KoONINKLIPKENEDEREANDS METEOROLOG|ISEH ENSTITUUT

MEDEDELINGEN EN VERHANDELINGEN
No. 84

Dr. D.J. BOUMAN
Dr. H. M. DE JONG

GENERALIZED THEORY OF
ADJUSTMENT OF OBSERVATIONS

WITH APPLICATIONS IN METEOROLOGY

1964

F. 11,—

STAATSDRUKKERIJ- EN UITGEVERIJBEDRIJF /| 'S-GRAVENHAGE






GENERALIZED THEORY
OF ADJUSTMENT OF OBSERVATIONS

WITH APPLICATIONS IN METEOROLOGY







KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT
MEDEDELINGEN EN VERHANDELINGEN

No. 84

Dr. D. J. BOUMAN
Dr. H. M. DE JONG

GENERALIZED THEORY
OF ADJUSTMENT OF OBSERVATIONS

WITH APPLICATIONS IN METEOROLOGY

1964

STAATSDRUKKERIJ- EN UITGEVERIJBEDRIF /’s-GRAVENHAGE




PUBLIKATIE: K.N.M.L. 102-84

- U.D.C.: 519.2:
53.088:
551.5



PREFACE

On occasion of an investigation of the methods of observation in upper air
research some rather complex difficulties arose when an analysis was made of
the error theory pertaining to these observation methods. After a thorough
discussion it was revealed that these difficulties were to be attributed to some
fundamental questions concerning the procedure of adjustment of observa-
tions which is laid down in many text-books on planning and analysis of
experiments. The scheme and rules for adjustment of measured data known
to geometers and astronomers and all investigators in science had to be
reviewed.

At present the procedure of adjustment is based on the principle of least
squares, respectively on an optimal variance reduction using the conditional
equations existing between the variables to be measured. It was found that
the use of the conditional equations could be removed which has led to the
development of a new approach to the problem of adjustment. The results
obtained by the new approach appeared to be identical to those of the con-
ventional methods provided that a simple requirement is fulfilled. In this sense
the existing theories could be expanded and generalized and their outcome
has offered the possibility to find a clear insight in the analysis of all types of
‘measurements ranging from a single observation to the class of repeated
indirect conditional observations. The generalized theory throws new light
especially on the category of repeated direct and indirect observations which
form the majority of observations.

In order to demonstrate the bearing of the generalization the authors have
applied the theory to four types of measurements in the field of meteorological
practice.

The Director in Chief
Royal Netherlands Meteorological Institute

Ir. C. J. WARNERS
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INTRODUCTION

The present study is devoted to some problems which arise in connection
with some particular types of measurements in meteorology. In trying to apply
the  existing theory of adjustment by the method of least squares to these
types of measurements the existing theory has been found incomplete insofar
that it could not be used to find the answers to some questions of importance.
So it seemed worth while trying to generalize the existing theory in order to
overcome these difficulties.

The actual problem from which the present study arose is discussed in section

10.3 of Part III (Applications). The exact formulation of the questions which
could not be answered by using the existing theory is given in Part I (General
Theory). In this Introduction the main problems discussed in the present study
are described in a more informal way, using as an illustration a simple arti-
ficial but instructive example. ,
Let be given that measurements are made on a rectangle ABCDA. The meas-
urements give

AB=x
BC=y :
CD=:z ’ (1)
DA=t.
For the exact values or “true values” one should have

¢,=x—2z=0 .

2
Q,=y—1t=0. ( )

Suppose one wants to estimate the value of the area A of the rectangle.

A=xy (3)

This is a problem of adjustment, since the measured values of the length of -

the sides will, as a rule, on account of the inevitable instrumental and other
errors contradict the conditions (2). The method of least squares gives a solu-
tion of this problem and the way to obtain the solution has been described
many times in readily available text-books e.g. Linnik [1961]. Howevet, it
seems that this theory cannot answer a series of simple but important ques-
tions of which the following are typical specimen.




10

Suppose one does not use the conditions (2) but the equivalent system

@3=3x—5y—3z+5t=0 (4)
@ =2x+3y—2z—3t=0,

how does this affect the ultimate solution of the adjustment problem? The
system (4) is completely equivalent to the system (2) so one may hope that by
using (4) instead of (2) the ultimate solution of the adjustment problem will
not be changed but as the preseht authors could find so far, no proof has been
given in literature. It is obvious that the proof should not be confined to the
replacement of (2) by (4), but should pertain to a set of equivalent systems of
conditions out of which (2) and (4) are specific individual systems. This means
that prior to the establishment of a proof the set of equivalent systems of
conditions ought to be properly defined. This preliminary problem of defining
in a proper way the set of equivaient systems of conditions is in itself not
easily to solve. For it should be kept in mind that in many practical applica-
tions the system of conditions is not given by linear equations of the type of
the equations (2). It is shown in Part I that the concept of ideal in a ring is of
fundamental importance and that once the concept of ideal is introduced a
convenient definition of the set of equivalent systems of conditions may be
given and that the solutions obtained by the method of least squares afe indeed
independent of a specific choice of the system of conditions.

Suppose further that the adjustment by the method of least squares is not
based on equation (1) for A and the conditions (2) but on one of the following
formulae for A4

A =yz
A =zt ()
A" =xt

AM =%(xy+zt)

all giving the same numerical value for the exact or true values of x, y, z and ¢,
how does this affect the ultimate solution of the adjustment problem? Each
formula of (5) is completely equivalent to formula (3) so one may hope that by
using one of the formulae (5) instead of (3) the ultimate solution of the adjust-
ment problem will not be changed, but again no proof seems to exist in litera-
ture. Obviously before giving a proof one must have at hand a proper defini-.
tion of the set of all formulae equivalent in a specific sense to (3). It will be
shown, that once a proper definition of the set of conditions equivalent to (2)
has been given, it is an easy job to construct a convenient definition of the
set of formulae equivalent to (3) and that the ultimate solution of the problem
of adjustment is indeed independent of the specific choice of the formula by
which the area is computed. »

Quite naturally the generalization of the theory of least squares leads to a new
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approach of the adjustment problem in which no conditional equations at all
are used but a sufficient number of formulae of type (5). It will be proved
indeed that the adjustment may be based either on one formula of type (3)
and, say, M conditional equations of type (2) or on (M + 1) formulae of type (5)
provided some quite natural conditions of independence are fulfilled.

In the present study the traditional terminology of “true values”, “errors” and
“measured values” is used. The authors are fully aware of the fact that these
epistemologically somewhat dubious expressions could be eliminated from the
theory by using a more sophisticated statistical framework. However, since
it is known that these refinements have no influence at all on the final results
to be used in applications, it was considered not necessary to burden the first
presentation of the generalized theory of adjustment with these details.

As is usually done in studies on the method of least squares, matrices are used
throughout. Since no complicated theorems on matrix calculus are needed,
a knowledge of the basic principles of matrix calculus is sufficient for the
complete understanding of the present work. Furthermore, the reader is ex-
pected to have a working knowledge of the ordinary theory of the method of
least squares as may be found in text-books as e.g. Linnik [1961].







PART I

GENERAL THEORY

1. Equivalent systems of conditional equations

A problem of adjustment always presents itself in the following situation.
Measurements have been made on n variables x4, ... x,. For the unknown
true values it is a priori known that they are not independent but that M
independent relations exist which may be expressed by formulae of the type

ol X1, . x)=0,(x)=0, ~ (a=1, M) (1.1)

. One may assume M < n, otherwise no measurements are necessary and the

values of the n unknowns x; can be computed from the equations (1.1).
Furthermore one may assume that the M relations are independent in that

a

the rank of the matrix

y ‘
wise one or more relations can be left out of consideration. Given this situation
one wants to obtain that value of a given function

= x,) (12)

‘ Ja=1,...M;.i=1,...n)is equal to M, other-

" which may be considered the best value obtainable in a sense which could

be specified later on. Instrumental and other errors will cause the measured
values x4, . . . x, to differ by an unknown*amount from the true values x,, .. . x
so that as a rule (1.1) is violated

X1, ... x,)#0.

Whereas the true values x,...x, are pure numbers, the measured values
Xy, ... X, are to be considered stochastic variables. It must be emphasized
that the stochastic components x;— x; are not assumed to be stochastically
independent variables; on the contrary, correlation between say x;,— x; and
x;—x; is allowed. Furthermore it must be kept in mind that one or more of

J T
the conditional equations are also allowed to be of the type

n

p=x;—x;=0. (for specified’i and j) (1.3)

Conditional equations of this type express an identity between the true values
of certain variables which is a formal way of expressing that some variables
have been measured repeatedly. So the theory also covers the case of repeated
measurements. ’
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The problems under discussion in the present section pertain to indetermi-
nateness of the system (1.1) of conditional equations. This is not a completely
new problem, since an analogous problem is encountered e.g. in algebraic
geometry. The latter problem being more simple than the former it seems use-
ful first to consider its known solution.

Suppose in the three-dimensional euclidean space of the variables xi, X5, X3
a circle is given by the equations

@ =x3+x3—-1=0
92=x5=0.

The same circle, however, may be given by a multitude of other pairs of
equations e.g.

P =x}+x3+x3—1=0
(pIZ =X3= 0 H
or v
o =x}+x2+x3—x;x3—1=0
P3=x3=0.
For the solution of the problem, how to describe the multitude of possibilities
of giving the circle by a pair of equations, the algebraic geometers have made
use of the theory of polynomial rings and ideals. It is obvious that restriction
to polynomial conditional equations would impose* limitations on the appli-
cability of the theory of adjustment which are highly undesirable. However,
it will be shown that one may use analytic functions as well as polynomials.
It further appears that the amount of ideal theory necessary for the solution
of the problem is rather small and in fact is restricted to one theorem which
“will be proved without assuming knowledge of ideal theory with the reader.
After these preliminaries the problem will now be tackled formally.
First the concept of a (commutative) ring is needed. A ring is a set of elements
f.g, h... for which two binary operations are defined, called addition and
multlphcatwn and for which the following axioms are valid:
(i) 1If f and g are elements of the ring, so is f+g =g+ (closure under addition)
(1) f+(g+h=(+g)+h
(iii) There exists a neutral element for addition, written 0, so that f+0=fand
fH(=f)=f=f=0%)
(iv) Iffand g are elements of the ring so is fy = gf (closure under multiplication)
() Slgh)=(fa)h
(v)) flag+h)=fg+fh
(f+g)h=fh+gh.

 Examples of rings are the system of (positive and negatlve) natural numbers

*) It is not necessary for a ring to have a unit element (neutral element for multiplication). Indeed
the ring of multiples of 7 is an example.
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the system of natural numbers which are multiples of 7, the system of poly-
nomials in one indeterminate x. The odd natural numbers do not form a ring.
A ring may contain subrings (e.g. the ring of multiples of 7 is a subring of the
“ring of all natural numbers). Some subrings are called ideals. A subring I
of a ring R is called an ideal if the following condition is fulfilled:
If ¢ is an element of I than for any f which is an element of R, ¢fis an element
of I.
Examples of ideals are the subring of multiples of 7 in the ring of all natural
numbers, the subring of polynomials in one indeterminate x which take the
value zero for x=1 and x=2, in the ring of all polynomials. It is exactly the
last example which, properly generalized, makes the ideal theory a useful tool
in algebraic geometry. An analogous ideal will solve the problems pertaining
to the indeterminateness of the system of conditional equations.
Now consider in the n dimensional space E,, of the variables x, . . . x, a domain
D, which for reasons of simplicity is assumed to be singly connected. A function
F(xy, ... x,) is called analytic on D if to every point P=(%, ... %,) of D there
corresponds a neighbourhood of P in which the function can be represented

by a convergent power series in (x; — %y, . . . X,—%£,)-

It is obvious that the set of all functions analytic on D forms a ring.

Let further M independent functions ¢, . . . @, be given analytic on D.

By  91=¢5... =@y=0 (1.4)

a (n— M) dimensional variety Vis defined in the space E,, consisting of all sets
(%1, ... x,) for which (1.4) is valid. Now the collection of functions analytic
on D becoming zero in each point of V forms an ideal. For if i and y are
functions becoming zero on V then also i +y and ¥y become zero on V and
for each function  becoming zero on ¥V and each function F analytic on D
also Fy becomes zero on V. Furthermore the functions ¢, . . . ¢, form a base
of the ideal as stated by the following theorem.

Theorem of base

If  is a function analytic on D becoming zero on Vthen there exist M analytic
functions [, . . . I, so that

M
=) Lo,.
v=1
Proof. Introduce in E, a new system of coordinates (y,, . . . y,) by

Y1 =(P1(x1, e xn)
V2 =(Pz(x1; e xn)
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Yum =§0M(x1, ce xn)' (1.5)

YM+1=Xpm+1

‘ yn = xn N
In this new system of coordinates the variety Vis given by
y1=y,=...yu=0.

Let y=y(yy, ...y, be the function ¥ expressed in the new coordinates.
It is always possible to write ¥ in this form since the rank of the matrix

0 ,
% , (@=1,...M; i=1,...n) equals M, from which it follows that the
b .| Oy; ‘ ’ . .
rank of the matrix ai_’ , (Lj=1,...n) equals n, so that a unique inverse

transformation by analytic functions exists.
Since Y becomes zero on V one has

¥(0,0,0,...0, yars1, .- ya)=0.

Now  is analytic on D and must be developable in a power seriesin (yy, . . . y,).
So there exist a development '

in which [, ... I are aﬁalytic functions
Substituting (1.5) in the development (1.6) one obtains

Y=l +hLo,+ .. oy
which completes the proof.

Remarks:

1. The given proof is an adaptation to the present situation of a proof given
by Kadhler [1934] for an analogous situation.

2. The proof is constructive in that actual determination of the coefficients
l,,... I, may be done following the procedure indicated in the proof.

By way of illustration let an example follow:

P1=%1—X,=0
§025x2—x§:0
Y =x2—-x5=0
Vi =X1—X,

Va2 =x2—x§
Y3=X3
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So
X1 =YX, =Y+ Y2+ X5=y1+y,+ )3
and
¥ o=xi—xi=(yi+y+yi)’-yi=
=(ri+y2)?+ 203y +y2) =
=y1 (v +2y,+23) +ya(y2 +2y3) =
=yili+y2l;
with

Ly =y1+2y,+2y3=x,+x,
L, =y, +2y3=x,+x3

Using the theorem of base the proof of the following theorem may be given
which describes the possibilities of selecting another base.

