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FOREWORD

This paper deals with the theory of seismic waves in the mantie and the core of the
earth; it differs from many other publications on this subject by taking the curvature
of the boundaries into account. In this way Dr J. G. J. SCHOLTE undertook to in
vestigate several phenomena due to the sphericity of the earth, e.g. the diffraction of
the P waves by the core and the behaviour of the waves in the vicinity of a caustic.

Dr J. VELDKAMP, director of the geophysicaL division of this Institute gave valuable
contribution by reading the manuscript and discussing it with the author. Mr J. A.
As, assistant, carried out the numerical computations.

Director i,t Chief RNMI,

IR C. J. WARNERS
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INTRODUCTION

A theory concerning the propagation of seismic waves has to start with some

suppositions defining the origin of these waves and the transmitting medium. In this

paper it has been assumed that the medium consists of a solid spherical shell surround

ing a liquid sphere and that both materials are perfectly elastic, homogeneous and

isotropic. The primary disturbance is supposed to be confined to a space the dimens

ions of which are negligible in comparison to all other occurring linear dimensions

(“point-source”).
These assumptions have been made in order to simplify the mathematical treatment

of the propagation as much as possible without losing every resemblance to actual

conditions; a further simplification would be effected by neglecting the sphericity of

the Earth but then some essential features of the seismic waves as e.g. the existence

of a caustic, the diffraction or screening by the core, would be negiected as well.

Moreover it is feit that it is worth whuie to ascertain the circumstances in which this

simplification would be justified.

It is evident that the propagation in this elastic system will be described by means

of spherical coordinates with their origin in the centre of the system. Writing the

equations of motion in these coordinates we derive (in § 1) three general kinds of

motion int0 which any movement can be decomposed: a movement without rotation

and two movements without divergence, namely one where the radial component is

identical to zero and the other where the rotation in the radial direction is zero. Each

of these waves appears to be derivabie from a function satisfying the simple wave

equation.
Apart from the equations of motion the elastic displacements and tensions have to

satisfy some conditions at the two spherical surfaces of discontinuity existing in the

assumed model of the Earth. These conditions can only be treated mathematically if

the radiai coordinate appears separatedly in the formulae; this requirement leads

directly ( 2) to a special kind of movement, the spherical wave, which is harmonie

(or exponential) in the time t and proportional to the product of a spherical surface

harmonie and a cylindrical function. In these expressions two parameters appear:

the coefficient a of t and the order ii of the spherical harmonie. For each value of ii

and w a spherical wave system exists that satisfies the botindary conditions.

Several seismic waves are connected with only one of the surfaces of discontinuity;

PKP is independent of the existence of the outer surface and PP has no connection

with the surface of the core. These waves may be derived from a system that satisfies

the boundary equations at both surfaces (as will be seen in § 11), but this method is

rather cumbersome. A more expedient way is to derive waves connected with only

one surface of discontinuity by means of a model with oniy one boundary; therefore

we consider firstly (in § 3) the wave systems that are possible in an infinite solid

surrounding a liqtiid sphere, and secondly ( 9) the systems existing in a solid sphere

without a core. Finally in § 11 the system that is possible in a solid spherical layer

bounded by the vacuum and by a liquid will be calculated.
The further treatment of the rather complicated expressions which represent these
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§ 1. GENERAL SOLUTIONS

We start the investigation with a survey of the different kinds of waves that are
possible in a homogeneous elastic medium. The equations of motion expressed in
spherical coordinates (r, J, p) are given by LOVE (1944):

a2
gdivlz(2+2u)divl

cr-j—i(rcurlr1) ==ti A (rcurlrl)

cr—i(r1r) =u (rir) + (2 +)r/)—2ichiv t,

where t the displacement, 2 and i the constants of LAM, and i the density.
The right-hand side of the last equation may be written in a more symmetrical

form; by using the identity, valid for any vector 3:

ia
r curlr curi 3 — — (r2 div 3)

— A (r 3r)

that part of the third equation becomes (2 + 2 u) r 8div l/8r —ir cur1 curi t.
/2 + 2i\’1

Introducing the velocities ci.

=

and fi
=

the three equations are:

(2_CL2 A)divl =o,
(2

A)(rcurlrl) = 0

--- =cc2-divl—fl2cur1rcur1Ï.

The displacement is derivable from a scalar potential — and a vector potential

1= V+cur1A;

as the divergence of A is of no importance whatever we asstime div A = 0.
Using again the identity above mentioned the equations are easily reduced to

(a2/at2— A) 0 0

(a2/at2 — /3 A) (r hlr) 0

(a2/8t2
— fl2 A) (r cur1 A) = 0.

Consequently any motion can be decomposed into three kinds of motion, namely
in those movements for which two of the three functions 0, 1r and curl A vamsh
identically.

1. The movement of the first kind is defined by A = 0 and cur1 A = 0, it follows
that A 0, so that 1 = 17 0, 0 satisfying the CL-wave equation. The seismic P waves
form an example of this kind of movement.

II. Movements of the second kind are characterised by 0 = 0 and if 0.
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§ 2. SPHERICAL WAVES

In the problern we are concerned with in this paper we suppose that a spherical
body is embedded in an infinite and homogeneous medium with different elastic
properties; the movements possible in this system have to satisfy some boundary
conditions at the surface of the sphere. In order to deal with these conditions it is
necessary to use expressions for the displacement and the stress in which the coordin
ate r appears separatedly from the other variables. These waves will be called “spher
ical waves” (with centre at r = 0).

