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PREFACE

The increase of the mean wind speed with height in dependency of atmospheric
stability is a main problem in the theory of the boundary layer. The solution of this
problem is of great importance from a theoretical as well as from a practical point of
view.

If a reliable formula describing this increase with height was available, important
information could be given for a number of practical problems, viz.: air pollution,
wind-load on buildings, wind shear for aviation, etc.

A large number of studies exists in meteorological literature in which a solution for
this problem is attempted. As a complete physical and mathematical description of the
boundary layer processes is very complicated and not yet available, solutions have
been sought with the aid of dimensional considerations and ad hoc assumptions.
The result is a confused situation featuring a large number of rather different wind
profile descriptions.

It is the aim of the present study to bring some sort of order into this rather con-
fused situation. It has turned out to be possible to derive a mathematical system which
contains most of the existing formulae. ’

A method of testing these formulae was indicated, using results of observations.

This study has also been accepted by the Faculty of Natural Sciences of the Uni-

versity of Utrecht as a thesis for the degree of doctor.

The Director in Chief of the
Royal Netherlands Meteorological Institute

DR. M. W. F. SCHREGARDUS




VOORWOORD

Een belangrijk probleem in de grenslaagmeteorologie is de toename van de wind-
snelheid met de hoogte in athankelijkheid van de atmosferische stabiliteit. Een oplos-
sing van dit probleem is zowel uit theoretisch als uit praktisch oogpunt van groot
belang.

Indien een betrouwbare formule beschikbaar zou komen om deze hoogte-
-athankelijkheid te beschrijven, zou daarmede belangrijke informatie voor een aantal
praktijkproblemen zoals: luchtverontreiniging, windbelasting op constructies, wind-
schering voor de luchtvaart, enz., worden gegeven.

Er bestaan in de meteorologische literatuur een groot aantal studies waarin gepoogd
wordt een oplossing voor deze afhankelijkheid te vinden. Aangezien een volledige
fysisch-mathematische beschrijving van de processen in de atmosferische grenslaag
zeer ingewikkeld is en vooralsnog niet beschikbaar, zijn oplossingen gezocht met
behulp van dimensiebeschouwingen en ad hoc onderstellingen. Het gevolg is dat een
onoverzichtelijk geheel van een groot aantal zeer verschillende formules is ontstaan.

Het doel van de thans gepubliceerde studie is enige orde te scheppen in deze materie.
Het is daarbij mogelijk gebleken een mathematisch systeem af te leiden waarin de
meeste formules voorkomen. Met behulp van waarnemingsresultaten wordt aange-
geven op welke wijze toetsing van de formules het beste zou kunnen worden uitge-
voerd.

Deze studie is tevens aanvaard als dissertatie door de Faculteit der Wiskunde en
Natuurwetenschappen van de Universiteit van Utrecht.

De Hoofddirecteur van het
Kon. Nederl. Meteorol. Instituut,

Dr. M. W. F. SCHREGARDUS
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temperature fluctuation
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air density ,
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total turbulent energy per unit mass

vertical flux of heat
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total dissipation of turbulent energy per unit mass
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Statistical symbols (Appendices)
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0. GENERAL INTRODUCTION

There are a large number of papers in the literature on meteorology dealing with
the problem of the increase of mean wind speed with increasing height.

In considering the flow of air over the earth’s surface there is a tendency in the first
instance to draw a comparison with hydrodynamics. However, there are important
differences between the flow of air in the atmosphere and the flow of liquids as
considered in laboratory hydrodynamics.

In the first place, in addition to an increase of speed with increasing height, there
is the effect of the Coriolis force, resuiting from the rotation of the earth, which causes
the wind to change direction with increasing height.

This effect will be ignored in the present study of wind profile formulae. But this
means that the height Z, for which a given profile will hold, will be limited to a
certain value. This value of Z is not quite constant, as it depends on stability, but is
of the order of 50 m (see MoNIN and OBUKHOV, 1958). The height Z marks the top
of the surface friction layer.

The problem in this layer is reduced to a two-dimensional one. The coordinates x
and z will be used, x being assumed to correspond to mean wind direction and z to
represent the vertical.

A second important question is the influence of the thermal stratification of the
friction layer. This is in fact the complication that creates the problem of the wind
speed profile which we are studying. As a result of heating or cooling of the earth’s
surface, the thermal stratification can change from very unstable through neutral
(adiabatic) to very stable, and a quantity therefore has to be introduced to act as a
stability parameter. ’

The well-known formulae for the wind speed profile, the power “law” and the
logarithmic “law”, are inadequate to describe completely the increase of wind speed
with height. However, they are often used in papers on practical meteorological pro-
blems, and they may often prove useful.

It is customary to speak of.the power “law” and the logarithmic “law”. It seems
to me that the word “law” is too weighty. To speak of any relation as a “law” sup-
poses its general validity. The power “law” is only an empirical formula that can
be used as a very rough approximation but without any physical basis of proof. The
logarithmic profile could be called a law, even though it holds only for the neutral
state, because a generally accepted physical basis is present. For the sake of consisten-
cy I propose to speak of profile formulae, or, profiles for short, in all cases.

Stationarity of the atmospheric processes is an important prerequisite for the theore-
tical derivation of wind profile formulae. The concept of stationarity can be defined
in two different but equivalent ways, statistically and physically.

The statistical definition of stationarity is based on the variation of the considered
quantity x (speed, temperature, etc.) as a function of time ¢, written x(¢), or as a
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result of a stochastic (random) process. A stochastic process is called stationary if the
multivariate distribution of x(t1),..., x(tz) is the same as the distribution of
x(t1 4+ ty), - . -, X(tn + ) for every ¢, and every group of arguments 71, . . ., fn.

To define stationarity physically we must look at the phenomenon of turbulence.
By turbulence is understood the irregular variations of speed and temperature that
are superimposed on a time average. They comprise a certain amount of energy (E).
A situation is stationary if the variation of the total turbulent energy is zero (dE/dt = 0),
(and the form of the energy spectrum is constant).

The stationarity requirement limits the time interval for which the profile formulae
will obtain. On the one hand this interval cannot be too short or the random fluctuat-
ions will not cancel out; the lower limit is about 10 minutes. On the other hand the
interval cannot be too long, because otherwise factors such as long-period fluctuations
or trends (e.g. the daily temperature range) may come into play. The upper limit is
usually one hour, but may be more depending on the kind of long-period fluctuations
present.

Turbulence may be divided into mechanical and thermal, or convective, turbulence.
Mechanical turbulence is the result of the motion of the air over the rough surface
of the earth; thermal turbulence is caused by heating and cooling of the earth’s
surface owing to incoming and outgoing radiation, which may result in instability
of the lower layers, leading to rising and descending motions of air parcels.

It is the aim of the present study to review the different profile formulae which
have been discussed in the literature on the subject and to combine them into a general
system, so as fo facilitate comparison between them. As we shall see, the introduction
of this general system makes it possible to create an unlimited number of new formulae.

Observations from the “GREAT PLAINS TURBULENCE FIELD PROGRAM™ undertaken
in 1953 and the “ProjEcT PRAIRIE GRASS” in 1956, both in O’NEILL—NEBRASKA,
will be used to illustrate the value of the various profile formulae. Definite conclusions
cannot be drawn from these observations, unfortunately, since they are too few and
too inaccurate.

The power “law” as it is termed, being in fact a simple formula often used for
practical purposes, will be studied in a separate chapter. The variability of the power
profile exponent will be investigated, both theoretically, using one of the formulae
for the diabatic case and empirically, using observations recorded at television and
radio transmission towers in the central Netherlands (Lopik).
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1. THEORY OF WIND PROFILE FORMULAE

1.1 Introduction

The basic equations used in theoretical derivations of wind profile formulae are the
well-known transfer equations:

,
ol 2 e .
KMdz P uz 1.1
do H
where  is the shearing stress defined by:
T a_ p u'w (1.1.3)

and H is the heat flux defined by:
Hi cop W'T', (1.1.4)

Ky and Kpg are the coefficients of eddy viscosity and conductivity, respectively. They
are both functions of z and we formally fix the zero level of z by requiring that
Kyr = K = 0 where z = 0.

The meaning of the symbols and the dimensions belonging to them are given in
the nomenclature (p. 9).

A dash over a symbol indicates that it represents an average over a certain petiod of
time.

It is usual to replace the shearing stress = as a parameter by the friction velocity u,
defined by:

u, 4 ]/1 (1.1.5)
P
as was already introduced in (1.1.1).

The stability parameter referred to in the general introduction is a function of u,

and H (see the derivation of the Monin-Obukhov profile (VIII)), and is defined by:

3
u*

—_— 1.6
T (1.1:6)

T cop
L is known as the Monin-Obukhov length.

To simplify the problem, variations of density and deviations of temperature from
the mean absolute temperature T will be ignored in (1.1.6); in other words: p is
constant and 7 is constant.

Two relevant parameters have now been introduced viz.: u, and L.

A third parameter, z,, is connected with the roughness of the surface, It is fixed
by the requirement:
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u(zo) =0 (1.1.7)

Finally there is one more requirement, the homogeneity of the surface. It is obvious
that a sudden change in the surface roughness will influence the build-up of the
atmospheric boundary layer. The detailed effect of inhomogeneity has been studied
(e.g. TowNSEND, 1965) but will be ignored in the present study.

Homogeneity of the surface over a sufficient distance in front of the measuring
station is therefore an essential requirement here. The actual distance required depends
on the height to which it is desired to measure the wind speed and on atmospheric
stability. As a rough estimate a ratio of 100 : 1 between the length of the up-wind
area and the maximum measuring height could be taken (see BUSINGER 1954, p. 45).
We have to realize that this is a very rigorous requirement, and it can seldom be
completely fulfilled in practice.

Apart from the parameters already mentioned two constants also appear in the
formulae, viz. a ‘‘universal” constant k (von Kdrmdn’s constant, numerical value
generally taken as 0.4) and a constant o which has to be determined empirically.

A number of different notations for the quantities used are to be found in the large
number of papers dealing with the development of wind profile formulae.

In this study we shall use symbols which have been common since the work of
MoniN and OBUKHOV, notably:

The non-dimensional wind shear parameter:

dkzdu k du

:Z%:u—*alnz (1.1.8)
and a non-dimensional parameter { which is proportional to z/L.
{ ~ z/L. (1.1.9)

The proportionality constant will be introduced in a subsequent paragraph.
¢ can be considered as a combined height and stability parameter.
We shall try to express all formulae by means of these symbols.

1.2 Survey of wind profile formulae

Table 1.2.1 shows the different formulae which have been proposed throughout
the literature on the subject. The original notation has in some cases been changed
for the sake of uniformity. We shall use u as the symbol for wind velocity. This is
considered as a mean value, averaged over an interval of about an hour, to eliminate
turbulent velocity fluctuations.

In the Monin-Obukhov profile the roughness parameter z, is sometimes omitted
in the linear term. This is in contrast to our formulation, which takes into account
formula (1.1.7).

No empirical constant o was introduced by the authors in the Swinbank, Businger
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and Su formulae. It became necessary to add this constant in the formulae of table
1.2.1 in order to obtain a general and uniform system. We have added an index to a,
to indicate that o takes different values for the different profile formulae.

GoPTAREV has used in his formula only a “constant” a; this “constant” may be
identified with a/L.

In the Deacon formula a parameter 8 occurs which has to be considered as a stabil-
ity parameter.

TABLE 1.2.1  Survey of wind profile formulae

I. Power profile.
u=Az*

(where 4 = uy/z{ and z1 is any standard height)

II. Logarithmic profile.

U z
u:_*ln_
k' z,

III. Deacon profile.
T (a e 1)
“Trxdi—p (zo>

IV. Rossby-Montgomery profile.

“*?{3(”—”"”“‘ 7+ 1 n,,ﬁl}

with 3(5° — 1) = arar z/L and (55 — 70) = Ry 2oL

V. Holzman profile.

"= % {m 2/z0 + ar(z — 20)/L + /T T GZZ3LE — /T + o222/

1+ /1 + 02z%/L2

—In

1+ 4T+ a2z3/L?

VI. Businger’s first profile.

Uy V1 —opz/L —1 +/1 —aprzo/L +1
U= F{IH .
V1 —agz/L 4-1 11 —oprze/L —1
+ ) '\/1 —(IBIZ/L 2

o '\/ﬁ(lBIZo/L
1+ vT—wzL) {1 + A= wmzL }2}
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VII. Businger’s second profile.

_ Uy . 1 — aBmz/L '
u=7 {ln z[zo—1n J—r—;7 }

VIII. Monin-Obukhov profile.
U= yki {ln z[zo — tpro (2 — zo)/L}

IX. KEYPS profile.

Ug (Mo — N — o 1+ 7)1 —m)
— k 1
k{ Mo —|—2arctg1+ - n(l——no)(l—l—n)}

~ with (1 —7%)/y = axz/L and (1 —1)3)/770 = agzo/L

X. Su profile.
u= Eki{%ln 2/70 4 V1 + Gsuzll — /1 + Gsuzo/L
+ -é—ln '\/1 "I— aSuZ/L —1 '\/1 + aS:uZo/L + 1}
‘\/1 + aSuZ/L + 1 ’\/1 + U.SuZo/L —1

XI. Goptarev profile

{ln z/zo + Zaggn p nfO)}

XII. Swinbank profile.
ty, exp(asz/L)—1

=% "exp (@szolL) — 1

XIII. Pandolfo profile.

u . 1
) f {in z/zo + 0p(z — zo)/L} if — < z/[L <0
I . 1
_T%f{lzo/Ll‘%——]z/Ll—% 1fz/L<——%—P

The full derivation of these formulae can be found in the original papers. For
completeness’ sake and because we shall use the derivation of KEYPS and the Bu-
singer formulae as a basis for our system, we shall now review the various derivations
(shortly in most cases, but more extensively on VI, VII, VIII and IX).

I. The power profile originates from hydrodynamics. If we study the flow of
fluids through cylindrical pipes we find that the speed increases from the wall to the
axis of the pipe according to a power profile. The formula also holds good for the
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flow in canals, etc, where the range of values of the Reynolds number?) is limited.
The exponent appears from experiment to be 1/7, for fully turbulent flow (ScHU-
BAUER AND TCHEN, 1961). The power profile is often used in meteorology because it
is so very simple and a relatively large number of observations prove to conform to it.
It is not, however, very accurate. An examination of the exponent p shows that it may
vary over a fairly wide range of values and this variation proves to be related to the
stability of the atmospheric layer (see chapter 3).

1I. The logarithmic profile holds good in an adiabatically layered atmosphere.
This fact is generally accepted and is supported by a large number of observations.
All formulae which have been proposed to describe “diabatic” situations change into
the logarithmic profile formula if the stability parameter is given its value for the
adiabatic case.

The logarithmic profile can be derived in different ways. In older papers the concept
of the mixing length of Prandtl is used (see SurTOoN 1953 p. 72 etc.). A very short
derivation is possible with the aid of Monin-Obukhov’s similarity hypothesis (1954),
(see also KLUG, 1963).

In the adiabatic case expressed in the general symbols S and L, we have:

z/L =0and § =1 (1.2.1)

III. Deacon’s profile (1959) is based exclusively on the empirical fact that, if
observations of wind speed u are plotted on a graph against the logarithm of height
(In z), a curve is produced which is concave towards the wind speed axis in stable
situations and convex in unstable situations.

DEACON states that the curvature can be represented by:

== az =8 (1.2.2)
with B8 > 1 for stable situations.

B =1 for neutral situations, in which the logarithmic profile results.

B <1 for unstable situations.

Incidentally, Deacon’s profile cannot be expressed in the S, L or { symbols (see
1.5and 2.3.2).

IV. RossBY and MoONTGOMERY derived a balance equation for stable and neutral
situations. They equated the total turbulent kinetic energy per unit mass in the stable
case to the turbulent kinetic energy that would be present if the rate of shear were the

1) The Reynolds number (ul/v) indicates whether the viscosity effects or the inertia effects dominate
in a flowing medium; « is a characteristic speed and /is a characteristic length of the system, v is the
kinematic viscosity.
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same but the lapse rate adiabatic, less the potential energy due to the deviation of
the temperature lapse rate from the adiabatic rate.
Their equation is written in the following form:

2 (du\? 2<du)2 g 2db

where [ is the mixing length under diabatic conditions and /r is the equivalent quantity,
if all turbulence were of mechanical origin (s = k(z + z,)), T is the absolute air
temperature. The notation used here is BUSINGER’s (1954).

By assuming / g Uy, which results in:

dz
ag df
du T dz
b =u |/ 14+ —5 -, (1.2.4)
@

Rosssy and MONTGOMERY were able to solve the differential equation for u(z), but
their solution, given on p. 49 in their 1935 paper (formula 100), is not quite correct
og db

because they introduced a symbol «2 = T & and proceeded as if it were a constant,

while in fact «2 is a function of z.

The solution IV (RM profile) which is given in table 1.2.1 therefore differs from
Rossby and Montgomery’s formula (100).

To be able to express (1.2.3) in terms of S and z/L we have to replace [y = k(z+z,)
by ! = kz. This is required in connection with the introduction of z, as a result of
the boundary condition u(z,) = 0, while in the Prandtl formulation #(0) = 0 holds.

dé jdu —H

If we assumedlgydj Ky it follows from (1.1.1) and (1.1.2) that o /HE = Wﬁ and
with (1.1.6): 2= Y Using the definition of the symbol S (1.1.8) and after
kL

introduction of a constant, oz, formula (1.2.3) becomes:
S8 = S + armz/L. (1.2.5)

V. HorzmaN made use of Rossby and Montgomery’s equation (1.2.4) in 1943 in
a study on evaporation. Because, he writes, this equation produces a number of
“disagreeable integrals™, he replaced it by:

og do
du T dz
1% 1— __du)z =u, (1.2.6)
%

o . c. do
which in fact is no more than an approximation of (1.2.4) for low values of (;,—gz.
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If (1.2.5) is written:
S = (1 4 (armz/L) S-1) (1.2.7

the approximation which HoLzMAN makes is equivalent to changing formula (1.2.7)
into:

S = (1 — (armz/L) S-1)-1
or:

S-2 + (omz/L)S-1 =1, (1.2.8)
the index RM of the constant o having been replaced by H to indicate that the change
is due to HoLzMAN.

The solution is given under V in table 1.2.1.

VI and VII. Inhisthesis(1954) BUSINGER derived two wind profile formulae based
on the formulation of a balance equation as given by RossBY and MONTGOMERY
(1935), see formula (1.2.3), and by LETTAU (1949).

Although BUSINGER dealt with more advanced theories concerning wind profiles
in 1959 and 1961, producing some rather complicated profile formulae, we nevertheless
give the derivation and solutions of his earlier formulae. The reason will be explained
in the next chapter.