Theorem:

Let @ be the vector*)

- @1
=90 =| . |,
M1 .
Om| (1.7)
Uy
¥ the vector ¥ = ¥ = ,
M1
Yn
lll ---llM
L the matrix L= L =
MM
lMl.-.lMM

of rank M and of which the elements /;, are functions analytic on D. Then the
possibilities of choosing a new base are exhausted by the formula

P=1d. (1.8)

Proof.
(1) Suppose @ is a base. Then since L has the rank M, ¥ is a system of M inde-

pendent functions becoming zero on V[<I>] and may therefore be used as base.

One simply has to substitute ¥ for @ in the theorem of base to obtain the

*) Subscripts under the symbol for a matrix indicate the number of rows and columns. As a rule
the subscripts are put below the matrix only on its first introduction after which the subscripts
are omitted to facilitate reading.
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coefficients needed to express an arbitrary function F, zero on V] as a linear
function of V. - ,

(2) Suppose ¥ is a base. Then each element of ¥ becomes zero on V; so that
the theory of base applies to each element of ¥ in which case (1.8) is only a
compact description of the theorem of base.

Finally the following theorem describes the possibility of substituting an
equivalent function for the function f (1.2).

Theorém :

If f' is a function equivalent to f in the sense that on ¥ both functions take
the same values, then there exist M analytic functions Iy, . . . I, so that

f=f+ Y Lo, | - (19)

v=1
Proof. Apply the theorem of base to (' —f).

Corollarium: The number of independent functions taking the same values on
V[ @] equals (M +1).

Summing up the results of the present section it can be stated that the three
proved theorems give a complete description of the indeterminateness of both
the system of conditional equations (1.1) and of the formula (1.2). In the next
sections the question is investigated whether the possibility of using various
sets of conditional equations and various formulae will have any consequence
for the ultimate results of the procedure of adjustment.

The theory of adjustment of indirect conditioned observations thus may be considered pertaining
to problems on the equivalence classes of functions mutually congruent modulo an ideal of func-
tions becoming zero.on a given analytic variety. The theorem of basé guarantees the existence
of a base of the ideal. The theorem on the substitution f—f" is used to escape explicit introduction
of equivalence classes.

One of the main -problems in the next sections originates from the circumstance that from

f'=f (mod. I)
it does not follow that

o _of
ox; 6x

(mod. I).

This difficulty will be overcome by introducing additional assumptions which in a natural way
arise from statistical requirements (see e.g. the argumentation leading to (2.26)).

2. Adjustment and conditional equations |

It now becomes necessary to distinguish carefully between the true values
Xq,... X, and the measured values x,,- . . x,. This is done.by always writing
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functions depending-on the observed values with explicit indication of the

argument (xi,...x,). The true values x,, ... x, form together the vector X -

X=X={xg,...%,;} (2.1)
in
and the observed values x4, . .. x, the vector X
X=X={xy,...x,}. (2.2)
in -

For the argument (x,, . . . x,) in functions usually X is written in short. Several
estimators of the function

=%y, ... x,)=f(X)

are considered which are denoted by #;(f), #(f) etc.
As a first estimator consider

& {(f)=f(X)+ AX)P(X), : (2.3)

@ being the vector already introduced (1.7) and A a vector A= A , to be
determined later on. . 1M
Denoting the expectation operator by & one has

&X)=X.
Furthermore it is assumed that
&f(X)=/(X)
and
EP(X)=P(X)=0. (2.4)

These are very restrictive assumptions, but in dealing with non-linear functions
f and non-linear conditional equations @=0 they seem to be inevitable. In
consequence of the assumptions made one has

8 (1)=81(X)+ A(X)80(X)=f(x) | 3)

which means that & (f) represents an unbiassed estimator of f.

It is customary in modern statistics to consider in a collection of estimators
the best estimator that individual estimator which has the minimum variance.
This estimator is called the most efficient estimator of the collection. This in
fact is the modern version of the principle of least squares. To select the most
efficient estimator out of the collection (2.3) by making a specific choice for
the vector A it is necessary to obtain a formula for the variance of & (f).
The way to obtain this formula is well known. To make the present study
readible in itself a complete derivation is given; analogous derivations how-
ever are omitted when similar formulae are needed.
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By definition

var & (f)=6{F\(f)-EZ1(f)}? (2.6)
Using (2.5) and (2.4) this amounts to .

var %,(f)=&{ #(f)—/ (X)) = |
— 611(X)~/(X) + A(X)9(X))? (2.)

It is assumed that X — X is small so that within the order of accuracy needed,
one has

SX)=f(X)=fx(X - X)T (28
with
: 0 .
fx=fx = 0f‘ , i=1,...n
1n X
and
P(X)=P(X)+ DX - X) (2.9)
with
dp, 0o,
| oxy T ox,
Px=Cx = | : (2.10)
ou  09u
axl o 5x,,

Substitution in (2.7) gives ' .
var 4(f)=E[fx(X— X)T+ AD+ 4Dy (X - X))
However, since ¢(X)=0, (2.4) this may be simplified to
var Z(f)=6[(fx+4Px)(X X)) =
= [(fx+ A®x)(X — X" (X~ X)(fx + PxAT)] =
= (fx+A0x)E[(X—X)"(X—X)]- (X + D3 A4").

The second factor in this product, the factor .containing the expectation
operator, is exactly what is called by definition the covariance matrix of the

variables x,, . . . x,, which is denoted here by S.
S=58=6&[(X-X)"(X—X)]=| cov(x; x)) ' » (2.11)
so that " ’ »
var Si(f)=(fx +4Px)S(f5 + 23 A") (2.12)

*} The superscript T denotes matrix transposition. As a general rule the suffix X denotes differ-

entiation (gradient) F
, .

i
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which is the formula needed for the variance of the estimator #,(f). Formulae
of the same type will occur in many places in the present study and are in
future presented to the reader without proof as immediate consequences of
formulae of the type (2.3). From (2.12) it follows that var %,(f) is a minimum if

O var Pf)=20y SIT+ By SBLAT) =0.

o4
Let now a matrix I" be defined by ‘
I'=T =&,50% , (2.13)
MM

which is nothing but the covariance matrix for & (X).
Then
Oy SfE+TAT=0

from which it follows that

AT= —I' &, SfF ‘ } (2.14)
or
A= —fy SO ", , ‘ (2.15)

Here use is made of the fact that both S and I' are symmetrical matrices so
that I'=I7T and S=S7, facts which are in future used without notification.
Substitution of (2.15) in (2.3) gives the final formula for the adjustment

{‘yl(f):f(x)—fxsqs,ﬁr-lqs(x) - (2.16)

For future reference also the formula for the variance of (f) is given.
Using (2.12) one obtains ’

var Z1(f)=1xSfE +fx SOX AT+ APy Sfx + ADx SPTAT .
The first term on the right hand side of this formula represents the variance
of f(X) and substitution of (2.14) and (2.15) gives using (2.13)
var & (f) = var f(X) — fySOLT 1 &y Sf¥ —fy SOIIT 1 by ST+
+fxSPIT 1P, SPTT 1 b, SfT =
=var f(X) — 2fx SO 1 &y SfT +fx SO~ TT ' ®, SfF
or

var #(f)=var f(X)—fx SOF ' &5 Sfy (2.17)

Formulae (2.16) and (2.17) are definitely not new. In fact they are the standard
formulae used in the theory of adjustment of indirect conditional observations.
It may be noted that it is known that the adjustment results in a real variance
reduction as follows from the following arguments.
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I' is a covariance matrix and thus positively definite and so is I'"*. So for
every vector u, ul"~*u” 20 from which one obtains:

var &(f) £ var f(X).

Before proceeding to discuss whether the choice of a particulat basis has any
influence on the estimates it is worth while considering two other ways to
obtain the formulae (2.16) and (2.17).

By choosing first f=x; and letting i run from 1 to n one obtains

 AX)=X—(SOLT T B(X))T =X~ BT(X)I " By S (2.18)
since under thi‘s choice

fx=E
E being the unit matrix.
This gives the possibility for constructing a new estimator %, for an arbitrary
function f(X) by

LA =11 AX) =X - D" (X)[ ' &5} .

Now one may assume that the correction term —®”(X)I'™ ' @S is small and
consider the Taylor development s

L2(f) =1 (X) = fx{@T(X) I~ D5 S}T + O{@T(X) ™ Dy S}? ,
=f(X) — fx SOYT 1 ®(X) + O{DT(X) I~ Dy S}? (2.19)
which implies that neglecting higher order terms
LAf)= #i(f)
from which it follows that also
var %(f)=var S(f).

Another way to obtain (2.16) is by using the method originally developed by
Gauss and Lagrange, from whom also the method of least squares received
its name. The method consists in trying to construct a correction vector

A=A =|6,...8, (2.20)
in

to that (X +4)=0.
However, since for non-linear @ the use of this equation is as a.rule prohibi-
tively complicated, this equation is linearized to
X)+ P, AT=0. (2.21)
One further introduces a symmetric positive definite matrix G of weights
G=G=|G (222)

iJ'|
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and tries to determine the unknown corrections A so that
AGAT

takes a minimum under the subsidiary conditions (2.21). The minimum prob-
lem is solved by using Lagrange’s theory of mdetermmate multipliers and
by considering ‘the function

W=AG A"+ K{®(X)+ &x 4™}

with the elements of the vector K = K =]y, ... Ky | as indeterminate multi-
pliers.
The condition for minimum W gives

ow

so that ‘
A= —iKo,G™ 1. (2.23)

By substituting this in (2.21) one obtains as the equation determining K
B(X)— 46, G~ 1 SLKT=0
from which it follows that

KT =2(0, G~ &%)~ ¢(X)
or - ‘
K=207(X)(@1G &)

This gives for 4 according to (2.23)
A= —PT(X) (PTG ' dx) ' PxG7 L.
So that one obtains as a new estimator for f=X
S(X )=X+A=X—~d5T(X)( TGP, 1D, G (2.24)
This seems to be a completely new estimator. However, if one chooses for
G;; as is usually done weights which are proportlonal to the elements of
s 1—|cov(x,,x)| leg.
G=p*§7",
p* being an arbitrary proportionality coefficient then ; is reduced to
FX)=X— DT(X)(BLSBy) 1 B,S .
By (2.13) this is equal to
FLa(X)=X—-dT(X) "' D4S
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which is the same formula as (2.18) so that
y3(X)= yl(X) .

Now having seen that all approaches result in the same final formula for the
estimation the question of whether the results depend on the specific choice
of a particular base becomes of paramount importance. Two theorems are
needed to clarify this point.

First invariance theorem

The estimation by %, &, and %; is invariant for change of base.
Proof. Let a change of base be given by a formula of type (1.8)

=10 v (2.25)
Now some caution is needed. For according to (2.4) one must have
EP(X)=0.
The same must be true for the new base
EP(X)=0.
This may reached by specifying (2.25) to
&(X)=L(X)®(X) .
Now (2.25) gives
B,—L,+Ldy. C o (226)

In each given formula in which @, previously occurred it must always be
interpreted as @,(X). This in (2.26) gives

B X)=Ly(X)D(X)+ LX) Py(X) .
But $(X)=0 so that
& y=Ldy : : (2.27)

is the formula to be used in studying the effects of the transformation on the
estimation. With (2.27) one obtains for the transformation of (2.13)

F=0yS0L=Ld,SOY L =LI'L" . ' (2.28)
Since L must be chosen so that L™ ! exists one also has 7
f_l=(LFLT)—1=(LT)_1F_1L_1 .

Finally one obtains for the estimation based on the new base by (2.16)
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FX) — fx SBLT 1 &(X) =
=/(X)~fx SOLL ()~ I~ L La(X) = |
=f(X)—fXS<D,T(F_1d5(X)= ,Vl(f) (2.29)

which completes the proof.

Zi(f)

Second invariance theorem
The estimation by &), &, and &3 is invariant for.the substitution of f(X)
by an equivalent f| (X), the equivalence of fand f being defined by the condition
that f and f take the same values on the variety ¥ defined by ¢(X)=0.
Proof. Let the substitution be given by (see 1.9)

f=f+Lo, (2.30)
inwhich L= L ={L;,... Ly}.

1M

According to the assumptions made one must have
87(0)= 81 (X)=F(X)=7(X) .

This may be reached by specifying (2.30) to
700 =11%)+ L{X) 0(X).

Differentiation of (2.30) would give | )
fe=fi+tLy®+Ldy. : (2.31)

However, in each given formula in which fX previously occurred it must
always be interpreted as fy(X). This in (2.31) gives

flx )_=fx( )+ Ly .
Using this one obtains by (2.29)
FAf)=f—Fx SO 1 o(X) =
—f+ LO(X)— (fy+ L) SPL I~ B(X) =
=f+ L&(X)— f SPLT~ L &(X) — Ly SPLT L B(X) .

Remembering the definition of I' one observes that in the right hand side the
second and the last term are equal except for the sign so that

#f)= (1)

which completes the proof.
For future references two formulae w111 now be proved
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Deﬁne*)

7= (2 — (by 2.16) = fy—fy S®E ' By . (2:32)
6X X=X - .

Then one has ,
yxsds; =fXS@§—fXS¢§F_ L ¢XS@)T( s
which according to the definition of I' (2.13) may be simplified to

e

Furthermore one also has

FxSfE =fxSfE —fxSPLT ™ Dx SfX
which by comparison with (2.17) may be identified as

%%emym.\ (2.34)

Summing up the results of the present section it may be stated that the
theorems proved indicate that neither the particular choice of a specific base @
nor the choice of a specific f has any influence at all on the final result of
the adjustment procedure. This means that one has the freedom to choose
both for @ and f those functions which happen to be the most convenient
for practical computation. So e.g. one may by (2.28) choose a base (D so that
in this base I' becomes a diagonal matrix, which is of some nnportance :
because I is throughout the procedure the only matrix of which the inverse
is needed.

Finally it must be noted that.the development (2.8), the development (2. 19)
and the linearization (2.21) all serve the same purpose viz. to avoid prohibitive
complications. If, as is often done, the theory is developed from the onset
under the assumptions of linearity of the conditional equations, the real
difficulties of the theory are obscured and a clear insight in its limitations
becomes impossible.

A good example of the difficulties one encounters even in rather simple
problems when linearization is not applied may be ‘found in a paper by
Ritsema and Scholte [1961].

It must be observed that if from the onset the conditional equations are glven
as linear equations the first invariance theorem becomes trivial. For M linear
equations define a linear (n— M) dimensional variety L, . It is well known
_ that the adjustment procedure then amounts to an orthogonal projection of
the point representing the measured values on the linear variety L, ,, provided

*) In this formula the index 1, 2 or 3 is omitted, being superfluous.
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that orthogonality is defined with respect to a metric given by the inverse S~ !
of the covariance matrix. The mere fact that the adjustment procedure can be
described in terms of the geometry of linear metric spaces proves the invari-
ance theorem.

