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PREFACE

The expansion of commercial air traffic by operations with turbine powered
aircraft gives rise to new problems in meteorclogical research in the higher
levels of the atmosphere. Especially those items which are closely related to
altimetry, flight planning, drift determination and aeronavigation should be
re-examined in the scope of the flight characteristics of this new type of aircraft.

Participating in a special commission established in order to consider the
briefing of long range flights with turbine powered aircraft, the author made
a study of these problems, the results of which are presented in this paper.

Dr. F. H. Schmidt, the chairman of the commission, contributed to this
publication by many discussions with the author and critical reading of the
manuscript; Dr. J. L. Spier prepared the upper air charts.

The Director in chief
of the
Royal Netherlands Meteorological Institute.

Ir. C. J. WARNERS
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INTRODUCTION

In synoptic and aeronautical meteorology the upper air flow plays a dominant
part in daily work and theoretical investigations. The structure and develop-
ment of the motion is concealed in the hydrodynamic and thermodynamic
equations but in virtue of their complexity these equations are far from being
accessible for a complete analytical description. For practical reasons one is
therefore forced to simplify the basic equations in order to arrive at a fairly
good approximation of the air motion. One of these simplifications involves
the elimination of accelerations and vertical motions of the air, resulting in
the well-known geostrophic wind equation. The approximation of the air flow
which is actually based on this geostrophic wind equation is applied success-
fully when dealing with activities which in the first instance demand rough
treatment of the subjects. In this respect it may be pointed out that several
ideas and objectives in practical meteorology make use of this geostrophic
wind approximation. Especially in acronavigation and altimetry it is the basic
tool for different methods of procedure. It was partly owing to the stimulus
of some unsolved questions there, that this paper was written. The most impor-
tant questions involve the modification of some pressure pattern techniques
for turbo prop and turbo jet aircraft and the precise meaning of composite
charts. The discussion of these problems starts with a general investigation in
terms of time and height dependent geostrophic flow. (parts I, II and III).
In part 1V the results obtained therefrom are applied with respect to some
aspects of aeronavigation especially as regards those for turbine aircraft.
Finally in part V a more or less academic problem has been worked out
concerning trajectories of air particles within specified velocity fields.







PART I

PHYSICAL SURFACES IN THE ATMOSPHERE
WITH GEOSTROPHIC FLOW

The well-known geostrophic wind equation in isobaric surfaces is considered
to give a fairly good approximation of the velocity field in the earth’s atmos-
phere. The horizontal projection of the isobaric windfield may be interpreted
as a two-dimensional velocity field with stream function. Since the geostrophic
approximation may be assumed for any pressure surface and pressure may
serve as the vertical coordinate in the atmosphere, the problem arises whether
the (horizontal projection of the) windfield in an arbitrary surface may still be
conceived as a velocity field with stream function. It has already been shown
by Montgomery [1937] that this is true for the isentropic surfaces. In this part
it will be demonstrated that apart from the isobaric and isentropic surface
there exists a whole family of physical surfaces in the atmosphere with the
property quoted above.

1. Geostrophic fiow

In the free atmosphere the velocity field of large scale motions permits us
to define a geostrophic wind velocity in every point of a horizontal surface.

If k denotes the unit vector pointing to local zenith, z represents height
above sea level, p pressure, p density and

A=2QsnL
the vertical component of the angular velocity 2 £ of earth’s rotation at

latitude L (Coriolis parameter), then the geostrophic equation may be written
in vector form

ve =k A v, p. (L.1)

ap
Here bold characters denote vectors, the subscript z refers to the usual gradient
operator in a horizontal surface.

The equation assumes a simpler form when pressure is used as a vertical
coordinate instead of height.
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Applying the hydrostatic equation, (g acceleration of gravity),

op
= — gp, 1.2
52 gp (L2)

which expresses that the force of gravity is balanced by the vertical pressure
force, we obtain the modified geostrophic equation

ve=KkA —i— VoZ

where the subscript p now indicates the horizontal gradient operator in a
horizontal projection of the isobaric surface.
Introducing the concept of geopotential ¢, or gravity potential

dop = gdz, 1.3)
equation (1.1) takes the form
1
ve =k A m V0. 1.4)

As the unit of geopotential the standard geopotential meter (gpm) has been
adopted, defined by e

1 gpm = 9,80665 m2 sec2.

In the lower atmosphere, where g is about 980 cm.sec.2 the geometric height
in meters and geopotential in geopotential meters are approximately equal.

The geostrophic windvector is directed along the isobars in a horizontal
surface or along the contour lines of an isobaric surface. Pure geostrophic
winds exist in frictionless adiabatic motions, if the earth’s curvature is neglec-
ted and the Coriolis parameter is regarded as constant. The accelerations
vanish and the horizontal pressure force is balanced by the Coriolis force. The
geostrophic flow associated with it represents a steady flow along parallel,
straight horizontal streamlines. ‘

In large scale motions in middle and high latitudes, however, the accelera-
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tions are usually so small that the geostrophic departure is considerably
smaller than the wind itself. As a consequence the geostrophic wind can be
used as a first approximation for the wind velocity.

Whether the approximation is an accurate one is difficult to prove. The
geostrophic departures found by comparing rawins and contour-measured
winds, as such, include all errors of analysis, map reading and wind measure-
ment. The justification of the wind approximation therefore depends on the
evaluation of the apparent ageostrophic deviations. For spot winds over the
British Isles Murray [1954] derived apparent ageostrophic root mean square
vector deviations at 500, 300 and 200 mb as 14, 20 and 18 kn, showing that
the deviations increase from the 500 mb level, which is in the vicinity of the
level of non-divergence, upwards to the higher levels of the troposphere.
Kochansky [1958] found at 200 and 300 mb approximately 16 kn. These figures
should be interpreted with some caution, since the uncertainty in the wind
observation increases considerably with height. Due to the short period time-
and space variability of the wind, and observational errors, the profiles of
observed winds often show phenomenal fluctuations already above 7 km,
Reiter [1958]. At the same time the uncertainty in the contour spacing in-
creases, caused by the increasing errors in the geodynamic height, computed
from radio soundings. Thus until better means of measuring wind and geo-
potential are developed, geostrophic winds can be considered a workable
proposition. That is the reason why the geostrophic approximation is exten-
sively used in synoptic as well as in aeronautical meteorology and is also
applied in theoretical investigations. In this publication the approximation
is assumed to be justified at any pressure level and to be valid at any time.

By its simple form a number of devices have been designed to measure
wind speed and direction from upper air charts using the geostrophic relation-
ship, and geostrophic altimetry is mainly based on the concept of geostrophic
winds.

Montgomery [1937] has shown that the geostrophic wind in isentropic
surfaces takes the form

1
ve=kA n VoV (L5)

where © refers to the potential temperature and wwu represents the isentropic
stream function or Montgomery’s acceleration potential

yu = ¢ + ¢T, (1.6)
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¢ representing the geopotential of the isentropic surface, cp the specific heat at
constant pressure and T temperature.

The geostrophic windvector on isentropic surfaces is directed along the
curves yy = constant. Equation (I.5) is used in isentropic analyses.

At this point one may put the question whether the geostropic flow concept
is valid in isobaric and isentropic surfaces only?

The answer to this question is given in the next section. As a result a whole
set of physical surfaces with geostrophic flow is found, including isothermal
and isosteric surfaces.

3. Surfaces with geostrophic flow

Neglecting the variability of the Coriolis parameter the geostrophic equation
_in isobaric surfaces may be written

1
ve=—kA vE=kA —fqu)’

where the function & = — % plays the rdle of a stream function. The geo-

strophic approximation is valid in every isobaric surface. Therefore the geo-
potential depends not only on the east-west and north-south components X
and y, but involves an additional pressure variable p.

In order to investigate geostrophic flow within specified surfaces, we intro-
duce an arbitrary “space function” p = p(x, y), continuous and differentiable
with respect to x and y.

If ( )p means a substitution for the space function p(x, ¥) in the expression
in brackets, then the wind in a horizontal projection of the arbitrary surface
s may be written

Vs:_k/\(vg)p-

When v £ is split up into its components, we derive, after partial differentiation
with respect to x and y, for composed functions,

&
(v = vrp— <8—> VP
P
p
Hence we may write
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Vs=—kA vEp+kA <%> vp 1.7
D
The first term on the right refers to a gradient vector for the composed stream
function (&), = &(x,y, p(x,y)), the second to a pressure gradient in the
horizontal projection of the surface pressure distribution.

In general the vector configuration v, itself cannot be derived from a stream
function. Consequently it should be represented graphically by sets of curves,
points etc. like isogonals, isotachs, points and lines of convergence and diver-
gence, neutral points and so on. However, we are rather interested in the
geostrophic approximation considered in the previous section.

In order for a motion vg to possess a stream function it must be non-divergent.

Hence, with (1.7)

95

Vivg=— V- (&A VE)+ V'(k/\<51;> vp) =0

According to the vector products

V'(k/\ V(Zl)p): V(é)p'(V/\k)*k'<V/\ V(&)p),

V- <k/\ <%> VP> = <—§§>pr : (V/\k)—k‘(VA<%—> vp)

D D

and on account of the identity

VA VER=0
and
vAk=0
we get
o€
V'Vs:*k'(V/\<3§>Vp):O-
p
Besides we have
o8 9
v A oy VP=—VPAVI{—] .
p ap
D D

Thus,

k-vpA vV <F>:O’ (1.8)
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which expresses that the space function p(x, y) must satisfy the homogeneous
partial differential equation

op op
épy ? - & =

px— = 0. 1.9
X oy

Since the term on the left of (I.8) involves a unit vector and two gradient
vectors, the resulting triple scalar product may be expressed in the form

J <p9 Z%) =0,

where J denotes the Jacobian determinant in the horizontal plane

; &\ @ ot
Pop) T an \” )

As a result we find that the horizontal projection of the motion on the
surface s, defined by the space function p = p(x, y) behaves like geostrophic
flow if the space function is such, that the Jacobian determinant of p and

—~ vanishes.
op

With £ = — —;% the relation with the Jacobian determinant takes the form

J <p, Z-i): 0. (1.10)

Now according to the hydrostatic equation (1.2) and equation (1.3) we have

0 1
R (L11)
op P
We may therefore write for (1.10)
I(p, p) = O.

In dry air, the pressure p, absolute temperature T and density p fulfill the gas
equation

p = pRT, (1.12)
where R = 2 87.04 x 108 m2sec~2 per degree absolute is the gas constant.
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In case of moist air virtual temperature should be read instead of temperature.
Then, with the above equation of state in mind (I.10) becomes '

J(p, p) = J(p, T) = J(p, T) = 0. (1.13)

These expressions mean geometrically that the surfaces with geostrophic flow
intersect the isobaric surfaces along isotherms and in virtue of the gas equation
along the isosteric lines. Put otherwise, in surfaces with geostrophic flow the
isobars, isotherms and isosteric lines coincide.

To specify these surfaces mathematically we may observe that in the atmos-
phere any surface may be interpreted to be a scalar surface for a quantity
that depends on three parameters, e.g. pressure, (virtual) temperature and
height above sea level. Then within the scope of the above result the surfaces
with geostrophic flow may be represented by scalar surfaces for scalar functions
S which depend on pressure and temperature only or in view of the gas equation,
depend on pressure and density, respectively temperature and density only.

We may remark that the coinciding surface isobars, isotherms and isosteric
lines happen to be the characteristic curves of the partial differential equations
(I.13). This may be seen for instance from the equation

I(p, T)=0

7 1%
or Ty 2 T Py,

X ay
The characteristic curves are determined by the Lagrange’s equations

dx

R
dr v
dy
=T
dr *
d

Ly
dt

where T is any suitable parameter.

In view of this system of equations the characteristic curves are isotherms,
embedded in iscbaric surfaces. Then, in addition, from the gas equation it
follows that the characteristic curves, which generate the scalar surfaces
S = constant are coinciding isobars, isotherms and isosteric lines.

Examples of physical surfaces with geostrophic flow are isothermal surfaces
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S = T = constant, isosteric surfaces S = p = constant, isobaric surfaces
S — p = constant and isentropic surfaces S = ® = constant. The last example
in virtue of the definition of potential temperature

R

=T <l(5)9> @ (L.14)
p

R
where — = 0,28 for dry air is assumed to be constant.
Cp )
The geostrophic equations for the wind approximation in isobaric and
isentropic surfaces are already known, cf. equations (1.4) and (L.5).
In order to evaluate the corresponding equations for every surface with
geostrophic flow we return to the equation (L.7).

Substituting for § = — % and the hydrostatic equation (I.11) the wind

vector on an arbitrary surface s takes the form
1 1
VS:kA—X—Vs(ﬂ‘}_kAEVspa (115)

showing that the wind is a combination of the expressions (L.1) and (L.4).
The first term refers to the horizontal gradient of the geopotential of the surface
and the second term to the pressure gradient in the horizontal projection
of the surface pressure distribution.

Next, let us suppose that s is a scalar surface with geostrophic flow. Then
according to the above result the scalar function S should depend only on any
two of the three quantities pressure, (virtual) temperature and density, for
instance

S = So = S(p, p)s

which may be rewritten:
p = p(p, So).

Hence, from equation (1.15) we obtain

1 1
— vy = k — Vv kKkAN——<V
vg = Vs = K A Vs ¢ +KA Ap(p. So) s, P
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pdp

1 1
=kA Vo p+kA—V —,
0y So 2z So Jprp(p, So)

where py refers to an arbitrary reference pressure level. Thus we have
1
ve =Kk A = Ve, (9 — s (1.16)

On account of the hydrostatic equation (I.11) the quantity

P g
o= — | P @.17)
p(p, So)
Pr

is to be interpreted as the geopotential of the pressure level p with respect
to a reference pressure level pr in a barotropic atmosphere in which the
quantity S is constant and equal to S,.

(1.16) may be written

1
Vg:kA—K— v (L.18)

where
Y =0 — @,

We may put ¢ = gz, where z denotes true height measured by means of a radio-radar
altimeter and @s, = g7sy, Where zg, indicates a “pressure altitude’ which may be measured
by a pressure altimeter, provided that it has been calibrated not according to the standard
atmosphere, as is usual, but according to the barotropic atmosphere S = S,, then

¥ = gz — z5) = gD*
and
ve =k A x v D*,

K:K.

D* denotes the difference of readings of both altimeters. If D* is measured in feet, then

247
Ve = gin Ln AV

in knots.
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When the arbitrary surface happens to be a surface within which the temperature-pressure
distribution corresponds to that in the standard atmosphere, then D* reduces to the well-
known D-value, which is commonly used in geostrophic altimetry (cf. part V).