BUSINGER uses the concepts of mixing lengths already mentioned in connection
with the derivation of the Rossby-Montgomery profile 1V, Furthermore, he defines
Ky as the transfer coefficient for purely mechanical turbulence and K as the equivalent
quantity for the total turbulence. He also assumes Kyr = Ky = K.

He then states that:

KEf _ (71;)2 (1.2.9)

BUSINGER expresses the turbulent balance equation in two ways. First in terms of
turbulent acceleration:

2 2

K Ky gdb

F—I_?_ITE (1.2.10)
and then in terms of turbulent energy per unit mass:

K K g db

o M pe? .

7 lf / T (1.2.11)

By substitution:
Ky = kuyz and [y = kz (1.2.12)

we can transform these equations into expressions in the non-dimensional quantities
S and z/L.
(1.2.10) becomes:
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2 2 2

My U Uk P .

2St = kz Tz Siz/L or (after insertion of a constant agr):

St —(uprz/L)S =1 (1.2.13)

and (1.2.11) becomes:
u28-1 = y2 — u2(z/L) or (after insertion of a constant azrr):
S — (opmz/L)S = 1. (1.2.14)

The solution of (1.2.13) is given in formula VI, table 1.2.1 and the solution of
(1.2.14) in formula VIIL

VIII. Inthe Monin-Obukhov theory a stability measure L (with the dimension of
length) is introduced. Its definition is given in formula (1.1.6). Compared with the
stability measure Ri introduced by RICHARDSON and defined by:

,igd@/ (du)z
Ri —T% d_Z s (1.2.15)

L has the advantage of being independent of height (in the friction layer), while Ri
is not.

If the non-dimensional wind shear parameter, defined by (1.1.8), is used, Monin
and Obukhov’s similarity hypothesis!) leads to the conclusion that S is a function
of z/L only:

S = ¢(z/L) (1.2.16)

where ¢ is assumed to be a universal function.
Since (1.2.1) should still obtain, the simplest form of ¢ that can be used, and that
satisfies (1.2.1) is:

é =1+ az/L. (1.2.17)

Formula VIII, known as the Monin-Obukhov profile (MO profile) provides a
solution for the equations (1.1.8), (1.2.16) and (1.2.17).

IX. Kazansky and MoNIN (1956), ELLisoN (1957), YAMAMOTO (1959), PANOFSKY
(1961) and SELLERs (1962) have all developed theories that resulted in a wind profile
for the diabatic case. The well-known transfer equations (1.1.1) and (1.1.2) are used
to derive these profile formulae. The derivation is based on an equation for the tur-
bulent energy balance. In this equation the total turbulent energy variation is equated
to the sum of the rate of variation of mechanical and convective energies, the diver-
gence of potential and kinetic turbulent energy and the rate of dissipation of energy
by molecular forces. The mathematical expression of this equation is derived from

1) This hypothesis states that the characteristic statistical quantities of the relative motions of the
flow are invariant under the transformation x’ = kx; y’ = ky; z’ = kz and ¢’ = kt.
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the Navier-Stokes equation by CALDER (1949) and by HOLLMANN (1961) (see also
Krua, 1963). We already pointed out in the introduction that the condition of stati-
onarity must be fulfilled ; this means that the total energy variation must be zero. If a
number of simplifying assumptions (see KLUG, 1963) are made regarding the diver-
gence of potential and kinetic energy, the balance equation can be stated in the
following form:

do

2
g -
KM(%) —UTKHE =& (1.2.18)

where the first term represents the mechanical turbulent energy, the second term the
convective turbulent energy and ¢ the total dissipated energy per unit time and unit
mass.

Unfortunately attempts to obtain a direct theoretical derivation of an expression
for e in known terms have not yet been successful.

In order to obtain a solution in spite of this difficulty, dimensional considerations
have to be used together with the requirement that in the adiabatic case (d6/dz = 0)
the logarithmic profile holds good.

The reasoning is as follows: (see KLUG, 1963).

Because the dissipated energy ¢ originates from the largest eddies, ¢ has to be a
function of the quantities which characterize these, namely: density p, the dimension A
and the change of the mean turbulent velocity (du) over the distance A. From di-
mensional considerations it follows that p cannot be contained in this function. The
only remaining possibility then is:

. — (du)3 _ (du - 2)3
A A

The dimension of Au - A (which is /27— 1) is that of a kinematic viscosity. The logical
conclusion is that this must be the turbulent kinematic viscosity K. If, moreover, A
is assumed to be proportional to the height z, we can rewrite (1.2.18) as:

(1.2.19)

2 3
Kor () — ok ® = 0 K2 (1220)

The constant Cis determined as follows:

Let us consider the adiabatic case (d6/dz = 0), assuming that (1.2.20) obtains in all
situations with the same C. Then from profile I, table 1.2.1, it follows that du/dz =
= u,fkz, and from (1.1.1) that Ky = kzu,. Substitution in (1.2.20) gives: C = k4.

If the non-dimensional quantities S and z/L and the transfer equations (1.1.1) and
(1.1.2) are used, (1.2.20) can be written as:

S4—(oz/L) S3 = 1. (1.2.21)

This is the equation referred to in most literature on wind profiles of recent date.
The solution of (1.2.21) is given in formula IX in table 1.2.1; so that a in (1.2.21) is
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ox in IX. The profile is called the KEYPS proﬁlle, the name being formed from the
initial letters of KazaNsKy, ELLISON, YAMAMOTO, PANOFSKY and SELLERS.

X. Su’s derivation of his wind profile formula (see NAITO, 1964) is also based on
the Rossby-Montgomery equation (1.2.3), but he changes it into:

du)\? du\? g d@
In the S,z/L symbols:
S — (osuz/L)S-1 =1 (1.2.23)

the solution being given in formula X.

XI. The Goptarev profile results from the purely mathematical statement that the
curvature of the (u, In z) relation can be expressed by:

du  uy, gz
&z Rk
We have replaced the exponent a(z + z,) which GOPTAREV used (GOPTAREV 1960,
also RoLL 1965) by az, for the same reason that we replaced Iy = k(z + z,) by
Iy =kzin IV (p. 18).
If ais assumed to be proportional to L- 1 the (S, z/L) expression is:

(1.2.24)

S = eD (1.2.25)

XII. SwINBANK (1964) introduced a quantity X with the dimeénsion of length and
having properties such that the expression:

du _ Uy
dz  kz
for the adiabatic situation can be generalized to become:
A Uy
dx kX

for the general diabatic situation.

(1.2.26)

He also uses (1.2.18) and states:
&= ul j;‘, (1.2.27)
because in the adiabatic case (1.2.18) becomes:
du) e , du
dz * dz

So (1.2.27) may be considered as a generalization of the latter relation.

KM< = &,
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The (S, z/L) expression proves to be:

_ (osz/L) exp asz/L
S= exp (05z/L) — 1 (1.2.28)

(see section 1.5).

SwiNBANK derived his formula without introducing a constant o, but for reasons
of uniformity we have added a constant a.s.

The solution of (1.2.28) results in profile XII.

XIII. PaNDoOLFO (1966) assumes that the Monin-Obukhov profile holds good if

(z/L)r < z/L < 0. ((z/L)r is a value indicating the point of transition from free to
forced convection). He states that if z/L << (z/L)7 the wind profile is analogous to
the Priestley temperature profile:

du u* 3KH
=G T2 (1.2.29)

PANDOLFO assumes: z/L = Ri for unstable conditions, which is supported by ob-
servation results. The value of (z/L)r is fixed by assuming continuity conditions for
Kar/ Ky andits first derivative with respect to z/L. It is thenfound that (z/L)r = —1/7ap.

1.3 Generalizations

1.3.1. Generalizations of the derivation of the KEYPS profile
In the first place we introduce two constants, ¢ and a, and write formula (1.1.9) as:
cl =az/L. (1.3.1)

The constant ¢ must be regarded as a scale parameter, the numerical values of which
will be specified later (p. 25). a proves to be an empirical constant.
The wind profile formulae can now be written in the most general form as:

u =20 — AL} (1.32)

where f may said to be the non-dimensional profile function.
The requirement (1.1.7) is satisfied by this formula.
The formula (1.1.8) now becomes:

240
§ === i
It will be useful to introduce a special symbol ~ or ~ or » for adiabatic quantities

to distinguish them from the general diabatic quantities.
We then have:

(1.3.3)

§ =1 (see (1.2.1)) and (‘Z) 7’3 (1.3.4)
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From (1.2.18) it follows that

. [du\%
KM(ZE) =3 (1.3.5)
db
because PP 0.
From (1.1.1) and (1.1.8):
Kar = (1.3.6)
S
hence:
Ry = kzil,. (1.3.7)
Substituting (1.3.4) and (1.3.7) into (1.3.5) we find:
.3
N
b= (1.3.8)
But from (1.3.7) we see that:
Ru _
kza,
So we can generalize (1.3.8) to:
,_ Rita "
& = W (1.3-9)
where g is any real number,
Let us now generalize (1.3.9) for the diabatic case as follows:
K&tui e

With the insertion of the non-dimensional quantities S and £ equation (1.2.18)
becomes:

S7—clSe-1 = 1. . (1.3.11)

This is in fact the general equation for the wind profile already proposed by Ka-
ZANSKY and MoniN (1956).

For { = 0 we have S? = 1. Formally equation (1.3.11) has g roots, of which S = 1
is one, but this is the only one that is relevant to our problem. So if { — 0 all for-
mulae contained in (1.3.11) change into the logarithmic profile, valid for the adiabatic
case. Let us now require that all formulae behave in the same way as a function of
{, in near-neutral situations, which can be done because we still have available the
value of ¢. Mathematically this means:

das

<7§_>§ -0 = constant. (1.3.12)
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If, for convenience, we take the value 1 for this constant, (1.3.11) yields: ¢ = ¢,
(1.3.11) therefore becomes:

S —glS7-1=1. (1.3.13)

It is interesting to note that as a consequence of (1.3.12) in combination with
(1.3.4) the power series for S can be written :

S=14{+0(L? (1.3.14)
and therefore from (1.3.3) the power series for f({) as:
SO =] |+ L+ 0(L?) (1.3.15)

where 0({2) represents C1£2 + Cl3 + ...

1.3.2  Generalization of BUSINGER’S derivation of profile formulae

As we have seen on page 19 BUSINGER used in his thesis two formulations of the
energy balance equation. The first, (1.2.10), in the dimension of acceleration, the
second, (1.2.11),in the dimension of specific energy. The only reason why he introduced
(1.2.10) first is, that it is easier to write the convective term in the way it occurs in
this equation. But because no conclusive physical argument is available that (1.2.10)
is an adequate formulation BUSINGER felt justified in using (1.2.11) as well as (1.2.10).

One wonders however, whether these two formulations are the only possible ones.
On the contrary it is easy to introduce the generalized form:

2 2
— Ky _Iquﬂg

lA-2a Tdz

K
] 4-2¢

(1.3.16)

which becomes (1.2.10) forg = L and (1.2.11) forg = 1.

In (1.3.16) we have introduced a factor 2 before the numerical parameter g in order
to avoid an exponent g in the final result (1.3.17).

If we use (1.1.6), (1.1.8), (1.2.9), (1.2.12) and (1.3.6) and make K equal to K, we
can express the various quantities in (1.2.10) and (1.2.11) in terms of S and L.

If in addition we introduce:

¢l = Kuz analogous to (1.3.1), then (1.3.16) becomes:
KgL

S¢—clS =1.

If we revert to (1.3.12), and once more make the constant equal to 1, we again find
that ¢ = ¢. Hence (1.3.16) can be written:

S¢—qgiS=1. , (1.3.17)
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1.3.3 A formal overall generalization and its solution

The two differential equations (1.3.13) and (1.3.17) have been derived from two
different formulations of the balance equation describing the mechanical and thermal
contributions to the total turbulence. These two equations resemble each other very
closely. This becomes even clearer if we write them as:

gzé(s_sl—q) ~ (1.3.18)
and
Z=‘—§(S!1“1—S“1). (1.3.19)

They become interchangeable by application of the transformation.:

TRr: {—>—1(; §S—>8SL (1.3.20)
Both formulae suggest the use of a general wind profile differential equation:
1 1
_ 6 Sy =_"_(S§b_—_ S9). 3.
4 a—b(S Sb) b——a(S S%) (1.3.21)

For a=1and b =1 —¢q (orb-= l-and a = 1 — ¢) we again obtain (1.3.18),
whereas by taking a=—1, and b=¢g—1 (or b=—1 and a = ¢ — 1) we get
formula (1.3.19).

Let us call the formulae contained in (1.3.13) or (1.3.18) the Plus group and the
formulae contained in (1.3.17) or (1.3.19) the Minus group.

It is now easy to express f({) as a function of S.

In order to do so we write:

df af  d{

:i? = 'ZC— IS,—. (1.3.22)

From (1.3.3) and (1.3.21) we have:
af S _(@a—bs
. [ S8
and from (1.3.21) alone:

dg —_ 1 -1 b—-1
ﬁ—‘a——;—b(asa _bS ).

Substituting these two relations in (1.3.22) we find:

df  aSe—bSP 1
B woe @by
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so that:

SO =as+ @B G

Combined with (1.3.21), we have now found a general “formal” solution of the
wind profile problem, viz.:
1

= (Se__gQb
75 (Se — §%)
ds (1.3.23)
fQ) =aS+ (a—b)/m
1.4 Special cases
1.4.1 Special cases of the Plus group
The general formula of the Plus group is:
{=(5—51-)
1 (1.4.1)

SO =8+ q/?qdi—l

We now first consider positive integers for g.
qg=1: {=S—lorS=1+fandf()=¢+In| ] (1.4.2)

which is the Monin-Obukhov profile (VIII).

Attention must be drawn to the fact that we have omitted the numerical integration
constant in (1.4.2). This has been done because the constant is not relevant. We are
not interested in f({) but in u(z), according to (1.3.2), where, owing to the introduction
of £, or z,, for which (1.1.7) holds good, the numerical constant term of f({) cancels
out. For that reason we shall write f({) in the following without the integration con-
stant.

qg=2: {=3(S—SorS2—2(S=1and S =+ V1 + (2

(Because where { = 0, S must be -+ 1, the solution S = ¢ — V1 + {2 is not appli-
cable).

SO=lHVTF O VI8
(+14yi+
={+VI+E+m|{|—In(l+ I+ D). (1.43)

This is Holzman’s approximation formula (V). We shall call it simply the Holzman
profile.




28

qg=3: =31(S—S5"%orS3—3(52=1

25 +1

and f(C)=S+1n|S—1|—%ln(Sz+S+1)—|—\/3arctg_\/3.
It is possible to write S explicitly as a function of {, but this leads to a rather com-

plicated form; the formula can be applied more easily in the parameter form.

As far as we know, this formula has never been used as a wind profile formula.

(1.4.9)

q=4: {=1(S—S3orS+—4[53=1

S—1
S+1
Here, too, the parameter form is clearer than the very complicated explicit solution.
This profile formula is the well-known KEYPS profile (IX).
Higher positive values of ¢ do not result in known profile functions as far as we
are aware.
Nor is this the case for ¢ = 0, but from a purely mathematical point of view this
value gives an interesting result. We write (1.4.1) as:

SO =8+1In]|

| — 2 arctg S. (1.4.5)

S —8Y _ sa—e*™)
q q '

If the power series for e is used it is easily seen that the limit for g — 0 is:

£

{=SIhS

B s i(lnS)”

and f(l)—S+flT§—S+ln|1nS]+ — (1.4.6)
n=1

which will be called the zero plus profile.

Before we continue with negative g values we draw attention to the following
mathematical peculiarity:
Let us write (1.3.18) as:

glS—1=1-—581¢
or S-¢=1—gq{S-1. 1.4.7)

Now, the following approximation holds for small values of x:
1

—xzm.

It is always possible to make ¢{S~1 sufficiently small by taking a sufficiently low
value for ¢, which means that the considerations are restricted to cases of only slight
stability or instability. So (1.4.7) can be approximated by:

1 (1.4.8)
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1
N 1+q§SlorS 14 g{S-
Hence:

(= — b_ (S — Si-(-0), (1.4.9)

And this is (1.3.18) again although with the opposite value of ¢. So we can consider
each formula of the Plus group with a positive value of ¢ as an approximation in the
sense of (1.4.8) of another formula of the Plus group with a negative value of ¢ and
vice versa.

In addition, we can show that solutions for negative values of g can be found
immediately from the solutions for positive values of g:

AN ds
f(C):S“F‘]_/Sq—_:S_qT:ﬁ:
_q/Sa a5 = S_qs‘qfs—q~1
For g << 0 we can write ¢ = — | ¢ | . Hence:
fGa<0=5+1q] gt iqlS=
SCg=1q1)+1qlS. (1.4.10)

We propose to call the subgroup of the Plus group with ¢ > 0 the MOHKEYPS
group, because it contains the formulae of KEYPS, Holzman and MO. The individual
elements of this group can be indicated by MKgq.

Letus now take: g = — 1, then from (1.4.9):

{=82—8S > S=11<+ 144D

and: (1.4.11)
SO =+1+4l+1In(+/1+4L—1)

This is Su’s profile (X).

q=—2
= 3(S3— S) or §-2 + 24§-3 =1
B S— (1.4.12)
fw‘“““‘?ﬁ‘ }

This is the Rossby-Montgomery profile (IV).

We have already seen that HoLzMAN started from the Rossby-Montgomery
equation (1.2.4) and introduced (1.2.6) as an approximation, which yielded the wind
profile formula V. This approximation is a special case of the general relation between
the members with positive ¢ and the members with negative ¢ of the Plus group.
The Suand MO profiles ( = — 1 and g = 1 respectively) are related in a similar way.
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1.4.2 Special cases of the Minus group
The Minus group is expressed by:
¢ =él-(sa-1 — 51
and (1.4.13)
ds
A= g—DS+af

Just as in the case of the Plus group, the members with positive g and the members
with negative ¢ can be considered as approximations of each other in the sense of

(1.4.8).
It can be shown easily, moreover, that:
JGg<0)=fLg=1q1)—1qlS. (1.4.14)
qg=1:
§=1—S‘10rS=m }
fO=I|S—1|=In|¢|—In|1—{| (1:413)

This is Businger’s second formula (VII), formula (2.8.11) in his thesis.
g=2:

(1.4.16)

=3 —SYorS={+/T+ 2 }
fO=(++/1T+2+Inj{{|—In|1+ 1+ (2]

which is the Holzman profile (V) again.
So the Plus and Minus groups both contain the Holzman profile. It is the only
group element which transforms into itself when the transformation TR is applied.

q=1%
{=2(St— 81 — Sizl;l/;___zc
' (1.4.17)
(D) = 24/1—2¢ +ln|\/1—2C—1‘
(1+v1-=202 V1—20+1

which is Businger’s first formula (VI), (2.8.8) in his thesis.