3. A new approach to the problem of adjustment

Suppose one has at hand a number of N independent formula f;, .. . fy which
are equivalent in that they take the same values for the true values. From the
correlarium of section 1 it is known that N cannot exceed (M +1). For the
present no other relation between N and M will be assumed besides the
natural condition

NEM+1.

The question arises whether it would be possible to estimate the common
value which is assumed by f;,...fy for the true values of the independent
variables by taking a suitably chosen linear combination of f;(X), .. . fy(X).
Define the following notations

fi
=a | (1)
In
A=A ={ly,. . Ay} | (32)
iN
Then the linear combination of fi, .. . fy is given by
Fulf)=AF .
As usually it is assumed that
EF(X)=F(X).
In order that %, be an unbiassed estimator one should have
A=A(X)

and
. .
2 =1, (33)
i=1 R
The last condition is written as

Ae=1, - (34)

in'which




1
1
e=¢e¢ = |- (3.5)
N1 .
1 3
So the formula to be used for the estimator &, is given by
Zf)=AX)F(X)=AF(X) | (3.6)

with the subsidiary condition (3.4). ‘

As before the weights A are determined by the condition that %, should
have minimum variance. The variance of %, is according to well known rules
given by

var S,(f)=AFxSF3AT

with
9 o
_ ox,  ox,
FX:FX(X)—I;X‘
UPn U
Ox,  0x,

Minimizing the variance of %, under the subsidiary condition (3.4) is done
in the usual way by introducing an indeterminate multiplier ¢ and minimizing
the function W

W=AFySF3A" +e(de—1).
For abbreviation the covariance matrix C of F is introduced, defined by

| C= C =FySF} : (3.7)
NM

so that W is simpliﬁed to
W=ACAT +¢(de—1).
The condition for minimum now reads

ow
L 0=2CAT +ee=
oA 0=2CA" +ee=0

with the solution

AT=—2C e



or

A= —EeTC_l . (38)

Substituting this in (3.4) one obtains as the equation determining &

'—EeTC_lezl

2
or
~efcle :
by which the final form of A is found by substitution in (3.8)
eTC !
T eTCc e

and the final form for %, follows from this equation by (3.6)

e’ C™1F(X)

{ Fulf) = T—l(é- (3.9)

For future reference also the final formula for var %, is given.
efc™! Cle eTCte

var 5?4:/1CAT; eTC e c eTC e (e"Cle)?

or
[
var y4 = m ‘ (310)

It might be noted that the denominator of var &, viz. ¥ C™ e is nothing but
‘the sum of all elements of the matrix C~'.
‘Now again the question arises whether the result is independent of the specific

N

choice of F = . By a counter example it is shown that for arbitrary N

v

independence miay not exist. Take e.g. N=1, then (3.9) takes the simple form

,5P4(f)=f1(X) s

and cléarly by making another choice, say fi, it is possible that

Sl =1(X) £ 5 (X) = L)

However, it will be proved in the next section that when making N as large
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as possible i.e. when choosing N=M+1, independence does exist. For the
moment the remark must be made that enlarging the number N of functions F
results in decreasing (or at least in non- -increasing) the invariance of &,. For
increasing N 1mphes that the most efficient estimator determined by mini-
mizing var %, is determined out of a larger collection of estimators. So the
maximum efficiency is obtained by making N=M+1. In case of N>M +1,
the covariance matrix C which plays a role in (3.9) and (3.10) becomes a
singular matrix. This may be proved by remarking that on account of a well-
known theorem one has

rank C< min (rank Fy, rank S, rank F 1.

For N >M +1, the rank of Fy and F¥ is maximally equal to M + 1, the rank
of S is n=M+1 from which it follows that the rank of the (N, N) matrix C
is maximally equal to M+1<N and consequently det(C)=0. In the next
section the relationship between &, for N=M+1 and &, will be investigated
and it will be proved that under this condition the new method becomes
identical to the original method.

4. Identity of the old and the new approach to the problem of adjustment

As already announced, in this section the identity of the old and the new
approach to the problem of adjustment is to be proved, subjected to the
condition

N=M+1. (4

Two proofs will be given, one based on investigation of the basic assumptions
of both methods and one on their final results.

First proof. Consider the basic formula (3.6)
94(f)=AF(X)=/11fl(X)+/12f2(X)+ coe Ayt fuer(X)
Using (3.3) this may be written as
5p4(f)=fM+ I(X)+’11{f1(x)_fM+ 1(X)} +Az{f2(x)—'fM+ 1(X)} +...+
' + A { e X) = frr+ 1(X)} -
Now the functions
fX)—fuerX)  v=1,... M

are functions becoming zero for the true values X. So‘according to the theorem
of base one may write

fv(X) —'f_M+ 1(X) = BZ; lvp(Pp(X) .



31
Using this .%,(f) takes the form

'Sp4(f)=fM+ I(X) + ;1 hpqop -

But this is exactly the same form which has been used in the method ()
So minimizing the variance of %; amounts to the same as minimizing the
variance of %,. Remembering that in . it is of no importance which parti-
cular choice of fyr( and of ¢, is made, it follows that also the results of &,
are independent of the particular choice of f, .. . fir+ -

Second proof. Consider &,(f) (see 2.16)).
L) =f(X)—fx SO &(X) . (4.2)

It is known from the first invariance theorem that it is of no importance what
particular choice of @ is made. So one is entitled to make the following choice

Equation (4.3) may be written as a matrix equation by introducing
fi
F= F =| - (4.4)
M+1,1
fM+1
and ,
100... 0 -1
010 0 -1 )
0= Q =001 0 —-1|=]E: —e| (4.5)
MM+1 . .
. 0 -1
000... 1 -1
Viz.
B(X)=QF(X)
from which it follows that
Px=QFx.

This gives for I, defined by (2.13) using (3.7)
I'=dxS03=0FySFxQ"=0CQ"

giving for #;(f) of (4.2)
S)=fX)~/xSFX Q" (QFxSFXQ") ™' QF(X) .
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In this equation the choice of f(X) is still open. Making f (X) in turn equal to
f1(X), - . - fyr+1(X) one obtains a sequence of formulae which may be given the -
vectorial form -
- S(F)=F(X)— FxSF QT (QFxSF3Q") ™' QF(X)

— F(X)— CQ™(QCQ")* OF(X) . (4

Multiplying this equation to the left by Q one finds
0 #,(F)=QF(X)—QCQ"(QCQ")™ " QF(X) =
=QF(X)—QF(X)=0. |

Remembering the definition of Q (4.5) one may interpret this as expressing
that the vector #,(F) consists of identical elements. This is not a surprising .

result for in fact it is a restatement of the second invariance theorem.
Now (4.6) is giving :

C' #,(F)=C"*F(X)—-Q"(QCQ")™! Q»F (X) |

and v
eTC1 #(F)=e"C *F(X)—e" Q" (0CQ") ™! QF(X) . (4.7)
Using the definitions (4.5) and (3.5) one finds that
100...0 —1] |1 |
TQT=(QF =[010 0 —1]|1]|=0
1

001 0 —1

000...1 =1} |1
so that (4.7) is simplified to
eTC 1%, (F)=e"CT'F(X). (4.8)

It has already been proved that &, (F) is a vector consisting of identical
elements which means that for %(F) may be written

F(F)=e#(f)

v being an arbitrary number out of the series 1,... M+1.
Substituting this in (4.8) one finally obtains
TC'F(X : ’
e'C e :
which completely proves the identity between &; and ..
The first and the second invariance theorems valid for #; now guarantee that
also the results of the method &, are independent of the specific choice for F.
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So the following theorem has been proved :

Third invariance theorem

The estimation by &, is invariant for substitution of F by an equivalent F,
‘equivalence being defined by the condition that the elements of F and F take
the same numerical values for the true values of the independent variables.
Although as an immediate consequence it also foltows that var &, =var &,
it might be worth while to give also the demonstration by which the formula
(2.17) for var #;

var & =var f(X)—fx SOXT ' 5 SfY

may be transformed into. the formula (3.10) for var %,

var &) = ————.
eTCle

Using the same substitutions as above one gets for an indeterminate f

var &(f)=var f(X)—fxSFYQ "I "' QF ySf{ =
zfxsfxT‘fXSF§QTF_1QFXSfXT =
=fx[S—SFXQ "I 'QF,S]f{ . (49)
Making f in turn equal to fi, . . . fj, the right hand side of (4.9) gives the ele-

ments of a matrix which according to the second invariance theorem consists
of identical elements. So one may write

eel var #(f)=Fx[S—SF3Q"I "' QF;S|F; =
=FySF;—FyxSF3Q"I' "' QFySF} =
=C—-CQTr-tgc
So
ee’C levar & (f)=e—CQ'I'" ' Qe.
Since it has already been demonstrated that Qe=0 this reduces to
ee’ C e var %(f)=e. (4.10)

So the left hand side of (4.10) is a vector with identical elements, all equal to
unity from which it follows immediately that

var yl(f) = W

as has been announced.
For future reference a formula comparable with (2.33) will be derived. Re-
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membering the definition given by (2.32) one now may write

eTCLFy

I =g,

So the application of (2.33) now gives the formula

eTc—l‘FXqu,T{:oﬂ (4.11)

The final conclusion of the first part of this study is therefore that there are
various approaches to the problem of adjustment of indirect conditional ob-
servations, all of which however leading to the same result. A particular
problem of adjustment may therefore be transformed by various means into
a form suitable for practical computation. For although the various approach-
es are theoretically equivalent they are far from being equivalent from the
computer’s point of view. In many cases the three invariance theorems offer
possibilities to facilitate computing. Moreover, there is the new approach by
which no use is made of the conditional equations and by which only a se-
quence of equivalent functions is used. The advantages of the new method
are that in this method the formulae are symmetric in all functions f. This
symmetry by which all functions are treated in the same way may be of para-
mount importance in practical computations. In any case just this symmetry
will as a rule simplify the programmiing of the adjustment procedure for high
speed electronic computers. That this is not wishful thinking will become clear
when studying the examples given in the last part of the present study.
Finally it must be observed that the new method offers the possibility of
reducing the amount of computational work at the expense of loss of efficiency
by choosing N < (M + 1) which however in general should not be advocated,
since the invariance théorems then break down.



PART II

CONDITIONAL AND UNCONDITIONAL OBSERVATIONS

5. Survey

“In Part I the problem of adjustment of indirect conditional observations was
tackled along different lines of approach and it was shown that entirely differ-
ent schemes for solution of the problem are leading to the same result. In
particular several estimators denoted by &, %,, &5 and %, yield the same
minimum variance. The estimators &, %, and ¥ are well-known standard
formulae for adjustment, the estimator %, in its most general form appears
to ‘'be unknown. In any case when occasionally the adjustment procedure %,
has been used by some author this is done without the knowledge of its
equivalence to the more conventional procedure ;. The theoretical equi-

-valence of ¥, with &, &, and &; could be proved by introducing the con-
cept of ideal in a ring of (analytic) functions and three invariance theorems.
The estimator ¥, is discernable from the others by the property that no ex-
plicit use is made of the set of conditional equations ¢,=0 which exist between
the true values of the variables to be measured. The only point of contact of
&, with the set of conditions is the requirement that the total number of
equivalent functions should be taken equal to (M + 1), where M denotes the
total number of independent equations. The third invariance theorem guaran-
tees that the adjustment remains unchanged when another set of (M + 1) equi-
valent functions is chosen. Under circumstances e.g. when the number of
conditional equations is unknown, one can be forced to use a smaller number
of equivalent functions at the cost of a smaller reduction of variance and the
additional sacrifice of the invariance with respect to a set of equivalent func-
tions. When the number of equivalent functions exceeds (M +1), then the
procedure of adjustment fails as the covariance matrix C becomes a singular
matrix.

Whereas the third invariance theorem plays a part in %,, both first and
second invariance theorems are effective in regard to the methods &y, &,
and ;. The first theorem states invariance with respect to an equivalent set
of conditional equations, the second invariance with respect to an equivalent
function.

The special role of the conditional equations ¢,=0 and their explicit use in
the methods #,, &, and &, in contrast to a total absence of the conditions
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in the method &, make it relevant to arrange the methods of adjustment into
two categories, viz. the “@-approach” and the “f-approach”. The former in-
volves the methods %, &, and %, the latter the method 7.

With this classification in mind the most important results of Part I are:

@-approach:
L)=FX)—fx SO~ &(X) (5.1)
var #(f)= Zx(f)Sfx (5.2)
S f)SPT=0 (53)
f-approach:
TCiF(X
1) = e (4
1
var y(f) = m (55)
eTC 1FySP¥=0. (5.6)

It can be remarked that equation (5.3) plays the role of checking the correct
answer of &(f) derived from (5.1). The equation (5.6) involves the set of
independent conditions ¢=0 explicitly and as such should not appear in the
list of formulae for the f~approach. But when the set of conditions is known in
advance the equation can also serve to check the estimator derived from (5.4).
Although theoretically the ®-approach and f-approach are equivalent it may
under circumstances be difficult to decide which of both should be preferred
in a particular problem of adjustment. In Part III some arguments are given
of one in favour of the other. These arguments may depend on some alter-
native forms in which the above matrix equations may be converted. When
some elementary matrix operations like row- and column operations are per-
formed the matrix equations are changed considerably which make them more
_suitable for numerical computations. These alternative forms are presented in
sections 6 and 7.

It has already been put forward in Part I of the present study that the theory
of adjustment of indirect conditional observations also covers those of re-
peated measurements. It will be shown that by constructing a specific set of
conditional equations the well-known category of indirect unconditional ob-
servations can be considered a special case of conditional observations. In
terms. of these special types of observations application of the generalized
theory of adjustment leads to similar results as using the conventional method
of least squares. In some respect adjustment gives more details than the method
of least squares. Section 8 deals with this item and the outline there may be
considered a first application of the generalized theory.
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6. Alternative forms for the estimator and its variance in the case of explicit
use of the conditional equations

One can find alternative forms for &(f) and var &(f) in the ¢-approach
when some elementary row- and column operations are performed. These new
expressions only involve a quotient of two determinants of square matrices,
the one in the numerator being a bordered one of the matrix in the denumer-
ator. :

For convenience some new notations are added to the existing for I and C:

I'=¢xSb% (6.1)
C=FxSF% (6:2)
¢ =fxSfy (6'3)
B=,Sf! (64)

¢ is nothing else than the variance of f and consequently appears as a di-
agonal entry of matrix C. The matrix B= B may be interpreted as a “mixed”
covariance matrix in terms of f and &. !