Then the wind equation assumes the form

ve=kAxyD. (1.19)

Summarizing our results we have:
Applying the geostrophic approximation for the wind distribution in real
(baroclinic) atmosphere, the surfaces with geostrophic flow consist of scalar
surfaces, for which the scalar function S depends only on any two of the three
quantities pressure, density and (virtual) temperature. The geostrophic equation
takes the form

1
Vg:k/\TVV/

where w denotes the difference between the geopotential ¢ of the surface with
respect to a horizontal level and ¢, the geopotential of the surface with respect
to a fixed reference pressure level in the barotropic atmosphere, defined by
S = Sy = constant.

The surfaces with geostrophic flow are generated by coincident isobars, iso-
therms and isosteric lines.

In barotropic atmospheres themselves any surface will have geostrophic
flow and the geostrophic equation simply reduces to the wind equation in
isobaric surfaces. This may be understood by the remark that in barotropic
atmospheres the geostrophic flow is independent of pressure. In expression
(1.18) w equals the geopotential of the reference pressure ievel with respect
to a horizontal reference level, so that the equation reduces to the form

1
Vg:kA—f Vp ¢

From this result we may conclude that the wind patterns in surfaces with
geostrophic flow will differ in appearance, provided that the real atmosphere
diverges appreciably from a barotropic atmosphere, in other words when the
real atmosphere be baroclinic.

In practice the representation of the air motion takes place by means of
drawing isopleths of the stream function, because these isopleths may be
interpreted as streamlines of the motion.

In isobaric surfaces for instance this object is gained by the geopotential or
contour lines ¢ = const. (Chart 1).
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4
3 |/ p =const.
1 ‘?So:const T=const.
Fig. 1 ¢ =const.

In the case of an arbitrary surface with geostrophic flow the isopleths consist
of lines y = constant. Here it is obvious that we perform a graphical sub-
traction in two patterns, i.e. the set of geopotential- or surface contour lines
¢ = const. and the set of lines s = const., or in virtue of the definition of
P50, formula (1.17), the set of horizontal projections of the surface isobars
(fig. 1). In order to apply the subtraction graphically it is necessary to normalize
both scalar patterns, which means that both quantities ¢ and gy, should
indicate the same unit of measure and the increment in the p-pattern be equal
to the increment in the ¢s-pattern. By subtracting the two scalar patterns
graphically their gradient patterns are subtracted vectorially, resulting in the
representation of the geostrophic approximation of the surface wind flow.
The above subtraction method, due to Maxwell, has its counterpart in the
graphical addition method, which we shall often have to deal with in later
sections.

3. Geostrophic flow in polytropic surfaces

In order to apply the above results on isothermal and isosteric surfaces the
geostrophic flow for a wider class of surfaces is investigated.

In dynamic meteorology certain distributions of pressure, temperature and
density, compatible with the hydrostatic equation and the gas equation, have
been extensively used as model atmospheres. One of these models concerns the
polytropic atmospheres, which are characterized by a constant lapse rate m of
the temperature

T =T, — mz,
where To denotes the temperature at z = 0.
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The corresponding distribution of pressure and density is

k
L <ﬁ> , (1.20)
Po Po

where k= —g—,
g — Rm

R =c¢p — ¢y,

¢y being the specific heat at constant volume.
These distributions represent polytropic distributions of class k. The iso-
thermal atmosphere is obtained as a special case by taking m = O(k = 1).

c
When m :E, k= = , the potential temperature is constant. The model
Cp Cy
atmosphere is then an “‘isentropic” atmosphere. Another polytropic model

atmosphere is the homogeneous or rather equidense atmosphere, obtained when
g

m= — (k = o0).
R ( )

In the real atmosphere, surfaces exist upon which the above defined pressure-
and density distribution occur. It is therefore logical to introduce the concept
of polytropic surfaces of class k, being scalar surfaces for which the scalar
function S is defined by

S =ppk (I1.21)

A polytropic surface of class k = 0 refers to a pressure surface, that of

c
class k == 1 to an isethermal surface, that of class k =  to an isentropic
Cv

surface and that of class k = co to an isosteric surface.
The geostrophic wind equation for polytropic surfaces becomes according
to equation (1.16)

Vg =KkA —L \v4 ((0 — Qﬂpol‘surf.), 1.22)
A pol. surf.
where @por.surt. Tepresents the geopotential of the polytropic surface with
respect to a reference pressure level in a corresponding polytropic model
atmosphere.
In order to evaluate @por.surt. We evaluate the integral (1.17)
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Ppol f. — Jp dp
pol.surf. — — .
P p(pa SO)

r

(@)’

When this expression is substituted in the integrand we obtain

In view of (1.21) we have

1

P X
@pol.surt. = J <£—>dp.
pr \So

Integrating for k # 1, we get

1 k-1 k-1
k k k k|
@pol.surt, = 1 —k So P - Dr '

In virtue of (1.21) and the gas equation (I.12) we may write

k
1 -k

RT + const. Y(I.23)

@pol.surt, ==

The constant value involves the contribution of the lower limit p; to the
integral.

Evaluating the integral for the special case, k = 1, that means for the
isothermal surface, we get:

P g
Pisoth.surf. = — So *'P— = — S, ln 3,
1Y Dr
Pr
but for k = 1, (I.21) becomes
So = RT.
p
Hence Pisoth-surt, = — RTIn — (1.24)
Pr

Finally, the geostrophic wind equation in polytropic surfaces of class k (k % 1)
becomes on account of the equations (1.22) and (1.23)
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1 k
=kA — — RT 1.25
ve /\ Y le.surf <(p + k—1 > ( )

¢ and T represent the geopotential and temperature distribution for the

polytropic surface.
For k = 1, the geostrophic wind equation for isothermal surfaces is according
to (1.22) and (1.24)

1
ve =k A - V(¢ + RTInp) (1.26)

or, in virtue of the gas equation

vgzch-}lTVT(¢+RTlnp)

T being constant.
By equation (1.25) it is possible to write down the geostrophic wind equations
for isentropic and isosteric surfaces immediately.

c
Substituting for k = 2 in (1.25) it follows that the geostrophic wind

Cvy

equation in isentropic surfaces takes the form

1
g =kA N Vo (€”+CDT)-

This equation goes back to Montgomery [1937], who derived it by using the
first law of thermodynamics for adiabatic processes:

1
cpdT — —dp=0.
p

The quantity wyu = ¢ + cpT is the isentropic stream function or Mont-
gomery’s acceleration potential mentioned earlier, cf. (I.6).
For k = o0, we obtain the geostrophic wind equation in isosteric surfaces:

1
ve=kA =V, (¢ + RT) (1.27)

or, on account of the gas equation
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1
w=kA - Vplot )

p being constant.
It is noteworthy that for k = 0 the equation (I.25) reduces to the geostrophic
wind equation for isobaric surfaces.

To illustrate the above results a series of aerological charts has been prepared which
show the distribution of the stream function for an isobaric, isothermal, isosteric, isentropic
and arbitrary surface with geostrophic flow valid for 19 February 1956 15.00 G.M.T.

Chart T represents the 500 mb analysis. Solid lines are contour lines, the broken lines
represent isotherms. In the area of interest the temperature distribution indicates a strong
baroclinicity of the atmosphere, a condition, which is necessary for getting different stream
function distributions. (See section 2).

Chart II shows the distribution of the stream function ¥ = ¢ + RT In p in an isothermal
surface T = — 20° C.

Chart IIT represents the stream function distribution w = ¢ + RT for an isosteric surface
p = 0.85kg m3,

Chart IV gives the distribution of w = ¢ + c,T for an isentropic surface ® = 24° C,

The isopleths for the stream function w = const. have been labelled with an increment of
40 gpm. The absolute value of y is of no importance, because we may add to it a constant
value. The wind data and values for w computed from radio sonde and radio-radar wind
observations have been inserted in the charts.

According to section 2 the isopleths y = const. may be found by the addition of the
pattern of surface contour lines and the pattern of surface isobars, after a suitable nor-
malization has been carried through. However, apart from the isosteric surface, the terms
which participate in the expression for y usually show steep gradients with respect to the
gradient in the sum pattern. Consequently in practice the superposition of both patterns meet
with some difficulties.

It is evident from the charts that in spite of the strong baroclinicity the structures of the
patterns of the stream functions are much alike, except for the isentropic surface.

Finally in chart V a representation is given of the distribution of the stream function for
the wind field associated with an arbitrary surface with geostrophic flow. For that purpose
the isotherms —7,5°C, —17,5°C, —26° C, —35° C and —46,5° C have been copied from
the 850, 700, 600, 500 and 400 mb charts, together with the contour line-elements. These are
labelled with an increment of 40 gpm. Afterwards the isopleths for the stream function are
drawn free-hand observing the following conditions. The isopleths are tangent to the contour
line-elements and the increment of the stream function w is equal to the increment of the
contour height (40 gpm). Further, the isopleths intersect one and the same isotherm in points
of equal contour height. Especially the last two features make a good starting point for the
analysis. In chart'V the isopleths of the stream function have been drawn free-hand starting
from the contour line-elements upon the —17,5° C isotherm.

Some wind data which happen to be located at stations at the appropriate positions with
respect 1o the isotherms have been plotted and appear to be in good agreement with the
stream function distribution.




CuarT I1. Isothermal surface with geo-

strophic flow for 19 Febr. 1956,
1500 G.M.T. T = —20°C.
Solid lines represent stream
lines w = const. (increment
40 gpm.) Upper wind data
(interpolated from standard
levels) are plotted together with
computed values of

¢ +RTIn R

P

0

in gpm, where R = 2.8704.
106 cm?® sec2 °K1, po =1013.2
mb. H = high, L = low.

500 mb analysis 19 Febr. 1956,
15.00 G.M.T. Reconnaissance
flight, radiosonde and radio
radar wind data are plotted in
conventional fashion. Geo-
potential in gp dam, first figure
omitted. Solid lines represent
contour lines. Increment of
geopotential is 40 gpm. Broken
lines are isotherms (increment
5°Celsius). L = low, H = high,
C = cold, W = warm.
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Cuart 1. Isosteric surface with geo-
strophic flow for 19 Febr.1956,
15.00 G.M.T. p = 0.85kgm3.
Solid lines denote stream lines
y ==const. (increment 40 gpm).
Upper wind data (interpolated
from standard levels) as usual.
Computed values of ¢ + RT

in gpm; R = 2.8704.108
cm?ec? °K-1. L = low,
H = high.

CraArT 1V. Isentropic surface with geo-
strophic flow for 19 Febr.1956,
15.00G.M.T.® = 24°C. Solid
lines represent stream lines
y = const. (increment 40 gpm).
Upper wind data (interpolated
from standard levels) are
plotted as well as the com-
puted values of ¢ + ¢,T in
gpm. ¢p = 10.464.10% cm?
sec™? °K-1 L = low,

H = high.
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CHART V. Arbitrary surface with geostrophic flow for 19 Febr. 1956, 15.00 G.M.T. Solid
lines represent stream lines w = const. (increment 40 gpm). Broken lines are
isotherms, numbers above line-elements indicate geopotential values on corre-

sponding isobaric surface in gpm. Some wind data are plotted in conventional
fashion.



PART II

GEOSTROPHIC FLOW IN NON-STATIONARY AIRFLOW

The upper wind is subject to significant variations in time. Once the geo-
strophic approximation has been introduced in isobaric or other tolerable
surfaces the approximation is justified at any moment.

So, by fixation of one of these surfaces we may investigate under what
conditions the velocity field within a composite topography of the surface
again possesses a stream function. The problem of composite topographies
with geostrophic flow is of importance in aeronautical meteorology, where
such a composite topography may be adjusted to the progress of an aircraft’s
flight.

1. Composite topographies with geostrophic flow

1t is an empirical fact that the air flow in the free atmosphere in middle and
high latitudes shows a considerable variation in time. As a consequence the
accompanying weather phenomena may change rapidly and be spectacular.
The flow in isobaric and other physical surfaces is subject to fast alterations
in appearance, but it is generally accepted, that the geostrophic approximation
is valid every moment. In view of the preceding investigation, which dealt with
height-dependent geostrophic flow, it will be obvious to tackle the time-
dependent geostrophic flow along the same lines of approach.

Starting with the geostrophic flow in an isobaric surface the geopotential
depends not only on the coordinates x and y, but involves in addition a time
variable t. Now introduce a “time function” t = t(x, y) and examine whether
the flow after substitution for the time function in the field equations may still
be conceived as a ““geostrophic flow”. In other words, try to find a composite
topography of the isobaric surface in such a way that the wind distribution is
compatible with the concept of geostrophic approximation. Such a procedure
gives rise to interesting applications (Parts IV and V).

The geostrophic wind equation on an isobaric surface is determined by the
equation
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where the stream function & = — % depends on x, y and t.

After introducing the time function t = t(x,y) we perform a composite
windfield vy:

Vi — _k/\ (VE.:)'E’
where ( )y means a substitution of the time function t(x, y) in the expression

in brackets.
Analogous to expression (I.7) we derive

vi=—kA vE+kA <%§> vt. (L1)

In order that the composite vector field v; be derivable from a stream function,
the vector field must be non-divergent.
Hence, we investigate

o
Vovi=— v (kA vE)+ v (kA <f§~>vt)~

According to the vector products:

VEAVE)=V©®i- (v Ak —k (vA VE,

and on account of

VA VE=0
and

v Ak=0,

8
veovi=—k (VA <a—%>vt)-

But, with regard to another vector product, we have

we obtain
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AN (e
v A <3t>tvt“_ VtA V<7t>t.

k t %
Vv = ViA vV a—tt-

Hence,

The term on the right is a triple scalar product, that may be expressed in

the form
Za
von=T(60),
" < 8’[)

where J represents the Jacobian determinant in the horizontal plane

(8-t
ot a(x,y) ot

Replacing & by — ‘;— condition v+ vy =0 in isobaric surfaces may be

iy, 27— o (I1.2)
J?t‘ 5 .

which is the abbreviated form of the partial differential equation

written

ot ot
Pty — — Qix — =0 (I1.3)
ox oy
It turns out that the time function t = t(x, y) should be a solution of this
equation,.
The condition (I1.2) means geometrically, that the isochronals t = constant

o¢
should coincide with the issallopleths —ag = const. (issallo-geopotential lines)

at the moment t.
Since the coéfficients ¢ix and gy involve the variable t the equation (I1.3)
is a homogeneous quasi-linear partial differential equation. The general

0
solution consists of a relationship = = 0 between t and 7?
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0 .
i (t, (0>: 0.
ot

Rather for convenience this relationship may be written in the form

op do*
ELSQEE 11.4
ot dt ( )

where ¢* = ¢*(t) is an arbitrary (differentiable) function of t only.
The geostrophic equation for the windfield in the composite topography
is then in terms of (I1.1) :

1 1 [ do*
Vg:Vt:k/\TVMﬂ%"k/\* vt
t

A\ dt
kn v ika Sv |
=k A — ¢ — —_—
AR A BT
tO
where to denotes any fixed initial instant.
Hence, we have
1 .

ve=kA—V(p+ ¢*) (IL5)

hy

The windfield in the composite topography therefore possesses a stream
function

%= (¢ + 0" (11.6)

We may summarize our results as follows:

In an isobaric surface with geostrophic flow the windfield in a composite topo-
graphy of the isobaric surface, defined by the time function t = t(x, y), behaves
like geostrophic flow, if the time function is a solution of the partial differential

equation
7
J <t, ﬁ) =0.
ot

The geostrophic wind equation takes the form

1
Vg:k/\Tvt'X,
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where y, represents the sum of the geopotential ¢ of the composite topography
of the isobaric surface and ¢* which denotes some arbitrary function of t. The
time function is determined by the relation

2 de*

ot de -
The isochrones t = constant coincide with issallo-contourlines (issallohypses)

o9
o = const. at the moment t.

