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PREFACE

The theory of the Rayleigh wave equation is often put forward in an unneces-
sarily complicated way which tends to obscure the significance of this equation.
In this paper Dr. J. G. J. Scholte, scientific collaborator at the Geophysical Division
of this Institute, derives this equation for an isotropic medium in a simple way
by using the elementary requirements a surface wave has to fulfill.

The same method is then applied to an investigation concerning the occurrence
of these waves in the different classes of crystalline bodies; this procedure was also
followed for waves travelling along the boundary between two isotropic media.

In the course of this study some properties of polarised waves travelling in
crystals have been derived which may be of some importance to experimental
research.

Dr. J. Veldkamp, director of the Geophysical Division, gave valuable contri-
bution by reading the manuscript and discussing it with the Author.

Mr. J. A. As, scientific assistant, carried out the numerical calculations.

The . Director in Chief
Royal Netherlands Meteorological Institute

2Ir. C. J. WARNERS







INTRODUCTION

In his fundamental paper ‘On. waves propagated along the plane surface of an
elastic solid” RavreiGH (1887) concerned himself with the question. whether in an
elastic, isotropic, semi-infinite, solid body a wave system could exist which decreased
exponentially with the distance to the boundary plane. The conclusion he arrived
at was that such a system is possible in any isotropic medium and that it travels
in a direction parallel to the boundary with a velocity ¢ which is smaller than the
velocity of transverse waves; the quantity ¢ satisfies an equation of the third degree,
the Rayleigh equation, which determines ¢ as a function of the constant of Poisson
for that medium. :

RAYLEIGH’s expectation that ‘it is not impossible that these surface waves here
investigated play an important part in earthquakes’ has been fully realized; it is
therefore not very surprising that many authors have generalized this theory in order
to ascertain the existence and the properties of these waves in more general
circumstances.

In an attempt to determine the influence of a superficial layer on these waves
Love (1911) was led to a surface wave travelling along the interface between two
media both of which he assumed to be incompressible. This investigation was taken
up again by STONELEY (1925) who studied this kind of wave in the case of two
compressible media; the equation to be satisfied by the velocity of these waves has
been discussed by Sezawa and Kanar (1939), by CacNiarD (1939) and by the
present author (1942).

Another generalization has been effectuated by Homma (1942) and by STONELEY
(1943) who both examined Rayleigh waves in media which are isotropic only in the
horizontal directions but which show different properties in the vertical direction
(‘transverse isotropic’ bodies). This subject has again been taken up by SATO (1950),
who made an attempt to prove that in these media a Rayleigh system is possible for
any values of the elastic constants.

The next advance on this way of generalizing the suppositions relating to the
elastic properties of the medium was made once more by STONELEY (1955), who
took up the problem of Rayleigh waves in cubic crystalline material. The algebraic
reductions becoming very complicated in this case the author solved the velocity
equation by means of an electronic computer.

In this paper the theory will be reconsidered for various reasons; first of all the
theory as outlined by RAYLEIGH — and afterwards represented in the same way in
several textbooks on seismology — is unnecessarily intricate, which tends to obscure
the essential features of this wave system and the corresponding velocity equation.
It is thought useful to represent this theory more simply; moreover a better under-
standing of the Rayleigh system of an isotropic medium facilitates the treatment
of analogous systems in more complicated media.

Secondly the author is of the opinion that the subject of Rayleigh waves in elastic
media has been developed far enough to warrant a more or less comprehensive
review of the results reached up till now; consequently although some aspects of
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this paper are here published for the first time some guestions already discussed are
again dealt with.

The subject matter has been divided into five parts; in the first chapter the ordinary
Rayleigh equation has been derived and discussed. In the next chapter the theory
has been extended to the case of a horizontally isotropic medium followed in chapter
III by a discussion of the Rayleigh equation for different classes of crystals. An
extension of the method used in these chapters enables us in the 4th chapter to derive
the Stoneley wave equation concerning the wave travelling along the boundary
between two media; in the same chapter this equation will be discussed.

In the-last chapter the practical application of the theory to seismology has been
pointed out; as some parts of the theory, although not of direct interest to the main
subject of this paper, may be of some importance to the experimental investigation
of wave propagation in crystals, finally some remarks relevant to this subject are
included.



I. ISOTROPIC MEDIUM

We consider plane waves travelling in an isotropic semi-infinite body which borders
at z = 0 on the vacuum. As in this medium each horizontal direction is equivalent
it is possible without loss of generality to choose the line of intersection of the plane
z == 0 and the plane of constant phase as the axis Y. The z-coordinate will be supposed
to be positive for points inside the medium.

The wave is then expressed by functions of x, z and ¢ which are of the form

. < xsinﬁij;zcosﬁ,)
exp iv [t — ,

G

where ¢; represents the longitudinal velocity ¢; =+/(A--2 u)/e or the transverse one
¢y = A/ pfo; v is the frequency and 9; determines the direction.

For any given positive real value of sin 9;/c; four waves exist which are usually
called the longitudinal (c;) and transverse (c,) incident (+ cos ;) and reflected
(—cos §;) wave. At the boundary z = O the stress disappears for every value of x
and 7#; it follows that this can only be brought about by waves corresponding to
the same values of sin 9;/¢; and ».

RAYLEIGH’s requirement that the surface wave system must decrease exponentially
with increasing distance z amounts to two separate conditions to be fulfilled by 9
in the first place an exponential variation with z is only possible if sin 9; > 1; hence
the phase velocity e = ¢;/sin 9 with which these waves travel in the direction x
must be smaller than the velocities c;.

Secondly the desideratum that this variation must be a decrease leads immediately
to the exclusion of two of the four waves determined by e, namely those waves with
positive imaginary cos #;; the system therefore consists of only two plane waves.

This two-wave system must satisfy the boundary condition, which brings us to
two further conclusions: ‘

1. as T,, = p 0v/0z = O the component v of the (transverse) wave in the y-direction
must vanish: the transverse wave is apparently of the SV type;

2. the tensions exerted by the two waves on the free boundary must cancel éach
other; this is only possible if these two tensions are directed along the same line.
If ¥, is chosen in such a way that this condition is fulfilled it is easy to accomplish -
the cancellation by an adjustment of the amplitudes of the two waves. The
equation expressing the colinearity of the two tensions is called the Rayleigh
equation; together with the inequality sin 9 > 1 this equation determines the
Rayleigh system.

The derivation of this equation amounts to the calculation of the direction of the
stresses on the boundary caused by the two waves; the components of this stress
are given by

ou  ow

sz=y<—+——> and Tzz=2div+2,ua—u—;.
oz  Ox, oz
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The components » and w of the motion are, in the case of a longitudinal wave,
¢, is the phase-factor

represented by u = A, sin 9, . ¢; and w = 4, cos ¥ . ¢, where 4; is a constant and

o x sindy + z cos 9
SXpw {t—

&} )
z
Ly

4 stress
;
Y / movement
"}.o /
e 7
/
7/
\/
Y, 7
/
/
boundéry z:=0 3, 4 «
: Fic. 1
Tt follows that
iv , iv ; .
sz——c—Al.,ustﬁl.cpl Tzz———c—Al(l—l—Z,ucosﬁl).(pl, )
1 1
. T, sin 2 &
eNnee — = - . .
T &2 — 2sin®*d
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In the case of a transverse SV wave the components of the motion are

u = Aycos ¥y. pyand w = — 4, sin 9, . @, with @, = exp v (t __ xsind, + z cos 02) ;
Co
iy v .
then T, = —— A, . ppcos2 . ppand Ty =+ — A4, . pusin2dy. ¢y (2)
Cy Co ' .
TZX

therefore . 2 o —cot2 9,
zz .
o Ca ‘ .
- = = ¢ and by the equation
sin ¥y sin O, : ,

A two-wave system is determined by

sin 2 9

= cot2d,
612/022 b 2 Sin2 791 :*: 2

which expresses the equality of the directions of the stresses on the plane z = 0
caused by incident or reflected longitudinal and transverse waves.

Elimination of ¥ and ¥, yields the Rayleigh equation in the usual form of a cubic
equation of &2:

e8¢, — 8 &% + 8 €%, (3 ¢ —2 6,2 — 16 ¢, (clz—czz): = 0.
As the value of the left-hand side of the Rayleigh equation is negative for ¢ = 0
and positive for ¢ = ¢, one *) of the roots £ is real and smaller than ¢,2: The quantity

Voo

1

06 | L G

FiG. 3

* Tt has to be proved that only one root ¢* is smaller than ¢,?; as this proof will be given in the
next chapter in the case of a more general medium it has been omitted here.
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e/\/ ulo, where ¢ satisfies the above equation, is a function of ¢;/c, or of the constant o

2—20\;
1—20/

of Poisson; as a <
¢

In fig. 3 this relation is graphically represented for all admissible values of ¢, which

extend from ¢ = —1 (infinitely great rigidity) to o = 1/, (incompressible medium).