Let I'g and I'y denote the bordered matrices:

fx) 2'(x) |
°=|B T (65)
c BT
FB = B F (6.6)
Then the following theorem will be proved:
det T’y '
-Gt 7)
det I'y
var #(f) = ot T | (6.8)
Consider the matrix I'y,:
fX) 24X) @4X)... 2dX)
B, Y11 V12 Yim
I'y =B, V21 Y22 : (6-9)

By a1 ce. YmMMm
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To calculate det I'y, first devélop the determinant by the elements of the first
row, then by the elements of the first column to obtain the coefficients of f(X)
and @(X):

' M
det To=f(X)det T— Y ¢(X)By};
i,j=1 ’

where y;; denotes the cofactor of the element y;; in the matrix I'. This cofactor -
. is defined in such a way that

=TI"1detrl.

V:"j
With the symmetry of I' in mind (I'"=T) one has:

det To—f(X) det I— Y o(X)ByI'~");; det I'.

i,j=1
In matrix form after substituting for (6.4)

det I'y
detI

= f(X) _fod’;F_ ! @(X) :

Hence, comparing this result with the expression for &(f) (5.1) one obtains:

det I'y,
(f) " detl

which completes the proof of the first part of the theorem.
Next consider :

c B, B, ...By
B Y11 Vize--Vim
I'g=|B, 721 722 : (6-10)

By Vm1 oo Yum
Again, to calculate det I' first develop the determinant by the elements of
the first row, then by the elements of the first column:

M
det F'g=cdetI'— Y B;B;yj

ij=1

M

=1
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In matrix form, after substituting for (6.3) and (6.4)
det I’ -
G P = IS Sx SR Oy SfY
Comparing this result with (2.17) one has
~ detl
which completes the proof of the second part of the theorem.

var #(f)

Remark. The above theorem has a lot in common with a well-known theorem
~due to Neyman-David [1951], concerning the estimation of linear forms in
.. fundamental parameters from indirect observations such as inlinear regression
theory. 7
It has in the beginning been assumed that the observations are stochastically
dependent. This corresponds to a scheme of stochastically dependent errors
with covariance matrix S involving non-diagonal entries. In practice, however,
most often the case is encountered, that one deals with stochastically inde-
pendent observations and consequently with a covariance matrix S which is
a diagonal matrix. In Part IIT all applications to be described are realizations
of this system.
In case of independent observations yar #(f) can be presented in still another
form which in general is the most suitable for practical computations.
- Consider the matrix

I'=®,S®T

det I' is a generalization of the well-known Gram determinant of a system
of vectors. If the matrix S happens to be the unit matrix apart from a common
factor, det I would be a pure Gram detérminant for the system of vectors &5
and in analytic geometry the determinant could be interpreted -as the square
of the volume of the M-dimensional parallelepiped with edges @y in n-di-
mensional Euclidean space E,. See Birkhoff, Mac Lane [1948]. With respect
to the generalized Gram determinant reference is made to a theorem which is
characteristic for this type of determinants cf. Linnik [1961].

det I'=Y06% 0%, ...0h € . iu (6.11)
where o7 are diagonal elements of the matrix S:
61 0 ...0

2
0 o3
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and ¢;,__;,, represents a minor of order M, obtained from M rows (and M
columns) each numbered j; j,, . . . jy, in the matrix @y. The summation is over
all possible minors of order M, so that the total number of minors amounts to
the binomial coefficient

=

Now, if one examines (6.10), the bordered matrix I'y can be written as a
product of partitioned matrices:

fxSfE | fxSP%

fx

= s,

S|fE1o%| = PSPT

p— p =|/x (6.12)
M+1n QX
Obviously det I'y is also a generalized Gram determinant for which:
detrﬂ:zajgl 012'2 "'O-J;M+1 8;12,~--}'M+1‘ (613)

Here ¢}, . ., denotes a minor of order (M + 1) consisting of (M +1) rows
(and M +1) columns in the matrix P. The total number of minors equals the

binomial coefficient

<M,‘IH> N (M+1)!(Z!_M_'1)!-

If S is-proportional to the unit matrix the Gram determinant can be inter-
preted as the square of the (M +1) dimensional volume of the parallelepiped
with vertices fy and @y in n-dimensional Fuclidean space E,. '
After these preliminary remarks it is obvious that one may state the following
theorem:

’ 2 2 2 *
6% 65 ...0; g ;
var #(f) = ZZ{:’; ’;z_ Jl:; SJZJMI (6.14)
J1 Jz " YUM YJ1, - JM
In the numerator the sum is taken over Mz-l minors ¢ of order (M +1)
in the partitioned matrix P, in the denumerator over the minors ¢ of or-

der M in the Jacobian @,. M

In case that S=02E, var #(f) equals the altitude of the (M + 1) dimensional
parallelepiped, which has the M dimensional parallelepiped with vertices @y
as base and the component of fy orthogonal to the base as altitude.
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In the estimator &(f) itself, ¢f. (6.7) only the denumerator is a generalized
Gram determinant, the numerator det I'y, however is not.

For the sake of completeness it is noted that by applying a suitable transfor-
mation a system of stochastically dependent observations may be converted
into another system with stochastically independent variables. Then the co-
variance matrix § is transformed into a diagonal matrix and all formulae and
conclusions previously written for the independent observations remain valid.
But it may occur that the reduction of work achieved by using the formula
(6.14) is not compensated by the extra work to perform the appropriate
transformation.

7. Alternative forms for the estimator and its variance in the case of no explicit
use of the conditional equations

When adjusting conditional observations the f~approach leads to the same
estimation and the same over all reduction in variance as in the #-approach,
provided that the number of equivalent functions is one more than the number
of independent conditions. Let a critical set of functions be:

f1
Fe:
fM+1
and
fi
F=\: (7.1)
Sy

According to the third invariance theorem the estimator #(f) and its mini-
mum variance remain unaltered when another set of equivalent functions has
been chosen as starting point.

It is to be expected that in the f-approach alternative forms for &(f) and
var #(f) exist which are analogous to those in the ®-approach. Before a
theorem is presented which corresponds to that in section 6 some new nota-
tions must be introduced.

Let Q be the matrix

100... 0 —1
010 0—1
Q=|Ej—e|=1001 0 —1

(7.2)




Then
fl _fM+ 1
QF =| :
fu—fu+1
Put '
CQF=QCQT=QFXSF,T(QT (7.3)
and
FT

The matrix Cyp is the covariance matrix of the set of functions QF, i.e. the
setf,—fu+1, P= 1 .M.

Theorem:
det C ;
— (1M F
AN = (P g (75)
det C

A proof of this theorem could be given within the scheme of the f-approach,
but an attempt to arrive at a result appears to be laborious. It would be an
advantage that such a proof would be independent from the number of func-
‘tions. Here a proof is given that starts from the formulae (6.7) and (6.8) while
two of the invariance theorems are consulted.
According to the first theorem invariance exists with respect to a change of
base. As suitable base take

¢=QF .
. This is the matrix notation for the set of functions

¢p=fp_fM+1, p=1, : .M.
Then in formula (6.5) one has

=&, S®T=QFSFLQT=0CQT=Cyy

respectively
B=0ySfy =QFxSfy
so that .
roffEEeNX) | | _f(X) | FX)TOT
? | T OFySf{ | QFxSF3Q"



43

The second invariance theorem states that the choice of f is immaterial for
the problem of adjustment. It may thus be assumed that f'is the representative
of say fir+ . For the calculation of det I’y an elementary column operation is
performed consisting of the addition of the first column to each of the next
columns. Then with the definition of F (7.1) in mind:

' -~

Su+ X)) F(X)T

Next the first column is permuted with the second, the third, etc. until it has
become the last column:

det I'g =(—1)™ det

Referring to (6.7) one finally observes that

o det Cp
det Cyr

2N=(=1)

completing the proof for the first part of the theorem.
For the second part examine (6.6):

S| SFRQT

OF ¢ Sfy | QFxSF3Q"
The choice of fis again arbitrary within the class of equivalent functions, so
let f represent the function f,,;,. When calculating det I'y add the first row
to each of the next rows:

fxSfA | fxSFxQ"

FxSfY | FxSF3Q"

¢ BT
B I

FB=

det I'y = det

where F is the Jacobian of F.
Next add the first column to each of the next columns to obtain

fM+1,XSfL1;+1,X E fM+1,XSF§

det 'p=det | ZA 1A MA LA ML X 7.7
B FxSfu+1x | FxSF% (7.7

When permuting the first column with the second, the third, etc. until the
first column appears as the last column and repeating this for the rows, then
we observe that on the right hand side of (7.7) the matrix is nothing else than
the covariance matrix C for the set of functions F.

Hence

det I'g=(—1)*" det C=det C .
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‘So that, referring to (6.8)

det C
det Cop

var S(f) =

proving the second part of the theorem.
When comparing the results (7.5) and (7.6) with the original expressions (5.4)
and (5.5) it is seen, that although the last expressions are very simple, the
alternative forms for #(f) and var #(f) involve no .matrix inversion and
addition of matrix elements. However, for the numerical computation of ()
with the aid of the alternative formula two determinants must be evaluated
whereas in the original formula only one matrix inversion is necessary.
_Again the case of independent observations comes to the fore. Then one has
to consider a matrix S with only diagonal entries. The numerator and de-
numerator in formula (7.6) are both generalized Gram determinants. In par-
ticular det C = det Fx SFY is the generalized Gram determinant of the system
of “vectors” Fy defined by the rows of the Jacobian Fy. Its value equals:

det C=Y 0} o, .. 62,

JM+1

(7.8)

The summation must be taken over all minors & of order (M +1) which are
found in the matrix Fy, so that the total number of minors amounts to the

R Y S I

M+ 1) In case that S=¢2E, det C equals the square of

the volume .of the (M -+ 1) dimensional parallelepiped with vertices f, y (o=
1,...M+1). Further the denumerator det Cyy is the generalized Gram de-
terminant of the system of difference vectors QFy e.g. the system f, y—fyr+ 1 x,
p=1,... M. Its value equals:

det CQF—ZU O' . .O-? 5*2

' Y S TP J Y

binomial coefficient (

(7.9)

where the summation extends ovet all minors &" of order M which can be
found in the matrix QFy. The total number of minors in the denumerator
amounts to the binomial coefficient ( ]CI) Whenever § =02 E the value of det
Cor becomes the square of the volume of the M-dimensional parallelepiped
spanned by the difference vectors QFy.

The above formulae (7.8) and (7.9) suggest another form for var .V( f):

2
var Sp(f) — Zah O-Jz o JM+15]1 .].M+‘1 (710)

*2
2611 Ojy « - O-JM(Sh <M

var &(f) being the quotient of two determinants specified above. It may be
noted that when the matrix $=o¢2E, then the minimum variance var #(f) is
equal to the square of the component of each of the vectors f,, y orthogonal to
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the diagonal parallelepiped spanned by the difference vectors QF 5. The second
invariance theorem is then geometrically described by the property that all
components of the vectors f, x which represent the ascendants of functions
pertaining to the class of equivalent functions, orthogonal to the diagonal
parallelepiped are equal in length.

The geometrical description for the case that the matrix S is, apart from a multiplicative factor
equal to the unit matrix can be expanded somewhat further in order to gain a better understanding
of the relationship between the @-approach and the f-approdch. Whereas in the previous sections
attention was paid to the geometrical meaning of var &(f), the check-formulae (5.3) and (5.6) give
some indications of how to fit in the estimator &(f) itself in the geometrical picture.

The conditional equations #=0 determine an (n— M)-dimensional variety v in n-dimensional
Euclidean space E, of the independent variables x,, x,, . . . x,. The vectors @ are normal to the
variety. Let the function f(x) be represented by a set of scalar surfaces f| (x) = constant. The true
value of f must be found at the (n— M — 1) dimensional cross section of an equiscalar surface with
the variety v. The ascendant fy in the point P representing the true value of f is pointed into a
direction normal to the equiscalar surface. In the class of equivalent functions each function is
represented by a set of equiscalar surfaces, but these are mutually connected by the property,
that they all have the intersection with the variety v in common, for all.f(x) have identical values
when true values for the independent variables are substituted. In addition the ascendants f, »
are associated to each other by the fact that & =(QF is a possible base for the variety v. Further-
more Px=0QF;.

The last relationship means geometrically that the linear space spanned by the system of difference
vectors QFy is the same as that spanned by the vectors @y. In fig. 1 the situation is shown for M =1;
n=3. '

X2

Fig. 1. Geometrical configuration for M=1; n=3.
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Now, according to the checking of formula (5.3) the estimator (f) is' characterized by the
réquirement, that its ascendant. #,(f) is normal to the space spanned by &y, in other words
Sx(f) is incident with the tangential linear space associated with the point P representing the
true value on the variety v. &(f) being an element of the class of equivalent functions, the ascend-
ant #x(f) ends in the same linear space as determined by the vectors QFy. In reference to the
above described geometrical interpretation of the Gram determinant the minimum variance is
nothing else than the square of the length of the vector Yx( f). The geometrical interpretation in
the @-approach and f-approach given for var & (f) separately, is quite simple, when it is remarked
that the altitude of the parallelepiped with vertices fy and @y, respectively the components of
f,.x orthogonal to the diagonal parallelepiped with vertices QFy are equal to the length of ().
The characterization of the procedure of adjustment itself is to be found in the way of how the
point representing the observed values xj, x,, . .. %, is displaced with respect to the v-variety.
Due to effects of linearization several difficulties arise, especially if the point is not located in the
space normal to the @-variety. ’

Probably the best thing to say is that the point is projected onto the tangential linear space
associated with the point P representing the true values of (xl, X3, ... X,) in the P-variety.

In fig. 1, where the @-variety is a 2-dimensional surface in E;, one has to take two functions out
of the class of equivalent functions: :

fi
F = F=|fi—f2|.
| er=Ii-Ahl
Further
o=l
and
QFX = 'f1,x_fz,x|-

The diagonal parallelogram is here the segment [fix— fz,x|. This segment is parallel with the
ascendant @. The paralielogram with vertices @ and f; x has been hatched. The parallelogram
(half of it) spanned by the vectors f; x and f, x is doubly hatched. The configuration of this
figure enables one to identify all formulae in the @-approach resp. the fapproach and to study
their coherence. For instance formula (5.2), if S=0?E, is an immediate consequence of the
scalar product of two vectors.