For a graphical representation of the composite topography with geostrophic
flow two sets of lines would suffice, namely the set of composite contours
(p)t = constant and the set of isochronals t = constant, provided that the
isochronals are labelled according to time and tendency (fig. 2). The location

of the wind may be read from the topography contours and isochronals. The
wind itself may be found by computation according to equation (IL.5). To avoid
this computation a third set of lines may be added, cousisting of the stream
lines (¢ + ¢} = constant. This set may be found by carrying out a graphical
addition in the patterns of composite contours and isochronals, after (¢); and
{¢p") have been normalized properly, that means after (¢): and (¢%) are
expressed in the same unit and the increment of () is equal to the increment

of (¢™) (fig. 2).
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2. Differential analysis

With respect to isobaric surfaces there is a principle type of differential
analysis from one surface to another, that is very useful because of its relation
to hydrostatics. The differential analysis of the topographies of two different
isobaric surfaces for the same time gives the pattern of thickness for the layer.
The differential lines obtained by subtracting the two patterns are relative
contours or thickness lines.

From the hydrostatic equation (I.11) and the gas equation (I.12) it follows,
that the geopotential difference A ¢ between two isobaric surfaces p1 = const.
and pz == const. becomes

Ap=— —RTyln 25, (IL.7)
P2
where Ty denotes the mean virtual temperature for the layer. The relative
contour lines may therefore be interpreted as mean virtual isotherms. The
gradient pattern associated with the field of mean virtual isotherms determines
the geostrophic approximation of the thermal wind pattern.

The above differential analysis for isobaric surfaces is commonly used in
meteorological practice. Most often the topography of a standard isobaric
surface, e.g. the 500 mb surface, is derived from the topography of a lower
standard isobaric surface, e.g. 1000 mb surface, by adding graphically the
thickness pattern between the two standard levels, i.e. the layer between
1000 and 500 mb.

In view of the concept of composite topographies with associated geostrophic
flow we may put the question whether the method of differential analysis still
holds in composite topographies.

Supposing that ¢y represents the geopotential in the lower pressure surface
p1 = constant, go the geopotential in the upper pressure surface ps = constant
and ¢ the geopotential difference or thickness for the layer between the pressure
levels p1 and pa.

Then we have constantly

P2 = g1+ @ (11.8)

We perform a composite topography of the lower pressure level by intro-
ducing a time function t = t(x,y). The associated windfield behaves like
geostrophic flow, if the time function is a solution of the partial differential
equation
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o
7 <t, ll->: 0
o

According to (I1.4) the time function is determined by the equation

ag1 doi™

I 1.9
ot dt {L.9)
where @1 is an arbitrary function of t.
At the same time we prepare a composite thickness topography with geo-
strophic flow. Then it follows from (I1.4) that the time function should also
be a solution of the equation

0 do*
@ __ % (11.10)
ot dt
where ¢* denotes another arbitrary function of t.

Owing to the fact, that both ¢* and ¢1* represent functions of t only, the
time functions can be solutions of (I1.9) and (I1.10) simultancously, provided
that

op op1
- = gt} ——, g arbitrary.
Er U a0 & y

As a result we observe that the graphical addition according to the method
of differential analysis preserves its validity for composite topographies with
geostrophic flow, if the tendency pattern of the geopotential of the lower
pressure surface and the tendency pattern of the mean virtual temperature for
the layer be similar or homomorph at any moment. On account of (I.8) both
patterns will also be homomorph with the tendency pattern of the geopotential
of the upper pressure surface.
In virtue of (I11.8) we have

o o 2 3 o
L A Y AR D P L T A Ty
ot & ot o é

showing that in case of homomorphy of the tendency patterns the time function
satisfies the partial differential equation for geostrophic flow in the composite
topography of the upper pressure surface.

In autobarotropic atmospheres, where the wind distribution in a pressure
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surface is independent of the pressure variable, the condition of homomorphy
is automatically fulfilled. In the real atmosphere, however, the tendency
patterns may be far from being homomorph. Examination of charts which
represent height changes of pressure surfaces and changes of thickness for the
associated isobaric layer, indicate that the broad scale features like areas of
lowering geopotential and decreasing thickness are more or less coincident,
but minor features of the pattern may differ considerably. For instance, the
location of the points of maxima and minima seem often to divert from the
vertical.

3. The enveloping topography of isobaric surfaces

Returning to the simple homogeneous quasi-linear partial differential
equation (I1.3) we note that this equation yiclds a particular solution for the
time function, which enables us to study the enveloping topography of a pres-
sure surface.

By taking ¢* = 0 in (I1.4) the time function ¥(x, y) is determined by the
equation

Y _y I
e dL1n

Differentiation with respect to x and y gives

ot

ptx + o—=0,
0x

ot
pry + pu——=0.
oy

Elimination of ¢y from these equations shows that the time function satisfies
the partial differential equation (IL.3). Hence this special time function defines
a particular composite topography, c.q. enveloping topography, which involves
the following properties (fig. 3).

1) The isochronals coincide with the zero issallo geopotential lines or zero

issallohypses.
2) The stream lines are enveloping curves of the contour lines.
3) The geostrophic wind is determined by the composite stream function

p(X, ¥, X, ¥)).
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Fig. 3

The first property is inferred from (I1.2), the second from the remark, that

o
the stream lines are found by elimination of t from —fg = 0 and p(x,y, t) =
o

const., the third from the geostrophic wind equation (II.5) which, in virtue
of ¢* = 0 takes the form

1

To demonstrate the theory we will investigate the enveloping topographies associated
with the severe gale which caused the disastrous floods along the North Sea coasts of England,
Belgium and Holland Jan. 31-Febr. 1 1953. A full account of the meteorological situation
has been described elsewhere, van der Ham [1953].

Chart VI represents the enveloping topography of the 1000 mb chart or surface weather
chart. It involves the enveloping isobars with an increment of 5mb (~ 40 gpm). Apart
from that the zero-issallobars have been drawn and some pressure and wind data inserted
which correspond to the time along the issallobars. The track of the centre of the depression
is the curve which connects the angular points of the enveloping isobars. Deepening of the
depression is reflected in the figure by a divergence of the isobars and the lack of the position
of zero-issallobars behind the depression centre. Filling of the depression is reflected by a
convergence of isobars and the lack of the depression centre behind the position of the zero-
issallobars. Near Scotland a secondary depression centre develops, but this centre has a short
lifetime and is taken up by a deep trough moving to North Germany. Near the Dutch coast
a crowding of the isobars appears, which is associated with the trough at the time that the
winds reach gale force along the Dutch coast.
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Cuart VL. Enveloping topography of the surface weather chart for 30 Jan. 1953,
12.00 G.M.T. — 1 Febr. 1953, 12.00 G.M.T. Solid lines represent
enveloping isobars (increment 5 mb.) Broken lines represent iso-
chrones — zero issallobars. Numbers near location of centres and
isochrones give date and time. Wind data and pressure values as
usual.

Chart VII represents the enveloping topography of the 700 mb pressure level. The envel-
oping contour lines are labelled with an increment of 40 gpm. The broken lines represent
zero-issallohypses, which connect the tangent points of contours and enveloping contours.
Along these zero-issallohypses the appropriate time data have been inserted in the chart.
Apart from that chart VII contains composite isotherms, The hatched area indicates a tongue
of cold air.

Finally chart VIII illustrates the enveloping topography of the 500 mb pressure level with
the same elements as in chart VII.

Comparing the three charts they present some interesting features. The track of the
centre of the depression at 700 and 500 mb as well as the track of the secondary centre on the
surface map are practically coincident. The track of the main centre of the surface depression
is displaced to the north., The tracks aimost run parallel to the enveloping contours. The
instants, at which the minimum pressure value is reached in the centre, show a retardation
towards higher levels. Moreover, the centres of minimum pressure are displaced down
stream at higher levels. In other words, the depression pierces through the atmosphere from
lower to higher levels. Examination of the composite temperature distribution shows that an
influx of cold maritime polar air occurs south of the centre. At the same time relative warm



30.0115.00

CHART VIL

Enveloping topography of 700 mb pressure surface for 29 Jan. 1953,
15.00 G.M.T. — 2 Febr. 1953, 03.00 G.M.T. Solid lines represent
enveloping contours (increment 40 gpm). Broken lines are iso-
chrones — zero issallohypses. Dotted lines represent composite
isotherms (increment 5° C). Some upper air data are plotted as
before. Hatched area denotes a tongue of cold air. Dotted portion
denote a tongue of relatively warm air.
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CHarT VIII

Enveloping topography of 500 mb pressure surface for 29 Jan. 1953,
15.00 G.M.T. - 2 Febr. 1953, 03.00 G.M.T. Solid lines are enveloping
contours (increment 40 gpm.) Broken lines represent isochrones —
zero issallohypses. Dotted lines are composite isotherms (increment
5° C). Hatched area represents tongue of cold air. Upper air data
plotted in conventional fashion. Dotted portion indicates tongue of
relatively warm air.
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air floats in from a location north of the centre in between the centre and tongue of cold
air, a situation which often gives rise to severe gales, Bijvoet [1956].

The above example shows that by means of enveloping topographies a number of special
features of the meteorological situation can be compiled in complete form.



PART III
GEOSTROPHIC APPROXIMATION IN GENERAL

When the geostrophic flow is considered to be valid with respect to time
and pressure the problem dealt with in the two previous parts may be extended
by studying composite velocity fields in space and time, which again may be
described by a stream function.

1. Space-time geostrophic approximations

In the previous section we investigated composed topographies of isobaric
surfaces with geostrophic flow. The theory was based on the empirical fact
that the geostrophic approximation in isobaric surfaces is independent of time,
The restriction to isobaric surfaces seems to be rather fortuitous because we
have shown that the geostrophic approximation also holds for other physical
surfaces, like isothermal, isosteric and isentropic surfaces, in general for all
scalar surfaces S = constant, which are generated by coinciding isobaric,
isothermal and isosteric lines. (Part I, section 2).

Apparently we may extend the theory in terms of composite topographies
of these scalar surfaces. In so doing it suffices to replace the geopotential ¢ in
(IL.2) and (IL5) by the stream function y = ¢ — @g,. As a result we have:
In scalar surfaces S = const. with geostrophic flow

1
Vg:kATvs’t W

the wind pattern in a composite topography of these surfaces defined by the
time function t = t(x, y), behaves like geostrophic flow if the time function is a
solution of the partial differential equation

E
7 <t, "’): 0.
ot

The geostrophic equation takes the form




42

1 %
Vg:k/\—}\“ Vi (l//+ W),

where y represents the stream function for the geostrophic flow in the scalar
surface and y* denotes an arbitrary function of time. The associated time
function is determined by the relation

al‘[/ dl//’l:

ot dt
We observe that the above extension of the theory only involves a special
aspect of the problem to investigate space-time geostrophic approximations
and that, apart from the composite topographies of the specified scalar surfaces
with geostrophic flow, other wind configurations exist which behave like
geostrophic flow.
To explain this we return to the geostrophic wind equation

1
vg=—KkA V&Zk/\T Vot @

The suffixes p and t now indicate that the geostrophic equation is justified
at any moment and on every isobaric surface.

We create a composite wind configuration by introducing a time function
t = t(x, y) and space function p = p(x, y).

The windvector in the composite configuration becomes:

0 0g
v=—kA(VEpi=—kA VT kA|{ VP RA{ IV
P Jpt ot Jor
where ( Yot denotes, as before, a substitution of the time- and space function
in the expression in brackets.
The resulting wind pattern behaves like geostrophic flow, if the vector
configuration is non-divergent. Thus we have the condition:

0 2
v-v:—v-(kAv(é)p,t)Jrv-(kA<6%>vp)+ v (kA<g§‘>Vt):0

On account of

Ve kA VE) =k (VA VEpt)=0
we have
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<%>v*p' (VAK)—k- (v A <—2—Ei> v o)+

p.t P /ot
ok o8
— t- B) — k- — t) = 0.
(hyetzan=r (o0 (F)ss
But according to
vAk=20
this equation reduces to the form:
a8 43
k- vpAV | +k vVtAV]—]=0 (I1L.1)
op /it ot J o4

which expresses that the time function t(x, y) and space function p(x, y) must
satisfy the partial differential equation

op op ot ot

P 2 R L)
Epx x Epy oy + Eix oy Ety o

Using the Jacobi-determinant terminology, (I11.1) may be written

J <p,z—i>+ J (t, ﬁ)z 0

and in view of

we finally have

. .
3 <p, i’) 13 <t7 OJ’Z>: 0. 11L.2)
op ot

The result may be summarized as follows:
A composite wind configuration in space and time defined by the time function
t(x,y) and space function p(x,y) is a geostrophic wind configuration, if the
time and space function are solutions of the partial differential equation (I11.2).
It is evident that for t = constant we have to deal with surfaces with geo-
strophic flow, for which
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0
J <p, —(p>: 0
op

and for p = const. we have the special case of composite topographies of
isobaric surfaces with geostrophic flow, for which

The partial differential equation (111.2)
rewritten for ¢:

op ap n ot ot 0 (1IL3)
Ypx 2y Ppy ox Ptx 2y Pty . .
is a rather peculiar one, inasmuch it involves two independent variables p and t.
We will not attempt to find a general solution, but restrict ourselves to the
examination of a particular one.
Let an arbitrary isobaric surface p = po be given. A composite topography
of this surface with geostrophic flow is formed by introducing a time function
a solution of equation /(11.2)

t = t(X,y; Po), Which is
99
Joo <t, 8—t>— 0,

where the suffix po indicates that J refers to the isobaric surface p = po. The
time function will be determined by the relation (11.4)

op op*

ot at

2

where ¢*, besides containing the ‘‘parameter” po, is an arbitrary function of t,
¢* = ¢*(p, t). The stream function associated with the specified composite
topography is according to (I11.6)

1= (o + o

If po is made to vary, we have a set of composite topographies of isobaric
surfaces with geostrophic flow, appropriate time functions t = t(x,y; p) and
associated stream functions y = y(X,y; p). In the set of composite topo-
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graphies we now try to perform a new geostrophic approximation by selecting
a space function p = p(x, y) in such a way that p = p(x, y) and the time function
t = 1(X, y, p (%, ¥)) solve the equation (IIL3).

