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GENERAL INTRODUCTION

Although the basic equations of dynamic meteorology are known already
for years, their general solution is almost completely unknown. Drastic simpli-
fications are necessary to obtain at least some information about the nature
of the general solution. Roughly speaking, there are two types of simplifications
which have been successfully applied. In the first type the complications due to
the non-linearity of the equations are overcome by neglecting terms of minor
importance. In the second attack one studies the exact solutions of the equa-
tions for simplified models. One may speak of mathematical and of physical
simplification to denote their difference.

In the present publication a study is offered on the interplay between the
method of mathematical approximation on the one hand and one of the most
important physical models on the other hand viz. the Norwegian concept of
a frontal surface. At its proper place a more specific and concrete description
of this theme will be given. For the present it may be sufficient to remark that
the main problem will be to develop and to apply a test for the correctness of
approximations when frontal discontinuities are present in the atmosphere.
The discussion, however, will not be limited to frontal surfaces only, for it
will become clear that the results are valid for a larger class of atmospheric
situations and have implications for all situations in which a region of strong
baroclinity is present in the atmosphere. For the present study it is therefore
hardly of importance whether frontal discontinuities in the original sense of
the Norwegian school exist or not. The validity of the results found is even
independent of any opinion which one may have in the present discussion
on the revision of the concept of a front.

The study is divided into three parts. In the first part, the main mathematical
tool will be described. It consists of the modern theory of distributions as
developed by scHWARTZ and others. For reasons which will be explained in
full in the first part, this important new concept is not only almost unknown
to meteorologists, but even to most scientists working in applied mathematics,
notwithstanding the fact, that the main domain of application of the concept
of distributions is to be found in applied mathematics. It will therefore be
necessary to give an introduction to distribution theory. Since the author’s
task in this introduction is almost exclusively of a didactical nature, he did
not try to find the shortest way to introduce distributions, but on the contrary
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he has thought it necessary to show that there are many ways leading to the
same theory.

In the second part a critical revision of the basic equations of dynamic
meteorology from the point of view of the theory of distributions has been
given and the necessary collection of formulae has been derived. The third
part is devoted to the main problem already formulated above.



PARTI

THEORY OF DISTRIBUTIONS

Distributions restore to mathematics
the freedom that physicists have
always desired.

IRVING KAPLANSKY

1. Introduction

The main mathematical tool which will be used in the present study is the
theory of distributions. In the following an introduction to this new concept
will be given, but before this can be done the reader must have some know-
ledge of the historical situation in which the problems which are solved by the
distribution theory became a challenge to mathematicians. Otherwise he
would not be able to appreciate the appraisal made by G. TEMPLE [74]1) in a
Presidential Address to the London Mathematical Society “One of the great
events in the contemporary history of mathematics is the invention of the theory
of distributions by LAURENT SCHWARTZ”.

The problem goes back to HEAVISIDE and is one of the many hard nuts
which he gave mathematicians to crack. It is well known that in his book [33]
and papers he repeatedly made use of a function which was later on called
HEAVISIDE’s unit function Uy(x). It is defined by

Oforx <a
(1.1) Ua(x) = (see fig. 1)
1 forx >a

HEAVISIDE used other discontinuous functions also, but his unit function is
typical and will be used further on as a good starting point for discussion.
Although from the traditional point of view this was complete nonsense he
differentiated his unit function many times, to the astonishment of all who
had to admit that the final results of his calculations were quite correct. At
first, however, the main problems taken from the work of HEAVISIDE which
mathematicians tried to solve were his calculus of differential operators and
his use of divergent series and the problem of the non-existent but useful
differential quotients of the unit function did not obtain much attention.

1) Numbers in square brackets refer to the list of references (page 85).



In the year 1925 many mathematicians became interested in the problems
of the new quantum mechanics. At that time DIRAC [18, 19] began to use his

Ug(x)

['-Y) P SpR——

Figure 1.
famous delta function. It soon became clear that this function was the same as
the first differential quotient of the unit function

dUy(x)
dx

(1.2) da(x) =

For the delta function was defined by its strange property that for “every”
function f(x) it is true that



oo

(1.3) f 8a(x) £(x) dv = f(a)

The relation between the two remarkable functions is “proved” by partial
integration

18 [ 89S0 dx = f f) 2989 g

e 1 +00
=) Ualx) [ — f 100 Ua) dx = 0— [ f'(x) dx =

+00
= [ /] 7= fla,
which is a “correct” reasoning if one supposes

(1.5) S(+ 00) = fl— o) =0,

which on physical grounds often may be done.

So the attention of the mathematicians was for the second time drawn to
the problem of the non-existent but useful differential quotients of disconti-
nuous functions. A first solution was soon found, mainly by J. V. NEUMANN in
his now classical theory of the spectral resolution of bounded linear operators
in HILBERT spaces. This is not the place to describe this theory. In a certain
sense the solution was no solution at all, as in v. NEUMANN’s theory the
astounding delta function was completely eliminated. Its basic idea was to
rewrite the definition equation (1.3) for the delta function as

(L6) [ 4 S dx = [ f(x) dUalx) = fa),

in which the second integral is to be interpretated as a LEBESGUE-STIELTJES
integral. So v. NEUMANN merely showed that it was unnecessary to use functions
like the DIRAC function at all.

HEAVISIDE, however, did not only use the first derivative of his unit function
but higher differential quotients as well and others followed him therein. For
the use of higher derivatives v. NEUMANN’s theory offered no solution. So the
problem remained of the correct definition of the higher derivatives of the
unit function, which was solved for the first time by SCHWARTZ in his theory
of distributions. Finally one gets the following formulation for the basic
purpose of the distribution theory:

A theory in which in a certain sense differential-
quotients of discontinuous functions exist.
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It is obvious that the derivatives of discontinuous functions cannot be ordinary
functions, so that in one way or another a generalization of the concept of
the function should be introduced.

At the end of this introduction three remarks must be made.

1.1  After the distribution theory was developed by scHWARTZ and others,
it has been shown, that just as v. NEUMANN did with the delta function, the
higher derivatives can be eliminated by a generalization of the STIELTIES integral.
This was done by BURKILL [12]. However, the distribution theory seems to be
an easier instrument than the quite complicated generalization of the STIELTIES
integral which in practical problems is difficult to handle.

1.2 The term distribution suggests a relation to the concept of the proba-
bility distribution. Indeed, a probability distribution is a distribution in the
sense of SCHWARTZ, whose concept however is much more general. So there
is an ambiguity in the term distribution, which for some scientists is a sufficient
reason to use the term generalized function. Perhaps distributor — a term which
can be translated in almost any language used in science — would be a better
term.

1.3 When in the next sections integrals occur, they usually should be inter-
preted as LEBESGUE integrals. Some of the theorems quoted are also valid for
RIEMANN integrals but this will not be stated explicitely. There exists nowadays,
short ways to introduce the LEBESGUE integral, which are quite in the spirit of
the applied mathematician, as e.g. that which may be found in the books of RIESZ
and SZ.-NAGY [63] and of ZAMANSKY [80].

2. Distributions as defined by Schwartz

2.1  After an earlier attempt by soBoLov [70], the first complete theory of
distributions was given by LAURENT SCHWARTZ in a two volume book [67].
SCHWARTZ, at that time professor at the University of Nancy, France, was
largely influenced by the style of the French group of mathematical writers,
who collectively publish their work under the pen-name BOURBAKI. So in his
book the theory is developed on the basis of the theory of the locally convex
linear topological vectorspaces. The topological setting of his theory was not
predestinated to give it the desired familiarity under the applied mathema-
ticians. One of the main tasks of all who have worked after SCHWARTZ on
distributions, has been to eliminate as much topology as possible from it
and this task has been performed with great success. Later on other theories,
claimed to be elementary in some sense will be described, but a few words



must be said on SCHWARTZ original theory, after which the reader may forget
all about it and restrict himself to one of the later theories of his choice.

2.2  Consider functions @(x) of the real variable x. SCHWARTZ’s definition
of the distribution 7 is that it is a linear functional, that is a linear operation
which assigns to ¢ a number a:

2.1) T [p] = a.

It is obvious that not every function ¢ can be subjected to an arbitrary ope-
ration T, Indeed if T is a rather “wild” operation, then @ should be a rather
“tame” function. So it becomes necessary to specify the class of allowed
operations and to restrict the class of functions ¢.

First define the support of a function as the smallest closed set of the variable
x, outside of which ¢(x) is identically zero. Consider now the collection )
of functions ¢(x) which have derivatives of all orders and have a bounded
support. This class ] is called the vector space of testfunctions. By this wording
it is said that if @,(x) and @y(x) are testfunctions then any linear combination
of them with arbitrary real coefficients @, and a,

(2.2) a;py(x) + ayqa(x)

is also a testfunction.
In the space [) a definition of convergence is given as follows. It is said that
an infinite sequence of testfunctions g;(x) (1 = i = oco) converges to zero

2.3) lim* gi(x) = 0

I=00

if (i) all @4(x) have their support in the same bounded set, and (ii) the ¢;(x) as

well as their derivatives ¢;(*) (x) of all orders converge for every k uniformly

in x in the ordinary sense to zero. This definition gives SCHWARTZ the oppor-

tunity to introduce the theory of locally convex linear topological vectorspaces.
A distribution T is now defined as a linear functional

2.4) Tlgl=a

which assigns to every testfunction a real number a and which is supposed to
be continuous in the following sense. If g; is a sequence of testfunctions which
according to the definition given above converges to zero then T [g;] converges
to zero.

The distribution is thus a continuous linear functional on ]), which gives
SCHWARTZ the opportunity to consider the whole collection of distributions
as the dual space ]’ of I). It must be observed that at the time at which
SCHWARTZ wrote his book, only BANACH spaces were known, and that he had



to develop the theory of locally convex linear topological vectorspaces as far
as he needed it himself.
For every distribution a derivative T’ can be defined by

2.5) T’ [p] = —T[¢'].
Higher derivatives are given by
(2.6) T [p] = ()" T [p™].

These definitions make sense, since by definition every testfunction possesses
derivatives of all orders.
HEAVISIDE’s unit function is now replaced by the unit distribution U, given by

oo

@7 Udlgl= [ gl dx

a

and DIRAC’s delta function is replaced by the distribution &, by means of
(2.8) 6(1 — U’a.

This is really what it should be since it follows from the definitions given
above that

@29)  Sulpl = Uulpl = — Ualp'l = — [ ¢/'(x) dx =
= [~ ¢, = pl@) — ¢ (=) = g(a).

Notice that @ (c0) = 0 for every testfunction ¢ since by definition a test-
function has a bounded support and is therefore equal to zero at infinity.

2.3 Although the description given above has deliberately been restricted
to the bare essentials, the reader will note that the theory is rather abstract
and that what is called a distribution hardly looks like a generalization of a
function. Furthermore the necessity to operate with testfunctions makes the
application of distributions difficult. TEMPLE [74] has given the following

example. Consider the wave-equation
u  Pu
@10 =

This equation should have the solution

u=a+#0 for x <t
(2.11)
u=2~0 for x > 1,



representing a travelling shockwave. In SCHWARTZ’s theory one is obliged to
consider a distribution 7, specified by

(2.12) T[] = ffu(x, 1) ¢ (x, £) dx dt

and to replace the differential equation for u (x, ¢) (2.10) by the integral equa-
tion

i G g
.13) ff u (%, t);a—xi—a—te—sdxdt =0,
—00

which must be satisfied for all testfunctions ¢ € .
If however one writes (2.11) as
(2.14) u=alU(t—x)

U now being the original HEAVISIDE unit function then a straightforward
calculation gives

2u 02

(2.15) il U(t—x) = ad’ (t—x)
0% o? ,
(2.16) 7 =9 U(t—x) = ad’ (t—x),

so that (2.10) is satisfied.

The conclusion is that SCHWARTZ went too far away from the intuitive
HEAVISIDE-DIRAC approach and this is not only caused by the abstract setting
in which SCHWARTZ originally has presented his theory but also by the intro-
duction of the testfunctions, which at first sight seem to bear no relation to
physically relevant entities.

2.4 Following most of the devices given by TEMPLE [75], LIGHTHILL in his
book [46] succeeded in eliminating the more abstract notions from SCHWARTZ'’s
approach and even found the way to use a more tractable kind of testfunctions ?)
called good functions by him. Since, however, the use of some type of test-
functions is not avoided by LIGHTHILL a description of his theory will not be
given. It may be remarked, however, that LIGHTHILL’s approach is very well
adapted to the other theme of his book ““Fourier analysis”.

2.5 Reference should be made to a booklet of HALPERIN [32], in which a
sketch of SCHWARTZ’s theory has been given with a minimum of topological

1) Different classes of testfunctions may be used, which however may lead to slightly
different types of distributions. The reader is referred to the literature for further details.
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reasoning. A readable introduction to the original theory of SCHWARTZ, in-
cluding an introduction to the topological background has been given by
MARTINEAU and TREVES [48].

3. Mikusinski’s weak limit scheme

Almost immediately after the first publications by SCHWARTZ on his new
theory the Polish mathematician JAN MIKUSINSKI published a paper [54] in
which he showed that the method used by SCHWARTZ to define his distributions
was a special case of a very general scheme in which the concept of weak limit
is fundamental.

Let three collections be given, a collection F of elements f, a collection @ of
elements @ and a collection C of elements ¢. No restriction as to the nature of
the collections will be made.

Suppose that for every element f from F and every ¢ from @ an element ¢
from C is determined by

3.1 Sflgl =c.

Let the collection @ be complete, in the sense that if for all ¢ from @ one has

(3.2) Sflel =g [9]

it follows that

3.3) f=g
Let in the collection C some kind of limit be defined, that is let a rule be laid
down by which one tests whether for an infinite sequence c¢; of C
3.9 lim ¢;=c¢
i=o0
is true or not.
By definition a sequence f, converges weakly to f (written f, —~ f) if for all ¢
from @ it is true that

(3.5) nim Ju Lol = [l

Now, it may happen that the collection F is not complete with respect to the
weak limit. This phrase means that it may happen that a sequence fy [¢]
converges for all ¢ from @, but that the collection F does not possess an element
f so that (3.5) is valid. In this case one enlarges the collection F by adding to
it elements f* of the type

(3.6) Sr={foSoeei S}
for which by definition f* [¢] is given by

(E)) S* gl = im fa [@].
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By identifying two sequences f; [¢] if the sequence of their differences con-
verges to zero one obtains an enlarged collection F* which now is complete
with respect to the weak limit. The reader should observe that this process of
completing is familiar to him since it is an abstract description of a process
which is much used, e.g. the completing of the system of rational numbers to
the system of irrational numbers by fundamental sequences (CANTOR) follows
the same line of thought.
Next make the following choices:

F: The collection of all functions f(x) which are LEBESGUE-
integrable over every finite interval.

@: The collection of testfunctions ]) as defined by SCHWARTZ.

C: The collection of real numbers in which the usual limit will
be used for (3.4).

Define f[yp] as

3.8) Slol= [ /) ¢ () d.

The collection F of functions f happens to be incomplete with respect to the
weak limit corresponding with (3.4). MIKUSINSKI has shown that the elements
which one should add to this collection to make it complete are exactly the
distributions of SCHWARTZ.

Of course nothing is gained by this way of introducing distributions. The
importance of MIKUSINSKI’s general scheme lies in the possibility of choosing
other specifications for the collections F, @ and C. One may hope that by
making a suitable choice for the specification of the collections F, @ and C one
may arrive at a more simple theory of distributions. This is indeed what has
been done by different authors. These theories are usually called elementary.
The meaning of this term is rather specific. It means that the author has
specified MIKUSINSKI’s general scheme in some way or another, but has elimi-
nated in his presentation of the theory all references to the general abstract
scheme. So it looks as if no general theory is behind his presentation and as if
he has succeeded in coming through by using exclusively methods of ordinary
calculus. For a full understanding why it is possible that so many elementary
approaches to distribution theory are possible the general scheme or even the
more general concept of neutrices (see section 7.6) should be kept in mind. In
the next sections a few of these elementary theories will be described in the
spirit of their inventors, that is without using MIKUSINSKI’s scheme explicitely.
An indication of how these theories fit in the general abstract scheme, however,
will not be omitted.
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4. Distributions defined by sequences

Different authors e.g. KOREVAAR [41] and MIKUSINSKI and SIKORSKI [56] have
shown the possibility of defining distributions by sequences of ordinary func-
tions. Since the difference between the approaches of KOREVAAR and MIKUSINSKI-
SIKORSKI is not a matter of principle but is confined to details, only the latter
theory will be described. First a fixed openinterval I: —co=< 4 < x < B= oo
for the variable x is defined.