Consequently we put 0 =f(r). f (t, 9, ), which gives by substitution in the
x-wave equation:

d2(rf) r2 1 2f A’f
7 dr2

It follows that = a constant, which we denote by —ii (n + 1), where ii is a

arbitrary number; then the equation becomes

1 c1(fr) n(n + 1) 1 1 2f

fr dr2 — r2 G’2 f 0t2 —

1 2f

it is evident that must be a constant too, which will be denoted by — w, where

w is an arbitrary quantity.
The equation is now

1 d2ft w2 , (n + 1)
— 0r dr2+2_ r2

twr\1 tcor\hence F = et S (i9, ç) and f
=

H1, + the function S,, is a spherical

surface harmonic of the ntI order and H,, + is a Hankel function of the first or
second kind, of order ii + -. As we shail only investigate waves that are independent
of 9 the spherical harmonic is a Legendre function P,,(cos).

Thus the conditions of the proNem lead us directly to wave-potentials of the form

twr\’/ twr’\
e° + . P (cos

where u and ii are arbitrary constants (the expression li for transverse waves contains
fi instead of c).

As these functions appear in most of the following considerations it is of some
importance to ascertain the kind of waves they represent. This may be realized by
using the saddie-point approximation, which has been developed by DEBIJE when
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The saddlepoints situated on the path of integration are y = 0 and y = t, and the
direction of the lines of steepest descent are as in- n’m
dicated in fig. 2. The two saddlepoints yield ‘re± i{n +i9—}

“4__i__ )

it follows that for not too small values of ii

P (cos ) ]/ 2•
cos { (n + 1)

— /4} (5) Directions of steepest descent

Combining the two resuits (2) and (5) we obtain two waves with the phase-factor
eis where s = \/h2 r2 —(ii + )2—(n + ) arc cos (ii + -)/lir + (n + -)D, and h
which may 5e interpreted (fig. 3) as rays passing the centre 0 at a
distance equal to (ii + )/Ïi. The angle of incidence

are sin (ii + -)/hr satisfies the well-known ray-equation:
/r sin 93 = a constant.

7The Hankel function of the first kind thus appears to be con- ‘ /
nected with a wave progressing in the positive radial direction; the \/function H2 () . eiut describes an inward moving wave.

Fio. 3Finally we calculate the quantities that will 5e needed in the next
section to express the boundary conditions at the surface of the sphere r = a; these
conditions involve the displacement and the stress components. The latter are given by:

ai
Trr , div 1 + 2t -

(1 ai ai ï
+

/ 1 81r &l /
r rsin ar r

Henceforward we shali use the 4) and functions as defined by HEINE-DEBIJE
(FRANK and v. MisEs):

(2) / (2)

1° 1 - . z’ H,’41 (c).

The displacements and stresses are for

1. Longitudinal waves with scalar potential

(2)
J) == C—10)t P (cos 0) -(1) (oir/cc)
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§ 3. COEFFICIENTS OF SPHERICAL REFLECTION AND REFRACTION

The wave systems possible in a body consisting of an
elastic sphere surrounded by an infinite, elastic medium /
are composed of spherical waves as described in the
previous paragraph. For each value of the wave para- .t2

meters w and ii a set of spherical waves of one of the three \ /
kinds P, SV or SH exists. Such a set consists of a and
a wave with amplitudes which may be different in the
region outside the sphere r — but which are equal inside re of the

that sphere as the movement bas to remain finite at r = 0
(each function becomes infinite at r = 0, but +
remains finite). Hence the possible sets are: Schernatic representation

1. b 1) (ur/c) + a ) (ur/) for r> and of a set of elementary

1 (2) t waes. FIG. 4
(1izclp,1(Wr/c() for r<Q where Ç ,c =

longitudinal velocity inside the sphere and a, b, c are constants.

2. = — 8M/, with M =3 (wr//3) + A ) (cor/f3) for r> and
M = C’çv11 (ur/’) (fi’ = transverse velocity for r < ).

3 4r rM with M identical to M of the second kind. For brevity’s sake we have
omitted the factors containing t and 9.

We now consider whether these sets can satisfy the boundary conditions at the
surface of the sphere; these conditions relate to the normal and tangential components
of movernent and stress. In the case of waves of the first and second set they are
expressed by four equations concerning ‘r, ‘t, Trr and T respectively, while for
waves of the third set only two equations appear as only Ï and T, do not vanish
identically. The equations being homogeneous in the three amplitudes a, b and c
or A, 3 and C) it follows that only a set of waves of the last kind can fulfil the
boundary conditions; waves of the first or second set are each separatedly incapable
of satisfying the equations and consequently the solution will consist of linear
combinations of those two sets.

In other words in this elastic body (sphere + surrounding infinite medium) two
kinds of independent wave systems are possible, namely a set of 5H waves and a
combination of P and SVwaves. (This conciusion applies also to waves in an inhomo
geneous medium; here too 5H waves can exist without other kinds of waves, but
between SV and P waves a coupling occurs).

In connection with the application of this theory ( 4) we shail confine ourselves
to the case of? and SV waves; the calculation of the 5H system, which is rather
more simple, will therefore be ornitted. Moreover, we restrict the investigation still
more by assuming the rigidity of the spherc to be equat to zero; as seismic data
appear to indicate that transverse waves are not able to travel through the core of
the earth this assumption is not unwarranted.
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iticident wave a longitudinal wave (hr) and a transverse wave 1) (kr) reflected
directly at the surface of the sphere; in addition inside the sphere a refracted wave
) (h’r) will occur. The amplitudes of these reflected waves will depend on the values
at r = of the three -functions involved and consequently be independent from the
value of 4° (h’r) at r . In the expressions for b and 3 this function ç’(l) (h’o) appears
implicitely as the quantities x’ and z’ contain the function p11 (h’) which is equal to
(t) (h’) + 2) (/z’). It follows that in order to obtain the amplitudes of the directly
reftected wave we have to split up these expressions into a part which is independent
of 1) (h’e) and a part wich contains this function.