Starting with the value 0.689 at 0 = —I the quantity e/ E/ é increases monotorously

with increasing o to 0.955 at 0 = /. ‘

The quarnitities cos ¥, and cos &, being imaginary the components T, and 7, of
the stress differ 90° in phase, both in the longitudinal and in the transverse case.
Each stress vector describes in the time 2 zr/v an ellipse of which the ratio between
the two main axes is equal to the absolute value of T,/T,. The possibility of these
two rotating stresses cancelling each other occurs only if the two ellipses are similar,
which condition is expressed by the Rayleigh equation when sin ;> 1.

‘The other two roots of the Rayleigh equation also define a two-wave system,
namely a system consisting of a longitudinal incident and a transverse reflected wave
(or vice versa). The occurrence of such a system is easily shown to be possible by
considering the directions of the stresses on the boundary for real values of .

If 9, = O the stress of the longitudinal waves is directed along the z-axis; with
increasing value of 9, the angle vy, between the stress and this axis increases too and

2
G its maximum value (equal to arc sin

2
reaches'at sin 9, = |/ %+ ).
“ 2 (e2—¢y?) oP—c’
At greater values of @, the stress vector turns back towards the z-axis which is
reached at &, = n/2.
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The stress of the transverse wave is, when ¥ == 0, directed along the x-axis; with
increasing ¥, the angle , between this stress and the z-axis decreases monotonously
from 7/2 to the value arc sin (¢,2—2 ¢?)/c,2

This behaviour is shown by the curves of fig. 4, which are drawn for ¢ = Y/,;
in this case the two stresses are colinear for two real values of ;. These two values
approach each other at greater values of ¢ and coincide (at &, = 80°42") when

o =0.3; at still greater values of o the two angles become complex, so that then
no special reflection is possible.
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_., I TRANSVERSELY . ISOTROPIC MEDIUM -

~§ 1. Derivation of the" Rayleig’h equation

" Following the example of STONELEY we generahze this theory. by con51der1ng next
a medlum which is 1sotr0plc only w1th respect to all directions parallel to some plane
7 = 0; such a body has been described by Love ( 1926) as belng transversely 1sotroplc
The strain-energy function of this medium has to be invariant to a transformation
of the x and y axis; it may be shown that this property leads to the following ex-
_pression of this function as given by Love:

2W = A(en*te,?) + Ce? + 2 Flextey) e+ 2(A—2N) ey e
4 + L (eyz2+exz2) + Nexyz-
This function must be definite positive; writing it as a sum of squares we obtain
F 2 F? A—2 N—F?/C 2
2W=C %ezz + & (e + eyy)g + (A—E> 3 ox +W €y
A—N—F?C
A—F?*C
We conclude that C, N and L must be positive and 4 > F?/C 4 N.

+4N ey? +Le?+ Lel?--Neyt.

In the usual way the equations of motion are derived:

&*u o? o2 0w
egﬁ—<Aé—;2+ 2 or >u+<A—N)—+<F+>
%
o ( it At L >
o0%w 02 0% oy
¢ o <L ox? +L + ¢ > W (D <3x82 8y82) ’

For the same reason as in the case of an isotropic medium it is permissible without
loss of generality to express the phase factor of plane waves travelling in this body
by a function which does not depend on y:

. ( xsinﬁ—!—zcosﬁ)
expiv [t ————M8——— ).
¢

Denoting the amplitudes of the components in the x, y and z direction by p, g and r
we obtain by substitution into the equations of motion:
p (4 sin?9+L cos>P—p ¢®) + r (F+L) sin?d cos ¥ = 0
q (N sin29+L cos?9—p c?) = 0
p (F+L) sin 9 cos & + r (L sin*34C cos¥i—p c?) = 0.
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It follows that the y component is independent of the movements in the x and z
direction; therefore, again as in the previous case, this component does not appear
in a Rayleigh wave system.

The two equations for p and r are only solvable if

(A4 sin?*@-FL cos?P—oc?) (L sin*3+C cos?P—opc?) = (F+L)? sin?3 cosd €)]

which equation determines the velocity ¢ of the waves.
We now introduce the parameter & = ¢/sin ¥ by means of which the equation
becomes'

LC cot*) + { L(L—p¢&?) + C(d—pe®) — (F+L)? }cot?® + (L—pe?) (A—pe2) = 0 (4)

from which it is evident that at a given value of ¢ four waves are possible, defined by
the roots 4 cot ¢ and £ cot ¥,. These waves may again be interpretated as incident
and reflected waves, but the distinction between longitudinal and transverse waves
is no longer applicable.

The ratio p/r between the two components of each wave is obtained by substituting
these values of cot ¢ into the expression

r _L—982 -+ C cot2d

r (L+F) cot 9

In order to obtain the equation to be satisfied by e in the case of a two-wave
system we have to calculate the ratio T,/T,,;

as sz:—ifL(pcosﬁ—{»rsinﬁ) and TZZ=——iZ(Fpsin19—|—Crcosz9)
e ¢

we obtain by means of the expression of p/r:

ivr L (F+p&*) — LC cot®¥ ivr F(L——Qé‘z) — LC cot?)

Ty = — . and T,= —
» £ 7 L+F £ (L+F)cot 9
whence Ty L (F+9e%) — LC cot?) cot @
T,,  F(L—p&*)— LC cot®}

The Rayleigh equation, which expresses the colinearity of the two stresses on the
boundary is therefore:
F + p&* — C cot?9, ‘t19~—;|; F + p&* — C cot?f,

cot 9,.
F (L—pe%) — LC cot?d F (L—p&%) — LC cot?d,

Using the properties of the roots of the quadratic (4) this equation is readily
reduced to

(L—o¢?) (AC~F2—CQSZ) + e v/ LC (L—oe?) (A—o¢?) = 0 ©)
Wthh may also be written in the more familiar form
0%e8C (C—L) + 02*C (AL—2 P—CL) + p&?P (P42 CL) —LP2 =0 ©)

where P = AC—F2,
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§ 2. Discussion of the equation

Before starting the discussion of the roots &2 of this equation it is well to remember
that these roots determine any two-wave system; such a system is a Rayleigh wave
if moreover the corresponding values of cot &, and cot ¥, are negative imaginary.
In all other cases the roots of the Rayleigh equation define reflections at the boundary
at which only one reflected wave occurs. .

1. As is obvious from equation (5) the real roots ¢ must be either smaller than
A/@ and L/p or greater than these two velocities. With regard to the second possibility
we remark that as in that case the coefficient of cot?? in the quadratic (4) is negative
the quantity cot?9; - cot®$, must be positive. Hence cot & and cot 9, are either
real or complex so that the roots &2 > A4/p and L/ define a case of special reflection
and not a Rayleigh system.

2. From the same equation it will be seen that there are four values of ge? which
will be of importance to this discussion, namely ge? = 0, 4, L and 4 — F?/C (= P/C).
The value of the left-hand side of equation (6) is

at e = 0: —Lp?
pe? = 4: Ft(A—L)
oet=1L: CL? (A—L)

pe* = P/C: PLF?/C2,

It follows that at least one root is situated in the interval 0 < p&* << P/C, a conclusion
which has been obtained by SATO (1950).

3. The questlon whether only one or all three roots are confined to this interval
may be decided by the introduction of the new variable ¢ = ﬂg ~— 1. The interval
€
0 < g2 < P/C is then changed into ¢ > 0 and the equation into:

CL—P A F?

ot ¢
cc fcT T

(p3+ 972

The coefficient of ¢ and the last term being negative it follows that this equation
yields one and only positive root; consequently the Rayleigh equation has one and
only one root &? satisfying the inequality 0 < ps? << P/C.

4. This root is also smaller than L/g, which has of course only to be demonstrated
if L << P/C. In that case L << 4 so the left-hand side of equation (6) is positive for
0e? = L; as it is positive too for ge* = P/C either two roots are situated between
L/g and P/oC or none at all. The first alternative is ruled out by the conclusion of
the previous section, hence the root must be smaller than L/p.

5. With respect to the two remaining roots of the Rayleigh equation the following
properties are easily derived:
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if 4 <L one of these roots 2 is smaller than 4/o (and of course > P/pC), and
the other one is greater than Lfp if L < C and negative if L > C.

If A > L the situation is more complicated: ‘ '
when L > C one root &2 is greater than A/p and the other one is negative;

when L << C we have to distinguish two separate possibilities:

if L > P/C both roots are either complex, or greater than A/p, or smaller
than L/p;

if L < P/C the last possibility does not exist.