8. Unconditional observations

Up to the present the theory of adjustment has been attributed to the category
of conditional observations. The adjustment was then partly characterized by
the requirement that the corrected values of the variables to be measured or
functions of these satisfy the conditions implied by the true values of the
variables or at least the linearized forms of these conditional equations.

On the other hand the category of unconditional observations, both direct
and indirect exist, which are corrected according to the conventional method
of least squares, the theory of which can be found in any textbook on this
subject. It may seem at first sight that adjustment for this type of measurements
is out of the question but entering into some detail it is observed that these
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measurements may also be interpreted as being conditional observations. To
this aim the appropriate set of conditions should be detected. It appears that
‘these are of a simple form. .

Most generally assume that one wants to obtain the value of a quantlty which
depends on n variables x;, X,, ... X, When the set of variables is measured
once, there is no problem to ask for the “best” value of f Only after the vari-
ables have been measured repeatedly the statement of the problem to find
the best value, of f has any sense. This feature is in contrast with conditional
observations where the problem already arises when the variables are meas-
ured one time.

In' trying to. find a solution for the problem of adjustment in this special case
both the @-approach and f-approach are studied. In view of the rather complex
computations the case of a quantity which is a function of one variable is
examined first.

One has

f=fx).
Let the variable x be measured N times and let N realizations be x,, x,, . . . Xy
The measured values are considered to be stochastic and from now on each
x; is interpreted as a realization of a separate variable x; with well-defined
stochastic properties. Furthermore it is supposed that the measurements are
(stochastically) independent and of unequal accuracy, so that the covariance
matrix S is a diagonal matrix.

62 0...0

0 o2
S=|": _

0 0%

In order to arrive at the set of conditional ¢quations it is observed that an
‘identity must exist between the true values x;, X, . . . Xy.

So one has:
@1 =x;—xy=0

Q2 =X—xy=0
: : (8.1)
On-1=Xy_1—Xy=0.

The set of conditions #=0 consists therefore of M=N—1 equations of the
form x;—x;=0. An equivalent set would be:
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¢y =x;—x;=0

!
¢y =x3—x;=0

/ —_— - u—
Py-1=Xy—x1=0.

This set is another base of the ideal @ =0 but according to the first invariance

theorem this new set will give rise to the same estimator #(f).

Although a decision respecting the application of either the ®-approach or
the f-approach appears to be in favour of the f-approach both procedures are

followed here.

As there are (N — 1) conditions the number of equivalent functions to be taken

for an optimal adjustment in the f~approach is N. It is relevant to take:

f(x1) |
F= f(x2)

/1 (xN)
with
f(xs)
F(x) =| f(x2)

flxx)
and

a
S 0.0

oy ]
Fx=10 % | Tax

L
dx

Then

dx dx dx

2
C=F4SF} = gESEg = (d—f> S
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and
, . ,
2 0...0

ar\~2 1

_1= A _

¢ (dx) 0 =
1
0 P

and
_ ANEECAN |
e'Cle= <—> ‘Z g

dx i=10;
Hence
h N 1 .
R
) = —re=rg Flx) = g (83)
27
| e 1

Introducing weight factors:
2
o
. = '5
6= o2 (85)
o? being the variance for unit weight, the results (8.3) and (8.4) may be

written :
(8.6)

< -

i if(xi) »
L(f) = 5 =fx)

N
Zgi
1
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var #(f) = —g; (%)2 - (87)

Here f(x,) denotes the weighted mean value of f(x;). -

These are well-known formulae for estimating according to the method of
least squares due to Lagrange-Gauss within the class of indirect observations
of one variable of unequal accuracy.-

$-approach

In the $-approach the alternative forms (6.7) and (6.14) are used. As element
of the class of equivalent functions f=f{(x,) is taken. The set of conditions is:

X1 — XN

ds= xz—xN
XN-1— XN

énd

1 0 0 -1
01 :

Ox =\ - |=El=el=0

_ 0o -1

0 01 -1

‘The matrix Q was already encountered, see (7.2).
The covariance matrix I becomes :

6?+0% o} ... o}
F=0,80T=080T =| o2 o2+0} o3 (8.8)
o3 6%  oi_,+0}

Further one obtains:
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df
1= 0... 0 0
dx
P=P = _f_x_ =1 0... 0 -1 (8.9)
NN (DX 0 1 . .
0 -1
0 01 -1
and
B=¢XSfXT =
‘ df , df
1 0 0 —1|{e? 0 . 0 dx ot i
0 1 0 —1|]|0 &3 0 |0
0 —1 0
0 0 1 —1]]o0 ooxl||0 0
In regard of (6.9)
oo | S 9T |
[ B i F
f(xl) X1— Xy X;— Xy Xy_1— Xy
q )
O’%d_{c 0'%+O’§, 0'12\7 012\7
= 0 on  o3+on : (8.10)
ox
0 O-IZV O-I%I 61%1—1""0‘%,

Next one has to calculate det I'y, and det I'.
I' is a generalized Gram determinant. It is easily computed by application
of theorem (6.11) .

_ 2 2 2 2
det I'=Y 062 o} ...0% _, &

J LS U FPRRR /S

where & denotes a minor of order (N —1) in the matrix ¢y =Q = |E| —e|.
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In view of the simple form of Q:

2 —
8j1;-~-jN—1_1 ’

for all j,

so that
N
detI'=Yo%,0%,...00, =Y =« (8.11)
v =1\
where 7 is the symbol for the product
=03 6% ...0%

and (j) denotes cancellation in this product of the factor with index j.
To determine det I'y develop determinant (8.10) by the elements of the first
column '

g (x .
detl“q,:f(xl)detl“—a%d—f_{z o (xi—xy)— o (X—xy)— ..
X (= (o) (12)

- (gN_l_xN)} .

(1N

The coefficients of x;—xy are the cofactors of elements in the matrix I". For
instance referring to (8.8) the coefficient of x, —xy becomes

N

o3 o} ox .. ox 0% 6% 6% ... 0%
6% oi+o} o3 : 0620 0
6% on oitol = — |0 0 % - =
2+1 . . . :
(=1)
a3 0
ox ... oy 0% +0o} 0... 0 o3|
=—o6%0}...08_0%=— =
(1)(2)

where 7 denotes again the product 2 g3 ... o¥ but now with cancellation
X2

of the factors ¢% and o3.

Proceeding with the calculation of det I'g one finds

df N N :
det Fp=f(x,) det I' — —{<2n> X, — ani](
dx |\ Z @ 2 (i)
and applying (6.7) after substituting for (8.11):
a
F(f) = flx1) + a(x_xl)- (8.12)
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Hefevf 18 the weighted mean value of x;:

N N
Z nXx; Zgixi

Foitto (8.13)

Z T ;gi

i=1 (i)

In addition to achieve the minimum variance consider formula (6.14):

2 *2
2611 e Ohn &l in

2 2
Zajl e Ogn oy €y, oo ind

Now for ¢" matrix P (8.9) should be examined and for & the matrix @,=0Q.
It is easily derived that

wr 710 = () & Tr

(i)

) o2 <df>2 '
Lf) = = 8.14
ar 2(f) = 5o (& (8.14)
in agreement with (8.7).
When another element out of the class of equlvalent -functions would have
been chosen, e.g. f(x,), then the estimator would have become:

df

)= flsa) + G (5x).

or

Similar results are obtained when taking the other function elements. As a
special case the function of the weighted mean of x; can be taken, for f(¥) is
also an element of the class of equivalent functions. Substituting for f(%) gives

S =1 + L (v5).

'As the second term on the right hand vanishes, one obtains:

SL(f)=f(x). , (8.15)

Comparing all the formulae for the estimator it may seem that paradoxically
-they are not of the same form. In the generalized theory there was an assertion
of equality of the estimator &(f) in the ®-approach and f~approach. However,
it should be borne in mind that the theory guarantees the same estimator so
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far linearization is allowed for. As a consequence the estimators give similar
results up to higher order terms. When examining formula (8.12) this may be

investigated by noting that in practice the numerical value of 53{ is unknown.

If then instead of substituting for the true value of the independent variable x

df

in i the measured value x, is substituted one obtains the approximation
x E

Ff)=1x1) + (j—f) (5—x).

Then the right hand side is nothing else than an expansion of f(») into a
Taylor series up to the second order term with respect to the realization x;.
The same applies when the adjustment is based on x,, x; etc.

Writing successively :

A=) + I (2-x)

F)=Ales) + 4 (=) (8.6

A=t + L (-2,

Multiplying the first equation with g,, the second with g,, . . . the last with gy
and adding, one finds:

SNSa=Tost) + & (Saw - Tox)
or, dividing by Zgi:

zi:gif(xi)

g)(f) - Zgi - m

i

This results in the estimator (8.6) of the f~approach. It must be stressed how-
ever that in (8.16) second order terms are neglected, so. that f(X) and, f(x)
are estimators of the problem in so far as deletion of terms of the second
order and higher is allowed for.

The category of “unconditional” observations involves amongst others the
direct observations, whether with equal accuracy or not. It turns out that then
both the $-approach and f-approach give exactly the same outcome.
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Indeed,
fx)=x
Hence '
, Zgixi
7)== . 9;
or ’
S(f)=% (8.17)

X is again the weighted mean of x,.
The minimum variance is according to (8.14):

var #(f) = T (8.18)

so that the estimator & (f) is the weighted mean of x; and the “weight” of the
weighted mean is equal to the sum of the weights of observation.
In case of equal accuracy the well-known results are obtained:

L(f) =x (8.19)
var #(f) = %2 (8.20)
with
- zx;
X —W‘

It has been assumed throughout this investigation that the observations were
stochastically independent, respectively that an appropriate transformation
had been applied which changed the covariance matrix S into a diagonal
matrix. Such a transformation may be avoided in advance and a more direct
solution of the problem pursued. It is not to be expected that the formulae
for #(f) and var #(f) may then be presented in such simple forms as (8.6)
and (8.7). Indeed, when the @-approach is considered it is difficult to find
formulae like (8. 12) and (8.15). When however use is made of the f- approach
the result still becomes intelligible.

Indeed, referring to (8.2) one has

daf df  (df
¢= dx ESE dx <a>

Hence
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1 df\ 2
€= (a;) s

e’ ST F(x) .
I(f) = e : (8.21)
1 dr\?
For direct measurements, where
Xy |
X,
X =
Xy
and
L
dx ’
el'S 1x
A 2
S = e, (8.23)
var #(x) = e ' (8:24)
T TSl :

In words: in direct, stochastically dependent observations a linear combina-
tion of observed values gives rise to a minimum variance, if the coefficients
in the linear form are partial sums of column elements with respect to the
sum of all elements of the inverse of the covariance matrix S. The reciprocal
value of the sum of all elements of the inverse covariance matrix S represents
the minimum variance itself.

When proceeding with the more general case of “unconditional” observations,
in particular the direct observations of more than one variable of unequal
accuracy, then the theory of adjustment becomes rather complicated. Most
remarkable the f~approach then seems to be shunted by the ®-approach.
Let a quantity f be given which depends on n variables x;, x,, ... x,:

f=f(x1, %2, ... %)

Further assume that the variables x,, ... x, are measured N times. Conse-
quently one has at one’s disposal the group of observations '
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Xi1.--X1p
le DT x2n
le .. an
In the @-approach each x;; is considered a realization of a separate (stochastic)
variable x;; i=1,... N, j=1,...n Moreover the covariance matrix S is

supposed to be a diagonal matrix, the measurement of some x;; is therefore
not influenced by another variable. When not dealing with stochastically
independent observations  a suitable transformation can be found which
changes the matrix S into.a diagonal matrix. Then the adjustment is performed
for the new set of variables which are introduced by the-transformation.
Between the variables x;; conditions exist expressing the fact that the true
values x;; for fixed j are equal: '

§911 =xy1— Xy =0 cer @rp =X~ Xy, =0
P21 =Xz1—Xy1=0 Van =Xzp—XNp=0
On-1,1=Xy-1,1—XN1 =0 @N—1,n?xN—1,n—an=0~
The total number of these conditional equations amounts to
M=n(N-1).

Should one proceed in the f-approach then the number of equivalent func-
tions is:

M+1=nN—-n+1 _ (8.25)

A collection of N functions e.g. the collection f{x;y, ... xy,), f(X21, - - - X2,) - - -
flxy1s - .- Xyy) is therefore insufficient, it should be enlarged with functions
like f(x31, X120, X0) f(%315 X142, ..« X1) .. - f{xn1, X125 .. X1,) and so on,
until the total number has increased to nN —n+ 1. ‘

For example, consider the measurement of the area of a rectangle ABCD 4,
described in the introduction. Let AB=x and BC=y be measured twice with
unequal accuracy and let the realizations be x;, y1 resp. x,,y,. Then the value
of the area A4 of the rectangle is

A1=x1y,
Ay=x3y,
A3=x1y2‘
Ay=x3y,

As =%(x1 +x2)Y1
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The conditional equations are:

P1=%;—%1=0 @,=y,—y;=0
So that nN—n+1=2x2-2+1=3. ‘
Consequently the “best” linear combination of A; in the f-approach must be
calculated for three representants, say A,, A, and A,. If one should have taken
. two values, e.g. A4, and A4,, then the reduction of the variance had not been
optimal. More than three values leads to a singular covariance matrix C.-
Due to the rather queer number of equivalent functions the simplicity -of the
f-approach is disturbed. The Jacobian Fy involves non-diagonal entries and
the calculation of the inverse matrix of C appears to be a difficult task. On
the other hand the @-approach still leads to an intelligible result.
Let the nN variables be arranged in the series

X11s « « + XN1» xlz,...xNz,...xlm...an

‘and let f(x14,...%y,) be an element of the class of equivalent functions.
Then one has

X11—XN1
Xn—1,1— XM
X12—XN2
n(N=1),1
Xy—1,2"%nN2
xln an
xN—l,n_an
0 0... 0
O 1o
¢X:
0
0 Q
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where Q denotes as usual the matrix | E{ —e| defined in (7.2).
The error matrix is

S0 ...0
§= 8§ = (0 S,
nN,nN . .
0 ... S,
in which fork=1,2...n
63, 0 ... 0
S,= |0 o2 :
0... o3

To determine #(f) one should have at one’s disposal the covariance matrix
I' and matrix I,

—0 ... 0
08,07
I'=®,50% = 0 05,0
0
108,07
0... 0

To obtain Iy, first consider the “mixed” covariance matrix:
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AR}
0x, ox,
0 0
’ 0 0
0 0 o... 0
. Sy of , Of
0 : 0 . 0x, 712 5%,
Q Sz 1 0.|= 0
’ ' 0 ol | a o
- . f N
0 ol 21| o 0 ox, n B
0 0
0 0
Then referring to (6.8) matrix I'q becomes:
f(xlls"'xln) x11fo1-~~ XN—1,n"" ¥Nn
s
Lo %, ~10... 0
0 08,07
0
o 80
o= - I = ' ox, o
¢ n(N—1)+1,°;(N—1)+1 ‘ Oxz"_ QSZQT
0
0 0
o o
0
. 08,07
0 0. 0
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det I'y,

Finally, using &(f) = et °ne should calculate both det I', and det I'.