A sequence fn(x) of functions continuous on I is said to be fundamental if
there exists a sequence F(x) and an integer & = 0 such that
@.1) Fr®) = fu(x) for all n,
and

(4.2) the sequence Fu(x) converges for n — oo almost uniformly. The notion
of almost uniform convergence is classical and may be defined by:

A sequence Fp(x) converges on I almost uniformly to F(x), written
(43) Fu(x) 3 F(x)
if it converges to F(x) uniformly on each finite closed interval I’ contained in
rcn;I'+n.
Two fundamental sequences f(x) and g.(x) are called equivalent, written
(4.4) {fa() } ~{gn(*)}
if there exist sequences Fy(x) and Gn(x) and an integer & = 0 such that
“.5.1) Fro®)(x) = fu(x) forall n

(4.5.2) Gn®)(x) = gp(x) forall n

(4.5.3) Fu(x) T F(x)
4.5.4) Gu(x) = G(x)
(4.5.5) F(x) = G(x).

It is easy to see that the relation of equivalence has the following properties
4.6.1) {fa(x¥) }~{/a(x)} (reflexivity)
46.2) If{ fa(x) } ~{gn(x)} then {gn(x)} ~ {fa(x)} (symmetry)
(4.6.3) If{ fu(x) } ~{gn(x) },

“then {fu(x) } ~ { hn(x) } (transitivity)
{gn(0) }~{ha(x)}'

By definition a distribution is a class of equivalent fundamental sequences.
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Denote the class of all fundamental sequences equivalent to { fn(x)} by [fa(x)]
then it follows from (4.6) that

4.7.1) {fa(x) } belongs to [f(x)];

(4.7.2) If{fu(x) } ~{gn(x) } then [fu(x)] = [ga(x)];

(4.7.3) If it is not true that { fu(x) } ~{gn(x) } then the classes [f,(x)] and
[gn(x)] have no common element.

Examples The sequence

o A
2
@8 =) e 2, I=(—1,1)
is fundamental.
The sequence
0 for x < —l/n
n—+nx for —In<x<0
4.9 gn(x) = I=(=1,1)

n—nx for 0 < x < lI/n
0 for x > 1/n

is fundamental. It is an easy exercise in classical analysis to prove that the
sequences fy(x) and gn(x) are equivalent. Both define the same distribution
viz. the DIRAC delta distribution.

By defining for a given continuous function f(x), f,(x) by

(4.10) Ju(x) = f(x) forall n,

every continuous function can be interpreted as a distribution, so the concept
of a distribution is clearly a generalization of that of a function.

It is proved in the further development of the theory that every distribution
can be represented in the form [p,(x)] where p,(x) are polynomials. If a distri-
bution is given in the form [p,(x)] where p,(x) are polynomials, the m - th
derivative of the distribution is defined by [p, ™ (x)]. From this it follows that
each distribution has derivatives of arbitrary high order. Finally one proves
the theorem that each distribution is the derivative in the distribution sense,
of some order, of a continuous function.

After all this has been defined and proved, a slight generalization is necessary
to obtain a set of distributions which is fully equivalent to that of SCHWARTZ,
a generalization the sole purpose of which is to remove the restrictions implied
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by the initial choice of the open interval I. The intuitive base of the definition
of distributions by sequences is clear. One knows — already since the time of
HELMHOLTZ — that functions like (4.8) of (4.9) for large n behave like the DIRAC
delta function. One even knows, on the basis of a general theorem of LEBESGUE
[45] (see also v. D. POL en BREMMER [61]) how to construct arbitrarily many
functions of similar behaviour.

However, in all cases, the simple limit n — oo of these functions does not
exist. In the approach to distributions discussed in this section the problem
is solved by not passing to the limit but by considering the sequences like (4.8)
as new entities. Since there are sequences which would lead to the same limit
if it would exist, some principle of identification is necessary. In modern
mathematics this is always done by constructing an equivalence relation,
having the property of reflexivity, symmetry and transitivity like (4.6) and by
considering classes of equivalent entities as a new species of entities.

All this very well agrees with the general scheme of MIKUSINSKI as described
in the previous section. Indeed, one has only to make the following specifi-
cation in the general scheme:

Take for F: the collection of functions f(x) continuous on I.
Take for @: the collection of integers k = 0.

Take for C: the collection of continuous functions with the limit concept
as governed by the concept of almost uniform convergence on 1.

Take for the relation (3.1)
(4.11) o(x) = fR)(x)

in which fC® denotes the k-th iteration of the indefinite integral of f(x).

Remarks:

1. The relations between the original definition of SCHWARTZ and the elemen-
tary theory of MIKUSINSKI and SIKORsKI are discussed in full by Bouix [9].

2. A method for the introduction of distributions which lies in between the
method of this section and the original method of SCHWARTZ has been
constructed by RAVETZ [62]. The announced second paper of this author
will perhaps never be published [private communication].

5. Distributions defined by derivatives

In the HEAVISIDE-DIRAC approach the delta distribution is from the beginning
defined as a derivative of the unit function, neglecting the fact that it does not
exist in the traditional sense. In distribution theory one has however the
fundamental theorem, that, subjected to an at present inessential restriction,
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every distribution is (at least locally) the distribution derivative of some order
of a continuous function. Now it is often possible in mathematics to construct
a new theory by taking some fundamental theorem of an existing theory as the
basic definition for the new theory. If this would be possible in distribution
theory one would obtain a theory for distributions which approaches as much
as possible the original ideas of DIRAC and HEAVISIDE. It has been shown by
SIKORSKI that this can easily be done. An account of it may be found in MIKU-
SINSKI and SIKORSKI [56]. Consider pairs consisting of functions F(x) continuous
onl: —oco< 4 < x < B= coand integers k = 0 : { F(x), k }.
Two pairs {F ), k} and{ G(x), h } are said to be equivalent if on I either

h—k
k=h and e G(x) — F(x) exists and is a polynomial of degree < k
or

k—h
h =k and p F(x) — G(x) exists and is a polynomial of degree << /.

The conditions for equivalence are clearly less severe then the condition
F®) = G to which they are reducible if F and G are in the possession of the
necessary differential quotients. It is easily seen that the equivalence relation
is reflexive, symmetric and transitive. So one may consider classes of equiva-
lent pairs which will be called distributions. 1t follows from the definitions
given above that { F(x), 0} is equivalent to { G(x), 0 }if and only if F(x) = G(x).
So the class of pairs equivalent to {F(x), 0} contains exactly one element viz.
{ F(x), 0} itself. It is therefore possible to identify the distribution { F(x), 0}
with the function F(x) and vice versa.

The m-th derivative of a distribution { F(x), k} is now defined by { F(x),
k + m}. In particular the m-th derivative of F(x) is the distribution { F(x), m }.
It is easy to show that if F(x) has already a continuous derivative in the classical
sense F'(x) that

(5.1) {F'(x),0}={F(),1}.

Example
Consider the continuous function S,(x) defined by

0 for x<a
(5.2) Sa(x) =
x—a for x = a.

One observes that the unit function is given by

dSa(x)

(5.3) Ua(x) = =12
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Since U,(x) is not a continuous function, it cannot be used to define the delta
distribution. However, one may define this distribution by

(54) 6a(x) = {Sa,(X), 2 }

A slight generalization is necessary to enlarge the set of distributions as defined
in this section to obtain a set of distributions fully equivalent to the set of
distributions as defined by SCHWARTZ.

The method described above is readily generalized to distributions in more
variables and even to distributions in more general spaces as has been shown
by SEBASTIAO € SILVA [68]. The method has a long history which even goes back
to the times before the invention of the distribution theory by SCHWARTZ,
since already in 1932 BOCHNER [6] made use of it in the theory of Fourier
integrals. For its relation with the general scheme of weak limits one may
consult TEMPLE [74].

6. Distributions as pairs of functions

MIKUSINSKI has shown that there is still another way to introduce distri-
butions. (MIKUSINSKI [55]).

Consider semifunctions i.e. functions which are identically zero for non-
positive values of the independent variable. Between two semifunctions f and
g one defines the convolution f+g [German: Faltung; French: Produit de
composition; Russian: CBEPTKA = Svertka] as

X X
6.1) frg— ) [ SO~ e® dé = [fO gx—§ for x>0 _
o

(o]
0 forx 0
X x
= U [ flx—) g(®) df = U [ 118) glx—8) d.
(o] [o]

According to a theorem of TITCHMARSH the convolution f*g is never identically
zero for continuous or LEBESGUE integrable / and g unless at least one of the
factors of the product is (almost) everywhere zero. In other words the system
of semifunctions with * as a product is a commutative ring without divisors
of zero.

“Division”, that is taking the inverse of the convolution is unique if the
“quotient” exists. For if

(6.2) Jr&r =frgs = h(x)

then
S*(gr—g2) = 0.
and according to TITCHMARSH’s theorem g, = g,.
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However, in many cases the quotient does not exist. So one is obliged to
introduce “fractions”. This may be done in the following way.

A pair of semifunctions {£;; g, } is said to be equivalent to a pair {f3; g}
written

(6.3) {fis &} ~{fe; &2}
if
6.9 Sixgs = forgn
The equivalence relation defined above is reflexive, symmetric and transitive.
So one may consider classes of equivalent pairs called distributions. The class
of pairs equivalent to F = { 5 g} will be denoted by [F] = [f; g

Whereas in the preceding sections the definition of the elementary operations

like addition with distributions gave no difficulties and was therefore not
discussed, in the present method these definitions deserve some consideration.

Scalar multiplication
If ¢ is a number and [F] a distribution [G] = ¢[F] will be defined by the rule:
for all pairs { /; g } belonging to [F], { ¢f; g } will belong to [G].
Addition
The addition
(6.5) [F]1+ [G] = [H]
is defined by the rule:
if {/1; & } belongs to [F] and {/;; g} belongs to [G], then {fi*g: + forg1;
g21*g, } belongs to [H].
Multiplication
The convolution multiplication
(6.6) [F]+[G] = [H]

is defined by the rule:

if {18} belongs to [F] and {/;; 2.} belongs to [G], then {firfa; &1%82 }
belongs to [H].

Inverse

The inverse distribution [F]! = H is defined by the rule:

if {f; g } belongs to [F], then{g; f} belongs to [H].
One readily sees that if one writes

61 [Fl=[fgl =§f
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one may do the arithmetical operations with distributions as with ordinary
fractions. In particular it follows that the convolution division is always
unique and possible provided that the denominator is not identically zero
(except for x =< 0). This implies the validity of the cancellation law:

From

(6.8) [F] % [G] = [F] * [H]
it follows that
6.9 [G] = [H]

One now may identify an ordinary semifunction f(x) with a distribution by
the application

(6.10) S(x) — [Uxf; UL
U being an abbreviation for the unitfunction Uy(x).

At this point it is necessary to remark that constructions like [f; 1] are
impossible; the components of the pair — the numerator and the denominator
of the fraction — should always be semifunctions. In (6.10) it is therefore im-
possible to divide numerator and denominator by U.

Integration and differentiation

Let f(x) be a semifunction. For the convolution with U one has

X X
(6.11) UR) * /() = U [ 1.£(8) dE = U) [ 1(8) d.
0 (o]

So one sees that the operator U applied to semifunctions is equivalent to
integration (indefinite).
In particular

(6.12) U U= xU(x).
Next if f(x) possesses a semifunction as its classical differential quotient,
one has

X
(6.13) U+f'(x) = Ux) f /() dx = f(x) U(x).
[o]

Translating this formula by (6.10) into the language of distributions one
obtains

(6.14) [UxU=f'; Ul=[U =*f; U]
By application of the cancellation law (6.8) it follows that
(6.15) U= Ul=[f;U]
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and interpretation by (6.10) gives the rule: if a semifunction possesses as its
ordinary differential quotient a semifunction, then the derivative may be
found as the convolution quotient of the function and the unit function.
However, not every semifunction possesses an ordinary derivative. But inter-
pretated as a distribution, convolution division by the unit function is always
possible. This may be considered as a generalization of the ordinary process
of differentiation. So every semifunction possesses a derivative in the sense of
distribution theory and even every distribution may be differentiated inde-
finitely.

By the rule (6.10) the unit function may be considered as the distribution

(6.16) [U* U; Ul

By differentiation one obtains the following representation for the DIRAC
delta function or better the delta distribution

6.17) 0=[U=*U; Ux*U]=[U;Ul.

Originally the system of semifunctions was a ring without divisors of zero
and without unit element. By the process outlined in this section the system
has been imbedded in a larger system. Since in the enlarged system division is
always possible, it has the algebraic structure of a field and must therefore
possess a unit element. The unit element is exactly the delta distribution (6.17).
For if F = [f; g] is a distribution one has

(6.18) O [F]=[U; Ul = [f; g] = (by (6.6)) = [U xf; Ux gl =
= (by the cancellation law (6.8)) = [f; g] = [F]
or

(6.19) & * [F] = [F].

Next consider the derivative ¢’ of the delta distribution d which by the rules
given above may be written as

(6.20) 8" = [U; U= Ul

It is easy to prove that for every distribution [F] = [f; g]
, d

6.21) O * [F] = d_x[F]

in which the right hand side is to be interpreted as a differentiation in distribu-
tion sense. For

(6.22) Ox[Fl=[U; UxUlx[f;gl=[Uxf;UxU=xgl=

AR T

according to the rule for differentiation of distributions.
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So one observes that the operator ¢’ in distribution theory is the same

d

thing as the operator p — Ix in HEAVISIDE’s operator calculus. This is one of

the many relations which exist between distribution calculus and the operator
calculus or the theory of LAPLACE transforms. In fact in MIKUSINSKI’S book
[55] distribution theory is only mentioned incidentally, as its main theme is
to develop a new simple algebraic approach to the operator calculus.

7. Remarks on different aspects of distribution theory

In this section a series of additional remarks on distribution theory are
collected.

7.1 It has been shown by EHRENPREIS [22] that it is possible to construct a
distribution theory on locally compact spaces and by GAL [28] that by intro-
duction of uniform structures some difficult problems on the existence of
solutions of equations with distributions as unknowns may be solved.

7.2 Whereas convolution products of distributions give no difficulties, as
may be inferred from (6.6), ordinary products of distributions do not always
exist. Even the square of the delta distribution does not exist. On the base of
a very abstract theory KONIG [39, 40] succeeded in generalizing the distribution
concept to the effect that some of the difficulties are removed but even then the
square of the delta distribution cannot be defined.

7.3 A quite different approach has been found by SCHMIEDEN and LAUGWITZ
[66, 43]. In their theory almost nothing has to be changed in the concept of
the function. They consider a new type of independent variables, which are
no longer numbers but infinite sequences of numbers. In this theory the delta
function exists as an ordinary function of the new type of variables and there-
fore its square exists also. However one has to pay for this freedom. In this
theory not one unique delta distribution exists but infinitely many. In fact
every sequence like (4.8) of (4.9) defines its own delta function. The authors
maintain that in applied mathematics one would profit by the multiplicity of
delta functions but until now they failed to prove their thesis. It must, however,
be admitted, that their theory is extremely elementary, using hardly anything
which goes beyond ordinary calculus.

7.4  Although there exist many introductions to distribution theory for one
variable, their is still a need for an introductory text on distributions in more
variables. Formulae like

141 6) a0y = 2R o0

7T Vx4 p? i
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have been known for long times and have been proved by the HEAVISIDE-DIRAC
technique. They are of fundamental importance for the applications. In text-
books on distribution theory they are however hardly discussed at all, except
by SCHWARTZ [67] and by LAVOINE [44].

7.5  Consider the LAPLACE transform as defined by

oo
(1.511)  L({f)= f e=st f(1)dt,

0
which gives for a delta function concentrated at x = a, da(x):

oo
(1.5.2) L () = f et §(Ndt = e~se.

0
Now one may ask the following question. If one starts with some class of
functions in which the delta function is still not defined, would it be possible
to define distributions so that (7.5.2) is an almost trivial consequence of the
definition? The program has been investigated by WESTON, who in his first paper
[78] succeeded in constructing distributions in an elementary way by using a
weak limit technique. In his second paper [79] he gives more of the abstract
background of his method and discusses also the relations between his theory
and the HEAVISIDE operator calculus.

7.6 Recently VAN DER CORPUT [15, 16, 17] has given a first sketch of a new
theory called by him Neutrix calculus. This theory has a very broad scope and
is of a remarkable generality. A general kind of distributions are defined in it,
of which the distributions of SCHWARTZ are only a very special example. It
may be that the further developments of the neutrix calculus become of great
importance in applied mathematics. Even in this theory the ordinary product
of distributions gives difficulties, so one may safely assume that in near future
one will not have a theory at hand in which the square of the delta distribution
exists.