§ 3. The existence of a Rayleigh system

Ignoring those roots which certainly are connected with systems of special reflection
(0£® > A and > L) we shall to some extent deal with the roots which may be relevant
to a Rayleigh wave. These are: ,

1. the root ge? << P/C which occurs for every value of the elastic constants.
2. the root ge? between P/C and 4, which only exists if 4 < L.

3. two roots p&? between P/C and L, which possibly exist if 4 and C both are
> L >P/C.

Contrary to the case of the isotropic medium it is by no means certain that these
roots although smaller than 4 and L determine a Rayleigh system; this is only
true if the corresponding values of cot2d, and cot?d, are negatlve real, which is
a priori quite uncertain.

It is not our intention to enter into an exhaustive discussion of this question but
we shall merely point out some elementary conditions to be satisfied by the elastlc
constants if cot?d; and cot?d, are negative real.

In that case the coefficient of cot?d in equation (4) must be positive, or:

L (L—ee®) 4 C(4—o&®) — (F+-L)* > 0.

The value of this quantity in the limiting points of the intervals to which the roots
pe? are confined are:

at pe® = 0: P-—2FL
o2 =A4: — AL —F*—2 FL
pe? =1L: — C(L—P/Cy—2 FL —L*
o&? = P/C: —PL/C —2 FL.

}' Tt appears that as far as the roots of the second and third kind are concerned this
quantity will be positive at any point of their intervals only for sufficiently great
negative values of F. Even then it is not certain that those roots ps* determine a
Rayleigh system as it is possible that cot®9; and cot?d, are conjugate complex (with
a negative real part). However, we shall not pursue this matter any further. T
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Turning finally to the root pe? < P/C we illustrate the above remarks by dealing
in some detail with the wave system corresponding to this root. ‘

The discussion of the Rayleigh wave in an isotropic medium is usually limited
to two special values of the parameter /4, namely u/A = 1 and /A = 0; continuing
this tradition we have chosen two cases of transverse isotropic media which resemble
these two isotropic bodies.

1. For an isotropic medium with u/A = 1 the elastic constants are in our notation
A= C=23F=3L(=3pu); a similar anisotropic medium is for instance defined
by A= C=3F(=3u) and L = pu(p > 0). :

2. An incompressible isotropic medium is defined by 4 = C=F+2u, L=p
and F— oo; we change these relations rather arbitrarily into 4 = F+2u,
C=F+2pu(p>—1),L =y and F— oo.

In order to avoid any misunderstanding we emphasize that these two media are
only intended as examples of anisotropic bodies, which are more or less similar
to the two classical types of isotropic media.

In the first example the equation determining cot ¥ becomes
3 p cots® + { (8—2 p) — x*(3-+p) }cot*d + (p—x*) 3—x") =0
where x? = ge?/u; the Rayleigh equation is then
3 x8(3—p) — 48 x* + 16 x¥(4+-3 p) —64p = 0.

The condition g&? < P/C becomes here pe? < 22y or x < 1.633; in table I and
fig. 5 the results of a numerical calculation are given.

Table I

P x = g/+/ uflo y=icotd y = icotd,
0 0 0 [e%]
0.100 0.316 0.0082 4.993
0.201 ' 0.447 0.0226 3.345
0.304 0.548 0.0442 2.581
0.411 0.632 0.0705 2.170
0.523 0.707 0.1060 : 1.816
0.642 0.775 0.1492 1.527
0.771 0.837 0.2090 1.268
0.915 0.894 0.3012 1.008
1.000 0.919 0.3933 0.8475 (isotropic medium)
1.07177 0.941 0.5917 0.5917

It appears that although for every positive value of p a real root x < 1.633 exists,
a Rayleigh wave is only possible'if p < 1.07177.

At greater values of p the values of cot ¢ are complex imaginary and then the
corresponding wave is not a Rayleigh wave, as it is semi-sinusoidal in the z-direction,
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In the second case the two equations are
" ‘ cothd - (2 p—~x2) cot?) + (1—x?) = - 0

Where agam Xt = — QSz/M, and
X —4(I+p) xt + 4 (14p) (1+2p) x* — 4 (1+p)* = 0.

The condltlon pe? < P/ c Ieads to x? < 2 (p+1); the results are shown in table I

and fig. 6. ’
Table 11
p x = ¢g/+/ plo y =icotd, y = icotd,
[e’e} 1 0 lo%e}
9.474 0.999 0.0118 4.236
5.707 0.997 0.0248 3.228
4.445 0.995 0.0356 2.810
3.430 0.992 0.0516 2.423
2.747 0.989 0.0706 2.124
2.172 0.984 0.0981 1.835
1.880 0.980 0.1198 1.669
1.532 0.973 0.1590 1.447
1.344 0.968 0.1910 1.309
1.107 0.960 0.2527 1.108
1.000 0.955 0.2956 1.000 (isotropic medium)
0.972 0.954 0.3099 0.968
0.851 0.947 0.3979 0.804
7/9 0.943 0.5774 0.5774
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Yandp

1 1 | Il 1 X
1 099 098 097 096 095 0.94 093

Fig. 6

In this case too a real root x exists for every permissible value of p (p > —I),
but a Rayleigh system is only possible in this incompressible medium if p > 7/9;
at smaller values of p the corresponding values of cot ¢ are complex imaginary.

SATO (1950) also considered the proof of the property of equation (6) that one and only one
of its roots is contained in the interval 0 < ge* < P/C; not succeeding completely as he himself
remarked in a note to his paper this problem was again treated by DURBAUM (1956) who arrived
at a proof which differs considerably from the proof given here.

At the end of his paper SaT reaches the conclusion that ‘one and only one sort of Rayleigh
waves exists, in horizontally isotropic but vertically aeolotropic semi-infinite elastic medium’;
‘this is not quite true: although for all possible values of the elastic constants a root s* between
0 and P/C exists the corresponding wave system is not in every case a Rayleigh wave, as
demonstrated above. ) .
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IIl. GENERAL ANISOTROPIC MEDIUM

§ 1. Plane waves in a crystalline medium

A perfectly elastic medium (or a Hooke body) is defined by a strain-energy function
which is a homogeneous quadratic function of the strain-components e, , Cxys -
with constant coefficients; in the most general case this function contains 21 terms

W= 1/ 2 C11 exx2 + C1s €xx eyy + C13 €xx €72 + C14 €xx eyz + Ci5 €xx €xz + C16 €xx exy
+ s Cop €y)® - Caz €y €1 F Can €y €y F Co5 €y 57 + g Cyy Exy
+ Yo sz e + Cue ey oo e + ey ey,
+ Yo i ® + g5 €pp €5 + Cug€yz €4y
+ Mo Cs5 €x7® + 5 €xz €xy
+ s Cos €%
The coefficients ¢; are not completely arbitrary, as W is positive for every value
of the strain-components; it follows that all under-determinants of the determinant

C11 e e e e Cig

@ @
® @
-] e
L @

which are symmetrical with respect to the diagonal must be positive.

The equations of motion in this medium are:
( W) o*u ‘ ™~

o (oW o (W 7
Ox \Oey, 0y \Oey, oz . or?
o (oW o (oW 0 W %y
Ox \Oeyy Oy \Oey, | oz or?
o (oW o (oW o [oW o%*w
— —I—-— — + —_ = Q _
Ox \Oe,, dy \ Oe,, 0z \de,, or?

We try to satisfy these equations by a plane wave with the phase-factor

sin » <t __XcCos psm ¥4y sin @ sin 9-+z cos 19)

de,,

4

with the amplitudes p, g and r in the x, y and z directions; ¢ and ¥ define the direction
of the wave-normal.
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Substitution of this motion into the strain-energy function gives

- : . . .
2 W= ”_2 W cosy <t_XCOS<,Dsm ¥y sin ¢ sin 94z cos ﬂ),
& c

where & = ¢/sin ¥ and W is a homogeneous quadratic function of p, g and ro .