This is realised by means of the identities

V’,i (h’0) = ‘) (h’o) + 2) (Ji’)

x’ p,, (h’0) x 1(t) (li’o) + x (Ï”€).

The expressions b, 3 and c become in the case of an incident longitudinal wave

(2) (ho) t X1 X2
b — a (1) (ho)

[1 — Ç(x + 1) y1k22 + z{y; + 2n (ii + l)})] +

(I’o) (x’—x0)v1k202 -(1)

_____________
__________________

(Ïi’) a’ (x_x)yik22 1
+ a

2)(h’12) D -(1)(/) u D
II

7-,(Ji) (x;—x2) . 2
+D

__________

(tz’) u’ (x—x) . 2x1k22 1(2)(/,) (x1—x2)y1k202 -(‘)

__________________

+ a
h’LJ) D —. (1) (1c) a D

fl

(I’) (x1—x0) v1k22 1
c = + a )(J’) D D’

and in the case of an incident SV wave

(2) (ko)

_____

Y1Y2
B=—A [1_

D
{(x+ l)xik22+z(xi+1)}]+

(k0) (Y1—Y2) n (ii + 1) x1k22 (1i’i) t:r’ (x—x) 2x1k22 1
+A(,T-5

D k)r D 1Y

(2) (ke) (Y1—J’2)’1 (n + 1) z2
+D

4-(2) (k) (Y1—Y2)” (n + 1) xj]c2L2 (h ‘) r’ (x—x) j’1k22 1
+ A (I)(J) D D 1Y

(2)(/(o) (v y)n(n + 1) x1k202 1
c = + A

D



21

In the case of a longitudinal incident wave the expression c becomes

Ç (h’ )
c = a . (LL’)

)Qz’0
(L’L’)

(h’

representing the amplitude of waves which are refracted into the core and are s times
internally reflected.

Turning now to the second term of b and 3 we note that the first factor in these
terms is the coefficient of refraction (LL’) or (TL’) for waves entering the sphere; the
second factor must be interpreted as coefficients of refraction for waves emerging
from the spherc into the solid medium, namely:

longitudinal — longitudinal refraction:

________

,
X2X1

2 2
‘) (1i)

(L L), with (L L) = —
—

longitudinal — transverse refraction:
1 , 1 1( (h ) x2—x1 u

(L’T), with (L’T)
— D

—. 2x1k22.

Developing again the remaining factor 1/D’ into the series

Z(L’L’)
)(h)

we obtain the amplitudes of waves which have been s times internally reflected during
their stay inside the core.

In this way the original expressions for b, 3,... are changed into easily interpret
able series; in recapitulation we write down the new form of the amplitude b of the
total outwards running longitudinal wave connected with an incident longitudinal
wave:

= a (LL) + a (LL’)
•

(L’L’) (L’L)

Apparently the first term represents the wave reflected directly at the surface of
the core (PcP) and each term of the second part expresses the amplitude of a wave
which has entered the core and emerges again after suffering $ internal reftections
(PK1 P wave). Analogous expressions for the other waves are obtained without
difficulty.
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It follows that the secondary movement connected with this incident wave is equal to
the primary one, but with an opposite sign; apparently the continuous part of the
primary movement disappears in every point in- and outside the sphere.

The total movement outside the sphere is therefore equal to the discontinuous part
of the primary motion together with its appropriate secondary wave system, consisting
of

PcP wave: 0
—

(n + ) Qio;) . (LL)
(1(ho)

(hr)P (cos ) e’°’

__

.(2)(J )PeS wave: M
—

+ ) (1i) (LT)
(k0)

(kr) P (cos J) e lUt

(I)(/,’) (I)(/(’[,)

PK’ P wave; (1)
— Z(n+ 1)huc). (LL’) (L’L’) (L’L) kr)P,(cos)e°”

PK’ ‘Swave; M = Z(n+ l)(h).(LL’) )j) (L’L’) 2.(L’T) C,kr)P,,(cosü)e”t

Infinite series of the form

— . P,(cos)

are made more tractable by means of the transformation of WATSON (1919); in apply
ing this method we change this series into the integral

1 tf(v—-?)
F= 1 -

2ij cosvr

taken along the path L indicated in fig. 6. This
integral is obviously equal to the series fif no
poles off(v) are situated on the real axis; as the
elastic constants ) and t appearing in the equa
tions of motion are in fact not quite real (although
the imaginary parts, causing an absorption of the

FIG 6
waves, are very small) the poles of f(v) will be
situated at some distance of the real v axis and it is therefore possible to choose L
close enough to this axis to exclude every pole off(r). The next step in the Watson
transformation is the change of the part of L on the negative imaginary side of the
real axis into the traject L’, which is only valid if the integrand is an odd function of v.
It follows from the properties of the Hankel-functions (NIELSEN, 1903):

H»,) (z) —e + 1)1 HÇ’ (z) and H9) (z) — e’ ‘HÇ2 (z),
7-fi)

(1) (2) x
that (x)

. (y) and are even functions of v.
Y1/a ‘Yi
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§ 5. THE SEISMIC-RAY APPROXIMATION OF P AND PcP WAVE

In order to use the saddie-point method the integrals have to be written in the form

Ç A (z) dz

in such a way that along the chosen path of integration (which is the line of steepest
descent) the exponent (z) changes much more rapidty than A (z); then we may
regard A (z) to be a constant. The requirement leads immediately to the substitution
of the F and functions by their integral representations (1, 4) and moreover to a
removing of exponential functions in the denominator of the integrand. Hence we

develop in all expressions (7) the function (sin v vr)’ into the series —2 i

again we multiply the function ,t) (h0) occurring in each expression (with the except
ion of that for the P wave) in the denominator by (ho) thus removing the ex
ponential character of that function, and add the same factor to the nominator.