Developing I'g by the elements of the first column leads to an expression
similar to (8.12) but expanded for n variables. The result is

S o,
‘?p(f):f(xlp e xln)"’ Z % (xi_xli) (8.26)
i=1 i
where X; is the weighted mean value of the group of realizations for x;:
N
Z Gri Xri
- k=1
X, =—x—, i=1...n
Z Gri
k=1
. o2
Iri = UE

The partial derivatives for true values being unknown, one puts for x; the
measured value x,; to obtain the approximation :

SN 1)+ 3 <§f>x“(zi_x”) .

Xi

On the right hand side one discerns the development of f(%;, %5, . . . X,) into
a Taylor series up to the second order term.

However, since f(%,, X,, ... X,) is also an equivalent function the estimator
for f(%,, X,, .. . X,) becomes:

P =1Fn. . 5)+ Y L (xx).

i=1 0x;

The second part on the right vanishes, proving that f(%;, X,, ... X,) itself is
an estimator for indirect observations of unequal accuracy.

Again it is found that although theoretically the estimator should be inde-
pendent of the elements of the class of equivalent functions, the expressions
for #(f) are only comparable inasmuch an expansion into a Taylor series is
allowed for and terms of order two and higher may be neglected. Whereas in
practice in the expressions for #(f) the true values should be replaced by
measured values, this is superfluous for & (f) = (%, X,, . . . &,).

The minimum variance var &(f) will this time be calculated by application
of formula (5.2). : ‘
One has (cf. 8.26):
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& (f) 911 5f gn1 3f 912 6f gn2 i .
2911 6x1 2911 0)»1 2912 6*2 Zgjz 0%,
J
din af Inn 6f
Zgjn axn Zgjn 8xn
J ]
of a of '
,fx—‘a1 .0 6xzo..io...a)c"o....o
i 0 0 0
G11
o
S=|L__ 9v] 0
[
0 o2 0
J1in
0 0 o2
gNn

So that from
var S(f)= Fx(f)Sf¥ ,

one obtains
a2 of o2 of a2 of
var Z(f) = Zgn <3>~1> TS 2912 <6x2> * Zg’" <5)» )

var (1) = 022 g <@> | | | (s.z%)

or

showing that var &(f) is to be considered here a generalizaﬁon of the well-
known law of propagation of errors. Indeed, when one has to deal with
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indirect observations of equal accuracy for the variables separately :

94i=9i> all‘j
the variance becomes:
O.2 n 1 6f 2

In this section it has been demonstrated that after admitting conditional
equations of the form ¢ =x;—x;=0 the category of direct and indirect “un-
conditional” observations is to be interpreted as merely a special case of the
wide class of conditional observations. Knowing this, a new aspect of the
problem of adjustment presents itself, when the class of conditional observa-
tions is enlarged with repeated measurements. Then the set =0 associated
with the conditional observations is extended with equations of the above-
.mentioned type x;—x;=0 and the Jacobian @y involves amongst others. the
sub-matrices Q = | E| —e|. At the same time the number of equivalent functions
~ in the fapproach is enlarged. This feature suggests a uniform solution of all
types of measurements occurring in practice by the method of adjustment and
it will be possible to make'a working scheme of a uniform method of adjust-
ment for computation by means of high speed electronic computers.




PART III

APPLICATIONS TO SOME METEOROLOGICAL
OBSERVATIONS

9. General

The method of adjustment of observations has found wide application in the
analyses and planning of experiments. With the appearance of high speed
electronic computers the evaluation of quantitative data has got a strong
impetus and at present procedures of adjustment are routine :pursuits for
astronomers, surveyors and all investigators in natural and technical science.
The methods of adjustment have not penetrated far into the field of meteoro-
logical observations, at least when the measurements are of a complex nature.
It is superfluous to say that it is not our aim to review here all types of meas-
urement in the light of the theories developed in the previous sections but by
way of demonstration a few of these are investigated in more detail.

Pure conditional observations with non-trivial conditional equations are more
exception than the rule. The relationships existing between the base variables
can sometimes be rather camouflaged and have to be digged up by a thorough .
analysis of the problem. It may occur that.the number of conditions is large
and their precise form unknown. On the other hand a quantity to be deter-
mined, which is a function of the base variables, may show alternatives which
give rise to the same final result. A nice example is found in modern radar
radiosonde observations where the height of the balloon target may be derived
from the radar data c.g. the temperature, pressure, humidity recordings. When
such alternative forms for a quantity are discovered one immediately knows
. that one deals with the case of conditional observations. The conditions may
have their origin from different sources, for instance from a coordinate trans-
formation, a geometrical structure, a physical law, a statistical requirement.
When abstaining from a set of conditions the procedure of adjustment can
be handled deliberately by using a collection of equivalent functions. This is
connected with the choice between the ®-approach and f-approach.

When for a particular problem both the @-approach and f-approach are
applied it is not to be expected that the final results, qua form, will be identical.
This statement seems at first sight to be somewhat paradoxical in view of the
theoretical equivalence of both methods. But it should be kept in mind that'
all estimations underlying the equivalent methods of adjustment are equal.so
far as their expansions into Taylor series correspond to each other up to the
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the second order term. This is the reason why an estimator in the ffapproach
may be of a simpler form than an estimator in the ®-approach and vice versa.
It is even possible that estimators in the fapproach differ from each other as
well as estimators in the @-approach due to the fact that the final result de-
pends on the element of the class of functions on which the calculations are
based resp. on the equivalent set of conditional equations. Moreover, since
the estimator involves terms which are functions of the true values of the
variables, one can alter these—and by consequence the estimator itself — by
substituting for a conditional relation between the variables. Then the trans-
formed estimator is equal to the original one modulo @.

Further the final expressions for S(f) involving terms with true values, in
practice have to be approximated by some subst1tut1on of measured data.
This substitution is not uniquely defined.

Owing to these shortcomings, which are caused by linearization processes,
it is necessary to know in advance whether the precision of the observation
of the base variables is not too low. Otherwise it is recommended to- 1mpr0ve
the characteristics of the measurmg devices considerably. _
Referring to the “residual error” var #(f) it should be pointed out that the
interpretation of any quantitative result depends on the modern methods of
probability theory and mathematical statistics. The authors have consciously
abstained from a description of these aspects.

The decision as to whether the @- -approach or the f~approach is to be preferred
depends particularly on the overall scheme and rules of the adjustment pro-
cedure. Whereas in general the conditional equations are of a simpler structure
than the elements of the class of equivalent functions, the matrix calculus in
the fapproach may win in simplicity from the corresponding computatlon
scheme in the @-approach. In the f-approach the order of the covariance
matrix I is one unit higher than the order of the covariance matrix C. On the
other hand the Jacobian Fy may contain several zero entries, for one may find
elements in the class of functions which depend on a reduced number of base
variables, which is not always the case with the conditions ®=0. Another
important argument for one method in favour of the other is the final form
of the estimator. In the f-approach this form shows much symmetry. In other
cases, when several quantities being each functions of the same base vari-
ables are to be adjusted simultaneously, one may prefer to adjust the base
‘variables proper, after which the estimated values of the quantities are obtained
by merely substituting for the corrected values of the variables in the functional
relations, which determine the appropriate quantities (method ,). When
the conditional equations are unknown, then, of course, the only possibility
s to use the fapproach, with the risk however that the number of equivalent
functions is not optimal. A method to determine the optimal number of
functions with some certainty is to investigate the rank of matrix I" with
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increasing number of equivalent functions, for this rank is maximally equal
to the total number of conditions plus one.

Before proceedlng with some applications in the field of meteorological meas-
urements the scheme and rules of both the equivalent adjustment procedures
are presented in matrix terminology.

Summary of Formulae and Rules of Adjustment in Matrix Terminology

@-approach '

Variables: x4, ... X,
Covariance matrix: S
Quantity to be determined: f(x,, . . . %)

Find conditional equations: & =| - =0

Pum
" Determine Jacobian: @

Calculate covariance matrix: I'= &5 SPF

Two alternatives
a

Calculate: fx

Determine mixed covariance matrix : fy SO
Find: I'~! ’
Calculate: fy SP,I'~*

Next: fySOxI' ™! ®(x)

To obtain: F(f)=f(x)—fxSOx ' D(x)
and var &(f)= %S4

Check: ¥y SPT=0

b

Calculate: B=®, Sf¥
and c=fxSf7

x) o7(x
Put: Iy = flx) 27(x)

B r

¢ BT
and: I'y = ;

B r
‘ - _ detly
to obtain: F{f) = i T

det I'y

and var &(f) = ot T

f-approach

Variables: x4, .. . X,

Covariance matrix: S

Quantity to be determined: f (%4, - - - Xn)
: f

Determine equivalent functions: F = :

fM +1

Determine Jacobian: Fy
Calculate covariance matrix: C=FySF}

Two alternatives
a
Calculate: C~1

Determine: e C™1
and eTC le

: SCF

to obtain: F(f) = eeT?l(_x)
1

and var 5”(f)'= FoT,

. Check: e* C"'FyS®%=0
b

Find: QF
Calculate: QC=QFSF}
Put: Cpp=QF SFLQT

T
and Cp = |- -~
y lQC

det C
to obtain: F(f) =(—1)* r
o obtain (f)( )/d,etCQF

det C

and var #(f) = W C
QF
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Special case: S diagonal Special case: S diagonal

26121 U?M#—l 8;%,...]‘M+1 Zah s JM+1 a;fnuju;x
var #(f) = ‘ var #(f) =
Zah o JM 831 SMen qul b M 62’...jM
J

Jx

X

with &, (M+1, M+ 1) minor in P =

with &, (M +1, M +1) minor in Fy
and 6, (M, M) matrix in QFy

and ¢, (M, M) minor in @y

10. Examples of application in meteorological measurements

10.1. Upper wind measurement with Radar and Radiosonde ,

The conventional method of upper wind evaluation involves the determina-
tion of the projection of the sounding- or pilot balloon on a horizontal
surface Azimuth o, slant range r and elevation ¢ are measured by radar
detection and recorded at the end of each time interval (usually one minute).
These measured data suffice. to compute - the balloon’s trajectory, but when
in particular a sounding balloon is tracked one has an additional quantity
at one’s disposal, notably the balloon height. This height is obtained from the
pressure, temperature and humidity recordings using the well-known hydro-
static equation. The number of data needed for the evaluation of the upper
wind has become supernumerary and the system pertains to the class of con-’
ditional observations. A mere inspection of the problem of adjustment teaches
that the adjustment will be independent of the azimuth and that r, ¢ and h
constitute the set of base variables. Neglecting the earth’s curvature the posi-

~ - tion of the balloon is given by the (cylinder) coordinates («, d, k), where d

represents the horizontal distance of the balloon with respect to the radar site.
The horizontal projection of the trajectory is the curve (d, @) in polar coordi-
nates. After the horizontal projection of the trajectory has been determined,
the wind is derived from successive positions on this track. It is also necessary
"to indicate the height for which the wind applies so that the adjustment
procedure should be examined for both the distanced and height h.

The true values of r,& and h are mutually contiected by the conditional
equation:

e=h—rsine=0.

Further, considerihg the rectangle triangle OBB' in fig. 2, one obtains
di=rcose ‘
d,=hcot g
dy=(r2 =2

In the terminology used in the present study d; and d, réprésent equivalent
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functions in the fapproach. Both the @-approach and f-approach can be
" applied, the f~approach will be preferred as to obtain a result which shows a
linear combination of the measured distances. Accordmg ta theory the total
number of equivalent functions should be two, as there exists only one con-
dition (M =1). Here d, and d, are taken. It is assumed that the variables are

0 |
¥ p o

Fig. 2. Balloon’s position with respect to the radar site.

not (stochastically) dependent, that the measurement of e.g. the azimuth is
not dependent on the measurement of the elevation. The covariance matrix S
is therefore a diagonal matrix.
Referring to the scheme at the end of section 9 one has
Variables:

X =F X,=¢&¢ X3=h.

Covariance matrix :

g2 0. 0
§=[0 ¢ O
0 0 of

Set of equivalent functions:

F COS &
| hcote
Jacobian:
cose —rsing 0
* o —rcosece cote
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Covariance matrix :
p | cos?es?+ r?sin’eq? rto?
C=FxSFx = 2 2 2 2,2 2.2 -
r‘e; = r-cosec”eo; +coteay | .
Further, with
0=|E{~¢|=|1, 1]

QC = |cos?g(a? —r*a2), —cot?¢(ar +r?a?)|

and
Cor=0CQT =cot?&(sin®e6? + 12 cos? e62 +02)
Further
c, - 4, A
cos’¢o; —r?cl) —cot?’¢(o; +1al)

Cisa (géneralized) Gram determinant -
det C =) 6% 67,67
T

WY

where 6, ;, is a (2, 2) minor in Fy.

Hence one obtains:

det C=cot’&(r’ oo} +r’sin’eo’ o}, +cos’ e’ a3) .

And finally, since M =1,

@) = ~det Cp
"~ det Cyp
or: \
d) = rto2+ o} (62 —r*ol)sin’e
" sin®ec?+r2cos’eo’+o2 ¢ sin’ecl+ricos’esl ol o
.. . . 10.1
The minimum variance becomes: ( )
det C
var #(d) = ——
det Cyp
or: '
2.2 2 2 qir 2 2.2 2.2 2
r°o; 0, +ro°smmeo; oy +Ccos o, o
var y(d) — eYr Ad r‘ h ) (102)

sin®eo? +r’cos’eo} + 07
which completes the calculation of the adjustment of the horizontal distance d.

Check. With @=h—r sin¢=0 and & =|—sine, —rcose, 1| and

Fx(d)=|(r*c2+07) cos &, —r sin e(02+07?), (62 —r262) cos ¢ sin ¢
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the checking formula is
Fld)Sdt= — (rPa2 02 + oo ) sin e cos ¢ +

+ (07 062+0202)r? cos e sin & +

+ (0207 —r*c%az) cos ¢ sin =0 (1.