Let us call the subgroup of the Minus group with ¢ > 0 the Minus Positive group
(Min-Pos).
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g = O results in:

{=S8"1UnS
(1.4.18)

ad SO =—S+Inils|+ )
n=1

which will be called the zero minus profile.

1.4.3  Tables and figures illustrating the Plus and Minus groups

As far as we know other g-values do not lead to formulae which have been used
as wind profile formulae, but for completeness’ sake we have calculated the profiles

for some additional g-values and all these cases are summarized in parameter form
in table 1.4.1.

The f({) formulae for the Minus group, expressed as functions of S, immediately
follow from those for the Plus group by adding (g — 2)S, as can be seen by comparing
(1.4.13) with (1.4.1).

The cases for which f can be written as a simple explicit function of ¢ have been
summarized in table 1.4.2, together with the formulae of Goptarev and Swinbank,
which will be dealt with in later chapters.

The characteristics of the profile formulae are illustrated in figures 1.4.1 and 1.4.2.

In 1.3.3 it has been shown that the Plus and Minus groups interchange if the trans-
formation TR is applied. If we introduce: x = arctg { and y = arctg InS, the trans-
formation TR is equivalent to: (x,y) — (— x,— y), which represents a rotation of
180° in an (x,y) diagram.

By using arctg functions we have obtained that the quantities  and InS, which vary
over an unlimited range — co . .. 4 oo, are replaced by quantities which vary over
alimited range, viz.: — 37 ...0... + i~

So a diagram can be constructed in which the complete functions contained in the
Plus and Minus groups can be represented. Moreover, when rotated through 180°,
the graphs for the MiNUs group coincide with those for the Plus group. A number of
profile formulae from the Plus group are represented in figure 1.4.1. Areas are also
indicated where 1 < ¢, 0 < ¢ <1 and q < 0 respectively. If the figure is rotated
through 180° it transforms into figure 1.4.2, in which the Minus group is represented.

1.4.4  Two other groups

Mathematically the general formula (1.3.21) contains many more S({) functions
than the Plus and Minus groups. It is senseless to investigate and determine all of
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TaBLE 1.4.1 Plus group
29 (S Name fS)
4  1(S—S59 KEYPS S+In|S—1|—In|S+1|—2arctgsS
o = 25 +1
3 (S — 5-2) — S—|—111|S——1|——12~1n(S2—|—S—l—1)+\/3arctg_\/3
2 1(S—SD Holzman S+In|S—1|—In|S+1]
5 % ¥ 4 = 25t 4
8 2(S—SY — S+1n|St—1|—2n(S -+ St 4+ 1) + /3 arctg 73
1 S—1 MO S+In|S—1]
3 2(S—SYH — S+ St4In|St—1|
' o (In S)r
0 Sin S zero plus S—l—lnllnSH—Z —
n=1
—1  2(St—09) — 35 4+ S +1In | St—1]|
—1 S2—§ Su 2S +In|S—1|
5 — 28%
—3 35209 — 8S +In| St—1|—4n(S -+ St + 1) 4 +/3 arctg 73
—2 1(S?—5) RM 38 +In|S—1|—In|S+1|
= 28+
—3 3(5t—29) — 4S+ln|S—1|——12~1n(S2+S+1)+\/3arctg_1/3
—4 1S5 —29) — 58 4+In{S—1]—In|S+1|—2arctg S
TABLE 1.4.2 Plus group
4 ¥ Name S Ies)
2 Holzman  {-++/1+ (2 4|l ++4/1+2—In|1+ /14 27]
1 MO {+1- {+Injl
3 - FA+L+41+2) W+In|Z|+4/1+20—1n|14+/1420]
—1 Su 31+ V1 +4Y In|¢|++v1+4—In|l1++/1+4L|
. 2%e?t o
s Swinbank T In|e2¢—1|
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Minus group

g LS Name fS)
1(S8 — $-1) 35+In|S—1|—In|S+1|—2arctg §
(82— 8-y — 2S+ln|S—1|—%1n(S2—|—S—I—l)+\/§arctg2i+1
(S — 8- Holzman S+In|S—1|—InjS+1}
(S — S 1S +1n | St — 1| —4n(S + 8t + 1) + 473 arctgzsi;;l
1—5§-1 Businger 11 In|S—1]
2(S-*—S-1)  Businger I = — 1S+ St ln|St—1]
S§1lnS zero minus —S+In(ln§| +§(;n.i);b
2AS1—89)  — S+ St 4In| S|
S1—§-2 — —S+InfS—1]
3S-1—s5%H — —S+In| St —1]—3n(S + 8+ 1)+ 473 arcthSi/;— 1
1(S1—8-3) _— —S+In]S—1|—In|S-+1]
HS1—s-)  — SIS —1]—3n(S® + S + 1) +1/3 arctg Z’E:L/;
(S 1—85-% — —S+In|S—1|—In|S+1|—2arctg §
Minus group
Name S S
Holzman  { ++/1 + {2 C+ln|§|+\/m§;-ln|1+\/l_-{—_§2|
Businger I 1—1‘; In|{]—In|l—1}
Businger I g—zz(l— {—v1=20 2\/1—___25_ +ln,\/1_:_—25_1(
A+ vi-—-20)2 v1—20+1
_ 2—2(1—\/1——4&) —2 —l—lntl_\/l___—f!
1+ v1—4) 14+ 4/1—4¢
Swin-Trans %(32;_ 1) In|l|+ ih—(’gzj_—)ﬂlﬁ

n=1
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TaBLE 1.4.2 (continuation) Log- and sym-group
g ¥ Name S AD
G : I i
0 Goptarev e nl{H_Zn-n!
n=1
“dnoIn snuIN - 741 314
| : y -
00 +0L+sH+E+ T+ L+ 0L+80+90+ yo+ Tot+ 00 T0— +0—90—80—0L— §}— T— £—bG§—0}—co—

00’0 l

%] 100 S
204 — o= RM S00
10 ~——— zero-plus +o

54  c——- MO 70

44 e Holzman

34 KEYPS €0
x- X Swinbank

¥'0

S0
90
L0
8’0
60
ol
b
>d [
b>a=>0 LSl
<
d> 4 F
Fe
SUBJ] -UIMS X X
UBWZ[OH e
jdeBuisng .. — FE
| 128usng e Ly
SNUIW-0SZ  —meeer g
rol
0.05 I oz
¢ 0014 [ o
00L
T 0.00

| JENS S B LI N L B SR B SU B BN S SR T TT T

T T
—o0 ~10—-5-4-3 —2 —1.5 —1.0-08-—-06 —04 —02 0.0 +02
~{

——TTT —
+04 406408 +1.0 +1.5 +2 +34+4-5¢104c0
Fig. 1.4.1 Plus Group.

Fig. 1.4.1 and Fig. 1.4.2 Graphical representation of wind profile formulae.

them, because we have no reason to expect that they will all have a physical meaning.
There are only two special groups which are of interest, because they are related
to the Plus and Minus groups, viz.:
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I a=b and II g= —5b.
The first relation results in:
{ = SenS

(1.4.19)
fO=as+ [ — a5+ njms| +Z(1n D

as follows from (1.3.23).

Let us call this group the logarithmic group. It contains the zero plus and zero
minus profiles for @ = 1 and — 1 respectively and in this way the group is related to
the Plus and Minus groups.

100 4
504
204

10 4 \

zero-plus —2

34 —— Goptarev

zero-minus

0.7 1

0.6 7

0.5
0.4 4

B O R e S e e . T ——

T T
—eco—10-5-4—3 —2 —15—1.0—-08-06—04 —0.2 0.0 +02 +04 +0.6+0.8+1.0 +1 5 +2 +3+4+5+10+N
—{

Fig. 1.4.3 Graphical representation of the logarithmic group of wind profile formulae.
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Fig. 1.4.4 Graphical representation of the symmetrical group of wind profile formulae.

Tr transforms this group into itself, in such a way that an element with any ¢
changes into an element with opposite g.
The second relation results in:

1 —a
[ = 5 (50— 5)

(1.4.20)
as
S =S8+ 2av ST

For a = 1 we have the Holzman profile which shows that a relation exists with the
Plus and Minus groups.
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When the transformation TR is applied each member of this group transforms into
itself.

We suggest that this group be called the symmetrical group. ‘

The logarithmic and the symmetrical groups have in common the element where
a=0:

{=InS

fO=In|¢|+ Zﬁ (1.4.21)
n=1

nn!

This formula has been proposed by GoPTAREV to describe the wind profile (XI).

These results are illustrated in figures 1.4.3 and 1.4.4. In figure 1.4.4 only positive
parameter values occur, because the formula for a parameter value a is identical to
that for — a. ’

1.5 The Swinbank formula

1.5.1 The relation with the Plus group; its equivalent in the Minus group

It has been shown in the foregoing that most wind profile formulae known can be
derived from our general formula (1.3.21).

Four formulae from the series we have given in table 1.2.1 have not yet been dealt
with, the power profile, the Deacon profile, the Pandoifo formula and the Swinbank
formula. The power profile and the Deacon profile cannot be written in the general
form (1.3.2), so that we cannot expect them to be related to our general system; the
Pandolfo formula is a combination of the MO profile and an equivalent of the
Priestley temperature profile and hence cannot be included in the system,

The Swinbank profile can be expressed in the form (1.3.2), however, and SWINBANK
derived his formula starting from (1.2.18), so that it seems probable that this formula
is related to our system.

If ¢{ =agsz/L is introduced into Swinbank’s profile formula XII, we can write
according to (1.3.2):

f(=Inlect—1] (1.5.1)
so that:
cect
et — 1

=1

For { = 0 we find S = 1, as is to be expected.
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We now require, just as in our complete system, that 3 = 1. It then fol-
lows that ¢ has to be taken as equal to 2. §=0

So we have:

{
2Le?¢

§= €2t —1°

which equation can be transformed into:

€2t — 2le2tS5-1 =1, ' (1.5.2)
which can also be written as: |

§2¢/In§ 27520/ S-1 — 1, (1.5.3)

Comparing this relation with (1.3.13) we see that (1.5.3) can be considered as a Plus
formula with varying ¢ (varying in the same way as 2¢/In.S). The factor g in the second
term must not be changed into 2{/In S because this ¢ is in fact a constant, ¢, which is
fixed by the requirement (dS/dl)e—o = 1. As (2{/InS)¢—0 = 2 this requirement is ful-
filled in the Swinbank formula too.

The numerical values of 2¢{/In S for a number of { values are given in the following
table:

TABLE 1.5.1 Values of 2L/In S for the Swinbank profile

4 —o0 —4 —3 —2 —1 0 1 2 3 4 4 o0
2{/lnS 1.00 1.35 140 154 172 200 238 2.85 334 385 oo

We have also drawn the graph of the Swinbank profile in figure 1.4.1.

So we find that the Swinbank profile is closely related to the Plus group and
numerically in particular to the Holzman profile. This relation can be further eluci-
dated by the following reasoning:

If we write the Holzman profile as:

S—2=8'orln|§S—2¢{| =—InS
and the Swinbank profile as:

S—2l=exp(InS—2) or In|S—2{| =InS§—2¢,
we see that three quantities occur in these relations, i.e.:

I: In|S—2¢], II: InS—2¢ and or: —InsS.

Equating I to II results in the Swinbank profile.
Equating I to III results in the Holzman profile.
Equating II to III results in the Goptarev profile.
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Because the transformation TR changes the Plus group into the Minus group, the
Swinbank profile, which is closely related to the Plus group, must be transformed by
TR into a profile formula which is related in a similar way to the Minus group.

The result of the transformation reads:

e?t —1
e
and from (1.3.3):
=g+ Zn—(’s% (1.5.4)
n=1

Let us call this profile the Swin-Trans (Swinbank Transformation) profile.

Analogous to the foregoing reasoning concerning the Swinbank, Holzman and
Goptarev profiles, we now have:

I*: In|S-1'42¢], I*: 2{InSand II*: InS.
Equating I* to II* results in the Swin-Trans profile.

Equating I* to III* results in the Holzman profile.
Equating IT* to IIT* results in the Goptarev profile.

1.5.2 A by-path: Generalization of the Swinbank profile.

As has already been mentioned in the review of the derivation of formula XII,

Swinbank introduces a quantity X with the dimension of length by requiring
N

du Uy L o N ﬁ*
T~ 7y (1:2:26) to be a generalization of — =
Applying this to (1.3.2) we obtain:
uy df(D) _ uy B
kdx kx df(y) = dlnX
Hence:
XAl (1.5.5)

It is evident that X = z must hold good. Since for small values of { the function
J(D) can be approximated by In | ¢ |, as follows from (1.3.15), formula (1.5.5) must

changeinto z = Aell¢l or A = ze0/¢/ for small values of £. So we finally have:

X — zef(&)-mmi¢| (1.5.6)
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It would now be logical to introduce a non-dimensional quantity ¢ by defining:

£ i _‘; = ef({)-Inj¢ (1.5.7)

for which & = 1 holds good.
We can now generalize (1.3.10) into:

-1 4-
Kir uy !

Y (1.5.8)

where m can take any positive value.

Substituting (1.5.8) into (1.2.18) and using the symbols S and { we find, analogous
to the generalization of the derivation of the KEYPS profile in 1.3.1:

EmSe— (m 4 q){émSe-1 = | (1.5.9

where the requirement (f;,—i) = 1 is again fulfilled.
£=0

The equation (1.5.9) contains the Plus group (if 7» = 0) and of course the Swinbank
profile (if m = g = 1). Taking m = g we may consider the resulting equation:
(€8)1—2qLE(¢S)e1 = (1.5.10)

as the differential equation for a group of generalized Swinbank profiles.
The solution in parameter form can easily be found if w i £ S'is introduced.
We have:

(& = Lef(G)-Inlg] — (sign D) ef(®)
and

w=ts=tTO _, dnlEL]_dED

di a4t
so that from (1.5.10) we get:

w?—1 '
{¢= —W (1.5.11)
or
w?—1
D)= 2qwt-T (1.5.12)

and from (1.5.11) by differentiation:
digé _ 1

1—gq
== "% a
do 2q 2q @

thus:
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d¢e 1 _1—q _

_ 4

4 _do 29 29 Ly 1—a i,
do  d(( ) w 2q 2q
dg
and hence:
1 1—gq
= — —_— —q

4 7 Inw- 27 w™? 4+ constant.
Since { = 0, where w = 1, the constant has to be 2q —1 so that:

{= ln + 27 (w 72— 1. (1.5.13)

The formulae (1.5.12) and (1.5.13) together form the parameter solution for the
generalized Swinbank profile. For ¢ = 1 we immediately get:

e?t —1

w=e2€andf(C)=lnl n

which is Swinbank’s original formula.

1.6 The wind speed difference ratio as a function of stability

It is usual in papers on wind profiles to estimate values of S and z/L from the
observations and to plot these values in an (S,z/L) diagram, which is a transformation
of our figure 1.4.1. The theoretical curves corresponding to the various wind profile
formulae are then compared with the results of observations in order to judge which
theoretical formula is to be preferred.

There is one serious objection to this method.

Both S and z/L contain the quantity u,, which has to be determined from measure-
ments of the deviations #” and w’ of both the horizontal and the vertical wind com-
ponents. The inaccuracy in the estimates of uy results in a systematic deviation of the
plotting positions of the observations from the “true position” in the (S,z/L) diagram.
SWINBANK (1966) already paid attention to this fact in his discussion of his wind
profile formula. The systematic deviation consist of a shift of the plotting positions
of the observations. In the stable part of the diagram the shift is in the direction of the
theoretical curve; in the unstable part the shift is in the opposite direction. This W111
be demonstrated in Chapter 2.

It is always difficult to judge the goodness of fit of a curve by eye, and even more
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so if there is a systematic deviation as in the case of the (S,z/L) diagram. On the other
hand, it is also rather difficult to assess by means of a statistical test in this case.
Tt is much more satisfactory to use the wind speed difference ratio defined by:

_ u(za) —u(za) _ f(L) —f(%a) (1.6.1)
) —uG) Sl S -

If we take an arbitrary value for z1 and fixed values for the ratios za/z1 and z3/z1,
¥V is only a function of z/L. A choice with practical advantages is: z2/z1 = 2 and
zg/z1 = 4. These values will be used in the following.

V can be determined from wind speed measurements and z/L from flux measure-
ments. So here we have two quantities, ¥ and z/L, the measuring errors of which are
independent of each other.

If we determine the value of { from the V-value with the aid of the theoretical curves
in the (V,{) diagram, denoted by L, we can construct a ({m,z/L) diagram in which
these Zs-values are plotted against z/L-values as determined from flux measurements.
In this ({m.z/L) diagram we have to examine whether the best linear regression
passes through the origin or not. Even though the scatter may have become greater,
it is easier to judge a linear relation than a curved one as in the case of the (S,z/L)
diagram. Besides, if we should succeed in collecting larger numbers of observations,
this would increase the reliability of the relationship in the ({s,z/L) diagram, whereas
assessment of the relationship in the (S,z/L) diagram would still be hampered by the
systematic deviations referred to above.

The character of the V{({) functions will now be investigated.

As a consequence of § = 1, with the additional requirement <%§> = 1, all
£=0

(V,0) curves pass through one point with the same slope. In the case of the values we
have selected, zo/z1 = 2 and z3/z1 = 4, this point is (¥ = 4,{ = 0), as can be easily
demonstrated:

Taking account of (1.3.15) we find:

S@Y)—fQRH  In242{+0(L3)

VO = A A0 — WA T 3L 0@ &0

3 (1.6.2)

and

V() _ (2+0(9) (Ind4 +0(9) — 3+ 0()) (n2 +0())) _
dg (In4 + 0())2

2ln4—3In2 4 0(%) N 1
In% 4 —0(2) £>0 4In 2

= 0.36. (1.6.3)

To see how V({) behaves for high absolute values of £, we will now determine the
limits of V({) for { — -+ co and — oo respectively. By using (1.3.3), we can write:
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4g
(S/HdL
V = f(4Z) _f(zo =2§' X (1.6.4)
4

The ¢ interval — oo .., 0, ..+ oo has to correspond with the S interval 0. . .,
1,...+ oo,if we are to find a wind profile formula which holds good in the complete
{ interval.

From the general equation (1.3.21) we can find the asymptotic relations S({) for
{ — 4 oo or — co. These will be substituted into (1.6.4).

It is sufficient if we consider all possible combinations of a < b, because ¢ and b
can be interchanged without changing (1.3.21). The following combinations should
be investigated:

a<b<0;a=b<0;a<b=0;a=5b=0
a<0<b;a=0<b;0<a=b;0<a<b

The asymptotic relation between S and { for all combinations is given in table 1.6.1.