In this way we obtain multiple integrals which can be approximated by the saddie
point method in a manner analogous to the method for single integrals. First the
saddle-points of the exponent of

Ç A (x1, x2 ,j CP’ x) dx1 cÏx

are determined by the equations p/ax = 0 ( = 1,2 ii); we denote the vatues
of x in the saddle-points by . Then ip is developped up to and inciuding the
second term of the Taylor series in the neighbourhood of E,, which development
consists of the value of v’ in the saddie-point under consideration and a term which
is quadratic in (x,—E). The coefficients of this quadratic function are the values

of the second derivates in the saddie-point. This function can be reduced to

a sum of squares of linear functions of (x.
—

and by introducing these functions
y as new variables the integral becomes

i fl,,y 0(x. . . .x)
e’PsÇ ÇA(y1,y2 y,je dy1 dy.

8(Yi.. .
. y)

The functional determinant is equal to the square root of the discriminant of the

quadratic function in (xx—yy), or \/fl where IJ is the determinant of Hesse. The
contribution of one saddle-point is therefore

(e’4’ V
A ePs . (9)S. /ff

Proceeding with the approximation of the potential t1i of the P wave we obtain
for the term in = 0 and r < :

1
= 42J JJ 11,7 + -)e’° dpdi1d9dv,
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In fig. 9 this value of (LL)5 is
shown as a function of the angle 1;
the following valües of the con
stants were used:

= 5.7, cx’ = 9.7 gr/cm3; c = 13.6,
/1=7.3 and c’=8.1 km/sec.
(Bullen’s model A).

Apart from the decrease of the
amplitude indicated by the quantity
(LL) the amplitude shows in corn
parison to the P wave a further
decrease expressed by the diver
gence factor K. As this factor tends
to the value 1 if becomes very
large compared with D1 and D2 this
decrease is entirely due to the cur
vature of the reflecting surface. In
fig. 9 the vaitte of Kis drawn against
the angle a, assuming = the radius
of the core to be 3500 km and

= r 6400 km, the radius of
the Earth. For a = 0 the value of
K = plo1 and for a = r/2 its value
is zero.

The following resuits are readily found:

ip5 =Iz cos + fit cos r2hO cos a— i, or Ps =1z(I3 + D0)—--

IJ —y sin 0 e’. “3e cos a(r D1 COS 1r + o D cos ij).

By substitution we obtain:

e_°’ -1- ih(D, +D)

Pr=K.(LL)s.
ih(D1+D2)’

(10)

J/cosa D1+D.
with K—

_____________

COS sin
(D1

r cos ]r
+ D2)1 sini. \ cos

1< and R

The sphericat reflection coefficient (LL) is for large values of/i not very different
from the coefficient of reflection against a flat surface

(LL)

, ,
crcccosa

sin 2a sin 2b+ ,—cost2b
uo cos a

, ,
Yc,COSa

/1/c’sin2a sin 2b + , ± cos22b
acc cos a

40 60 80

coefficient of reftection (R) and
divergence factor (K) of PcP waves

FIG. 9
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§ 6. THE DIFFRACTED PeF WAVE

As already mentioned in § 4 the last step in the method of WATSON consists in the
closing of the path of integration by a semicircie with infinite radius in the positive
imaginary part of the complex v-plane. The integral 1r is then equal to the sum of
the residues yielded by the poles of the integrand:

t t (2) (t)(v,, + )PV(Cosfn— (x + 1)y1 k2 +zy1 + 2r(v + (hc). ,(Ilr)
t

aD/av

where v are the roots with positive imaginary parts of the equation D = 0, or

(x+1)xiy;k2O2+z{xiyj+2v(v±l)xi+v;}=0.

Using the fact that v satisfies this equation and replacing (x1 — x2) by its value
(NIELSEN § 7)

2i
X1X2

he j) (Ji&) (h)
we obtain

2 je_)t
\-1 + i)Py{cos(n_J)}( y1z2 h)Ç»Qir)

(II)/ ,,
]) (Iie) Ç)) (ho)

,i=û n It

A further simplification of this expression is effected by mcans of the approximative
values of the P and functions as given in § 2; however, in that paragraph these
approximative formulas have been discussed for large values of the argument assum
ing that both the order and the argument werc real, whereas in the above series the
order v11 will generally be a complex number. We therefore have to extend the discus
sion of the saddie-point approximation to complex values of the order; this theory
has been developed by DEBIJE (1909).

The saddle-points of

/ec0+1Y_I2)dy

are determined by sin y = n/z. The path (1) of integration can be diverted for every
value of,, and z through one or at most two of these points; as shown in § 2 the
contribution of a saddie-point to the value of Ht) (z) is

- /2 eiC0sYs_flarcc0suIZ_3/4)

(12)

1f the path of integration meets one saddle-point this expression represents the
second order approximation of the Hankel-function; even if two saddle-points are
met this expression suffices as in most cases the contributions of the two saddle-points
are of a different order. The values of these contributions (and the fact whether one
or two saddle-points will be met) depend on only one parameter, namely n/z; this
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This equation is the Stoneley-wave equation for a flat interface between two semi
infinite media; it is well known — and indeed apparent from this form of that equation
— that the root v, is real and greater than the arguments Iie, k and h’ (the cosines
being in these circumstances imaginary).