W = A PP+ 2G5 p9 + 2 Gy pr+ Gy §* 4 2 gy qr + agg 1

with the coeflicients:

@y = (¢yy cos?@ + 2 ¢ 8in @ cos @ + cgq sin%@) + 2 (g5 cos @ + ¢548in @) cot D -+ 55 cOt?d
Ayp = (Cge COS2Q —+ 2 Cyq 81N @ COS. -+ g 5IN%@) + 2 (4 cOS @ + ¢y sin @) cot & + €44 cOt2P
Qg = (€55 OS2 + 2 ¢y sin @ cOS @ +- ey sin?@) + 2 (g5 cos @ —+ ¢y 8in @) cot & + ¢y cot?P

ap = { C16 COS%Q + (C1a1-Cgg) SIN @ COS @ + o sin2<;u} + { (e Cs) €08 @ + (Co5t¢y5) SIN <p}cot & =+ ¢,5 cot2
i =={ ¢35, OS2 + (Crat-Csq) SIN @ COS @ 4y 5in*p } 4 { (CraC55) 08 @ + (CogFC35) sin @ }cot I - ¢55 cOL2S
oz = { Cs6 COSPQ + (Cp5Cyq) SIN @ COS @ + €y Sinz@} + {(Caﬁ“fﬁ) €os @+ (eoytcyy) sin @ fcot @ -+ ¢y cot2S

M
Substitution into the equations of motion leads to
(an—0e") p + G q + agr =0
e P + (ae—0¢®) q + Aoz P =0 ®

iz P + oz 4 + (as5—0e) r=0
Evidently a non-zero solution of this set of equations is only possible if pe? satisfies
the equation:

2
di—0¢ sy a3 I
2 _
thy oo 0¢& Qog =0 ()]
—0&? ,
i3 Qa3 ¢

which is the S—equatlon of the quadratic function W

As is well-known from the theory of quadratic surfaces the S-equation yields three
real roots pe?(= oc?/sin®9) for any real value of a;;.
Moreover if this equation has been solved it is easy by a transformation of the p,

g and r axes to change W into the form

W =0e,2p'* + 085 ¢'* + 05 1'%,
This quantity being positive for all real values of p’, ¢' and * the roots p¢? of the
S-equation are positive; hence the velocities ¢; = ¢; sin 9 are real.

Consequently in an elastic medium three different waves will be propagated in any
given direction ¢, #; the velocities ¢; of these waves are in general all three unequal
to each other and the three displacements associated with these waves are perpendic-
ular to each other, being directed along the principal axes of the quadratic surface
W = a constant. However, these movements are generally obliquely directed with
respect to the wave normal ¢, ¢; longitudinal and transverse waves only - occur 1n
some rather specialised media (see §3). , -
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§ 2. The Rayleigh equation

The main purpose of this paper is the investigation of the possible existence of
Rayleigh waves in a semi-infinite elastic body; therefore we shall not develop the
above theory any further but turn our attention to Rayleigh’s two requirements as
stated on page 11.

Accordingly the first question to be answered is whether in such a body waves
occur which vary exponentially in some direction, for instance in the z-direction;
in that case cos ¥ is imaginary and sin ¢ > 1.

As the roots gs? of equation (9) have to be real the coefficients of this equation
are also real and this is only possible if the equation does not contain any uneven
powers of cot @ (cot & being imaginary). After some laborious reductions it appears
that the coefficients of cot ¢ and cot®$ vanish for every value of ¢ if

Ciy = Cp5 = Gy = Cg5 = Cgy = Cy5 == Cgg = Cs5 = 0.

In order to ascertain which materials fulfill this condition we have merely to
inspect the strain-energy functions of the different classes of erystals; these functions
are represented in their most simple form if the z-axis is chosen in the direction of
the principal axis of symmetry of the crystal (if such an axis exists). Moreover when
there is a plane of symmetry through this axis this plane is taken as the xz-plane;
when such a plane is absent but a digonal axis perpendicular to the principal axis
occurs that axis is taken as y-axis. These expressions which have been derived by
Voigr (1900) may be found in Love’s “Treatise’ and are given below in a schematic
representation : .

1. triclinic system: all 21 coefficients ¢;; are unequal to zero

2. monoclinic system: 3. rhombic system:
Yoon i C13 . . C16 Yoon i Ci3
Yoo Cop B o Cog Yoo O
s Ca3 . . C3e /s Ca3
Yocu cs5 . o €a
s 55 . *fa ¢55
*/a Ces ' s Coq

4. hexagonal and rhombohedral system:

Yseyn  Cia €13 Cys Cis . 1 and ¢330 in the rhombohedral
Yol ¢z —cCu — e . classes I, IT
1 ‘
¢ . . .
Jo € e i c1a=0, ;5540 in the rhombohedral
e 1 classes IIT, IV, V
[ Caa Cra

Yy (cp—cy9) | cia==c;5=0 in all other classes.
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5. tetragonal system:

Ysty  Cra Ci3 . . Cy6 \ €16770 in the tetragonal classes 111, IV, VII
Ysen O . . — €16 | ¢15==0 in the remaining classes.
1 / ¢
2 “33
1 / c
2 Y44 .
1
fo Caa
1 / c
2 “66

6. cubic system:

sen o Cip . . . The three crystallographic axes are the
Yoo € . . . X, y, Z axis.
Yy €
1 / c
2 “44
Yy €y
Yy cna

We see that the above condition is not met by the triclinic crystals and by the
crystals of the rhombohedral classes I, II, III, IV and V; in these materials a Rayleigh
system is impossible.

Before starting with Rayleigh’s second requirement (a decrease of the wave with
increasing distance to the surface) we first make some rather elementary remarks
concerning the reflection at a free surface. :

The wave-systems in any body bounded by a free surface z = 0 must satisfy the
condition that the stress on that plane is identically zero. As each plane wave exerts
a stress on z = 0 proportional to its amplitude several waves will be necessary in
order to render the total stress equal to zero for every value of x, y and ¢. The stress
of each wave being also proportional to a phase-factor containing the parameters
@ and &, these parameters must be the same for all waves of the system. It follows
that these waves are determined by the roots cot ¢ of equation (9) for some given
value of ¢ and e; this equation is of the sixth degree in cot &.

Again the total stress components are homogeneous linear functions of the am-
plitudes of the waves forming the wave-system; the condition that the three com-
ponents Ty, T, and T, vanish at z = O is therefore expressed by three equations
which are linear in the amplitudes. As a solution of this set of equations generally
requires 4 amplitudes a wave-system in a semi-infinite body is (generally) composed
of 4 plane waves which may be chosen in an arbitrary way from the 6 possible waves
determined by the 6 roots of equation (9).

Rayleigh’s second requirement demanding the exponential decrease with increasing
distance to the boundary restricts this choice to the negative imaginary roots cot .
Equation (9) is for those materials in which an exponentially varying wave is possible
of the third degree in cot?3; if the roots cot & of (9) are imaginary only three of them
are negative imaginary. Consequently a Rayleigh system consists of 3 waves instead
of the 4 waves generally occurring in a semi-infinite body.
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Such a special system is only possible if the determinant of the coeficients of the
amplitudes appearing in the three boundary-conditions Ty =T, =T, =0) is
equal to zero. This equation will be called the Rayleigh equation of the elastic body.

As the cancelling of the stresses exerted by each of the three waves of such a special
system can only be accomplished if these stresses are located in the same plane the
Rayleigh equation expresses the coplanarity of the stresses of any set of three waves
satisfying equation (9).

Such a set forms a Rayleigh system if the values of cot @ of these waves are negative
imaginary; in other cases it constitutes a system of special reflection.

In order to obtain the Rayleigh equation we have to calculate the direction of the
stress exerted by a plane wave on the boundary plane. From equations (8) we find
the ratio’s p: ¢:r, which determine the direction of the displacement-vector; sub-
8W: E)W: ow gives the ratio’s 7y, : T,.: T,, defining
dey, Oe,, e,
the direction of the stress on z = 0.

stitution of these ratio’s into

The Rayleigh equation expressing the coplanarity of the stress-vectors 7%, 7% and
I 4

1 1 1
T xz T yz T 2z
it TI 1T —
T Xz T ¥z T 2z =0
11 11T 11T
T xz T yz T 2z

where the indices I, IT and III indicate that three different values of cot 9 have to be
substituted, namely three roots cot ¥ of equation (9). These roots are functions of

¢ and g, so that the Rayleigh equation determines the velocity ¢ as a function of the
azimuth ¢.

§ 3. Polarised wave systems

A general discussion of this equation is obviously too complicated a task to be
undertaken; even in the case of a cubic crystal a numerical computation of & for
some chosen values of ¢ proves to be so laborious that a further elaboration would
only be warranted if it should be of some practical interest (STONELEY, 1955).

In the case of an isotropic medium this complexity does not exist; this circumstance
is due to the property that in such a medium wave-systems are possible which are
polarised in a vertical plane (P and S¥ wave). Both the component of the displace-
ment and of the stress on z = 0 in the direction perpendicular to the plane of polaris-
ation are identically zero. The boundary conditions are then expressed by two
equations instead of three equations needed in the case of anisotropic media (one
equation disappearing identically). Apart from these two kinds of waves a third
kind (SH)is possible, of which both the displacement and the stress are perpendicular
to a vertical plane; the boundary conditions are reduced to only one (namely T, = 0).
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Evidently the same simplification will also appear in an anisotropic body for waves
polarised in the same way. As we have seen the displacement vectors of three waves
travelling in the same direction form an orthogonal triad; the occurrence of waves
with a horizontal displacement vector implies the existence of two waves vibrating
in a vertical plane. Therefore as far as the polarisation of the motion is concerned
we only have to investigate in which circumstances a wave analogous to a SH wave
is possible.