TABLE 1.6.1 Asymptotic relations {(S)

S—> 4 o0 S—=0
a<b<0 { ~ 1 St >0 =~ St > oo
b—a a—b
a=>b <0 {~S*IhS—>0 {~5InS——o

: 1 1 1
a=b=0 {~InS—>+ = {xIn§—>—ox

S - —

1
~ b oo ~
a<0<b CNb aS + ¢ iy

1 1 1
= ~ — (S — 0o a = (St — -
a=0<b e b(s D—+ 4 b(S ) — 3

0<a=5» {(xS°InS—+ {~SnS—-0

O0<a<b {zbiaSb—>+oo CzaibS“—>0

We see from the above that only in the cases a = b = 0 and a < 0 << b does the
complete S interval 0 . . . -- oo correspond to the complete { interval — oo . .. 4 oo.
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The values of V(¢) for { — + oo and — oo can now be found easily for the various
groups. The result is summed up in table 1.6.2.

TABLE 1.6.2 V-values for { = + oo and — oo

Plus group Minus group
q V(— o) V(+ o) V(— o0) V(+ o0)
too +3 3 +4 +3
+2 + 4 +3 - +3
+1-+38 0 + % +3 +1
+1 — 3 +3 -
0 - +3 +1 —
— — + 3 +3% -
Swinbank Swin-Trans
0 + 3 +1 +1
Logarithmic group Symmetrical group
a V(— o0) V(4 o0) V(— o) V(+ 0)
+ o0 — +3 + % + 3%
+1 B 3 +1 +3
0 0 4+ 1 0 +1
—1 +3 — + % + 3
— oo +1 = +3 +3

The formulae of the Plus group where ¢ < 1 do not have real V-values in the very
stable region and the formulae in the Minus group where ¢ < 1 do not have real V'
values in the very unstable region. These results are illustrated schematically in figure
1.6.1, while fig. 1.6.2. gives the V function for a number of profile formulae, viz.:
MO, Holzman, MK 3, KEYPS, MK4;3, RM, Su, Businger II, Swinbank, Swin-Trans,
Goptarev and Pandolfo.

What can be said about the form of the actual wind profile in the extreme cases of
stable and unstable situations?

In stable cases the most extreme possibility is that there is no turbulent exchange
so that the flow is laminar; in this case K represents molecular viscosity and is
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Fig. 1.6.2 Wind speed difference ratio as a function of ¢ for different wind profile formulae.
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independent of z, so that, according to (1.1.1), du/dz must be constant. Hence u
must be in the form of Az + B and therefore:

_ A4z—A-2z

V= A-d4z—A4-z =+%

All formulae of the MOHKEYPS group and the related Swinbank formula are
consistent with this result. ‘

In extremely unstable situations it is not easy to say what the form of the profile
will be.

MoniN and OBUKHOV consider the extreme case of purely thermal turbulence with
u (and u,) = 0. Since there the only characteristic quantities are the heat flux H,
the buoyancy parameter g/T and the height z, it follows from dimensional analysis
that the temperature profile can be represented by: 7(z) = C1 + C2z~1/3 and from
the assumed similarity of temperature and wind profile:

u(z) = Cs + Cyz—1/3,
Hence:

-1/8_9-1/3
Vi(2) = im—il— ~ 0.442.

This is in agreement with the KEYPS formula. But V-values calculated from
observational data are sometimes lower than 0.442, and this may therefore indicate
that the KEYPS formula is not applicable, at least in very stable cases.

We suggest a different line of reasoning; Kps is often written as du - A. This ex-
pression was used in the derivation of the KEYPS profile. 4du is a velocity difference,
characteristic of the rotation speed of the eddies, and A is a length which is character-
istic of the size of the eddies. Now it scems reasonable to assume that both du and A
increase linearly with height so that the maximum variation of Kjs can be considered
to be proportional to the square of height. According to (1.1.1) this would result in:

w(z) = A1 + Aqz71
and therefore:

4-1_2-1

Vegma—1==t+%

This is in agreement with a statement by Ito (1966) that laboratory results of
Malkus and Townsend show that the following approximation applies in the case
of free convection:

Y~ &t

The formulae of the Min-Pos group and the Swin-Trans profile are consistent
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with this result. The only profile function which is consistent with both limits, i.e.
4+ % for { — - o0 and + 4 for { — — oo, is the Holzman profile.

1.7 General comments on the theoretical results

As far as we can see, the various derivations of diabatic wind profile formulae as
published in meteorological literature to date have only a very limited physical basis,
viz., a balance equation in a simplified form with an unknown general expression &
for the total energy dissipation. Dimensional analysis alone is not sufficient to find
an analytical form for &. Some hypotheses (often of a purely mathematical nature) must
be introduced and this has been done by different authors in different ways, being
almost without exception a matter of trial and error. What is more, the terms of the
turbulent balance equation can be formulated in different dimensions, which results in
several possible forms for the profile formulae. Finally there is the numerical constant
a, the value of which has to be found empirically.

A physical or partly physical reasoning, as used by different authors, suggests that
the profile formulag obtained gives a better approximation of the true profile formula
than a purely mathematical generalization of the logarithmic profile. The large dif-
ferences between the well-known formulae (like KEYPS, Swinbank etc.) prove that
this need not be the case at all,

It is clear from the figures 1.4.1 ... 1.4.4 that a large number of “potential” wind
profile formulae exist, which differ only very little from one another, and it is im-
possible to distinguish between them with the present instrumental accuracy of wind
observations. On the other hand, we believe that, if sufficient observations were
available, it would be possible to select a formula which describes the wind profile
adequately over quite a large range of stability values.

It will not be possible to form a complete physical theory of wind profiles until
the problem of wind structure (wind spectra depending on stability) is satisfactorily
solved. A first attempt in this direction was made by Businger in his 1959 treatise.
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2. APPLICATIONS OF PROFILE FORMULAE TO NUMERICAL
RESULTS OF OBSERVATIONS

2.0 Introduction

Two groups of observations are needed for complete testing of wind profile for-
mulae, in the first place wind speed observations from at least three heights and se-
condly observations of momentum and heat flux. The measurements in these two
groups have to be independent of each other with respect to measuring errors.

The only observations of this kind available to us at the moment are the results of
the “Great Plains Turbulence Field Program” carried out at O’Neill, Nebraska (in
1953) as published by LErTaU and DAvIDsON (1957). Many authors have already used
these observations.

We must emphasize that due to the inaccuracy of the available observations the
following results of the applications cannot be considered to have general validity.
We would rather regard these applications as an example of how to apply the theo-
retical results to observations; and of course we do not mean to suggest that this
would be the only way.

Measurements of the mean cross-products #'w’ and T'w’ have been used to deter-
mine values of the friction velocity #, and the heat flux H. These observations were
made by the Massachusetts Institute of Technology at heights of 1.5, 3 and 6 m.
Simuitaneous measurements of the mean wind speed made by a research group from
Johns Hopkins University at heights 1.6, 3.2 and 6.4 m. were taken to form the second
group.

With the u,, H and T values, the Monin-Obukhov length L was calculated for each
of the three levels taking k = 0.4. Because L is assumed to be independent of height,

‘the mean value of the three 1/L values was used as an estimate of the true value of 1/L.

The wind speed difference ratio

_ Ues— Us.2
Ue.4 — Ul.6

has been calculated from each triplet of mean wind speed measurements.

In figure 2.1.0 the values of ¥ are plotted as a function of z/L, where z = 160 cm.
There are 44 points altogether. Unfortunately there is a group of seven observations
with very large V-values, (for z/L = 0, caused by w'T" = 0, H = 0, L = oc), which
are situated completely outside the group of the other observations. There must have
been something wrong with these measurements but we have not been able to find
out the cause of the discrepancy. Of course we have been forced to leave these ob-
servations out of consideration because a homogeneous group of observations is
needed.
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¥ from John Hopkins University wind speed measurements
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zfL from M.L.T. flux measurements
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Fig. 2.1.0 Wind speed difference ratio and values of z/L from “Great Plains Turbulence Field
Program” data.

2.1 Objections to the (S,z/L) diagram

The remaining 37 observations will first be used to show the disadvantages which
are inherent in the (S,z/L) diagram when it is used to investigate which wind profile
formula agrees best with the observations.

Figure 2.1.1 is the (V,z/L) representation of the observations again. Figure 2.1.2 is
the result of a randomization process. The V-values have been randomized with the
use of random numbers and so they no longer bear any relation to the z/L-values.
Randomization was done as follows: there are 37 pairs (V,z/L);; i=1,..., 37.
One V-value from the 37 is drawn at random and joined to (z/L)1. Next a second V
is drawn at random from the remaining 36 V-values and joined to (z/L)s, etc. These
new (V,z/L) pairs were plotted in figure 2.1.2. ‘

We now proceed to the (S,z/L) diagrams. Values of S for two different levels have
been calculated for each of the 37 sets of observations in the randomized case. This
was done in the following way: for du/dz we took (0.03125) (ug.a — u3.2) and

(0.0625) (us.2 — u1.¢) respectively with z = 4.52 (= V64 x 3.2) and 2.26
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Fig. 2.1.1 Wind speed difference ratio ¥ versus z/L (for z = 160 cm).
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Fig. 2.1.2 Wind speed difference ratio ¥ versus z/L, data from Fig, 2.1.1 after randomization.

(= V3.2 x 1.6). These values were multiplied by kz/u,. In the first calculation
we coupled the values of u, and du/dz as they were observed together. In the second
calculation we combined u,-values with the randomized du/dz estimates (in accordance
with the randomization of the V-values). Figures 2.1.3 and 2.1.4 (each with 2 X 37 =
= 74 points, with either z = 2.26 or z = 4.52) show the results. In figure 2.1.3 the
characteristic shape of the (S,z/L) diagrams can be recognized. In figure 2.1.4 there is
much more scatter than in figure 2.1.3, but a relation between S and z/L similar to
that of figure 2.1.3 is clear. An increase in S with increasing z/L on the stable side
of the diagram can be observed together with the fact that on the unstable side the S
values are much smaller than on the stable side. The difference between figure 2.1.3
and figure 2.1.4 is that in figure 2.1.3 a decrease in S with decreasing z/L is present,
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Fig. 2.1.3 Non-dimensional windshear S against height, stability ratio z/L.
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Fig. 2.1.4 Non-dimensional windshear S against height, stability parameter z/L after randomization.
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just as is to be expected from theory, but in the “randomized” picture a slight increase
in S with decreasing z/L could be seen.

There is bound to be an increase in S with increasing z/L because u, occurs in the
denominator in both S and z/L. So in the first instance we should expect similar in-
creases in S on the stable and on the unstable side. But because generally in stable
situations the vertical wind speed fluctuations (w') are small, whereas in unstable
situations w’ is much larger, this difference between the stable and unstable sides of
the diagram can be explained by a difference in u, values.

It will be clear from the foregoing that measuring inaccuracies in u, result in a
systematic deviation of the plotting positions of the observations from the true posi-
tions in the (S,z/L) diagram. The deviations on the stable side roughly follow the slope
of the (S,z/L) curve and on the unstable side they are opposed to the slope of the curve.

2.2 Application of some of the wind profile formulae to O’Neill data (Great Plains
Turbulence Field Program)

2.2.0 Introduction

As already mentioned in the foregoing section, unfortunately the observations of
the “Great Plains Turbulence Field Program” are insufficiently accurate, so that we
cannot expect to arrive at a conclusive statement as to the applicability of the various
profile formulae. The flux measurements, in particular, are inaccurate owing to the
inadequacy of the spectral range.

It does not seem worthwhile therefore, to apply detailed statistical tests. We think,
however, that the material is good enough to show how the different formulae could
be tested in future, as soon as better material becomes available.

2.2.1 The ({,z/L) diagram

The application of the formulae to the observation results was made as follows:

The {-value corresponding to each of the calculated V-values (37 cases) was read
off from the theoretical (¥,{) curves of figure 1.6.2, for each of the following six profile
formulae:

KEYPS; MK3; MO; Holzman; Swinbank ; Goptarev.

The {-values obtained in this way and the corresponding measured z/L-values were
plotted in diagrams (figures 2.2.1 . .. 2.2.6),

A formula as true as the L-hypothesis would yield a linear relation { = a z/L
over the whole range of stability. So a correlation coefficient between ¢ and z/L,
or a regression line { on z/L, can yield information on how well the different for-
mulae approximate to this ideal.
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Fig. 2.2.1 Height, stability parameter { determined from the wind speed difference ratio according to
the KEYPS profile formula against z/L. (for z = 160 cm)
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Fig. 2.2.2 Height, stability parameter { determined from the wind speed difference ratio according
to the MK profile formula against z/L (for z = 160 cm).
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Fig. 2.2.3 Height, stability parameter { determined from the wind speed difference ratio according
to the Holzman profile formula against z/L (for z = 160 cm).
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Fig. 2.2.4 Height, stability parameter { determined from the wind speed difference ratio according
to the MO profile formula against z/L (for z = 160 c¢cm).
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Fig. 2.2.5 Height, stability parameter { determined from the wind speed difference ratio according
to the Swinbank profile formula against z/L (for z = 160 cm).
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Fig. 2.2.6 Height, stability parameter ¢ determined from the wind speed difference ratio according
to the Goptarev profile formula against z/L (for z = 160 cm).
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Without wishing to lay too much emphasis on the statistical importance, we
determined the correlation coefficients for five of the six cases. This could not be done
in the case of KEYPS, because one of the V-values is lower than 0.442 (the lower limit
of KEYPS’ (V,{) curve for { — — o0) and therefore no real { exist in this case.

The values of the correlation coefficients r are:

Formula r

MK3; 0.559
Holzman 0.855
MO 0.798
Swinbank 0.829
Goptarev 0.848

The value of r for MK3 is so much lower than the other r-values that it seems
unlikely that this formula (and hence the KEYPS formula and all other Plus formulae
where g > 3) can be used for practical purposes as a formula valid for a large stability
range.

The results for the other formulae do not differ substantially. We have calculated
regression lines for these formulae representing the variation of the true value of {
with the true value of z/L.

Because the measurements of the two variables ({ and z/L) contain a rather large
margin of error, we decided not to use the common regression line of ¢ on z/L,
which is based upon errorless z/L-values, but to use a method described by LINDLEY
(1947) (Appendix II).

Rough estimates of the standard deviations of both variables have been obtained
in the following way:

The standard deviation sz, of the measuring error of each z/L, which was determin-
ed from 3 observations, was found to be z s1/z, where 51,7, represents the sampling
standard deviation of the three values of 1/L. With z = 160 cm. we have:

3 T 13
S2/z = 160 {% Z(% _ %)2} _
1

To find the measuring error standard deviation of each { we have based ourselves
upon the accuracy of the Johns Hopkins measurements of the u values as given by
LErTAU and DAvIDsON (1957 vol 1, p. 132) viz. 3 cm/s. We do not know exactly how
this figure has been arrived at. We read ‘‘a comparability of the velocity as measured by
the modified three-cup SCS anemometer at any level of the order of 0.5 per cent or
3 cm/s”. But let us assume that this indicates a 2o range so that the standard deviation
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TABLE 2.2.1
KEYPS MK ;

z/L Sz/L vV Sp U Sel {2 Seo
-+ 0.0075 0.0007 0.506 0.011 + 0.015 0.028 + 0.016 0.030
-+ 0.0034 0.0019 0.514 0.013 -+ 0.032 0.037 + 0.035 0.030
—0.0028 0.0014 0.463 0.012 —0.212 0.248 —0.148 0.062
—0.0011 0.0006 0.489 0.013 —0.039 0.061 —0.035 0.045
4+ 0.0308 0.0058 0.558 0.016 + 0.103  0.020 + 0.128 0.033
+ 0.0466 0.0026 0.596 0.011 + 0.160 0.019 + 0.217 0.030
-+ 0.0456 0.0231 0.600 0.012 + 0.167 0.020 -+ 0.227 0.034
4+ 0.0095 0.0095 0.570 0.016 + 0.120 0.022 + 0.153 0.036
—0.0123 0.0033 0.489 0.021 —0.037 0.092 —0.035 0.074
—0.0194 0.0010 0477 0.017 —0.093 0.119 —0.080 0.074
—0.0523 0.0188 0.443 0.019 — 00 — —0.290 0.523
—0.0382 0.0026 0.415 0.019 — 0 — — 2,500 —
—0.0234 0.0037 0.451 0.020 —0.560 — —0.220 0.226
-+ 0.0047 0.0024 0.483 0.023 —0.062 0.064 —0.058 0.050

0.0000 0.0000 0.472 0.009 —0.125 0.071 —0.103 0.042
-+ 0.0038 0.0006 0.482 0.011 —0.067 0.035 —0.061 0.043
+ 0.0026 0.0014 0.459 0.011 —0.278 0.429 —0.170  0.060
+ 0.0019 0.0010 0.500 0.010 0.000 0.030 0.000 0.029
+ 0.0015 0.0008 0.489 0.010 —0.038 0.042 —0.035 0.037
4 0.0084 0.0011 0.532 0.013 + 0.068 0.023 + 0.076  0.028

0.0000 0.0000 0.504 0.014 -+ 0.009 0.029 + 0.011 0.030
+ 0.0005 0.0005 0477 0.012 —0.093 0.075 —0.080 0.052
-+ 0.0066 0.0017 0.507 0.014 + 0.016 0.033 + 0.018 0.035
+ 0.0073 0.0025 0.514 0.013 -+ 0.031 0.028 -+ 0.035 0.031
-+ 0.0058 0.0003 0.489 0.014 —0.038 0.051 —0.035 0.045
4+ 0.0084 0.0014 0.485 0.014 —0.054 0.065 —0.050 0.052
+ 0.0023  0.0022 0.507 0.012 -+ 0.016 0.030 + 0.018 0.031

0.0000 0.0000 0.469 0.013 —0.150 0.190 —0.118 0.062
—0.0090 0.0024 0.459 0.012 —0.278 0.429 —0.170  0.065
—0.0204 0.0080 0.477 0.012 —0.093 0.075 —0.080 0.052
— 0.0070  0.0027 0.506 0.011 -+ 0.015 0.022 + 0.016 0.024
—0.0034 0.0005 0.480 0.010 —0.075 0.054 —0.068 0.040
+ 0.0032 0.0017 0.500 0.012 0.000 0.035 0.000 0.034
-+ 0.0035 0.0018 0.497 0.012 -—0.010 0.038 —0.008 0.036
-+ 0.0103 0.0010 0.543 0.014 + 0.086 0.020 + 0.098 0.028
-+ 0.0101 0.0051 0.535 0.010 + 0.073 0.016 + 0.082 0.020
-+ 0.0170 0.0085 0.556 0.014 -+ 0.102 0.018 + 0.125 * 0.029
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HA MO Swinbank Goptarev
L3 Sty {4 S, s gy Lo St