Without going into detail it is proved that p(x, y) must be a solution of the

equation
o
J(g‘£>:0.
op

The space function of the resulting geostrophic wind configuration is then
determined by the relation

%4 dy”

%:— _&;’X = %"(p),

while the associated stream function 3 becomes

5= (x+ 1)
or

3= (04 0" )pi + (0o (I1L.5)

This fairly complicated particular solution will be applied in part IV.

By reason of symmetry another particular solution may be found, by simply
interchanging the variables p and t in the above demonstration.

It can be shown, that, in virtue of the last argument, the partial differential
equation (II1.3) involves among other solutions the composite topographies
of scalar surfaces with geostrophic flow, as should be the case.




PART 1V

APPLICATION IN AERONAVIGATION

In aeronautical meteorology different objectives in altimetry and pressure
pattern technique are attached to the concept of geostrophic winds and
geostrophic flow. Amongst them may be mentioned the determination of drift
from altimeter observations, the evaluation of wind components along fixed
routes, the use of D-value, the pre-flight planning of long distance flights and
single heading flight navigation or constant drift course. There still remain
a number of problems io be solved and in addition some new problems arise
due to the fact that operations with piston engined aircraft are gradually
replaced by those of turbo prop and turbo jet powered aircraft. In this part
some of these problems will be studied taking into account the results
obtained in the previous parts concerning geostrophic flow.

1. Composite charts

In practice the flight-planning of long distance flights with piston-engined
aircraft is generally performed by means of fixed time pressure contour analysis
and prontours of selected standard pressure surfaces, for instance the 700,
and 500 mb charts. As the total flight time of these aircraft often amounts to
more than 10 hours, important factors for the flight planning like wind and
temperature distribution are subject to considerable changes in time during the
progress of the flight. As a consequence the fixed time charts give an erroneous
picture of the situation along the track. In order to avoid this difficulty,
composite pressure contour charts and prontours have been introduced which
involve a representation of temperature and wind in such a way that the
situation at an arbitrary point of the track is nearby the expected situation
at the time that the aircraft will be at that point.

With regard to long distance flights with turbo prop and turbo jet-powered
aircraft the total flight time is reduced to half the corresponding flight time for
piston engined aircraft. Consequently the variation in time of wind and temper-
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ature distribution will have a less serious effect on the preparation of the flight.

However, a particular characteristic should be taken into account. As the
most economic flight procedure is obtained by performing a continuous cruise
climb or stepped climb, the flights take place on sloping surfaces which deviate
considerably from an isobaric surface. Therefore it is obvious to introduce
composite charts in space. Since the notion of composite charts up to the
present lacks clarity, it will be the aim of this part to relate the concept of
composite charts to that of the geostrophic flow dealt with in the previous
parts.

2. Composite charts in time

In order to apply the concept of geostrophic flow for aeronautical purposes
it is essential to relate the navigational aspects to the representation of meteoro-
logical elements which control the progress of the flight.

Assuming flights in isobaric surfaces, i.e. flights at a constant pressure
altitude, we may investigate the relationship by means of some simple geo-
metrical considerations.

Without any specification of the navigation system there is no possibility
to introduce composite charts. This may be shown by examination of fig. 4.

R

o T Q
%ﬂwe

Pyl
t=tg ro Wy Fig. 4

Let an aircraft, starting from P at time t = to, be navigated along track r{, to a
point Q. The aircraft will arrive at Q at time t = t. At time t; the windvector
in Q be wi. The same aircraft could have been directed along another track ra
by using another navigation method. Then the time of arrival would be
t = ta. On account of the time variability of the wind the windvector in Q
at t = t2 will be wy. The windvector in Q thus depends on the navigation
system. The same holds good for other points R in the area of interest, showing
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that it is impossible to have a composite chart which accounts for the distribu-
tion of wind and other elements for different navigation systems simultaneously.

If, however, a particular navigation system is considered a composite chart
is capable of representing the situation along the track.

To explain this, we recall that the pressure pattern tracks associated with a
specified navigation system may be arranged in complete figures. These figures
consist of a one-parameter family of tracks and associated pattern of timefronts.
(fig. 5). The timefronts are unfolding and originate from an arbitrary curve or

/"/\"\/)/\\
\\W
/r‘% 1 b7
% {, ts3 4

tO 1 Fig. 5

point (fig. 6), de Jong [1956]. A special method for the construction of the

Fig. 6

pressure pattern tracks, minimum flight paths for instance, is actually based on
the principle of propagation of timefronts.

Comparing the complete figures with composite topographies it is obvious
to introduce a composite chart for a complete figure by identifying the time-
fronts with isochronals of the composite chart. Such a composite topography
will not have geostrophic flow, because the isochronals in general will not
coincide with issallohypses. In such a composite chart the windfield is therefore
not derivable from a streamfunction. Consequently it can only be described by
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means of isotachs, stream lines, convergence-, divergence- and neutral points
etc., similar to the representation of the wind distribution in tropical regions.

Further, we may consider a specified pressure pattern track between two points
P and Q (fig. 7). The flight proceeds in time according to t = t(s), where s

t=const,

denotes a suitable parameter, for instance the arc distance. Through any
point R we may draw an isochrone for which t = t(s(R)) = constant. If R
is made to run over the track a time function t is found which on the track takes
the value t = t(s). This time function defines a composite topography within
which the track is embedded. The composite chart is not uniquely determined
because the selection of isochrones is arbitrary. As a special case however we
may take the isochrones which coincide with issallohypses. Then a composite
chart with geostrophic flow results. Any pressure pattern track associated with
a specified navigation system may therefore be embedded in a composite chart
with geostrophic flow. Summarizing our results we observe that in aeronaviga-
tion composite isobaric charts may be introduced only for complete figures
associated with a specified navigation system. Apart from that each specified
flight in an isobaric surface may be embedded in a composite topography with
geostrophic flow.

It is noteworthy that this result is also valid for flights within other physical
surfaces with geostrophic flow, for instance within polytropic surfaces and
in general within scalar surfaces, which are generated by coinciding isobars,
isotherms and isosteric lines.

3. Composite charts in space

Especially in view of turbo prop and turbo jet-powered aircraft the problem
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arises, whether suitable composite charts in space may be introduced for the
purpose of flight analysis and pre-flight planning.

In the first instance we tackle this problem by considering fixed time charts
and restrict ourselves to the examination of a specific flight associated with a
particular system of navigation. Let us suppose that the track between the
points P and Q be r. (fig. 8). Through any point R of this track we may draw

coinciding isobars, isotherms and isosteric lines, along which p = const.,
T = const. and p = const. As these lines happen to be the characteristic
curves of surfaces with geostrophic flow (Part I, section 2) these lines generate
a uniquely defined surface (Cauchy’s problem). Thus we have

In a stationary or quasi-stationary airflow any- pressure pattern track may be
embedded in a surface with geostrophic flow.

4. Composite charts in space and time

When the upper air flow is subject to considerable variations in time with
respect to the overall flight duration we may put the question whether an arbi-
trary pressure pattern track may still be embedded in a geostrophic wind
configuration. The answer is in the affirmative.

To demonstrate this we refer to Part III. Let r again be a pressure pattern
track between P and Q. Upon this track a pressure distribution p = p(s) and
progress of time t = t(s) appear. Now we consider an arbitrary point R.
Point R is located at a pressure surface p = p(s(R)) = const. In this pressure
surface we create a composite topography with geostrophic flow by introducing



51

a time function t(x, y, p(s(R))), which is a solution of the partial differential

equation
99
Jit, — | =0

The solution is specified in such a manner that the isochronal passing through
R, indicates the time t = t(s(R)). This may be accomplished by the choice of the
function ¢*(t). The associated stream function is ¥ = (¢ + ¢*). If the point
R is made to run along the pressure pattern track a set of composite topo-
graphies of jsobaric surfaces with geostrophic flow is found, with appropriate
time functions t = (X, ¥, p(s)) and associated stream functions

%= %% v, p6)) = (0 + ¢*h

In this set of composite topographies we then perform a new geostrophic
approximation by taking a space function p = p(x, y) which is a solution of the

equation
0
J <p, X>: 0
p

and specify the space function in such a way that the (composite) isobar,
passing through a point R, indicates the pressure p = p(s(R)). Again this may
be accomplished by specifying function y” in the right manner. The resulting
composite wind configuration is a geostrophic wind configuration because
the above description fully agrees with the construction of a particular solution
of the differential equation (IIL.3) for geostrophic wind configurations in time
and space.
Hence we may state
any pressure pattern track may be embedded in a geostrophic wind configuration.

5. Composite charts in practice

It has been shown that every pressure pattern track may be embedded in
geostrophic motion. Thus, great circle track, single heading track, rhumbline
track and minimurn flight path may in principle be analysed within composite
charts with geostrophic flow. But obviously the conditions which such com-
posite charts have to satisfy are difficult to realise in practice. Besides, the prog-
nostic character of pre-flight planning implies the necessity to consider prog-
nostic upper air charts or prontours, the preparation of which should be based
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on dynamical and physical reasoning. For this purpose a number of statistical,
numerical and graphical methods has been designed (cf. Reuter [1954]).
Especially the development of numerical forecasts in model atmospheres by
means of electronic computers has made considerable progress.

Speaking of composite charts in practice one usually is understood to mean
by that a composite topography of an isobaric surface

p = o(x, 7, t(x, ¥))

where t(x, y) has been adjusted to the progress of flight, most likely in the given
situation. As has been demonstrated in part II the geostrophic wind, derived
from this composite topography, involves only a part of the actual wind, iL.e.
the part that refers to the first term in the right side of the wind equation (I1.1)

1 1 o¢p
Vg:k/\T Vig — kA Ta*tvt-

Apparently the remaining contribution to the actual wind consists of a term,
which involves the product of the geopotential tendency and the reciprocal
speed of propagation of the isochronals.

Since the velocity of propagation has been adjusted to, say, the true air speed

9

1
¢, the magnitude of this contribution is approximately equal to T
c

Table 1 gives this quantity at 50° N in terms of the geopotential tendency
expressed in geopotential meters per hour and the true air speed in knots.

TaBLE |
TAS
knots
200 250 300 350 400 450 500
tendency
gpm.hr—1
0 0 0 0 0 0 0 0
8 3.6 2.9 2.4 2.0 1.8 1.6 14
16 7.2 5.8 4.8 4.1 3.6 3.2 2.8
24 10.8 8.7 7.2 6.1 54 4.8 4.3
| ! | |
turbo prop turbo jet
|
piston-engined
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Taking into account the velocity intervals for piston-engined, turbo prop and
turbo jet aircraft we may notice that for turbo prop and turbo jet powered
aircraft the velocity correction amounts to less than 10 knots, even for very
high tendency values. As accuracy of the forecast wind of 10 knots is difficult
to obtain, it is justified in practice to use a composite topography only instead
of the composite topography with geostrophic flow. For piston-engined air-
craft the velocity correction may circumstantially amount to more than
10 knots. Then it is useful to pay attention to those chart areas where the upper
air flow is subject to fast alterations in time.

6. Theory of single heading flights

Single heading navigation or constant drift course is a simple system of
navigation which generally saves flight time and fuel. The preparation of the
flight and the work to be done in the cockpit are reduced to a minimum.
Apart from that the theory is of importance in the calculation of the track of
pilotless aircraft.

The system has been studied mainly for flights that are conducted on isobaric
surfaces and quasi-horizontal flight levels. The theory that is most often
expressed by the well-known drift formula of Bellamy [1943], has succesfully
been applied to piston-engined air traffic in middle and high latitudes. However,
the development of turbo prop and turbo jet powered aircraft demands an
extension of the theory, since long range operations with these aircraft are
performed on sloping surfaces which deviate considerably from the horizontal.

This theory will be reviewed here, taking into account the variability of the
airflow in space and time.

Single heading navigation is based on the principle that the angle between
the axis of the aircraft and a fixed line of reference in a rectangular coordinate
system does not change along the track, allowing the airplane to drift freely
with the wind.

This may be expressed mathematically by the equation

dd

=0 V.1
n (Iv.1)

where 8, the grid heading refers to the above defined drift-correction angle,
taken with respect to the straight line on the chart between point of departure
and destination. The coordinate system is superimposed on a current conformal
chart projection like the cylindrical Mercator, Lambert conformal conic or
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polar stereographic projection. Only on the Mercator chart the grid heading
will be the true heading.

We restrict our investigations to those chart areas, where the scale factor
of the chart is approximately equal to unity and the variation of the scale is
assumed to be very small. In practice the change of the true air speed may be
neglected, not only for quasi-horizontal flights but also for the continuous or
stepped climb associated with turbo prop and jet operations.

The concepts of geostrophic approximation and geostrophic flow play a
dominant part in the theory. The well-known drift equation of Bellamy for
instance is based on these objectives.

A single heading flight conducted on an isobaric surface is defined by the
equations

B
dt dt
Here the drift equation of Beilamy expresses a relationship between the grid
heading 8, the true air speed c, the chart distance d and the geopotential
difference between the points of departure and destination (fig. 9), according

to the formula
ANZ
/% Q
A

Fig. 9

1 9@ — oP)
cd

nd = 1V.2)

If ¢ is expressed in knots, d in nautical miles and true height z in feet, (1V.2)
may be written

21.47 %Q) — «(P)
sinLm cd ’

sing § ==

where Ly, represents the mean latitude along the track. It is worth noting that
the grid heading is apparently independent of the structure of the airflow,
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because it is determined by the geopotential values in the endpoints. This
property is lost in arbitrary surfaces and non-stationary wind fields.
In guasi horizontal flight levels the equation is usually quoted in the form

D(Q) — D)

sind ~x
cd

Iv.3)

K=

y‘oq

where the D-value represents the “altimeter correction”.