We choose an arbitrary vertical plane y = x tan 9 which makes an angle 4 with
the xz-plane as plane of polarisation; the horizontal components of the displacement
parallel (p") and perpendicular (¢) to that plane are expressed in the corresponding
components p and g by:

’

p'= pcosy - gsin p
g = ~—psin p + g cos p.

Equations (8) become: .
2 { (a—0¢*) cos y+ap sin y }+ q { — (a;;—0¢€?) sin y—+a;, cOs P }+ r a3 =0
) { (ax—0¢®) sin p+ay, COS 1P}+ q’{ + (am—0¢?) cos p—ay, Sin %U}‘}“" Qo3 =0
P’ (ay3 cos p+ays sin ) +q' (— ays sin Y+ a5 COS ) +r (ass—06)=0

or in the easily derivable forms:

)4 { s (ayy—a,) sin 2 yp—ay5 cO8 2 770} +q {1/2 (an—az) cos 2y-+ay, sin 2 py—/, (011+azz)+932} +
+ F (a5 sin p—ayscos 9) = 0

.4 { Yy (@—aye) €08 2 p+agp sin 2 p+Ys (au‘f’azz)_é"sz} —q { 1y (@—ayp) sin 2 yp—ay, cOs 2 1/)} +
+ (a5 cOS Y+apg sin p) = 0

P’ (13 €08 P+aps 8in ) — ¢’ (@3 SIn YP—ags COS ¥) + r(a—oe®) =0 ’ (10)

In order to obtain a solution where only ¢’ is different from zero it is necessary that
Yo (A —ap) SIN 2 p —aycos 2 = 0 and aygsin p —acos p =0

2 ay,

and tan p = 22 (11)

or tan2 y =
Gy~ dgg thg

In the directions @, ¥ satisfying these two equations waves travel with only a
horizontal component g’ perpendicular to the plane y/x = ds/ar; in the same
directions two other waves are possible with movements parallel to that plane
(quasi P and SV waves).

Again we must determine the conditions to be fulfilled when the stress on the plane
z = 0 is also polarised perpendicular to the plane y/x = tan .
The relevant stress-components are, if we omit the phase-factors:

Ty, = (¢15 COS @+ Cyq 8iN p--Cgs cOL F) p + (€55 €OS P+ a5 SIN g5 cOL 9) g -+ (€35 COS @45 SID @1cq5 cOt 9) 7
Ty, = (€14 COS @+Cyq SIN PFcy5 COL D) p =+ (c45 COS P Cyy SiN Pty cOL I) g + (045 €OS PFCay sin @+cgy cot 4 r
Tz = (C13 COS @4-Cyg SIN @+Cy5 COL D) p + (Cy5 COS Py SIN @54 COL F) g + (Cg5 COS PFCyy SIN P55 COL d) r
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The coefficients of p, g and r are parts of the functions a;; abbreviating the above
expressions we use a notation which indicates this connection:

1 2 1
Ty, = a11()P + alz()Q+ a13()r

1 1 2
Tyz:alz()]"Fazz()q—f‘a%()r

2 1 1
T :als()P+azs()Q+a33()r-

We denote the stress-components in the directions of p’ and g by Ty, and T,,;
written as functions of p’, ¢’ and r the components become:

Typ = p'{ay® cos?yp+(a,V+a,?) sin p cos p+am,® sin®y } 4 _

¢'{ @1 cos?y + (@, —ay, D) sin y cos p—ay,V sin?y } 4 7 (a5 cos - 2@ sin )
Tz = p'{ @™ cos?yt-(ap™®—a,®) sin y cos p—a,® sinty } +

q'{ ™ cos?yp—(a,, "+ a,,®) sin p cos p+a, P sin?y } + r (—a™ sin p +a,,@ cos p)
TZZ - pl (a13(2) COos w+a23(1) Sin 110) + q, (__a13(2) Sin w+a23(1) cos Q)U) + r a33(1)'

It follows that for waves with ¢’ = 0 the corresponding stress-component 7., will
vanish too if

a1 — (ayP—a,®) tan p — @, tan?y = 0 and tan p = 2,2/, (12)

1In the directions ¢, ¢ satisfying (11) and (12) waves are possible which resemble
the P and SV waves in isotropic media in this respect that both the displacement
and the stress on the plane z = 0 are situated in a vertical plane.

Waves analogous to SH waves appear if p'=r=0and T,, =T, = 0; such
waves are possible in the directions @, ¢ determined by (11) and by the equations:

a1y — (P —a,®) tan yp — a,,P tan?y = 0 and tan Y = @y ?. (13)

Suppose now that a wave of the quasi P or SV type is reflected at the boundary;
the reflected waves travel in directions ¢ which are determined by the S-equation (9).
The roots of this equation will generally not satisfy the equations determining the
direction of polarised waves, so that the reflected waves are not of the quasi P or SV
kind. Thus in an anisotropic medium such a polarised wave system is in general
impossible.

However, this objection does not exist if equations (11} and (12) are independent
of 9, in other words if polarised waves are possible in all directions in some vertical
plane. This requirement leads to several relations between the elastic constants ¢
the derivation of which is rather tedious and uninteresting. ‘

In order to ascertain in what kind of materials polarised wave systems will occur
we again consult the strain-energy functions of the various crystals.

It is easily shown that in the case of the triclinic, monoclinic and rhombic crystals
equations (11) and (12) are for all values of ¢ dependent of ; in these crystals a
polarised system of the P and SV type is impossible. The three remaining classes
will be discussed seperately.

ifs

I. In the most general case of the hexagonal and rhombohedral system (¢, and
¢15720) we have according to (11):
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tan & — (c14 €08 2 p—cy55in 2 @) -+ (¢y3+Cay) Sin @ cot &
¥ (c14 8N 2 @5 €08 2 @) + (Cy5+Caa) COS @ cOt F

and this is independent of & if

€14€08 2 p—Cys8in 2 ¢ sin @

c1a8in 2 ptcsco82 @ cos @
from which follows: tan 3 ¢ = ¢y/cy; and v = @.

It appears that the other equation (11) as well as both equations (12) are also
satisfied by these values of ¢ and 4. Thus in the three directions ¢ differing 60° from
each other, wave systems polarised with respect to the plane of incidence are possible
in any crystal of these systems.

As for the rhombohedral classes III, IV and V the constant ¢, disappears
tan 3 ¢ = 0; then the three directions ¢ coincide with the hexagonal axes of the crystal.

It will be remembered that in these crystals a Rayleigh system cannot occur; with
respect to the main subject of this paper the above is of no interest. Nevertheless we
have included this investigation because it may be of interest to the experimental
research based on the propagation of ultra-sonic waves in crystals (see page 41).

In the case of the still more special classes where ¢y, and ¢;; are both equal to zero
(namely all hexagonal classes and the rhombohedral classes VI and VII) the interesting
fact arises that ¢ is undeterminate. Hence polarised systems are possible in all
directions ¢ and ¥; these crystals are in this respect identical with transversely
isotropic media. The results concerning the existence and the velocity of Rayleigh
waves which we have derived in chapter II are applicable to this kind of crystals.

II. For tetragonal crystals the second equations of (11) and (12) both yield yp = ¢:
the plane of polarisation coincides with the plane of incidence. Again the coefficients
of the first equation (12) are all equal to zero and the first equation (11) becomes

(et sin2 ¢+ 2c5c082 @
{Cr1—Coe) cOS2 @ + 2 148N 2 @

tan 2 ¢

2 ¢
Yy (ci=C12) — Ces

Accordingly in 4 directions ¢ which differ 45° from each other (in agreement with
the properties of symmetry of these crystals) polarised wave systems consisting of
one incident and one reflected wave occur. In these directions Rayleigh systems
consisting of only two plane waves are possible.