7.7 In the second and third part of this study the application of distribution
theory is confined to dynamic meteorology. Readers interested in other appli-
cations may consult e.g. the papers of BREMMER [10] (electromagnetic waves),
DORFNER [20] (supersonic gasdynamics), TAYLOR [73] (classical electrodyna-
mics), BOUIX [8] (MAXWELL and HELMHOLTZ equations).

7.8 In the survey given in the preceding sections of distribution theory no
attention has been given to Russian literature. Reference should be made
to a four volume book by GEL’FAND and $iLov [30] of which English and
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German translations of the first volume have been announced. Furthermore
there exist translations of papers by GEL’FAND and 3ILOV [29], KOSTYUCENKO
and SiLov [42] and BOROK [7] in which distribution theory is applied to some
problems of pure mathematics. From this one may infer that Russian mathe-
maticians pay due attention to distribution theory and that their methods are
some amalgamation of those of SCHWARTZ [67] and LIGHTHILL-TEMPLE [46, 75].

8. The practice of distribution calculus

8.1  As has been shown, there are many ways to introduce distributions i.e.
to generalize the concept of a function in order to give sense to differential
quotients which in the traditional sense do not exist at all. All methods of
introducing lead to the same final conclusion viz. that one may use the HEAVI-
SIDE-DIRAC technique without falling into troubles. This means that one may
safely forget all what has been said about the foundations of distribution
theory. All what is needed is the knowledge that there is some — in fact there
are even more — theory which guarantees the correctness of the intuitive
HEAVISIDE-DIRAC technique. Using the intuitive technique a search will be made
in order to detect what kind of physically meaningful entities correspond with
the standard types of distributions, generalized functions, singular functions
or whatever they may be called: d(x), 6'(x) etc.

The discussion will be made using a simple example taken from electrostatics.

Consider an electric potential ¥(x) defined by

0 for x<0
8.1 V(x) = x_:o for 0<x<a (See fig. 2)

Vo for x>a.

The potential V' can easily be realized by taking two conducting halfspaces
x < 0 and x > a and bringing them to the potentials 0 and V,,.

With the aid of the unit function one may summarize (8.1) into a single
formula

8.2) V(x) — “‘aﬁ’ U(x) + ( "V") U(x—a).

If V werea differentiable function one could find the electrical field strength E
by differentiation.

(8.3) =%

dx
The use of distributions gives sense to (8.3) also for non-differentiable ¥(x)
and one finds

(8.4) E=— [%’ U(x) — U(x— )+ Yo s5x) + ¥, (1__) 6(x—a)]
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ofF——————

Figure 2.

which due to the relation
(8.5 S(x) 8(x) = £(0) 6(x)

may be simplified as

(8.6) E=— [%’ Ux) — %’ U(x—a)] - % [U(x_a) _ U(x)] _

0 for x<0

= —I% for O0<x<a

0 for x>a (see fig. 3)
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Figure 3.

One observes that the electrical field exists only outside the conductors and is
homogeneous in the empty part of the space exactly as it should be according
to known theory.

If E(x) were a differentiable function one could find the space charge density
o(x) by differentiation

dE azv
(8.7 olx) = ol

The use of distributions gives sense to (8.7) also for non-differentiable E(x)
and one finds

€8 o) =" [6(—a) — s
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Now, one knows that in the case discussed the space charge density is identi-
cally zero and that there should be surface charges of opposite sign on the
boundaries of the conductors. The strength of the surface charges is known
to be proportional to the discontinuity of E(x) at the boundaries. They should
be equal to — Vyfa at x = 0 and V,/a at x = a.The strengths appear to be
exactly the coefficients of the delta functions in (8.8). So one obtains an inter-
pretation for a singular density like

(8.9) o(x) = B 8(x—xo)

which simply means a point charge of strength f§ at the point x = x,. Thus
the intuitive content of the delta function is that of what is usually called a
point singularity of unit strength.

Now proceed to the construction of singularities of the dipole type. To do
this, place a point singularity of strength (— e) at x = x, and one of strength

-e +e
X=X° X=)%+Cl
Figure 4.

-+ e at x = x4 -+ a. (See fig. 4). According to what has been said above, one
may describe this by a singular density given by

(8.10) o(x) = e d(xp+a—x) — e d(x¢—x).

The next step is to let the charges approach each other by making a — 0 at
the same time increasing the strengths such that m

(8.11) m = ea

remains constant. One then obtains

(8.12) lim p(x) =ali:mo [m O(xg—x+a) — 6(x0_x)] _

a

— m lim 0(xg—x-+a) — 0(xy—x)

Jim . = m §'(x—x,).

One observes that a singularity of the dipole type with moment m placed at
X = X, is represented by the singular density

(8.13) o(x) = m é'(x—xy)
8.2 Now both d(x) and 6’(x) have been correlated to physically significant
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concepts. As remarked already distribution theory has not been able to give
a satisfactory definition of the square of the delta function. This problem will
be studied now. Consider the family of functions g.(x) (See fig. 5).

0 for x < —¢gf2

619 g =L [u(x+3)—u(v—g)] =jue for —f <<
0 for x > g2
(e > 0)

lq»e(x)

e

-2 | €)2 —X

Figure 5.
One has

(8.15) lim _pe(x) = ‘fl_g = 8(x).
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This follows immediately from (8.14) by definition, but one obtains further
insight by using a test function f(x), and by considering

e
(8.16) ce = | @) S(x) dx = j f(x) dx.

-00 —8’2
If f(x) satisfies some mild conditions one may apply the mean value theorem
of integral calculus to the last integral. According to this theorem there exists
a real number &,
€

(8.17) —3

such that

=¢

IIA
N ™

€2
B18) o= Jf(\)dx——f(s)e—f(f)

Taking the limit for £ -~ 0 one obtains

+ OO0

@19 lim [ o) fG) dv = Jim f(&) = f(0).

So one sees that for small values of &, p(x) may be considered as an approxi-
mation of 6(x). It is therefore worth while to try to define §*(x) by means of
this approximation e.g. by writing tentatively

(8.20) 82(x) = lim g2(x).
€=0
Doing this one obtains
6/2
(8.21) f ) 8¥x) dx = lim, f 10 ge(x) dx = lim — f f(x) dx =

2
0
~tim L) e = i SO
This makes no sense if f(0) %~ 0, and if f(0) happens to be zero by chance, the
result may sometimes perhaps be interpreted as f'(0). But generally speaking
one does not know how to interpret integrals of the type (8.21). The same
conclusion follows from the formula

(8.22) f J(x) 0°(x) dx = f [f(%) 6(x)] 8(x) dx = £(0) 6(0).
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Now, one knows that d(x) has an intuitive significant meaning. The graph of
d(x) can be imagined as a small and tall pike around x = 0 whose area is unit. The
discussion above shows that the graph of 62(x) should be something like a small
and tall pike around x = 0 with infinite area. There seems to be no physically
significant concept associated with this picture. So, not only does 62(x) not exist
in any distribution theory but also its intuitive content — if it would exist — has
no correlate in physical thinking. Much emphasis has been laid upon this
problem in this section because in part three (Applications) the argument will
be used that theories leading to the square of the delta function are wrong. One
should observe that this argument remains valid even if in the future develop-
ment of distribution theory somebody will construct a generalization in which
0%(x) has a mathematical meaning, since no physical meaning can be found.

8.3  Before passing over to the next part of this study a terminological remark
must be made with respect to the term continuous. This term offers no ambi-
guity in pure mathematics. Different equivalent definitions of the term con-
tinuous are known for which one may consult e.g. KELLEY [37].

However in applied mathematics the term continuous is used more losely.
Often one calls a function continuous when what is really meant is that the
function is indefinitely differentiable. Sometimes a function is called conti-
nuous if it possesses differential quotients of those orders in which the author
happens to be interested. So sometimes a function like V(x) defined by (8.1)
would be termed discontinuous although according to every mathematician
it is clearly continuous.

HADAMARD [31] has tried to save the situation by introducing terms like
“discontinuity of the first, second order etc.”. He would say that V(x) from
(8.1) possesses a discontinuity of the first order because it is the first derivative
of this function which according to the strict definition is discontinuous. His
method works as long as one confines oneself to functions. But HADAMARD
also used terms like “points of discontinuity of the first order” or “surfaces of
discontinuity of the second order”. Since however in practical applications one
has to deal with more than one function (e.g. pressure, temperature, humidity,
etc.) which do not necessarily show the same behaviour at the point or surface
of discontinuity the method becomes rather cumbersome because one is
obliged to denote which function one considers as critical for determining the
order of discontinuity.

The conclusion is that the term continuous function should be only used
in the strict mathematical sense. One observes that the whole problem is a
product of the tradition in physics and engineering not to distinguish between
continuity and differentiability and that just because distribution theory is
developed to make every continuous function differentiable one should stick to
an exact use of correct terminology.



PART 11

THE EQUATIONS OF DYNAMIC METEOROLOGY

9. Surfaces of discontinuity

9.1 Since the introduction of the frontal theory by the Norwegian school of
meteorologists, surfaces of discontinuity play an important role in dynamic
meteorology. However, it has become clear that a front is not always a surface
of discontinuity in the strict sense. Some authors, from which BLEEKER [3, 4, 5]
must be mentioned as the leading authority, even hold that the whole concept
of a front needs a fundamental revision. For the present study the different
opinions about fronts and surfaces of discontinuity are hardly of importance.
Although the concept of discontinuity will be used this does not mean that the
results are without value if discontinuities do not exist in the atmosphere.
Nobody denies the existence of layers in the atmosphere with pronounced
strong baroclinity. It is possible to interpret the whole theory of discontinuities
as an approximative theory for layers of strong baroclinity. Still better the
surface of discontinuity is to be considered as an exaggeration of a baroclinic
layer, used in order to obtain a clear picture of the role played by baroclinity.
So even if one denies the existence of discontinuities in the strict sense it may
be worth while to study them. This is the more true for the present study since
the conclusions which will be drawn are preponderant of a qualitative nature
so that they can easily be generalized to baroclinic layers.

9.2  Consider a surface of discontinuity (SD). In the part of the space through
which it moves one considers the time by which the SD passes the point (x, y, z).

©.1) t=S(x,y,2).
By total or substantial derivation of this equation to the time one gets
9.2) l=2-FVS

in which v denotes the windvector. One should note that (9.2) makes only
sense in the points of the SD. It is however possible to write (9.2) in another
way in order to obtain an equation valid in the whole space by multiplication
with a delta function

9.3) 1l—v-VS)é@—S)=0.
For ¢+~ S the delta function is zero and (9.3) is an identity.
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Integrating (9.3) over the whole time one obtains

OO
9.4) f(l—v-VS)é(t—S)dt=(l—v-VS)'=S-—- 0,
—00
which is equivalent to (9.2) restricted to the points of the SD.
By the same method, one may write every equation like

9.5) F=G (onSD)
in the form valid for the whole space
9.6) (F—G) 6(t—S) = 0.

The physical interpretation of (9.2) or (9.4) offers no difficulties. It simply
means that the SD moves with a velocity which is equal to the normal com-
ponent of v to the SD.

10. Dynamic boundary condition

Let P, = Py(x, y, z, t) be the pressure at one side of a SD, and P, = Py(x, y,
z, t) be the pressure at the other side. For the pressure P = P(x,y,z,t)in an
arbitrary point of the space one may write
(10.1) P = P, U(t—S) + P, U(S—1).

Since (t—S) has a different sign on either side of the SD exactly one of the
unit functions is equal to zero, the other one being equal to unity. It is classic
to state that the pressure should be continuous at the SD. This may be expressed
by the formula

(10.2) (Pr—Py) 6(t—S) =0 (dynamic boundary condition).
By differentiation of (10.1) one obtains
oP 0P, P,

103.1) == LUE—S) + aa—t U(S—t) + (Py—P;) 5(1—S) 1)

and
(10.3.2) VP = VP, U(t—S) + VP, US—t) + (P,—P)) 6(t—S) IS,
which on account of (10.2) may be simplified to
8P _ 0P, 0P,
(104.1) P rs U@—S) + s U(S—1)
and

(1042) PP = PP, Ut—S) + VP, U(S—1).

1) Use is made of the fact that the delta function is an even function. Proof will follow in
section 14.1.
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These equations express the wellknown fact that the pressure gradient (— 7P)
and the pressure tendency dP/or are discontinuous at the SD but do not show
a singular behaviour.

11. Kinematic boundary condition

Letv, = o, (x, y, z, t) be the wind on one side of a SD,and v, = v, (x, 3, 2, ¢)
the wind on the other side. For the wind v = v (x, y, z, t) in an arbitrary point
of the space one may write

(11.1) v = v, U(t—S) + v, U(S—1),

the argument being the same as in the preceding section. It is classic to state
that the normal component of » on the SD should be continuous, This may
be expressed by the formula

(11.2) (v—v,) - VS (t—S) =0 (kinematic boundary condition).
Taking the divergence of  one obtains according to (11.1)

(11.3) divo = div o, U(t—S) + div v, U(S—1) + (v,—v,) - 'S o(t—S),
which due to the kinematic boundary condition (11.2) may be simplified to
(11.4) divo = div o, U(+—S) + div v, U(S—).

This equation expresses the fact that the wind divergence is discontinuous on
the SD but does not show a singular behaviour, a fact which already is far
more less known than the corresponding theorem regarding the pressure
gradient and the pressure tendency (10.4.1) and (10.4.2). However, it must be
remarked, that it is only the wind divergence which is free of singularities, but
that the mass divergence has a singular term as follows from

(11.5) div (ov) = — %‘t’ = Z—‘t’l U(t—S) — Z—fi U(S—t) +
+ (02—ey) 0(t—S)

or

(11.6) div (pv) = div (o,2,) U(t—S) + div (p50,) U(S—r1t) +
+ (00 —@1®y) " S o(t—S).

(Cf. section 12 for the use of the equation of continuity).
By differentiation of (11.1) to the time one obtains

(11.7) R _ s+ Zv_tz

ot ot U(S—1) + (v,—v,) 8(t—S)
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and in this equation the last term on the right hand side cannot be put equal
to zero on account of some boundary condition. So the local wind variation
with the time is not only discontinuous but even has a singularity. The same

is true for the (relative) vorticity ?1)
(11.8) _C>= rot ¥ = rot v, U(t—S) + rot v, U(S—1) +
+ (0—v2) A VS 8(+—S).

These singularities are of great importance for the dynamics of SD’s as will be
seen in later sections.

12. Equation of continuity

One usually derives the so-called equation of continuity by the following
argumentation.
The formula

(12.1) fH%QZdV+ﬂQv-dO:O,

expresses that the variation of mass contained in a fixed but arbitrary volume
of the space is caused by the transport of matter through its boundaries. The
application of GAUSS’s theorem then gives:

9 .
(12.2) .[J.J.%Fi-i—dlv (gv)%tho.
Since the volume considered is wholly arbitrary it must be true that

2
(12.3) 5‘; + div (ov) = 0
or

(12.4) % + pdivo = 0.

The mathematical basis of the reasoning given above is not without some points
which may give opportunity to criticism. However, it should be kept in mind
that the proof of every fundamental equation in physics is more or less not
conclusive and that heuristic elements never can be eliminated from it. Indeed,
it would perhaps be better to consider equations like (12.3) or (12.4) as axioms

1) For typographical reasons vectors are denoted by bold-faced latin letters or by greek
letters with an arrow.
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rather than as equations deductible from other basic principles. For the real
proof for the correctness of equations of this type does not lie in the fact that they
can be deduced from other equations but in the possibility of building an
acceptable theory with these equations as starting points. So nothing can be
said against the assumption of validity of the equation (12.3) for the case in
which the variables are not ordinary functions but distributions. Next write
(12.3) in the form

(12.5) aa—ét)%gdivv—kv-Vg:O
and use

0 7 0
126)  Z =2 U—8) + "2 US—1) + (r—es) 6(—S)

and
(12.7) Ve = Vo, U(t—S) + Vo, US—1) + (e2—0) V'S 5(t—S)
to obtain

(12.8) s%i—l + odive, + v - 1791% U(t—s) +

b7/ .
-+ g—a%f +odivy, + v - Vggg U(S—t) +

+ {(or—02) + (0—01) v - 'S} 6(+—S) = 0.

On account of the condition (9.3) the term containing the delta function is
identically equal to zero.
Furthermore
(12.9) e U(t—S) = o, U(t—S),
o U(S—1) = g, U(S—1),
v U(t—S) = v, Ut—S),
v U(S—t) = v, U(S—1),

so that (12.7) may be simplified to
9 . 7 .
(12.10) ‘ang + div (g vl)g U(t—S) + aif + div (o, oz)g U(S—1) = 0.