In fig. 3 part of the horizontal projectionv of the balloon’s trajectory is shown.

S(d) ]

s(d" \

Fig. 3. Horizontal projection of the balloon’s trajectory.

When in two successive positions (d, o;) and (d', o) the corrected distances are
taken, then the wind velocity and wind direction are derived from:

v = LA+ S2)-290) F(d) cos (o ~a)’ (103)
Y =arc sin {% sin (o —fx)} (10.4)
where 7 is the time interval.
A measure of precision for the wind is the standard vector error o:
¢ = % {var #(d)+ F*(d)c2}*. (10.5)

The wind being known, it is necessary to find the height for which the wind
applies. In the system of radar radiosonde observations the height is measured
twice, viz. by means of radar:

Ragar=F SIN €
" and independently by means of the radiosonde:
ok

sonde
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Therefore the measurement of the height pertains to the special class of direct
“unconditional” observations, so that the “best” value for h is the weighted

mean of both h,q,, and kg (cf. section 8).
One has

S =

2

o-hsonde 0

X 2.

0 Ohradar

but

2 =2
ohsonde - o-h

and according to (6.3)
O wane =8In 267 + 7% cos?eq?
The weighted mean value becomes

2 2

O hsonde Ohraa
y(h) = e 2 hradar + —3 = arz hsonde
o-hsond_e + ah rada;— o-hsonde + thadar
or: _
F(h) =
o? sin’ eo7 + r* cos? ea2

Ronac. (10.6)

hradar

sin®¢o? +r? cos? e02 + o7 sin®e6? +r?cos?ea? + o7

In addition the minimum variance is, see (8.18):

: 1
var y(h)= ﬁ
P e e
hsonde Bradar
or: ’ '
2
var V(h) . sin? eo? a,, +r*cos? sa,,a (10‘7)

sinea? +r2cos?s0? + 62

The problem has been solved and 1t can be supphed to an electronic computer.
The result will depend on the errors o2, 62 and 6?2 i.c. on the characteristics
of the radar equipment, resp. the type of radlosond_e used.

It should be remarked that the formulae involve a dosed mixture of true
values and measured data, so that in practice the values of r, ¢ and & should be
replaced by r, ¢ and h.

- 10:2. "Evaporation measurement

Evaporation from a land surface can be measured by application of both the
method of the energy balance and the aerodynamic method, cf. Priestley
[1959]

In the aerodynamic method an expression for the evaporatlon 1s found whlch
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reads

L di ) (de, dT, - dT

fl:cldmz{Qﬁ*f%>dmjf'ydmz}' (108)

According to the energy balance method f takes the form:
daT
dlnz
fo,=C,(H—- - .
fa 2( S) 1’ 9& dT, 7(109)
\dT dlnz

Here

T  denotes the dry bulb temperature,
T,  the wet bulb temperature,
Y the psychrometric constant

dar S . . .

d lu the logarithmic windskear of the time average of the (horlzontal) wind
N2 component,

de, .

a7 the slope of the saturation vapour pressure curve,

dT . a7, ., S . .

. respectively —— the logarithmic gradient of the time average of dry

dlnz dlnz

bulb, resp. wet bulb temperature,
H  the net radiation of the surface, and
S the heat flux in the soil.
Both expressions (10.8) and (10.9) are equivalent functions in the sense of the
present adJustment theory; they have some varlables in common.
For convenience put

dii
X =G dlnz
. dT
2= T dz
_(de,, ) 4L,
=\ T dmz
x4 = C,(H=5)
Then both equations (10.8) and (10.9) can be written: ,
fi = x1(x3—x,) | | ~ (10.10)

f= zf(xs—-xz)’ | ' (10.11)

3
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Here the solution of the problem of adjustment is restricted to the case that
the base variables x,, x,, . . . x, are again (stochastically) independent, so that
the covariance matrix S is a diagonal matrix : '

oy 0...0
0 o2

S = .
0 o

Obviously the conditional equation takes a sitple form. It éan_ be derived
from equating (10.10) and (10.11), which results into

D=x,—%1X3=0  (xy#x3), : : (10.12)

which after substituting for the original meaning of Xy, X3 and x, takes the -
form:

da [de, dT,

This formula is merely a statement of the law of conservation of energy for
this problem. So this is an example of a conditional equation originating from
a physical law. Due to the simple form of &, the ®-approach is chosen.
Referring to the scheme in section 9 one obtains

Variables:
_ Xiyen. Xy
Condition :
P=x,—x,x3=0
Function to be evaluéted :
f=x (xa - xz)
Jacobian:
Oy =|—x3,0, —x;, 1]
Cova;iance ‘matrix :
r=,50%=x30?+x}03+03
Gradient :

fx= lxs—xz, — X1, X1, 0'
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Mixed covariance matrix:
T_ . SN2 22
fxs¢x —_ —X3(X3_XZ)O-1—,')&10'3;
. " 2 .2 2
—x3(x3—x,)07 —x}03
x}o2+x30}+0%

fxs¢§r_ L =

_ x3(x3—x,)0% +x} 03

fXde;T(F_lé(X) x%a’%—‘-x%o‘%-}-_o’i (x1x3_X4)

The estimator &(f) then takes the form
x3(x3—x,)0} +x}03

x30}+x}cl+os (e s —%a) (10.14)

Ff) =% (%3 —%5) —

It is observed that in the final outcome for the estimation the variance o2,
ie. the error of the dry bulb temperature gradient plays no part. The true
values of x; being unknown, one can find an approximation for (f) when
substituting the measured data for x;. Then the expression can be rewtitten
in a more intelligible form: '

_ x3x4(x3—x2)a%+x%(x4—x1x?)o% + x4 (x5 —kz)ai

1) x262+x205+03 (1013)
To calculate var #(f ) write (10.14):
' xa(x3—x,)0% +x%03
) =2 (53— x)+ Ay~ ¥, %5), A= 3>£%3%+;)%;§+;i ;
Then ,
yx(f) = |x3—x2—'/1x3, —Xy, X —Ax7, Al
and consulting the scheme:
var A1) = S )SFE,
6% 0...0
0 . 'Xa—x2
. . — Xy
var () =|x3(1—A4)=x, —xp, x(1=4), A} | - - X4
. o 0
0 a5

which after some elementary computations reads:

var #(f) =

. 2 2.2 " 2 2 .4 2 2 2 .2
x2 6202+ x2x20% 03+ (x5 —x3)? 0203+ x{ 0} 03 +x} 03 o+ X130l

x362+x%03+ 0%

(10.16)
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Here the variance o3 is not lacking as occurred in #(f). After putting the
redl meaning of x; in &(f) and var (f) the problem of adjustment for
measurements, of evaporation is solved. :

10.3. Double theodolite observations

In upper air research measurements are ofted made by using two (or more)
theodolites, photo-theodolites or radiogoniometers that are tracking an ‘air-
borne target from different sites. By simultaneously taking readings of the azi-
-muthal angles and elevations the position of the target can be computed ena-
bling the evaluation of the structure of upper air currents with high accuracy.
Moreover, double theodolite observations are a tool for testing new radio-
sonde equipment, tracking constant level balloons and, in case of the use of
photo-theodolites, for making stereoscopic pictures of noctilucent clouds and
other cloud systems. Whereas the position of the target is deétermined by three
coordinates, the two theodolites give four. The system is therefore overdeter-
mined, double theodolite observations thus being an example' of conditional
observations. In fact, the four angles satisfy a certain relation.

Here special attention is paid to the adjustment of the height of the target.
Making an analysis of the system, fig. 4 shows the details for determination

Fig. 4. Scheme for double theodolite observation.

of the height-formulae. The theodolites_aré situated in the points P; and P,.
The ground elevations of both points are assumed to be equal. Let b be the
basis length P, P,. Some simple goniometric relations then give for the height :

_ sino; .
hy=b Sin(oy + ) tane, . » (10.17)
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Another height formula is obviously
sina,

2 . 10.1
sin oy +ot5) tan & (10.18)

hy,=
Both h, and h, involve three of the four coordinates a,, &;, &, and &,. It'is
evident that two other height formulae must exist which contain the set of
coordinates o, ¢; and &,, resp. oy, & and &,. It is easily to be derived that
these take the form:

cosa, tang, + (tan%g, —tan?e, +tan?e, cos®a,)?
2 1 2 1 1 2

hy=b tane, tane
3 ot z tan’e, —tan®e,

and

hy=b tane, tane, {coscxl tane, + (tan2281 —’tan22.~32 —‘l-f[anz sz'coszocl)“%}
tan“e, —tan“g;

Although these expressions give identical values for exact values of the co-
ordinates, their values may differ considerably when measured data are sub-
stituted, especially when the target is in the vicinity of the base plane through
the points of observation P, and P,. Then the accuracy of k; and h, is much
inferior to the accuracy of hy and h,. In the base plane h; and h, even become
indeterminate. This feature is characteristic for a great number of problems.
The phenomenon is to be attributed to the influence of the form of h in certain
sub-areas of the working domain. The working area can be subdivided into
regions where that height formula is to be taken that shows the smallest
variance, i.e. for which the variance is min(var hy, var hy, var hy, var h,). So,
when for any reason one can only use three of the four angles, then one can
consult such a subdivision. When, however, all four coordinates are measured
and recorded then the difficulties are overcome by application of the adjust-
ment procedure. In fact, the four height formulae are merely four functions
out of the infinite set of equivalent functions of the system of double theodolite
observations. It is noted that all formulae in this class of equivalent height
formulae, except for hy, hy, hy and hy, are depending on all four coordinates.
It has been supposed that the value of b is known with neglectable inaccuracy.
;l‘he conditional equation is easily to be derived here by equating (10.17) and
10.18): ,

$=sinu, tane, —sina, taneg; =0.

For reasons-of symmetry the f~approach will be chosen. As the computations
sometimes turn out to be laborious only the reSults are presented. In the
scheme of the f~approach one has '

Variables:

xl—_—al, X2=O(2, X3=81, x4=82



77

Covariance matrix:

620 ...0

O . .
S:

0 ... o3

There is only one condition, the number of equivalent height formulae to be
taken therefore is two. .
-Set of equivalent height formulae:

sinot,
————— tane,
sin (ot; + o)
F = )
sina,
—— > tang,
sin (ot; + o)

Jacobian

_ b.
* 7 sin? (ot +tz)

sina, tane, —sine cos(o; +oy)tane, 0 siney sin (o, +o5)sec’ e,
—sina, cos(o; +ay)tane, sino, taneg; sina, sin(o; +o,)sec?s; 0

Further

QFy = ————| cosa, tane, —coso,tane, —sina,sec’s; sinoy sec?e, | .
sin (o +otp) '

and

bZ

C=QFySFY =———
QC=0FxSFx sin3(oc1+a2)x

x | sina, coso, tan? e, 03 + sinay cosa, cos (o, +a,)tane, tang, o3 +sin® oy sinfa +ug)sect e, 0f

—sina, cosa; cos oty + o) tane, tane, 63 —sino, coso, tan? e, 03 —sin?a, sin{o; +o)sects; 02 | .

T —
Cor=QFySF5Q =
b2
= ——57——— (cos?a; tan® £, 01 + cos?a, tan¢, 65 + sin® a, sec*e; 03 +sin® o, sec* e, 02) .
sin? (o, + ;) : :

Putting the first element of QC=t,, the second t, one obtains for Cp
F(x) hl h‘z

F = =

OF ot
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Finally leading to the estimation

det Cp.
(k) = ~ det Cyp

which has the complicated form:

P(h) =

sino, cosar; cos(ag +a,)tane, tang, o} +gina, cosa, tan?¢, 3 +sin?a, sin (o, +a,)sec* e, 63 L

: - - 1
sinfo, +a,)(cos?a, tanZs, o2 +cos?a, tan® e, o2 +sin’a, sec* &, o3 +sin? oy seC* £, 03
) 1 207 2 102 2 103 204

sina, coso, tan? £,0% + sina; cosa, cos(a; +o,)tane, tane, 63 +sin® o, sin(o; +a)secte, of

. 3 . . 2
sin (o, +a,)(cos® o, tan®e, 03 +cos?u, tan? £, 63 + sin” o, sec* ¢ 63 + sina, sec*e, 03

(10.19)

The expression again involves terms with true values and measured data. In
practice the coefficients of h, and h, are to be approximated by replacing the
true values by measured data. When such a substitution is carried out, then
the form of &(h) can be changed by rearranging terms to obtain

(cos?a, tane, 03+ sin’a, sec’ s, o3) by + (cosz a, tan’e, o7 4 sin’a, sec*e, 65} by

() = (10.20)
cos?a, tan? e, 0% +cos2a, tan? e, 03 + sin® a, sece; 03 +sina, sec* £, 03
.. ) . . det C
The minimum variance is determined from the formula var &(h) = qetC
- de
QF

The denumerator det CQF is already known, the numerator is to be evaluated
by means of the (2, 2) minors of Fy.
The terms are successively:

b* .
ato}:  ————tan®e; tan®e, sin®a; sin® a, {1 —cos? (o +o,)} =
sin® (o, +a,)

b* . .
= —————tan’¢, tan®e, sin?a, sino,
sin® (ot +at;) :

b* . .
020k g~ sin*a, sin®(, +a,)tan e, sect s, =
sin® (o, +a,)

b4
= —— sin*a, tan® g, secs,
sin®(a; +a,)

4. . N
o}6%: ——5— sina, sin® o, sin® (o +2,) cos? (2, +o,)tan® e, secte, =
sin® (o +a,) ]
4
_ 12 3 2 2 4. :
= ——— sin’a, $in’a;, cos® (o, +a)tan’ e, secte,
sin® (ay + o) - .
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2 2

b* . .
o2o%: ] sin’ oy sin® o, sin® (or; +ot5) cos (o + ) tan® e, sec* ey =

sin® (o, + o5
b* .
= ———— sin®a; sin®a, cos(x; +a,)tan®e, sect e,
sin® oy + ot,)
b* . .
030}  ———— sin?a, sin? (o, +a,)tan?e; sects, =
’ sin® (o +0y)
b* .
= ———sin’a, tan%¢, sec*e,
sin® (o, +ot,) -

b*. .
o503: j sin® o, sin® a, sin* (o, + ) sec*e, sect e, =

sin® (o + o,
b4
= e sin’a, sin®u, sin® (o, +a,)sect e, secte,
sin® (o +01,)

Hence, var &(h) becomes :

var &(h)=
bZ
sin*{ot; +a,) {cos*e, (sin?a; 03 + cos? o cos?¢, sin’ &, 02) + cos* &;(sin? o, 0% + cos? o, sin’ ¢, cos?¢, o3

x [sin’a, sin®a;, sin’e, sin’e, cos?e, cos?e, sin?(a; +a,) 0% o2+ sin® a, sin’e; cos?e, o202
+ sin®a, sina, cos? (o, +a,)cos?e, sine, 0202 +sin’ o, sina, cos?(o; +a,)cos?e, sine, 62 02

+ sin*o, sin’e; cos?e; 02 a3 +sin? oy sin®a, sinz(a +a,)036%] . (10.21)

In order to have an impression of the variance reduction when applying the
theory of adjustment, var &(h) has been evaluated for the special case that
01=0,=03=0,=0001 rad. These are reasonable values for the inaccuracy
of presently used theodolites. Furthermore, the base length has béen chosen
to be 5 km. Figure 5 shows the isopleths of o= (var & (h))* (m) at a level
5'km above the ground surface. This graph should be compared with the graph
for, say, the root mean square error of h1 In fig. 6 one can find the result for
Ty =var?h; under similar conditions as in fig. 5. It is to be remarked that Oy,
is calculated by means of formula (6.3).

oi,=var hy=h; xShI
h, x is the first row of matrix Fy, so that

b . . . .
Oy, = 2(%_%) {sin’a, tan®e, o5 +sin? o, cos? (e +a,)tan e, 62 +sin?a, sin? (o1 +o)sec e, 02}t
sin? (o, +a,

-From both the figures 5 and 6 it is discernable that the reduction of variance
with respect to the height formula 4, is substantial in the vicinity of the base
plane. So, when a balloon is launched near one of the points of observations
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Fig. 5. Double theodolite observation. Isopleths of the (minimum) foot mean square error o
(m) associated with the estimator & (k) at a level of 5 km above the ground surface. 6, =0,=
63=0,=0001 rad. Base‘rlength S km.

