lig. II, 3).

Fig, II, 3.

1f (d, o) to, o), equation IT, 7 reduces to:

p (x1, o) (o, o).

The points of concentration on PQ are then found at those points, where the
value of ji is equal to the value at the starting point or terminal point. In other
words the points of cencentration are the points of intersection of the stream-line

(o, o) and the straight line PQ. They can be found immediately in the field
of flow without constructing a single-heading trajectory. The number of points
of intersection of the streamtine p = (o, o) with PQ, P and Q not inciusive, is,
according to a algebraic theorem, at the most one Ïess than the number of zero

points between P and Q of the dfferential quotient
o)

i.e. the number ofmaxima
dx1

and minima on the stream-line = ip (o, o) relative to the chord PQ.
The points P and Q are also concentration points. The points R and P and Q

are interchangeable, for if the starting point and terminal point coincide with points
]?j then Pand Q become concentration points for the set of single-heading trajectories

ii 1 L lii
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through those two points. IE two or more concentration points coincide, the single
heading trajectories are tangent to each other at these points (fig. II, 4).

Fig. II, 4.

IV. SbigÏe-Ïieading trajectory through a singular point.

in fields of fiow with a stream-function (x1, x0) singular points may occur,

where and vanish simultaneously. In aerology for instance singular points
,x2

occur where the height z of the chosen standard pressure surface bas a maximum,
minimum or stationary value, corresponding to the centres of anti-cyclones, depres
sions and cols.

For a critical value ç of the true velocity the trajectory PQ will pass through
a centre L.

In figure 11, 5 the orientation of the pseudofield ç. is such that PS is the pseudo
streamline through P. PS is also the x1-axis of a coordinate system. Draw through
Q a line QT parallel to PS and drop the perpendicular LM, which intersects QT
at N. Now according to 11, 1, the single-heading trajectory is given by ‘ + c x2
= A,A constant along the trajectory. Since the single-heading trajectory must pass
through F (o, o) it follows
that

A = ipP,

or
+ cx2 = pP.

The point L must also lie
on the single-heading tra

jectory:

L + Ck

where is the ordinate of
L t = ML.
So

—

ML=
Ck

Furthermore if is the
drift angle QPS then
MN = d sin s,..

According to II, 3: Fig. 11, 5.
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— 11)0

MN—T
Ç

MN “— °

The value of this ratio depends only on the values of the stream-function

at the starting point, the terminal point and the singular point.
MN QS

Since — = — the point S on QL can be determined. Then ML is also known
ML LS

and it follows that:
IR” L

T (11,9)
ML

V. The time of navigation.

1f the addition method of M a x w e 11 is applied, the time of navigation TSfi
may be obtained according to part 1, 7 by measuring or calculating the area

of a strip between two neighbouring sum lines ‘ + “ and +

Tsh = lim —
(11, 10)

-.t)

VI. Syminetry pro
perty.

Because of the sym
metry of the addi
tion method of
Maxwell the
single-heading trajec
tories in a unij’orin
field of flow can also
be interpreted as
pressure-pattern tra
jectories of a stream

fig. II, 6. navigation in a uni
form recti linear field

of flow. 1f for instance the stream velocity of the given uniform field is equal to u

and the true velocity of the ship equal to c, the single-heading trajectories are also
trajectories for a slip with a true velocity u in a uniform recti linear field with stream

velocity c.

i1ll uL i 1 ii 1 1 1t

where is the area enciosed by the single-heading trajectories and ± A
and the normals from
P and Q to the tra
jectory + A (see
also fig. II, 6).
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Examples.
Single—heading izai’igatiolz bt uniform circitlar floii’.

The stream-function ? is: p ii Vx1 ± x2, with u constant. In polar coordinates: i = ur,
u,=0.

According to formula II, 1 the equation for the single-heading trajectories is

ii x± cx =

where ij is a pararneter, or in polar coordinates:

r (II Ii)
ii ± C SIfl a

This may be written:

11 Cr = ,

I+Ecos(-_a)
ii

where is the velocity parameter defined in part 1, 1. The solution now consists of a singly infinite
set of conics vith as parameter, the centre of the circular fiow as focus and an eccentricity given

by E = . The trajectories also form a set of similar curves with the origin as centre of similitude.

The following cases may be distinguished:
a) Uniform circular fiow with unlimited rnanoeuvrability (E >1). Hete the single-heading trajectories

are hyperboles.
b) Uniform circular fiow with lirnited manoeuvrability (c< 1). The single-heading trajectories

are ellipses.
c) Uniform circutar flow with E = 1. The single-heading trajectories are parabotes.

1in the first case the common asymptotic directions through the origin, defined by sin a = — —,

are also integral curves of ii, 11 and are obtained, when 3 = 0.
According to II, 2 the trajectories can be constructed by means of the addition method. This

has been shown in fig. II, 7 for case a.
The time of navigation can be computed by means of II, 10. First the equation of two neighbouring

trajectories must be found. The trajectory 3 is given by r =
— and the trajectory + 3

— U+CSIfla
byr’=

u + c sin a
For a sufficiently small value of t the area of the strip between these sum lines is approxi

mately equat to the difference between the areas of the sectors OP’Q’ and OPQ (fig. II, 7).

d
— ,,

(u + c sin a) (u ± c sin a)2

Ç 23ij (t3)f
1
—

-- + — ——i clv..
((u+ csina)C (u+ csm a)2

According to 11, 10 the time of navigation is:

Th = lim i3J_ da
>o ?

,,,
t» + c sin a) (ii + c sin a)



32 THEORETICAL ASPECTS Of AFRONAVIGATION AND

When taking the limit for iS)3 — 0 this reduces to:

T511=f d=f ‘

,,
(ii + c sin a)2 ii + c sin c

0
Ç r5

] = 4- x area of sector OPQ (see fig. II, 7).

P

So T51, = -- x area OPQ.
w

Applying the symmetry property to a single-heading navigation in a field of uniform circular

flow the fo]Iowing resuits are obtained (cf. 11, 2; VI).

a’ In a uniform rectilinear field of limited manoeuvrability the pressure-pattern trajectories associated

with a circular stream navigation are hyperboles.

b’ In a uniform rectilinear field of un]imited manoeuvrability the pressure-pattern trajectories

associated with a circutar stream navigation are ellipses.
c’ In a uniform rectilinear field, where u = c, the pressure_pattern trajectories associated with a

circular stream navigation are paraboles.

Fig. Ii, 7.



ITS APPLtCATION IN AVIATION METEOROLOGY 33

The stream-function p is: ip = (x12 ± x29. The single-heading trajectories according to II, 1
are given by (x12 + x2) + cx = A with A constant, or in polar coordinates:

r + 2 ar sin a + = 0. Y a parameter, a = _L.
k

This represents a set of concentric circles with its centre JvI on the limiting isotach r = a. forany other heading the solution remains formally unchanged and the figure bas only to be rotatedthrough an angle about 0. The doubly infinite set of single-heading trajectories consists of all thecircles centred on the limiting isotach, r a (s = 1).
Hete also the single-heading trajectories can be constructed by means of the addition methodof M a x w e II (fig. 11, 8). The symmetry property however cannot be applied because the field isnot uniform. Although the time of navigation can also be calculated directly by integrating alongthe trajectory, it will be seen that for circles centred on the limiting isotach the time of navigationis self-evident. For the sum field of a solid rotation and a simple translation is again a solid rotationcentred on the limiting isotach and with the same velocity as the original field. Since the figure ofthe single-heading trajectories is identical with that of the given field of flow, the stream-function

of the sum field = , + w’ has the same form as ip. Now ?p = . r2, so in the sum field =

where 1? is the distanc measured from the centre of the sum field.

3

t

Fig. 11, 8.

Sotict rotational flow.
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According to 11, 10: T11 = lirn

The area of a strip between two neighbouring “single-heading circles” and

is equal to R . R. (see lig. II, 8).

Since = kR R.

oI = .

So: T5,, = lim .-L ‘t-. =

7÷Lll k k

which is self-evident.



PART III

THE VARIATION PROBLEM IN AERONAVIGATION

Introduction

The problem of finding the path which minimizes the time of travel of a bodytravelling with a constant true velocity from a point P to a point Q in a movingfluid arises in different forms of several branches of physics. One of the best-knownproblems is found in the theory of light, where according to the Law of Fermat thepath of a ray of light is a minimizing extremal with respect to all adjacent paths.This law is based on the minimizing property of the path of a ray with respect to
the integraifn . ds, where ii is the refractive index of the medium under con

sideration. 1f n is constant throughout the medium the rays are all rectilinear, but ifn is a function of the space coordinates, i.e. if the medium is non-homogeneous, theyare curved. 1f a discontinuity exists in the medium, for instance at the boundarysurface of two media with different refractive indices, the rays wilt be refracted.This refraction is governed by the Law of S n e 1 t 1 u s n sin i constant, orthe numerical aperture, which is the product of the refractive index and the sineof the angle of refraction 1, is constant along the path of a ray. 1f the boundarysurface is impermeable to light the rays will be reflected according to the taw ofreflection: the angle of incidence is equal to the angle of reflection.
1f the refractive index ii is a function not only of the space coordinates, but alsoof the direction of a ray of light, in other words if the medium is neither homogencous for isotropic, the analogy with the variation problem of aeronavigationis complete. For this is the problem of finding an arc, which minimizes the line

intregaiJ where w is the total speed of the ship, which depends both on the

position of the ship and on its heading. Non-isotropic media in which the velocityof light depends on the direction hardly occur in nature. A special case is that ofcrystals with double refraction.
The analogy between the Law of Fermat and the variation problem of aeronavigation was pointed out by F r a n k (3).
The laws of refractjon and reflection also occur in aeronavigation though in amodified form. Also the principle of H u y g e n s described in his “Traité de latumière” (1690) is found again in aeronavigation. The figure of rays of light andwave fronts is shown to correspond with the complete figure of time fronts andextremaÏs.
Although the problem of aeronavigation was first studied by G i b t e t t, who
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worked out a method of constructing extremals (4), Z e r m e 1 o (5) was the first to

for mulate the problern as a problern of the caÏcuÏus of variation, in a lecture at Prague,

titled: “Ueber der Navigation in der Luft als Problem der Variationsrechnung”.

The solution of the problem, now known as the “Navigation equation of Z e r

m e 1 o” applies to non-stationary plane currents. In his text-book “Variations

rechnung und partielle DifferentiaÏgleichungen” C a r a t h é o d o r y gives a

solution of the same problem, but now for stationary ocean currents (6). This

solution is derived by means of a H a in ii t o n function.

Since the present problem betongs to the simplest class of problerns of the calculus

of variations, the navigation equation of Z e r m e 1 o is derived in this chapter

using the E u 1 e r - L a g r a n g e differential equation. A second interpretation of

the problem is given by means of the theory of H a m ii t o n - 1 a c o b i, and the

theory of the indicatrix and the complete figure of C a r a t li é o d o r y in order

to illustrate the connection between this problem and the principle of H u y g e n s.

In the present treatment the principles of the calculus of variations are applied

without proof.
1. The navigation equation of Zermelo

The variation problern may be formulated as follows:

Gi-ven two points P and Q in a plane stationary field of fiow, to find the pressure

pattern trajectory along which a ship will travel from P to Q in the shortest possible

time.
Since the solution of the problem so formulated bas to satisfy certain boundary

conditions at P and at Q it is for the present not certain that such a pressure-pattern

trajectory exists.
The flow will again be defined by means of a vector field ii (u1, u2) where u1 and

u2 are the fiow-distribution functions u1 (x1, xj,) and u0 (x1, x2). The true velocity

vector c (c cos E, c sin ) bas a constant magnitude.

The sum field is again a vector field w (iv1, iv2) with w u +

In general the integral for the time of navigation bas the form:

T = Çf (x1, x2, *1, *2) dt

where F must be a positive homogeneous function of the first order.

Supposing that everywhere * > o one may write for T:

T Jf(x1, x,,p) dx1, (111,1)

where according to 1, 5:
‘2 X2 u2 ± c sin dx2

p=—=-;-= , p=— (111,2)
w1 x1 u1 + c cos dx1

According to 1, 5: f= =

_________

1V1 Lt + CCOS

and T
— f dx1

, where is related to u1, u2 andp by the steering equation.

] u1+ccos
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It is supposed thatj,,f andJ, exist and are continuous. Primarily is is supposed
that u (x1, x9) is defined and continuous with continuous derivatives in the who]efield of flow. The present variation problem differs from the classical problems in so
far as the variation of p is bounded in an interval Pi <p <P2 where p and P2correspond to the tangents to the indicatrix through its base point (see lig. 1, 2e).Besidesp is determined implicitely by. With each value ofp correspond two valuesof e, except forp = Pi and p = P2 with only one value =

1 and = e2 respectivelywhich satisfy the relation c = c ± zi cos + u2 sin = 0. So, if varies in theinterval < for which c,, > o or varies in the interval < <, forwhich c,. <o,p varies in the interval p1 <p <p9. Now f1, and have C in thenumerator. See III, 5 and III, 13. Therefore c, 0 must be excluded.
From the above considerations it is dear that the problern can be solved seperatelyfor the case that everywhere along the trajectories c> o with < < and forthe case that everywhere along the trajectories c,, <o with < <. However,it will be shown that for c,,> o onty minimizing extremals can exist and for c, <oonly maximizing extremals (see III. 2). Now supposing e is a minirnizing extremalthrough the points F and Q with time of navigation T,., while y is au admissabletrajectory through P and Q in the neighbourhood of e (with everywhere Ce > o)and time of navigation T,,, then T,,> T. Along y a second manoeuvre is possiblewith everywhere c,. <o and time of navigation T,,’. Since for this manoeuvre along

y at every point the total speed w = u + c is smaller than the speed for thefirst manoeuvre along y, it follows that always T,,’> T,> T. Therefore e is alsoa minimizing extremal for all trajectories in the vicinity of e, along which c,. < o
(2 < <ei). A similar result is found for maximiziuig extremals. Summarizingone finds that the extremal e is a maximizing or minimizing extremal for all trajectories in its vicinity, along which either ç <o, or c,,> o.

The problem remains unsolved if along the trajectories the sign of c, changes,in other words if the trajectories contain anomalous line elements (o < <2t).In order to get an extreme value for the time of navigation T the first requirementis that the trajectory is an extremal, in other words the trajectory must be a solutionof the E u 1 e r - L a g r a n g e differential equation:

f—_--J=O. (111,3)

Writing III, 2 in the form p and taking x7, x2 and p as independent
1V1

variables, partial differentiation with respect to these variables leads to the followingexpressions:
11V2

0
— 1i’2

xi

0 =
— —

-

1 (111,4)11,2
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Now according to 1, 8 and 1, 5 the effective truc velocity is:

= c + u1 cos ± u, sin = (c cos + ‘) cos e ± (c sin -t- u2) e =

= 1V1 COS + sin e.
from the last relation of 111, 4 it follows that:

— w1

1J) CCe

The two terms of the E u Ier -1 agra n ge differential equation 111,3 become:

1 iv1 c sinE
f =—————= —sin4——=-——---—, (lEt 5)

11,2 Zp w12 Zlp

1 iv1
fx

—

Substituting these terrns in the E u t e r - 1 a g r a n g e differential equation one

getS,
— 1 — d

—

1V12 1x2 dx1 c

J _(—--- L = o, (111,6)
w1 dt \w1 cotan ± 1121

1w;S1flCOS(Wi
+ 1V2-

(1V2 +
w1 x2 ce2 ‘. x2 / c2 Zx2 1 Ce2 dt

Using the second relation of 111, 4 and substituting for

= 5ifleC0Se- + sin-—
(c2—w1wsincos— llV1

dt w12 1

— sin cos
— + sin2 —— — cos — — — sin E cos

dt x9 w

Using the second relation of 111, 4 again, the equation finally becomes:

sin2 +
(w1

—

sin cos — Z1 cos 2 (111, 7)
Ut x1 x1 x2

Now differentiate the cornponents w = u1 ± c cos and w ± c sin partially

with respect to x1 and x2:

Z1w1 U1
= —

— c sin —,

&1

)V1 U1
— = — — c sla
Z’x2 ‘x



ITS APPLICATION IN AVIATLON METEOROLOGY 39

)I’., .,
+ ccos

Zx1 x1

Il’o tL,I
+ ccose

&2

Substitution of these terms in equation 111, 7, finally leads to the weil-known
navigation equation of Zerinelo:

d u, , flu1 u1sin2 + — — —
sin cos — — cos- (111, 8)dt x1 \x1 &.,1

The extrernals of the variation problem are determined by this equation andthe steering equation.
1f at a given point the coordinate x

systern is so chosen that the x1-
axis coincides with the direction
of navigation, then the navigation
equation reduces to

-

(111,9)

According to 111,7 t navig- ————?—
d

J1.
where n1 is identical with the Fig. 111, t.
effective true velocity.

This result may be interpreted as follows: Along au extremal the ship must benavigateci in such a mnanner that the change of the heading per unit time is equal tothe shear of the ejfective ti’ue velocity or to the shear of the fiow component in theclirection of the unajn axis. The s/up must be steered in such a mnanner that its axislurns toit’ards the direction in which the tal! component decreases or the head corn—ponent increases (lig. III, 1).
1f both sides of the navigation equation 111, 4 are divided by cos2 , this equationmay be written in the form:

dtan U2
tan2 + (—-‘ tan—f. (Iti, 10)dt x1 \Zx1 x9/

In addition to the navigation equation of Z e r m e 1 o, which contains an expression for the rate of change with time of the heading along the extremat, one
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can also derive an expression for the rate of change of the effective truc velocity

C along the extremal.

After a calculation similar to the one required for the derivation of the navigation

equation, an expression is obtained for this rate of change with time of c along

an extrernal. This calculation will not be reproduced here, but the result is given

below:
dCe /ti1 tI9\ .

— c05 ± 1 ± Sin ± — sin2 . (III, 11)
dt \X X1J

The equation states that the sign of c does not change along the extremal. For

one can write AQ)c, where the coefficient A of Ce is a function of t only

along the extrernal. Suppose in a t-interval (o, t1) c >o. Since A (t) is bounded:

A (t)> k (k positive). That means > —
or ce > ce(o)et> 0. This

is in contradiction with the supposition c >0. 1f at a point of the extremal Ce is positive

(negative), ce wilt be positive (negative) everywliere along the extremal. Therefore

the following theorem holds:

The sign of the effective truc velocity along an extremal is permanent.