A more direct method for deriving this equation will be described later on
(section 14.2).
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13. Equation of motion

The usual derivation of the equation of motion is as follows. Let F be the
force per unit of mass, then in an inertial coordinate system one has

(13.1) %(gvéV) — FodV

in which 6V is the volume of a small but arbitrary portion of matter. From
this, it follows that in a coordinate system attached to the rotating earth the
equation of motion is given by

(13.2) aa—’:+v-Vv+26/\v+V¢+z;Vp=o

in the traditional notation (cf. PETTERSSEN [58; vol. I]). As in the preceding
section there is no reason why this equation should not be valid in the case
that the variables are not ordinary functions but distributions. On account of

(13.3)= oo

aLsy o U(S—f) + = 2 2 US—1) + (2r—29) 8(—5)

(13.49) v - Vv = v - Vo, Ut—S) + 0, - Vo, U(S—t) +
+ (va—v) v - VS (t—S) =
=9, Vo, Ut—S) + v, - Vv, U(S—t) +

+ (vy—vy) 6(+—S) (See (9-3))
and
(13.5 = VP = VP, Ut—S) + VP, U(S—1)
(10.4.2)

it is found that

(13.6) [%';1 to, Vo, +20 Aoy + VD + Oi VPI] U(t—S) +
J1

+ [6‘02+02 1702—}—29 A vs+ V¢+— VPz] U(Ss—1 =0.

This is the required equation of motion. In order to specify the motion

completely a last equation is necessary, describing the thermodynamical

character of the motion. In most cases of practical importance, it is appro-

priate to assume the motion to be adiabatic. Using the potential temperature O,
%

(137 6= T(%’) ,
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in which
P, = arbitrary but fixed reference pressure
R gas constant for dry air

H = — = ‘ .
cp  specific heat at constant pressure

The conservatism of the potential temperature is expressed by
do
(13.8) = 0.

It will be seen later on that from (13.8) and
(13.9) 0 = 0, Ut—S) + 0, U(S—t)
it follows immediately that

doe

(13.10) dgl U(t—S) 4 =2 “@2 U(§—t) = —r

So finally one obtains as the complete system of equations which describes
atmospheric motions the equations:

(i) Equation for the movement of SD (9.3)

(i) Dynamic boundary condition (10.2)
(i) Kinematic boundary condition (11.2)
(iv) Equation of continuity (12.10)
(v) Equation of motion (13.6)
(vi) Thermal equation (13.8)

14. Some general theorems

In this section some general theorems are proved which are useful in that
their application saves time and labour in calculations.

14.1  The delta function is an even function, i.e.
(14.1) 0(x) = o(— x).
For the proof it is sufficient to remark that instead of

(14.2) 8(x) = Z—g

one may also write

(14.3) 8(x) = % [——% + U(x)].
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Now the function under the differentiation operator is an odd function so
d(x) is an even function. In general one finds

(14.4) o(®(x) = (—)* M (— x).
14.2  Next it will be proved that
d d
(14.5) ar Uit—S) = 7 Uis—n =0.
The proof is easy and follows from (9.3) and
(14.6) d—(;’ Ut—S)y={1—ov-VS }6(t—S) = 0.

The intuitive content of (14.5) is obvious. U(t—S) is a function which is
everywhere constant except at the SD where it shows a discontinuity. Consi-
dered from the point of view of an observer which moves with the motion,
nothing changes in the situation with time. The formula (14.5) is of paramount
importance because it expresses that the operator Hgt_ applied to a non-singular
function leads to a result in which no singularities occur. So the substantial
derivative of a non-singular entity is non-singular itself. The use of this theorem
would have simplified the derivation of the equations (12.10) and (13.6) and
proves the correctness of (13.10) as an immediate consequence of (13.9). For
the same reason it is true that

14.7) % 8(t—S) = 0.

14.3  As an application of these theorems the structure of so-called balance
equations 1) will be studied now. Consider an arbitrary entity F of the form:

(14.8) F = F, U(t—S) + F, US—1).

Let for F a balance equation be valid
(14.9) 58? (oF) + div (oFv) = F@
The three terms in this equation will be called

0 .-
(14.10.1) FL= E (oF) = local variation,

1) Here the term balance equation is used in the traditional and physical sense and not in
the more specific sense used in studies on numerical weather prediction.
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(14.10.2) FA = div (oFv) = advection,

(14.10.3) F@ = local production.

So (14.9) expresses the fact the local variation FL is compensated by the sum
of what is transported away by advection F4 and the “consumption” (— F9).
Now one finds

(14.11) FL= — (QF) [QlFl U(t—S) + 0.F, U(S—1)] =

- a% (01F) U—S) + o (0aF2) U(S—1) +

+ (011 — 02F2) 0(t—S) =

= FRL U(—S) + F,L U(S—t) + (0.Fy — 02F3) 6(t—S).
So that the local variation is seen to have a singular term. Further, one obtains
(14.12) FA = Fi4 U(t—S) + F,A U(S—t) + (0. Fyva—0,Fv,) - V'S 8(t—S),
so that the advection contains also a singular term. Adding these results one,
however, obtains
(14.13) FL + FA = (Rt 4 F4) U(t—S) + (FF + FA) US—1) +

+ [oFev—01F101) * VS + o1F; — 0.F) 6(t—S),

in which the singular terms happens to be identically zero on account of the
kinematic boundary condition. The final conclusion is that for quantities of
the form (14.8) the left hand side of the balance equation cannot have a sin-
gular term. Then also the right hand side of (14.9) cannot have a singular term
which may be expressed by saying that no singular production exists. The

proof of this theorem may be simplified by using the rule (14.5) by which it
follows from (14.8) that

(14.14) ZTF_ dah U(t—S) + =2 dFi’ U(s—u),
sO that
(1419 0T =0 yi—5)+ 0 Frvis—1)=

= [% (F) + div (91'01F1)] U(e—S) +

+ [g (02F2) + div (g2v2F2)] US—1) =

= (KL 4 FA) U@t—S) + (FL + Fp) US—1).
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The systematic use of the general theorems proved in this section, greatly
facilitates calculations which otherwise become unnecessary complicated.
More specifically it follows from (14.5) that it is advantageous to employ as
much as possible the substantial differential operator rather than the local
one, which always introduces singularities of higher order into the calculations.

15. The formula of Margules

At this point the systematic development of the calculus of discontinuities
will be interrupted and an example will be given of what can be done with
the calculus as developed so far. The example will be that of the well-known
formula of MARGULES [47] for the slope of the SD and its relation to the geo-
strophic wind.

Starting with the dynamic boundary condition

(15.1) = (10.2)  (P—Py) 6(t—S) =0

one obtains

(15.2) (PP—VPy) 6(t—S) + (P,—P) VS 6'(t—S) = 0.

By taking the outproduct of (15.2) with 7S one obtains

(15.3) VS A (WP,—VPy) 6(t—S) =0

and by multiplication with the unitvector in the vertical direction &:
(15.4) kR AN{ VS N (WP—VPy) }6(+—S) = 0.

Write (15.4) in the developed form

(15.5) rs{k - (VPy—VPy)}— (VP—VPy) k - 7S] 6(t—S) = 0.
Next letz be the unitvector normal to the SD so that

(15.6) VvS=mn |VS|

then it follows that

(15.7) n{ k- (WP—VPy) }—(VP—VPy) k -n] §(t—S) =0
Since it is known, that SD’s are nearly horizontal it is allowed to make the
approximation

(15.8) k- na~l
and thus

vp—VP,
(15.9) n 6(t—S) B (WP—VPy o(t—S),
which gives the slope of the SD, the formula usually being written in the form
oP, 0P, or, op,
ox  ox ox ox
15.10 tg o = N )
(I510) oo = o 5p, = gler e

oz 0z
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For the numerator of the right hand side of (15.9) one may substitute the
geostrophic approximation

(15.11) VP—VPy ~ f(0091—0:0g2) N k

in which

(1512)  f=2k-0 =2|0|sing
(f = Coriolisparameter; ¢ = geographical latitude
Vg1 Vgo — geostrophic wind).

whereas in the denominator one may use the hydrostatic equation

oP
(1513 o= —g0.

By this, one obtains from (15.9) for the slope of the SD the equation

(15.14)  no(—s)—L @Pe—0%ns, o

g 02— O
in which the traditional formula is readily recognized. One observes, that the
derivation of the formula of MARGULES is not more complicated than the deri-
vation given in textbooks on dynamic meteorology. Of course, at this point
in the developement of the calculus it is premature to expect new results.

16. The vorticity equation

At present it is almost generally accepted that in dynamic meteorology
vorticity is perhaps a more important quantity than velocity. Reference may
be made to the fact that some calculation schemes used in numerical weather
prediction are based on the vorticity equation rather than on the equations
of motion. Although the importance of the concept of vorticity was only
recently appreciated, it must be remembered that the concept of vorticity has
been studied already long ago. TRUESDELL [77] has made an extensive study of
the history of our knowledge on vorticity and came to the conclusion that
some of the novelties of the last years are merely rediscoveries of old truth.
Already as long ago as 1870-1875 BELTRAMI’S [1] knowledge of the laws gover-
ning the vorticity was fairly complete. To give only one example: it seems not
generally known that PETTERSSEN’s well-known decomposition of a linear
field is completely contained in BELTRAMI’s work together with the refinements
studied by HINKELMANN [35]. For further details on the history of the know-
ledge of vorticity the reader may consult TRUESDELL’s book [77].

The following formula has already been given

(16.1) = (11.8) T= rot v = rot v, U(+—S) + rot v, U(S—1) +
+ (0,—v) A VS 6(t—S),
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which will be written as

- = - -
(16.2) { =& U(t—S) + { U(S—1) + &5 6(+—9),

with the abbreviation
—
(16.3) 83 6(t—S) = (vy—vp) A\ VS 6(t—S5).

With regard to the singular term (16.3) of (16.1) and (16.2) it must be observed
that on account of the kinematic boundary condition (11.2) the components
of the wind normal to the SD are equal so that in (16.3) only the tangential

—
components enter. This means that {, is a vector lying in the tangential plane
and is in that plane normal and proportional to the windshear. Using the rules
of section 14.3 one obtains from (16.2)

—
(16.4) % = dc‘ ut—S) + =2 dzﬂ UlSs—t) + =2 dga o(t—S).
Only the last term of the right hand side of this equation will be discussed, the
others giving no new points of view. One obtains

(16.5) dc“ 8(t—S) = dt [(vl—vz) A Vs] 8(t—S) =

_ K%—%) A VS + @v) A2 (VS)] 8(t—S) =

_ [(ﬂ_@) A VS + (0,—05) A v - VVS] 3(t—S).

dt
So the substantial variation of the singular part of the vorticity consists of two
terms. The first term is proportional to the tangential component of the shear
in the SD of the acceleration. The second term is a contribution resulting
from the advective variation of the slope of the SD. So much for the kinematics
of vorticity. Proceeding to the dynamics it is advantageous to introduce the
absolute vorticity Q defined by

T
(16.6) Q=<{+2q,

for which the so-called vorticity equation is valid:
(16.7) dQ —Q - Vv+Qd1vv—|—l7 AVP=0.

Instead of (16.4) one may use

(16.8) ift— dQl U(t—S) + =2 sz U(S—t) + dQ“a(t—S)
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with
- —
(16.9) Qi=¢+ 20 (i=1223)
Further one obtains for the various terms of (16.7)
(16.10) —Q  Vo=—Q V¥ [v, Ut—S) + v, U(S—1)] =

=—[Qy - Vo, Ut—S) + Q: Vo, U(S—1) +
+ (o) Q - V'S 6(t—S5)),
(16.11) Q divo = (see 11.4) = Q, div v, U(t—S) + Q, div v, U(S—t) +
+ Q; div v 6(t—S),
1 1 1
¥ —VP=—VP Ut—S)+ — VP, U(S—
(16.12) . P = P, U(t )—1—9217 U(s—it)

and

(16.13) V% A VP = rot (é VP) = 17;— A VP, Ut—S) +
1

+V 1 N VP, US—t) + (V—P] _17_P2) A VS 6(t—S).
02 01 02
So finally one obtains for the vorticity equation the formula
[dQ, 3 1
(16.14) o @ Vo, + Qydive, -V 2 A VP Ut—S) +
N 1
+ [0, -po, + Quaive, + P AP Vs +
L 2
d .
+ [%3_'- (v7—v)Q - VS + Qs dive +
(‘7_”1_ '2) A VS] 8(t—8) = 0.
01 Q2

One observes that the substantial variation of the singular term of the vorticity
in the SD consists of three parts. The first contribution

(16.15) (v—2,)Q - VS

deals with the difference of the dragging of the normal component of the
vorticity along the SD by the various winds in the air masses separated by
the SD, whereas the third contribution

Ve, VP,

(16.16) (E— 0—2) AVS
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is proportional to the difference of the tangential components of the specific
pressure gradient forces in the SD, or proportional to the tangential shear of
the specific pressure gradient forces. The interpretation on the middle term

(1617)  Qsdive

—
readily follows from the remarks made on the interpretation of {; (see 16.3).

17. Introduction of pressure as an independent variable

Using the ordinary Cartesian coordinate system it is difficult to take into
account the different role played in meteorology by the vertical direction as
compared to the horizontal directions. In the last decade of years, it has become
popular to overcome this difficulty by introducing instead of the vertical height
z, the pressure P as an independent variable. In this (x, y, P)-coordinate system
the geopotential @ becomes a dependent variable. For the application to con-
tinuous fields one may consult ELIASSEN [23]. This new technique gets its full
strength only if combined with some approximations. Apart from the fact,
that one considers the new coordinate system as an orthogonal system, which
implies the neglect of the so-called metrical accelerations, one usually neglects
the vertical acceleration. It is assumed that the reader is fully acquainted with
the philosophy behind the use of the (x, y, P)-system in the case of continuous
fields from which these and other approximations receive their justification.
Instead of the vertical velocity one uses the quantity w defined by

dP
(17.1) 0 ="

Due to lack of a better term w is usually also called “vertical velocity”. It
should, however, be kept in mind that w > 0 means a descending motion, and
thus corresponds to v; < 0.

The windcomponent in the surfaces P = const. will be indicated by #, and
it will be termed “the isobaric component of the wind”.

Use will be made of the isobaric component ¥/ of 7 given by

@ ()0

the subscripts P indicating that the partial differentiations should be made for
constant P. With these notations the operator of the substantial differentiation
becomes

(17.2) vV =

d 0 b7}

It will be convenient to introduce a special notation for the isobaric diver-



43

gence. Here the notation dip will be used, which is simpler than notations like
divy etc. found in literature. So for the isobaric divergence of a vectorfield a
here will be written

. o . . 3(13; aay
(17.4) dipa=V a= (8—x)1> + (E)P'

For the time ¢ at which a SD passes through the point (x, y, P) of the space
will be written

(17.5) t=0=0c(x,yP).

By substantial derivation one obtains

(17.6) (1 —u-Veo— w:—;) d(t—o) = 0. (compare (9.3)).
The equation of motion now reads
(17.7) [% +fR A u + ‘7(151} U@t—S) +

+ [‘%2 +fk A u, +‘7§b2] U(S—t) = 0.

Some remarks on this equation should be made.

(1) One observes that (17.7) is a two-component equation. Since vertical
accelerations are neglected no equation for a vertical component should
enter into (17.7).

(ii) The Coriolis-term has been simplified, in accordance with the usual
practice.

(iif) The geopotential @ has become a dependent variable.

The equation of continuity now reads
. ow
(17.8) dlp u+ ﬁ = O,
or explicitly

. 2 . a
(17.9) [dlp u, - 3%1] U(t—a) + [dlp U, + ai;] U(o—t) +

o
+ [(uz_ul) - Vo + (we—awy) a_;:l 6(t—0) = 0.
Application of the kinematic boundary condition in the form

(17.10) [(u2~ul) - Vo + (w—w)) :_;] 8(t—0a) = 0
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gives instead of (17.9)
(17.1D) [dlp u, + ] U(t—o) + [dlp u, + ] U(g—t) = 0.

It has already been seen earlier that the kinematic boundary condition is
equivalent to the condition that the equation of continuity has no singular
terms, both expressing the conservation of matter. From the remark (i) at
(17.7) it follows that one equation has been lost. It is necessary to fill the gap
which is done by the so-called hydrostatic equation,

1 8®
1112 o+

or explicitly

(17.13) [Q—‘l.w]w )+[Qi2+a‘p]0( o—t) +

=0,

+ (P (151) 6(t—6)—0

However, by application of the dynamic boundary condition in the form
(17.14) (D—D,) 6(t—0) = 0.
(17.13) may be simplified to

(17.15) [ ri]ua )+[Qi2+a¢]U(_z)_

Sometimes it will be necessary to take into account the variation of the Coriolis
parameter f with the geographic latitude. This is usually done by introducing
the ROSSBY parameter § given by

(17.16) B =--

This, however, involves an orientation of the coordinate system by rotating
it around its vertical axes so that the y-direction is orientated to the north.
This is against the spirit of the (x, y, P)-calculus and this syncretism may be

-

avoided by introducing a vector 8 given by
-+

(17.17) g =Yf

Sometimes, the variation of f is neglected. For equations valid under this
approximation the sign * will be used instead of the usual sign of equality. So

Ea
(17.18)  g=0.
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To complete the formalism the isobaric Laplace-operator A is introduced by
o2 o? )

a9 aA=V-V={5+],

18. The geostrophic wind
By definition the (isobaric) geostrophic wind u, is given by

l

or, with (17.14) taken into account

Yen [Vrpl U(t—o) + V@, U(a—t)].