+ 0.020 0.032 -+ 0.023  0.032 + 0.020 0.031 + 0.018 0.030
+ 0.041 0.036 + 0.047 0.042 + 0.043 0.038 + 0.037 0.033
—0.135 0.036 —0.080 0.022 —0.097 0.030 —0.100 0.033
—0.030 0.038 —0.024 0.032 —0.027 0.036 —0.028 0.035
+ 0.172 0.055 + 0.247 0.104 + 0.183 0.062 + 0.156 0.045
+ 0.331 0.060 + 0.567 0.181 4+ 0.356 0.062 -+ 0.261 0.030
+ 0.355 0.072 4+ 0.700 0.190 -+ 0.380 0.069 -+ 0.274 0.032
+ 0.215 0.062 -+ 0.330 0.139 +0.272 0.071 + 0.191 0.046
—0.029 0.060 —0.024 0.056 —0.027 0.058 —0.028 0.056
— 0.065 0.051 —0.053 0.039 — 0.060 0.046 —0.061 0.048
—0.174 0.070 —0.128 0.031 —0.148 0.046 —0.160 0.058
—0.290 0.108 —0.158 0.020 —0.213  0.040 —0.245 0.059
—0.144 0.069 —0.104 0.035 —0.127 0.050 —0.135 0.059
— 0.047 0.039 —0.039 0.032 —0.042 0.036 —0.044 0.036
—0.079 0.028 —0.065 0.020 —0.074 0.024 —0.075 0.025
— 0.049 0.032 —0.042 0.026 —0.045 0.029 —0.046 0.030
—0.119 0.034 —0.090 0.020 —0.108 0.028 —0.110 0.031

0.000 0.028 0.000 0.030 0.000 0.028 0.000 0.026
—0.030 0.030 —0.024 0.024 —0.027 0.027 —0.028 0.028
+ 0.092 0.038 -+ 0.110 0.052 -+ 0.095 0.040 + 0.086 0.035
+ 0.014 0.032 +0.017 0.032 + 0.015 0.032 + 0.012 0.030
— 0.065 0.035 —0.053 0.028 —0.060 0.033 —0.061 0.034
+ 0.021 0.036 -+ 0.026 0.039 + 0.023 0.038 + 0.020 0.034
+ 0.042 0.036 + 0.047 0.042 -+ 0.044 0.038 + 0.037 0.034
—0.030 0.040 —0.024 0.032 —0.026 0.036 —0.027 0.035
—0.047 0.040 —0.039 0.032 —0.042 0.036 —0.044 0.036
+ 0.021 0.034 + 0.026 0.035 -+ 0.023 0.032 -+ 0.020 0.031
—0.089 0.039 —0.071 0.028 —0.081 0.035 —0.083 0.037
—0.119 0.035 —0.090 0.020 —0.108 0.029 —0.110 0.031
— 0.065 0.058 —0.053 0.014 — 0.060 0.029 —0.061 0.038
-+ 0.020 0.021 + 0.023 0.027 -+ 0.020 0.025 -+ 0.018 0.023
—0.055 0.030 —0.046 0.023 — 0.050 0.028 —0.052 0.028

0.000 0.033 0.000 0.034 0.000 0.033 0.000 0.032
— 0.006 0.036 — 0,004 0.036 —0.005 0.035 —0.005 0.034
+ 0.124 0.034 + 0.160 0.072 4+ 0.130 0.047 + 0.116 0.038
4+ 0.100 0.029 + 0.122 0.044 + 0.105 0.031 +0.094 0.028
+ 0.166 0.048 + 0.235 0.088 4+ 0.176 0.052 + 0.152 0.039
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must be 0.015 m/s. The standard deviation of ¥ can then be calculated easily (Ap-
pendix I).

A rough estimate of the measuring error standard deviation s¢ of each { was then
found graphically with the aid of figure 1.6.2.

Table 2.2.1 gives a complete list of the z/L, ¥ and {-values with the standard devia-
tions sz, sy and s¢, for the six profile formulae. In three cases for KEYPS and in
one case for MK g no value of s¢ is given. In these cases the calculated V-values are
very close to the limit (for £ = — o) of the respective theoretical profiles.

The 52,1 and s¢-values have been “pooled” to overall mean values of the standard
deviations §,;z and §¢, for the Holzman, MO, Swinbank and Goptarev profiles
only, according to:

< 1 n 1
sz/L=l/3—72s§/Lands;= §72s§

from which resulted:
§2/L = 0.0059 and §¢q = 0.047; 5, = 0.065; §;5 = (.042 and §5;¢ = 0.038, where

the indices 3, . . ., 6 indicate Holzman, MO, Swinbank and Goptarev respectively.
The regression lines { = orz/L + Br are now determined for the four formulae
(Appendix II).

The regression lines are drawn in figures 2.2.3,2.2.4, 2.2.5 and 2.2.6, while the values
of or and Br are summarized in table 2.2.2.

TABLE 2.2.2 Regression coefficients for profile formulae

Holzman MO Swinbank Goptarev
ar 6.91 9.53 7.08 5.99
Br — 0.007 + 0.026 + 0.002 —0.009

The regression lines for the Holzman, Swinbank and Goptarev profiles almost pass
through the origin. The regression line for the MO profile deviates more from the
origin ; the picture also suggests a non-linear relation for MO.

But, as we have already mentioned, we do not want to lay too much emphasis on
the statistical results, because of the inaccuracy of the observations. All we are trying
to do is to indicate that with more extensive material it must be possible to select a
limited number of profile formulae that will serve for practical purposes.

In the foregoing, o is assumed to be constant in each formula under different stabil-
ity conditions; we should not, however exclude, the possibility that different values
of u or even different formulae have to be applied for the stable and unstable cases.
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2.2.2  Probability distribution of V-values as a rough method of selection

We have seen that there are cases for which a real value of { cannot be determined
because Vis smaller than the limiting value of the theoretical V-function for { — — oo,

It is obvious that theoretical formulae which yield a V-limit-value such that V-values
below this limit are actually obtained by measurement cannot be considered to be
completely correct.

If we are to investigate this, using the V-values obtained from the O’Neill data,
we muyst not forget that each of the V-values contains a certain degree of error. What
we need is the “true” value of ¥, denoted by the symbol V*, Of course it is not possible
to determine this *“true” value in each individual case. The only thing we can do is try
to estimate the distribution function of V*, and then determine the fraction of the
distribution which indicates the number of values below the theoretical limits. If this
fraction is too large, the theoretical formula yields too many cases in which no real ¢
can be found and hence must be rejected. Of course the decision on whether the frac-
tion is too large is a subjective one. In our opinion the limit should be 1%.

Let us now write:
Vi= Vz*—f— &

where V; is the measured value of V, V:the unknown true value and &; the unknown
measuring error.

We want to know the probability distribution of V'*, a stochastic variable, of which
V,-* is an individual realization.

The probability distribution of ¥ can be estimated from the sample. The probability
distribution of & is assumed to be a normal one, with Ee; = 01) and variance o2, -
The values of the estimates s, , Of the standard deviation o, , of & have already been
used in the previous section and are given in table 2.2.1.

Let us now suppose that o, is constant (. , = 0¢ for every i); that ¢ is independent
of V}tE(az- VJ = 0) and that Vis normally distributed. The problem is then quite simple.
We have a case where V'is normally distributed with EV = EV*and

o} = ofx + ok, (2.2.1)

The sample mean value of ¥ happens to be exactly 0.500 and the standard deviation
is 0.040. For testing the hypothesis that the group of 37 V-values is a random sample
from a normal population, the %2 test of goodness of fit is applied (Appendix III).
The result is that the hypothesis need not be rejected. An obvious but rough check on
normality can be made by using normal probability paper. If the population is
normal, a graph of the sample cumulative percentage frequencies on this paper will
approximate a straight line. See figure 2.2.7, in which the points lie almost along a

1) E stands for expectation.
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Fig. 2.2.7 Frequency distribution of the wind speed difference ratio based on “Great Plains Tur-
bulence Field Program” data.

straight line. The positions. of the points in this figure have been obtained by first
arranging the ¥’s in order of increasing value Vi< Vo <. .. < Vi<, . < Vary
! ———317 +054. This is an estimate of the cumulative
frequency (see BENARD and BOs-LEVENBACH, 1953).

It is not possible to test statistically the condition that o;, = ¢ = constant, because
V* and o, are unknown, but visually it seems very likely that s and V are independent
of each other. The values of s. have been plotted against V'in figure 2.2.8 and we think
that this figure justifies the assumption of independence without testing. It can then
be assumed that s; and V* are also independent of each other.

- As a universal value of s. we have taken:

|/ 1 §(2) = 0014
’3',71(.5'51)— R .

and then plotting them against
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Fig. 2.2.8 Standard deviation of the measuring error of the wind speed difference ratio against the
wind speed difference ratio itself.

From formula 2.2.1 we find:
s%,* = sI% — s2e = (0.040)2 — (0.014)2 =~ 0.0014 so that sy* =~ 0.038.

In determining the fraction Q1 of V*-values below the theoretical limits we have to
take into account that the estimate sy ~ 0.038 was obtained from a sample of only 37
observations. So Q1 itself cannot be determined exactly and we can only give a con-
fidence interval (Q1,;,Q1,4) (see LEVERT, 1959). We shall take a 959 confidence

interval.

The results are as follows:

Profile V limit Q1,1 O1,u
KEYPS 0.442 2.3% 15.9%
MK3 0.414 0.2% 5.5%
Holzman 0.333 0.00% 0.06%,

Now we can conclude that the number of V-values that can occur below the KEYPS
limit is so large (> 1%) that the formula cannot be considered as correct.

The MKs5 formula seems to be doubtful in this sense. The Q-value for the Holzman
profile is so small that the formula is completely acceptable.

It is clear that all Plus formulae with ¢ > 4 must also be excluded.

In the above we have paid attention only to the lower limit of the V-values (cor-
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responding to extremely unstable situations). We can determine confidence intervals
for the upper limits in the same way in respect of the fraction Q2 of V*-values above
the upper limit. For all formulae of the MOHKEYPS group this upper limit is
+ % and the Qg interval is 0.00...0.06%. So there is no reason to exclude any
formula in this group. This can be the case only for Plus formulae with ¢ < 0.

Finally we may remark that analogous results obtain for the Minus group. For-
mulae in the Min-Pos group with g > 4 must be excluded because V*-values above
the upper V-limit may occur, but no formulae of the Min-Pos group have to be
excluded because V*-values occur below the lower V-limit. This can occur only for
Minus formulae with g << 0.

2.3 Application of some of the wind profile formulae to wind speed observations from
Project Prairie Grass
2.3.0 Introduction

In 1956 a Field Program in Diffusion called Project Prairie Grass was carried out
at O’Neill, Nebraska. Results were published in 1958 and edited by M. L. BARAD,

- TABLE 2.3.1
Range of

Series N (02— 6y) [ u? uie U8 7 us u1 uy Uy
I 4 1.9 ... 25 405 316 243 175 115 9% 170
IIr 4 1.0 ... 14 478 381 287 222 152 119 85
nur 7 059 ... 087 534 394 282 215 160 135 98
Iv 5 042 ... 049 405 322 256 206 168 140 105
vV 4 0.19 ... 0.29 552 440 352 286 235 202 162
VI 12 0.10 ... 0.17 572 455 378 317 273 229 185
vili 11 0.058... 0.094 641 532 450 383 335 288 236
VIII 10 0.034... 0050 686 569 501 435 383 331 274
IX 13 0.019... 0031 795 691 612 531 470 408 334
X 13 0.000... 0.016 898 794 708 621 545 476 393
XI 9 —0016... 0000 861 770 703 618 546 478 401
X 9 —0.031...—0019 904 831 754 675 602 523 427
XIII 16 —0.053...—0.032 1022 948 854 760 681 589 494
XIV 21 —0.097...—0.057 841 783 710 636 568 502 422
XV 16 —0l16 ...—0.10 586 548 515 464 420 372 316
XVl 16 —030 ...—0.18 470 444 416 382 346 298 258

Xvili 13 —048 ...—033 368 350 328 306 278 252 211
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Wind and temperature data from this project have already been used by KoNpo
(1962). The same observations will be used here,

Observations were made at heights of 1,4, 1, 2, 4, 8 and 16 m. KoNDo arranged the
observations in 17 groups according to the value of (64 — 6y) / u?, which was used as
a stability measure, positive values corresponding with stable and negative values with
unstable situations. The symbol 8 represents potential temperature and u wind speed.
The indices indicate the height in m.

Table 2.3.1 contains a summary of these data, copied from table 1 of KoNDoO.

The numbers of observations in the various groups vary between 4 and 21 and the
wind speed values have been averaged over this number of observations.

2.3.1 General results

The application of the wind profile formulae to the observations can be made in
two different ways.

By the first method, V-values can be calculated for each of the 17 groups, for wind
speeds of different combinations of three heights. Values of { can then be determined
with the aid of the (V,{) diagram (figure 1.6.2). These { values have to be divided by
the relevant z and then yield # values of o/L. The a/L-values obtained in this way have
to be averaged.

The second method is by fitting the profile formulae to the experimental data by
means of the method of least squares. This is very difficult for most formulae, because
the equations from which the parameters have to be determined are not linear in the
parameters (see YULE and KENDALL, 1965, Chapter 15). In these cases the only way
is to calculate the sum of the square deviations for fixed values of the stability para-
meter {. By giving different values to { a series of square sums is obtained of which
the smallest indicates the relevant value of £.

The values of a/L, z, and u, can be obtained by either method, but we prefer the
second. The reason is that, owing to measuring errors, V-values below the lower or
above the upper limit of the theoretical V-function of some profile formulae can occur.

The first method will be applied nevertheless, but restricted to the calculation of the
V-values, because the results are interesting in themselves and can also be used to obtain
a conclusion concerning the Deacon profile.

2.3.2 The wind speed difference ratios

We have seen in chapter 1 that the Deacon profile (see table 1.2.1, IIT and 1.5)
cannot be incorporated into the general system because it is not possible to write
formula III in the form (1.3.2), for this would imply that £ could be written as a func-
tion of B and z, and {, as the same function of 8 and z,. This is only possible if we
allow that { is a function of z, too, but such an assumption contradicts the design
of the theory.
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Nevertheless, it is possible to use the wind speed difference ratio for the Deacon
profile.

If the definition of ¥ (with z3 = 4z; z; = 2z and z1 = z) is applied to formula III
we obtain:

41-p _21-8 | -—26-1
T A1 1461

(2.3.1)

Therefore, according to the Deacon formula, V is independent of height. On the
other hand, according to all the formulae of our general system (1.3.23), Vis a function
of ¢ and since we assumed that L is independent of height, { is proportional to z,
which means that V has to vary with z, viz.. increasing in stable situations and de-
creasing in unstable ones.

1t follows then, that if a number of V-values are available for different heights, we
can decide between the Deacon profile and the other formulae by testing whether V'
depends on z or not. We are now trying to make this decision.

In table 2.3.2 the values of V are shown for the 17 groups and for the 5 successive
triples of wind speed values, viz. for zg = 4z, zz = 2zand z1 = z, wherez == 4,4, 1,2
and 4 respectively. The five V-values are indicated by V3, V3, V1, Vaand Va.

TABLE 2.3.2 Wind speed difference ratios

Series Va Va 41 Vi Vi Vi
I 0.560 0.518 0.529 0.705 - 0.556 0.630
IT 0.509 0.590 0.492 0.678 0.490 0.584
111 0.557 0.625 0.549 0.686 0.402 0.544
v 0.557 0.569 0.565 0.572 0.442 0.507
v 0.560 0.570 0.572 0.608 0.450 0.529
VI 0.602 0.558 0.581 0.500 0.500 0.500
VII 0.572 0.568 0.538 0.530 0.475 0.502
VIII 0.630 0.508 0.558 0.500 0.472 0.486
X 0.578 0.495 0.532 0.492 0.452 0.472
X 0.549 0.495 0.531 0.522 0.451 0.486
X1 0.576 . 0.440 0.540 0.515 0.470 0.492
XII 0.487 0.492 0.521 0.478 0.451 0.465
X1 0.439 0.500 0.502 0.460 0.491 0.476
X1V 0.442 0.495 0.520 0.506 0.451 0.478
XV 0.532 0.392 0.535 0.488 0.461 0.474
XVI 0.430 0.450 0.486 0.428 0.543 0.486

XVII 0.450 0.500 0.440 0.519 0.454 0.487
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Each test that can be used to investigate whether V is independent of height or not
requires that all 5F-values are independent of each other. Unfortunately they are not,
because they have u-values in common. So V3 and V> both have two u-values, viz. uyg
and us in common etc., and V4 and ¥ both have one u-value in common viz. us etc.
To overcome this difficulty we can compare either V7, with the mean V3 ; of Vyand V,,
or V; with the mean of ¥V, and V,. We prefer the first alternative, because the inac-
curacy of the ¥; and V;-values is larger than those of the ¥ and Vs-values. Now the
mean of two variables has a smaller standard deviation than the original variables
themselves. So the quantities V4 and V;,; have standard deviations which differ
less than those of the quantities V5 4 and V;.

Let us now test the null hypothesis that ¥ is independent of height. The alternative
hypotheses differ for the stable and unstable cases. In stable situations ¥ > £ and
V increases with increasing { (which is > 0); this means with increasing z, because
a/L is assumed to be constant. So the hypothesis V4 = V3 ; is to be tested against
Vi> Vi

If the true values of ¥ were independent of height there would be a probability 4
that V4 > ¥;,; because of the presence of measuring errors. The number of cases
with V4 > V,,; in a sample of N pairs would then be distributed according to a
binomial probability distribution. In the actual sample of 11 stable cases I...XI,
there are 9 cases V4 > Vi ;. The probability of finding 9 or more cases Va > V33 is
0.033 according to the binomial distribution (Appendix IV). This is below the 5%
level of significance, so we can reject the hypothesis that ¥V is independent of height
for stable situations.

In unstable situations ¥ increases with increasing ¢, but because of { < 0, this
means that V decreases with increasing z, so we now have to test V4 = V;,, against
the alternative V4 < V;,;. Now there are 4 cases out of 6 with Vy < V; ;. Of course
this is not significant, the probability of getting 4 or more cases being 0.34. For the
unstable group the hypothesis that ¥ is independent of height cannot be rejected,
therefore, but of course this negative statement does not mean that V4 < V; ; cannot
be true.

2.3.3 Least squares estimates of the parameters of different wind profile formulae

Although certain objections have been raised to some of the formulae (KEYPS:
no V-values possible below 0.442; Deacon: Vis constant), it might still prove worth-
while to fit a number of formulae to the observations of table 2.3.1 by the method of
least squares. We have done so for the following formulae: KEYPS, Holzman, MO,
Swinbank, Goptarev, Deacon and the power profile. The power profile has been added
in order to compare this simple formula, which will be dealt with in Chapter 3, with
the more complex ones.
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Direct application of the method of least squares (Appendix V) is only possible in
the case of MO and the power profile (the latter if written in the logarithmic form:
Inu=1InA4 + p-Inz). For it is only in these cases that the least squares normal
equations, from which the values of the parameters are to be estimated, are linear in
these parameters.