__

dc

__

.

Along the hmitmg curves ç — 0 and = 0. This means, that the limiting

curves are solutions of 111, 11 and may be considered as solutions of the navigation

equation of Z e r m e 1 o.
As ç <0 only occurs in regions of limited inanocuvrability the extremals along

which c <0 will not leave this region.

Some special properties.

In irrotational fields of fiow a second interpretation of the navigation equation

is possible. Since = the simplified navigation equation of Z e r m e 1 o
&2 &1

111, 9 may be written:
—

dt

in words: in irrotationat fields of fiow the rate of change of the heading with

time along an extremal is equal to the shear of the fiow component at right angles

to the main axis.
1f the right hand side of the equation 111, 11 is identically equal to zero, c will

be constant a]ong every extremal. The identity = 0 occurs, when all the

coëfficients on the right hand side are identically equal to zero, so = = 0

u u
Zx1 x2

and
— + —

= 0.
3x2 ,xl
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it follows from the first two relations that ii1 and u2 are independent of x1 and x2
respectivety, so one may write:

tt1 = F(x2) —1—1,
u = G (x1) + in, where / and in are constants.

The third ralation requires that

f’ (x) = — G’ (x1).

This can only be achieved if both derivatives F’ (xe) and —G’ (x1) are equal to
one and the same constant k:

f’ (x0) = — G’ (x1) = k.

The solution for the fleïd of flow is therefore:

= kx0 + 1,
t,2 = — kx1 + in. (111, 12)

The field of flow ii (ti,tc) in which the effective true velocity along the extremals
is constant, therefore consists of the superposition of a translation u1 1, u2 in

and a solid rotation u1 kx2, u2 = —kx1 with angular velocity k. As such a super
position is equivalent to a simple displacement of the field of rotation one finally
finds:

Botli in a field of solici rotation and in a in ijform tectilinearfield offiow the effective
true velocitj’ is constant along everv extrema/.

In the trivial case in which no field of flow u exists the navigation equation of
Z e r rn e 1 o reduces to the indentity:

o.
dit

orE is constant along an extremal. Substituting forE in the steering equation one bas:

dx2
= tan E = const.

dx1

the solution of which consists of straight lines making an angle E with the x1-axis.
This solution applies to the problem of finding the trajectories along which a body
moving at a constant true velocity c will travel in the shortest possible time from
a pointP to a point Q. It also expresses the principle of F e r m a t for homogeneous
isotropic media, where the true velocity is identical with the velocity of light.

2. The Legendre condition

44iniinizing and A4axhnizing extremals.
Whether an extremal are is a minimizing or maximizing extremal are it is necessary

that along the extremal are the condition of 1. e g e n d r e is satisfied. Along a
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minimizing extremal arc the expression f1 = 4_f, = 0 should hold.
x1

Along a maximizing extremal arc it is necessary that f1 < 0.

Partial differentiation of = wit1 respect to p gives:

— ._15jfl_1

op” p Ce J) 1l7 cotan ± 1’

/ 1l’l /11V, 11’ /1
cotan E — —

=
— sin2

/p sll /1p

Cc’.

,j /1w2
Now —=—-csine--—, - -=ccos—,

/1p /1p /1p /1p c.c,,

so =
—

______-

= _i__.
(111, 13)

W 11’1 C C C Cc

As the sign of f1 is entirely determined by the sign of c the effective true velocity
along a minimizing extremal arc must be positive and along a maximizing extremal
arc the sign must be negative. According to 111, 11 the sign of c is the same along
the entire extremal. Therefore the extremal can be a minimizing extremal, if at
one point on the extremal c> 0 and a maximizing extremal if at one point on the
extremal c <0. Since according to chapter 1, 3 the sign of c. is indicative of the
navigational character of the field of how the following resuits may be mentioned:

In a field offlow of limitect manoeuvrabilitp or in fields oJ’floii’ 11’itIz botli regions of
li,nited and unilmited ,nanoeuvrabillte minhnizing and uiaxhnizing extremals can exist.

Since c <0 only occurs in regions of limited ,nanoeuvrabilit, maximizing extreinals
can only lie in regio/Is of limitect ,nanoeuvrabilit.
In a fleld of fl011’ of unlimited rnanoeuvrabiliti’ (ç> 0) maximizing extre’nals do

not exist.

For anomalous line elements on limiting curves along which c 0 the expression
F1 has no significance.

it is stated once more that these results hold for admissable trajectories along
which everywhere c <0 or c> 0. Trajectories aÎong which the sign of Ce changes,
that is, trajectories which for c,, = 0 contain anomalous line elements, are excluded.

The limiting curves may be regarded as extremals. This is trivial because in its
own vicinity a limiting curve is the onlv trajectory, which exists between two of
its points. The limiting curves cannot be varied for if a ship moving along a limiting
curve abandons the curve at any point it can not get back to it but for a long way
round.
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3. The Jacobi condition. fields of extreinals. Weak and strong extremes.
Absolute extremes

For an extrernal are e through the points P and Q to be a minimizing or a maxi
mizing extremal are it is generally necessary that, in addition to the Legendre con
dition being satisfied, P and Q are lying in between two con/ligate points. In a
few cases, however, Q may coincide with a conjugate point of ?. The conjugate
point of a point P on an extremal e is identical with the first tangent point of e with
the envelope of the set of extremals trough P, often catledfocal curve. The condition
to find this point is equivalent with the well-known Jacobi condition.

When the envelope of the set of extremals through P is known, an “improper”
field of extremals with ? as nodal point can also be defined. For this field is formed
by extremal arcs with F as starting point and their first tangent points with the
envelope as terminal points.

Since in aeronavigation the time of navigation depends on the direction of travel
atong the extremal one can also consider the set of extremal arcs through P with
P as terminal point. On any extremal arc with P as terminal point a point P may
be found for wich f is the conjugate point. The points P again lie on the envelope
of this set of extremal arcs. Therefore a second field of extremal arcs through P
may be considered, consisting of extremal arcs with P as terminal point and theic
first tangent points with the envelope as starting points.

In this man net tno improper fields of extremals can be found through any given
point P.

Since in the present variation problem both minimizing and maximizing extremals
may occur, a distinction must also be made between sets of minimizing and sets
of maximiziiw extremals. Both for the rninimizing and maximizing extremals both
improper fields described above can be defined. Therefore a total of four irnproper
fields of minimizing and maximizing extremals respectively can be found with nodal
point?. Two by two the fields are determined by the sign of c For c> 0 tii’o fields
of mininhizing extreinaÏs are found, for Ce < 0 two fields of Inaxinhizing estremals.

The case of fur fields of minirnizing and maximizing extremals ii’ith nodat point P
onlv occurs in regions of limited ,nanoeuvrabiliti’. The fields may partially overlap.
It these four fields have a common section and if a point Q is chosen in that section
there will be at least two minimizing and two maximizing extremals passing through
P and Q, each with a definite sense of direction.

Fields of inaximizing extremals always lie entirely within the regio!? of ilmited
rnanoeuvrabillty of a field offiow because according to III, 2 maximizing extremals
cannot leave this region. Therefore, if an arbitrary point Q is given in the region
of unlimited manoeuvrability, only minimizing extremals will be found between
P and Q.

The minirnizing or maximizing properties of an extremal are sensitive to the
way in which the trajectories are varied. Therefore two types of extremes can be distin
guished. An extremal furnishes a weak extreme for the line intregral, if there exists
a neighbourhood N in x1 x2, p-space of the elements (x1, x0, p) on the extremal,
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such that the value of the line integral along the extremal is either greater or smaller
than the value given by every other admissible trajectory, whose elements lie in

the neighbourhood N. An extremal furnishes a strong extreme for the line integral

if there exists a neighbourhood f of the points (x1, x2) on the extremal such that

the line integral along the extremal is either greater or smaller than the value given
by every other admissible trajectory interior to F. Now consider an extremal arc
e between two conjugate points P and Q. Suppose that e in the neighbourhood

N of e can be embedded in a field of extrernal arcs. Then the calculus of variation

shows that these arcs yield a weak relative minimum if f1 = > 0, or Ce > 0
Cce

at any point on the admissable trajectories within N and a weak relative maximum
if F1 <0, or c <0 at any point on the admissable trajectories within N. However
this condition is automatically fulfilled, because by solving the navigation problem

only those trajectories were admitted for which at any point ç, > 0, or c <0.
It can be easily shown by means of the well-known E-function of W e i e r -

s t r a s (c.f. part III, 8) that under the same conditions the extremal arcs also
yield a strong relative minimLim or maximum.

In practice the chief problem is to find
not just a minimizing extremal between

‘P two points P and Q, which furnishes a
relative minimum for the integral of the
time of navigation, but rather the ex
tremal, for which the value of the inte
gral is an absolute minimum with respect
to all trajectories through P and Q within

Fig. III, 2. the region 3, in which the variation
problem is defined.

Let an arbitrary minimizing extrernal e be given with starting point P and conjugate
point P (fig. III, 2). Every arc PQ of this extremal furnishes a relative minimum
for the time of navigation provided Q lies between P and P. 1f Q moves along the

arc PP, then, according to a theorem by D a r b o u x, there is a point Q* between

P and P such that the arc PQ* furnishes an absolute minimum for the time of
navigation if Q lies between P and Q*, but only a relative minimum if Q lies between
Q* and P. The point Q* is the point of intersection of the extremal arc e and a second
extremal arc PQ not in the neighbourhood of e, but along which the time of navigation
has the same value as along e. The locus of all points Q* on the extremal arcs of
an improper field of minimizing extremals with nodal point P is an important curve,
which may be used to decide whether along a minimizing arc PQ the absolute mini

mum can be realised. In chapter 111, 6 it will be shown how this curve can be con

structed using the complete figure of C a r a t h é o d o r y.
The curve connecting the points Q* in a field of extremals plays a similar role

witli respect to the absolute minimum as the envelope of the improper field witli
respect to the relative minimum.

e Q
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4. Example

The extremals in a uniform rectilinear field of flow.
The field of fiow is defined by the equations t,1 k, u = 0.

The navigation equation of Z e r m e 1 o becomes: = 0 and the solution is

= = constant. So the extremals in a uniform recti linear field of fiow are simply
single-heading trajectories. The trajectories are found by integrating the steering
equation after substitution of e =

= k + c cos

= c sin
The solution is x1 k (1 + r cos ) t

x = ke (sin ) t,

where e is the vetocity parameter.

Therefore the extremals are straight lines.
dc

__

It follows from the navigation equation for Ce, which here reduces to —t = 0,
that c remains constant along an extremal. The value of c is given by: dt

c = c + u.c= c + kcos kfr + cose).

Improper fields with nodal
point P.

The fields consist of sets
of straight lines with P as
common point.

Three cases may be dis
tinguished:
1. Uniform recti linear fields

of unlimited rnanoeuvra
bility (e> 1). In this case
there are two irnproper
fields of minimizing ex

trernals (ce> 0). The sets of straight Jines cover the entire interval (0 — 2r)
(fig. 111, 3a, b).

II. Uniform recti linear fields of limited manoeuvrability (e < 1). The sets of straight
lines cover a sector bounded by the limiting straight lines g1 and h1 which are
defined by the condition Ce = 0 or C05 = — e.
Since c can be either positive or negative there exist according to part lii, 3
two fields of minimizing and two fields of maximizing extremals (fig. III, 4a, b).
A point Q within the sector bounded by g1 and h can be reached from F both
along a minimizing and along a maximizing extremal. Conversely f cannot be
reached from Q (fig. IIE, 4a).

C

/ N/
fig. III, 3,a.

/
Fig. III, 3,b.

.1
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III. Uniform rectilinear fields in which the stream velocity is equal to the true
velocity c (r 1).
The lirniting angle is now equal to r. in these fields ç 0. Only minimizing

extremais exist. There are also two improper fields of minimizing extremals

(fig. 111, 5a, b).

EEP

Fig. III, 4,a.

Fig. III, 4,b.

ZZ
p2

in all three cases no conjugate points are found on the extremals. For the extremals

have no envelope, exduding the limiting curves g1 and Ii, which themseives may
be regarded as the limit

t ing extremals. Since the

/ / region B, in which the
gjJl1 / / variation problem is de

________________

fined, must be contained
within the manoeuvra

F bie sector ff, if navi
gation from P is consi

- \ \ dered, or in• the sector
1 \ \ f12, if navigatlon to P is

\ ‘\ considered, It is entirely
covered by the improper
fields of extremals with P

Fig. III, 5,a. Fig. III, 5,b.
as nodal point. Therefore

the minimizing and maximizing extremals furnish an absolute extreme for the time

of navigation.
The boundary value problem can always be solved in this case since through

any two points P and Q oniy one minimizing or maximizing extremal PQ or QP

can be constructed, provided one of the points lies in the manoeuvrable sector

of the other.
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5. The theory of Hamilton-Jacobi, the theory of the indicatrix and
the complete figure of Carathéodory

By means of the theory of H a m i 1 t o ii J a c o b i a second solution of thevariation problern can be found, which presents a very dear picture and which inspecial problems admits a simple interpretation. This theory also contains theelements required for a quick graphical construction method and clarifies the connection which exists between the present variation problem and the principle ofH u y g e n s in the theory of light. Using the resuits of this theory the navigationequation of Z e r m e Ï o can be derived in an elementary manner.

1-filberts in variant integrat.

Consider a fleld of extremals and an arbitrary rectifiable curve y within the fieldthrough two points P and Q. Then the line integral

J f {f(x1, x2, p)
—

pf (v1, x0, p)} dx1 +J (x1, x2, p) dx0,

where p refers to a line element of a fleld extremal at a point on y, is independentof the path of integration and only depends on the position of the terminal pointsP and Q. This is H ii b e t t s invariant integral, which, in case y coincides with
a field extremal e, reduces to the ordinary fundamental integral ff(xi. x2,p) dx1.

1f P is kept stationary and Q is allowed to vary, the value of H ii b e r t s invariantintegral J is a function of the coordinates of’ Q only and one may write:
J W (x1, x2) + a constant.

The value of the integral i along an arbitrary curve y is determined by the values ofW at P and Q respectively:
= W0 — W.

The integral J may also be written:

J = t —cIx1+-’cix.,,
JyX1

Ivwhere
-—- J — p],

1
ii)x2

In the present problem W is identical with the time of navigation and thereforewiLl be calted time function.
According to III, 5f3, and f—pf may 5e expressed in and ce:

5in — — 1 W2Sifl W;COS+ w2sine—w2sinecosfp-,J ?fv
C. 1V1 fl’1 C WiCe C,

w cose wso
— = ---—- and — = —. (III, 14)xI c x2 c

t
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from these relations two important properties can be derived, the gradient

property and the property of transversality.

1. The gradient property.

Eliminating the heading from the relations 111, 14 one finds:

c2 f
+

1,
\&J \x91

or (grad W)2 = J. (III, 15)

The relation states that: the gradient of W is equal in niagnitucle to the reciprocal

absolute value of the effeclive true velocit ce.

It follows that, if a set of curves W = constant is drawn at unit intervals, the

distance between the curves is proportional to Ce.

II. The property of transversality.

Eliminating the effective true velocity c from the relations III, 14 one finds:

— —— = o,

fïg. III, 6.



ITS APPLICATLON IN AVIATION METEOROLOGY 49

or in vector form: c><gradW=O. (111, 16)

1
— sinf —,

p =
-,

p = and f =

___

1V1 1V1 W1 cc

In words: The vector of the true velocity c associated with a line element on afield
extremal e is peipendicular to the curve W = constant tÏirough its starting point
(fig. III, 6).

1f the field formed by the true velocity

vectors c is regarded as a pseudo field of
flow, relation III, 16 may be formulated as
follows: j5

c

The stream-lines of the pseudo field of flow
c associated with a field of extremals are the
orthogonal trajectories of the set of curves
W constant.

A close connection exists between the
field of extremals and the curves W
constant. This connection will now be
examined by means of the concept of trans
versality.

Fic’ IIE 7Let a point P (x10, x°) be given no an
arbitrary extremal e and an arbitrary curve y passing through this point (fig. III, 7).
The curve y is now said to intersect the extremal transversally if the transversality
condition:

f(x;°,x20,p) +(j—p)f(x10,x20,p) = 0,

wherep refers to a line element on the extremal andj to a line element on the curve
y, is satisfied at P.

In the present problem

where i and 2 are the components of the sum vector iof the stream vector and
the true velocity vector, associated with a manoeuvre along y. So the condition
here becomes:

w1 \w1 w1J c

or 11)1 (1V1 cos E + w2 sin E) -1- w1i2sin — w2 w1 sinE

or w1( cosH-,sin)
= o

W1W1Ce

4

t
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So the transversality condition finally reduces to:

e ± = 0,

or in vector form:
c = 0.

is the surn vector directed along the tangent of the curve y. The true-velocity

vectoc c is associated with the extremal through P. The curve 2’ therefore intersects

the extremal transversally at P, if the vector c at that point is perpendicular to the

curve. Since, according to III, 16, the vector c, associated with a line element on
an extremat e, is perpendicutar to the curve W = constant through its starting point,

it follows that the curves W = constant intersect the extremals of the field transversally.

In other words, the curves 1V = constant are the transversals of the field extremals.

The lines W = constant are calïed geodesicatty equidistant lines. The set offield

extremals and the set of geodesically equidistant lines together Jbrm the complete

figure of the variation problem according to C a r a t h é o d o r y (7).

The methodes, described by G a 1 t o n (8), G i b 1 e t t (4), 3 e s s e rn o tt liii

and P ô n e (9), can be regarded as graphical integration methods for the con

struction of this complete figure (see part V).
The description of the problem now corresponds completely to the description

of the principle of Huygens.
In non-homogeneous isotropic media for instance, which are characterized by

a refractive index ii, which only depends on the plane coordinates x1 and x2 the

path of a ray of light from a point P to a point Q is determined by the curve which

furnishes a minimum for the “optical length”: S = 11 . t/s orj if v is the ratio

of the velocity of light in the medium to the velocity of light in vacuum.
Here also the solution of the variation problern can be interpreted in two

ways (10):

1. Using L a g r a n g e ‘s differential equations one obtains the equation of motion
for a ray of light:

d ‘

ii (in’) grad ii, where t is the tangential unit vector.