(18.2) g, U(t—0) + 14, U(o—1) =7

From this it follows that

ou, AvVD) 1 o 1
(18.3) F fk A == P fk V —(see17.12)——fk/\va-
Using

1 RT
(18.4) i
and

(18.5) VP=0

one obtains

1 R T
so that
(187  Me_ _RAVT  REAYVT

This is the well-known equation for the thermal wind in differential form n.

Now one has
oy _
op

uﬂz

(18.8) %01 Yt—o) + 2292 Uo—1) + (atpe— —itar) 22 8(1—)

1) In the author’s opinion the thermal wind should be defined as the difference between
two geostrophic winds at different heights above the same place. The difference between
observed winds should be only identified with the thermal wind as an approximation, which
is not always fully justified, and should be called vertical windshear.
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and
(18.9) YT = VT, U(t—o) + VT, Ulo—t) + (T,—Ty) Vo 6(t—0)
from which it follows that
kEA\YVT)
fauTh s

BAYT,
fo:T:

‘ 3ug1 augz

| oP

(18.10) + U(t—o) + + U(o—1t) +

LT Ty
(ugz uﬂl) aP fQ T

k \Yo 26(t—a) =0.

Now, analysing the equations for the thermal wind (18.8) and (18.10) one
observes in (18.8) a singular term which is proportional to the windshear in
the SD which in (18.10) is seen to be counterbalanced by a term proportional
to the temperature difference between the air masses.

Let further the geostrophic isobaric winddivergence Dy be defined by

Then

kAP 4

(18.12) Dg=dip{}kAV¢}=v‘ 3

f

=—fi—,§> B ANYVD) —+—jl—,{ V(brotk—krotV(b}:

dip(k A V®) =

= fzﬂ (R N\ V).

Neglecting the variation of the Coriolisparameter this gives:
(18.13) Dy —0.

This result is the basis for the well-known theorem called JEFFREYS’ paradox.
Since

(18.14) dip #g = Dgy U(t—0) + Dgs U(c—t)
on account of the kinematic boundary condition it follows also that
(18.15)  Dgy U(t—0) + Dyg U(t—0) = 0.

and the solution of JEFFREYS’ paradox cannot be found in the introduction of
discontinuities, as one would perhaps believe remembering ERTEL’S so-called
theory of singular advection, which will be dlscussed later on in more detail.

Next, consxder the geostrophic isobaric vorticity C ¢ defined by

(18.16) o= A uy
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One readily obtains

(18.17) _c>,,=‘7/\{}k/\‘€q)}=v}/\(k/\‘6¢)+
1 1, = 1
+I—,V/\(k/\v¢)——ﬁk(ﬂ ‘7¢)+ka¢

using the obvious relation
—
(18.18) R =0

and well-known theorems from vector calculus. In (18.17) the term containing

/3 cannot have a singularity due to the dynamic boundary condition. So, in
order to study the singularities, nothing is lost by making the approximation

—> %
(18.19) = (17.17) g =0.
Then

(18.20) = RAD= j—’fdip [‘Wbl U(t—a) + Vb, U(a—-t)] d

[Ml U(t—a) + AD, Ulo—rt) +

+ (VP — V) - Vo 8(0—0)|.

For the singular part of C g one finds, using the definition of the geostrophic
wind (18.1)

(18.21) (o) sng =5

PR A —up) } - Vo] 00—0) 2

iy [k A (thgs — ug) - Vo 5] (t—o0).

The following comment on this equation may be made.

(i) Since the term with ﬂ in (18.17) cannot become singular, the sign * in
(18.21) may be replaced by the sign for ordinary equality.

(ii) The singular part of the geostrophic isobaric vorticity is completely
determined by the windshear in the SD.

(iii) The geostrophic wind is used in (18.21) as a substitute for /®. So the
geostrophic approximation does not enter into this equation.
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19. The vorticity equation with pressure as an independent variable

With the notations

(19.1) D = dip u = ¥V - u = isobaric divergence,

(19.2) _C:, =V Au = relative isobaric vorticity,

(19.3) =k -Z, = vertical component of the relative isobaric
vorticity,

(19.4) n =Cp+f = vertical component of the absolute iso-

baric vorticity,

one may write the vorticity equation as

dn ou\
(19.5) 7 +9D+ k- (Vco/\a—p)—O-
From
(19.6) p=k(V A t) = {p U(t—0) + {pp Ulo—1) +

4+ kYo A (u—u) i(t—o)
and the abbreviation
(19.7) lps=k - o A (u—uy)
one gets using the rules from section 14.3

198 M-Iy o)+ U UG —1)+ B 51—)

Further
(19.9) D = dip u = D, U(t—0) + D, U(c—t) + (u.—u) Vo o(t—o),
(19.10) 7D = 9, Dy U(t—0) + 712 D, Ulo—1) +

+ [ Dk - Fo A\ (r—w) + 1 (w—sw) - Vo] 8t—0) +

+ [ Vo A ()| () - Vo 8¥—),

(19.11) Yo = Vo, Ut—0) + Vw, Ulc—t) + (wy—w) Vo o(t—o),

u aul ug do
(19.12) U(t—o) + P U(c—1t) + (us—uy) 3P o(t—o),

oP  oP

and
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19.13 E-Vorn b [Go )Py T, ) ey
(19.13) w/\a_ﬁ_ wl/\ﬁ (t—o0) + w2/\3ﬁ (a—t)]—!—
8
+k-[(w2—wl)‘%/\ 5+
oG
VoA () 7] 6—o) +

o
+ R V0N (k) (03—w)) - 6%(1—).
Taking terms together one obtains the vorticity equation in the form

d o
(19.14) [7,’77 Dy + BTy A %] U(—o) +

d 0
+ |G e+ b Voun S8l v +

- [%;—7,3 + Dk Yo A(uy—u) + 1 (uy—uy) - Vo +
u oo
+ (we—w) Vo A P + VoA (u—u,) 6?] d(t—o) = 0.

One observes, that the terms with 62 have dropped from the final equation,
thanks to the kinematic boundary condition, otherwise the result would have
been without any value. The interpretation of (19.14) is similar to that of
(16.14) except for some terminological transformations. One should further
note the fact that the introduction of pressure as an independent variable did
not considerably simplify the vorticity equation. By using the pressure as an
independent variable one takes into account that the vertical direction, due to
the hydrostatic equation, occupies an exceptional position in dynamic meteoro-
logy. However, in the case of discontinuities present, there is a second direction
of importance viz. that of the normal on the SD, so in this case the vertical
direction looses much of its exceptional position.

20. Lagrangian Coordinates

20.1  The reader, having seen in the preceding section that the introduction
of pressure as an independent variable has in the case of discontinuous fields
not the advantages known from applications to continuous fields, may recall
a statement of ERTEL [25]: “Die LAGRANGEsche Form der hydrodynamischen
Gleichungen hat der EULERschen Form gegenuber den Vorteil, dass sie den
Bediirfnissen der “Luftkérper””-Meteorologie ganz besonders angepasst ist”.
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It cannot be denied that in spite of ERTEL’s statement, the use of Lagrangian
coordinates never has been become popular, even for purposes which speci-
fically belong to the domain of air mass meteorology. Indeed, their use is even
so impopular, that every author introducing Lagrangian coordinates feels
himself obliged to do this only after writing a long introduction in which he
develops a new notation which he believes to be more tractable than existing
notations and which he also believes will make an end to the impopularity.
The present author also could not avoid an introduction and a new notation,
but is rather pessimistic with respect to the question of popularity. However,
since in one of the problems studied in part m (Applications) the use of La-
grangian coordinates seems to contribute essentially to the full understanding,
the subject of Lagrangian coordinates could not be avoided. Furthermore,
the present part, in which the formal side of the calculus related to atmospheric
discontinuities is studied, could hardly be considered complete if the Lagrange
techniques were left out of consideration. So far for the introduction; now the
notations follow.

20.2 Let dy; be the KRONECKER delta

_{ lfori=j (1=i=3)"Y
(20.1) % =3 0 for i) (1=j=3)

and &5 the signed permutation operator

1 for (i,f, k) even permutation of (1,2, 3)
(20.2) ek = { —1 for (i,j, k) odd permutation of (1,2, 3)
0 for (i,j,k) no permutation of(l,2,3).

The author is aware of the fact that with the aid of the tensor calculus another
interpretation of & is possible. However, for the purpose of this section it is
sufficient to consider &;;x as a signed permutation operator.

Well known are the rules

(20.3) eijk €kim = Oq1 Ojm — Oum Ojk;
(20.4) eijk &kl = 204,
(20.5) Eijk Etjk = 3!

Here, and in the following the usual summation convention is used.
For a determinant of 3 rows and 3 columns with elements 4;; one may write
with the e-notation

1
(20.6) det (A¢5) = 31 eigk Etmn At Aim Akn.

1y Without further notification all indices like i, i, j, k, I, m, n etc. are supposed to run
from 1 to 3.
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For the Lagrange or particle coordinates, which usually are written as (a, b, ©)
here the notation a; = (4, a,, a3) will be used. For the geometrical coordinates
or the radiusvector of a particle in motion x will be used. So

(20.7) x =x(a;t).
There exist two types of connecting quantities viz. [a; and

(20.8) b, = g’-‘—

ag
Between these quantities there are two relations
(20.9) b Va; = oy
and
(20.10) biVa; =1,
in which I denotes the unit tensor, unit dyadic or unit matrix in the x-space
(20.11) I =13+ j7 + RE.

Of great importance are the functional determinants or Jacobians

a(x, y, 1
(20.12) J = 6(:\% =g eur (b N\ by) - by

1 _a(a1’a2saa)_ 1 A .
7 = m = 6 Eijk (Vai FAN Vaj) Vak

The notation J (Jacobian) is used instead of the customary 0, in order to have
© available for the potential temperature. If one interprets (20.9) as a linear
equation for [7a; and (20.10) as an equation for &; then by CRAMER’s rule one

obtains for the solutions

(20.13)

(20.14) 2Va; = L

i Eigk b; M bk

and

(20.15) 2b;=Jeyr Va; A\ Vas.

In an easily understood symbolism one may write
0 _ o

(20.16) 2 = 5.

V=8tV
and

0
(20.17) V= Vai ‘ a—ai.
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which one may apply to prove relations of which typical examples are given by

(20.18) div4 = 8:14 Ve

and

2
(20.19) % =b; Vo

20.3 Already EULER knew that there is a remarkable relation between the
equation of continuity and the Jacobian J. In its Eulerian form the equation
of continuity is written as

do .
(20.20) = {- o divo = 0.
Translating this equation into the Lagrangian form one obtains

1 e
(20.21) + div 37_0

which may be transformed as follows

1 0 Px
(20.22) ;‘_; a + Vai m == 0,

<

1 dp 1 3b¢

(20.23) Eﬁ 2.] E{jk b; A\ by - -—— =0,

10
(20.24) Z)——ag + — 6 81_1); [bi A by - bi] =0,

(20.25) = 4o = =0
or

(20.26) Jp = const. = J, gy,

in which J, and g, denote the values of J and g at some arbitrary but fixed time
say t = t,. That (20.24) is indeed a consequence of (20.23) is proved by

0
(20.27) e“k—[bj A by -bt].f
0 0
= &k [——b Abr-b;+ by /\——b’c b+ b; ANby + bi] =

6b
=3 eyrb; \bi- il
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Sometimes one chooses the coordinates a; in such a manner that for the time
t = ty, a; = x4 in order to make J, = 1. For general purposes this is not to
be advocated. Making J, = 1 deprives the equations of their symmetrical
structure and makes dimensional checking more troublesome. The equation
of motion in Lagrangian form follows from

(20.28) ——}—29 /\v+l7¢+ VP=20

by the well-known manipulations

Px —-  0x 1
(20.29) 6—r2—+29 /\§+V¢+£—)VP—O,

0P 1 oP
(2030) 3f2 +29 /\_+ Va i a; +0V(H%=O,
% ox) I oP
(20.31) b; - 3_1‘2+2 A 3f§+%7+5-é;?—0

To these equations one should add the thermal equation which in Lagrangian
coordinates takes the simple form

(20.32) ? =0,

O being as usually the potential temperature.

20.4 In textbooks of dynamic meteorology the vorticity equation is as a
rule not given in the Lagrangian form. There is even a wide spread belief
amongst meteorologists that an equation of this type does not exist at all.
TRUESDELL in his monograph [77] to which reference already was made, has
clearly demonstrated that also in this matter BELTRAMI [1] was in the possession
of all essential knowledge. All the present author had to do, was to translate
BELTRAMI’s results into the notation adopted in this study, and to introduce
a rotating coordinate system.

Let V¥ be the absolute velocity
(2033) V=v+0 Ax
and Q the absolute vorticity
(20.34) Q=rotV
then it follows from (20.17)
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(20.35) Q=VAV=Wﬁ%A@+6Am

1 t7;
2J£[jk(b; ANbr) A — 2a; (g-{-g /\x)=

1
ZJSiJk(bj /\bk) /\(bi+ﬂ/\b1)—

ob;

1 0
N&ﬂpmm (m+QAh)bj( +9Amﬂ}

or
0
(20.36) Q=- Euk b [bj ( bri —I— A bi)J

Now, if one defines the quantity Z; by

ob 0
2037)  Zn— eniybi- (a—/ LA b;) — easbi @+ 6 A %)
then one obtains
(2038)  JQ = by Zn.

The introduction of the quantity Z, solves the first part of the problem which
consists in the construction of an entity which in the Lagrange technique may
play the same role as Q in the Eulerian system. One observes in the definition
(20.37) of Zj, that this quantity is related to the difference between the velocities
of two material points which in the a;-space differ from each other by an in-
finitisimal rotation, just as one would expect for a vorticity to do. The second
part of the problem consists in the construction of a differential equation for
Z which must describe its behaviour in time. To do this, one differentiates
the equation of motion (20.31)

o*x
da; oay

o*x %) Px — o
5tT+2 NG at\ —i aajat2+2ﬂ A

P o (1\ aP 1 ©&2P
6ai 3(1; 6a1 0 301 0 6a16ai

Ly

(20.39) 7, 70}

If one multiplies this equation with en;, then all terms of (20.39) which are
symmetric in the indices i and j drop out since for any symmetrical quantity
¢y = ¢j; one has

(20.40) Entj Ctj = Entj €44 = — Epji Cji = — Eptf C1y — 0.
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So, after multiplication of (20.39) with &,;; one gets

NPT LAl Ty ST o (2P _
(20.41) enij by | o +29 A ar \ + enij 5a; \o) 7a; = 0.
Now, it follows from the definition of Z; (20.37)

0Z . ) {02 by — 3b12
(20.42) ke enij bi | B +2Q A it

so that finally one obtains the vorticity equation in the form

0Zn o (1\ oP

(20.43) o + eniy Ba: (5) 3_a; = 0.

So the meteorologists who believe that in Lagrangian coordinates a vorticity
equation could not be formulated are wrong. As a matter of fact the vorticity
equation has even taken a simpler form in Lagrangian coordinaties than the
more familiar equation in Eulerian coordinates. One should not forget to
observe that the variation in time of Zy is completely determined by the num-
ber of isosteric-isobaric solenoides in the a;-space.

20.5 With the introduction of the quantity Z, the formal apparatus for the
manipulation with Lagrangian coordinates is completed, and now a moment
of reflection seems to be appropriate. One observes that the notations developed
in this section enable us to work with Lagrangian coordinates without using
explicitely determinants and minors of determinants which make the appli-
cation of other systems of notation so cumbersome and tedious. However, it
must be admitted that even this does not make Lagrangian coordinates an
easy instrument of investigation. The main difficulty seems to be the fact that
calculations which may be termed straightforward in Eulerian coordinates
cannot be imitated in Lagrangian coordinates without some additional detours.
However, one may expect that some advantages of the Lagrangian coordinates
will manifest themselves, if one takes discontinuous fields into consideration,
as, according to ERTEL, these coordinates in particular should be adjusted to
the demands of air mass meteorology. Indeed, it will be seen in the next part
of this section that the introduction of discontinuities into the calculations is
an easy job in the Lagrangian technique.