For the other formulae a rough estimate of the range of a/L values has been made
by plotting the u values against In z and judging the curvature by eye. For each of a
number of a/L values increasing by steps of 0.01, and lying within this roughly esti-
mated range, seven values { can be determined for the seven heights, The seven values
J(©) can then be found from graphs of f({) as a function of £. These seven f({)-values
correspond to the seven u-values of table 2.3.1. The parameters u,/k and f({,) for
each series and each step value of a/L can then be calculated by the method of least

squares. The seven theoretical values @ =Z—*( Q) —j:(\to/)) and the sum of the

square deviations W = 1}2 (u— )2 have been determined from the least squares
>

parameter values @i./k , (o).

So each individual a/L yields a sum W and each series of o/L-values yields a series
of W-values. The minimum value of these W-values fixes a value of o/L which gives
the most reliable values of u,/k and f({;) and therefore of {,, and finally of z, itself.
The results are summarized in table 2.3.3.

TABLE 2.3.3 (a/:\_s‘)
Series Formula a/L(m~1) Uyfk (c'm) z, (cm) s (cm) 1/L(m=1)
1. KEYPS -+ 0.05 62 11.2 14.7
Holzman + 0.10 57 10.0 13.4 + 0.017
MO + 0.26 43 5.6 13.9
Swinbank + 0.11 56 9.5 13.2 + 0.022
Goptarev + 0.08 60 10.7 14.1 + 0.017
Deacon (+ 0.35) 15 1.7 7.2
Power p=044 4 =125 104
IL KEYPS -+ 0.06 70 9.0 13.2
Holzman + 0.10 66 8.5 11.9 + 0.017
MO + 0.26 65 8.1 10.7
Swinbank 4+ 0.10 67 8.5 11.6 + 0.020
Goptarev + 0.08 69 9.0 12.9 + 0.017
Deacon (+ 0.31) 22 2.1 5.8

Power p=042 4 =157 12,5
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Series Formula a/L(m1) ugfk (c{n) Zo (cm) s (cm) 1/L(m™1)

11 KEYPS + 0.09 60 5.7 12.7
Holzman + 0.18 53 6.3 10.6 + 0.023

MO + 0.58 31 1.0 20.4
Swinbank + 0.29 38 1.7 18.4 + 0.057
Goptarev -+ 0.12 60 6.0 14.0 + 0.025

Deacon (+ 0.67) — 60 complex  24.0

Power p=037 A=166 33.6

Iv. KEYPS -+ 0.06 52 3.6 5.8
Holzman + 0.10 48 3.0 4.6 + 0.018

MO + 0.17 44 2.6 3.6
Swinbank + 0.11 48 3.0 4.7 + 0.022
Goptarev + 0.09 48 4.5 5.5 + 0.019

Deacon (+ 0.34) —17 complex 3.1

Power p =032 4 =167 3.0

V. KEYPS + 0.06 65 2.4 9.4
Holzman + 0.12 60 2.1 7.0 + 0.020

MO + 0.20 54 1.4 57
Swinbank + 0.12 61 2.5 7.2 + 0.024
Goptarev + 0.09 64 23 8.0 + 0.019

Deacon (+0.38) —22 complex 3.0

Power p=020 4=240 7.9

VL KEYPS + 0.06 64 1.4 35
Holzman + 0.11 60 1.2 2.1 4+ 0.019

MO + 0.18 56 0.9 1.8
Swinbank + 0.12 59 1.2 2.1 + 0.024
Goptarev + 0.09 62 1.3 3.0 +'0.019

Deacon (+035 —28 complex 6.2

Power p =026 4 =269 8.5

VIL. KEYPS + 0.05 73 1.0 3.7
Holzman + 0.08 69 0.9 2.6 + 0.014

MO + 0.13 66 0.7 1.9
Swinbank + 0.09 69 0.8 2.3 + 0.018
Goptarev + 0.07 72 1.0 2.9 + 0.014

Deacon (+ 0.27) — 14 complex 5.7

Power p =023 4 =331 59
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Series Formula o/L(m™1) ug/k (cm) z, (cm) s (cm) 1/L(m-1)

VIIL. KEYPS + 0.05 74 0.60 24
Holzman -+ 0.08 72 0.55 34 + 0.013

MO 4+ 0.10 70 0.49 4.6
Swinbank + 0.08 72 0.44 39 4 0.016
Goptarev -+ 0.07 72 0.53 2.7 + 0.014

Deacon (+ 0.22) —3 complex 8.9

Power p=021 4=7375 9.0

IX. KEYPS + 0.03 94 0.67 3.7
Holzman + 0.05 92 0.66 4.0 -+ 0.008

MO + 0.06 91 0.62 39
Swinbank 4 0.05 91 0.60 3.7 -+ 0.010
Goptarev -+ 0.04 93 0.66 4.2 -+ 0.008

Deacon (+ 0.12) 43 0.09 6.0

Power p=020 4 =535 9.0

X. KEYPS + 0.02 108 0.67 3.5
Holzman -+ 0.02 109 0.70 3.6 - 0.004

MO + 0.04 107 0.33 33
Swinbank --0.03 108 0.67 3.3 -+ 0.006
Goptarev -+ 0.03 107 0.60 3.7 -+ 0.006

Deacon (+ 0.10) 56 0.12 4.2

Power p=010 4 =535 125

XI. KEYPS + 0.01 106 0.58 3.9
Holzman -+ 0.02 102 0.52 3.1 -+ 0.004

MO -+ 0.02 104 0.51 4.2
Swinbank =~ + 0.02 102 0.50 4.3 + 0.004
Goptarev -+ 0.01 106 0.61 4.3 -+ 0.002

Deacon (+ 0.03) ‘91 0.43 4.2

Power : p=0.18 4 =535 156

XII. KEYPS —0.02 120 0.69 4.7
Holzman —0.02 119 0.70 4.8 — 0.002

MO —0.01 116 0.57 5.4
Swinbank —0.01 116 0.60 5.0 — 0.002
Goptarev —0.01 116 0.57 5.6 — 0.002

Deacon (— 0.05) 147 0.25 4.0

Power p=018 4=580 238
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Series Formula o/L(m~1) ux/k (c}n) z, (cm) s (cm) 1/L(m~Y)

XII1. KEYPS —0.01 131 0.58 4.5
Holzman —0.02 134 0.67 4.7 — 0.004

MO —0.01 131 0.56 5.3
Swinbank —0.01 132 0.15 4.4 —0.002
Goptarev —0.02 135 0.63 6.0 — 0.004

Deacon (—0.02) 143 0.85 4.4

Power p=017 A=659 243

XIV. KEYPS —0.02 106 045 3.8
Holzman —0.02 106 0.50 3.8 —0.002

MO —0.01 105 0.43 4.0
Swinbank —0.01 105 0.45 3.8 — 0.002
Goptarev —0.02 107 0.48 4.4 — 0.004

Deacon (—0.03) 121 0.94 3.8

Power p=016 4=555 189

XV. KEYPS —0.06 74 0.34 2.5
Holzman —0.04 73 032 2.9 — 0.007

MO — 0.03 72 0.30 34
Swinbank —0.04 73 0.31 3.2 — 0.008
Goptarev —0.04 74 0.32 29 — 0.008

Deacon (—0.11) 116 0.94 2.4

Power p=015 4=408 154

XVL KEYPS —0.15 67 0.50 1.9
Holzman —0.06 62 0.39 2.5 — 0.011

MO —0.04 60 0.34 3.1
Swinbank — 0.06 62 0.38 2.6 —0.012
Goptarev —0.06 61 0.35 2.8 —0.012

Deacon (—0.17) 115 1.54 2.2

Power p=014 4=332 151

XVII. KEYPS —0.12 47 0.24 3.1
Holzman —0.08 47 0.25 3.1 —0.014

MO — 0.04 42 0.14 4.3
Swinbank —0.06 45 0.19 34 —0.012
Goptarev —0.09 48 0.27 34 —0.019

Deacon (—0.20) 97 1.20 1.7

Power p=013 A=269 11.2
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Explanation of symbols:

a/L = the stability parameter (1 — g for Deacon)

% = friction velocity divided by k.

Zs roughness parameter.

s standard deviation of the difference u — z, from s2 = W/6.

1/L = reciprocal Monin-Obukhov length (only for Holzman, Swinbank and Goptarev)

The 1/L values are derived from o/L by using the values for a from table 2.2.2,
MO being left out of consideration, because o cannot be considered as a reliable value
in that case.

The results of table 2.3.3 will be discussed in more detail in the following para-
graphs.

2.3.4 The standard deviation values

We have constructed figure 2.3.1 to facilitate study of the results.

The most remarkable feature is that the s-values of the power profile for unstable
situations (series XII ... XVII) are very high, while the s-values for the other for-
mulae are much lower and almost consistent. In the stable group (series I... XI)
the s-values of the various formulae show a general tendency to increase with increas-
ing stability from I to XI, but the differences between them vary and no formula
gives a picture which clearly deviates from the others.

We have used the method of m-rankings, the so-called Friedman test (Appendix VI)
in order to judge the reality of the differences between the formulae. The agreement
in the rank order of a number of series of observations can be tested by this method.

The stable and unstable groups were considered separately in applying the test.
The theory behind the test applies to the present case as follows:

If one or more formulae fit the observations better than the others, their s-values
will be smaller. If within each series rank-numbers in order of size are given to the s-
values for the different formulae, the “better” formulae will obtain the lower rank
numbers and there will be agreement between the rank-order sequences of the dif-
ferent series. If the formulae are equally good there will be no agreement between the
rank-orders. This can be tested statistically.

For the stable group (series I.. .. XI) the test shows significant agreement between
the separate rankings of the series (see Appendix VI, table VI.1). On closer examin-
ation it seems, however, that this is mainly due to the power profile, the s-values of
which are on the whole larger than those of the other formulae. If the s-values of the
other six formulae are considered separately, the agreement between the rank-orders
is no longer significant.
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Fig. 2.3.1 Standard deviations of the difference between observations and theoretical profile
formulae,

For the unstable group the power profile can be left out of consideration at once.
Nevertheless agreement between the rank-orders remains significant. The MO profile
yields larger s-values than the others, with the Goptarev profile in second place. -
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That the power profile formula fits less accurately than the other formulae was to
be expected because the power formula contains only two parameters whereas the
others contain three, and as a rule a closer fitting is obtained with three parameters
than with two.

Furthermore, the curvature of the graph of the power functions (u = Az?) in a
(u, In z) diagram is always the same because the second derivative d?u/d(Inz)? =
Ap?z? is positive for all p. By contrast, for the other functions the curvature in
stable cases is opposite to that in unstable cases and as far as we know this fact is
borne out by the observations.

The fact that the MO profile in unstable situations seems to be less in accordance
with the observations than the other formulae can be considered to conform to figure
1.6.2, which shows that the V-function for the MO profile in stable cases has a cur-
vature opposite to the curvature of the other formulae.

On the whole we can conclude from figure 2.3.1 that the formulae fit less well to
the observations as stability increases.

Finally, the O’Neill observations that have been used here do not enable any clear
distinction to be made between a number of profile formulae viz.: KEYPS, Holzman,
Swinbank, Goptarev and Deacon. There is some indication that MO is less good in
unstable situations but the numerical values of the standard deviations differ so
little for the different formulae that there is no question of a serious discrepancy.
Only the power profile seems to be inferior to the other formulae, at least during
unstable stratification.

2.3.5 The stability parameter values

The a/L-values given in table 2.3.3 are, on the whole, in agreement with what can
be expected from figure 1.6.2. In the stable situations (series I...XI, o/L > 0) the
MO stability values (o/L) are the highest, followed by Holzman and Swinbank with
nearly equal values, Goptarev and finally KEYPS. The Deacon values are not a/L
but 1 — B-values and hence are omitted here; they have been placed in brackets in
the table.

It is striking that the a/L values for seties III are much higher than those for series
I and II. It seems therefore, that these series are not arranged quite correctly in order
of increasing stability, which means that (62 — 0;)/u2 is not a correct stability para-
meter. Series III may show the strongest stability and according to the value of a/L it
does. This could be in agreement with what we see in figure 2.3.1 where the s-values
for series III are on the whole higher than those of series I and II. If series Il is con-
sidered to represent the most stable case the decrease of s-values with increasing in-
stability is even more obvious.
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2.3.6 The friction velocity values

The friction velocity values must be positive according to the definition u, =
+/(— u'w’), where u’ and w' are the fluctuations of wind speed in the x and the z
direction respectively where the x-axis lies in the direction of the mean wind vector.
The product of »' and w’ must be negative on the average, because only the case of
the wind speed increasing with height is being considered.

In table 2.3.3 the u, values are positive in most cases. Only in the series IT1. ., VIII
are the u, values negative for the Deacon profile. There are great differences between
the u, values of Deacon and those of the other formulae in the series I, II, IX, ...
XVII, while the u, values obtained from the other formulae do not differ very much
from each other.

Let us now investigate how it is that negative u, values can occur in the Deacon
formulae.

The Deacon formula reads:

u= % {(z/z0)B — 1} with B=1— 8.

B is negative in unstable situations and positive in stable ones.
For the three levels zg = 4z;z9 = 2z and zs = z we have:

us—uz (4B —(22)8

= — 9B
P—— 2F — (D) 2B, 23.1)
Also:
us  (22)B—z5 2B (z,/2)B
e - = TG (2.3.2)
z/zo can be solved from these equations:
z  ((uz —u1)? 1/B
~ = {u—‘g ) (2.3.3)
Finally, u, can be found from:
u1- B
Uy = G —T 2.3.9)

So we have three equations (2.3.1), (2.3.3) and (2.3.4) in the three unknown para-
meters B, z, and u, with given wind speed values u1, u2 and u3 and the height z.

Since we are only considering “normal” cases, where wind speed increases with
height, we have:

0 <ui <us < us. 2.3.5)

The different ranges of values that can be obtained by the parameters, depending
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on the values of 1, us and u3 and taking account of the fact that according to (2.3.1)
and (2.3.5) B must always be real, are given in table 2.3.4.

TABLE 2.3.4 Behaviour of the parameter values of the Deacon profile

unstable neutral stable
B=1—f: <0 0 >0
\ : \
23.1) > uz—u2 <ug—u1 us — Uz > Ug — U1
or us—2us < —us —ug < —2us + uy
or u2 — 2ujus < — uius —uwy < — 2uuz + Ul
¥ ¥
0 < (ue—u1? <u?—uug ug—uma < (uz — u1)2
| } ¥
| u2 —uws >0 u2 —uuz <0
(2.3.3) >0 < (z/z9)B <1 (z/z)B > 1 (z/z0)B <0
¥
z/z, real and > 1 zfzo real and << 1 | z, complex;
zo real negative
or0 <zo,<z O0<zo <z only if B odd.
(2.3.4) - u, real and >0 V wu,realand >0 | u, <O
Ug —Ug = Uz — U1 ug=u1u3

The result is that in unstable situations the Deacon formula gives real positive
values for the parameters u, and z,. In stable situations u, and z, are only real and
positive if 42 > uius. If u2 < uiug the parameter z, is complex or real negative and
u, is real negative.

Figure 2.3.2 illustrates these results. Table 2.3.4 suggests taking the co-ordinates
x and y as proportional to uz—wu1 and us— ua respectively (x = c(uz — ua),
y = c(us — uz)), for in that case the adiabatic stratification is given by x = y. The
boundary between real and complex values of z, is given by the curvey = x -+ x2 if
¢ is taken as 1/u;.

Both real and complex values can occur in the stable area. If values for the dif-
ferences @ = us — us and b = ug — uy are given (so that the stability value is fixed)
the transition from a real z, value to a complex value occurs as soon as the wind
speéd u1 becomes lower than 52/(a — b).

So in certain regions the Deacon profile is contrary to nature. In this connection
it is interesting to refer to Klug’s paper of 1963, where he states that the Deacon
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parameter is a function of the Richardson flux number Rf. As Rf depends on du/dz
among other things, the parameter 8§ cannot be a true constant and it is therefore
unlikely that Deacon’s statement: du/dz ~ z# gives a true description of a natural
phenomenon. This reasoning might be objected to on the grounds that KLUG’S state-
ment that B is connected with Rfis derived from the KEYPS formula, so that KLUG’S
conclusion depends on the validity of the KEYPS formula. Our conclusion that
Deacon’s profile cannot describe nature completely is derived from the formula itself.

In some papers (for instance LAKE, 1952) it is customary to introduce a so-called
zero level displacement d, by replacing z by z + d, so that d is a further unknown
parameter. In the case of the Deacon formula this does not affect our objection, be-
cause negative u, and complex z, values can exist even after the introduction of d.
The proof is omitted here for the sake of brevity .

2.3.7 The roughness parameter values

It is striking that in table 2.3.3 z, is not constant. Some large z, values occur,
particularly in stable cases (series I . . . XI). For z, to be a function of stability would
be in contradiction to the hypothesis from which the formulae were derived.

But let us compare z, with the wind speed itself; if for instance we plot z, as a
function of u; we obtain figure 2.3.3 (for the stable group) and figure 2.3.4 (for the
unstable cases). In the stable group we see that z, decreases with increasing #1 up to
3 or 4 m/s. In the unstable group z, increases almost imperceptibly with increasing u1.

The statistical significance is obvious in the stable group. The rank correlation test
(Appendix VIT) applied to the mean values of the five z, values (ignoring Deacon)
yields significance on the 0.001 level. In the unstable cases the 5% level is just reached.

As an explanation for the occurrence of larger z, values for low wind speed we
can imagine that a surface which is not completely rigid changes its roughness character
under the influence of the wind speed itself; and then it would be logical to expect
that increasing wind speed would cause decreasing roughness due. to bending of
grass-blades etc. We can also imagine that at a certain value of the wind speed the
maximum effect is reached and that further increase of wind speed makes no dif-
ference. ,

In the first instance we should expect the same effect for both stable and unstable
situations. Now figure 2.3.4 seems to contradict this; but as the statistical result is
just on the 5% level of significance, it seems that not too much emphasis should be laid
on it.

There is no evidence that the supposed effect of wind speed on z, is the same in
stable and unstable situations. ‘

Finally it must be borne in mind that z, is considered to be related in some way to
surface roughness but it is not necessarily a direct measure of roughness. After all,
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Fig. 2.3.3 Roughness parameter z, as a function of wind speed at 1 m height (1) for stable cases.

z, is introduced into the theory simply as the height at which the wind speed becomes
zero, and there is no reason why this should be the same under all circumstances.
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Fig. 2.3.4 Roughness parameter z, as a function of wind speed at 1 m height (#1) for unstable cases.

At the end of chapter 3 we shall propose another explanation of the variation of z,.

Konpo, in his 1962 paper, from which we took the O’Neill data, used these data to
investigate whether the KEYPS profile can be used to describe the increase of wind
speed with height and he states that under very stable conditions it only holds good
in very shallow layers.