The altimeter correction D at any point at which the pressure is p, is defined
as the difference between the true height z of the point and the height z, in
the standard I.C.A.N. atmosphere at which the pressure p occurs,

D:Z—zp:é—(go-—gos) 1v.4)
where ¢ denotes the geopotential in the standard atmosphere. The true height
is measured by means of a radio-radar altimeter, the height in the standard
atmosphere by the pressure altimeter, calibrated according to the (I.C.A.N.)
standard atmosphere, where its subscale is set to a sea level pressure of 1013.2
mb.

Apart from the drift angle, it is customary in practice to consider the zozal
displacement /\ Z.
Referring to fig. 9 we have
AZ=dsnd

or, on account of (IV.2) and (IV.3)

1 o@Q —e®) KD(Q) — D(®)
A c = c '

NZ=

(IV.5)

It follows from this equation that the total displacement is inversely pro-
portional to the true air speed. As the true air speed of turbo prop and jet air-
craft is approximately twice that for piston-engined aircraft, the corresponding
total displacement is reduced with a factor two.

A single heading flight may be conducted on an isobaric surface with the
aid of a constant reading of the pressure altimeter. Keeping a constant reading
of other instruments, the flight proceeds within other surfaces. For instance, a
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constant reading of the radio-radar altimeter results in a flight within a geo-
potential surface, a constant reading of a thermometer leads to a flight in an
isothermal surface etc. Within certain limits the drift equation (IV.4) applies
for single heading flights within such surfaces, but it is obvious that the exact
equation (IV.2) should be adjusted to these special flights. In order to derive
the subsequent equations we make use of the concept of geostrophic flow in
space and time.

Before going into detail we summarize briefly a demonstration of Bellamy’s
cquation which is rather based on the concept of geostrophic flow, de Jong
[1956].

The true air speed vector along the track is characterized by a constant
magnitude and constant direction. Consequently we may introduce a scalar
pattern defined by a stream function ¢’, for which

c=kA - V. (IV.6)

The scalar pattern consists of a set of parallel equidistant straight lines
@' = const. (fig. 10). The ground speed vector g along the track is the vector

8,
—— _==9
cio e e e e
P — | R A
PSET= P R Y N 177087 =R
N NG ,
SR ALY o4 ~$
LN
NN\
Fig. 10

sum of the true air speed vector ¢ and wind vector v. Thus
g=¢c-1+v
In virtue of (I.4) and (IV.6) we have

1 1
=k A — kA — !
g /\vacwr Akvw
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1
or g:k/\TVp (gﬂ“l*(ﬂ,),

showing that the vector field g possesses a stream function ¢ - ¢’. The vector
lines in the g field represent single heading trajectories. We then find the re-
markable result, that a graphical addition of the scalar patterns ¢ = const.
and ¢’ = const. yields a pattern of single heading tracks. The ground speed
along the track is inversely proportional to the distance of neighbouring single
heading tracks.

Let P and Q be located at one of these tracks, then we have according to
the graphical addition

9(Q) + ¢'(Q = ¢(P) + ¢'(P).
But in view of the definition of ¢’ we may write

¢'(P) — ¢'(Q

—~ QR = dsin3,
e Q sin

where Q—R is the total displacement A Z defined by (IV.5). Therefore

1 9(Q) — ¢(P)
A cd ’

sin 6 ==

resulting in the drift equation of Bellamy.

The above demonstration involves a very quick and elegant method to
construct a single heading track between point of departure and destination
(see fig. 10). For this purpose one draws a set of parallel equidistant straight
lines on a transparent sheet of paper. Introducing the stream function ¢’, this
function ¢’ is labelled in such a way that the increment A ¢’ is equal to the
increment A ¢ of the geopotential in the pressure contour chart. Besides, the
distance between the straight lines is such that the “‘geostrophic wind” in the
auxiliary chart equals the true air speed c. The auxiliary chart is put on a light
table and the pressure contour chart is placed upon the sheet and rotated until
the sum of ¢ and ¢’ in the point of departure P is equal to the sum of ¢ and ¢’
at destination Q. Both charts being in the right position, the track can be drawn
by connecting the points of intersection of ¢ and ¢’-lines. This addition method
can be carried out in a few minutes.
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6.1. Single heading flights in non-stationary isobaric flow

When the airflow in an isobaric surface is subject to fast alterations with
respect to the total flight time we may embed the single heading track within
a composite topography with geostrophic flow (fig. 11), as has been shown in
part IV, section 2.

Fig. 11

The stream function associated with this composite topography is, according
to (11.6)
%= (¢ + ¢,

where the time function t = t(x, y) is determined by the relation

op de”
o= 1v.7
ot dt av.7

The time function has been specified by selecting ¢*(t), in such a way that
it indicates the right progress of the flight.
Then the drift equation (IV.2) becomes

1 Q) — uP)
A cd

sin § =

b p((Q)) — ¢(t(P)) + ¢*(HQ)) — o*(t(P))
A cd
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In the composite topography we consider an arbitrary curve r and integrate
(IV.7) with respect to t along this curve
t(Q) j1(0)]
de* op
) ——dt = — ) ——dt.
o= o
t(P) t(P)
As ¢* depends only on t, we get

t(Q)
(@) — ¢ (tP)) — — J@

t(P)

0
P .
ot

Especially, by taking for r the single heading track itself, we obtain

t(Q)
o(1(Q)) — (t(P)) — J %fdt. v

sin d = - LP)

1
A cd

The result states that the drift correction angle not only depends on the end
values of the isobaric geopotential, but involves in addition a line integral of the
geopotential tendency. It is noteworthy that the line integral can be evaluated
along any curve joining the point of departure and destination, provided that
the integration is performed in the specified composite topography. Further-
more, it is clear that the handsome graphical addition method for the construc-
tion of the track still holds.

6.2. Single heading flights within stationary flow in arbitrary surfaces

We proceed by studying single heading fligths in arbitrary surfaces within
stationary or quasi-stationary airflow.

In part IV, section 3 it has been proved that the single heading track can be
embedded in a surface with geostrophic flow.

The drift equation may therefore be derived by the application of a method
similar to that in the previous section.
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In a surface with geostrophic flow we have according to formula (IV.2)

1 y(Q — ()
A cd ’

sin & =

where ¥ = ¢ — @s,.

Hence

1 9(Q — (@) — 955(Q) + ¢so(P)
A cd

sin & =

S, denotes the scalar value for the specified surface under consideration.
In virtue of the meaning of ¢s,, cf. (1.17)

p(Q)
950(Q) — 9so(P) = ‘[

p(®)

1
p(p, So)

dp. vy

Since the single heading track is embedded in the surface S = S,, the density
p(p, So) is to be interpreted as the density along the track itself.
In view of the gas equation (I.12) the drift equation finally becomes

p(Q)

o(Q) — p(P) + [ RTdInp
o (IV.10)

cd

§in 6 = —

The integration may be performed along each curve joining P and Q, provided
that this curve is located on the scalar surface S = S,.

Apparently the grid heading involves an integral which may be understood
as the “‘thickness” of a layer where the temperature-density distribution cor-
responds to that along the track.

When T represents the mean (virtual) temperature along the track, the drift
equation (IV.10) may be written

.1 p(Q — p(P)+ RT Inp(Q) / p(P)
sin 6 = —
A cd

(IV.11)

The result offers some interesting interpretations. On an isobaric surface
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we have p(P) = p(Q). Then we have to deal with the drift equation of
Bellamy.

A single heading flight in a geopotential surfaceis characterized by ¢(P) = ¢(Q)
Here the drift equation takes the form

, 1 RT
sind = — ——1Inp®P)/ p(Q) (Iv.12)
A ocd

When the pressure-temperature distribution along the track corresponds to that
of the standard atmosphere, then the second term in the numerator reduces to

the geopotential difference ¢ (P) — ¢,(Q) in the standard atmosphere.
Consequently equation (IV.10) may be written

nod =

1 9(Q) — 9:(Q + 9(®) — g:(P)
3 cd ’

In virtue of the definition of the D-value, (cf. IV.4)

1
D(Q) = o (2(Q) — ¢5(Q),

1
D(P) = " (#(P) — 9s(P)),
we obtain

.. DQ —D® g
sind =K ———————, 1

= Iv.13
cd - ¢ A ( )

The same result is found, when the mean temperature T happens to be equal
to the mean temperature in the (I.C.A.N.) standard atmosphere between the
layers p (P) and p (Q).

The above condition is far from being realised in practice as well for flights
with turbo prop and turbo jet aircraft as for quasi horizontal flights with
piston-engined aircraft. Therefore the drift equation (1V.3) should be inter-
preted with care.

When single heading flights are conducted on ordinary physical surfaces,
e.g. on isothermal surfaces, the pressure-temperature distribution along the
track is known beforehand. Then it suffices to replace ¢ in the drift equation
(IV.2) by the stream function y associated with these surfaces cf. (I.18).
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Referring to the theory outlined in partI we may discus this substitution
more in detail.

Single heading flight in polytropic surfaces. These are characterized by a con-
servation of the drift correction angle 5 and scalar S = pp~*:

dd ds
— =0, — =0.
dt dt

The corresponding drift equation becomes, in virtue of the geostrophic wind
equation (I1.25)

)’
| #Q—o®)+ ﬁ R(T(Q) — T(P))

Sin & = —
by

(Iv.14)
cd

¢ and T refer to the surface geopotential respectively surface temperature
distribution.

For specified values of k we obtain the expressions for isobaric, isothermal,
isosteric and isentropic surfaces.

Isobaric surfaces

i  d
0, P _

— =0, 0.
dt dt

We have

The drift equation becomes (Bellamy)

1 Qo)
A cd

sin & =
Isothermal surfaces
The single heading flight is defined by

s aT
=0, =0.
dat dt

In view of (1.26) the drift equation becomes

sin & =

1 9(Q) — o) + RT Inp(Q)/ p(P) (IV.15)
A cd ’



Isosteric surfaces
db dp

Now —=0
dt dt

and the drift equation takes the form, cf, (1.27),

1 e(Q) — o®) + R(T(Q) — T(P)).
A cd

sin & = (Iv.16)

Isentropic surfaces
dd de

. =0,- =0,
dt dt

Here we have

On account of formula (1.6) the expression for the grid heading becomes

1 9Q) — o(P) + p(T(Q) — T(P))
cd

sin & =

(IV.17)

It is of importance to observe that the formulae for single heading flights
within these physical surfaces give the grid heading independent of the wind
distribution along the track, just like in isobaric surfaces. The grid heading §
may be computed easily from the geopotential and temperature or pressure
data in the point of departure and destination. These end values may be read
from the subsequent upper air charts. Besides, the construction of the track,
by means of the graphical addition of two scalar patterns, which has been
outlined in section 6 for isobaric surfaces may be transferred without alterations
to the above single heading flights in polytropic surfaces.

6.3. Single heading flight within non-stationary airflow in general

‘We now discuss the problem within non-stationary airflow. It was proved in
section 3 that every pressure pattern track may be embedded within a geo-
strophic motion. In particular this property holds for any single heading track
in space. Let 1 be the track between the points P and Q. Then we may add a
upiquely defined geostrophic configuration, for which the space function
p = p(x, y) and time function t = t(x, y) indicate the actual pressure distribu-
tion and progress of flight along the track. According to (II1.5) the stream
function, associated with the geostrophic motion becomes
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3= (¢ + ¢t + Ao
" = ", ), X" = 1),

where the space function is determined by the relation

2 dy*
X _ S (IV. 18)
ap dp
L =(p + ¢ (IV.19)
and the time function by
2 29"
w_ (1V.20)
ot at

t = t(x, y, p(x, ¥))-

The arbitrary functions ¢* and y* has been specified in such a manner that
the resulting geostrophic motion fulfils the conditions along the track, quoted
above.

For the drift equation (IV.2) we get

o 1 3(Q—30)
sin § = ——~— -~
by cd
or
Gin 5 — % <co(t(Q),p(Q)) — <ﬂ(t(P)aCI;(P)) + ¢*(1(Q), p(Q) 2D
— o*(t@), p(®) + 1" (P(Q) — x*(p(P))>
cd

In the geostrophic approximation we consider an arbitrary curve r and
integrate (IV.18) with respect to p along this curve

p(Q) p(Q
dy* %
Yy 2 dp = — ) —Zdp.
J() dp p J() = p
p(P) p(P)

Hence



65

p(Q)
% (P(Q) — x*(p®)) = — J(r) %dp. (IV.22)

p(P)

In view of (1V.19) we may remark that

oy, ¢ dp ot dp* dp* ot
op  op ot op ep ot op
But by (1V.20) this reduces to

oy, op

o _ , oo
op

o " oep
Therefore the term on the right side of (IV.22) becomes
p(Q) p(Q) p(Q) p(Q)

o op* d o0~
= J(r) Y ap — J(r) P dp = J(r) L J(r) P _dp.
ap op p ap

p(P) p(P) p(P) p{P)

Now, according to the definition of ¢*, we observe that

do* D g
A T

whence

»(Q) @
dp” o
J (0 - dp = 9'(1(Q), PQ) — ¢"(t®), pP) J(r) “;i“dt'

p{P) t(P)

Thus (IV.22) may be written, in view of (IV.20) (identifying r with the single
heading track):

p(Q) t(Q)
d 0
9O) 2 6®) = )7 — o, 90) + | B | P
p®) t(P)

By substituting this expression in (IV.21), we finally obtain
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p(Q) t(Q
dp 2
’ - P), p(P - L dt.
1 ¢(t(Q) P(Q)) (/)(t( ), p( )) + J 0 J ot (1V.23)
p(P) t (P)

sind = ——
A cd

The grid heading involves two line integrals. The first consisting of the
““thickness”

p(Q) P(Q)
dp

J — = J RTdlnp
p

p(P) p(P)

associated with the composite pressure-temperature distribution along the track.
The second gives an integral of the geopotential tendency.
Again, it is noteworthy that the line integrals may be evaluated along each
track in the geostrophic motion, joining the point of departure and destination.
As a special case flights may be performed in scalar surfaces S =S¢ = const.
with time dependent geostrophic flow, e.g. in isothermal surfaces. Then the

drift equation reduces to
t(Q)

o
y(HQ)— w(t®)— J e
t (P)

cd

(IV.24)

SIN & = _
A

similar to the result for flights in non-stationary isobaric surfaces.
This may be demonstrated as follows:
In (IV.23) the first line integral becomes

p(Q) p{Q) Do p(Q)

dp dp J o J dp

p p(Ps So) p(P, So) p(p, So)’
p (P p (P p(P) Po

where po represents an arbitrary reference pressure level. By definition of
(1.17) this may be written
p(Q)

dp . .
J o = wso(p(P)) — (pso(p(Q)), independent of time

p(P)
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Thus we get for the numerator of (IV.23)
HQ)

0
P((Q), PQ)) — 9(p(Q)) — 9(t(P). BE)) + pofp(P)) — J 4

t(P)

According to the geostrophic wind equation (I.18) the stream function v,
associated with a surface with geostrophic flow, is

V=0 @s
So that the numerator becomes
tHQ)
o9
w{HQ) = w(u®) — | dt
t(P)

Differentiation of y with respect to time yields

oy B op 9p op Ops, Op

ot op ét ot ep ot

But in virtue of (I.17)

O@s, 1

ap  p(D, So)

and so on account of (1.11) we have

6g0 _ 3%0

op  ep
whence

oy 99

o et

0
Substituting for ?iin the last integral in the numerator of the drift equation

we get
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HQ)
8
y((Q) — w(t®) — J —a%dt-

t(P)

sind = ——
A cd

To complete this survey we may remark that if the composite pressure-
temperature distribution along the track happens to correspond to the pressure-
temperature distribution in the (I.C.A.N.) standard atmosphere, then the drift
equation reduces to

Q)
oD
D(Q) — B(P) — J v dt. (1V.25)
1(P)

sind =«

cd

where D represents the “altimeter correction”.