2. Using the theory of H a m i It o n - J a c o b i one finds:
a. the gradient property:

(grad S)2 = 112

b. the orthogonal property:
The path of a ray of light intersects the set of lines S = constant perpendicularly.

The lines S = constant are ii’aee fronts.
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Since the above summary applies to a two-dimensional problem the analogy
with the variation problem in aeronavigation is obvious. With the first interpretation
corresponds the navigation equation of Z e r m e 1 o together with the steering
equation, whule the properties deduced by means of the theory of H a m ii t o n
1 a c o b i are equivalent to the gradient property and the property of transver
sality. The reciprocal value of the effective true velocity is analogous to the refrac
tive index and the geodesically equidistant lines correspond with the wave fronts.
Because the opticat length $ is equivalent to the time of navigation W, the
geodesicalty equidistant lines wilt therefore be catled tiinefronts. The complete figure
of time fronts and extremals corresponds with the figure of rays of light and wave
from’s associated Ii’ith the principle of H u y g e ii s.

For example the figure of wave fronts and rays of light emitted by a point source
corresponds with the complete figure of time fronts and extremals for an improper
fleïd of extremals with a nodal point. Since in aeronavigation P may be a nodal
point of four irnproper fields of extremals, four complete figures may be constructed
about P.

6. The complete figures and the boundary problem

By means of the complete figure of au improper fietd of extremals the problem
of constructing an ex
trernal though two given
points P and Q can be
solved iii an elegant
man n er.

Consider an extremat
e through P and Q,
which for the sake of
convenience will be
assumed to be a mini
mizing extrernal with P
as starting point and Q
as terminal point (fig. Fig. III, 8.
III, 8).

The minimizing extremal belongs to the improper field of minimizing extremals
with P as starting point, but also to the improper field of minimizing extremals with
Q as terminal point. With these fields are associated two complete figures, the time
fronts of which are defined by the time functions and W2. These time functions
are normalized in such a manner that J’V and W2 are equal to zero at P and Qrespectively and positive elsewhere. The value at Q of the time function W1 associated
with the complete figure for P is equal to the time of navigation along the minimizing
extremal e. Similarly the value at F of the time function W2 associated with the
complete figure for Q is equal to the time of navigation along the extremal e, so:

\Y=\V1 ±W2=const.
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T — w1 —

But also the surn of the values of the time functions W1 and W2 at any point

R on the extremal arc e must be equal to the time of navigation T, so along the

entire arc e the relation:
w1R + w2R = T (III, 17)

must holil.
Conversely it follows that the minimizing extremal is the locus of the points of

intersection of time fronts W1 = constant and W2 = constant, for which the sum

of the values of W1 and W2 is equal to the value of W1 at Q and of W2 at P.

Because of the transversality of time fronts and extremals, the transversal directions

in both complete figures through any point on the minimizing extremal must coincide.

This means that at any point on the minimizing extremal the associated time fronts

W1 constant and W2 = constant must be tangent to each other. These properties

also hold for maximizing extremals and may be summarized in the following

theorem:
The extremal through two given points P and Q is the locus of the tangent points

of the timeftonts belonging to the complete figures associated with P and Q, for which

the sum of the values of the time functions is constant and equal to the sum of the

values at P and Q.
In figure III, 8 curves may be drawn through points of intersection of time fronts

for which W = W1 ± W2 = constant, which are important in practice. The time

of navigation along curves composed of two extremal arcs with a corner or

composite point on such a curve remains constant if the composite point moves

along this curve (W = constant). The time of navigation T is then equal to W.

Similarly as described in 1, 6 the curves W = constant, which form the loci of

composite points of coinposite extremal arcs FQ along which the time of navigation

is constant, can be regarded as focal curves with P and Q as foci. Since all curves

= constant have these foci in common, they form a confocal set.

Fig. III, 9.
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It is obvious that fig. III, 8 is to be considered as an idealized picture of lig. 1, 13.In III, 3 the occurrence was discussed of a point Q* on the extremal arc PQ, atwhich the extremal arc ceases to furnish an absolute minimum for the time of navigation. 1f Q lies beyond Q* the extremal arc PQ only guarantees a relative minimum
with respect to adjacent trajectories. According to a theorem of D a r b o u x
is the point of intersection of two extremals, not in each others vicinity, along which
the time of navigation is the same. D a r b o u x also showed that this point coincideswith a double point of a time front. Therefore the curve connecting the points Q*,
which in an improper field of extremals plays a similar role with respect to theabsolute minimum as the envelope of the improper field of extremaÏs with respectto the relative minimum, consists of the double points of the set of time fronts,which forms part of the complete figure associated with the improper field ofextremals.

In fig. III, 9 a set of time fronts such as frequentiy occur in practice bas beendrawn together with the “double line” in1. This figure is of great importance inpractice.

7. Hamilton’s partiat differential equation

The gradient property and the transversality property are characterized by twoequations which were derived from the components of grad W by elimination ofe and c0 respectively. Since the effective truc velocity c also contains the factor
the components of grad Wmay be regarded as functions of e (cf. III, 14). E]iminationof then leads to a first-order partiat difterential equation, which is called 1-1 a m ii-
t o n ‘s partial differential equation, and which in aeronavigation may be regarded
as the second solution of the variation problem.

The elimination of is carried out in the following manner:
from the gradient property it follows that:

i/ w2 W2 — 1 1
V 1)

+
9) c c±tt1cos±u0sin

According to the property of transversality the foltowing relation holds:

— — = o.
x1

w
So

\x1 1 \x2 ) 1V / 1V .c —1-— + 112 Slfl
x2 \ x1 x2 /

Now according to III, 14 and 15
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=

________

+

Substituting this in the above equation one obtains:

l=__*
71 w 2 2 W

cI/(__) ±(-_) +U1—+U2——
X1 Jx9

or (c2___u12) (-)2_2uiu2-f± (c2_-u22) (if)2+ 2u1 + 2u0 =0.
&1

(111, 1$)

This is H a m ii t o n’ s partial c%ffeien tja! equation for the variation problem of

aeronavigation.

In vector form: ct grad W = — u. grad W. (III, 19)

The general solution of the variation problern as given by the E u 1 e r-L a g r a n g e

differential equations and, in particular, by the navigation equation of Z e r m e 1 o

together with the steering equation can now also 5e derived by means of H a m ii-

t o n ‘s partial differential equation.

For f W (x1 x2, ) is an integral of H a in ii t o ii’ s partiat dfferentia1 equation

and if is not an additive constant, the ,elation = fi = constant furnishes a

doubly infinite set of extrenials for the varia tion problem.

1f in W (x1, x2, ) is assumed constant, then J47 (x1, x2, ) represents the set of

transversals of the extremals IV, (x1, x2, ) = j3. For a given value of c, W (x1, x2, c)

and W. (x1, x2, c) determine a complete figure.

The complete integral of equation III, 18 contains two constants, one of which

is additive, because the equation does not contain W itself. Therefore the solution

canbewrittenintheform W= W(x1,x2,a)+ borF= W— W(x1,x2,a)—

b 0. In the (W ; x1 ; x9) space this solution represents a doubly infinite set of

integral surfaces. The envelopes of every singïy infinite subset of this doubly infinite

set form a general solution of the differential equation. According to a theorem

due to Kii es er (11) the extremals in the (x1; x2)-plane are the projections of the

characteristics, which are the limiting positions of the curves of intersection of

adjacent integral surfaces. All characteristics passing through one point form an

integral surface called integral conoid. A complete figure for a point F in the (x1; x2)-

plane then consists of the projections of the above characteristics and of the curves

of intersection of sumfaces W = constant and the integral conoid. Since f contains
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an additive constant the integral conoids with their tops on the normal in a point
in the (x1; x2)-plane are equal and similar as well as homologous. A displacement ofthe conoid perpendicular to the (x1; x2)-plane makes no difference except that thetime function W on the time fronts will be differentÎy normalized. The projectingtangent planes of an integral conoid are also integral surfaces because they formthe envelope of a set of homologous, equal and similar integraÏ conoids centredon a normal. The true contour, the tangent curve of this envelope and the conoid, isagain a characteristic and therefore the projection of this characteristic, which is theenvelope of the set of time fronts in the (x1; x2)-plane, is the limit of the extremals.The lines of regression of integral surfaces are important in view of the 1 a c o b icondition. For instance the characteristics on an integral conoid with top P in the(x1; x2)-plane envelop a curve, a line of regression, the projection of which coincideswith the envelope of the extremats through a point P, i.e., the locus of the pointsP conjugate to P.

Consider an integrat conoid in the (W; x1, x2)-space with its top at a point Pin a field of flow in the (x1; x2)-plane W = 0. Consider next a second point Q inthe fleïd of flow and let the normat at Q on the (x1; x9)-plane intersect the integralconoid at a point Q’. Through Q’ passes the time front W W, where W isequal to the distance QQ’. Consider now at Q’ the integral conoid with top Q’.One of the characteristics on this conoid is the characteristic through P and Q’ ofthe conoid with top P. IE at every point on the characteristic a tangent plane to theconoid with top P is constructed these tangent planes and the characteristic itselfform a so-called cÏzaracteristic strip. Since every integral conoid is composed ofcharacteristic strips it follows that also the integraÎ conoid with top Q’ containsthe characteristic strip through P and Q’. In other words, the integral conoids withtops P and Q’ are tangent to each other along the characteristic through P and Q’.1f now the characteristics of both conoids as well as the curves of intersection ofthe conoids with planes W = constant are projected onto the (x1; x2)-plane theprojection figure is the complete figure for the boundary value problem, describedin chapter III, 6. This method again shows that the extremat through P and Q isthe locus of tangent po(nts of time fronts associated with the complete figures for Pand Q separately.
Through any point of intersection Q’ on the normal at Q on the (x1; x9)-planeand the integrat conoid with top P passes a characteristic PQ’. The projectionsof these characteristics are extremals through P and Q, each of which guaranteesa relative extreme for the time of navigation. Therefore the number of extremalsthrough two points P and Q is equal to the number of points of intersection ofthe normal at Q on the (x1; x)-plane and the integral conoid with top P. The extremat furnishing an absolute extreme for the time of navigation corresponds to thecharacteristic through P and the first point of intersection Q’ on the normalthrough Q.
1f two points of intersection Q’ coincide, the normal through Q intersects adouble curve on the integral conoid. In that case Q lies on the locus of thedouble points of the set of time fronts associated with P. This locus is the

t
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projection on the (x1; x2)-plane of the

doubte curve on the integral conoid (see

fig. 111, 9).

Exainples.

1) In the trivial case in which no field of flow
exists the problem corresponds with the prin
ciple of H u y ge n s in homogeneous isotropic
media.

Substitution of ti = 0, u. = 0 reduces III,
18 to:

— 1

x2) c2’

or: (grad W) =

A solution of this equation can be written
down at once:

W (x1, x cc) = ± (x1 sin cc — x2 cos cc).

where cc is a non-additive constant. A doubly

infinite set of extremats is now given by the

relation Wa = = constant, or:

(x1coscc± xsincc) =

The extremals therë/ne are strai’ht li,,es.

The set of transversals: fx1 sin cc — x., cos cc)

p

__________________________________________

= constant is now orthogonal with the set of

extremals (x1 cos cc ± x2 sin cc) constant.

The gradient property and the orthogonal

property associated with the principle of

H u y g e n s and described in chapter III, 5

Fi IIE 10
apparently derive from a specialization of the

g.
. variation problem in aeronavigation.

In a (W; x1; x2)-space a set of integral surfaces is given by:

(x1 sin cc—x cos cc).

On these ptane surfaces, characteristics are found by intersecting the planes with the planes

0 or ± (x1 cos a±x sin cc)=O.
Ztcc c

Since for any given value of cc the plane — = 0 is perpendicular both to the integral plane

cc
W — (x1 sin cc — x2 cos cc) and to the (x1; x)-plane, the characteristics are straight lines vhich

c
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make an angle q’ = are tan with the (x1; x)-plane.The integrat conoid is found after elimination

of from both equations. The resulting equation for the integrat conoid is: W = _- V’x12

The integral conoid therefore is a cone with the W-axis as axis. The complete figure for the origin
consists of the projeetions of the characteristics (conic generators) and the circular cross-sections
of the cone and the planes W = constant.

2) Ina uniform recti-linear field of flow u1 = k, ii OH a m ii t o n ‘s partial differential equation
reduces to:

‘ tJfV - (47\2

= (k — 1
tXo) ‘) \ 3x

It is not so simple to find at once an integral W (x1, x, c) of this equation. However, from the
treatment in part III, 4 it follows that the time fronts associated with the improper fields of
extremals are circles given by the equation:

(x1 — Wk)2 ± x2 = W2c2.

w 13W
After solving for W and calculating — and - the results can be substituted in H a m i 1-

13xt 13x2
t o n’ s partial differential equation and shown to satisfy this equation.

In lIg. III, 10 the complete figures have been drawn for the four possible improper fields of
extremals with nodal point P in the case of a uniform recti linear field of flow with limited ma
noeuvrability.

8. Comparison of times of navigation

it is possible to calculate the difference in time of navigation between a manoeuvre
along an extremal and a manoeuvre along an admissable trajectory by means of
the well-known E-function of We i e r $ t r a s s. For if the extremal e through

the points P and Q can be embedded in a field of extremals and if the trajectory,
for which the time of navigation is to be compared with the time of navigation
alona the extremal, lies entirely within the field (fig. III, II), the difference in time
A W is given by:

Fig. III, II.
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A W =fyJ(x1, x0,p) dx1 _f f(x1, x2,p) dx1,

where x1, x2 refers to a line element on y and x1, x, p to a line element on e. Ap
plying H i 1 b e r t s invariant integral, one may write the second term as follows:

x2, p) dx1 =f {f(x1, x2,p) + ( p)j (x1, x0,p)} dx.

So: AW(yEdt ff(xt,x9,p)j(x1,x0,p)_(—p)f(x1x9p)}dx1

where E = i {f(x1, x2,) —f(x1, x2,p)
— ( —p)J (x1, x2, p)} is by definition

the excess function of W e i e r S t r a s s.
According to III, 2 and 111, 5 the terrns become

f(x1.x0,p)=*, f(x1,x.2,)=,
1I’

Sifl
p = —, p =

-, f1, (x1, x0,p) =

1V1 1e1 ce

where w, and Ce refer to the extremal and to the trajectory 3’.

— 1 t W0\ Sin
So: E=w1

1V1 W \W1 W1/ C

Substituting for c = w1 cos ± ‘2 sin one gets

E
= ‘ (w1 cose± w, sint) ‘;(w cose+w9sin) —w1sin +v sin

‘i Ce

or:

E
cos (w1

—) —1— sin (‘‘2 —11’2)

ce

— cos (u1 + c cos— it1 — c cos’) -4- sin(u2 + c sin — u2 —c sinE’)

w]iere the heading is associated with p and ‘ with p.

l os[t’_e
So: E

= C — c ‘
(III, 20)

Ce

Finally the time difference becomes

(III, 21)
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This formula can be used in practice, where the time difference is an important
factor. For instance in aviation the time difference gives an idea of the economic
efficiency of flying along the minimizing extremal usually called “minimum flight
path”. By means of the excess function, it can also be decided whether an extremal
yields a relative strong maximum or relative strong minimum. Since the sign of
E is entirely determined by the sign of c, one finds the same resuits when applying
the condition of L e g e n d r e (cf. part III, 3).

9. The indicatrix

C a r a t li é o d o r y introduced a curve in the calculus of variation, which
shows much resembiance to the indicatrix of D u p i n in differential geometry
and by means of which it is possible to derive many properties geometrically (12).
This curve, also called indicatrix, is defined by the equations:

x=, y=,
F F

where X and Y are coordinates in a rectangular coordinate system PXY at an
arbitrary point P of the region B, in which the variation problem has been defined,
and f is the basic function of the variation problem ô J f (x1, x2, k, .c2) dt = 0.

However since F = i-jf(x1, x2,p), if i> 0, the equation for the indicatrix
becomes:

1 2 1-Ln2
X2 + Y2

— = (IIE 22)
f2f2 f2

Y
where

or Xf(xj. x0) = 1. (111, 23)

Since it is unnecessary in the present problem to write the result explicitly in X
and Y, formula [It, 22 will here be used.

In the present problem f= ± and p = . So the indicatrix for aeronavigation
becomes: Bi Bi

X + Y2 = ,2 +

or in vector notation:

1 (lig. 1, 2a, b, c).

It follows that the indlicatrix for the variation problem in .aeronavigation is a circle
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with radius c centred on the terminal point of the vector u. The starting point of u
is the base point for the indicatrix.

Therefore the entire indicatrix is convex.

According as the velocity parameter r = is smaller or greater than one or

equal to one the base point lies outside, inside or on the circle. This property has
been made use of already in part 1, 3.

It is known that the concept of tranversality and the f-function of W e i e r -

s t r a s s can be derived in a simple geometrical manner from this figure.
Besides the set of time fronts can be constructed by means of the indicatrix, which

comes to the same thing as the construction methods of G a 1 t o n (8) and G i b 1 e t t
(4). 1f the construction of the time fronts is regarded as a contact transformation,

then this construction can be
realized by means of “redu
ced” indicatrices. This method
will not be further gone into.
However, the indicatrix is
encountered in many other
problems as well, some of
which wilt be discussed.

10. The law of refraction due
to Von Mises

1f the variation problem is
continuous, i.e. if the funda
mental functionf(x1, x2,p) is
continuous, discontinuous so

Fi. BI, 12. lutions consisting of broken
extremals made up of a finite
or enumerable infinite number

of extremat arcs, can only exist when the indicatrix has double tangents. Since
however in the present problem the indicatrix is convex no discontinuous solutions
can be found if the fundarnental functionf(x1, x, p) is continuous. 1f on the contrary
the fundamental function is discontinuous then discontinuous solutions do occur.