His reasoning was as follows:

In the first place he calculated z, values for near neutral situations and found
zo = 0.65 cm for the M.1.T. observations. This value was used for all cases. Theore-
tical curves from the YamamoTo (1959) diagram were now fitted to the observations.
The Yamamorto diagram gives ku/u,, as a function of z/z, with {, as a parameter for
the KEYPS profile. KoNDoO then put together all observations into one “universal”
profile. His method can be generalized as follows:

’;—': — () —f(Lo)

and
d ku ,
P =f(
$0:
X 4
Z= |rwa
% to

Now a value {* is selected between {, and the value of { for the lowest level of
observation. Now we can write:

[ [
’;—:= /f'(c)dc+ /f'(z)dc.
to E §*
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For small values of { ({* is assumed to belong to the range of small values) we have
as an approximation:

SO =~In| |
hence
ku *
I () —f().
sk 0
. . ku {* . . .
So if ¢* is fixed, P In 2~ is a universal function of ¢.
£ 0
Kondo took (¥ = — 0.01 for unstable and {* = -- 0.01 for stable stratification. v
(In fact KoNpo used opposite signs because he defined { = — az/L, whereas in our

study { = + az/L).
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Fig. 2.3.5 Reproduction of fig. 5B from Kondo (1962). Fitting of a universal wind profile according
to the KEYPS formula to observation data from the “Great Plains Turbulence Field
Program”.
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In his figures 5A and 5B he shows the observation results together with the universal
theoretical curve. In the unstable case (his figure SA) the observations coincide almost
exactly with the curve.In the stable case however (his figure 5B) there are large deviat-
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3.00 4 b4

/ .
2.00 A

1.00 ~ <

0.20 - *
i
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T 0.01
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ku 0.01

— LT {r(&y — Fo.01)}

Fig. 2.3.6 Fitting of a universal wind profile according to the KEYPS formula to observations
from the “Great Plains Turbulence Field Program”.
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ions for higher { values. In figure 2.3.5 we reproduce the O’Neill data from KonDo’s
figure 5B. (KoNDo also used other data viz.: RIDER’s 1954 data and Japanese data
obtained at Sendai). '

7.00 A

5.00

1.00

0.20 -

0.10 A

0.01 T T T T T T
0 1 2 3 4 5 6 7 8 9 10 1

ko %ﬂ {F@) — F.0n}

Uy

Fig. 2.3.7 Fitting of a universal wind profile according to the Holzman formula to observations
from the “Great Plains Turbulence Field Program”.



86

If we now apply KoNDo’s method to the same observations but use the z, values
from table 2.3.3, a figure can be constructed (figure 2.3.6) which is analogous to figure
2.3.5, but where in very stable situations the deviations between the observations and
the theoretical curve are not present. Obviously the deviations which Konpo found
can be explained by the fact that he takes one constant value for z, and we have seen
in figure 2.3.3 that for very stable situations (in which cases the u1 values are very
small) the z, values are much larger than 0.65 cm, the value KoNDO used.

The close agreement between the observations and the KEYPS profile which can
be found by letting z, vary, does not imply that KEYPS gives a correct description of
the wind profile, for this agreement only results from the fact that the curve has been
fitted rather well to the observations. Similar results can be obtained by using other
theoretical curves, for instance the Holzman profile (figure 2.3.7). So we can conclude
that the foregoing method is not suitable for discriminating between the various
profile formulae.

In connexion with our results we mention a conclusion of BARRY (1966): ...
“to limit the freedom by fixing z, (and k) is arbitrary and may disguise the existence
of fundamental mechanisms.”
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3. THE VALUE OF THE POWER PROFILE EXPONENT AS A
FUNCTION OF STABILITY

3.0 Introduction

We noted in 2.3.4 that the curvature of the power profile curve in unstable situations
does not agree with the curvature suggested by observations when plotted in a (#, In z)
diagram and with the curvature of the wind profiles found from the general system.
We must therefore expect the value of p (the power profile exponent in u = A4z?) to
depend on height, so that strictly speaking the power profile is not suited to describe
the vertical wind profile completely. Nevertheless the power profile is often used be-
cause of its simplicity, and under certain conditions this is permissible, for instance
if a fixed atmospheric layer is being considered, for which the value of p is known
from observations, or if wind speeds higher than about 8 m/s are being used. We
shall show that the value of p does not vary much in the latter case.

The values of the power profile exponent for the 17 series of observations of M.LT.
have been inserted in table 2.3.3. They vary from about 0.4 for the very stable cases
(series I . . . III) to about 0.1 for unstable conditions (series X VII).

A relation between the power profile exponent p and stability has often been men-
tioned in meteorological literature. A rather rough relation is given by FrosT (1947),
who uses only the temperature difference at two heights as a measure of stability.

Extensive results of measurements of p-values are published by the Brookhaven
National Laboratory (SINGER and NAGLE, 1962). The publications contain graphs of
p as a function of wind speed, gustiness, temperature difference (between 150 and
37 feet), the averaging time and solar time.

J. Saissac (1960) determined values of the power profile exponent p from wind
speed observations at 12 and 33 m. (Observatoire de Magny les Hameaux). His
figure 2 is reproduced here as figure 3.0.1. The p-values are given as functions of the
potential temperature lapse rate y (°C/100 m) for different mean wind speed groups
(2...3 m/s etc.).

SHIOTANI published fairly extensive results concerning power profile exponent values
in the journal of the Meteorological Society of Japan, in 1962. He relates p to 46/u?,
where 440 is the potential temperature difference between two specified heights and u
is the wind speed at a suitable height. SHIOTANI determined p from a (log u, log z)
graph for the heights of 8.9, 18.4, 30.8 and 48.2 m. 46 was determined from tempera-
tures at heights of 12.2 and 24.5 m. and for u the wind speed at 18.4 m was used.
His result was that p increases from about 0.10 to 0.25 for 46/u? (in 10-3 °C s2/m?)
increasing from — 5.0 to 0 and from 0.25 to 0.60 for 46/u? increasing from 0 to 5.0.

K1UG (1963) relates the power profile exponent to the Richardson flux number Rf
or the Monin-Obukhov parameter z/L. For the MO profile this results in:
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Fig. 3.0.1 Reproduction of fig. 2 from Saissac (1960). Power profile exponent as a function of
temperature lapse rate.

14 az/L
P = in(zfze) + ozl

PANOFSKY, BLACKADAR and McVEHILL (1960) determined p-values from the KEYPS
formula as a function of 1/L and z, and constructed a graph for the 1/L range — 0.1. ..
+ 0.1 (m~1) and the z, range 0.2 . . . 80 (cm), while p varies from 0.05 to 0.60.

In the next section we shall describe a similar investigation using observations
made in the Netherlands.

3.1 Values of the power profile exponent from wind speed measurements at Lopik

A virtually complete series of observations of wind speed and temperature at dif-
ferent heights at Lopik (in the centre of the Netherlands) is available for the year 1959.

The wind speed observations at heights of 10 and 30 m were recorded at one of the
masts of the World Broadcasting Station; the temperature at a height of 1.5 m was
recorded at a distance of about 50 m from the “old” television tower and the tempera-
ture at 53.5 m was recorded by means of an instrument mounted on the television
tower itself.

Because the wind speed observations are not very accurate it was decided to average
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the wind speeds over 4 hours and then to use only 4 night hours viz.: 1, 2, 3 and 4 hour
and 4 day-time hours viz.: 12, 13, 14 and 15 hour. This restriction was intended to
eliminate periods in which stability varies strongly owing to the diurnal variation.

The power profile exponent is calculated according to:

. In Uuso — In Uio
- In3

and the temperature lapse rate y, expressed in degrees Celsius per 100 m, accordingto:

_ oo
L)

(3.1.1)

(Ts3.5 — T1.5). (3.1.2)

The mean values # = (uzo + u10) were also determined.

The available data were divided into seven groups based on i, expressed in m/s,
as follows:

20...2.9 (48); 3.0...39 (62); 40...49 (42); 50...59 (32); 6.0...69
(15); 7.0 ... 8.9 (7); 9.0 (7) (the figures in brackets indicate the number of data avail-
able).

The night and day observations will be dealt with separately.

3.2 The night hours observations

3.2.1 Graphical representation of the observations

Each # group was divided into a number of sub-groups, each containing 7 to 11
observation pairs (p, ). The mean values of p and y for these sub-groups were deter-
mined and plotted in figure 3.2.1. The number of observations in each sub-group is
indicated at the plotting position. The number of observations in each & group is
indicated in brackets.

The increase of the mean value of p with increasing mean value of y for a given i
group is quite clear. The level of p-values can also be seen to decrease with increasing
#. For ii-values of about 8 m/sec the p-value reaches the level of the p-values of day-
-time. Anticipating the results of part 3.3, we have therefore inserted in the graph an
estimate of the relation between the day-time p-value and y. The p-level is indeed very
near to the value 1/7 found in hydrodynamics.

Qualitatively the picture agrees rather well with Saissac’s results (see figure 3.0.1).

3.2.2 The theoretical variation of the power profile exponent as derived from the
Holzman profile

As we have seen in the introduction to this chapter, the p-value can be expressed in
terms of a diabatic wind profile (see KLuG 1963 and PANOFSKY, BLACKADAR and Mc-
VEHILL 1960).
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Fig. 3.2.1 Power profile exponent p as a function of temperature lapse rate and mean wind speed

(empirical).

Fig. 3.2.4 Power profile exponent p as a function of temperature lapse rate and mean wind speed

(theoretical).

If we start from the general profile formula:

u="2 () — S}

on the one hand and the power profile:

u= Az»

on the other, we have from (3.2.1), using (1.3.1):

du o u, dfi) Cu
Eak a2kl ©

and from (3.2.2):
_dlnu_ zdu
P=dmz " uds
Whence:
T udz  u kf © = (D —Sf(Co)

(3.2.1)

3.2.2)

(3.2.3)

Thus p can be considered as a function of { with {, as parameter. But because
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{ and {, both contain the Monin-Obukhov length, we prefer to use £/{, = z/z, as a
parameter.

It is proved in this way that theoretically p is a function of z and consequently is
not constant with height.

Since, as we saw in Chapter 2, the Holzman profile proves to be a useful diabatic
profile formula (although not the only one) we have applied this formula to (3.2.3).

Substituting the Holzman formula for f({) (see formula (1.4.3)) it follows:

FQ=g 1 —t
Y, gy
so that:
144 —°
_ L+ IT D
P T Dy (32.4)

The power profile exponent p as a function of { is given in figure 3.2.2 for
{/t, = 10, 20, 50, 100, 200, 500, 1000, 2000 and 4000,
which parameters are denoted by i = 1, 2, ... 9 for the sake of brevity.

Ity =11
10 20 ‘50 100
0.9 200

500

1000
2000
4000

08
07
0.6
05
) 0.4
03
02

0.1
|4

l— ﬁ
—4 —3 —2 —1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

Fig. 3.2.2 Power profile exponent p as a function of stability derived from the Holzman profile
formula.
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To be able to find the variation of p completely from theory we have to fit the
theoretical curves derived from figure 3.2.2 to the empirical curves of figure 3.2.1,
which can only be done if { and y are related. Let us suppose that this relation, if it
exists at all, is a linear one. Then it must be of the form:

{=a(l+y) (325

because y = — 1 must obtain for the adiabatic case ({ = 0).

A straightforward solution would result from substitution of (3.2.5) into (3.2.4),
followed by the application of the least squares method to the numerical (p, y) data.
This would yield the least squares values of @ and of z/z, for the different @ groups.
However, this is mathematically a very complicated procedure.

For this reason a combination of a graphical and a least squares method has been
chosen, which is explained in Appendix VIII.

The results are summarized in table 3.2.1, where estimates are given of z/z, and a.
These estimates are rather inaccurate. In particular the 959 confidence interval for
the “true” values of z/z, is very wide. Estimates of the limits of this interval are given
for z/z, as L (lower) and U (upper) in table 3.2.1. We stress the fact that the distri-
bution of z/z, for given # is not symmetrical so that the standard deviation alone
does not convey the right impression of the reliability interval of z/z,. The 957,
confidence interval of the true value of g for given i can well be constructed with the
estimated standard deviation s, by means of @ + 2s,.

TaBLE 3.2.1

n i Lz/zo Z/Zg Uz/zo Z/Zo a Sa a

48 256 < 10 15 >4000 20 —0.160 0035 —0.195

62 3.40 20 37 300 38 —0.185 0021 —0.185

92 4 75 140 350 78 —0.183 0018 —0.164

32 5.34 64 110 210 166 —0.115 0.024 —0.145

15 6.45 220 1300 > 4000 383 —0.345 0.086 —0.125
7 7.82 160 1100 >4000 1070 —0.100 0.067 —0.100
7 10.39 270 1700 >4000 7360 + 0.050 0.056 —0.050

In spite of the rather large confidence intervals for z/z, the increase of z/z, with
increasing # is certainly statistically significant. Application of Kendall’s rank
correlation test (see Appendix VII) results in the rejection of the null hypothesis that
z/z, is independent of # on the 5% level of significance.

Since we want to smooth the irregular values, the question now arises in what way
z/z, depends on ii. A linear dependency does not seem plausible. More likely is a
linear dependency of In z/z, on i (see figure 3.2.3), so we shall fit a straight line:
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In {/{o = Inz/zo = cti + d. Because the least squares regression line intersects all
the confidence intervals, the hypothesis that z/z, depends on # in this way seems to
be an acceptable one.

4000 -
2000 -
)

1000

500

2004

| 95% confidence interval

'

(..) number of observations

50

204

£/ = 2z,

0 1 2 3 4 5 6 7 8 9 10 1

Fig. 3.2.3 Auxiliary diagram for fitting theoretical variation of the power profile exponent p to
observed values. Parameter {/{, (= z/z,) as a function of mean wind speed.

T T T T T T T T 1
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The smoothed values 27;; read from the least squares regression line have been
inserted in table 3.2.1. ;

It is not so easy to find a relevant relation for the variation of ¢ with &#. We have
tried different assumptions (linear, reciprocal etc.) but all have to be rejected on the
5% level of significance if the %2 test is applied. An explanation for this might be the
fact that one of the ag-values, viz. the value — 0.345 belonging to the & group 6.45,
deviates strongly from the other values. Unfortunately we could not attribute this to
an error in the observations.

We decided to draw a graphical freehand relation, of which the smoothed g-values
(&) are given in table 3.2.1.

The theoretical curves p(y) against y for different # values (ﬁgure 3.2.4 red, p. 90)

can be constructed by using the smoothed values 4 and z/za (= C/ {,) of table 3.2.1,
either with the help of (3.2.4) and (3.2.5) or with figure 3.2.2.
Comparing figure 3.2.4 with figure 3.2.1 shows a *“good” agreement.

3.3 The day-time observations

The observations made during day-time vary much less than the night-time values.
The values of the power profile exponent are rarely larger than 0.20. The corresponding
values of AT (= T's3.5 — T1.5) are also limited. The scatter, however,is so large that
we do not believe that the deviation from a linear relation between p and y, which
should exist if any one of the theoretical profile formulae obtains, can be recognized.
We have therefore simply determined the seven linear regression lines (for the seven

i groups) for p as a function of I’ <= ;—z)

= cI' + d.

The standard deviations of ¢ and d, s, and s g respectively, have also been calculated.
Table 3.3.1 shows the results.

In figure 3.3.1 and figure 3.3.2 we have plotted the values of ¢ and d against i
together with the confidence interval ¢ + 25, and d -+ 2s54. It is evident that the values
of d are independent of i. The values of ¢ suggest an increase with increasing i, but
the inaccuracies of the ¢ estimates are so great that a statistical test did not lead to
rejection of the null hypothesis that ¢ is independent of #. Nevertheless, judging on
purely visual evidence, it seems that the hypothesis that ¢ and # are linearly related
may be true. The least squares relation ¢ = — 0.0164 4- 0.00132 & proves to give a
better fit to the ¢ values than a constant value — 0.00904 (the mean of all ¢ values).
The theoretical diabatic formulae, moreover, indicate that there may be an increase
of ¢ with i analogous to that in the case of the night values.
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TABLE 3.3.1 Regression coefficients for the relation between p and I for different i

groups.
i n c Se d Sd
2.49 32 0.0128 0.0038 0.1186 0.0063
3.49 35 0.0141 0.0048 0.1245 0.0070
4.46 31 0.0078 0.0031 0.1188 0.0045
5.38 39 0.0115 0.0030 0.1247 0.0045
6.47 35 0.0041 0.0026 0.1195 0.0036
1.47 23 0.0083 0.0032 0.1284 0.0050
9.44 38 0.0046 0.0019 0.1220 0.0038
0.000
0.005 -
0.010 -
| .
0.015 ~ | |
| |
| |
| 1
] |
| |
| |
0.020 = v |
|
= I
T 0.025° T T T T T T — T
0 1 2 3 4 6 8 9 10 (m/s)
—_— T

Fig. 3.3.1 Relation between the regression coefficient ¢ of the power profile exponent as a function
of the potential temperature lapse rate (p = ¢I" 4+ d) and the mean wind speed u.




96

044+
4 4
A
A
0.13
4
| ]
042 4
q v
Y
y
011 4 \
v
-0.10
d
T T T 1 T i T ) T 1
0 1 2 3 4 5 6 7 8 9 10 (mjs)
—»

Fig. 3.3.2 Relation between the regression coefficient d of the power profile exponent as a function
of the potential temperature lapse rate (p = ¢I" + d) and the mean wind speed .

3.4 The variation of z, as derived from the variation of p

We have found a difference between the night and day values concerning the power
profile exponent as a function of temperature lapse rate. In night situations (which
usually relate to stable stratification) we find an increase of p if the degree of stability
increases. An increase of p with decreasing # is found in neutral situations, if we start
from a diabatic theoretical profile formula like, for instance, the Holzman formula.
This can only be explained by supposing that z, increases as i decreases.

This conclusion is in agreement with what we found in Chapter 2 on the basis of
an analysis of the O’Neill data.

In the mainly unstable day-time cases there is some slight indication of an increase
of p with increasing temperature lapse rate, but this increase proved to be not statisti-
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cally significant; besides, the neutral cases do not show an increase of p with decreas-
ing #, and this may be considered as an indication that no increase of z, is present
here, which again is in agreement with the conclusions of Chapter 2.

The different behaviour of z, as a function of i in stable and in unstable situations
has been found in this way for two completely independent groups of observations,
and hence it can hardly be imputed to measuring inaccuracies.

In 2.3.7, when considering the different behaviour of z, in stable and unstable
cases we mentioned, on the one hand that, since the statistical result is just on the 5%
level of significance, the different behaviour might not be real; but that, on the other
hand, the same behaviour in stable and in unstable cases is not a priori a necessity.