Tn a geopotential surface we have p(t(P), p(P)) = ¢(t(Q), p(Q)
Then

p(Q) tH(Q)
d 0
P P
p ot
sin & :i p(P) t(P)
A cd

Finally we observe that the expressions reduce to those given in the previous
sections, if either t = constant or p = constant.

In turbo prop and turbo jet operations a most economical flight at cruising level is obtained
by application of a continuous climb or drift up system. The optimum flight level increases
during the flight depending on gross weight, fuel consumption, temperature and other factors.
By air traffic control requirements the continuous cruising climb may be replaced by a
stepped cruise system, the number of steps are determined by engine performance and height
of steps. Figure 12 shows some of the flight characteristics.

In general turbo prop aircraft operate to a height of 11.000 m, turbo jet aircraft to a height
of 14,000 m. Since on the one hand the flight characteristics depend on the type of aircraft
and on the other hand the conditions which a flight analysis has to fulfil are difficult to realise
in practice, we must proceed somewhat schematically.

A. First we will examine a fictitious single heading flight Amsterdam-Vancouver with a
Britannia turbo prop. The top of climb is between 18,000 and 25,000 ft, the top of descent
between 30,000 and 35,000 ft. Thus it is evident, that we have to consult 500, 400 and 300 mb
upper air data. We have chosen a date on which the wind structure may be considered to be
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Figure 13 shows a cross-section of the temperature distribution with insertion of the cruise
climb AV. This cross section has been prepared by inspection of all available upper air
observations in the vicinity of the track. As in practice the flight level is very sensitive with
respect to the on route temperatures the indicated flight course is drawn rather schematically.

The temperature pressure distribution along AV has been transferred from the cross
section to an aerological diagram (T-In p diagram), climb and descent included, as well as the
I.C.AN, standard atmosphere (fig. 14).
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CuARrT IX. Composite chart in space adjusted to a continuous cruise climb for a flight
Amsterdam-Vancouver with a Bristol Britannia (turbo prop). Date 2 Febr. 1958,
00.00 G.M.T. Increment for stream lines in both patterns is 80 gpm. Upper
wind data are shown in conventional fashion. Numbers in brackets above wind
data refer to the pressure level, for which the wind applies.

Chart IX represents a composite chart in space which has been adjusted to the continuous
cruising climb. In order to interpret geostrophic motion within this chart, it involves a portion
of the 500 mb analysis in the eastern part and a portion of the 300 mb analysis in the western
part of the chart area. Halfway on the track the 400 mb analysis has been copied. In the
remaining sections the stream lines have been drawn by free-hand extrapolation applying
some smoothing and by consultation of 500 — 400 mb and 400 — 300 mb data. The resulting
stream lines are no longer contour lines, but represent isopleths of a stream function for the
special composite chart with an increment of 80 gpm.

To construct the single heading track by means of the addition method another set of
stream lines has been drawn which determines the true air speed vector distribution. Instead
of straight parallel lines a pattern of curved lines has been drawn, mainly to incorporate the
special features of the chart’s projection. (polar stereographic). The great circle Amsterdam-—
Vancouver serves as base-line and the gradient in the stream line pattern determines a true
air speed of 300 kn. The increment in the stream line pattern is again 80 gpm.

The pattern has been superimposed on the composite chart in such a manner that the
algebraic sum of both stream functions in the point of departure is equal to that in destination.
The curve joining the points of intersection of both patterns is the single heading track.

By its location within the “long waves” the track shows an undulatory character. The total
displacement, however, is small. We will calculate the displacement by using different
expressions, which have been derived in the previous sections.

The most exact value is found by using formula (IV.10)

1
7= __
A A

v
o(V) — p(A) + | RTdInp.
A

C

From the (T- In p diagram) a “thickness’” may be derived between A and V of 4,464 gpm.

Further one finds
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@p(A) = 5,620 gpm
(V) = 10,100 gpm
so that with Ly = 65°N, ¢ = 300 kn and 1 gpm = 3.28 ft.

[ 2147010100 — 5620 — 4469328
~ 0.96 300 = 0.2 10 = 4nm.

a total displacement of approximately 4 n.m. to the south.
When we compute the displacement by merely reading the difference of values of the stream
functions at the end points in the comiposite chart, we have

wV) — x(A) =20 gpm
AZ=024.20 ~5nm.

in good agreement with the exact value.

Next we may determine an approximate value for the displacement by taking the D-value
expression (IV.13).

With D(A) in gpm = ¢(A) — p(I.C.AN.) = 5,620 — 5,723 = —103 gpm

D(V) in gpm = (V) — o(I.C.AN.) = 10,100 — 10,363 = —263 gpm

a displacement
A Z = 0.24(—103 — (—263)) = 0.24 . 160 ~ 39 n.m. results.

Besides, we may find an approximate value for the displacement by examination of the
500 mb chart and 300 mb chart separately.
Then we have to use equation (IV.2).
Here ¢(A) = 5,480 gpm
o(V) = 5.430 gpm
whence A Z = 0.24.(5,430 — 5.480) = —0.24 ., 50 ~ —12 n.m. a displacement of 12 n.m.
to the north.
In the 300 mb chart ¢(A) = 9,000 gpm
o(V) = 8,900 gpm

and A Z = 0.24.(8,900 — 9,000) = —0.24.100 ~ —24 n.m. resulting in a displacement of
24 n.m. to the north.

The above computations of the total displacement justify the statement that the commonly
used formulae of Bellamy may indeed give erroneous results, when flights with turbo prop
and turbo jet powered aircraft are considered.

B. Next we will consider a single heading flight New York-Amsterdam with a Douglas
D.C.8.

Asinexample A we consider a fictitious flight between both stations. In addition we have
to make some assumptions concerning the characteristics of this jet flight. The top of climb
is about 30,000 ft, the top of descent around 40,000 ft. Here it will be advisable to study
200, 250 and 300 mb data. The true air speed is approximately 470 kn. Consequently, the
flight time New York—Amsterdam amounts to 6 & 7 hours. If a stepped climb system is
applied the number of steps does not surpass two steps of 4000 feet each. Due to the short
flight time the upper air flow may most often be considered to be quasi-stationary for these
jet aircraft, but to demonstrate the theory more clearly we have selected a situation which
shows high tendency values (more than 20 gpm hr—! near the British Isles). The flight has
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Crart X. 300 mb analysis valid for 18 Dec. 1957, 12.00 G.M.T. Upper wind data are shown
as usual. Increment of geopotential ¢ is 160 gpm.
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CHART X1, Composite chart in space valid for 18 Dec. 1957, 12.00 G.M.T. Wind data are
plotted in conventional fashion. Where two wind data appear, the broken line
symbol refers to the 200 mb pressure level, the solid one to the 300 mb pressure
level. The increment of the stream lines x = const. is 160 gpm.

5(@,(2,5)
(3)1200GMT.

CHsrT XII. Composite chart in space and time valid for 18 Dec. 1957, 12.00 G.M.T. -
18 Dec. 1957, 18.00 G.M.T. Wind data as usual, numbers in brackets refer to
200-, 250- and 300 mb pressure levels. The increment of the stream lines
3 = const. is 160 gpm.
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been studied in a fixed time isobaric chart, in a composite chart in space and a composite
chart in space and time. Chart X valid for 18 Dec. 1957 12.00 G.M.T. is a reproduction of
the 300 mb chart with wind data plotted in convential fashion for upper air map times.
The contour lines ¢ = const. are labelled with an increment of 160 gpm. Chart XI represents
a composite chart in space valid for the same date and time. It involves the 300 mb analysis
in the neighbourhood of the point of departure (New York) and the 200 mb analysis near
destination (Amsterdam). Over the ocean 200, 250 and 300 mb data have been consulted.
Where two wind data have been plotted one of them refers to the 300 mb level and the other
(dotted) to the 200 mb level. The stream lines have been derived by adjusting both 200 and
300 mb analysis and applying some smoothing, together with an inspection of the upper air
data at all three levels over the ocean. The spacing of the resulting y-lines is again 160 gpm,
starting from an arbitrary initial value. Finally chart XII shows a composite chart in space and
time applying a 300 mb analysis at 12.00 GMT near point of departure and a 200 mb analysis
at 18.00 GMT near destination. Over the ocean 200, 250 and 300 mb upper air data for both
upper air times have been examined. The isopleths 3 = constant again have been drawn
by adjusting both analyses and applying some smoothing, while the spacing again amounts
to 160 gpm.

The single heading flight tracks shown, have been constructed by means of the addition
method, but the details of the superposition method have not been represented here.

From a consideration of these charts it is obvious that the single heading tracks rather
show a minor deviation from each other at the final stage of the flight, where the wind pattern
changes rapidly, caused by the fast moving trough to the east.

7. Altimetry determination

After the radio-radar altimeter was brought into operational use during the
second world war (1939-1945), the combination with a pressure altimeter
made it possible to measure horizontal pressure gradients which enabled the
navigator to estimate the geostrophic wind.

The pressure gradient is directly related to the component of wind at right
angles to the track by means of the geostrophic relation and the navigator is
thus provided with a method to evaluate one component of the drift. By means
of a pressure line of position (P.L.O.P. line) the location of the aircraft is
facilitated. To determine the drift the navigator must know the true height of
the plane and thus, due to the limitations of the use of the radio-radar altimeter,
this method is mainly applicable in flights over the sea.

The method of drift determination by altimetry has been described elsewhere
(e.g. Sawyer [1949]). We may notice that the results quoted there, may be
presented by observing that a small portion of the flight may be interpreted as
a “differential” single heading flight. To clarify this point we consider fig. 15,
where PQ represents a small portion of the flight track, ¢ is the true air speed
vector and vg the (geostrophic) wind vector. If we assume that along PQ the
air speed ¢ remains constant the {light may be considered as being a small single
heading flight. In a constant pressure surface we then may write down the
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Fig. 15 =

vertical component of the drift at once from consideration of equation (IV.5).
The displacement A Z becomes

Az — L Q@)
A c

For quasi-horizontal flights the equation is usually quoted in the form

Dy — D
AZ:K—%“—-——:L, K:._g_,
C A

where D1 and Ds represent the “altimeter correction” defined earlier (cf. IV.4).
When D is expressed in feet, ¢ in knots, the displacement in n.m. becomes
2147 Dy — Dy

7 = — . (IV.26)
sin Ly c

This expression is commonly used in long range transoceanic flights with
piston-engined aircraft.

In virtue of the results in subsection 6.2. this expression should be inter-
preted with some caution. Its validity depends on the condition that the actual
pressure-temperature distribution along the track corresponds to that in the
standard (I.C.A.N.) atmosphere. When the distribution deviates appreciably
from standard conditions and the flight is not quasi-horizontal, then an addi-
tional term appears in the expression for the lateral drift A Z. This may be
seen from the results for single heading flights in arbitrary surfaces.

Applying formula (IV.10) the displacement A Z becomes

Q
| Q) —¢(P)+ | RTdInp,

7 P
& A c

In the standard atmosphere we have
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1
dlnp:——« d(ﬂs:“ de,

RT, RT,

where T, ¢, and z, stand for the temperature, geopotential and pressure
altitude in the standard atmosphere.
Thus, we get

Q
T
p(Q) — oP) — JT— dog
P

1
AE=5 c
Q
s — T
P(Q) — o(P) — 9,Q) + ¢,(P) + J - doy
. 1 P ’
=% ;

or, on account of (IV.4)

Q
T,—T
D(Q) — D(®) + J T dzp.
P

NZ=x

C

For simplicity of computation in practice the displacement (n.m.) may be
written

D pEy - = Ly
_ 2147 Q = D)+ T, av.27)

sin Ly c

N Z

where T refers to the mean observed temperature (absolute scale), Ts to the
temperature (absolute scale) in the standard atmosphere at the same pressure
and h denotes the difference between the readings of the pressure altimeter in
the endpoints (feet). The D-values are expressed in feet and the true air speed
in knots.

It turns out that the displacement A Z involves an additional term which
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depends on the temperature excess of the air with respect to standard conditions
and the pressure-height difference h between the points where altimeter
measurements are made. For quasi-horizontal flights (small h) and approx-
imate standard conditions (T ~ T,) the additional term may be neglected and
the well-known formula (IV.5) be applied. However, in climbing procedures
the term may amount to considerable values, by which the navigator has to
correct the formula, especially when a continuous cruising climb or stepped
cruise is performed.

Table II deals with the correction to be applied to D2 — D (in feet) for
various temperature excess values | Ts — T | (°F) for various pressure altitude
differences h at selected levels.