The problem then bears some resembiance to the law of refraction due to S n e 1-
ii u s in the theory of light.

1f in the field of flow a line exists along which the stream vector u has a discon
tinuity, the variation probtem becomes a discontinuous variation probtem. On the
“frontal” line the extremals wilt then have a corner. In the region of the field of
flow in which f is continuous the extremals are integral curves of Z e r m e t o’ S

navigation equation. At the corner the following condition known as the corner
condition must be satisfied (see fig. 111, 12):
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(f—pL)P ±f j — (j—f ±],
Heref andf are the fundamental functions backw’ard and forward of the frontal

line respectively, p is the backward and the forward direction of the extremal
are at the corner. j3 and ij are the direction cosines of a line element along the frontal
line.

The various terms have the following values:

cos sinf—pf7=--—
Ce Ce

—
— cose’ sine’f—?fp——

Substitution of these terms in the corner condition leads to the relation:

cos f3 + sin cos ‘ f3 + sin E’
C Ce’

The numerator on the left-hand side is the scalar product of the unit vector along

the frontal line and the unit vector in the backward direction of c. The numerator
on the right hand side is the scalar product of the unit vector along the frontal line

and the unit vector in the forward direction of c.
These scalar products are equal to the sines of the angles between the true velocity

vectors c on either side of the frontal line respectively and the normal to the frontal
line. 1f these angles are i and , respectively the corner condition can be written:

(111,24)51fl i C

This law is known as the law ofVon Mises (13). Von Mises derived
this law in a complicated manner by means of a geometrical treatment. This law
of refraction is entirely analogous to the law of refraction due to $ n e lii u s. The
law of refraction may be formulated as follows:

At a line of discontinuity, the ratio of the sine of the angle of refraction on an
extremal, (Le. the angÏe between the vector of the true velocity and the normal to the
frontal line) and the effective true velocity is constant.

For the sake of completeness it must be noticed that V o n M i s e s also suc
ceeded in deriving the navigation equation of Z e r m e 1 o by means of a transition
to the limit of the law of refraction for a continuous fietd of flow, using the condition

tsin i\
d —) 0 as a starting point.

1f n improper field of extremals is given with nodal point?, the extremats which
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intersect a frontal line, may be continued on the other side of the frontal line. In
this manner a complementary field of extremals is obtained behind the frontal line.
The original field and the complementary field together form a field of broken ex
tremals.

11. Refledion

It will be obvious that in aeronavigation also a law of reflection must exist analogous
to the well-known law of reflection in the theory of light. The problem may be formu
lated as follows:

When for operational or other
reasons a ship must ca]l at an
arbitrary point on a boundary g,
it is desirable to find the (broken)
extremal along which the ship
can be navigated in the shortest
possible time from a given point
P to another point Q (fig. 111,
13). Coincidence of P and Q is
not excluded.

In case the composite curve
FRQ, R on g, satisfies the above
requirements, then the arc FR is

Fig. III, 13. an extremal for the fundamental
integral. Similarly the arc RQ is

an extremal for the fundamentat integrat. Finally at the corner R a condition set

UP by W e i e r s t r a s s must be satisfied. This condition requires that at R the

values of the excess functions E (xi, x2, p, ) and E (x1, x2,
, ) on the arcs FR and

RQ respectively are equal. Here p, and b refer to line etements along the extremaÏ

arcs FR and RQ and along the boundary g respectively.
This condition can be given a simple geometrical interpretation by means of

the indicatrix.
Let i be the indicatrix with base point R (fig. III, 14). Draw the tangents at R

to the extremal arc FR and to the boundary line g. These intersect 1 at T and R1

respectively. Let the tangent at T to i be t and the base points of the normals from

R and R1 to t, N and N1. Then according to a known property of the indicatrix

F (x1, x2, p, ) is equal to

Continue RR1 to the point of intersection $ with t and draw through $ the second

tangent t1 to i. Let the tangent point be T1. The base points of the normals from
RM RN.

R and 1? to t1 are M and M1. Since = It follows that the condition
R1M1 R1N1

of W e i e r s t r a s s for “reflection”, E (x1 x2, p, ) = E (x;, x2, , ), is satisfied

g
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if the line RT1 is tangent to the
extremat arc RQ at 1?. 1f Q coincides
with P, the extremal arcs PR and
RQ are not in general coincident.

The point R can be found by
means of the set of focal curves h
in the complete figure for the points
P and Q (see part TIL, 6 and fig. III,
13).

Consider a focal curve b tangent
to the boundary line g at a point 1?.
The time of navigation along the
composite extremal PRQ is now either
longer or shorter than the time of
navigation along any composite ex- Fig. 111, 14.

tremal P 1?’ Q, if R’ is a point on g
in the neighbourhood of 1?. The time of navigation will be shorter along P R Q than
atong P R’ Q, if in a neighbourhood of R the tangent are of b lies within the region
B, but Jonger, if the tangent are of b Jies outside the region B.

1f g has several tangent points in common with the confocal set of focal curves,
then an absolute extreme for the time of navigation with respect to all composite
extremals with composite point on g will be furnished by the extremal “reftected”
at the tangent point, where the sum value W = W1 + W2 is smaltest or largest.
in the special case, in which Q coincides with P, the “reflected” extremal PRP can
be found in the sarne manner.

12. The variation problem in fields of flow with forbidden regions

Generally the variation problem will be defined in a region 3 covering the
entire plane. However, for
special reasons one may
obliged to limit this region
and to consider sorne parts
of the field of flow unsui
table for navigation.

13 In air traffic it is conceiv
g able that because of moun

tam ridges, bad weather
P zones, forbidden flight re

Fig. 15. gions etc. a diversion must
be made and that naviga

tion will be restricted to a region B bounded by several boundary lines g. In such a
case the points P and Q may happen to be situated so unfavourably with respect to

N.

e

T
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a boundary line g that the trajectory through F and Q along which the time of navi

gation is a minimum, contains part of this boundary line (fig. 111, 15). 1f the problern

is positive regular, several conditions must be satisfied for such a trajectory to exist.

These conditions are also sufficient conditions for the existence of the extremal.

Fields of unlimited manoeuvrability will only be considered.

The trajectory PRSQ (fig. III, 15) is a solution for the problem, if the following

requirements are satisfied (3 1 i s s):

1. The arcs FR and SQ are extremals for the variation problem and all necessary

and sufficient conditions for a strong extreme (J a c o b i, L e g e n d r e,

W e i e r s t r a s s) are satisfied.
II. The arcs FR and SQ are tangent to the boundary line g.

III. For FRSQ to be a minimizing trajectory the curvature of the extremal e,

tangent to g at an arbitrary point T of RS must be such, that in a neighbourhood

of T the extremal lies entirely within the region 3, irrespective of the way in

which the convex or concave side of the boundary

line faces the region 3.
1f these three conditions are satisfied a minimizing

trajectory FRSQ exists.

Example.

Let a uniform rectilinear fleld of flow with unlimited manoeu

vrability be given within a region 3 bounded by a boundaty

line g (fig. III, 16). Now construct the minimizing extremal

through two points F and Q, if the straight line PQ intersects

the boundary line g.
Since the extremals in this field of flow are straight lines,

the required minimizing trajectory witl be composed of straight

lines and arcs of the boundary lineg. Draw a tangent from f

to g and similarly a tangent from Q to g. Let the tangent points

bel? and S. At any point Ton the arc RS the minimizing extremal

tangent to g lies entirely within 3 in a neighbourhood of T,

so that condition III is satisfied. Since the conditions 1 and II

are also satisfied the composite curve consisting of the tangents

Pl? and SQ and the arc RS on g is the required min imizing

trajectory.

13. Derivation of the navigation equation of Zermelo from the theory

of the complete figure

The navigation equation of Z e r m e 1 o in the simplified form III, 9 can be

derived from the complete figure associated with a field of extremals.

Consider a time front W constant (fig. III, 17) and a section PP’ = x2 on

this time front (the x1-axis of the coordinate system coincides with the normat

at P to W = constant). Then draw the normals PF1 and P’F1’ to the time front W,

such that FF1 = c8 A t (c ± u1) A t and P’P1’ = (c + Z c) A t

p

Fig. III, 16.

(c + u1 + L u1) L\ t.
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P1P1’ is then a section of the time front W —1— A W constant. The heading on
this time front is determined by the direction of the normal to the front.

-w

c

Fig. III, 17.

Consider triangle P1P1’ 1?, where P1]? = PP’. The angle P1’P1R = arctan
A u. A t

or, if A t is small: A X2

Ax

Au1or
At Ax2

1f finally the limit is taken for A t — 0, one finds the relation

—

— u1
dt

which is the simplified form of the navigation equation of Z e r m e 1 o (see 111, 9).



PART 1V

SINGLE-HEADING EXTREMALS

Introduction

When single-heading navigation was introduced for the first time it was taken

for granted that the resulting trajectories themselves were extremals and that con

sequently along these trajectories the time of navigation would assume an extreme

value.
Although in general the time of navigation is shorter along a single-heading

trajectory than along the geometrically shortest route, it is only in fields of fiow

with a particular structure that the single-heading trajectories are minimizing or

maximizing extremals. Nevertheless certain properties of the extremals can be

derived by means of the single-heading trajectories.

In several articles on aeronavigation it is often stated that only in uniform recti

linear fields of flow the single-heading trajectories are at the same time extremals.

This is inferred from the navigation equation of Z e r m e 1 o in its simplified

form (111, 9):
de
dt

1f here is identically equal to zero irrespective of the heading the field of
x2

flow is uniform and rectilinear and the equation reduces to:

—
— 0,

dt

which means that C is constant along an extremal. The single-heading trajectories

in a uniform rectilinear field of flow are straight lines and these straight lines are

at the same time extremals.
This description is incomplete. For a proper investigation it will be necessary

to take the original navigation equation of Z e r m e 1 o as a starting point.

But in order to investigate the structure of the fields of flow, in which alt or selected

single-heading trajectories are at the same time extremals, one may also use H a

m ii t o n’ s partial differential equation. Both equations must lead to the same

resuits. From various considerations, however, it appears that Z e r rn e 1 o’ s

equation is easier to handle than H a m i 1 t o n’ s partial differential equation,

unless a particular part of the theory is investigated, which is more closely related

to the theory of Hamilton-Jacobi.
The single-heading trajectories, which at the sarne time are also extremals, will

be cal led single-heading extrema/s.
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1. Fields of How, in which all extreinats are single-heading extremals

In the investigation of this part the result wijl be derived both by means ofthe navigation equation of Z e r m e 1 o and by means of H a m ii t o n’ s partialdifferential equation.
The navigation equation of Ze r meI o is 111, 8:

d
, ‘u1 .

—
— sin - + 1— — sin cos — — cosdt & \& x0J

The single-heading trajectories are characterized by the equation:

o.
dt

1f all single-heading trajectories are to be also extremals, the coefficients on theright hand side of the navigation equation must be identically equal to zero or:

‘—-ox1 x2 ‘ x1 x2

From the first relation it follows that u2 is independent of x1 and u1 independentof x, so one may write:

= F(x1), t,2 G (x0)

where f and G are arbitrary functions with first partial derivatives.
The second relation requires that:

F (x1) 3G (x2)
x1

This is only possible, if both sides are equal to a constant k.

F(x1)k GCx2)7.
x1 ‘

The solution of these equations is:

f (x1) = kx1 + 1, G (x2) kx0 + in,

where t and in are constants.
Therefore the equations for the field of flow, in which all single-heading trajectoriesare extremals, are:

ti = kx1 + 1,
k0 ± lii.

This field of flow is composed of a convergent or divergent fleïd tt1 = kx1, u, = kx2(k negative or positive) and a uniform rectilinear field u1 1, u 1fl.

t
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The resultaat field is identical with the component convergent or divergent field

and is merety displaced with respect to the former.

The above resuits may be summed up in the following theorem:

All extrernals are singÏe-heading extremals in con vergent or divergent fields offiow

& 0, , kr and in uniform rectilinear fields offiow.

In lig. IV, 1, a, b, c the three possible fields of flow have been drawn.

N/Z
fig. IV, 1,a. fig. IV, J,b.

The above theorem will next be proved by means of H a m ii t o n’s partial

differential equation. Since along an extremal the vector c is perpendicular to a

time front W = constant, the transversat line elements along an extremal in a fietd

of fiow, in which all extremals are single-heading trajectories, will be parallel to

each other. Considering in particular a set of single-heading trajectories with the

same constant heading one finds that the

—
.•••. associated set of time fronts W const. consists

..E of parallel straight ]ines (fig. IV, 2). Since all

—‘--—-‘-
single-heading trajectories are extremals irrespec

—s- —t- —

— tive of the heading, every straight line in the

Fig
field of flow must belong to a set of time fronts

W = constant. So W must be of the form

W {x1 cos ± x2 sin c + ,3 ()}, where /3 is a constant, determined by the angle

between the straight line and the x1-axis.

Differentiate partially with respect to x1 and x2:

— = cos cc.. W
ax1

— = sm o . J47

W’ is the derivative with respect to the argument x1 cos + x2 sin + /3 (x).

Substituting these partial derivatives in H a m ii t o n’s partial differential equation

III, 19 one obtains:
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or
cW’ = 1 — (u1 cos cc ± u2 sin x) W’,
W’ (c + u1 cos C( + u2 sin cc) 1.

In this equation such functions must 5e substituted for the unknown quantities
W’, u, u and fi, as to satisfy the equation identically for all values of cc. In additionu1 and u must be functions of x; and x only.

)U2 1
— COS CL + Stfl cc = — —. W . COS CL,

W’2
uI

- 1__coscc±__s1ncc=______. J1” .sincc.x2 W’2

The subtraction of the second equation divided by sin cc from the first equationdivided by cos cc gives:

u1 u2
+—tan cc——cotan cc——=O.ix1 x1

In order to satisfy this equation identically for all values of cc the followingrelations must hold:

t12_O 21_O
x1 x2 ‘ x1 &2

These are the same relations as those derived above from the navigation equationof Zermelo.
The equations for the field of flow are:

= kx1 + 1, u, = kx2 + in

Fig. IV, 2.

Differentiate again partially with respect to x1 and x9:

with / and in arbitrary constants.
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Substitution of these equations in H a m ii t 0 fl’S partial differential equation

leads to:

W
= c+lcos +_

+ 1k
k

Since W’ is a function of the argument x1 cos o + x2 sin ci. + fi (c), it follows that:

1) fl(ci)

2) W= in( c0s+
+x1cos +x2sina).

This expression is an integral W (x1, x, ) of H a m ii t o ns partial differential

equation. According to 111,5 the extrernals can be found directly from the relation:

w
— = const.

The differentiation yields a linear relation between x1 and x0. The extremals

therefore are straight lines.
The argumentation based on H a m i 1 t o n’s partial differential equation is

more complete than that based on Z e r m e 1 o ‘s navigation equation in so far,

that it enables one to find the sets of time fronts W constant associated with

the single-heading extremals with the same constant heading.

‘hLll

For a discussion of the extrernals in a uniform rectilinear field of flow the reader

is referred back to part III, 4.
In a convergent or divergent field of flow , kr, ‘. = 0, the limiting isotach is

a circie with radius 1 = it can be shown that all minirnizine and maximizing
Jk)

Fig. IV, 3.

iiiilii.J - Ii



ITS APPLICATLON N AVIATION METEOROLOGY 7!

extremals through a point P, which are straight lines or line segments, are containedwithin the sector bounded by the tangents from P to the limiting isotach (fig. IV, 3).F is again the nodal point of four improper fields of extremals, whereas a point P
within the circle r is the nodal point of two improper fields only.

Since all maxirnizing extremals lie entirely in the region of limited manoeuvrability
the corresponding line segments will end at the limiting isotach. The four differentimproper fields of extrernals, two of which with P as starting point, and the othertwo with P as terminal point, are taken together in one figure (fig. IV, 3)

The heavy lines are maximizing, the thin lines minimizing extremals.
All extremals furnish an absolute extreme value for the time of navigation.

2. The field of extremals and the set of single-heading trajectories
through one point

Consider an improper field of extremals with an arbitrary point P as nodal pointand the (singly infinite) set of single-heading trajectories originating from this point.The latter covers a region, which partially overlaps the field of extremals.
An extremal and a single-heading trajectory will be tangent to each other at P,if they have the same initial heading. However, some directions may be found atP, for wich the tangent point transforms into a point of osculation.
Since the heading of a single-heading trajectory is constant by definition, thiscan only happen, if the heading of the tangent extremal does not change in thevicinity of P.
From the navigation equation III, 8 written in the form III, 10:

d tan f zi, /ii
- =

— tan- -f 1 — ) tan e —dt x1 x1 ZxJ

it follows that for au extremal having a three-pointic contact with a single-heading
dtantrajectory at P, must be equal to zero at P. Since the coeffictents on the

right-hand side of the above equation have definite values at P, this right hand siderepresents an ordinary quadratic in tan , which vanishes, if tan is equal to eitherof the roots of the quadratic. With these two values of tan correspond four valuesof :
, + t, and + r, which may be complex. Therefore an extremat thronghP with one of these “optinluin headings” as initiat heading will have a three—pointiccontact at P with a single-heading trajectory with the same heading. The corres

ponding truc velocity vector c must be directed along one of the four line elementsdefined by the values
, + 2t, 2 and E + r.

Since at every point of the fleld of fiow two vaÏues are found for tan , two sets
of curves can be constructed, for which at every point p = = tan .

clx1
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These curves wilt be called zero-shear tines.

The investigation of the fields of ftow with singte-heading extremals will be con

siderably simplified by using these auxiliary lines.

At each point P on the zero-shear lines two line elements can be found of the

corresponding extrernals, which have a three-pointic contact with a single-heading

trajectory. Therefore four curves can be constructed, one for each optimum heading

4 + , 2 + which at every point contain such a line element. These curves

are called osculation lines.

3. Zero-shear tines

At every point of the field of flow the line elements of the zero-shear lines are

determined by the relation:

= tan ,

dx1

where e is an optimum heading.