However, this root is of no importance to our problem; as the factor

4» (h1) 1, (hr)

(1 i» (Iie)

occurring in 0r is in this approximation proportional to efh(Q0)o +rcos1r2?cos

which is very small, cos a being positive imaginary, the contribution of this root to
the value of r may be neglected.

It remains to consider the possibility of roots in the neighbourhood of the argu
ments; substituting the asymptotic formulae for ,, in D = 0 this equation becomes
if v/he is close to the transition curve in the v/z plane:

_______

(2v2—k22)2{ arc cos viiie + .r/4}
/v2_Jz2 2e 4y2/2_/i/2C2)(v2_k2C2) + —k44

For values of v/h 1 we put v/ho t + e with 1 and reduce the equation to

1 J ‘2
(2)/tg—+—Ïi(2v)’-14 3 / 2 \‘° t’) /. \fc( \ U4 ——1 11+‘2 )92 ) ,94o.

It follows that the absolute value of ize” is a finite number ; this quantity is
the root of

f2 2/2( 2\2

— i j7l) 2)
tg + 1(2 Y1 —

/ 2
\‘/2

/2
/24_—1)

_1) +-
The right-hand side of this equation is equal to gT “, where g is a quantity determ

mcd by the elastic systern and T is the period 2 r/u; using the values given by BULLEN
we find g = 1.182. For each value of T we obtain an infinite series of roots 5; e.g.
in the two limiting cases T = 0 and T these roots are respectively

/2{3 (q + 3/4)ir}1’ and

ô ‘/2{3(q + 1/2)2T}’Ie’/7i , q 0, 1

In fig. 10 we have drawn the roots of the series q = 0 and q = 1 as a function of
the period; it appears that with increasing q the irnaginary part of 6 increases rapidly.
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§ 7. THE PcS WAVE

The vector potential of this transverse wave is directed in the direction and equal to

— i e°f---. - (h) . (LT) kr) P{cos (vr— J)} clv

8 +,I
Si1fl—iCOSq2CoS

Rsin(—?9)}d

this expression becornes when the -functions are replaced by their integral
representations:

—i t t (v+ -)(LT) siwü—icosq2cos
,

= (2n)hk r (Ïi) Ç» (lie cos sin—icos
e d di1. d4dv,

with ‘1

cos + kr cos “72 + h C05 ?73 + h cos + (v + )
—iv1og{cos@r—)—icos Tsin}—(v+ 1)r.

The caictilation proceeds analogous to that of the PcP wave and resuits in:

+ kD)

/i=(LT)K
t(hD1 + kD)

where (LT) is equal to the coefficient of reflection for plane waves reflected by a
plane surface:

/32

2—sin2acos2b
c,-2

(LT)=— f3. aocosa
—sin2asin2b+ , +cos22b

c,rcccosa

and

/ D1+-D2
K_’71/coI tga

__________________

cosy tgb1/0sin/ tga rcosr
+D2

7 sin \ tgb COS?]

(see fig. 13).

In contrast with the divergence factor of the PcP wave this quantity K depends not
only on the curvature of the reflecting surface, but also on the value of o//3. 1f the
curvature tends to zero the factor K approaches the limiting value

tga /3
K0

tgb / cos2 bJ/ (Dl+D2)(Dlfl2+D)

0

PcS—ray

FIG. 12
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This quantity which is in fact a convergence factor, as I( > 1 if cc > 9 is shown
in fig. 14 against a; comparing with K, which is drawn in the same figure, we ob
serve that the diverging effect of the curvature is of importance oniy for small values
of the angle of incidence.

It is of some interest to derive this value of K0 in an elementary way; to this end we
consider a small pencit of rays, contained in the solid angle M.BCDE (fig. 15). The
rays situated in a meridional plane, as for instance MBE, wilt meet the reflecting
surface in the points of LP; covering a distance D2 after reflection these rays reach
are QS, which is equal to (D” + D2) db (see fig. 16).

D”clb D1da cosbda cccos2b
As = LF = we have D” = D1 and D” = 2cos b cos a cos a db 8 cos a

Again rays in the plane MBC are reflected in the points of are fG (fig. 17); after
traveling the distance D2 they reach are HK = (D’ + D2 sin b cÏq) where D’ = cijfi D1.
Hence the area of the cross section of the reflected beam is

txcos2b
(cc/fl D1 + D2) —-— D + D) sin b db dp.

The time necessary to reach this cross-section is equal to D1/cc + D0/t3; if the rays
did not suffer a reflection they would have covered a distance D1

--
cc/fl D2 in that

time. The area of the cross-section would then have been

(D1 + cc/t3 D2)2 sin a da dp.

Supposing for a moment that the energy in both beams would be equal it follows that
the amplitude at a distance D2 of the transverse movement would be

/ D1±-D2
ocvco

13V’cosa /tcc \tcccos2b

l-D1+D21( ,, D+D2
\fl J\j9Cos-a

times the amplitude of the longitudinal rays, which have traveted during the same
time.

cos b
The energy in the transverse beam berng (LT). times that of the incident

/
longitudinal beam, the amplitude bas to be multiplied by (LT) ; hence the

amplitude is finally (LT) . K times that of the unreflected longitudinal movement.