TasLe 1T
pressure altitude h () | Ts — T |(°F)
of flight Ievel (ft) 10 i 20 ‘ 30 ‘ 40 ’ 50
1,000 20 40 70 90 110
20,000 2,000 50 90 130 180 220
3,000 70 130 200 270 340
4,000 90 180 270 360 - 450
1,000 20 50 70 100 120
30,000 2,000 50 100 150 190 240
3,000 70 150 220 290 360
4,000 100 190 270 390 490
1,000 30 50 80 100 130
40,000 2,000 50 100 150 200 250
3,000 80 150 230 300 390
4,000 100 200 300 400 510

Especially when the temperature excess is high and the climbing procedure is
steep, the figures in the table cannot be neglected.

Let us consider a one hour’s portion PQ of a flight track of a jet airplane, which contains
a step RS of 4,000 ft between 28,000 ft and 32,000 ft pressure altitude (fig. 16). The flight
takes place within polar air with a temperature excess of —20°F with respect to the LC.AN.
atmosphere at 30,000 ft. The true air speed be 470 kn. (D.C.-8).
m = 55°N.
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Further, let the radio-radar altimeter reading in P be 28,200 ft, in Q 32,800 ft. Then we have
D(P) = 28,200 — 28,000 = 200 ft,
D(Q) = 32,800 — 32,000 = 800 ft.
T, (30,000 ft) = — 48°F.

Q
32.000 ft t

_______________ 30.000 ft

R : 28.000 ft
Fig. 16

The displacement A Z becomes according to formula (IV.26)

,_ 2147 80200 60
= sin 55 © T 470 T L g T

Entering table I with | Ts — T | = 20°F, h = 4,000 ft at 30,000 pressure altitude we
find an additional term amounting to 190 ft.
Applying formula (IV.27) we then have

Az—262 -0 o

The additional term is responsible for a 32%/; decrease of the displacement.

The displacement formula (IV.27) can still be used for flights with turbo prop and turbo
jetpoweredaircraft in practice, since the available instrumentationaboard of the aircraft makes
it possible to determine all quantities needed for computation. The above result however refers
to the case that the upper wind may be assumed quasi-stationary. When the wind speed is subject
to appreciable changes in time, then the displacement involves another additional term, which
depends on the local geopotential tendency. It will be obvious that the computation of A Z in
practice then partly fails, because it is impossible to determine the local geopotential tendency

7]
7(: aboard of the aircraft.



PART V

TRAJECTORY FIELDS

Under certain conditions the trajectories of air particles in non-stationary
air flow may be arranged in velocity fields, which may be described by scalar
point functions.

In two dimensions the stream function and velocity potential receive con-
sideration. In three dimensions only a velocity potential must be examined.
When the actual non-stationary velocity field itself is defined by a scalar point
function we may investigate what conditions the scalar point function must
satisfy in order that the trajectories may be assembled in trajectory fields with
a scalar point function. In three dimensions there is only one combination of
velocity fields and trajectory fields, both determined by a velocity potential.
In two dimensions at least four combinations exist. In the present part the
combination in three dimensions and two combinations in two dimensions
are investigated. The conditions which the stream function or velocity potential
must satisfy offer some atmospheric models, which may be applied in dynamic
forecasting by numerical and graphical methods.

1. On the classification of velocity fields and trajectories

In the classification of two-dimensional non-stationary horizontal velocity
fields we are concerned with three types, namely the velocity field with a
stream function, characterized by

v v=0v=—kA v (V.1)
Further, the velocity field with a velocity potential defined by
VAV=0vy=— vy (V.2)
and finally the Laplacian velocity fields, for which
v'v=0 vAv=0,
V=—Ve=—kA VY
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Here the stream function y and velocity potential ¢ are harmonic functions,
satisfying Laplace’s equation

Ay =Ap=0. (V.3)

In space, where we limit our classification to those velocity fields which may
be described by one scalar point function, there is only one velocity field to be
considered, i.e. the lamellar velocity field for which

V/\VZO, vV=—V¢

¢ again being a velocity potential.

In our investigation it is of importance to consider those scalar point functions
w and p, which involve an additional time variable t.

We have seen, that in meteorology the geostrophic flow in isobaric and other
physical surfaces may be interpreted as a velocity field with stream function.

Studying the trajectories of particles which move within the flow, where
the velocity distribution is known, we may consider the displacement of an
arbitrary chosen field, each point in the field determined by two coordinates
(a, b). The coordinates are considered as individually conserved during the
motion of the particles, i.e.

da db
— =0,— =0
dt dt
oa ob b
or o v va,-an—v v b.

When it is assumed that the particle remains on a specified physical surface,
for instance on an isentropic surface, and the wind field is replaced by the
geostrophic approximation then the trajectory may suitably be computed by
means of electronic computers. Within isobaric surfaces such computations
have been performed for the barotropic forecast with the BESK computer
(Djuric, Wiin-Nielsen [1957]).

Starting from a set of particles, located at the intersection of a rectangular
grid at t = 0 the computer determines the location of these points after a
certain lapse of time. Rather then give the trajectories themselves the computer
yields the final distribution of particles in terms of an arbitrary initial distri-
bution of particles.

If we are interested in the behaviour of the trajectory rather than in successive
positions of a set of particles, then the theory of composite topographies with
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geostrophic flow presents an interesting problem. The problem may be put
forward by examination of a theorem for composite charts, outlined in part IV.

It was shown there that any pressure pattern track of an airplane in an iso-
baric surface couid be embedded within a composite topography with geo-
strophic flow (fig. 7). As a special case we may consider an object which drifts
freely with the flow, for instance a constant level balloon, respectively an air
particle when it is assumed that the particle remains on the isobaric surface
during its motion. With this specification we may state that each trajectory
of a particle may be embedded within a composite topography with geostrophic
flow. The particle’s trajectory is identical with one of the stream lines in the
composite topography and the particle’s speed is inversely proportional to the
distance of the trajectory to adjacent streamlines.

Now we may put the question under what conditions all the streamlines
of the composite topography represent trajectories of the flow. Then the
trajectories are assembled in a “srajectory field”, which is described by a stream
function (fig. 17). The isochrones determine the successive positions of the
particles which at t = 0 were located at the initjal isochrone to.

)
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—
L7
5

e
—
=

Fig. 17

It is not necessary to claim a stream function for the trajectory field. A
trajectory field may alternatively be defined by a velocity potential. Then the
trajectories are orthogonal curves of the potential lines.

Returning to the general velocity fields classified above, the problem is to
find the conditions whereby the trajectories of particles which move in these
fields may be assembled in trajectory fields.
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2. Trajectory fields with stream function in velocity fields with stream function

Suppose we have to deal with a velocity field with stream function y, then
a set of trajectories constitutes a trajectory field if the time function t = (X, y)
satisfies two conditions. First it should define a composite velocity field with
stream function. Then according to (I1.2) t must be a solution of the partial

differential equation ,
0
J <t, l) — 0.
ot

Secondly the time function must determine a propagation of isochrones
for which the speed of propagation is related to the velocity of the particles by
the vector equation

v-yt=1.
Together with (V.1) we have

voyt=—&A VY Vt=—k-vyAvi=Ity =L

The two conditions for the time function

oy
J(t, =1, J{t, —]=0
t w) < 8t>

may be written out:

ot ot
Wy o T Ux oy =1,
(V.4)
ot ot ’
Yty 5; — Yix ‘5}7 =0.

\

It turns out that the time function must be a solution of a system of two
quasi-linear partial differential equations. The characteristic determinant of the

system (V.4) is
oy
=] — ).
(v %)

When the determinant J does not vanish in a certain area, Cramér’s method
yields

Yy — ¥x
J:

Viy — Vix
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ot Wix
— = — —— =T X, ¥, t
ox J 1y, )
ot Viy
e — L = X, ¥, 1).
oy 7 2(X, ¥, 1)

When f1 and f2 are continuously differentiable in a certain area, then a simul-
taneous solution t(x, y) of the system (V.4), must fulfill the condition

ot 0%t
oxdy ~ dyox
or
fiy + fusfe = fox + fasfi. (V.5)

When this “integrability condition” does not happen to be an identity, we
may solve t from (V.5). If it can be proved in addition that this function t(x, y)
satisfies the system (V.4), the time function happens to be a particular solution
of the system resulting in an ““isolated” trajectory field for the given velocity
field.

If however theintegrability condition appears to be an identity the system (IV.4)
is an involutary system. In that case the system always possesses simultancous
solutions.

The integrability condition (V.5) becomes

—wyxtd + yxily Yt —wxitd + wxtlt
J2 J J2

— _l//yxtJ + Wyth _ @ ’""l//yttJ -+ l//yt]t
- J2 J J2

or

wxily -+ Wyt = wyldx + vxaWyi
or

Wxt(Jy - V/tty) - l//yt(JX - l//ttx) = 0.
This may be written by means of the Jacobian determinant
Iy 3w, o) — wu) = 0.

Considering the rate of change of
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d
d—twt=th+v-VWt=v/tt~(k/\ VW) Vvi=yuw— K- VYA V¥

or

d
Fa4Aani Iy, wy) (V.6)

the integrability condition finally takes the form

d

This is a partial differential equation of the third order for .

We thus find the result that trajectory fields with a stream function may be
found in velocity fields with stream function y if w statisfies the partial
differential equation (V.7).

The condition expresses geometrically that at each moment the tendency

curves i — constant coincide with the curves Ty wt = constant. In the

field of flow, defined by a solution w of (V.7) the paitern of lines of equal
tendency is advected geostrophically, eventually accompanied by a change of the
tendency value along the lines.

In order to specify the stream function y for the trajectory field we have
to solve the system of equations (V.4).

Let us consider the second equation of this system. A solution t = 14(X, ¥)
gives a composite stream function w(x, ¥, to(X, v)) with associated velocity
field with stream function .

According to (I11.4), to(x, y) is determined by the equation

oy dy~

= V.8
ot dt ’ (V-8)

where w* is an arbitrary function of t. The associated stream function y is,

cf. (I1.6):
x=W+ ¥oxn (V.9)

Here ( )igx,y) denotes a substitution of to(x,y) in the expression within
parenthesis, as before.
In order that the velocity field for the composite stream function be a
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trajectory field the auxiliary function w* has to be specified in such a manner
that to(x, y) also satisfies the first equation of system (V.4).
For that purpose we differentiate (V.8) with respect to x and y -

o , ot
— / - — [EE— 5
Wit % Wix Wit o
ot at
Wit — F Wiy = —Wn .
dy 9y

ot ot
Solving for o and P and substituting in the first equation of system (V.4)
X y

gives
WxWty — WyWix = Wit + Yo
or
Ky, wo) — yu = wi
or )
d *
i Wy = Wit -

But the original velocity field was characterized by the condition (V.7).
From that condition we derive

d
——yi=—F(—w, ) = — Fyi, 1)
dt :
where F is a special function, uniquely determined by the actual velocity field.

Hence w”* is determined by the ordinary differential equation

v = F(yi, 0, (V.10)

which may be solved by a simple quadrature. w* being specified, to(x, y) is
known from (V.8) and the stream function y for the trajectory field follows
from (V.9).

Summarizing results we find
Velocity fields with a stream function y for which trajectory fields with a stream

d
JSunction 7y exist must satisfy the condition J <l//t, A Wt >E 0.

The time functions for the trajectory fields are simultaneous solutions of the
system of equations.
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Ity =0 Jt, w) =1

The stream function 7y associated with the trajectory fields is determined by

, r=w+ v
where w* is a solution of the ordinary differential equation

yi = Fyi, b,
. . . . d

F being a special function of yy" and t determinedby J | i, A vy V=0 and t
being the time function determined by the equation

pr=—yi’

It is worth noticing that the particles in a trajectory field which are located
on an isochronal pass equal areas in equal times. This is a consequence of the
property that in the trajectory field the product of speed and cross section
is constant along a stream filament (fig. 17).

We will demonstrate the theory by an analytic example. Let

Vo

_u L . 2n 11
v =Uy — o sin I x — ct) (V.11)

represent the stream function of a sinussoidal velocity perturbation superimposed on a
uniform zonal flow U (fig. 18). Then the velocity vector v has components

Fig. 18
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2n
y = <U,vocos —L—(x — ct)>

The velocity field represents a periodic disturbance having wavelength L, amplitude vo
and velocity of propagation c.

We have first to prove that the velocity field satisfies condition (V.7). For that purpose
we compute the individual rate of change of the tendency wi.

Then according to (V.6)

d
at Wt = Wit — YxWiy + WyWix

I

21
—Vocos — (X — ct),

Yx L

wy = U,

2r
Wi = VoC COS 5 (x — ct),

_ 21voC 2n 9
Wix = L sin L (x —ct),
Wiy = 0,
2nvec | 2m .
Wit = T sin L (x — ct).
Thus
d _ 2nvec(c — Uy . 2n ( 9
R Yy = L Sin L X — C
d 2n(c —
or g W= % (vec? — (w2).k (V.12)

d .
expressing that a w1 a function of w4 i.e. that w indeed fulfils condition (V.7). The sinus-

sodial velocity field therefore possesses trajectory fields. To compute the stream function 7
we observe that according to (V.12)

2n(U — ¢)

F= 0 (Vo — (w)»)? .

Then the auxiliary function y* is determined by (V.10)

2r(U — ¢)

wi' = T (o — (p)?)t,

whence by integration

* n
Wy = VoC COS T (c — U)Xt — to),
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to being an integration constant
or

2
—Wi* =V oC COos <Tn U —ot +A)> s V.13)

where
(1 + 2(U— o)to) .
L

Integration of (V.13) yields

. —vocl. . 2n U foA B
ViU 0\ (U 9t+ A+ B

B denoting a new integration constant.
The time function for the trajectory fields is determined by the equation (V.8), i.e.
2n 2n
Vot cos | - (U —ot+ A} = veccos T (x — ct),

from which follows
X LA
U U

Finally the stream function x becomes on account of (V.9) (apart from an immaterial
constant B)

_yu Lvo . /20 {U—c c A vocL . 2n f{U —c c A
x=Uy—pesmlg o)t w TmU—o™™ T\ U )t T
c
With C = TAwe have
_u Lve U . 2r (U — ¢ c
¥ = y—zﬁU_csm I U X+ .

Comparing this result, where ¥ = constant represent trajectories, with the original stream
function w, we observe that the trajectories of the trajectory fields are all sinussoidal. The
amplitude vir. and the wavelength Lir. are related to the amplitude vo and wavelength L
of the original streamlines according to

Vir, Lt U

Vo L U —c

Thus, when the pattern of sinussoidal streamlines is given and ¢ known, the trajectory

in the streamline pattern. By varying A

fields can be found by using a scale factor i

all trajectory fields are found.
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We may remark that any velocity field consisting of an arbitrary velocity perturbation
superimposed on a uniform zonal flow U involves trajectory fields.
Here the stream function is
v = Uy + F(x, t).