Therefore the differential equation for the zero-shear lines is:

(f2
± —

— 0. (IV 1)
x1 \dx1J \x1 ,x2J dx1 x2

At any point on a zero-shear line the relation IV, 1 hoids for the extremaÏs which

are tangent to the corresponding osculation lines through that point. Since according

dtane
to 111, ,

dt
at every point on an extremal is equat to the shear of the corn

ponent of fiow along the direction of c, which here vanishes, a zero-shear line can

also be defined as follows:

A zero-shear line is a curve in the field offiow, such that at eveiy point on the curve

the shear of the component offlow along the tangent is equat to zero (fig. IV, 4).

The zero-shear lines will not always be real. At any point of the field of flow it

depends on the sign of the discriminant of the quadratic IV, 1 whether the optimum

headings are real or imaginary.

-.--

Fig. IV, 4.
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The discriminant is:

A
(bui —

4 . . (IV, 2)
x1 ;x2 x2 x1

Depending on the sign of A the following properties can be derived: In a field
of fiow or in a region of a field of flow, where A > 0, the optimum headitigs are
real.

In a field of fiow or in a region of a field of flow, where A <0, the optimum
headings are imaginary.

In a field of fiow, where A = 0, or on the curve in a field of flow, which divides
the field of flow into regions, where A> 0 and regions, where A <0, the optimum
headings are real and coincide two by two.

Therefore in an arbitrary fleld of flow the zero—shear lines will lie entireh’ in the
reion, where A > 0.

In afield offioii’, in which a velocity-potential is defined, the zero-shear lines intersect
each other perpendicularly.

This can be shown as follows.
A field of flow has a velocity-potential q, if the field is irrotational, i.e. if — =

x1 x2
The components u1 and u2 of the stream vector are the partial derivatives of the
velocity-potential with respect to x1 and x2 respectively, (see 1, 2):

= -- , , =

-

The zero-shear lines are determined by the differential equation:

2q (dx2’\2
+

(2

+
dx2 2ç —

,x1 x2 \dx1) x;2 ,02) dx1 x1 ix2

It foltows that at every point the product of the roots of this equation is equal
to — 1. Therefore the zero-shear lines must be perpendicular to each other.

En some fields of flow one may find that at a point, along a curve, or everywhere
dtanE

_

in the field, = 0 for any value of e. This will be the case, when the coefficients
dt
U1 U2

—, — and — — are simultaneously or identically equal to zero.
xz ;x1 x1 x2

/U1 )U2’\2 )U1 u2Since A = {— + 4—.—, A vanishes simultaneously with these
\)X1 )X2J )X2 )x1

coefficients. The points, where
dtan e

__ 0, lie either on the curve A = 0 in fields,

where the sign of A is not permanent, or in fields of flow, where A = 0.
The coefficients are identically equal to zero in convergent (divergent) fields of

flow & = 0, j
= kr and in uniform rectilinear fields. In these fields the zero-shear

lines are trivial.
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4. Fields of flow, in which single-heading extremals exist

1f one or both sets of zero-shear lines consist of parallel straight lines, then the
single-heading trajectories with a corresponding optimum heading 4 which is

constant, are extrernals. För both
d tan e 0 and = 0 if the x-1axis is taken

cit
along a straight optimum-heading line and so the navigation equation of Z e r
m e 1 o is satisfied:

d tan —

dt

A single-heading trajectory with the optimum heading 0 is then a single-heading
extrernaÏ. The single-heading extremals are identical with the osculation lines, which
correspond to these zero-shear lines. Moreover according to the propertyoftransversa

lity, part III 5, formula 111, 16, the true velocity vector c along an extremal is perpen
dicular to a transversal, so all straight lines, which intersect the set of parallel straight
zero-shear lines perpendicularly are transversals or time fronts of the set of single
heading extremals.

A complete figure then consists of one of the sets of osculation lines, and the set
of lines perpendicular to the rectilinear zero-shear lines. In fig. 1V, 5 the lines W
= constant are time fronts, the ]ines r are straight zero-shear ]ines and the curves
e are the corresponding osculation lines or single-heading extremals.

With a given constant optimum heading and the associated constant optimum
heading + correspond two complete figures with mutually parallel sets of time
fronts W constant. Since at the most two sets of straight zero-shear lines are
possible there can be no more than four complete figures of single-heading extremals.
Therefore at the most four single-heading extremals can pass through any point.

Fig. IV, 5.

IllhJJtLUI[ii±.jLJiIIIIl:ii._[[1111
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Depending on the existence of one or two sets of parallel rectilinear zero-shear
lines the following result can be found:

A. ij one of the sets of zero-shear lines consists ofparallel straighi lines, tito single
heading extrenals deterinined by the optirnum Ïieadings and + r will pass
through anv point F in the fleld offiow.

S. 1f both sets of zero-shear lines consist ofparallel straight lines, four single-heading
extreinals deter,nined b’ the optimum headings

, + r, , and + zt will
pass through aîii’ point f in the flelci offirni’.

C. 1f hoth sets of zero-shear ilnes consist ofparallel straight lines, botli sets coinciding,
the Jbur single—heading extreinals passing through atil’ point P in the Jielci offiow
IL’ill also coincide tito bl two.

The structure of the field of flow, in which any of these three cases occur, can
5e analysed by calculating the roots of the quadratic IV, 1 and by putting these
equal to a constant.

Although this subject matter can be fully worked out, here only the special case
of a field of flow with a stream-function p will 5e considered in view of the application
to aerology.

5. The theory of single-heading extremals in fields of How with a stream
function

According to 1, 1 such a field of flow is defined by a strearn-function (x1, x0).

til = =

- x1

The strearn-lines are the lines ‘tp = constant and the intensity of the flow at
any point is determined by the magnitude of grad ‘. 1f the velocity components
u1 and u are given as functions of x1 and x0, the strearn-functions can 5e deter
mined by integrating the above partial differential equations. It is, however,
more convenient to define a stream-function ip first and to derive the velocity corn
ponents u1 and tt afterwards by partial differentiation of ip.

The strearn-function ip can be represented by a surface in the (x1, x2, ip)-space. The
streamlines ip = constant are then the projections of the curves of intersection of
planes parallel to the (x1, x2)-plane and the ip-surface.

In order to determine the structure of the fields of flow with a strearn-function,
in which single-heading extrernals occur, one may study this structure from a dif
ferential-geometrical point of view, by means of the ip-surface in (x1, x2, ip)-space.
This method in particular enables one to obtain a good survey of the various
possibilities.

By means of a three-dimensional representation in (x1, x0, )-space “-surface
models” can 5e constrticted of the required fields of fiow. These models are of
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particular value for the application of the theory in practice. When the actual field
of flow is given, an attempt may be made to recognize in the -surface associated
with this field, one of the -surface models, in which single-heading extremals
exist. 1f such a similarity is obvious the theoretical considerations based on these
models will apply to the actual field of flow.

The analysis will be based on the definition of zero-shear lines.
Consider again the differential equation IV, 1 for the zero-shear lines. After

substitution of the expressions.

111= ,

Zx2

112 — — —,

this equation transforms to t

3)
&2 dx1) &i &2 dx1 &22

Whether the zero-shear lines are real or imaginary depends on the discriminant
A, which, but for a factor 4, is equal tot

\ &1 x0) 3x12 x22

At every point on the -surface the sign of A. determines whether the point is
an elliptic, a hyperbolic or a parabolic point.

The region of the field of flow, where A> 0 corresponds with a region of hyper
bolic points on the -surface. In this region the zero-shear lines are real.

The region of the field of flow, where A <0 corresponds with a region of elliptic
points on the -surface. In this region the zero-shear lines are imaginary.

The boundary line between the regions of the field of flow, in which A has a
different sign, corresponds with a line of parabolic points or a “spinodal” line on
the -surface. Therefore the projection of the “spinodal” line on the (x1, x2)-plane
forms the boundary of the region of the field of flow, where the zero-shear lines
are real.

Among the -surface models there are sorne, which contain only hyperbolic points.
At all points on these surfaces the total curvature or Gaussian curvature is negative.

The total curvature is defined by — =
___.

and are the principal radii
of curvature. 2

2
In the corresponding field of flow the zero-shear lines are real everywhere. ip

surface models, which contain only elliptic points, i.e. surfaces, whose total curvature
is positive everywhere, have only imaginary zero-shear lines in the corresponding
field of flow. finally surfaces, on which A = 0 correspond with fields of flow,
with only real and straight zero-shear lines, which two by two coincide.
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Also in non-divergent fields of flow it is possible that at certain points, along
dtan

_

certain curves, or everywhere in the field

______

= 0, for all vatues of . At such

2i,,
points the equalities: __L = ___L = 0 must hold.

1x12 x22 x1 1x0
These exceptionat cases arise:

]) At certain points on the projection of the spinodal line , = 0.
2) On certain curves in fields of fiow, whose corresponding v-surface is a developable

surface, A = 0.
3) In uniform rectilinear fields. Hete the corresponding ip-surface is a plane.

Apparently the second case may occur in fields of flow, in which four single
heading extremals which two by two coincide, pass through every point. In these

dtane

_

fields curves exist, along which the condition
dt

= 0 is satisfied for every.

These curves are themselves extremals of the field.
In addition to the zero-shear lines now consider the asymptotic lines of the v

surface. The differential equation for the projections of the asymptotic lines on the
(x1, x9)-plane is:

P(2î+2 W .-2+=O. (IV 4)
&2 \dx1J & &2 dx1 &2

When one compares this equation with the differential equation for the zero-shear
lines:

dxr
x12 \dx1) x1 x2 clx1

it will be seen at once that both sets of curves are perpendicular to each other, since
the roots of both equations are reciprocal and opposite. Two by two the products
of the roots are equal to —1.

There are two sets of asymptotic lines on the -surface. Whether these are real
or imaginary depends again on the sign of A. The following theorem may now
be formulated:

The zero-sÏ,ear lines are the orthogonal trajectories oftheprojections of the asymptotic
lines.

There are two orthogonal sets, which are real or imaginary according to the
/ 2,, 2 )2i 2

sign of A ( ‘t ) —

__- being positive or negative.
\X1 X9, X1’

The boundary of the real zero-shear lines and the projections of the real asymptotic
lines is the projection on the (x1, x2)-plane of the spinodal line on the -surface.

By means of the orthogonality of the sets of curves the -surface models of the
required fields of flow with single-heading extremals can now be found. For if in
the field of fiow a set of single-heading extremals exits, one of the sets of zero-shear
lines must consist of parallel straight lines. With this set corresponds a set of pro-



78 THEORETICAL ASPECTS Of AERONAVIGATION AND

jections of asymptotic lines, which consists of parallel straight lines perpendicular

to the parallel zero-sheai- lines. The projections of asylnptotic lines are the timefronrs

of the complete figure associated ivith the set of single-heading extreinals.

On the -surface accordingly a set of asymptotic lines must exist, which can be

projected as a set of parallel straight lines on the (x1, x0)-plane. The nature of the

-surface is entirely determined by this condition.

Again three cases are possible:

C’ase A. One of the sets ofzero-s/war lines consists ofparallel straight lines. Similarly

one of the sets ofprojections of asymptotic lines consists ofparallel straight

lines. In the field offiow two single-heading extremals pass tÏirough every

jjoint.
Case B. Bot/t sets of zero-s/zeer hoes consist of parallel straight mes. Similarly

both sets ofprojections of asymptotic hines consist ofparallel sttaight lines.

In the fleld offiowJur single-heading extremals pass through every point.

Case C. 1f both the sets of zero-shear hoes and the sets ofprojections of asyniptotic

ilnes consist of straight lines and coincide, four single-heading extremals,

ivhich two bj’ two coincide, pass through evey point.

Case A.

fields offiow wit/t a stream—function, in iihich two single—headling extreinals pass

through every point.
One of the sets of asymptotic lines on the -surface consists of straight lines, which

are projected as parallel straight lines on the (x1, x2)-plane. The ,-surface is then

a ruled suijtce whose generators lie in parallel projecting vertical planes. For one

of the sets of asymptotic lines on a ruled surface consists of the generators of the

ruled surface.

Fig. 1V, 6.
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Now a ruled surface consists of all straiht lines, which intersect three given
directrices. 1f one of these directrices lies at infinity in a projecting plane the generators
are all parallel to this plane and the ruled surface belongs to the class A. So all
ruled suifaces with two directrices and aprojecting directiveptane satisfy the conditions
of case 4 The straight lines are projected as parallel straight lines and the true vetocity
vector for the single-heading extremals is at right angles to the projecting directive
plane (lig. IV, 6).

Case B.

fields of flow with a streamfunction, in 1I’hich four single—heading extremals pass
through eveiy point.

Both sets of asymptotic lines on the i-surface now consist of straight lines, which
are projected as parallel straight lines on the (x1, x)-plane. The only -surfaces, which
have this property, are the elliptic and hyperholic paraboloids. in general there are two
sets of straight lines on a quadric, which are either real or imaginary. In the present
case however both sets of generators have a directive plane, so the quadric must
be either an elliptic or a hyperbolic paraboloid. The directive planes of the elliptic
paraboloid are imaginary, so the asymptotic lines, their projections and the optimum
heading lines are also imaginary. In the corresponding field of flow four imaginary
single-heading extremals pass through every point. The directive planes of the
hyperbolic paraboloid however are real, so the asymptotic lines etc. are also real. In
the corresponding field of flow four real single-heading extremals pass through
every point.

The position of the -surface concerned must be such that the directive planes
are perpendicular to the (x1, x2)-plane. Therefore the axis of the elliptic or hyper
bolic paraboloids must be perpendicular to the (x1, x.)-plane.

Fig. IV, 7.
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Case C.

fields offlow with a strearn-function, in which four single-heading extremaÏs, which

two by two coincide, pass through everv point.
Again both sets of asymptotic lines on the -surface consist of straight lines,

which are projected as parallel straight lines on the (x1 x2)-plane; however both

sets now coincide. Surfaces on which the asymptotic lines coincide are developable

ruled surfaces. The total curvature of these surfaces is everywhere zero and the

generators are at the same time double-counting asymptotic iines. Therefore the

-surfaces, which satisfy these requirements, are developab/e ru/ed suijaces with

a directive plane. It may be shown however that such developable ruled surfaces

fig. IV, 8.

So the conditions of case B are satisfied bi’ the eÏhptic and hypeibolic paraboloids,

i’hose axis are perpendicular to the (x1, x2)-plane (fig. IV, 7).

The true velocity vectors for the single-heading extremals are at right angles to

either of the projecting directive planes.
figure IV, $ shows the case in which the directive planes are perpendicular.

i
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are cylindrical suifaces. Not all cylindrical surfaces can be used for case C, but
only those, whose intersection with the projecting directive plane consists of one
straight line only (fig. IV, 9 and 1V, 10).

The projections of these generators consist of the straight lines, which connect
the points of infiection of the stream-lines.

Since the vector u is constant along these lines both in direction and magnitude,

Eig. IV, 9.

On the generators, which connect the points of infiection on the lines p = const.,
2 2

the relations = =

______

= 0 hold at every point for every .?.x12 &2 x1 &2

Fig. IV, 10.

6
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must be constant for navigation along these ]ines. So these straight lines are single

Ïieading trajectolies. But they are also extremals, for the navigation equation of

Z e r m e 1 o is satisfied by

d tan e
= 0.

dt

So the straiglit lines, which connect the points of infiection of the stream-lines

are also single-heading extremals te1 and e2 in fig. IV, 10).

1f the generators of the cylinder are parallel to the (x1, x2)-plane, the corresponding

field of fiow will be rectilinear. (fig. IV, 11).

The true velocity vectors for the single-heading extremals are again at right angles

to the projecting directive plane.

Of the quadratic cylinders only the parabolic cylinder is admissible, because

the elliptic and hyperbolic cylinders are not one-valued, since their intersections

witli a projecting plane consist of two straight Jines.

In fig. IV, 12 the case of a parabolic cylinder has been sketched with the two

single-heading extremals through a point P. In fig. IV, 13 the single-heading extre

mais have been constucted for a cylinder parallel to the (x1, x9)-plane.

1f the field of fiow also possesses a velocity-potential ç, in other words, if the

field possesses a stream-function and velocity-potentiat ç, the zero-shear lines

must be perpendicular to each other. That means that the projecting directive planes

also must be perpendicular to each other. Therefore this case can only occur in 3

(fig. IV, 8).

Fig. IV, 11.

It may be noted that the uniform rectilinear fields of flow also belong to the
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category of these fields. The corresponding i-surface is a plane and all straight

lines may be regarded as asymptotic lines. Therefore the sets of projections of

-

—
J

4:s:

5 43

Fig. IV, 13. Fig. IV, 14.

asymptotic lines become indefinite. The same applies to the sets of zero-shear lines.

Therefore all single-heading trajectories in such a uniform rectilinear field will be

single-heading extremals (fig. IV, 14).

allL iUjiiiLLkiJIJAUi ilJi&L. Lt]iL LdILJIIIiIiWiLJ LLLL.



PART V

APPLICATION IN AVIATION METEOROLOGY

Introduction

In this part special attention is paid to the application of the theoretical con
siderations given in the four previous parts.

The navigational use of meteorological information in aviation is stili continuing
to expand. Especially during the last decades practical use of altimetry and pressure
pattern techniques have increased the safety and economy of long range flights.
The development of these methods is also stili in progress. It seems of great value
to describe some techniques which enable meteorologists and navigators to improve
pre-flight, in-flight and post-flight operational activities.

The theoretical aspects of aeronavigation can be put into use with success if the
navigation is not restricted by any operational limitations and if separation of air
traffic in horizontal dimensions is allowed. By determining the most suitable flight
path it is now possible to improve comfort, safety and economy of most flights.
As a consequence aeronavigation has been recognized by traffic control authorities
as an acceptable reason for deviating flights from direct routes in overland and
overseas operations.