The above calculations are of course only valid in the lit area (extending to an
epicentral distance of 72°); in the shadow area the amplitude decreases exponentially
in the same way as the PcF wave.
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the wave parameter v; plotting the function 3 r— I, which we denote by 0 (v),
against v the remaining equation t = 0 (v) is then to be solved graphicatly.

FIG. 18 PKP—ray

It now appears that in the case of the Earth the deviation 0 (v) of the PKP ray
emerging at the surface bas a minimum value of 143°; this point is the intersection
of the Earth’s surface and the caustic, which curve is determined by = 0 (e) and
8 O/Ov 0. In the neighbourhood of this caustic the approximation we used above is
not sufficient, as is apparent from the fact that the determinant of HESSE is then about

/80 2 1 1 2
equal to zero 1 — = — — — — -,\8Y Ii cosa /291 cos 379 htCOS37r Ii cosa

Therefore we have to complete the calculation of the PKP wave for points near
to the caustic. In order to simplify the expression for as much as possible we
substitute in the original form (14) of 0 the asymptotic formulae of and P, which
procedure is altowable as we are only concerned with values of the order and argu
ment quite distant from the transition curves. In this way we obtain instead of the
multiple integral the comparatively simple expression:

e’’1’dv,Ii 1r j 2isin9cos371cos372

with I19 cos +hrcos +2 1z cos +2 h’o cos + (v + ) (ü —0)

0—3r—E and v=h91 sin 7i= .... =h’9 sin 374.

The saddie-point of is given by 8/8v 0 or = 0 (v); if the point P is a point
of the caustic we have also 02/8v2 = — 09/8v = 0 and then the development of v is

/82 0\ (v—v)
P3Pci) 3!

/1 820’\h/3
Introducing the variable s (v — v) . Ç the expression for 0 is approxi

mated by
ePc + ‘/i1 Ç (LL’) (L’L) 3/

6
+

0=—

_____

t/s
/229 r V2 sin 9 Vcos C05 772 820/82,2c
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which can 5e reduced to

2Ç / \ tr\ t5\
cos L— -] T(’/) + cos T (2/3) + cos f(4/) +

Hence the potential of the PKP wave in points very close to the caustic is

t1 +O.5O5—O,O42—O.OO7 )
which result is valid at both sides (9> and < ) of this curve. We note that
the maximum intensity of the FKP ray is not on the caustic but at a point on its
convex side.

For points P not very near to the caustic, but stili in its vicinity we use the same
development of ‘, changing however the path of integration to the saddte-point of
i s — i s. 1f > we have two saddle-points $ + \//3; the lines of steepest
descent are drawn in fig. 19. With s = — V/3 + te”” ands= +V’x/3 + te”’
on the two branches respectively the integral is approximated by:

ife—t’ dt + e1i 311f

which is easily developed into a series of powers of (3 As the first term of this
t2

series is 2 V’zît. (3 x)—’1’ cos [1

the PKP potential is in first approximation

C(/3)

this expression obviously represents the result of the interference of two PKP waves.
1fF is situated on the concave side of the caustic 9 <J. and < 0; hence the two

saddle-points are s = + i V’—/3. It appears that the path of integration bas to 5e
shifted to the point s—__i\/Z7i as shown in fig. 19; with s=—iV’—--/3 + t
the integral becomes

+

—

and the PKP potential is then in first approximation

\/3t

T (1/3) 7
The important quantity is for points on the surface of the Earth equal to

37.1 (—i9)

aO

V 2

8 (sin )2
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§ 9. REFLECTION AT THE EARTH’S SURFACE

In the foregoing we investigated the effect of the Earth’s core on elastic waves
emitted from a point outside this core; in this paragraph we shail consider the
effect of the other boundary of the mantie namely the surface of the Earth. To this
end we consider the motion inside a homogeneous sphere with radius , surrounded
by vacuum; adding the resuits obtained here to those of previous paragraphs we
arrive at a complete picture of the waves inside a homogeneous spherical shell
bounded at the inside by a liquid and at the outside by the vacuum.

We assume the same primary movement as in § 4 with its centre inside the sphere;
each of the partial waves, given by (6), may be interpreted as a wave emitted by the
sphere r = and traveling both away from and towards the centre r = 0. This wave
is represented by the discontinuous potential

eiwt (2) (Ïio) t/ir) P,, (cos t9) for r>

iut (1) (Iio) t/ir) P, (cos t9) for r <

Moreover a continuous wave, proportional to (Ïii) hr), appears at the
reflection in the centre.

In order to satisfy the boundary condition at the free surface, which requires the
vanishing of the tension at this surface, we have to add to the incident wave a (lir)
a reflected longitudinal wave q = b ‘ip,, (hr) and a transverse wave determined by the
Hertzian function M 3 ,, (kr). This condition is exprcssed by two equations:

—(4x1—m2) a ‘Qi01)—(4x—rn2) b ‘iPn (h€) + nOt + 1) (y + m2) 3 (k) = 0

—2 x1 a (Ï’) — 2 x b (h0) + yB ip,, (k) = 0

It follows that

— (Iie) {(4x1 —m2)y1———21t (ii + 1)x, (y + ,n2)} (k) + {(4x1_m2)y2_ 2n (n + I)x1(y2 + ,n2)} (2) (k)
—

— a
t21 the) L. 2) (k)

a ‘(1rn) 2m2(x0—x1)
and 3_.

ii ; (ke) L

with
L = {(4x2— in2) y2—2n (n + 1) x2(y + ,n2)}+

j-(1) fJ
0 1 , sfl

+ { (4x—’n-) y.—2n (ii —— 1) x1 (2 + in-)} y-(2) (1) +

‘(k )
+ {(4x2_m2)yi_ 2n (n + 1) x (Yi + ,n2)}

(2) (k:)

+ { (4xi — 1n2) Yi2 (n +1) x (y + rn2)}
().