It may be easily shown that this stream function satisfies condition (V.7).

The differential equation (V.7) for w involves two particular solutions.

A. wy= 0. The velocity field is stationary. The trajectories coincide with the
streamlines and it is evident that trajectory fields may be found, since the trajec-
tory fields are identical with the streamline pattern.

d
a0 wt = 0. These velocity fields are characterized by the property that

each particle conserves the tendency .
Here
F=0,
Thus (V.10) becomes
yi =0
yi = a
w* = at 4+ b, a and b constant.

Then according to (V.9) the stream function y associated with a trajectory
field assumes the form

¥ = (v + athix,v (V.14)

(where the constant b has been omitted).
The time function is determined by (V.8)

oy

o

When a = 0 we have to deal with a special trajectory field consisting of the
enveloping streamlines and isochronals, which coincide with the zero tendency
lines.

The above sinussoidal perturbated zonal flow belongs to the class of velocity fields

d =0,if 18]

at Yt =U, 11 C = .

Then

Lvo

2n

. 2n
v = Uy — sin T (x — Ut),
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2%
wy = VoU cOS T (x — Ut).

14 R
= —a we derive

From 71:

U
t= < + C, C being a constant depending on a.

The stream function %, becomes on account of (V.14)
a
x:Uy+*U*x+ const.

The trajectory fields consist of parallel straight lines, inclined with respect to the x-direction.
The special case (a = 0) of the trajectory field which involves the enveloping streamline
pattern consists of the set of lines paraliel to the x-axis.

3. Trajectory fields with a velocity potential in velocity fields with a velocity
potential

Starting from a two-dimensional velocity field with velocity potential we
may investigate the condition which the velocity potential must satisfy in
order that the trajectories may be taken together in trajectory fields with a
velocity potential. To find an answer to this problem we consider it in three
dimensions, because the two-dimensional problem may be derived from it.
Besides, the problem in three dimensions is more attractive inasmuch as the
velocity potential is the only scalar point function to be claimed for the tra-
jectory fields.

Let the three-dimensional velocity field possess the velocity potential ¢

v=—ve, VAV=0, (V.15)

where @ involves, apart from the codrdinates x, y and z, the variable t.
9 = p(x,9,2,1).

For a trajectory field to possess a velocity potential it is necessary that it
consist of a composite velocity field with velocity potential. The composite
velocity field is determined by a time function t = t(x, y, z) which has to be
specified in such a manner that the composite velocity field is irrotational.

Similar to the two-dimensional problem for composite velocity fields with a
stream function (see part I1) it can be shown that the time function must satisfy
the condition

24

t — =0
V/\V6t >
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which expresses that t should be a simultancous solution of three partial
differential equations, obtained when the vector equation is written out for
its three components. The condition expresses geometrically that the isochronal
planes t = const. coincide at each moment t with the planes of equal tendency
99
e

In order that the composite velocity field with velocity potential should be a
trajectory field with velocity potential, the time function must be such that the
speed of propagation of isochronal planes is related to the velocity of the
flow according to

vV-yt=— Ve - vt=1

The time function t = t(x, y, z) must therefore satisfy both equations

iAvl o
V VE)_t_ s
vt -ve=1 (V.16)

simultaneously. In other words, t must be a simultancous solution of four
(quasi-linear) partial differential equations

ot ot
Ptz —— — Pty —— =0
ay oz
ot ot 0
Pty ‘& Pix . =
ot ot 0
iz TX Px P
ot ot ot ! V.17
Px 87)( Py 8—y Py d—z = L7y

To investigate this system we introduce another variable 1 = 1(x, y, z, 1)
by which the system (V.17) changes into a system of homogeneous differential
equations (e.g. Kamke [1944]).
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ot ot 0

Ptz —3; Pty 872 =
ot ot 0

Pty P Pix ?y =
ot ot 0

Pz % Pix oz =
ot L 0T n ot 01 0

R ( - L e

v X Py a0y o oz ot

Any solution t = t(x, vy, z) for the first system yields a solution t = 1(X, y, z, t)
for the second system and conversely, any solution Tt = (%, y, z, t) of the second
system yields a solution t = (X, y, z) for the first system.

As the characteristic determinant of the second system is equal to zero, we

ot ot 0Ot ot
may solve the system for — , —, — and — .
ox o0y 0oz ot

If o = a(x,y,z,t) denotes an arbitrary function of x,y, z, and t, we get

ot

= e =h

ot -

Ty o= f2

ot

o = 0ptz = I3

ot

i a(pxPtx + PyPry + QzP1z)

—a Ve Vou="f

Whether the new system possesses simultaneous solutions or not we must
investigate the integrability conditions

of _ ofz ofi _ ofs ofs  ofs
oy — ex’ ez ox ez oy
ofi  ofa ofy  ofy ofy  ofy
ot T oex et oy bt ez

Il

Il
Il
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The first three conditions give
Oy @Ptx == OUxQty,
UzPtx == UxPiz,

0zPty = OyPiz;
in vector notation

VoA v e =0. (V.18)
The last three conditions yield

0

at@tx+a¢ttxza7x(v¢' V ¢) +(V ¢ Vv ptox,
0

Gt¢ty+acﬂtty50t~5§(v<ﬂ‘ V o) +(V ¢ v proy,

Uiz + 0Ptz Eaai;(v 9V o)+ (Ve Ve
or abbreviated in vector form
WV +oVee=0v(Ve ve)+ (Ve ve)va

Taking the vector product of both sides with ¥ ¢, we get
CYVPHAVI=aVaAvVe Vo) +(Ve Vo) vVerh Vo
But on account of (V.18) this vector equation assumes the form

VoA V= veeh vV(Ve Vo

VoA View— Voo ve)=0

Considering the rate of change of g; we have

d
E{(/)t:(ﬂtt‘f‘v'v(ﬂtz(ﬂtt”— VoV ot

Hence the integrability condition reduces to

d
VoAV E%EO (V.19)

Reviewing the result we find that
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trajectory fields with velocity potential exist in velocity fields with velocity
potential ¢ when ¢ satisfies the condition (V.19).

The condition means geometrically that at any moment the surfaces of equal
tendency coincide with the surfaces of equal rate of change of the tendency.
In the field of flow, defined by a solution ¢ of (V.19) the surfaces of equal
tendency are advected with the flow, eventually accompanied by a change
of the tendency value along the surfaces.

In two dimensions we have only to deal with one of the components of the
vector equation (V.19), in other words with the component

d
k- — gt = 0.
VoAV a7

This triple vector product involves a unit vector and two gradient vectors,
resulting in the possibility of writing it by means of the Jacobian determinant

d
J , —— = 0. V.20
<(9t dt §0t> ( )
Thus we have

Trajectory fields with velocity potential exist in two-dimensional velocity fields
with velocity potential ¢, if ¢ is a solution of the partial differential equation
(V.20). )

The stream function associated with the trajectory fields may be found in an
analogous way as for trajectory fields with a stream function in velocity fields
with a stream function. We merely have to replace the stream function y by
the velocity potential ¢ in the equations (V.8), (V.9) and (V.10).

4, Discussion

In the diagram below the solid arrows indicate which combinations of two-
dimensional velocity fields and trajectory fields with respect to the classification
of velocity fields have been dealt with.

For reasons of symmetry there are still two combinations to be studied,
namely that of trajectory fields with a velocity potential in velocity fields with
a stream function, and that of trajectory fields with a stream function in velocity
fields with a velocity potential. An attempt to investigate the integrability
conditions showed that these integrability conditions are fairly complicated.
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velocity tields

T~

stream function velocity potential
T Tt
”” \\\\
e e v
stream function velocity potential

T~

trajectory fields

When in addition the velocity flelds with both stream function and velocity
potential are taken into account the number of combinations increases con-
siderably. Then the stream function y and velocity potential ¢ must be simul-
taneous solutions of a system of partial differential equations, since w and ¢
already satisfy the Laplace equation. '

We may remark that the solution of the problem of trajectory fields within
two-dimensional motions of inviscid incompressible fluids already meet with
difficulties. By virtue of the equation of continuity such motions may be
described by a stream function but in view of the conservation of vorticity
in such fluids the stream function must first satisfy the equation

)
8—tAw+J(l//,Av/):0-

(See Milne-Thomson [1938)).

5. Some models for dynamical forecasting in meteorology

To find some points of contact with the concept of trajectory fields we may
call to mind that the upper air flow by means of the geostrophic approximation
in isobaric and other physical surfaces may be interpreted as two-dimensional
velocity fields with a stream function. It should be stressed that the geostrophic
flow applies to the horizontal projection of the wind field in the surface under
consideration.

Thus, when it is known beforehand that the air particles during their motion
do not leave the surface, for instance the isentropic surface, then the theory
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of trajectory fields only gives some information about the behaviour of the
horizontal projection of the trajectories. With this feature in mind, the
horizontal projection of trajectories may be arranged in trajectory fields, when
the stream function y associated with the geostrophic flow in the surface

SatiSﬁeS the equati()n
ts 1 —_ 0 (V 2
.' l// l// . . I)

dp
For instance, in case of air particles moving uponisobaric surfaces <— =0

d
J , — =0, V.22
<§0t &t ¢t> (V.22

where ¢, as before, represents the geopotential.

de
In case of isentropic surfaces <dt =0 > we obtain

the equation reduces to

d
J , — =0, V.23
<l//M dt l//M> ( )

where wu is Montgomery’s stream function.

The equations (V.21), (V.22) and (V.23) are to be interpreted as representing
certain atmospheric models . In attempting to simplify the hydrodynamic
equations in order to arrive at these models, some rather speculative assump-
tions are to be made. In this respect the models have no pretensions. They are
merely based on the assumption, that the air moves along special physical
surfaces with geostrophic wind velocity and that the horizontal projections
of the trajectories of the particles may be assembled in trajectory fields.

The models offer the possibility of preparing dynamic forecasts by numerical
and graphical methods.

Without going into detail we may remark that the special model for isobaric
surfaces

d . —0
a T

is more or less in agreement with a well-known steering principle, which goes
back to Stiive (see for instance Reuter [1934]). This states that the tendency
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patterns are steered by the quasi-stationary cyclonic and anticyclonic pressure
patterns in the direction of the gradient wind.

6. Analysis of a transesonde flight

In part 1V it was shown that any pressure pattern track can be embedded
in a geostrophic wind configuration, or rather the horizontal projection of
the track. When an object is drifting freely with the wind (zero true air speed)
the horizontal projection of the trajectory of the object can still be inserted
into a geostrophic wind configuration. In a stationary or quasi-stationary air
flow the geostrophic wind configuration has to be interpreted as a geostrophic
flow in a surface, generated by coinciding isobars, isotherms and isosteric lines.
When the object is forced to stay on a physical surface, for instance an isobaric
surface, the projection of the trajectory can be embedded within a composite
topography of the suiface with geostrophic flow. These possibilities occur for
balloon flights. The track of a sounding balloon for instance ‘can be inserted
into a surface with geostrophic flow. The track of a constant pressure balloon,
where a baroswitch forces the balloon to stay in or near a constant pressure
level, can be embedded in a composite topography of the pressure surface
with geostrophic flow.

Neiburger and Angell [1956] made a careful analysis of nine flights with constant pressure
balloons (C.P.B.) The flights, which lasted several days, were inserted into a number of fixed
time upper air analyses which joined each other along straight lines. As a consequence the
general view of the flight is somewhat obscured with respect to the upper air flow.

For one of these flights, flight number 996, a composite topography of the 300 mb pressure
surface with geostrophic flow was prepared. The balloon was launched in Minneapolis,
May 26, 1953. Chart XIII shows the trajectory of the balloon. Two-hour positions derived
from a direction finding network are shown by black dots in the centre of circles, the radius
of which is an estimate of the fix accuracy. The dots without circles represent estimated or
interpolated two-hour positions. Day-time portions of the trajectory are shown by continuous
lines, night-time portions by dotted lines. In addition, the locations of two ocean station
vessels (station D and E) have been given.

Chart XIV represents the same flight on a larger scale, again with two-hour positions.
The drift velocity computed from four-hourly segments is given in knots, by number, above
each two-hour position. Radiosonde wind data in the vicinity of the track are shown in
conventional fashion. A composite topography with geostrophic flow was prepared by using
the published portions of fixed time upper air charts. The stream line x = 0 determines the
trajectory of the C.P.B. balloon. The lines y = 40, 80, —40 and —80 gpm are adjacent
stream lines. The velocity of the balloon corresponds to the geostrophic wind in the y-pattern.
The broken lines represent isochrones-issallo contour lines. The composite chart demonstrates
clearly the behaviour of the balloon’s motion. At first the balloon drifts within a strong
westerly wind, afterwards it shoots along a jetstream until it reaches an upper trough. It passes
the axis of the trough and arrives in a considerably weaker south to southwesterly current.
The speed of the eastward moving trough is, however, much greater than the eastward
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component of the balloon’s speed. As a consequence the trough overtakes the balloon and
the balloon gets upstream of the trough again, where in the meantime the winds have decreased.

Minneapolis V.
o X da
2/
’S%t (}
©
night s

CPB. flight 996x o sv. E

Crart XIII. Constant pressure balloon flight no. 996, starting 26 May 1933,
07.00 G.M.T. from Minneapolis. Dotted portions night-time
track, solid portions day-time track. Black dots denote two-
hourly positions. Radii of circles give estimate of fix accuracy.
Dots without circles are interpolated or extrapolated positions.
Positions of ocean station vessels are shown by a cross.

Minneapolis

x;oi Xx=-80

26 May XK=-40 7/1
07.00 GMT m
X.=40 83 L
=
\Ir\'
26 May =
26 May

15.00
K 21.00

Same flight on a larger scale. Solid line represents track of C.P.B. with two-
hourly positions. Numbers above positions denote balloon’s speed in knots.
Radiosonde wind data are shown in conventional fashion. Thin continuous
lines represent stream lines 3 = constant in the composite topography with
geostrophic flow (increment 40 gpm). Broken lines represent isochrones—issallo
contour lines with line elements copied from original fixed time 300 mb analysis.

C.PB. passes
X:80 TROUGH

A}
" 27 may
C.P.B.,shoots"along JET. 0300

CHART XIV.
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