1. General

The different techniques involving a more scientifique solution of routes and
compilation of the accessary flight plan are derived from the theoretical aspects
given in part 1, II and III. Some precautions must be taken, however, in interpreting
the results. There investigations were based on a stationaly fleld of flow in a plane,
while the true velocity c, from now on called true air speed, was assumed to be
constant. In reality the field of flow is non-stationary and it has to be studied on
a curved surface, i.e. the geoid. Moreover, the true air speed varies between certain
limits dependent on the long range cruising system, the flight level and temperature
distribution. The fleld of flow is represented by means of different types of upper
air charts. For instance in aequatorial regions the wind distribution is represented
in constant level charts by means of stream-lines and isovels or isotachs. It is generally
agreed however to use pressure contour charts in extra-tropical and polar regions.
These charts represent the instantaneous conditions on a surface of constant pres
sure. Their physical properties are properly known: for instance the direction of

the windvector u is determined as a first approximation by the tangent to the contour
lines and the magnitude by the slope of the pressure surface according to the geo
strophic windequation:

t
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g
2u sin tp dii

where g is the acceleration of gravity, u is the angutar velocity of the rotating

earth, ç is the latitude, ii the distance normal to the contours and z the geopo

tential of the pressure surface.
Wind speeds in pressure contour charts may also be given by isotachs.

One of the outstanding advantages of the pressure contour chart is that the flight

nearly takes place in a constant pressure surface as the flight level of the airctaft

is adjusted with a pressure altimeter.
In practice the pressure contour charts of selected constant pressure surfaces

are used, for instance the 850, 700, 500, 300 and 200 mb charts corresponding

roughly to heights of 1500, 3000, 5500, 9000 and 12000 m. For aeronautical purposes
it is often not allowed to neglect the change of the fleld of flow with time. Since
in long range flights 10 to 15 hrnirs of flight time are common, the “fixed time”
pressure contour and constant level charts give an erroneous picture of the circum

stances along the route. To eliminate partly the errors “composite” pressure contour

charts or “composite” constant level charts may be introduced, which give a “con

tinuous” representation of the wind distribution in such a way that the situation
in an arbitrary point of the route is nearby the expected situation at the time the

aircraft will be at that point. In composite charts the wind distribution is determined

by stream-lines and isotachs and if certain conditions are fulfilled the wind can

approximately be determined by means of contours and the geostrophic wind

equation. Unless stated otherwise, the techniques to be described however are

demonstrated in fixed time pressure contour charts.

1. Chart projections to be ttsed.

The projection of the earth’s surface on a plane necessarily introduces deformations.

Consequently a simultaneous conservation of conformity and equivalence is im

possible. Primarily for meteorological and navigational procedures a conservation

of angles is necessary (bearing, heading, wind-direction etc.). Moreover it is preferable

to maintain the equivalence as well as possible, in other words it is recommended
that the scale factor only varies between narrow lirnits. That is why it is customary

to use conformal maps which are almost equivalent, especially in the working areas

The best known charts which fulfilI these conditions are: for equatorial region

the cylindrical Mercator projection, for extra-tropical regions the Lambert conformal

conic projection (with standard paralleles at 30 and 60 degrees North) and for

polar regions the polar stereographic projection. 1f a great number of flights is

concentrated in a relative narrow band between two stations the most suitable

chart to be used is the oblique Mercator projection (Kahn’s projection). In order

to have a handy chart for the application of the techniques to be described, a scale

of chart is recommended between 1 : 10.106 and 1 : 15.106. In this publication the

different construction methods are demonstrated in Lambert conformal charts with
standard parallels at 30 and 60 degrees North and scale 1 : 10.106.

J
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II. Grid navigation.
In 1942 flightlieutenant K.C. Maclure developed the system of grid navigation,

which was inttoduced to avoid the singularity of the longitude-latitude lattice near
the north pole. He was able to put the system to test in 1945 during the navigational
exploration pole flight with the R.A.F. aircraft “Aries”.

Grid navigation is defined as navigation with respect to a set of parallel lines
which is superposed on a chart with a given projection. The scale of the chart in
the superposed part can be considered constant. This means that the superposition
should be carried out on a conformal map which is as equivalent as possible. The
parallel lines are called grid meridians, one of the meridians, a standard meridian,
is taken as line of reference in respect to the original chart projection. The orientation
of the grid is determined by the choice of the standard meridian. For instance the
standard meridian can be chosen parallel to one of the edges of the chart. 1f the
chart projection contains straight meridians, for instance the Lambert conic pro
jection or the stereographic projection, the standard meridian can coincide with
one of the straight meridians. As an example chart IV shows a grid on the Lambert
chart for the North Atlantic region in which the Greenwich meridian is accepted
as standard meridian. The direction of the parallel grid meridians determines grid
north.

Angles are referred to the grid meridians and grid north. For instance the true
heading referred to the meridians of the projection chart and true north now changes
into grid heading referred to the grid meridians and grid north.

The magnetic heading being the sum of true heading in one of the terminalpoints
of a segment and variation in the midpoint of a segment becomes the sum of grid
heading in one of the terminalpoints of the segment and the grid variation orgrivation

in the midpoint of the segment.
Since the grid overlay on a map can be considered as a transformation certain

auxiliary lines should be transformed simultaneousty. For instance the lines of
equal magnetic variation, or isogoitals which are loci of points for which the angle
between a geographic meridian and the magnetic meridian is constant, should be
transformed into lines of equal angle of grid variation or isogrivs, which are loci
of points for which the angle between the grid meridian and the magnetic meridian
is constant. According to the transformation the grivation in any point is the algebraic
sum of the angle of variation and the angle between a grid meridian and a chart
meridian, or convergence in that point. In virtue of this property the isogrivs can
be found by adding graphically the isogonals and lines of equal convergence (after
having normalized both sets of lines properly).

Although originally grid navigation was used for polar regÏons the system can
be introduced with success also elsewhere, mainly because of two reasons:
1) Introduction of a grid considerably simplifies the interpretation of the theory,

since it is easy to adjust a rectangular coordinate system to the grid.
2) At a given point of the chart angles can be measured by parallel displacement

of a protractor until one of the standard meridians passes the midpoint of the
protractor. (See fig. V, 1).

[
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Moreover it is possible by means of a computor to compile some quantities of

a flightplan in conjunction with the construction of any flight track. 1f the steering

agency is a magnetic compass the flightplan for any track will contain elements

like grid heading and grivation in stead of true heading and variation.

III. Construction of special types of pressure pattern trajectories.

At present pre-ffight planning is based on tecliniques which make use of all kinds

of templates in order to compute flight times along various tracks. After having
examined a few routes, the most suitable one is selected. However, to find the most

favourable route for a given system of navigation, a greater number of routes should

be studied and such a task is laborious and time consuming. The construction of
the complete figure as described in part 1, 6 associated with any system of navig

ation gives a better survey of the behaviour of such routes.
From the foregoing paragraphs it is evident that the theory developed in part

1 can be transferred in practice without great deviation from the results stated there,

ij’ the navigational procedures are based on composite analyses or composite prognostic

analyses of upper air circulation on charts with a conforinal and ahnost equivalent

projection overlaid with a grid.
1f necessary the true air speed is assumed to be constant. The true air speed regularly

surpasses the wind speed. Therefore, according to 1, 3 the airflow can be considered

as an unlimited manoeuvrable field of flow. Moreover it is supposed if not otherwise

stated, that the flight altitude is maintained constant throughout the flight. The

systems of navigation defined in part 1, 5 can be introduced without alterations.

\
\

Fig. V, 1.
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The systems should only refer to the superposed grid of the chart. Systems, such
as stream navigation, potential navigation and evolute navigation can easily be
realized and under certain conditions be adapted to purely technical navigation
systems.

The structure of the airflow is rather complicated and it is weIl-nigh impossible
to express the airflow mathematically. The construction of flight tracks can therefore
be carried out only approximately by means of graphical methods of integration.
Owing to this limitation any track will be subdivided into a number of segments,
for instance segments of equal length, segments of an equal number of degrees
and hourly segments.

Consequently each track should be considered as a mult4i/e composite track.
In practice flights are made along prescribed routes, e.g. great circie, rhumbline,
Lindy line and composite tracks tvith one or two turning points. Sometimes the
heading is given as a function of time, for instance in single heading navigation

(change of heading with time is equal to zero).
The construction of a trajectory for a given system of navigation as defined in

1, 5 can be accomplished by constructing the post-time fronts W associated with
the point of departure P and the pre-time fronts W1 associated with the point of

destination Q. The appropriate trajectory through P and Q is a section of the Jocus

of points for which the sum value W + W1 is equal to the sum value W + W1
in point P or, which comes to the same, the sum value W + W1 in point Q.

IV. The minimum flight path computor.

As the construction of pressure pattern trajectories by methods described in

part T, II and III is laborious without aids, a computor bas been designed by

F. C. Bik, captain of the K.L.M., Royal Dutch Airlines and the author (14).
This computor enables the navigator to construct the minimum flight path (see

part V, 2) and to determine the quantities that form part of the accessory flightplan.

1

________________________________

aJ
- fr//ij4.,

Fig. V, 2.
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The computor may also 5e used successfully however for navigational purposes
along other flight paths.

The instrument consists of two parts (1 and II) of transparent material (see fig.
V, 2). Part 1 shows a “wind disk” A with a groove B for plotting the wind vector,
which can revolve along its periphery. Slide C contains a distance diagram for
various chart latitudes based on the scale factor of the projection used. The zero
point of the diagram coincides with the centre of the rotating disk. In groove D
the true air speed (air distance per hour) can 5e plotted and ground distances can
5e measured.

Part II consists of a protractor E which can be shifted along slide C. The edge
f of the protractor is perpendicular to slide D. The intersection on the distance
diagram indicates the true air speed, given in terms of distance per hour along 55
degrees latitude. This distance is projected into groove D (point S). The protractor
may be turned 180 degrees into slide C, dependent on the direction eastbound or west
bound as used on the chart. The principle of the computor is based on a subdivision
of the track into segments per unit time, for instance hourly segments. The computor
can be used mainly for three purposes, notably for constructing the unit time seg
rnents, for measuring angles (headings, bearings) and measuring distances. The
use of the computor will 5e described for two cases.

Case A The heading is known.

First adjust the true air speed by shifting protractor E along slide D in such way
that edge f indicates the true air speed (air distance per hour) for a given latitude.
Next put the protractor on the map until point $ coincides with a point on the
map, in which the heading is defined and until groove D points into the direction
corresponding to the given heading (fig. V, 3). After that, disk A is rotated till groove
3 points into the direction of the mean wind vector along the segment MS. In this
position the endpoint P of the wind vector is plotted. Then 5F is an hourly segment.
In a contour chart the disk is rotated until groove Bis parallel to a contour line.To mea
sure the magnetic heading: keep the computor exactly in this position and move the
protractor along slide D until one of the grid meridians crosses the centre of the
protractor and read the grid heading. Read the mean grivation of the segment $P
and add this value to the grid heading in order to find the magnetic heading.

The distance of the segment MS or ground distance can 5e measured with the
computor by means of the distance diagram.

It should be noted that for instance on a Lambert chart the segments refer to circie elements
approximately, whilst the flown segment approximates a rhumbÏine element; the measured distance
is therefore somewhat shorter than the distance actually flown.

Case 3 The track is known.

Put the protractor on the map in such way that point S coincides with a point
of the track and turn the computor about S until the endpoint of the wind vector
coincides with another point of the given track. In this position the heading is deter
mined as described in case A.



t
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The graphical construction method is demonstrated for a navigation along corn
posite greatcircle tracks between P(restwick) and G(ander), in a 700 mb analysis
(See chart. 1). The wind distribution is determined by the contours and by figures
indicating the wind speed. After drawing an arbitrary set of great circle arcs through
P, one determines the successive hourly points by applying the minimum flight
path computor according to case B. The same manipulation is done in reversed order
along great circie arcs through destination G. Drawing smooth curves through the
hourly points these curves represent the post-time fronts W and the pre-time fronts
W1. Both sets determine the complete figure for navigation along composite great
circies. As the time of navigation along the great circie PG is equal to 11h 25m, the

curves W1 have been properly normalized by starting in G with the first time front
W1 25 minutes. The great circie PG is running through points of intersection
of time fronts W and W1 for which the sum value W + W1 equals 11h 25m. Other
points of the locus are composite points of composite great circie tracks along
which the time of navigation also is 11h 25m. The area enciosed by the locus contains
points for which the associated composite great circie tracks yield a navigation time
which is smaller than along the great circie PG. Selecting a composite point in this
area the time of navigation along the associated composite track is considerable
reduced. One gets a good survey of the times of navigation iffocal curves t are drawn.
In chart 1 the focal curves for 10h 55m, 10h 25 m and 9h 55 m have been drawn. The

Fig. V, 3.

V. Exainples.
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composite point or points for which the time along composite great circie tracks

is a relative or absolute minimum (relative to adjacent composite great circie tracks),

will be located at the curve m joining the tangent points of time fronts W = constant
and W1 = constant. In most cases more than one critical composite point exists,
but the location in some cases needs a more detailed analysis. The critical point
in this example is at 61.00 1V, 36.50 W with a navigation time of 9h 43 m, which
is 1h 42m less than the time along great circie PG. The selection of a suitable compo
site point without graphical construction methods is a matter of experience and
routine. In practice other factors like weather conditions, the direction in which
a pressure system is moving, play a part in locating such a point, but it is dear from
the picture that the location of the composite point in an area, bounded by the focal
curve along which W + W1 = 9h 55m hardly effects the total navigation time.

In the same 700 mb analysis a similar construction method has been carried out
for single-heading navigation from Prestwick to Gander (Chart 2). The curves
W and W1 = constant represent a complete figure for navigation along composite
single-heading tracks. The single-heading track through P and G is running through
the points of intersection for which W + W1 = constant 10h 15m. The critical

points for which the time of navigation is a relative or absolute minimum in respect

to adjacent composite single-heading tracks are found at the curve in, which is the
locus of the tangent points of time fronts W = constant and W1 = constant. The
minimum time is equal to 9h 41m. finally in the same 700mb analysis the minimum

flight path bas been constructed according to methods described in part V, 2,

which yields a minimum time of 9h 40m (Chart. III). The minimum composite

great circie track also shown in this chart fits in with the minimum flight path and

the time difference is negligable (3 minutes). Some of the important time data have

been assembied in table 1. The figures A T in the second column represent the
differences in time in respect to the great circie navigation time.

TABLE 1.

Prestwick-Gander T T

Great circie track 11h 25m —

Minimum composite great
circie track 9h 43m 1h 42m

single heading track 10h 15m 1h lOm

minimum composite single
heading track 9h 4lm 1h 44m

minimum flight path 9h 40m 1h 45m

The upper air analysis in which some of the construction methods were demon

strated, has a simple structure because of the welL developed depression. When

there is a more complicated structure of upper air flow similar results are found.

By means of the minimum flight path computor it is easy to compile a flightplan
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along a prescribed route, if grid navigation is used. An example of a flight analysis

is given in table II, which contains the data for a flight along the great circie west

bound from Shannon to Gander with a Douglas D C 63, operating a constant

indicated air speed cruising system at 10.000 ft flight altitude. Before sampling

the data a 700 mb composite prognostic chart is constructed. (See chart 4).

After having drawn the great circie, the minimum flight path computor is used

starting in Shannon with a mean true air speed during the first hour (inciuding

climb) of 191 kts, read from cruising tables or graphs. After adjusting the computor

in the manner described in case 3 the first hourly segment is pÏotted, grid heading

and grivation are read and substituted into the corresponding column of the flightplan.

Next the second hourly segment is determined, using a true air speed of 209 kts,

grid heading and grivation are read, written into the columns and so on. This pro

cedure is repeated until a segment covers the endpoint. The values of the magnetic

heading are found by adding algebraically the values of grivation and grid heading.

The other data of the flightplan like distance, accumulated distance, accumulated

time, air temperature, altitude, true air speed, indicated air speed, break horse

power, revolutions per minute, brake mean effective power, fuel flow per hour,

accumulated consumption, gross weight are inserted into the columns in the con

ventional way. During the flight the fuel consumed, fuel aboard and gain loss are

substituted in order to get an impression of the progress of the flight and in order

to determine the deviations of flightplan data.

2. Minimum flight path navigation

1. Survey.

A flight along the geometric shortest route, that means along a great circte are

is not necessary the fastest and most economie flight. Flights along other routes

than the great circie, such as rhumbline, composite track, single heading track,

have improved economie profits to a large extent, but the choice of these routes

lean on experience rather than on scientific principles. Theoretically it has been

proved that along all paths between two points there is one which provides an

absolute maximum benefit. This path is three-dimensional. It is obvious however,

that the construction of and the navigation along such a path will as yet meer with

too many difficulties. For the time being a two dimensional solution to the problem

under certain conditions can be found.
In this respect flight paths are to be constructed along which some quantity reaches

an optimum value. Dependent on the final result that is aimed at, the optimum

flight path may be given various interpretations. For instance a minimum fuel

path may be regarded as an optimum flight path if along such a path the fuel con

sumption that goes with a certain cruising system, is a minimum, and the payload

consequently a maximum. A minimum flight path may be regarded as an optimum

flight path, if the time of travel along such apathis a minimum. Ifthefuelconsumption

increases approximately linear with time the minimum flight path can be said to
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approximate the minimum fuel path. In this part the minimum flight path willbe taken as the primary factor for any economical Jonge range flight. Up to nowa number of construction methods have been published which are very laboriousbecause the use of dividers, slide rules, protractors and so on is involved. The minimum flight path computor puts all these tools into one device and a working methodbas been developed which enables a rapid and practical construction of the pathand compilation of the accessory flightplan.
The theory 011 which the construction method is based has been described inpart III. With reference to this theory an explanation will precede the new methodby following the historical development. In 1872 Francis Galton devised an empiricmethod for the construction of the most favourable route for sailing ships (8). Onthe principles thereof Giblett, in 1924, based his method for air ships (4). Anotherinterpretation was given by Bessemoulin and Pône in 1949, adding an importantfeature which made it possible to draw the minimum flight path through the pointsof departure and of destination (9). All these methods ultimately relate to the concept of time fronts and extremals described in parts III, 5 and III, 6. The timefronts were called “isodic lines” by Galton and “isochrones par sol” by Bessemoulinand Pône. Other methods are developed which refer to the simplifled form of thenavigation equation of Zermelo III, 9. Two of them, one by J. S. Sawyer (15) and

one by 1. 1. Gringorten (16) make use of the shear term but in view of the
difficulty to measure this term these methods are laborious and cumbersome.The method described below is an extension of the method of Bessemoulin andPône. The properties of the extremals of parts III, 5 and III, 6 can be translated forthe minimum flight path and can be summarized as follows:

1. The minimum flight path connects the tangent points of the time fronts W =constant, associated wit/t the starting point P and the complimentamy timefronts1V1, associated wit/t the terminal Q, for which the sunt of W and J1’ is constantand equat to the sumvalue at P or Q.
11. T/te time of travel atong the minimum flight path from P to Q is equal to thevalue of W in Q or in other words equal to t/te value of W1 in F.