(for notation see § 2).
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To this wave system we have to add the reflected waves due to the incident wave
e_boJt 1) (h1) 1) (hr) P, (cos ); for our purpose, however, this system may be
ignored as this incident wave does not appear if the sphere contains a core. The
presence of a core changes this system into the waves considered in § 4, 5 and 6 and
the waves originating from these by reflection at the free surface.

S
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(down to a depth of the hypocentre of 800 km) the epicentral distance of this
focus is in first approximation equal to 4 \/l—p.?/; in fig. 22 the caustic is shown
for a depth of 600 km. Quite near to this point the amplitude of the movement
resulting from the interference of the pP and PP phase is at a maximum; at smaller
distances the amplitude rapid]y decreases.

In analogy to formuta (11) of § 5, expressing the Stoneley wave connected with
the surface of the core, we obtain here the following expression for the Rayleigh wave

0 — 2
+ ?) PvR{cos (r_9)}L2 v(v + 1) (Y2 + 11I9 (h) (hr)

—— 71l
11.0 Sifl ‘R 8D/c.’ ‘R Jl2Ti)

(16)

where VR = 1l sin a and a satisfies the equation of Rayleigh

2/fl2 sin 2a sin 2b + cos2 2b = 0.

As the last factor in (16) is proportional to exp {i h (2
—

— r) cos a} and
cos a is positive imaginary this wave will be observable at the surface if the depth

— of the focus is not too great.

PP—caustic
FIG. 22
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The amplitude A of the longitudinal wave (hr) is expressed by a fraction witli
the denominator

+ D (x2, y2) E (x1, yj, x’) — D (x2, Yi) E(x1, Y2’ x’) -1) i-(2) —

(2)— D (x1, v) E (x2, Yi x’) + D (x1, y) E (x0, Y2, x’)

—D (x2—x1, o)E(o,y1—y2, x’){ -

-2) + 41 -(1) (2)} (16)

and the nominator

(1) -(I) -t2)— a D (x1, y2) E(x1, Yi, x’) + a D (x1, y) E(x1, Y2’ x’) 4k,,

(1) ,-f2) -(2)+ b D (x1, y0) E (x2, y, x’) — b D (x1, y) E (x0, y0, x’) IP k ç1 ç k

(1) t2)+ b D (x2—x1, o) E(o,y1—y2, x’)

The functions D and E are connected with the coefficients of reflection at the
free surface and at the surface of the core respectively by means of the relations

D(x1,y0) D(x2,y1)
=—tt),

D(x1,y1)
(ii) (tt) — (It) (t!)

2) —

— (ii),
D (x2, Y2) D (x2, Y2)

D (x0 — x1, o) — D (o, Y2 —Yi) — (t!)
—(ii + 1). (It),

D(x2,y2) n+1

E(x2,y;,x) E(x1,v0,x) E(x0,y0,x)
--=—(TT) —==(LL)(TT)—(LT)(TL)v, Yr x0) F (x1, y1, x)

E(x1,y1, x)
— (L’L’)

F(x1—x9, o,x) — E(o,y1—y2, x) (TL)—(n+ I).(LT),E(x1,y1,x) —

Using the coefficients of refraction at the core’s surface (see page 22) the quantities
E (x2, y, x’) can be expressed in these elementary coefficients; for example:

f 1) / (2)E(x2,yi,x’)

_________________

(2)
—(LL)—(LL’) (L’L) Q with

‘L’) /‘1—(L

The amplitude A is then equal to a fraction with the denominator:

7(2),h01 —(ii) {(LL) + (LL’) (L’L) Q} — (it) {(TL ‘

‘

— )+(TL)(LT)Q5—
0 ‘lic

(LL’)(L’T)Q

(2) (2)
1, “krIi) (tt) — (It) (tI)} j) [{(LL) (TT) — (LT) (TL)} + {(LL’) (L’L) + (TL’) (L’T)} Q] (1)
h Lsk
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The perigrinations inside the core are defined by the terms with the factors J(L’L’)

where in = a whole number, occurring in the development of Q. These ray-paths are
not indicated in lig. 23.

By means of the method used in § 4 the secondary movement connected with the
primary wave e_ t+ihR/ih R may be derived; the discontinuous part of the partial
waves out of which this primary wave can be constructed gives rise to the above
wave system, whereas the continuous part will be extinguished by the corresponding
secondary wave (the solution of the boundary equations for the incident wave is
obviously A = 3 = D = 0, C’ — 1). The saddie-point approximation then
yields the waves going to and fro between the boundaries of the mantie, traveling
part of their way inside the core and possibly changing at the points of reflection
or refraction from longittidinal into transverse waves or vice versa; in short every
wave conceivable in the ray picture of the wave system will be found with the
exception of the waves which are repeatedly reflected by the outer surface only
(pPP, PPP, etc. waves).

These waves, however, are contained in the terms (11)2 (LL), (ii) (1T) (tÏ), a.s.o., as
will be seen from an examination of the saddie-point equations; for example in the

case of a wave with coefficient (11)2 (LL) these equations are v/h = sin =

sin r sin and £2/i + 1 = 4r. These are satisfied by three values
of ‘, two of which are larger than h; the values of ?7 and (see fig. 24) corres
ponding to that pair of roots are r/2 + an imaginary number, which by substitution
in (LL) gives (LL) = 1. By some reduction of the saddle-point integral we easily
obtain the expressions for the pFP and PPP waves. The third root v is smaller than
I’e if the point P is in the lit area of the PPcP wave and determines the wave which
is really reflected at the core’s surface. For points inside the shadow zone this root
too is larger than Ïip and the corresponding wave is then equal to pPP but of opposite
sign; then the only remaining wave is PPP.