If ¢, = 0, which obtains for the tetragonal classes I, II, V and VI, these directions
coincide with the crystallographic tetragonal axes.

ortan4 ¢ =

HI. An inspection of the strain-energy function of the cubic crystals show that in
this respect these crystals are similar to the tetragonal crystals with ¢;g = 0; the four
directions coincide with two of the axes and with the bisectrices of the angle between
these axes.
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IV. TWO ISOTROPIC MEDIA

§ 1. A solid and a liquid medium

In this chapter we extend the theory to special wave-systems occurring in two
homogeneous isotropic and perfectly elastic semi-infinite bodies which are in contact
along the plane z = 0. We start this investigation with the case in which the rigidity
of one of these media is infinitely small (i = 0). ‘

The procedure followed here is quite analogous to that of chapter I: we calculate
the direction of the stress on the interface exerted by one longitudinal or.one trans-
verse wave travelling in the solid medium; the Rayleigh (Stoneley) equation expresses
the equality of these two directions. The only difference with the case of chapter I
is that here these stresses are altered by the appearance of a wave in the liquid body

z A longitudinal' wave
W —— ‘A'l ‘ .
l n ¢ -+ z cos &
[- I A exp iy <t—XSI 1+ 2 c0s 1)
u’ G
travelling in the solid medium exerts on
3y the plane z = 0 a stress given by
X
3, T.. = —ivpaid; . 2 sin%*9, cot O

and Z (14)

W, A ’
-4 iy T,, = —ivpcyA; . cos 2 0,

. C .
where sin 9, = -2 sin 9,,
Fic. 7. G

¢; = the longitudinal and ¢, = the transverse velocity. These expressions are easily
derived from formulae (1) on page 12 by introducing ¥, The phase-factor is omitted
(as usual).

In the liquid medium a wave appears exptessed by

. x sin &,/ 9
Ay exp iv (r— S % _EZC‘OS 1)
¢
which is connected with the movement in the solid body by the condition that the
vertical motion only must be continuous. From this condition follows:
sind,’  sin ‘
2 = 7L and 4, cos &' = A4, cos 04
a ¢

This wave exerts on the interface a stress in the vertical direction equal to

cot 9

Tpe = —i'c/’4) or T,; = —ivg'cydy . —— 2,
: cotdy
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The result is that at z = 0 a stress-difference is caused, determined by

A Tpe = —ivpcy Ay . 2 sin®3, cot 9y

’ cot 15
A Ty = —ivoc; 4y <cos 280, — M) 13
o cot ¥y
} ATy 2sin*Gcotdy
hence A\ Ty c0s 29y — o’ cot ﬁi
o cot Oy
In the same way we deal with the case of a transverse wave:
A, exp v (t __xsin &+ zcos 02>
Ca
with Tpx = ——z‘v@c2 A, . cos. 2, (16)
T,, = +ivgcy Ay . 2 sin®dy cot &,
z
W/ Ay
o
5
X
)
Fic. 8.

The accompanying wave‘bin the liquid is propagated in the direction &, given by

sind, ¢ . . o , , .
71— 7 with an amplitude 4, satisfying 4," cos &' = —A, sin D,
sin ¥, ¢ - ‘
. : . 1
This wave exerts a stress Ty, = v0'Cy Ay . ——-
cot ¥y

The stress difference is then:
A T = —iv0Cy Ay . CO8 29,

o an
A Ty = +ivocy 4, (2 sin®d, cot Py — ‘———,> .
o cot Py
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which may be represented by a vector in the direction given by

Asz‘__ cos 2 ¥,

AT 2 sin?d, cot ¥, — —Q——,
o cot &y

As the stress on the interface must be continuous the stress-differences have to
disappear which is only possible if the two stress-differences (15) and (17) are in the
same direction. This condition leads immediately to the equation

2sin*cotdy cos 2 9,
cos 2 9, — 2 cot ﬂf 2 §in®, cot Py— — & _
o cot ¥ o cot Py
. o’ cot
or cos? 2 &, + 4 sin*d;, cot 9, cot 9, — 1 = (18)
g cot &

This condition although necessary is obviously not sufficient; the stress on the
interface disappears if moreover the amplitudes 4, and A, satisfy the equation
(A T = (A Tpe 01 ¢ A4y . 25i029, cot &y = ¢y Ay cos 2 D,

Equation (18) determines the directions @ of a three-wave system possible in two
media one of which being liquid. Such a system will be a kind of Rayleigh wave if
all waves decrease exponentially with increasing distance to the plane of contact.

§ 2. The existence of surface waves

In that case cot 9; and cot &, are positive imaginary, and cot &, negative imaginary;
with & = ¢,/sin 9, equation (18) becomes: :

3 7 7 —:—2 . .
@ e—e? —4 P\ /i) (of—a?) + L g Vfﬁ_f_ -0 (19)
N cl

(441 ¢t —¢?
with &2 < ¢2,

It is easily shown that such a root exists for every value of the material constants.
For small values of &* the left hand side of the equation is in first approximation
equal to —2 ¢,%? (1-—¢,%/c;?) which is negative as ¢, > ¢,. Again if ¢ is equal to the
smallest of the three velocities (which is either ¢, or ¢,") the left hand side is positive.
Consequently equation (19) always yields a root &2 < ¢2. ‘ , .

For small values of the ratio between the acoustic resistances o’c,’ and gc, the
transfer of the energy of waves from the solid to the liquid medium will be small too;
then the propagation of waves in the solid body will be only slightly influenced by
the liquid and therefore not very different from the propagation in a semi-infinite
body bordering on the vacuum. In particular the velocity of the Rayleigh wave will
then be almost equal to the velocity cg of Rayleigh waves calculated in chapter I;
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as this velocity is somewhat less than the velocity ¢, of the transverse waves it is-to be
expected that for small values of ¢'c;’/o;¢; the velocity of the surface wave travelling
along the interface will not differ very much from c,. However, the velocity discussed
above is smaller than the velocities ¢;, so that in the case where ¢;” is much smaller
than ¢, the velocity of the surface waves is also much smaller than c,. This surface
wave is therefore quite unlike the Rayleigh wave we expected to appear; appatrently
we must consider other roots of (19) in order to obtain this wave. Indeed it is evident
that at small values of ¢’c;'/oc, the velocity of ordinary Rayleigh waves satisfying
the Rayleigh equation of the solid medium:

3 T P
2 o=t —4 /(@) (Pe) =0
1

will approximately satisfy (19) too. As in the case under consideration ¢, < ¢, the
third term of (19) is imaginary for & = cg this root of (19) is complex with a real
part =~ cp.

The corresponding wave-system closely resembles the Rayleigh wave of chapter I,
but the imaginary part of the root gives rise to a slight exponential decrease in the
horizontal direction and a small sinusoidal -variation in the vertical direction
(CAGNIARD 1939).

§ 3. Two solid media

In the more general case where both media are solid we again follow the previous
method; therefore we start with a wave system consisting of one longitudinal wave
(4,) in one of these media accompanied by a longitudinal (4;") and a transverse wave
(4,) in the other medium. These waves are connected at z = 0 by the condition that
the motion must be continuous; consequently:
4y sin 9y = 4y’ sin 9" + Ay’ cos 9y ‘ _ z
A, cos ¥, = Ay’ cos ¥y — A, sin' &', Lo c2
The solution of these equations is: ¢
¢ Ay
e N

!

— L2 (cot —cot 9;") X

¢ N 2,
with N = 14-cot &, cot 9. G

Using the formulae of the stréss-compo-
nents of longitudinal and transverse waves
(14) and (16) we obtain the following ex-
pressions for the stress-differences on the
plane z = 0:

A = (14cot & cot %) 5

RS

Fig 9.
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ATy =—iv(oe 4, . 2sin*, cot §,—0'c,” 4, 2 sin?9,’ cot 9'—p’c,’ A, . cos 2 ,")
ATy = —iv(oc; 4y . cos 29y—0'c) 4y . cos 20y +0'cy’ Ay . 2 sin%9, cot 9,).

By means of the above values of 4," and 4,’ the ratio between these quantities is
easily reduced to
ATy Ns cot 9, + ¢ (cot &;—cot-8,")
A Ty N(s+o'—p) + o’ cot 4, (cot & —cot &)’

with 5 = 2 ¢ sin?3,—2 o’ sin28,’.

In the same way we deal with the wave system consisting of one transverse wave
(4y) in one of the media. The amplitudes of the waves in the other medium are then:

cy Ay cy Ay /
1+cot &, cot 9).
o' N c,' N( + 2 v

A, = (cot 9,—cot 4,) and 4, =
Substitution into the expressions for 7T, and 7, leads finally to the ratio between
the discontinuities of the stress-components at z = 0:
AT, N (s—l—g;—-g) + o' cot &y’ (cot F—cot 9,)

A Ty, N scotdy + o' (cot dy—cot 9,)

The continuity of the stress at z = 0 requires the disappearance of these discontinu-
ities, which can only be effected by the above wave systems 4, 4, 4," and 4, 4", A4,
if the two ratio’s A T,/ A T, are equal to each other. This equation becomes after
some reduction:

(s+0—0)? 4 (s+0")? cot ¥ cot ¥, 4 (s—p)? cot 9, cot 9,
-+ 5% cot 9, cot ¥, cot F,” cot F," — oo’ (cot P, cot 9,'--cot 9, cot ,) = 0

which is called the Stoneley equation of the two media.