20.6 The main simplification, which gives the use of LAGRANGIAN coor-
dinates in the case of discontinuous fields over the use of Eulerian coordinates,
stems from the simple form by which the SD can be described in Lagrangian
coordinates. Since the SD consists at all times of the same air particles the
SD may be described by an equation of the type

(20.44) ¥ (a;) =0,
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in which the time does not enter. As an immediate consequence of the absence
of  in this description it follows that now there is no need for an equation like

(20.45) = (9.3) (I —o2-7S)é@t—S)=0.
The kinematic boundary condition takes the form
(20.46) (ve—v,) PP OF) =0

or, on account of (20.17)

dxy 0\ o 4 -
(20.47) Eijk (—a-t—_a—t) (b: A br) %6(111) -0

whereas the dynamic boundary condition is expressed by
(20.48) (P,— Py (%) = 0.

The further development of the calculus will be postponed untill it becomes
necessary for the applications. For the present it may be sufficient to observe
that the equations related to the SD are indeed somewhat simpler than in the
Eulerian form. One may, however, expect that these simplifications are as a
rule not important enough to compensate for the general complications in-
volved by the use of the Lagrangian coordinates. As a matter of fact in the
next part (Applications) of this study, only one example will be found in which
the use of Lagrangian coordinates seems to contribute essentially in a simple
manner to the understanding of the problem. Attention may be drawn to the
remarkable fact that this happens to be a problem pertaining exactly to the
only equation which is usually not studied at all with the aid of the Lagrangian
technique viz. the vorticity equation.

With the description of the use of Lagrangian coordinates in cases in which
the variables are not ordinary functions but distributions, the development
of the formal apparatus for handling discontinuous fields is completed.



PART I1I

APPLICATIONS

21. Introduction

In this part a beginning is made with the application of the calculus developed
in the preceding sections to specific problems. Although it is next to impossible
to give all applications, the examples given are carefully selected so that they
represent typical cases. In the first example (sect. 22) the atmospheric energy
balances are studied. The next section (23) is devoted to the construction of
a criterion for the correctness of approximations already announced in the
General Introduction. As a first application of this criterion the correctness
is studied of various approximations of which the so-called isallobaric wind
is typical (sect. 24). In this section also an old controversial point — the theory
of singular advection — is discussed, on which some new observations can be
made on the basis of the present theory. The criterion will be further applied
to discuss the basic equations for the technique of differential analysis (sect. 25)
and to the use of the ROSSBY approximation of the potential vorticity (sect. 26).
One of the most important discoveries made by the use of the calculus of
distributions deals with the incorrectness of the ROSSBY approximation. The
next section (26) is devoted to the study of the relation between potential
vorticity and dynamic instability in which some results are found which hitherto
seem to have been unknown even in the case of continuous fields. The last
example (sect. 27) of the application of the criterion for the correctness of
approximations deals with the tendency equation. In the last but one section
(28) new light is thrown on an old question pertaining to the problem why it
is impossible that in a fluid whose motion is governed by the NAVIER-STOKES
equation discontinuities exists, whereas in the concluding section (29) some
remarks are made on the difficulties encountered in numerical weather pre-
diction.

If one takes into account that the concept of potential vorticity and its
ROSSBY approximation take important places in idealized models of which
some are in daily use one observes, that with the aid of the calculus of discon-
tinuities remarks on almost every subject discussed in contemporary dynamic
meteorology can be made, of which some seem to have important consequences
and hardly could have been made without the use of this calculus.
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22. Energy balances

Starting with the equation of motion in the form
(22.1) Z—:’Jrz_é /\v+l7cb—+—i—l7P=0
one obtains by scalar multiplication with @ for the specific kinetic energy:
(22.2) K= %v ‘v

the equation

K 1
(223) E +v'V¢‘r§v'VP=0,
which on account of the well-known formula
dF 0 .
224) o= (F) + div (eFv)

valid for any quantity F, may also be written as
7 .
(22.5) e (oK) + div (pKv) + pv VD + v - VP =0.

For the specific potential energy @ one has:
do
. — = -V®
(22.6) e v

or
(22.7) g(gdi)*:div(gd?v)—gv-Vd):O.

Adding these equations one obtains the balance equation for the specific
mechanical energy in the form:

(22.8) :t [0 (K + D)] + div[o (K + P)v] + v - VP =0.

By the first law of thermodynamics one obtains for the specific internal energy
E the balance equation:

dE_ _d {1\ Pdo P _
(22.9) W—'—'PI(E)—'Q—ZE——?CIIV”,

or

(22.10) 5 (0 E) + div (o Ev) + Pdiveo = 0.
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Strictly speaking, this is not true. Since the system under discussion viz. the
atmosphere is an open system, there strictly speaking does not exist a first law
of thermodynamics as has been shown by TOLHOEK and DE GROOT [76]. Ho-
wever, as all motions are supposed to be adiabatic, in this special case (22.9)
may still be used.

Finally one obtains

22.11) %[Q(K—i- D+ E)+div[p(K+ @+ E)v] + div(Pv) = 0.

Introduction of the specific enthalpy H, given by
(22.12) oE+P=pH

makes it possible to rewrite (22.11) as
(22.13) g [o(K+ @+ E)] + div [0 (K + ® + H)v] — o.

If one uses instead of (22.9) the corresponding equation

dH 1dP
(22.14) @ o dt
then one finds as an equation equivalent to (22.11)

d . oP
2215) K+ @+ H]+divie(K+ P+ H)vl= 5

All these balance equations have the form
(22.16) FL + FA =F@Q
with
(22.17) FL=a—(g F),
ot
and
(22.18) FA = div (p Fo).

So the theorem proved in section 14.3 may be used in the following form: if
in any of the balance equations the quantity F has the structure

(22.19) = (14.8) F=F, Ut—S) + F, U(S—1)

without a term containing a delta function, then the local production F@ cannot
show a singular behaviour. It is easily seen that none of the quantities K, 9@,
E or H shows a singular behaviour so it follows from the general theorem that
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none of the local production terms K@, @9, EQ or H? may posses a singularity,
which means that for the kinetic energy, the potential energy, the internal
energy and the enthalpy it may be stated that no singular production exists.

23. A general principle for discussing correctness of approximations

In the following sections some of the most frequently used approximations
will be studied in order to detect whether they can be used in cases in which
discontinuities are present or not. Since in the discussion the same type of
argument always will be followed, the logical structure of the reasoning may
be described separately.

Consider any quantity F and let it be known that it has the structure

(23.1) F = F, U@t—S) + F, U(S—1t) + F, 6(t—S).

Let F* be an approximation of F having the structure

(23.2) F* = F;* Ut—S) + Fp* U(S—t) + F3* 6(t—S).
For a good approximation it is necessary that

(23.3) F, ~ Fy*; F,~ F,*; Fy~ F3*

The argument to be used consists in the principle that it cannot be tolerated
that one of the following situations occur:

(@ F=0; Fr0
(23.4) &
| B) Fy#0; Fy—

In the first case the approximation possesses a singularity which is not present
in the unapproximated quantity whereas in the second case the approximation
fails to show the singular behaviour of the unapproximated quantity. In both
cases the approximation shows from the physical point of view a significant
difference in behaviour with respect to the unapproximated quantity.

Already in the General Introduction to the present study it has been empha-
sized that the implications of the discussion are not restricted to situations in
which discontinuities occur but are also valid in the more general situations
in which layers of pronounced baroclinity are present. The principle formu-
lated above is the main example of a result which is of more general impor-
tance in this sense. It should be recalled that a discontinuity may be considered
as originating from a continuous field by some kind of limit process. If in the
limit of discontinuity e.g. case A is found to exist this means that in the limit
F remains finite whereas F* becomes infinite. However, this is only possible
if before the passing to the limit F* has already become extremely large as com-
pared to F. More generally if two quantities show a different type of singularity
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in the limit then they must show a different type of behaviour already before the
limit is reached. So any difference in the type of singularity between two quan-
tities in the case of a frontal surface reveals a physically different type of
behaviour of these quantities in a layer of pronounced baroclinity. Approxi-
mations which belong to one of the cases (4)or (B) of (23.4) are therefore of no
value inside baroclinic layers or frontal zones. All this is quite in the spirit
of HEAVISIDE’s dictum ‘“What is proved for a discontinuity is proved for any
sort of variation”. (HEAVISIDE [33], Vol. 11, sec. 452).

In the next sections examples will follow. The success of this method for
discussing approximations rests on the fact that although exact solutions of
the equations of dynamic meteorology are. practically unknown, it is possible
to determine exactly which type of singularity meteorological elements possess
on discontinuities for almost every element of interest.

24, Isallobaric winds

24.1 In order to find approximative solutions of the equation of motion
24.1) = (17.7) Z—:‘—i—fk/\u-i—V(ﬁ:O

one usually follows a method first described by HESSELBERG [34] and made
popular by H. PHILIPPS [59]. By vectorial multiplication of (24.1) by % one
obtains

(24.2) kA‘;—':—fu+k/\$’di=(k/\—d‘it—f)u+k/\V(D=0,

from which the series development follows:

o0
1 1 1 d\»
(24.3) u=—d-k/\Vq>=fn_§1f—n(k/\E) (B N\ V).

f—kNS
The first term of this series appears to be the geostrophic wind

(24.4) uy, =f1_' ENYO.
The second term, representing the ageostrophic component of the wind, may
be written as

(24.5) U = f12 ( ) (R NV D)
1 1

Tt a (V‘D) T f

— i B A AT O =

2(a+ T+ w )vqa
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Usually this term is written as the sum of two terms #; and z; with

(24.6) Us = u; + uy,

(24.7) u; = —-sz 331? YV @,

and

(24.8) uj=—L (u-V—}—wi)V@.
f? oP

The term u; is usually referred to as the isallobaric wind and was first described
by BRUNT and DOUGLAS [11]; the term z; will be called here the anisallobaric
wind. Exact determination of the anisallobaric wind is impossible because the
unknown occurs on both sides of the equation (24.8). However, it is known that
one may apply a kind of iteration process by substituting in the right-hand
side of (24.8) for u the geostrophic approximation. So one obtains an approxi-
mation u;* for the anisallobaric wind given by

1
I
As usually, when considering geostrophic approximations, the vertical velo-
city w has been assumed to be zero.

(24.9) ur=——u, V.

24.2 In the next it will be shown, that this treatment of the second term in
the HESSELBERG-PHILIPPS series development i.e. of the ageostrophic component
of the wind must be used with caution if one wishes to avoid inconsistencies
of the kind described in the preceding section.

From

(24.10) D = @, U(t—o) + D, U(c—1),

one gets using the dynamic boundary condition

(24.11) VO = TD, U(t—o) + VP, Uo—t) + (Py—D)) Vo §(t—0) =
= VO, U(t—o) + VP, Ulc—1)

So the isallobaric wind is given by

(4.12)  wy = — 172 [5? (Vb,) U(t—a) + 537 (V®,) Ulo—1) +

(VDT D) 6(t—o‘)]

and the anisallobaric wind by
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(24.13) u,=—f12 3(u1 V) V0, + o, Zfb $ U(t—o) —
1| V9,
— (0 V) VO+ 0 %U(a—t)—
fz(‘v'qb ) ‘u Va—{-wapsé(t o).

It is essential for the present discussion that in the derivation of equation
(24.13) the geostrophic approximation is not used so that (24.13) gives an
exact description of the behaviour of the anisallobaric wind. So, it has been
proved exactly, using no approximation whatever, that both the isallobaric
wind and the anisallobaric wind become singular on a SD. However if one
adds these winds together according to (24.6) one finds that these singularities
cancel, as:

(24.14) (V(ﬁ —V D) l— 14+ 2 Yo+ w ] t—a) =0

o

on account of (17.6).

So the ageostrophic component of the wind, being the second term in the
series (24.3) is non singular, but if one considers this term as the sum of two
parts #; and wu;, these parts show singularities of equal magnitude but of
different sign. This may expressed by saying that the quantities #; and 2
are not independent but are strongly negatively coupled. It is quite clear that
any reasoning which is based solely on the use of the BRUNT-DOUGLAS isallo-
baric wind is therefore fundamentally unsound. Tt is known that in the sub-
jective forecasting techniques problems of development of pressure systems
are often discussed by arguments in which the isallobaric wind plays a pre-
ponderant role. It follows from the present discussion that this is a dangerous
technique for exactly when the isallobaric wind becomes large — as is the case
in baroclinic zones — the anisallobaric wind becomes nearly as much as large
but with opposite sign.

It might be observed, that the theorem which states that the second term
of the series (24.9) is non-singular may be proved in a more direct way. For
according to (24.11) @ is non-singular, and it is known that the operator

7 introduces no new singularities as was proved in section 14.2. However, the

detour made in the derivation of the theorem was necessary in order to show
the singular behaviour of its constituents ©; and v;. Before discussing further
details it may be repeated, that in the derivation of these results no approxi-
mation whatever has been made.
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24.3 For practical applications, however, one cannot use #; which cannot
be calculated exactly, but one is compelled to use the approximation u;* (24.9).
It is easy to show that in using this approximation one obtains a singular term
in the second term of the series (24.3) given by

1
24.1 L= ——
( 5) (ua,) sing f2
So this approximation is an example of case (4) of the preceding section. The
approximation introduces a singularity on the SD whereas it just has been
proved exactly that the quantity discussed could not show a singular beha-
viour. In order to obtain a correct approximation one therefore should put

(2416) (1 —u, - o) 8(t—0) = 0.

At first sight this looks like a rather new ad hoc hypothesis. However, com-
paring (24.16) with the exact equation

(VO— ®,) [I — u, - Va] 8(t—a).

(24.17) = (17.6) (1 —u -‘%~w§_‘;) 8(t—o) = 0,

the physical background of (24.16) is readily discovered. Equation (24.17)
expresses the fact that the SD moves with the component of the wind normal
to the SD. It is clear that if one uses approximations of the wind field the
velocity of the SD must be adapted to this approximation. The analysis given
above clearly shows how this must be done in order not to distrurb consistency.
The substitution which leads to (24.9) may be also described by saying that

d
in (24.5) the operator ar is approximated geostrophically. The final conclusion

may then be given in the following wording. If one wishes to approximate the

d
operatorz in (24.5) geostrophically one should also use the geostrophic

approximation (24.16) of (24.17) in order to avoid the appearance of singula-
rities in the approximation which according to the exact theory are not
present in the unapproximated wind.

If the correct method of approximation is used one finds the following
expression for the second term in the HESSELBERG-PHILIPPS series

(24.18) U™ = _f1_2 %—}-u,-VJ b =
1 (o2
—— va_‘f1+ ngy - V‘Vq)l] U(t—o) —
— 5 [V e szz] Uo—1)

under the condition (24.16).
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This approximation is consistent provided that one does not try to split up
the expression (24.18) in two components, an isallobaric and an anisallobaric
component.

24.4 Looking back on the preceding discussion the following observations
seem to be appropriate:

(i) It is of paramount importance to investigate the independence of additive
components. Often, and especially in subjective forecasting techniques, an
effect is attributed to one component, without it being certain that the effect
is not compensated by an other component which might be negatively coupled
or correlated with the first one. In some cases as e.g. in the case of the HESSEL-
BERG-PHILIPPS series development for the wind, the independence or rather
the non-independence of additive components may be investigated by studying
their behaviour on surfaces of discontinuity. The example given shows that
coupling may become very strong in frontal zones or baroclinic layers.

(ii) In using approximations of the wind, the displacement of surfaces of
discontinuity should be adapted to the approximation used. It is easy to see
that one should approximate in the same manner all other advective processes.

(iii) One of the most discussed theories in recent history of dynamic meteoro-
logy which shows a violation of the rule given in (ii) has been the theory of the
so-called singular advection. It is clear that the equation (24.17) is substan-
tially equivalent to the kinematic boundary condition. So (ii) is equivalent to
the rule that if one approximates the wind one must do it either without
violating the kinematic boundary condition or use an approximated kinematic
boundary condition adapted to the wind approximation used. It has been
proved by scHMIDT [65] that this exactly was the point in which the theory of
the singular advection was basically wrong. If its protagonists had used the
distribution technique it never would have come to a discussion as one could
witness before SCHMIDT’s paper [65] was published, because this technique
gives the investigator tools to avoid inconsistant approximations in an easier
way than otherwise could possibly have been found.

(iv) In conclusion of this section a remark may be made pertaining to the
basic equations used in numerical weather prediction. Taking the pieces
(24.4) and (24.18) together one obtains for the sum of the first two terms of
the series (24.3) the expression

1 1{2

Now it is known that the geostrophically approximated barotropic vorticity
equation



66

o —>
(24.20) aé.—g—‘l-u‘(/'v(:y_i‘ﬁ'ug —0

may be obtained by taking the divergence of (24.19) and assuming
(24.21) dip u = 0,

as has been shown by HOLLMANN and REUTER [36]. This means that from the
present point of view the (approximated) barotropic vorticity equation may
be considered as sound as long as the assumption of nondivergence (24.21)
is not violated.