'

Fig. 6. Double theodolite observation. Isopleths of the root mean square errot gy, (m) associated
with the conventional height formula k; at a level of 5 km above the ground surface. :

0,=0,=03=06,=0001 rad. Baselength P, P, =5 km.
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or near the baseline one should be very careful in choosing a height formula.
This is especially true when the formula for adjustment is too complicated
for mere desk calculation and an electronic computer is not available. To
demonstrate the effect, the table below shows the height data of a balloon ascent
during the first few minutes. A pilot balloon was launched near point P, and
the heights were computed using £, h,, hs, hy and &(h). As could be expected
the values of h, exceed those of the other formulae considerably. Those of h,
are still reliable as the balloon was moving near point P; where the graph of
oy, will show a singular point. In fact, the graph of o,, is the image of that
of g,, with respect to the line bisecting the baseline P, P,. Figure 7 gives a

height( m)

1500

1000—

500

V.4 1 =1 1 1 L
1 2 3 4 5 time (min)

Fig. 7. Ascent curve for a pilot balloon determined from a double theodolite observation,
a few minutes after release near one of the points. of observation. Base length 4481 m.

graph of the ascent curve for the first couple of minutes. All height values of
h,, hs and h, are within the circles representing the data for #(h). Those of
h; suggest a higher ascent rate in the first two minutes after launching and

TABLE

Balloon height versus time for a double theodolite observation

time (min.) ‘hl(al, W5, 80)  Ro(og, 05, 81)  haler, 82, 00)  Raler, €5, 00) (M) (e, 0y €1, 85)

2 953 679 690 690 681
1218 1127 1132 1146 1129
4 1623 1559 1561 1569 1562

w
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thereafter a deceleration, which from a physical point of view is very doubtful.
On the contrary, the ascent curve, which is based on the .#(h) values, gives
a more reliable impression of the ascent.

Examining figure 5 it is observed that minima are found at the line bisecting
the base P, P, at a considerable distance from the base. The minimum is not
on the baseline proper as is sometimes thought. It can be shown that the
minimum moves outward when the altitude increases. Apparently for a given
base and height of an object there is an optimal distance to measure that height
with hlghest precrsron Furthermore it can be noted that at the base plane
the minimum variance o2 equals the variance of both k3 and h,.

10.4. Observation of rainfall with inclined rain gauges

In a paper due to Levert [1962] the theory and practice are described of the
observation of rainfall with gauges that are oblique with respect to the vertical.
The gauges are installed in regular arrays and for several arrangements for-
mulae are presented for the inclination, intensity and azimuthal angle of the
rain as a function of collected amounts of precipitation and some parameters
of the installation. In practically all arrangements conditional equations exist
between the observed amounts of rain so that the theory of adjustment comes
to the fore. Here the case is studied of four gauges being installed at the end
of a rectangle cross, all equally inclined to the vertical and a fifth situated
in the centre with no inclination at all (fig. 8).

Fig. 8. Installation of five rain gauges to measure inclination, intensity and azimuth
angle of rain.
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When x,, x,, x5 and x, represent the amounts of rain collected in the four
outer gauges and x,, the amount in the centre gauge, it can be demonstrated
that the total amount of precipitation is:

f :xO s )
the azimuthal angle of the rain is given by:
. X3— Xy
tany = ——
and the inclination of the rain to the vertical:

{61 — %22 +(x3—x4)%}
2x, sin v,

tany =

where y, represents the inclination of the gauges with respect to the vertical.
It should be noted that the rainfall is considered to be uniformly distributed.
The mutual distances of the gauges should therefore not be too excessive.
Between the amounts of rain x,, x4, . . . x, the following conditions exist :
<01=x1+x2'—X3—X4=0 ‘
Q=X +Xx,—2x0 cos y,=0.
Apparently ‘the conditional equations are linear forms in the variables x,,
Xi,... X4 It therefore seems that the ¢-approach is preferable to the f-ap-

proach. It is supposed that the quantities xg, x4, . .. x, are measured with
equal accuracy, so that the covariance matrix S reads:

S=0¢%E.

This is an example of more than one condition and also of more than one
quantity to be adjusted. One could then adjust the base variables first and
substitute the corrected values of x,, . .. x, in the quantities, but it is preferred
here to adjust all three quantities separately.

Referring to the scheme one has ‘

Variables :
Xo X; X, X3 X4
Covariance matrix :
S=0¢2E

Set of conditions:

X1+ X5 —axy

xl+xZ—X3—X4 i
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where
a=2cos 7y,
Jacobian :
011 -1 =1
¢X:‘—a 11 0 o0

Covariance matrix:

2
— T __ .2 T_ 2
Fr=¢,S®;=0>dyPy=0c 5 ad
The inverse of I':
1o 1 a?+2 =2
46*(a*+1)) -2 4

Next the amount of precipitation is calculated with the adjustment procedure.
One has

f=x-
Gradient

fx=1]1 0 0 0 0]
Mixed covariance matrix

fXS(p§=02fx(p§ =0’ | 0 —a |

Further
! ’ @+2 -2 a
TpRp-1_ + B __a ~
ISBIT =gyl ] 4| w7
and
FSOIrta(x) = -2 |1 —p||FFFTR TN

X +Xx,—axg

to obtain

=050t =xo = s (o 5 )
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and after substituting for a
4
Xo+CO8 Y, Y. X;
[ = =1
() 4 cos® y,+1

To calculate var &(f) determine F(f):

1
yx(f) = m I 2 a a a a |
Then ,
1
a2 0
var S(f)= S (NS = (N = —5==|2aaaall0
: 2a*+1) 0
0
or
0_2
var ) = oo a1
For checking #(f) one should verify:
yx(f)S(pJT(:O .
or 0 —a
- 1
2 r__ 7 L 1=
o Sx(f)®% 2(a2+1)|2aaaa[ |0 0]
-1 0
—1 0

which emphasizes the correctness of the solution to the problem.
Next one proceeds with the adjustment procedure for the azimuthal angle .

X3—X
f=tany =2 2
Xy —X2
Gradient
f=1l0 X3— X4 X3— X, 1 1
= _ —

(xl_x2)2 (xl-—xz)z X1—X;  Xg—X, |
Mixed covariance matrix
[xSPr=0>fy®F=0,

showing that
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Af)=f-

The original formula for f proves—more or less by accident —also to be the
“best” in the sense that has been outlined in this study. The variance of f is
at the same time the minimum variance:

2 (X3 =X4) + (33 — o)’ _
(xl—x2)4

Finally, applying the theory of adjustment to the inclination of the rain
consider '

var #(f)=fxSfx =20

b

{(xq = x2)? +(x3—x4)%}

f=tany =

where b=2 sin y,.

Gradient : |
f = _1_ . 2{(x1—x2)2+(>€3—x4)2} 2(x1 _'xl)
X 2f bxg bzx% .
20y —X)) Axz—xa)  2xa—Xd)
b*xg b?xg - b*x3
1 . .
=Ef?(2)|__b2x0f2 xl‘—xZ xZ_xl x3—X4_ x4——x3|
‘Mixed covariance matrix:
fxS®%=0>fx®%=a*|0 o
Xo
Further
' 2 2 X
Tp-t_ 9 g a?+2 -2 o
fo@’,‘Fv o 40-2(a2+1)‘0 X0 ) 4 | 2x0(a2+1)| 1 2|
and
Tp-t = _—af_ _ x1+x2—x3—x4
fXS¢XF @(x)— 2x0(02+1) I 1 2 l x1+x2—ax0

af 4
= m <i;1xi—2ax0> |

to obtain

F(f)=f (%0 - - - %4) + #{4—1) <2ax0— igl xi>"
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For practical use the true values are replaced by the measured data:

st x) [+ gy o 5]

and after substituting.for @ and b:

. _ 2 _ 214
S(tany) = {(x, x22) +.(x3 x4.) )
X, sin y,

x .

cos y,

. 4
X |:1 + m {Zxo COS ’))g— igl xi}] .‘

To calculate the minimum variance determine again & (f):

S 12, f2 _ - —_ —_
yX(f) = bzfx(z)l b*xof* X1 —X3 Xa—X, X3—Xgq Xgq x3|
af ) o
+—2x0(a2+1)'2a -1 1 ‘1 }1]
Then
—b%x,f?
xl_xZ B
. 1
var 7 (f) = Lx(N)Sf{ =0> Fx(f) | x2—x, 373
b*fx;
‘x4—x3
or

: a? 414 2 2 : 2 a*a’f*
var y(f) = b—4f_2—xg_ {f b §0‘+2(x1—x2) +2(x3—x4) } — m

Finally after replacing a and b:

462 tan” y cos? y,
xo(4 cos? y,+1)

var (tan y)=var(tan y) —

It may be easily shown that with x(f) the checking formula
s, x(f ) N QJT( =0

is indeed satisfied. This completes the calculations for this type of measure-
ment. '
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11. Use of high speed electronic computers

The calculation associated with the theory of adjustment is often laborious
and cumbersome. This is particularly true when the number of conditions and
consequently the order of the matrices increases. The matrices involve func-
tions of one or more variables which make it clear that to obtain closed forms
for the estimation and variance the rank of say I' and C cannot be much
higher than three or four. Moreover, the final results are often so complicated
that their interpretation cannot in general be adapted to manual and graphical
techniques and will be unsuitable in practice when quick results are required.
However, much work can be saved when high speed electronic computers are
employed. The merit of a computer program is not only its speed but also the
possibility to handle a great number of data.

When for example the estimator (10.20) and variance (10.21) of double theo-
dolite observations are examined it is relevant that mere hand calculation is
so time-consuming that in the absence of an electronic computer application
of the method in practice will be doubtfull. For this reason a program has
been developed using the ZEBRA, a computer of moderate speed developed
by the Postal and Telegraphic Service in the Netherlands. A balloon ascent
involving 60 minute-observations takes less than 3 minutes computer-time.
The time needed for printing the data amounts to approximately 30 minutes.
There is still another argument for emphasizing the extreme adequacy of the
electronic computers for the wide class of problems here. Examining the
scheme for matrix calculation of the estimator &(f) and var (f) it is ob-
served that the calculation starts after the Jacobian @ resp. Fx for a special
problem has been established. The remaining part is routine computation. It
will therefore suffice to design a standard program for the process which
proceeds with the calculation of the covariance matrices I' resp. C. The first
part of the process needs the development of a sub-program and includes the
contents of S, @ or F, &, respectively Fy for the special problem under
consideration.

When such a routine is followed it covers a very wide category of observations
ranging from sample means to repeated conditional measurements. The rou-
tine also includes problems of regression analyses, parabolic interpolation and
stochastically dependent observations.

It is a matter of machine capacity whether problems involving matrices of
order 50 to 100 are still suitable to be handled by these high speed computers.
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SUMMARY

A study is presented on the effect of replacing the set of (non-linear) condi-
tional equations used in the method of least squares for the problem of
adjustment of observations by an equivalent set and on related problems.
It is shown that the replacement eventually does not change the results of
the adjustment procedure.

The method of investigation leads in a natural way to a new approach to
the adjustment problem in which no conditional equations occur but equi-
valent formulae for the quantities to be adjusted. The new method is parti-
cullary suitable to be programmed for high speed electronic computors and
possesses a flexibility which substantially facilitates its application especially
in the case of non-linear conditional equations.

The general theory is applied to four examples of ad]ustrnent problems in
meteorology including the problem which gave the impetus for the present
study.



SAMENVATTING

Onderzocht werden de gevolgen van de vervanging van een stelsel van (niet-
lineaire) voorwaardenvergelijkingen in de methode der kleinste kwadraten
voor het probleem van de vereffening van waarnemingen door een gelijk-
waardig stelsel en verdere hiermeden samenhangende problemen. Aangetoond
‘werd dat de vervanging geen enkele invloed heeft op het uiteindelijke resultaat
van de vereffening.

De gevolgde methode van, onderzoek leidde op natuurlijke wijze tot een
nieuwe aanpak van het vereffeningsprobleem waarin geen voorwaarden-
vergelijkingen meer voorkomen maar een of meer gelijkwaardige formules
voor de te vereffenen grootheden. De nieuwe methode is in het bijzonder
geschikt om geprogrammeerd te worden voor electronische rekenmachines
en bezit verder een groot aanpassingsvermogen hetgeen de toepassing ver-
gemakkelijkt speciaal voor het geval dat de voorwaardenvergelijkingen niet
lineair zijn.

De algemene theorie werd toegepast op een viertal voorbeelden uit de me-
teorologie waaronder het probleem dat de aanleiding tot onderzoek vormde.
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