The corresponding wave system constitutes a surface wave if all waves decrease
exponentially with increasing distance to the interface; hence cot 9, and cot ¥, are
positive imaginary, cot ¢," and cot 9, negative imaginary.

§ 4. The existence of the Stoneley wave

As all waves decrease exponentially with increasing | z| each plane wave and
therefore the whole wave system travels parallel to the boundary with the same
phase-velocity ¢ = ¢;/sin 9;.

This quantity fulfills the Stoneley equation:

{26—w) + 2 =0 P—{2 w—u)te%' } i e — {2 (i—p)—c%0 Py’ ¢
4=V ¢ 02 00" @' —00'e* (91 ¢+,  9) =0
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‘ T — .
where ¢; = Vl — 8_2 and ¢/ = Vl ——% (i = 1 or 2) are real numbers.
C; C;
A surface wave exists if this equation yields a real root of which the absolute value
is smaller than the smallest of the 4 velocities ¢;; we suppose that ¢,” << ¢,.
At values of 2 about equal to zero the left-hand side L of the equation may be

written as
L= 1
2

G

(u—n) (i'z+l/‘z>+2@/§ %(M—M’)< —|—i2)—2g §e4—i— %...%se—l—...
51 Ce \ Cy ‘

The coefficient of &* is

S

1
_QQ'?M</7+

2

1 A Ap! ( 1 1 > At
+ _ — —
/1’+2u'> T2 %“ v i) T i

which is negative as A > —2/, u1; hence L is negative for sufficiently small values of 2,

Tt follows that a root < ¢,” exists if L is positive for ¢ = ¢,; substitution of this
value leads to the relation

2 . 2 )
2'&/—<1+£,>%_<2L/~1> 4192“3,9241 >0 (20)
M e M 4
' o/2\1 / cre il . /21
with %2(1——2—2)/2, q2:(1_2_2)/2’ qlz(l——%)/z.
o Cy ‘ a

We denote the ratios of the squares of the velocities as follows:,

2 /2 \ 19 ’
ci:o((: 1 ’cz_,:o('(:—llgl)andiz_: <:/MQI)’
o 24 Au) o 2+ u o Mo
the quantities g then become:
4= (1—“ﬁ)1/2’ q2 = (1_;8)1/29 ql’ = (1__“/)1/2 s

and inequality (20) can be reduced to:

(%) { QP —4q 9 } _z, 4—=2p—4q B @' ¢) + (1—q1 ¢) > 0.
At given values of « and «’ (which depend only on the ratios 4/u and A'/u) the
region in the (u/u’, f) plane where this inequality holds is bounded by the curve:

( ) (C—pr—dan) —Le2p—aatsa @+ (—aw =0

The general appearance of this curve is easily obtained by means of the following
remarks: ‘ : -
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1. for small values of 8 the equation becomes
2
4 (’i) (1—o) + 2 (‘i) (142 a) —(14a) =0
w M
p_ —(+20) +4/ 5440

h ®o_
ence 7 4 (=)

case of an incompressible medium) to u/u’ = 0.319 if o = 1/, (a Poisson-medium
with = ).

This value varies from p/u’ = 0.309 if & = 0 (the

2. if we substitute § =1 we obtain (u/u’ —1)* =0, so that the line § =1 1is a
tangent to the curve in y/u’ = 1. :

3. iffor a certain value of § the coefficient of (u/u’)? disappears this value determines
an asymptote parallel to the u/u'-axis. :
Comparing the equation

QP —4 g1 gy =0 or 2—B)* = 44/ T—af+/ 1—F (D)
with the Rayleigh equation:

2\ 2 2 2

[4 c c
2R =g )/ R R
Cy* ¢ >

where cg = the Rayleigh velocity, we immediately see that the root of (21) is f =
cr?/ P
In the case of an incompressible medium (4 = o) the asymptote is f = 0.9126 and
in the case of a Poisson-medium (4 = u): f = 0.8453.

In fig. 10 the curve L (¢=c,") = 0 has been drawn for the case of two Poisson-
media; the equation of this curve is

5(2~ﬁ)if~1 T
M

(2 f —1) VA=, ) (—=p) —p 5,\/2/3(1—/3) — 0.

AsL >0ify'/pn =0 the region where a root
of the Stoneley equation exists is confined
"between the curve and the $-axis; more-
over the assumption ¢’ < ¢, limits this
domain to the left-hand side of the line
8 = 1 (ScBOLTE, 1943). The region is re-
presented by the shaded area of fig. 10.

e303dwAse
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V. PRACTICAL APPLICATIONS

§ 1. Séismology

Seismic data show that the propagation of elastic disturbances through the carth
is approximately the same in all horizontal directions. Consequently when dealing
with seismic waves we may consider the Earth as horizontally isotropic, so that we
are entitled to use the theory of Rayleigh waves in an isotropic (chapter I) or in‘a
transversely isotropic medium (chapter II).

1. As far as the polarisation of the Rayleigh waves is concerned it does not matter
which of these two media we assume to exist as in both cases the movement takes
-place in the plane of incidence. This property has been used by HILLER (1950) in his
method of determining the azimuth of the focus of an earthquake. It is evident that
this_direction is known if the movement of an observed Rayleigh wave has been
reconstructed from the seismic records.

Again in both media a transverse wave (SH), which vibrates perpendicular to the
plane of incidence, is possible in any direction. The identification of this purely
horizontal movement in a seismogram is of some importance as the direction of this
movement determines the plane of incidence. In this way HILLER obtains a second
indication of the azimuth of the epicentre. ' '

2, Other properties of the Rayleigh wave (and of all other waves too) as for
instance its velocity depend on the elastic constants; of the medium and will therefore
be different for the two media mentioned above; measurements of these properties
may be used in order to determine whether the body transversed by these waves
is isotropic in all directions or merely in all horizontal directions.

The various layers of the crust of the Earth contain anisotropic crystalline material;
however, the crystals are generally orientated at random so that the total effect over
large areas will be that each layer may be considered as isotropic in all directions.

A noteworthy exception to this general state of affairs is formed by a layer of ice
covering a lake or a part of the sea; apart from the uppermost layer the ice crystals
are all orientated with the principal axis in the vertical direction.

In each horizontal plane the ice crystals appear to form groups of crystals with the
hexagonal axes in the same direction; as the orientations of these clusters show a
random - distribution the overall effect will be that a sheet of ice behaves itself as
transversely isotropic. Hence for waves lenghts small in comparison to the thickness
of the sheet the velocity of the Rayleigh wave in ice is given by equation (6).

3. Returning to the commonly occurring case of a formation consisting of several
layers of isotropic material we observe that such a structure may be considered as
vertically anisotropic inasmuch as the time necessary for a seismic wave to travel
a certain distance 4B (fig. 11a) is a function of the angle ¥. ‘

It is evident that the resemblance of a stratified medium to a homogenéeous trans-
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Fic. 11a. FiG. 11b.

versely isotropic medium is in general very slight as the actual path of propagation
deviates strongly from the straight-line path followed in such a homogeneous medium.
However, this deviation becomes smaller if the velocities of the waves in the layers
are alternately great and small, as in fig. 11b; if moreover the thicknesses of the
layers are small in comparison with the length of the waves the actual path may in
first approximation be regarded as straight. In such a body a disturbance is propagated
along (approximately) straight lines with a velocity which is a function of the
direction ; in other words this body is transversely isotropic. This kind of stratific-
ation is not unfrequently encountered in geophysical prospecting (UHRIG & VAN
MELLE, 1955); in connection with this circumstance, PosTMa (1955)'investigated the
relation between the elastic constants of the layered structure and those of the
equivalent homogeneous transversely isotropic medium.

As this paper is primarily concerned with the properties of Rayleigh waves, we
use his results in order to calculate the velocity of these waves (equation 6), the
values of the attenuation factors cot 9, and cot 9, (equation 4) and the ratio of the
horizontal and vertical amplitudes (to be calculated from the condition that the
stress is equal to zero at the boundary).

In the case of a formation consisting of alternating layers of limestone (thlckness dy)
and sandstone (dy) PosTMA obtained the following elastic constants of the substitute
homogeneous anisotropic medium:

0 A C F L
dyfdy = 14 3.4 gr/cm?® 3.36 246 097  0.74

1 11 92
dildy =3 2.6 gr/cm? 6.25 4.57 1.74 1.40 X 101 dyne/cm

The velocity of the Rayleigh waves is in the first medium 0.53 km/sec (and 0.70
km/sec in the second medium); the attenuation factors are 0.227 and 1.377 (0.19{
and 1.697). The ratio between horizontal and vertical amplitudes of these waves
is in both cases about equal to 0.6.