III. The minimum flight path intersects the timefronts transversally. As a consequencethe property ho/ds;
lila. AÏong the minimum flight path the Iteading of the aircraft is perpendicular tothe tune fronts.

IV. grad W = 1 grad W1 = 1,

witere t/te effective true air speed ce is equal to the sum of the truc air speed cand t/te tail compoltent of the wiitd.

Essentially the methods of Galton-Giblett and Bessemoulin-Pône can be regardedas contact transformations, since the time fronts are built up successively by drawingcertain envelopes, which are generated by points of a previous envelope (fig. V, 4).
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II. The method of Bessemoulin and Pône.

The time unit is chosen as one hour. The point of departure is P. About point P

draw a circie T”1 with radius equal to the true air speed during the first hour (fig. V,

4). From several points on circie V1 draw the wind displacement vectors P7 A1,

Q1 B, R1 C1 etc. The points A1 B1 C1 are then located on the first time front W

01, reached by an aircraft in one hour. Draw circies with a radius equal to the

true air speed during the second hour about some points of W = 01, for instance

A1 B1 and C1. These circies are enveloped by a curve V2. From some points of J72

the wind displacement vectors for the second hour are plotted, notably P, A2, Q2 B2

R2 C2 etc. The points A9 B2 C2 etc. will be located on a curve W 02, which can

be reached by the aircraft after the second hour. This process may be repeated

as required. For reasons of simplicity the destination Q is located on the time front

W n + 1. PA1A2. . . A,; PB1B2. .
.
3,,; PC1C2C3. . . C,, are flight tracks which

approximate minimum flight patlis through P. The circies with radius equal to the

true air speed of the aircraft are tangent to the envelopes V1 V2 etc.; that means

that the true air speed vector, or heading of the aircraft is perpendicular to the

time fronts IV 01, 02, 03, .. . 11. This property was already proved in part III.

In order to find the minimum flight path which is passing the destination Q, the

construction is started in point Q by applying the procedure in reversed direction.

From Q plot the wind displacement vector in opposite direction QQ,,. Drop from

Q,,, the perpendicular on time front IV n. The foot 3 of this perpendicular is a

point of IV = ii on the required track. Repeat this method to find on W 01

fig. V. 4
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and until the point of departure P is finally reached. The minimim flight path betweenPand Q is the trackPB1B2B3. . . 3Q; the associated true air speed vectors (headings)PQ1, B1 Q are perpendicular to the time frouts (W = 0) W = 01, W 02 etc.

Iii. The inethod of Ga/ton and Gib/ett.
This method can be described in a similar way (fig. V, 5). After drawing the mdicatrix W 01 (chapter III, 9) for the point of departure P, the indicatrices V forseveral points of W 01 can be drawn. These indicatrices V determine an envelope,which is time front W 02. For several points of time front W = 02 the processis repeated and so on.

Both methods described are more or less complimentary. They differ in as muchas the heading in the method of Bessemoulin and Pône is perpendicular to theprevlous time fronts and in the method of Galton-Giblett is perpendicular to thefoltowing time fronts. Taking the limit for the time A W -÷ 0 both methods mergeinto each other.
It is dear from the properties mentioned in V. 2 1, II, III, Illa and IV that theconstruction of time fronts and minimum flight paths can also be performed bynot starting the contact transformation from the point of departure but by startingthe contact transformation from the point of destination (fig. V, 6). Let Q be thedestination and let the time unit again be one hour. Draw about Q a circie V withradius equal to the true air speed. From several points on circie V draw the winddisplacement vectors P1A, Q1B and R1C in opposite direction. The points Â,, 3,, C,,are then located on the first coinpleinentarv time front J1” = 01, on which the aircraft will be before reaching Q in one hour. Next draw the circies with radius equal

V

fig. V, 5.
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to the true air speed about some points of time front W1 01, for instance the

points A B, and C,. These circies are enveloped by a curve V1. From any point

on V1 the displacement vectors P2A_2, Q2B_1, R2C._1 are plotted in opposite

direction. The points A_1, B,1, C_1 are then located on the complirnentary time

front W1 02, on which the aircraft wilt be before reaching destination Q in two

hours. This process may be repeated until point of departure P is contained within

the set of time fronts W = 01, 02 . . . n + 1. For simplicity P is just located on time

front W1 n + 1. The tracks QA Q3 B1. .. QC,, C,_1... are flight

tracks which approximate minimum flight paths through destination Q. In order

to find the minimum flight path through P and Q plot the wind displacement vector

\

Fig. V, 6.

FQ. From Q drop the perpendicular on time front W1 n. The foot B1 on this

time front is a point on the required track. Plot from B1 again the wind displacement

vector B1Q_1 and drop from Q_1 the perpendicular QB2 on time front W1 ii — 1

and so on, until point B on time front W1 01 is found and until finally the point

of destination is reached. The track P3132.. . B,Q is the required track. Again

one can observe that the latter method differs from the method of Bessemoulin and

Pône inasmuch as the headings along the track are perpendicutar to the following

time fronts, instead of being perpendicular to the previous time fronts.

Taking the limit for the time unit A W — 0 both methods yield the same minimum

flight path. It was shown theoretically that the minimum flight path for A W — 0

connects the tangent points of the time fronts W = constant and the complimentary

time fronts W1 = constant for which W + W1 is equal to W + W1 in P or W + W1

L fttïu :z1ïJ[L
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/
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in Q. In figure V, 4, 5 and 6, W + W1 = ii + 1 hour. Summarizing there are threeimportant solutions to the problem of finding the minimum flight path throughpoint of departure P and point of destination Q.
1) By constructing the timefronts W constant, associated with the point of departureP and plotting the minimum flight path starting from destination Q.2) By constructing the coinplimentary time fronts W1 = constant associated wit)idestination Q and plotting the minimum flight path starting from the point ofdeparture P.
3) By constructing the time fronts W = constant, associated witli point of departureP, the complimentaiy time fronts W1 constant, associated with destination Qand connecting the tangent points of time fronts for which W + W1 is equal tothe sum value in P or Q.

Which of these methods is to be preferred depends on the priority of factorswhich play a part in pre-flight planning. The first method is suitable to have a goodsurvey of times of navigation along minimum flight paths which are pladned fromthe sarne point of departure to different places of destination. Such a considerationmay be important in respect to the terminal weather conditions. The second methodis suitable for having a good survey of times of navigation along minimum flight pathswhich are planned from different points of departure to the same destination. Thisprocedure is worth while in case a company is operating several longe range fliglits,for instance transatlantic flights from different aerodromes. The third method canbe issued if both factors mentioned above should be studied. Apart from this adetailed analysis is obtained for comparison of the times of navigation along compositeminimum flight paths by means of focal curves.
Minimum flight path navigation is most suitable for areas where navigation is not restrictedby airways etc.
Transoceanic flights lend themselves extremely well to these procedures since the navigation onboard an aircraft is mainly expressed in units per hout, preferable from the moment of take-off (groundspeed, fuel flow, altimetiy, position and weather reports). It is self-evident to design a techniqueof flight planning which fits in with the hourly time base of the construction and which also fitsin with the hourly navigational administration en route (flight log).The minimum flight path may serve as a flight log, also by plotting the hourly positions in thechart which gives a better impression and a more accurate picture of the progress of the flight (pictural “how goes it”). The collection of data required for flight planning is also simplified by thehourly zones of the flight path. The intended flightplan track is omitted, because the track as givenfor the determination of the aircraft heading, is no Jonger of importance. Zonal information aswind direction and wind speed, effective component and wind correction angle are not needed,because. these data are inserted in the upper air chart.
It will be dear from this summary that the first method of construction (time fronts associatedwith the starting point and minimum flight path from destination) should be preferred above thetwo other methods.

a. Co,zstruction of time fronts (fig. V, 7).
Read from cruising tables and graphs the true air speed for the first hout, which is a tveighedmean value of the air speed during the first hour with climb inciuded. Adjust this value on thecomputor for the correct latitude and put the computor into the upper air chart in such way, thatpoint S in groove D is located at the starting point P. Rotate wind disk A until groove 3 coincides

L
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with the mean direction of the isohypses for the first hour and plot in this groove the average wind
vector.

The wind speed is read in the chart from the figures which indicate these speeds. Turn the computor
about point S P and plot the xvind vector again. In this way a number of points is found for the
first time front W 01. Next read the true air speed from cruising tables and graphs for the second
hour. This speed is a function of cruising system, temperature, height and weight. Adjust the air
speed to the computor and shift the computor until $ is located somewhere on the time front W
= 01 and untit edge F is tangent to the time front.

In this position rotate again wind disk A and plot the wind vector. Repeat this plotting for a
number of points on W = 01. The plotted points are then located on time front W = 02. This
procedure is continued for the successive time fronts W = 03 . . ., until the system of time fronts
covers the destination Q.

b. Ptotting the minimum fi%ht pat1.
Starting in destination Q plot the average wind displacement vector of the last hourly zone in

opposite direction by means of the wind disk A. Move the computor until the plotted point appears
in groove D of slide C. Next shift and rotate slide C until the edge f is tangent to the previous
time front and plot this tangent poïnt on the chart. The tangent point is a point of the required
track. From this point the sarne manipulation is carried out and repeated until point of departure
P is reached. An important element in the method is the possibility to measure the heading simultane
ously with the plotting of the minimum flight path.

c. Determination af grid- and magnetic heading, dilstances etc.
Apart from the contourlines the upper air charts also contain grid meridians and isogrivs. 1f

the system of time fronts have been drawn and the plotting of the track is taking place, grid heading,
grivation and magnetic heading are determined simultaneously as soon as an hourly segment bas
been obtained.

After shifting and rotating slide C until edge F is tangent to a previous time front, the computor
is kept in this position and the protractor E is moved over slide C until the centre M is located
on the grid meridian. Then read from the grid meridian the grid heading and interpotate the grivation
in the midpoint of the segment. The sum of grid heading and grivation is the magnetic heading.
The ground distances of the hourly segments between the points of intersection of the minimum
flight path and time fronts can be measured with the distance diagram of the computor.

1f terminal Q is not exactly located on the last time front but between two time fronts, interpolation
must be applied. In this case plot a fraction of the wind vector, which fraction is determined by the
flight time between Q and the last time front before Q. 1f for instance Q is located halfway between
the time fronts, a displacement equal to half the wind velocity is plotted and the construction is
applied accordingly. The setting of the computor remains unchanged for the second and following
hours because the change of true air speed at flight altitude is negligible in most cases. Other flight-
plan data like break horse power, brake mean effective power, revolutions per minute, fuel flow,
gross weight etc. are obtained in conventional way by means of the cnhising tables and graphs.

Chart 5 gives an example of a flight from Shannon (Ireland) to Gander (New-Foundtand) as
it was actually performed on August Ist 1951 using a constant indicated air speed cruising system
of 205 kts. Table III on the opposite page gives the accessory flightplan data for the minimum
flight path. The planned time of departure was set at 01.00 gmt. The composite prognostic 700 mb
chart valid from 03.00 until 12.00 gmt shows a deep low at 56.30 N 40.00 W, valid for 09.00 gmt
and a second low at 62.00 N 13.00 W, valid for 04.00 gmt. The time front for the first flying
hour was constructed with a mean true air speed 0f 191 kts (temperature at 700 mb —5°C).

The other time fronts were found with a mean true air speed of 209 kts (mean temperature at
700 mb —3° C) at 10.000 feet flight level.

The setting of the true air speed of 209 kts on the minimum flight path computor was taken at
55°N. The minimum flight path was running no top of the low. The pre-computed minimum flight
path time is 9h 03m.
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The flight time from Shannon to Goosebay should be 9h 15m. The total distance measured is
1842 n.m., which is 126 n.m. longer than the great circie distance Shannon-Gander. The flightplan
time along the great circle, which was found by the method described in V. 1. V was 9h 55m, 52
minutes more than the flight time along the minimum flight path. For the air traffie clearance a
composite pressure pattern flight was mentioned with turning point at 58.00 N 40.00 W.

The information for air traffic control such as the crossing of 13°, 20°, 30°, 40° and 50°W was
found by interpolation between the time fronts and gave respectively 01.00, 02.30, 04.00, 05.30
and 07.35 hrs after take-off. The take-off time was 01.33 gmt. This time was used as the hourly
time for position and weather reports. On the chart the actual flight track is shown and the winds
aloft, obtained with altimetry and radio means.

The total distance covered was 1890 n.m., 48 n.m. more than the intended track and 174 n.m.
more than the great circie distance. The total time from Shannon to Gander range station was
9h 05m, giving a wind component of 0 kts and a time difference with the intended minimum flight
path time of 2 minutes.

In spite of the small deviation of the actual track from the intended track the headings of the

initial ffightplan were sustained in order to apply the rule: “Stick to your headings”, except during
the last flying hour where a correction angle of 10 degrees was applied, determined by measuring
the angle between the actual position of 09h 33m and the inteuded position on the minimum flight
path at the same time.

Gander was reached without further corrections. A reanalysis on the actual map showed indeed
that the flown track was a very close approximation of the actual minimum flight path (More details
are given in (14)).

IV. Other construction methods.

It is obvious from the gradient property III, 15 that the construction of time
fronts and ultimately of the minimum flight path can be accomplished by using
the equation

1 grad W =1.
cc

W = i be a given time front. The distance
between two successive fronts at any
point of the line W = i is then equal
to the sum of true air speed and tail
wind (taking a head wind as a nega
tive tail wind).

Therefore a good approximation of
the construction of a time front can be
achieved if at a given point .1? of time
front W = 1 a distance is put equal to
the sum value mentioned above. In
order to accomplish this procedure a
template of transparent material can be
used consisting of a plate A with groove
3 and a small bar C, which can move
along two slides D1 and D0 (fig. V, 8).

On plate A a set of concentric circies

Let the time unit be again one hour and let

Eig. V, 8. is drawn centred about point li which
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is also the midpoint of groove 3. The radii of the circies correspond to 10, 20, 30 n.m.
distances on the chart for a certain mean latitude, dominating the working area. The
edge F of bar C is normal to the groove and the distance from the edge to the midpoint
indicates the true air speed, which is readable from two distance diagrams 011 slides
D1 and D2. Adjusting the template to the true air speed, one places the template
on the chart so that the edge is tangent to the time front W = i in a point R. In
this position the average wind vector is indicated within the set of concentric circles
and a normal is dropped onto groove 3. The foot is plotted on the map and this
foot is approximately located on time front W = i ± 1. This procedure is repeated
for a number of points 1? located on the given time front. Since the point of departure
P can be considered as a degenerated time front W = 0 the construction is also
valid there. The construction can be completed by applying the methods described

earlier. This method is suitable for getting qualitatively a good impression of the
minimum flight path by means of a simple device.

The construction of the minimum flight path by using the time fronts associated
with the point of departure or using complimentary time fronts associated with
destination can be interchanged. This is demonstrated in fig. V, 9. The upper air
chart is turned upside down on a light table. At the same time the direction of the
wind is inverted. That means that for instance a low is interpreted again as a low.
In this case the construction of the minimum flight path by using the time fronts
associated with the point of departure P is changed into a construction using the
complirnentary time fronts associated with P and the construction using the corn
plimentory time fronts associated with destination Q is changed into a construction
using the time fronts associated with Q. This inversion can be very useful in order
to simplify construction techniques.

V. Time front patterns.
As was stated in part III the structure of the system of time fronts can be rather

Fig. V, 9.
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complicated and, like in optics, give rise to refraction, diffraction, reflection and
induction of caustics.

This may cause the possibility to find two or more minimum fflght paths between
two points P and Q. The property of the minimum flight path to yield a minimum
flight time in that case must be interpreted in respect to admissable trajectories
which run in a neighbourhood of the flight path.

Let e1 and e2 be two minimum flight paths through P and Q which are not run
ning in eacÏz other’s neighbourhood (fig. V, 10).

Suppose that the coijugated points P and are located beyond Q. Then e1 yields
= a relative minimum
P flight time T1 in respect

to admissable trajecto
ries which run in the
neighbourhood E1. Si
milarly e2 yields a rela
tive minimum flight
time T2 in respect to
admissable trajectories
running in the neigh

fig. V, 10. bourhood E2. 1f there
are no other minimum
flight paths between F
and Q, one of them, say
e2 yields an absolute mi
nimum flight time, ex
cept if Q is lying on a

C ) double line in, which is

/ the locus of double

m points of the system of
—_/\ \ time fronts associated

withP.
Fig. v, ii. In that case T1 = T2,

50 e and e2 are equi
valent, concerning flight time. Some of the patterns will be studied more in detail.

A. Induction of a caustic.

Fig. III, 9 shows the induction of a caustic occuring frequently in practice. The
caustic possesses a cusp or focus in point f (see also fig. V, 11).

The picture may be interpreted as the projection onto the (x1 ; x2) plane of the
regression line and conic point of the integral conoïd W associated with point of
departure P in (W ; x1 ; x2) phase space. The time front pas sing through focus F
shows a nodal point. The following time fronts possess cusps at the branches A1
and A2 of the caustic and double points which are located 011 the double line in.

According to Lindenberg the family of the minimum ffight paths through P which
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are associated with this pattern of time fronts consists of two groups, each of which
form a field of minimum flight paths (fig. V, 12). The minimum flight paths of the
first group G1, are tangent to branch A1. The minimum flight paths of the second
group G2 are tangent to branch
A2. Both groups are separated
from each other by the minimum
flight path which runs from P
to focus f.

In upper air charts the time
front pattern with caustics often
occurs, especiafly in two cases:

1) At the ,ear of a closed vortex
associated with a depressioii

Fig. V, 12.or anttcycÏone.
2) In a region with a strong windshear (frontat zone, jetstream).
Both cases have been demonstrated in fig. V, 13, Fig. V, 13a shows the caustic
and focus f at the rear of a “low” L. Fig. V, 13b shows the caustic curve and
focus f in a frontal zone with a strong windshear.