Now

(24.22) dip u = dip [w, U(t—o0) + u, U(c—t)] =

= dip », U(t—o) + dip u, U(c—1) + (#s—u,) - Vo 6(t—0)
which reveals, that this assumption cannot be valid at surfaces of discontinuity
or more generally inside layers of pronounced baroclinity. So the application

of (24.20) for purposes of numerical weather prediction is really confined to
barotropic situations as one would expect it to do.

25. Differential analysis

In this section the basic equations of a technique usually called differential
analysis will be discussed from the point of view of the criterion of consistency
as constructed in section 23. Consider a layer dP between two surfaces of
constant pressure Py and Pg,). In the traditional expositions of the technique
of differential analysis one usually considers a finite layer (¢f. e.g. SUTCLIFFE
and FORSDYKE [72]). However, by considering an infinitisimal layer integration
along the vertical and the use of some process of averaging may be avoided
and the presentation may be simplified without loss of generality.

The geopotential difference or “‘thickness” d® is given by

(25.1) d® = d®, U(t—o) + dD, U(c—1)

taking the dynamic boundary condition into account.
A second equation for d® follows from the hydrostatic equation (17.12)

(25.2) dP = édP = RTd (In P) = R [T, U(t—o) + T, U(c—1)}d (In P).
By differentiation to the time one obtains a tendency equation for the thickness
7] 17} 0
(25.3) a7 @P) = 5, (dP) U(t—0) + 5. (dPy) Ulo—1) +
+ (dDy—dPy) i(t—0) —
or, aT,
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oT; oT,
Elimination of the terms 3_t1 and —# is now done by a known device con-

sisting of the application of the first law of thermodynamics in the form

dT dT1

= U(t—0) + 2 Ulo—1) =

(25.4)
oT, o7,
l Lt VT + oy aPJ U(t—o) +

[6T2+u2 YT, + w, T] U(c—t) =
_1dg 1 dP_
Ccpdt | pepdt

1 dg w; ] [ 1 dgq, Wy ]
= |—— U(t— U(o—1),
[cm dr * 01Cp (=) + Cpy dt i 0:Cp2 @

which leads to

: (e, R Y

(@55 o [dd] = [R! VT v (Qlcm BP)EU(t o)+
R (L)l

+ Rlcpo dr U, VT, + w, 0sCps 0P U(c—)+

4+ R(T1—T,) (S(t——-a)] d (In P).
The thickness advection is given by

(25.6) u- - (dP)=Ru- - [T, U(t—o) + T, Uc—1)]d(In P) =
= R[u, - VT, U(t—0o) + uy - VT, U(c—t) +
+ (T,—T) u - Vo d(c—t)] d(In P)

which gives for (25.5)

25.7) g [dD] = — u - T(dd) +

1 dq1 1 aT,)s
+ R[ Cm d’ ! (910211 oP U(t—o) +
1 dq, 1 oT, B
or 2(@ ap) vo=n+

+ (TO—TH) (1 —wu oY) 6(t——a)] d(In P)
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By using (17.6) this equation may be simplified to

(25.8) g [dP] — — u - (dD) +

+R PLd—qlJr wl( : aT‘)’U(r—a)Jr

lep dt Qlcl)l_ﬁ |
j 1 day L)) e
- {cpe di +e QsCps P Uo—) +

L (T—T) @ Z_.; 6(t——a)] d(ln P).

This is the basic equation for the theory of differential analysis. Consider first
the advective term A4 in (25.8)

0

(259)  A— ga [d®]

= — %V (@),

In geostrophic approximation this is equivalent to
@25.10) A= —u, T (dP) = }[‘7 d® ) D)) - k.

Consider the identity
1
f

1
f

which gives the justification of the following well-known theorem: In order to
calculate the advective part of the thickness tendency one may advect the
thickness with either the wind at the level P(;, or the wind at the level P, the
difference being zero in geostrophic approximation on account of the fact that
the vector difference between these winds is in geostrophic approximation
parallel to the thickness lines and cannot therefore contribute to the thickness
advection. Emphasis must be laid upon the fact according to (25.11) this
remains true in the presence of discontinuities. However, if one writes 4 in
the developed form:

(25.12) A= —u- -V ([dP) = —u,V (D) Ut—0) — u, -7 D U(o—1)+

(25.11) [V (d®) A TP) -k=1f[‘7(q>+d¢) AVD] k=

[(V(dD®) ANV (D + dD)] - k

1T (P—By) - u Z—;a’P 8(1—a)
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one must be so cautious not to consider the last term independently if one
wishes to calculate the singular contribution to the tendency, since also the
last term of (25.8) gives a singular contribution to the thickness tendency.

The total singular thickness tendency is given by

(25.13) ( )%smg -
do dP

ap p |2

=3W¢1—<p2) -ug%dP FR(I—T) 02
In geostrophic approximation w = 0 and # is perpendicular to V@, and
S/ ®, so that in geostrophic approximation there is no singular contribution
to the thickness advection. Although this violates the criterion given in section
23, the geostrophic approximation may be considered as relatively harmless
since it is consistent in the following sense: In geostrophic approximation there
is not only no singular thickness tendency but also the advective part of it
is zero. So the fact that in geostrophic approximation the singular thickness
tendency is zero is in this case not caused by mutual annihilation of infinite
additive components.
Next consider the remaining terms of the thickness tendency equation (25.8)

(25.14) Rg : d"‘ U(t—o )+—l- d‘h Ulo—1)

o 1 1 aT, 1 T,
a Rggl (910111 oP ) Ui—o )+ (chm opP ) Uo=1)

They describe the effects of non-adiabatic heating and of difference in vertical
stability in the ‘“‘air masses” on the thickness tendency. Since their discussion
would not reveal things not known from the non-discontinuous case reference
may be made to literature e.g. SUTCLIFFE and FORSDYKE [72].

Incidentally it may however be remarked that according to (25.4) no singular
release of heat takes place in the SD, a conclusion which remains valid if
phase transitions are allowed.

d(In P) =

d(In P)

26. Potential vorticity

26.1 In this section the criterion constructed in section 23 will be applied
to some approximations related to the concept of potential vorticity. Some
remarkable facts will be found which seem to be entirely unknown.

The vorticity equation in Cartesian coordinates has already been given

(26.1) = (16.8) dQ —Q- Vv—i—levv-i-V A VP =0.
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Using the continuity equation (26.1) may be also written as

d (Q\ 1
(26.2) @E(?)_Q PO+ PP AV
For every function F one obtains, using (26.2) the relation

d (Q-VF\ _d ~d (Q\
(26.3) QE( o )—QE(VF)—{—QVF Z(E)_

—Q-[g(VF)—}-v-VVF]—}-

+VF-[Q-I70+I7P/\I7%]=

=Q.[|73£1d_tF_v-VF$+v-VVF] +

+|7F-[Q-V«;+VP/\V$]=

——Q-[V(;—f—Vv-VF]—i-

+I7F-[Q-Vv+l7P/\l7$]
or

d (Q-VF\ . _dF . 1
(26.4) gz( , )—Q VeV (VP/\VQ).

This formula is usually called ERTEL’S Wirbelsatz (circulation theorem) (cf.
ERTEL [26]).

If one takes F = x one obtains the vorticity equation (26.2) back. By taking
however F = @ one obtains an important new result

d (Q -Vey 1
(26.5) 0 (—Q—_) =Ve (VP AV E)'
This equation may be simplified as follows. Since ® may be considered as
a function of P and o

(26.6) 0 =0(,p

one has

7 Q;P;l) 1
(26.7) e =V@-(V, /\V—):O.

9(x;p;2) e
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So one obtains

(26.8) % (Q 'QV 9) =0.

Formula (26.8) is the exact description of the theorem of conservation of
potential vorticity. The original formulation of this theorem by RossBY [64] is
of an approximative nature and may be found from the exact equation by
following a device described by vAN MIEGHEM [52, 53].

In good approximation one has

Q 170 130 00
0 g oz Q. =— g"a’FQZ’

26.9)
so that in this approximation
d (00
(26.10) 7 (6_P Qz) =0.
This is equivalent to RossBY’s formulation, which says that
Q:
(26.11) AP
is a conservative quantity if /\ P is the pressure difference between two surfaces
of constant potential temperature (isentropic surfaces).

For further discussion one needs the expression for the conservation theorem
in (x, y, P, t)-coordinates. Remembering the vorticity equation

- dn ] ou\
26.12)=(195)  TT+nD+k (vaﬁ)_o

one obtains for an arbitrary function F the counterpart of ERTEL’s circulation
theorem as follows:

d ( 8F\ dyoF , d (oF\
(26.13) m(’?a—p)—mﬁ”z(b?)—
dn OF 22F o2F
=@ [6t6P+ V + ]“
_dn6F+ 0 (oF ou __Gw OF] _
=z \@) 3 VT b

_9F dn dw o (oF ou a
@19+ o (dr) ﬁw]‘

_oF [d o (dF\ @
o [+ 1 2]+ (@) =5 7]
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or

d oF 0 (oF u |[oF
Since this is ERTEL’s theorem, one should be able te come back to (26.12) by

substitution of a suitably chosen quantity for F. Indeed F = P gives formula
(26.12).

do
Now, substitution of F = @ gives, taking Pl 0 into account

d [ 00 ou_ [ ou

The left-hand side of this equation is the ROSSBY approximation of the potential
vorticity if one identifies % with Q,

d{ 20 d 060 d NGO
@10 G (riw) ~ i (@) ~ i (o 37)
So the right-hand side of (26.15) gives the deviation of conservatism of the
ROSSBY approximation of the potential vorticity. It seems that this explicite

formula for the deviation of conservatism of the RossBY approximation of
potential vorticity is new.

26.2  After these preparations the main theorem of this section may be
proved, which may be formulated as follows: In case a discontinuity is present
the ROsSBY approximation of potential vorticity makes no longer any sense;
however, the exact definition of potential vorticity still makes sense and the
conservation theorem remains valid.

The proof of the first part of this theorem starts with the observation that %
is known from (19.6) to have the following structure

(26.17) 1 = 1 U(t—0)+n, Ue—1)+ k. [Vo A (w—uy)] 6 (1—0),

26
whereas 5P has the structure

20 20,

00, do

0
Now if one tries to calculate the expression 7 P occuring in (26.16) one

obtains a term

k- [V0 A ()] (O—6) 22 5 (1)
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This term contains ¢* as a factor and from section 8.2 one knows that &2
in not a distribution so that even in distribution theory this term makes no
sense. This means that in a SD the ROssBY approximation of potential vorticity
becomes so singular that even the theory of singular functions cannot deal
with it. To proof the second part of the theorem one starts from the equations:

(26.19) Q=Q,U(t—S8)+Q, U(S—1t)+(v;—wy) A VS (t—S)

(Cf. (11.8))
and

(26.20) VO=V0,U(1t—S)+V O, U(S—t) + (O;—O) IS 6 (t—S).

In the exact expression for the potential vorticity the product Q - 7 @ gives
no difficulties since, because of

(26.21)  (0;—0) [(v,—vy) A VS] - VS =0

the term in 62 cancels.
So in the presence of a SD one has

i (@240 o B0 v

a\ o | ad
+% [VTS {VOA (wr—v) + Q (02—91)}] 6 (t—S)=0.

in which every term makes sense. The interpretation of the regular terms in
(26.22) gives no difficulties. For the singular term one may write

62) 2 [H70N @0)1Q(O—0))] 5 () =

== dit [ZQE { rot (@ (v;—y) + Q. 0:—Q, 91}] 6 (t—=S)=0.

The importance of this singular part of the potential vorticity in the theory of
hydrodynamic instability will be studied in the next section.

26.3 This section will be concluded with a discussion of the concept of
potential vorticity in Langrangian coordinates. As already known in these
coordinates a quantity Z; is used to describe the vorticity field

(26.24) = (20.37) Zyp=¢eny b - % (v+Q Ax),

and the vorticity equation takes the form
0Zp, 2 (1\ oP
5 + Ehijm( )

(26.25) = (20.43) ;
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It follows from these formulae that for an arbitrary function F it is true that

oOF 2F oF o (1\ oP
26. otoan  oan """ 2a; \o) 3a; ~
(26.26) [Zh ] 20 Gidan  Fan M Bay (9) oa;

1
2F a(FaE’P)

—Z — .
" otoap 0 (ay; as; ay)

This is again ERTEL’s circulation theorem and again the vorticity equation may
be found back by a substitution which in this case happens to be F = a
Now take for F an arbitrary conservative quantity C. Then one gets

I
0(C;—; P)
6 oC 0 i
I G R e e
In the special case of C being @ this equation is simplified to
00
(26.28) [Zn %2 ] 0,

which is the theorem of conservatism of the potential vorticity in Lagrangian
coordinates.

However, when using Langrangian coordinates, there is no reason at all why
one should not choose one of the a; or particle coordinates to be the potential
temperature. So let ap be written for the particle coordinate which isidentified
with the potential temperature. Then

20
(2629) 5= due

and (26.28) takes the surprisingly simple form

6Z@

(2630) £

It is believed that a more concise formulation of the conservation theorem for
the potential vorticity is impossible.

However, it must be verified that the quantities introduced above make
sense in the presence of discontinuities.

Write

(26.31) x=x,U¥W)+ x, U(—Y).
Since ¥ is independent of the time one has

oFx 6 ;x:1 ok,

(2632) % = UE)+ 55 U(Y¥)
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and
(26.33) V= + /\ =VUP)+ V, U(—¥)

from which it follows that

@630 ¥ Wﬁ@nﬁ”w—%+me%w—um

a;  Oay
Furthermore one has
(2635 b= = U@ + U + xS 6.

i
So in
oV
(26.36) Zy = €ni; by - B
no term in &% occurs since
o v

(26.37) Enij % 7‘;}= 0.

Next, the formulae
v
(26.38) Zh = Z’ll U(yl) + Z)L2 U(— T) + €hij bt * (Vl_ Vz)a? 6 (W)

and

00 _ 00, 302
(26.39) ar = Bas U®) +52 U(—Y’) +(0,—

80
reveal that on the same base (26.37) also in Zj, 5a. O term in 6% occurs,
One obtains an

00 20 @2

(2640)  Zng=Zmy U+ Zne 3t U(—¥) +

-4@@100 + ensbe (— V) 2 ]wm

By specialization of this formula according to (26.29) and (26.30) one finally
obtains

(26.41) Zo =Zoy U(¥) + Zoy U(—Y¥) +

v 4
+ [Z@ (01—' 03)'@' + coinb; - (Vl_ Vz) aj‘—h'] 6(!‘[’),

which shows a complete analogy to (26.23).
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Although the use of Lagrangian coordinates did not give rise to new dis-
coveries from the point of view of consistency of approximations — all
questions of approximations indeed have been discussed with Eulerian coordi-
nates — it has given us the very interesting formulae (26.28) and (26.30) both
being valid in discontinuous fields also, and both apparently new.

27. Hydrodynamic Instability

In this section it will be shown that the concept of potential vorticity is of
great importance for the theory of (hydro)dynamic instability and for the
theory of inertia oscillations. One knows that both theories gave rise to a
frequency equation, which has been found using different approaches by
SOLBERG [71], KLEINSCHMIDT [38] and vAN MIEGHEM [50, 51, 52]. The frequency
equation may be written as

QL)  #—B C=0,

with

(1.2) B=20-Q—VO-vII
(21.3) C=—20@ -vII)(Q - V0),

IT being the EXNER function

(27.4) II=Cp (PP Y #=R|Cp

in which P, is some arbitrarily chosen reference pressure, usually P, = 100 cb.
Writing
F + 1for F>0

(27.3) [F] t—1for F<O

sign F = =UF)—U(—F),
one may summarize the results of the theories mentioned in the form of the
following scheme [50]:

Equilibrium Inertia oscillations
Sign B | Sign C [ 3 ——————
Hydrostatic Hydrodynamic | Short periods Long periods
+1 + 1 stable stable stable stable
+1 —1 stable instable stable instable
—1 +1 instable instable instable instable
—1 —1 instable stable instable stable
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In the case of hydrostatic equilibrium the terms stable and instable refer to
the stability of the vertical equilibrium against a perturbation consisting in the
vertical displacement of an air quantum from its equilibrium position. In the
case of hydrodynamic equilibrium these terms refer to the stability of the
geostrophic equilibrium against a perturbation consisting in the displacement
of an air quantum from its geostrophic equilibrium motion in which the dis-
placement vector lies in an isentropic surface or makes a small angle with the
isentropic surface. Inertia oscillations are said to have long periods if these
periods have an order of magnitude of half a pendulum day, whereas the
short periodic oscillations have periods of order of 10-2 pendulum day. (cf.
VAN MIEGHEM [50]).