The saddie-point method leads us therefore to the complete ray picture of the
propagation of a seismic disturbance in the mantie of the Earth; this is quite under
standable as the equation a/ai’ 0 is the mathematical expression of the principle
of Fermat.

PPcp wave
FIG. 24
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field, which is commonly indicated as a normal mode or an eigen-vibration. At a
given value of the wave-parameter o we obtain an infinite number of roots ii each
determining such a mode. An example of this kind of wave we have already met in the
case of the diffracted PcP wave, which may be interpretated as an eigen-vibration
of the space outside the sphere. A characteristic property of that wave which is
shared by the normal modes of a spherical layer is that the wave is progressive in
the I direction whereas it is standing in the radial direction. Analogous to the eigen
vibrations in acoustical instruments or in wave guides the amplitude of these vib
rations is equal to zero at a finite number of surfaces r — a constant. As for each root
ii of N = 0 the number of nodal stirfaces is constant it is possible to arrange the
roots and the corresponding residues according to an increasing number of these
surfaces.

In the second method each term of the development is characterised by two whole
numbers namely the exponents in the composite geometric series which are inter
pretated as the number of reflections (and refractions) the corresponding wave has
suffered. The variable ii is determined by the saddie-point equations and as these
equations are, contrary to the equation N = 0, independent of the wave parameter w
we obtain a series of non-dispersive waves.

The total field is therefore interpretable in three different ways:

1. as the superposition of waves originating from a bipole, quadrupole
pole with their centre in 0.

2. as consisting of waves traveling only in the meridional direction, with 1, 2 ii

nodal surfaces.

3. as a system of rays each determined by the number of refiections and refractions
suffered at the boundaries.

After this rapid survey of the methods at our disposal we consider their applic
ability to the problem of seismic wave propagation. As the observed periods of these
movements are generally smaller than say 30 seconds the radius of the core is many
times larger than the wavelength; hence the original series is of no use at all. An
exception forms the motion with the extremely long period of 57 minutes observed
by BENIOFF (1954) by means of his linear strain seismograph with long period galvano
meter; this wave will be sufficiently approximated by the Rayleigh scattering term
ii = 1.

The ordinary seismic waves with periods < 30 sec. may be represented by each
of the two remaining series and although the series of non-dispersive waves is prefer
able as it is easier interpretable the usefulness of these series depends completely on
their convergence. At this point we have to introduce another aspect of the seismic
propagation; the primary disturbance is in actual conditions of course not a periodic

function e_1t but some function f (t) which is different from zero during a finite
time, e.g. between t = 0 and t = r. Representing this function by an integral

F(t) = f f(o) e_itot du
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§ 13. LIMITATIONS TO THE THEORY

It remains to consider those phenomena which the saddie-point method is unable
to deal with; the first example is the interference of waves frequently refiected at the

outer surface of the mantie, in which case we have to apply the residue method. The
poles v of the integrand are the roots of the equation

y-(1) (/ -t1) 1) 1 y-C1) k
ii

. oi ‘. Oo,
ï t

‘. oi v ‘. 1?o
— 01 —( ) -(2)

(1’l?o)
— tt) (2) (ke) —i.( t t — ) tt ç 4-(2) (/‘e) (2) (k0) —

where (Ii), etc. are in first approximation the coefficients of reftection at a plane
boundary.

Without entering into a discussion of the interference pattern we only remark

that this phenornenon is certainly ended before the arrival of the transverse wave
which has suffered an infinite number of refiections, in other words before a wave
traveling with a velocity of 4.35 km/sec. along the surface of the mantle arrives. As
the beginning of the surface waves travels with the same velocity the interference
precedes the long waves observed in seismograms. These latter waves are unexplain
able on the basis of the model of the Earth assumed in this investigation; their occur

rence is due to a further differentiation of the mantle.

The geometric optical method fails in the second place for waves with a length
comparable to the linear dimensions of the elastic system; this happens in the system
under consideration only for waves with a length of the order of 3000 km which
amounts to periods of about 5 minutes. These waves have to be investigated by
means of the normal mode (or residue) method, as bas been done by EWING and

PREss (1954).
The equation determining the values v of the eigen-vibrations of the system is

obtained by putting the denominator (16) of § 11 equal to zero. Instead of using
this very complicated equation EWING and PRESS based their calculations on the

period-equation of a plane solid layer resting on a semi-infinite liquid body; it is
doubtful whether this model is usable as the wavelength is about equal to both the

thickness of the mantle and the radius of the core. Probably a better although stili a
rather rough approximation will be obtained when the Hankel functions in the

exact equation are approximated by the exponential functions (12, 13).

A final remark concerns the model we have used in this investigation; the two most

notable shortcomings are the absence of the crust and the assumption of homogeneity.
The consequence of the neglection of the stratification of the outer parts of the
mantie is rather serious as the theory does not yield the surface waves. However,
a calculation of the effect of the crust would be unnecessarily complicated by con

sidering the sphericity; as the radial dimension is very small in comparison to the

radius of the Earth it is quite sufficient to assume a stratified plane model. Again the

saddle point method is unsuitable for investigating surface waves, since the length
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