Special attention should be paid to the location of point of destination in respect
to the time front pattern. For instance in a closed area C (fig. V, 11) one can dis
tinguish four possibilities.

— —

1) destination Q is located at a double line m. There are two equivalent minimum
flight paths, one belonging to group G1 and one belonging to group G2 which
both yield the same time of navigation.

2) Destination Q is located within the sector bounded by the double line m and
branch A1 of the caustic. There are two minimum flight paths, one belonging to

Fig. V, 13,a. fig. V, 13,b.
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group G1 and one belonging to group G2, the second of which yields an absolute

minimum time of navigation.

3) Destination Q is located within the sector bounded by the branch A2 of the

caustic and the double line in. Again there are two minimum flight paths, one

belonging to group G1 and one to group G2, the first of which yields an absolute

minimum time of navigation.
4) The destination is located beyond the sector bounded by the caustic. There is

one minimum flight path through P and Q belonging either to group G1 or

group G2.

1f des tination Q is located at branch A1 then Q is the conjugated point of P on the

minimum flight path belonging to group G1. 1f Q is located at branch A2, Q is the
conjugated point of P on the mini
mum flight path belonging to group
G2. 1f Q coincides with focus f, Q is
the conjugated point of P on the mini
mum flight path between P and f,
which belongs neither to group G1

Q nor to group G2.
It is interesting to note that the

caustic may degenerate into a point
or focus (fig. V, 14). In that case there
is an infinite number of minimum flight

fig. V, 14. paths through P and Q each giving the
same time of navigation.

The construction of this pattern causes no difficulties in practice. To find a point of the branches

A1 or A2 the minimum flight path computor is to be moved along the previous time front in such

way that the edge f of the protractor is gliding along the front. At the same time one looks at the

movement of the midpoint of the wind disk. At the moment that this midpoint comes to a stand

stili the point which causes a cusp of the next time front has been reached. This point is located

at one of the branches of the caustic. The same procedure is repeated for the next time fronts.

1f destination Q is located at the double line in both relative minimum flight

paths are equivalent concerning time. On the other hand other factors, like weather

conditions, may be different along both paths. As soon as two or three double

points of in have been found, it is easy to locate destination Q in respect to the

p:ttern and to conclude which minimum flight path yields the greatest benefit.

In chart V, the induction of the caustic takes place at the rear of the “low”, situated

at 56.30N 40.00W. Destination Gander is located outside the caustic. So there is

only one minimum flight path between Shannon and Gander.

B. Refraction pattern.

1f a line exists in the upper air chart along which the wind vector u bas a dis

continuity the minimum flight paths through a point P are refracted along the dis

continuity line. The refraction is governed by the law of von Mises, described in

part III, 10. For aircraft flying at a low altitude such a line of discontinuity
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exists along the intersection of a frontal surface and a constant pressure surface.
A similar line of discontinuity may be introduced if an aircraft for any reason
changes from one altitude to another for instance with the purpose to avoid an
area of bad weather or to fly over a mountainous area. In such a case the charts
sÏiould contain two or more analyses, which are separated along a discontinuity
line, for instance a 700 and 500 mb analysis, separated along the boundary of a
region of bad weather (fig. V, 15).

In order to consttuct a refracted minimum flight path the concept of the complete
figure of time fronts and minimum flight paths again can be introduced. It will
be obvious that the time fronts are rcfracted also along the discontinuity line. In
preparing the complete figure graphically no difficulties arise. Chart 6 shows a
section of a surface map with a
depression some hundred miles
west of Scotland moving east
slowly. Interpreting this chart as
to represent the air circulation
just above the friction layer the
occiusion may be interpreted to
represent the line of disconti
nuity. The time fronts and mini
mum flight path have been con
structed from point of departure
at Schiphol airport to destination
Prestwick, valid for a flight at
low altitude with a constant true
air speed of 100 knots.

C. DJfraction pattern.
It may occur that in aviation the operations are restricted by mountain ridges,bad weather zônes, forbidden flight regions etc After the region has been delineatedthe problem arises to find the track along which the time of navigation is a minimum.It was shown in part III, 12, that the minimum flight path now consists of sectionsof minimum flight paths which are tangent to the boundary of the region and partsof the boundary itself. The pattern of time fronts shows much resembiance to thediffraction of all kind of waves around an obstacle. Fig. V, 16 shows this pattern,with point of departure P, around the convex region B. The minimum flight pathe1 through P is tangent to the boundary g in point J?. Another minimum flightpath e2 through P is tangent to the boundary g in point R2. Up to the tangent pointsR1 and 1?2 the time fronts have been indicated by full lines. After that they have beenrepresented partly by ftill lines, partly by dotted lines on each side of the minimumflights paths e1 and e2. The dotted portions have no real physical meaning. G beingthe area bounded by e1 and e2 and g, an arbitrary point Q, located within G cannotbe reached along a member of the family of minimum flight paths associated with?.Supposing e1’ and e2’ are minimum flight paths through Q which are tangent to

8

Fig. V, 15.
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g in the points S1 and S2, one of the minimizing tracks between P and Q consists
of the arc FR1 along e1, the arc R1S1 of the boundary g and the arc S1Q along e1’.
Another minimizing track consists of the arc FR.2 along e9, the arc R0S9 along g
and the arc S2Q along e2’.

it should be noted however, that along the arcs R151 and R252 along g the boundary
condition III of part III, 12 must be fulfihled. This is difficult to test. The diffraction
pattern demonstrates that more than one minimum flight path through two given
points may occur.

D. Refiecüon pattern.

Supposing that for operational or
arbitrary point on a boundary g,
the problern arises along which track
between two points the time of
navigation is a minimum. The pro
blem bears much resembiance to
the reflection of light upon a mirror.
As a result of the reflection on g of
the minimum flight path (see part
III, 11) the time fronts will be re
flected as shown in fig. V, 17. The
condition for reflection however is
rather complicated. Therefore it is
easier to construct the time fronts W
associated with points of departure

t

G

fig. V, 16.

other reasons the aircraft must cail at an

Fig. V, 17.
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P and the complimentary time fronts W1 associated with destination Q. Considering

the focal curves of the complete figure one of the focal curves must be tangent to

g (see part III, 11). After the tangent points have been determined, the broken extre

mal can be found by using the set of time fronts W and W7 separately.

3. Single-heading navigation.

1. Definitions.

Single-heading navigation is defined as a system in which the heading is constant

during the flight. The heading should be taken relative to a conformal and almost

equivalent map overlayed with a grid. In this respect the system should be called

single grid heading navigation. The orientation of the standard meridian of the

superposed grid does not influence the system but the choice of the projection chart

has some meaning. Without wind the single grid heading track is a straight line

on the chart. So the meaning of a straight line on the chart indicates the type of

single grid heading navigation. For instance, if a Lambert conical projection is

used, the straight line on the chart for distances not more than 2000 n.m. is approxi

mately coincident with the great circie. The single grid heading navigation then

may 5e called great circie heading navigation. Using a Mercator chart the straight

line represents a rhumbline. Then the single grid heading navigation may 5e called

rhumbline heading navigation. In practice the invariant grid heading should 5e

corrected by applying the grivation in order to navigate with a magnetic compass.

Single grid heading navigation necessarily introduces a variable magnetic heading

navigation. Flying a constant magnetic heading the single heading navigation is

called a single naagnetic heading navigation.

II. Construction of single heading tracks.

In literature different methods have been described in order to construct single

heading tracks (2) (17). These methods are based on the formula of Bellamy (see

part II, 2). However, the proposed methods are laborious and approximative. Using

pressure contour charts in mid latitudes the air current in a narrow strip about a

latitude circle can be fairly accurately described by means of the stream-function

2w sin

The addition method of Maxwell for superposed vector fields can 5e applied im

mediately after the stream-functions have been properly normalized.
Introducing a grid heading and classifying a single heading navigation as a stream

navigation the pseudo stream-function becomes:

= g
2w sin q2

z’ being any auxiliarly height.
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c being the true air speed, assumed to be invariant along the track, then approximately

c = with A’ being the increment of the pseudo stream-function ‘ and An
An

being the distance between two adjacent stream-lines vi’. SinceA =
g

Az,
2w sin Pm

the normalization is expressed by the condition Aw’ = Ay. The distance between

two adjacent parallel lines then becomes An
= —g

Az, where Az is the in
2w sin Pm

crement of geopotential in the pressure contour chart.

The distance n may easily be determined by using a geostrophical wind scale measuring the
distance ii for a fictitious wind velocity of c knots.

After An has been determined, one draws the parallel lines with mutual distance
An on a transparent sheet of paper and one labels the function ‘ with increment

= Aw. For different values c of true air speed corresponding sets of equidistant
straight lines may be drawn. The construction of the single grid heading track now
proceeds as follows:

The auxiliary chart is put on a light table and the pressure contour chart is placed
upon the sheet and rotated in such way that the sum value + ‘ in the point of
departure is equal to the sum value o + ‘ in the point of destination. Both charts
being in the right position one to another the single grid heading track can now
be drawn by connecting the points of intersection of the and /-lines. The grid
heading is determined by measuring the angle between the grid meridians and the
parallel lines of the ‘-field. The method is demonstrated in chart 7 which represents
a 700 mb analysis, the same as used in charts 1, 2 and 3. A single grid heading flight
bas been planned starting from Prestwick with destination Gander, with a true
air speed of 200 kts. The corresponding transparent sheet with parallel lines has been
prepared with an increment A” = A = 4 decametres for ç = 52°. Select an
arbitrary straight ‘-line passing through Prestwick:

= kz = 3090 k,
‘

— 250 k, k =
, ‘ + p’ 2840 k.

2w srn 52

Since in Gander = 2990 k, the value of ‘ in Gander must be ‘ = (2240 —

2990 k —150 k. Therefore the 700 mb chart should be turned until the straight
line ‘ = —150 k is passing through Gander. In this position the curve connecting
the points of intersection of contour lines and pseudo stream-lines represents the
single-heading track asked for. The single-heading track corresponds with the track
in chart 2, constructed by means of the complete figure. The same procedure can
be followed for a single grid heading flight from Gander to Prestwick. The con
struction can be carried out in a few minutes.

111. Sorne applications.

In part II, 2 it was shown that all single heading tracks through the points of
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departure and destination for different values of the true air speed intersect each

other in some fixed points, provided the addition method can be applied.

In chart 8, a 500 mb chart, the single-heading tracks have been constructed by

means of the addition method for true air speed values of 500, 300, 200, 100 and

70 kts. The tracks intersect each other in point 1?, located an the great circle through

Prestwick and Gander.The total number of concentration points is according to theory

at the most one less than the number of maxima and minima of a contour line,

provided such a contour line passes the point of departure als well as the point

of destination. In general it can also be stated roughly that the number ofconcentration

points is at the most one less than the number of axes of ridges and troughs, which

intersect a straight line through points ofdeparture and of destination. Chart 8 shows

two axes which fulfil the condition, one associated with a trough and one associated

with a ridge. So in this case there is maximally one concentration point. It should

be dear that the single heading tracks from Gander to Prestwick eastbound also

intersect the concentration point R.

A similar addition method may be applied to find the track associated with a

single true heading navigation or rhumbline navigation. Drawing the rhumbline

through points of departure and destination, (for instance Prestwick and Gander)

this line can be taken as a base line of a set of parallel equidistant rhumblines. The

same distance A n for the increment Au”, as used in great circÏe navigation, can

be used to draw a set of Jines “parallel” to the baseline. After the set of lines has

been drawn on a transparent sheet of paper the function t” with increment Av’ can

be labelled and the addition method can be applied without any difficulty, taldng

into account, that the navigation behaves like a stream navigation (fig. 1, 15). It

can be noted that for instance on a Lambert conformal projection with standard paral

lels at 30° and 60° N, the rhumbline which is used as baseline of the auxiliary feld of

flow is approximately identical for east- and westboundflights with a latitude circie

through point of departure. As a matter of fact each latitude circle is a rhumbline.

Chart 9 shows another 500 mb contour chart. With a true air speed of 150 kts the

single grid heading or great circle navigation tracks and the single true heading

or rhumbline navigation tracks both from Prestwick to Gander and vice versa

have been constructed by means of the addition method described above. Point

1? is a concentration point located at the great circie Prestwick Gander.The maximum

number of concentration points is again one since there are two axes of troughs

and ridges crossing the great circle between both places. By accident there is also

a concentration point R1 for the rhumbline navigation located at the rhumbline

through Prestwick and Gander but theoretically it is not necessary that such a point

exists, except if a contour line is passing both endpoints.

The figures along the track indicate time marks. From these figures it is evident

that the great circle navigation track is in both directions faster than the rhumbline

navigation track.
As was stated in part IV some practical rules can be derived from the single

heading navigation in order to study the minimum flight path navigation. In certain

circulation patterns the single-heading track is a close approximation of the minimum

---- ---.--..
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flight path and even in a few cases each single-heading track is identical with a mini

mum ffight path, for instance in a uniform rectilinear air current.

As was shown in part IV, there are in generalfour single heading tracks passing

through an arbitrary point, which have a three pointic contact with a corresponding

minimum flight path. These tracks are determined by the optimum headings j,

+ , E2 and 2 + rr. As a result the following rule may be given for short flight

distances, shorter than a few hundred miles:

for sliort flight distances there are in general four directions in which the single

heading track is a very close approximation of the minimum flight path.

1f the concept of a stream-function i is accepted, these points are found in those

parts of the countour chart, where the corresponding points at the -surface are
— hyperbolic points. In

rhec

ponding points at the

74 -surface are

the rule has no signifi
cance. In exceptional
cases the optimurn
headings Ei and E2 be
come equal, the rule
then applies to two di
rections only and finally

fig. V, J 8. it is possible that in cer
tam points E becoines in

definite which means that the rule applies to all directions. It was shown in part IV

that in special air currents some selected single-heading tracks at the same time

become identicat with a minimum flight path. One of these patterns should be

examined more in detail in view of sorne interesting applications.

When the standard pressure surface is similar to a cylindrical surface and when

accordingly the topography of the constant pressure surface consists of contour

lines, which originate from a contour line by shifting it parallel into the direction

of an arbitrary axis (see fig. IV, 10), then the single-heading track, determined by

the optimum heading perpendicular to the axis is at the same time a minimum flight

path and the singie-heading track which deviate from this one, will in any case

tend to run approximately along the associated minimum flight path provided that

the deviation is not too wide. So if a similarity exists between the flow pattern and

the “cylindrical pattern” one can immediately study the behaviour of a mimimurn

flight path qualitatively by considering the single-heading track with the optimum

heading perpendicular to the axis. The airflow in constant pressure surfaces as a

matter of fact with the concept of meandering, often behaves like such a “cylindrical
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airflow” with axis of troughs and ridges as projections of the cylinder generators.
When the structure of the airflow is more complicated, then it is stil! possible to
recognize sorne areas where the airftow looks like a cylindrical airflow, and the
minimum flight paths which run in such areas, stili tend to run approximately along
the single-heading track. This track is qualitatively easy to identify, for instance
by the addition method or roughly by routine only. In figure V, 18 for instance
there are two minimum flight paths, one running on top of the low L, the other one,
which is located in rectangular ABCD tends to run along the single heading track,
because in this rectangular the airflow looks fairly well like a cylindrical airflow
Such speculations may be very useful in practice to have a qualitative idea of the
behaviour of the minimum flight path. After examining the upper air charts in this
way it will be understood that the construction of the minimum flight path meets
with less difficulty in as much the time fronts need not be drawn over a wide area,
and in special cases it may he recommended to fly along the single-heading track,
1f both tracks hardly deviate from each other.



REFERE NCES

(1) K o s c li m i e de r, H., Dynamische Meteorologie, 2. Aufi,, pp. 191 seq.
2) Grin g or t en, T. 1. 1948. The theoiy and computation of single-heading flights. EaU.

Amer. Meteor. Soc., pp. 343—351.
3) Fr a n k, P., 1933. Die schnellste Flugverbindung zwischen zwei punkten, Z. Angew. Math.

Mech; 13, pp. 88—91.
4) G i b 1 e t t, M. A., 1924. Notes on meteorology and the navigation of airships, Met. Mag.

59, p. 1.
5) Ze r mei o, E., 1931. Ueber das Navigationsproblem bei ruhender oder vernder1icher

windverteilung, Z. Angew. Math. Mech., Vol. 1, pp. 114—124.

( 6) C ar a t h é o do ry, C., 1935. Variationsrechnung und partielle Differentialgleichungen 11
TeiJ, pp. 234—242.

( 7) See (6) 298—300 pp. 249—251.
8) G a 1 t 0 n, F., 1866. On the conversion of wind charts into passage charts. Rep. Brit. Asso

ciation, Nottingham.

( 9) B e s s e m 0 U 1 i n, L, P 8 n e, R. 1949. Determination de routes aeriennes a durée minimum.
J. Sci. Meteorologie, 1, pp. 101—121.

(10) La n d é, A. 1928. Optik, Mechanik und Wellenbewegung. Kap. 8 in: Handbuch der Phy

sik XX Band. Berlin.
(11) K n es er, A. 1925. Lehrbuch der Variationsrechnung Vieweg Braunschweig 2. Aufi., pp.l57.
(12) See (11) 289—291 pp. 243—245.
(13) Von Mis es, R. 1931. Zum Navigationsproblem der Luftfahrt. Z.Angew. Math. Mech.,

11 pp. 373.
(14) 3 i k, f. C., d e J o n g, H. M. 1953. A report on the theory and application of the Minimum

Flight Path. Royal Dutch Airlines, K.LM. Holland.
(15) S atv y er, J. S., 1949. Theoretical Aspects of pressure pattern flying. Met Reports, Vol. 1,

No. 3. British Air Ministery, Met. off., London.
(16) Grin go r ten, T. 1., 1948. Minimal-fiight paths Navigation Vol. 1, pp. 194—202.
(17) U.S. Air Forces Headquarters Air Warning Service 1953. Meteorological Aspects of Pressure

Pattern Flight. Washington.


	64_1
	64_2
	64_3
	64-4