Now, one has

Q16 ©-Q=10-QU@S) +a - Q U(GS—t) +

+8 - (0—vg) A PSE(—S),
and

7.7 PO -FI=p06, VII,U@I—S)+ V0, VI, U(S—t) +
+ (0, — O)VIT - S 8 (t—S),

in which is taken into account the fact that I has no singular term accord-
ing to the dynamic boundary condition, and

@18 @ -vI=9 VILUGE—S) -8 - VI, U(S—),
@19  Q-PO=Q VO, UG—S)+Qy PO U(S—1) +
1+ 7S - [POA (0—05) + Q (0:—6))] 6 (—S). (Cf. 26.19)

Using these formulae the coefficients of the frequency equation are readily
found to be equal to

(7.10)  B= B, U(—S) + B, U(S—t) + B, 8 1—S),
with
Q71.11)  By3(1—S) = [20 A (0r—0y) + (O—B0,)] V'S 6 (-—S)
and
@Q7.12)  C=CU@—S)+ Cs U(S—1) + C38 (+—S),
with
(7.13)  Cyd(t—S)=—2(0 - VID VS - [O A (0r—v5) +
+ Q (0:—6] 6 (+—S5).
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The equation for the geostrophic wind may be written using @ and IT to
replace p and P as

Q.14 20 Av,+OFIT=0.
So in geostrophic approximation B; is given by

(27.15) By 6 (t—S) = [OFIT,— OIT, + (0, — Oy) - VIT| V'S 8 (t—S) =
= O WII,—VIL) - V'S 5 (t—S).

Consider any quantity F of the following structure
(27.16) F=F U@—S)+ F, U(S—1).
This means that

F=F fort>S§ i.e. after SD passage
27.17)
F=F,fort<S i.e. before SD passage.

so that the ascendent [7S is directed from the air mass behind the SD to the
air mass in front of the SD.
This follows also from the formula

(7.18)=03) (1 — v - PS) 6 (t—S) = O.

Under the fairly safe hypothesis that the geostrophic approximation of B; does
not have a sign different from that of the exact value of B; it now folows
from (27.15) that

(27.19) sign B, = sign [VII,—VII) - VS] = sign [VPy— VP, - VS]=

7} 7 2
= sign [(g%—gpl) a—i] = sign [(91 — 0 a_i]
Here use is made of the fact that in both the air masses 7P is almost exactly
vertical and directed downwards. In figure 6 the situation is shown in vertical
cross section for a warm front (right hand side) and a cold front (left hand side).
From (27.19) and figure 6 one infers that independent of the character of the
frontal surface one has

(27.20) sign By = - 1.

The table given after (27.5) then shows that independent of the character of the
frontal surface the atmosphere is at the SD in stable equilibrium, as one would
expect it to be. This is exactly true only for an exact discontinuity. If one con-
siders a frontal zone the situation, however, cannot change significantly. Since
by passing to the limit of an exact discontinuity one must obtain for B a value
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® vs ®
vP vs
vP
A .
@ Post frontal air mass Left hand side:cold front
@ Pre frontal air mass Right hand side:waorm front
Figure 6

that is positively infinite, B must become large and positive in a strong frontal
zone or a layer of strong baroclinity. In general the atmosphere will be in stable
static equilibrium in a frontal zone or a layer of strong baroclinity.

Now, supposing B to be positive, coisider Cs; (27.13). In geostrophic

approximation the vertical component of Q is supposed to be the only com-
ponent different from zero. Therefore one has

(27.21)  sign (@ - VII) = sign %’ -1,

so that
(27.22) sign Cy = + sign [S - { VO A (v,—v,) + Q (0,—0))].

Comparing this formula with (26.22) one observes that the sign of C; is that of
the singular potential vorticity, whereas (27.3) shows that the sign of C is
to that of the total potential vorticity. The sign of B being fixed (positive) the
conclusion follows that in any case, continuous as well as discontinuous, the
character of the hydrodynamic stability is fully determined by the sign of the
potential vorticity. This remains true as long as B > 0 i.e. as long as the
baroclinity is strong enough to be comparable to that in a frontal zone.

It is surprising to note that for the exact form of the relation between hydro-
dynamic instability and potential vorticity no reference could be found in
literature. Formula (27.3) has already long been known, and it is a rather
simple manipulation to introduce the potential vorticity in it. Moreover, that
there should be some relation of general validity between hydrodynamic
instability and a suitable chosen parameter characterizing the vorticity field
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is suggested by the results of the study of many special cases. The only reason-
able explanation seems to be the tendency found in literature not to use the
exact formula for the potential temperature but to prefer the use of the RossBY
approximation Q. (AP)~*. Since however this approximation breaks down
just at the circumstances in which the concept of potential vorticity is needed
it cannot be of much value in studies on hydrodynamic instability.

One knows, that the potential vorticity is almost always positive in the
atmosphere, negative values being confined to small isolated regions. This
implies that, given a stable vertical stratification hydrodynamic instability is
also restricted to isolated regions, the atmosphere being in general hydro-
dynamically stable, a fact which empirically is well known.

28. Tendency equations

In this section some remarks are made pertaining to the use of tendency
equations. The discussion will show some resemblance to the discussion of
the isallobaric winds (section 24) which is in the nature of the subjects.

Quite a lot of tendency equations have been derived by different authors.
It seems that the tendency equation constructed by BUVOET [2] is the one in
which using the minimum of simplifying assumtions, the maximum of results
is obtained. So this equation will be used for discussion. However, the same
method could be applied to any other tendency equation.

In contemporary meteorology tendency equations are not set up for the
surface pressure but for the geopotential of some suitably chosen level of
constant pressure usually 100 cb. However, since there are no essential differ-
ences between these two types of tendency equations the method to investi-
gation remains the same for both types.

BuvoEet’s tendency equation is one of a highly elaborated type. The geo-
potential (‘“height”) tendency is split up in a sum of 7 terms. It will not be
necessary to discuss all 7 terms. Following BIVOET the discussion may be
restricted to a term which is considered by BUVOET as the most important one.
In the notation of the present study this term may be written as

P
R 0

: = [ o - @ :

(28.1) eof“ofk [V (A &) AV T]dP

The subscript 0 means “at the earth’s surface”. The discussion may be further
restricted to the quantity 4% given by
(28.2) d¥ =—Fk [V (A D) A VI]dP,

which means that the same technique is followed which already has been
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applied in section 25 in which an infinitisimal layer is chosen instead of a layer
of finite vertical extension.

Now it must be investigated if the quantity ¥ may be used in the case of
a frontal surface being present in the atmosphere.

Using

(28.3) AD=A®PU({t—0)+ A D, U(o—t) +
F+ (VD — T D) - Vo (t—0)

and
(28.4) VI=VNLU(@{—0)+ VT, U(c—t)+ Ts—T) Vo é (t—o)

one readily observes that in d¥ a term in 6% will occur.

So one finds, that at a SD the use of d¥ breaks down. At first sight this
seems to imply the incorrectness of the tendency equation. This would however
be a too hastely drawn conclusion. In reality the tendency equation is com-
pletely correct. For if one follows conscientious the method by which BuvOET
obtained his equation one observes that it has been derived by operations
which cannot give rise to inconsistencies. He starts with equations like the
continuity equation which are completely sound. The manipulations further

d
used consist in writing the operator it in a rather complicated form, taking

a divergence and making an integration, none of which can generate a §2-term.
So the tendency equation as a whole must be considered as being completely
correct.

However, what in the present discussion has been done, viz. the isolation
of a single term (28.1) is not correct. Since the complete equation is correct
it must possess another term (or other terms) containing 62 which compensates
the % occurring in (28.1). The conclusion must be made that one is not entitled
to consider the term (28.1) in splendid isolation but that it is a term which is
strongly coupled with at least one other term in the whole formula for the
height tendency. But this also means that, at least on a SD or inside a frontal
zone, one may not consider this term as the most important term.

The reason why investigators are fond of discussing terms of an equation
separately is that they hope to be able to draw conclusions from their dis-
cussion of a qualitative nature which could be framed into rules to be employed
by forecasters using the traditional subjective forecasting techniques. Each
term is then interpreted as representing a certain process, which is supposed
to be independent of the processes represented by the other terms. The fore-
caster using the subjective techniques so operates with processes which he
considers to be independent of one another, the relative importances of which
he estimates. It has become clear from the discussion given above that frontal
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surfaces or layers of strong baroclinity act as coupling elements between
different processes, which therefore may not be considered as independent
processes and from which it may be very difficult to single out one as being
the most important. This is a strong argument in favour of numerical weather
prediction but this very argument shows that real progress is to be expected
only from baroclinic models.

29. The equation of Navier-Stokes

Discontinuities are no discovery of meteorologists, they have been introduced
as long ago as the beginning of the 20th century by hydrodynamicists as
DUHEM [21] and HADAMARD [31]. One of the conclusions arrived at by these
scientists has been that no discontinuities can exist in a fluid the motion of
which is governed by the NAVIER-STOKES equation. DUHEM [21] reached this
result by an extremely long and tedious manipulation with boundary conditions.
However, the conclusion may be drawn using the formalism developed in the
present study without almost any calculation.

Consider the NAVIER-STOKES equation

29.1) Z—:’-i—V@+%VP+23A0=AA0+—ngivv.

Now one knows that according to

dv
dt

dv,

(29.5) -

_dy,
= U@—S)+ U(S—1),

the accelerations cannot have a term with a d-function. However, in the right-
hand side of (29.1) a d-function will occur if one introduces into it a dis-
continuous velocity field. So one must have 4 = 0, which completes the proof.

There is a remark of bUHEM which runs as follows in modern terminology:
If one considers the NAVIER-STOKES equation as the equation governing the
mean motion of a turbulent fluid, then in order to be consistent one should
assume an eddy heat conductivity. This gives a turbulent transfer of heat
which destroys discontinuities in the temperature field. Since pressure cannot
be discontinuous the destruction of temperature discontinuities implies the
destruction of density discontinuities i.e. the total destruction of discontinuities.
However, the proof given above shows that even if one does not take eddy
transfer of heat into account discontinuities cannot exist in any fluid whose
motion is governed by the NAVIER-STOKES equation, independent of the inter-
pretation one may give to the type of motion described by the NAVIER-STOKES
equation,
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30. Numerical weather prediction

In this section some questions related to the problems of numerical weather
prediction are discussed. In contrast to all preceding sections no exact results
will be presented and the discussion will be of a more speculative nature.

It is well known and has been emphasized by different authors like e.g.
CHARNEY and N, PHILLIPS [14] that the use of the geostrophic approximation in
barotropic forecasts is compatible whit the assumption that the flow is governed
by the laws of conservation of potential temperature and of potential vorticity.
As has been shown in preceding sections these laws remain valid in discon-
tinuous fields provided that the exact expression for the potential vorticity
is used. Leaving aside the question whether in numerical prediction one has
always been so cautious to use the exact formula for the potential vorticity,
one should study what happens if the differential equations which govern the
motion are replaced by schemes of finite difference equations, as one is obliged
to do in numerical work.

It is obvious that in finite differences techniques the concept of a discon-
tinuous field makes no sense at all. However, the finite differences techniques
should be able to describe adequately layers of strong baroclinity, frontal
zones or jet stream zones. Layers of strong baroclinity, frontal zones and jet
stream zones are known to have narrow belts of rapid variation of significant
parameters. So in order to be able to describe adequately the rapid variations
which occur in these narrow belts the grid size to be used for the finite differ-
ences schemes should be at least one order of magnitude smaller than the
horizontal dimensions of the zone of rapid variation of significant parameters.
As a matter of fact the grid sizes in current use are almost never chosen smaller
than say 300 km, which is of the same order of magnitude as the width of
frontal zones, jet stream zones efc. So the conclusion follows that in order to
describe adequately the structure of zones of rapid variation the grid sizes
should be chosen 10 times as small, which implies that one should use 10? times
as much grid points in the numerical work. Then in order to avoid compu-
tational instability one should also decrease the time steps in the calculations
by a factor 10-1 which amounts to 10 times as much time steps as are used
nowadays. So the total number of calculations to be made by the machine
becomes multiplied by at least 10 and the number of data to be stored in the
memory is also multiplied by at least 10%. This is a rather conservative esti-
mate, since the number of levels necessary to describe adequately a baroc-
linic state should perhaps also be increased. It is clear that for the moment
this is an impossible program for even without the factor 10® the memories
of even the best machines are hardly large enough to store the data needed
for baroclinic forecasting. One wonders, however, that in current research so
much labour is spent in constructing baroclinic models and calculation schemes,
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without paying attention to the question of the grid sizes needed, except for the
demands of computational stability. However, this may be an explanation for
the otherwise incomprehensible fact that the baroclinic models give results
no better than the barotropic model, since if the grid sizes are too large to describe
the baroclinic zones adequately this amounts to an underestimation of baroc-
linity with the effect of a decrease in the difference between barotropic and
baroclinic forecasting.

There may be a way to come out of the difficulty which was described above.
Among the more recent models for numerical prediction there are some in
which a semi-Lagrangian approach is used e.g. the models constructed by
@KLAND [57] and by ELIASSEN [24]. They are more or less the machine counter-
part of the graphical technique first described bij FI@RTOFT [27]. Their common
feature is that if the initial data are given for points in a square grid, the grid
after a few time steps becomes deformed. There is some empirical evidence
that this gives rise to a non-uniform distribution of grid points over the map
with a tendency for clustering of grid points in regions of mass convergence.
So one gets more points exactly in those regions in which a more detailed
description is necessary. Perhaps it may be possible by a judicious choice of
a non-uniform grid point distribution from the very beginning to decrease the
factor 10® considerably. This might e.g. be done by superposing two grids, one
the traditional square grid and a supplementary grid with smaller grid size
in regions in which it seems to be necessary. The use of two grids is not pro-
hibitive since from the work of N. PHILLIPS [60] one knows that the simultaneous
use of two grids gives no unsurpassable difficulties. However, according to
a remark made by SHUMAN [69], there are limitations to the quasi-Lagrangian
approach for the same tendency for clustering of grid points in certain regions
sets a limit to the forecasting period which may not be chosen too large in order
to avoid too much uncertainty in those parts of the map in which the density
of grid points becomes low. Moreover the question arises whether the upper
air observational network is dense enough for this purpose.
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SUMMARY

The present study consists of three parts, There is a General Introduction, which
together with the Introductions to the parts I and III constitutes a supplementary summary.

The first part gives an introduction to the theory of distributions, and is purely mathe-
matical. The original theory of SCHWARTZ has been given first, followed by other and more
elementary approaches to this theory. It has been tried to come through with as less
sophistication as possible to keep the exposition within the limits of the normal mathe-
matical knowledge of meteorologists. Being mainly a carefully prepared presentation of
existing knowledge on some modern branch of mathematics this part does not contain
essentially new material.

The second part is devoted to the study of the basic equations of dynamic meteorology
for discontinuous fields. The equations are given in Eulerian and Lagrangian coordinates,
the former both with geometric height as with pressure as an independent variable.
Attention may be drawn to section 20 in which a new technique for dealing with
Lagrangian coordinates is developed and in which also a presentation of the vorticity
equation in Lagrangian coordinates is given, which is lacking in existing meteorological
literature using Lagrangian coordinates.

In part three the theory is used for various applications. After a study of the energy
balances (section 22) a criterion has been constructed to discuss the consistency of approxi-
mations in discontinuous fields. With the aid of this criterion various approximative
theories are studied in the following sections, the results of which may summarized as
follows:

The approximations involved in the theory of the ageostrophic winds are correct in
discontinuous fields provided that some caution is taken into account (section 24). The
same may be said on the theory of differential analysis (section 25). However, the RossBy
approximation of the potential vorticity is proved to be incorrect in discontinuous fields
(section 26). The same section contains a new description of the theorem of conservatism
of the potential vorticity in Lagrangian coordinates. In the next section the relation between
potential vorticity and hydrodynamic instability is studied and some remarkable results
are given which are valid both for continuous as discontinuous fields and which seem
hitherto have escaped notice even in the continuous case. Section 28 gives a discussion
of some points of interest pertaining to tendency equations. Attention is drawn to some
dangers, which easily present themselves by uncritical use of tendency equations.

The next section contains a remarkable short proof of a theorem of DuHEM regarding
the impossibility of discontinuities in fluids the motion of which is governed by the
NAVIER-STOKES equation. In the last section some remarks are made on the subject of
numerical weather prediction.

There is a list of references in which it has been tried to give full bibliographical docu-
mentation on the items referred to since many of them are usually not found in meteor-
ological libraries.
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