This result is of some interest in connection with the discrepancy between the
observed ratio between the horizontal and vertical amplitude, which is often greater
than 1, and the theoretically calculated ratio, which is for isotropic media about 0.7.
The suggestion is sometimes made that this discrepancy is due to some kind of
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heterogeneity in the neighbourhood of the seismographic station. The above result
indicates that it is doubtful whether such a heterogeneity will be sufficient to alter
the theoretical ratio in any decisive way.

4. In the theory dealt with in this paper it is assumed that the media are semi-
infinite; therefore it is applicable only if the wavelength is small in comparison with
the thickness of the medium.

The periods of the long waves observed in seismograms are about 15 sec so that
the length of these earthquake-waves is of the order of 50 km; as the thickness of
the crust of the Earth is about 40 km the above theory does not obtain for these waves.

It may be expected that in this case the eigenfrequencies of the elastic structure
consisting of one or more layers will be predominant in the seismograms; the theory
based on this conception has been worked out by several authors in order to deal
with some particular problem. For instance: the appearance of a special kind of
wave (T-phase), by EWING and his collaborators; the occurrence of a maximum
amplitude of the long waves (Airy-phase), by the same authors (1950); the stratifi-
cation of the crust, by STONELEY (1955); the existence of a low-velocity layer, by
GUTENBERG (1954); the phenomenon of microseisms, by the present author (1943).

5. The occurrence of a surface wave travelling along the interface between two
media is only of importance for an obsetver situated at a short distance from this
surface, since the amplitude of these waves decreases rapidly with increasing distance
to the plane of discontinuity. Thus Stoneley waves connected with the boundary
between the crust and the mantle of the Earth are too small to be identified in the
generally rather complicated coda of a seismogram,

This unfortunate circumstance does not arise in the case of surface waves propa-
gated along the bottom of the ocean; the velocity ¢ of these waves is determined
by equation (19):

3 ‘e’ 22
Qe 2—e2)2—4 %2—'\/(:22—82 ,\/ c,2—e? - %Z_l 84V o et 0
1 1

(,'1,2——82

where ¢; = 6.5 km/sec, ¢, = 3.8 km/sec (velocities in the silicic crust) ¢, = 1.5 km/sec
{(velocity of sound in water) and p’/p = 0.36.

The relevant roots of this equation are nearly 1.50 and 3.404-G.12 7.

If the seismic waves are generated by a disturbance in the solid medium, a Rayleigh
wave with the velocity 3.40 km/sec will appear; this velocity is about equal to that
of Rayleigh waves travelling along a free surface (3.42 km/sec) which is only slightly
changed by the presence of the fluid layer. As the ratio between the acoustical
resistances is rather small (p’c;’/oc; = 0.08) the propagation in the solid medium is
not greatly changed by the ocean.

A wave with the velocity e, which is slightly smaller than the velocity of sound in
water, will be observable if the primary disturbance takes place in the fluid medium,
as happens in the case of a seismic disturbance of the ocean’s bottom or at under-
water explosions.
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§ 2. Crystallography

In a recently developed technique the elastic constants of an anisotropic or crystal-
line body are determined by measuring the travel-time of ultrasonic waves along
a path (45 in fig. 12) in these media (DE KLERK & MUSGRAVE 1952).

The waves are generated by a vibrating quartz crystal (4) in contact with one of
the two parallel sides cut perpendicular to the principal axis of symmetry (z-axis)
of the specimen to be examined. A similar crystal (B) adhering to the other side is
used as a detector.

Usually these crystals are cutin a rectan- z
gular shape thus ensuring that the vi-
brations are polarised in the direction of
a diagonal. A

In general three waves generated at 4 - N
travel in all directions with velocities given
by equation (9). The travel time of only \
the first arrival in B is measured. If the B
orientation of the axes of the specimen is ~ \./
known it is possible to measure the angles
and ¢; entering these data and the velocity
into equation (9) some information about FiG. 12.
the elastic constants is obtained.

This equation is much more simple if polarised waves are used; as we show in
chapter II1, in several classes of crystals, in some directions waves can be propagated
which vibrate transversely and parallel to the surface (SH waves). The velocity ¢ of
these waves obtained from the equations of motion (10) by putting p’ = r = 0 and
w = @ (the auxiliary angle v used in these equations afterwards proved to be equal
to the angle ¢ in fig. 12).

Hence ¢ is determined by

Yo (an—a) cos 2 @ + aypsin 2 ¢ — Y, (ayy+az) + 06 = 0

where a;; are given by formulae (7) on page 12 and ¢ = ¢/sin 9.

As the direction of the waves must satisfy equations (11) and (13) with v = @'we have

2ay
tan2 ¢ = — ;
v Ay~ oz
it follows that 0% = 1, (@ +ag) — Yo { (a—a20)* + 4 a2 }12. 22

These SH waves are generated only if the primary movement in A4 is horizontal
and if moreover the angle ¢ between this movement and the y-axis satisfies equations
(11) and (13). This axis is chosen perpendicular to a plane of symmetry of the crystal
through the principal axis; when such a plane does not exist the y-axis is chosen along
a digonal axis. In the case of cubic crystals one of the principal axes is taken as y-axis.
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In order to establish the situation where SH waves are propagated towards the
detector B both quartz crystals must be placed in such a way on the surfaces of the
crystal that their vibrations are parallel to these surfaces; again the detector is
turned perpendicular to the generator.

" Rotating the crystal to be examined round its principal axis while the quartz
crystals remain fixed the response of the detector will be zero if the angle ¢ fulfills
equations (11) and (13). When now turning the detector over an angle of 90° a
maximal response will be observed and the travel time of a pulse can be measured.

As in crystals of the hexagonal and rhombohedral, the tetragonal and the cubic
classes SH waves are possible (in the remaining classes it is not possible to satisfy
equations (11) and (13) simultanecusly) this method is useful for many of the most
frequently occurring crystals.

In the following these three classes will be considered seperately.

1. Hexagonal and rhombohedral crystals.
_In this case the quantities a;; appear to be:

@y = { ey 0082 Q5 (er—Cye) SIN?@ } -+ 2 (¢yq SIN P-c55 €O @) cOt P + €y cOL*)
Iy = { ¢y Sin*@+Y; (cp—rcye) COs2Q } — 2 (cyq 5T 45 €O8 @) cOt § + gy COL*D
@iy = Yy (en+cg) sin @ cos @ + 2 (cy cOs p—cy5 8in @) cot .

As shown on page 30 the angle ¢ is given by tan 3 ¢ = ¢/css.
The velocity equation (22) then becomes, after some reduction:

0% = cge si20 + ¢y c082) 4/ €1 + ¢y sin 2.9,

Measuring ¢ in several directions & the constants ¢y, ¢ and \/ €%+ c¢y5? are obtain-
ed; morsover if the orientation of the axes of the crystal are known the determination
of ¢ yields the value of ¢, /cy5, so that ¢y and ¢5 are known too.

In all hexagonal and in some rhombohedral crystals ¢, = ¢ = 0; as @ is then
undeterminate the response of B is zero if 4 and B are perpendicular. Apparently
no adjustment of the crystal is needed as SH waves are emitted in all directions.

2. Tetragonal crystals.

The quantities g are:
apy = (g cOS2@+2 ¢y 8IN @ COS PtCgq SIN%@) - ¢4y cOLH
Gy = (€7 SIN2P—2 014510 @ COS P—+Cq COSZP) + €4y cOLED
Ay = €14C08 2 P+s (CratCoe) 810 2 @

de
Astan4 ¢ = 1 (see page 30) the velocity equation becomes:

Cr—Cra—2 Cog

oc® = 1/4{ (en—ep+2 cee) + \/(011—012;2 ce)® + 16 C'1e'.2}5i11229 + ¢y cO8*P.
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Using these relations measurements of ¢ and ¢ yield the value of ¢, ¢, ¢35 and
Ciu—Cr2-

3. Cubic crystals. :

In this case the formulae just obtained for tetragonal crystals are applicable with
Cgs = €y and ;5 = 0; hence tan 4 ¢ = 0, or ¢ = 0 and ¢ = =/4. The corresponding
velocities are given by
0¢% = ¢y, if p =0,
oc? =1/, (cy~—cyp) sin?) + ¢4y cos?d, if ¢ = 7/4,

yielding the values of ¢, and ¢;;—¢ps.
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