We are now in need of a better explanation for the different behaviour and a reason-
able one may be the following:

We would remind readers of the definition of aerodynamically smooth and rough
surfaces (e.g. SUTTON 1953, p. 77). If the surface roughness elements (called protu-
berances by SUTTON) are submerged in a viscous?!) sub-layer, the surface is aerody-
namically smooth, but if such a sub-layer is not present the surface is aerodynamically
rough. In the latter case the motion of the air is turbulent down to the surface itself,
Sutton remarks that the depth of the viscous sub-layer depends on the magnitude of
the Reynolds number; so the classification of the surface is determined not only by
the characteristics of the boundary layer, but also by the magnitude of the mean wind
speed. Hence, a surface which is “smooth” at low velocities may become “rough” if
the mean velocity increases.

Generally speaking all natural surfaces are aerodynamically rough, and certainly
in the case of neutral and unstable stratification. Only in stable situations and with
low wind speeds a viscous sub-layer might be formed, in which case the large z,
values might be explained in this way. This would mean that these z, values are not
solely related to the roughness of the surface, but also to a certain extent to the depth
of the viscous sub-layer.

1) Surron writes laminar, but according to modern ideas such a layer cannot be laminar in the
absolute sense, certainly not under natural conditions.
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APPENDICES
1. Standard deviation of V = Z?’——Z—Z (par. 2.2.1)
3 — U1

We introduce:
d d
Yy =us —ugand x = ug —uz
and we write:
w; = Euy + 8

where Eu; is the statistical expectation of u; and hence E8; = 0. The standard deviation
oo, of 8; is assumed to be 0.015 m/s: (see p. 62).

‘We may assume: E8;8; = 05 1 #]
Wl’bt veas
andalsor E(y; — wj) = Eu; — Euy.
Let us now define: -

M i Eus — Fug and ¢ i Eus — Eus.

Then the following expression is valid as a first approximation:

2
E ~2{1 _;_ﬂﬁ__w}

¢ &2 n-§
and:
2 2 2
2 ., © 1%, 27 COV X,y
oy ~ gyz + §4x — &3

where cov stands for covariance viz.: cov x,y = E(x — &) (y — 7). (see KENDALL
and STUART I, 1963 p. 232 or YuLE and KENDALL 1965 p. 329). The values 03, o2 and
cov x,y can be calculated as follows:

oy = E(y —1)? = E85 + E8; — E838; =
(0.015)2 + (0.015)2 — 0 = 0.00045
02 = E(x — £)2 = E8% + E8% — E838; =
(0.015)2 + (0.015)2 — 0 = 0.00045
cov x,y = E(x — &) (y — ) = E85 — E8283 — E8183 + E8133 —
(0.015)2 — 0 — 0 + 0 = 0.000225.

So o2 — 0.0045 {EZ—J”Z—_f—”}
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Because £ and % are unknown, we have to use x and y as estimates, hence:

2
EVzZ{l e SOVED) =2{1 o005 (L L L
x x2 xy x x2  2xy
i — —1- roves to be of the order of magnitude of 1, and therefore 0.0045 (i —_ —1—)
x2 nyp gl ’ ) x2  2xp
can be ignored, and EV ~ i—l

For the variance of ¥ we have as an estimator:
L x2+ y2 —xy
s = 0.0045 (T L),

The s, values of table 2.2.1 have been calculated according to this result.

II. Regression lines for the ({,z/L) relation (par. 2.2.1)

A method of determining a linear regression line if both variables have been mea-
sured with errors showing a given standard deviation is due to LINDLEY (1947).
For a simplified case we have the following derivation: "
Suppose there are a number of observations (x;p;) where i =1,. .., &, with
Exi = fi and Eyz = 4.
Let us introduce:
w; = x; — &; and v; = p; — n; and hence Eu; = Ev; = 0.
Itis postulated that:
1°9 =aé; 4 B
2° for every i: oy, ; = Ol (independent of i)
3° for every i: oy, = o2 (independent of i)
4° for every i: Euyv; = 0
The main problem is to find estimates & and f§ for a and B from the # observation
pairs (x:,y:), each pair being observed only once.
The variance of y; — ax; — f for a given i, is given by:
E(yi— ax;— B)2 = E(v; — auy)? = o2 4 201
. . 2
and hence this variance does not depend on .
The estimates & and f§ can now be determined by minimizing with regard to « and 8
a weighted sum of n square deviations:

O (pi — axg — B)?
A= .

o2 + a20?

Differentiation to 8 and requiring % = 0 yields:
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Tyi—GZxi—fn=0
or

y=ax+p 1)
here'—lz andf-—lzx
w y=: Y = (N

. . A .
Differentiation to a and requiring % = 0 yields:

— (o2 + #20%) T xi(yi — Gxi — f) — 2603 = (31— Gxi— B)?

(02 + &% 0

or

Y (ys — Gxi — B) (kxi 4 Gps — af) =0 (I1—2)

where k = o [ k. ‘
Substitution of (II—1) into (II—2) gives:

(i — dxi— § + &%) (kg + Gys— &y + @2%) =0
or with J; = yy— j and %; = x; — X:
T (Js — @%e) (k% + aF + (kK + %) X) = 0.
If we now introduce Ky = X %2 s Ky=2 iizand K,y = X %;J; we can write:

52Ky y + a(kKy — Ky) — kKgy = 0. (I1—3)

From (II—1) and (II—2) & and f can be solved if k is given. Unfortunately no
completely satisfying theory has yet been developed for this regression problem.
The accuracies of the estimates & and f, for instance, cannot be determined without
special assumptions being made about the distributions of »; and v;.

II. Normality test by means of the 2 test (par. 2.2.2)

Let us state the hypothesis that the distribution of ¥ is normal. The hypothesis
can be verified as follows: ‘

The sample of 37 V-values is divided into 5 classes wide enough to contain n;
(=7 or 8) elements each. The mean value of Vis ¥ = 0.500 and the standard de-
viation sy = 0.040. The class limits of ¢ corresponding with those of ¥ can be calcu-
lated by the introduction of # = (¥ —V) [ sy, where ¢ stands for the standardized nor-
mally distributed variable. The expectation of the number of V-values within the
different intervals can be found with the aid of a table of the standardized normal
distribution. ‘
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The result is as follows:

V. <0470 0470...0.484 0.484...0.502 0.502...0.520 > 0.520

m 7 7 8 7 8

t <—075 —075...—040 —040...4+0.05 4 0.05 + 0.50 > - 0.50
P; 0.227 0.118 0.175 0.172 0.308
En; 8.4 4.4 6.5 6.3 11.4

The %2 sum X {(m—Enz)Z/ Eni}z 4.28. The number of degrees of freedom
v=15—2—1=2. Since the 5% level of the %2 distribution with » = 2 is 5.99,
there is no reason to reject the null hypothesis that the ¥V values are normally distri-
buted.

IV. Testing whether V is dependent on height or not with the aid of the binomial distrib-
ution (par. 2.3.2)

The test used in 2.3.2, to decide whether ¥ is dependent on height is based on the
binomial distribution, which is a common tool in statistics and amply discussed in all
elementary books on the subject.

If some event 4 has a probability p of occurrence, and the alternative event 4
a probability 1 — p, the probability P(£) that in N independent experiments k events
A occur, can be written: k

P(k) = ( 2’ )p"(l —p"* (AV—1)

In 2.3.2 the inequality V5 > V7,2 is used and this can be considered as the event 4.
The probability P of this event was stated to be %. In the stable case we had N = 11
and we found 9 cases A. The probability of finding 9 or more cases, according to
(Iv—1) is:

11

Z (1kl> 3)11 = 0.033.

=9 :
The other probabilities in 2.3.2 have been found by analogous means.

V. The method of least squares (par. 2.3.3)

The determination of a linear regression between two variables £ and 5, assuming
that £ is observed without error, whereas » is measured with error, is a classical
statistical problem which has been solved completely. The resulting linear regression
line is in fact the same as that given by the Lindley’s method from II, if one sub-
stitutes oy, = 01 = Oand k = oo.
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In this case (II-—3) changes into:

~ _ Sz,
0 = ——
5

and (IT—1) will be left unchanged.

VI. The method of m-rankings (par. 2.3.4)

The method of m-rankings is one of the older non-parametric methods and was
developed by Friedman (M. G. Kendall, 1955).

If m series of k objects are available and the & objects in each series are ordered
according to some property, the method of m-rankings can be used to test whether
there is some significant agreement in the m-rankings or not. Let us introduce the
null hypothesis that the rank orders of the m series are independent of each other.
If the sum of the m rank numbers of the i** object is called #, the expectation of #
under the null hypothesisis E t; = im (k + 1).

§{ti—%m(k+1)}2—1
i=1

Now h="" k=) is introduced as a statistic.

h = 0if all #;’s are equal. The more the #;-values differ, the larger /; k4 reaches a maxi-
mum as soon as the rankings in the m series are completely equal.

TABLE VI—1 s values and rank numbers for the stable group

KEYPS Holzman MO Swinbank Goptarev Deacon  Power

I 1477 134(4) 1395 13203) 141(6)  72(1)  10.4()
I 132(7) 1194 1072) 1L.63) 12.9(6)  58(1)  12.5(5)
I 1272)  10.6(1)  20.4(5) 18.4(4) 14.0(3) 24.06)  33.6(7)
IV 587  46@)  3.63) 475 556 312 3.00)
V941N 704 573) 23(1) 806 3002 790
VI 3505 212 181 212  3.0@) 626  8.57)
VIL  37(5) 263 191 232 29@)  576) 597
VIOD  24(1)  343) 46(5) 398 272  896)  9.0(7)
IX 37313 40@4)  3903) 371 4205 606  9.0()
X 353 3.6(4) 3301 33011  3.75)  426)  12.57)
XI 392  31(1) 42031 435D 43D 42031 15.6(0)

t 47% 343 33 33 52% 45% 62
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TABLE VI—2 s values and rank numbers for the unstable group

KEYPS Holzman MO Swinbank Goptarev Deacon Power

XII  472)  483) 545 504  5.6(6)  40(1)  23.8(7)
XII  4.53) 474 535 4411 60(6) 44011 24.3(7)
XIV ~ 383)  383)  406) 383  44(3) 383 18.9(7)

XV 252 2931 346 3205 2931  24(1)  154(7)
XVI  1.9(1) 253 316  2.6@) 2805 2202 1517

XVII 3123 3120 43(6) 344  34@dH 1) 11.2(7)

Iy 133 19 34 22 28 - 9% 42

The frequency distribution of 4 has been derived exactly for a number of small m
and k values and approximately for larger m and k values. Tables and nomograms
are available.

For the eleven series I. .. XI (m1 = 11) of seven s values (k1= 7) from table2.3.3
and the six series XII...XVII (m2 = 6) of seven s values (k2 = 7) respectively,
we give the s values and the corresponding rank numbers in table VI—1 and table
VI—2 respectively.

Since dmi(k1 + 1) = 44 and Ima(ks + 1) = 24 we find Ay = 13,25 and sz = 14.08.
The probability (P) of finding such values or higher ones, if the null hypothesis is
true, is, according to the nomogram (Statistische tabellen en nomogrammen, Stenfert
Kroese N.V. - Leiden), = 0.02 and < 0.01 respectively. So on the 5% level of sig-
nificance the null hypothesis has to be rejected; a significant agreement between the
rankings exists. In other words: there is some real difference between the s values
for the different formulae, or : one or more formulae seem to be better or worse than the
others. As is stated in 2.3.4, this result is assumed to be due primarily to the power
profile values of s, because in both cases the ¢#; values are the largest. The application
of the test to the six cases that remain when the power profile is excluded leads to
acceptance of the null hypothesis, even on the 10% level of significance for the stable
group, and again rejection of the null hypothesis for the unstable group (P < 0.01).

VII. Kendall’s rank correlation test (par. 2.3.7)

Kendall’s rank correlation test is a test for rank order agreement of two series
(x1,y1) of n observation pairs.

The application is very simple. Suppose that the x;’s are ordered according to
increasing size, that is x; << x2 <<... << xu. Ranks r; are assigned to the corres-
ponding y;’s. If complete “‘correlation” existed the rank numbers r; would form the
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series 1,2,... a‘?’ If no correlation exists the ranks are a random permutation of the
numbers 1, 2 ...n. Let us introduce a statistic 7: the number of pairs with r; > ry
minus the number of pairs with r; < r;. Under the null hypothesis (x and y are inde-
pendent) T has a symmetrical distribution around zero. The exact distribution has
been calculated for small values of n(<< 40). Tables are available. (Statistische
Tabellen en Nomogrammen, Stenfert Kroese, Leiden.)

VII. Fitting theoretical p curves to power profile exponent values from Lopik wind
speed observations (par. 3.2.2)

p-values calculated according to (3.1.1) are available for seven mean wind speed
groups and corresponding values of y according to (3.1.2).

From figure 3.3.) different values of { were determined for each p-value, denoted
by &, i=1, ..., 9. Here the index i denotes the value of {/{,, in such a way that
i = 1denotes {/{, = 10,i = 2 denotes {/{, = 20 etc. ’

{1, ..., Ls was determined for each p in the wind speed group u=2.0...2.9
(containing 48 p, y pairs). For the other groups {s, . .., {s was determined, because
from a rough graphical estimation it is clear that in the first case {/{, < 100 holds
good and in the other ¢/{, = 20.

The next step was the determination of linear regression lines {; on x(= y + 1
(y = — 1 is the adiabatic temperature lapse rate, and because of (3.3.5) we want to
have { = 0fory = —1).

The regression lines {; = aix + b; were determined for different i cases by the
method of least squares. For this case we have assumed that the standard deviation
of the measuring error of x is small compared to the standard deviation of the mea-
suring error of ;.

The values of » within each # group prove to form a clearly increasing function of
1n ¢/{,. So it is easy to determine graphically that value ({/{0)* of ¢/, for which b = 0.
In this way we obtained 7 values ({/£0)*. A corresponding graph of a; against In ({/Z0)s
within each # group yields the value a* for ({/{,)* corresponding to b = 0. In this
way the 7 values of {/{, = z/z, and a, mentioned in table 3.2.1, have been found.
The * is omitted.

For the least squares estimates d@; and b; the standard deviations are determined
according to the well-known formulae which can be found in most textbooks on
statistics (viz. Pfanzagl, 1962).
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SUMMARY

The literature on meteorology contains a large number of formulae worked out to
describe the increase of wind speed with height under non-adiabatic atmospheric
conditions.

A few of the formulae proposed have a purely mathematical significance and the
only requirement they fulfil is that they shall transform into the logarithmic profile
in neutral conditions. The formulae based on a physical reasoning rest solely on a
simplified balance equation. This equation contains, on one side, terms which refer
to mechanical and convective turbulence respectively, and on the other side a term
representing the total turbulent energy or energy dissipation. A generally accepted
mathematical expression in the characteristic basic quantities can be found for the
first two terms, but unfortunately this is not the case for the last term. Various authors
have attempted to find an analytical form for this term. The attempts are based mainly
on dimensional considerations.

In the present study the formulae have been combined as far as possible to form
one mathematical system, whereby one manageable whole has been obtained.

The study is divided into three parts. Chapter 1 gives the derivation of the general
system and a number of mathematical particulars. Chapter 2 gives applications with
the aid of observations made in O’Neill, Nebraska (USA) in 1953 and 1956. These
applications must be regarded as examples only, because the accuracy of the observ-
ations is not quite sufficient. Finally, the so-called power law is dealt with in a short
third chapter.

The basic quantities and symbols having been defined in section 1.1, a number of
wind profile formulae are reviewed in section 1.2, where also a few particulars of the
derivations are given.

In 1.3 two derivations (KEYPS and Businger) are generalized. Two groups of
equations then appear (Plus and Minus groups) for logarithmic non-dimensional
wind gradient as a function of the stability parameter {. These groups prove to
transform into one another by a simple mathematical transformation. For the sake
of simplicity the two groups are brought together in one general formula, while a
general solution in parameter form is given for the wind profile.

In 1.4 a number of special cases from the various groups are dealt with, including
of course, the KEYPS and Businger formulae.

Two well-known empirical formulae, the power law and the Deacon profile, do not
fit into the system. The Swinbank formula, however, which is not directly included
in the system, can be made to relate to the system. (par. 1.5).

In the majority of articles on the subject it is customary to use the quantity S as a
function of {, and to present in the form of a graph not only the ,,theoretical” function,
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but also estimated values of S and { from observations, in order to test the formulae
in this way. One objection to this method is the fact that both S and { contain the
friction-velocity u, and the measuring error in u, affects the shape of the graph.
(This is investigated more thoroughly in Chapter 2.) In Section 1.6, a wind speed
difference ratio ¥V is introduced. This is also a function of {, but the same objection
does not arise. The mathematical properties of V in the various profile formulae are
further investigated.

Chapter 2 makes use in the first place of a number of observations from the 1953
experiments at O’Neill (Great Plains Turbulence Field Program). These are wind
speed measurements at four levels and measurements of heat flux and friction velocity
at three levels.

The objection to the S-{ graph is demonstrated in Section 2.1.

The usefulness of a number of formulae is investigated by means of the V-{ graph
in par. 2.2. The tentative conclusion (taking into account the unreliability of the
observations) is that there is no difference in usability between the Swinbank, Goptarev
and Holzman profile formulae. All three are probably usable for a fairly large range
of stability. Others, such as KEYPS and MO, are certainly as they stand not usable
for alarge range of { values. _

In par. 2.3 use is made of a series of measurements of wind speed at seven levels
between % and 16 m.taken from the Project Prairie Grass (O’Neill 1956). No measure-
ments of u, and H are available here, so there can be no question of testing, but
only of fitting,

The Deacon and power law formulae have been used for fitting as well as five
formulae from the system. The KEYPS, Holzman, Swinbank and Goptarev formulae
were found to fit almost equally well.

The power law proves to fit considerably less well in unstable situations, and the
reasons for this are explained; while MO seems to be slightly less favourable in stable
situations.

A reasonable fit can be obtained with Deacon, but in stable situations it was found
that a serious objection attacheebto the formula, is that negative u,, and complex z,
values appear.

The mathematical explanation for this phenomenon is found.

A notable result of the fitting process is the fact that large z, values occur in stable
situations. This variation of z, proves to be connected with the average wind speed.

The third chapter is devoted entirely to the power law. Although this formula has
no physical basis whatever, it is useful to investigate what can be done with it; the
fact is that the formula is often applied because of its simplicity.

The investigation conducted here is based on observations at Lopik (central
Netherlands). The power law exponent p was found to vary as a function of tempera-
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ture and mean speed. It also proved possible to derive this variation from the Holzman
formula. (In theory it should be possible to select a different formula instead of Holz-

man.)

A secondary result was that here too z, was found to increase with decreasing wind

speeds. An attempt is made to explain this z, variation in physical terms.
Explanatory notes to the statistical methods employed are given in appendices.
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SAMENVATTING

In de meteorologische literatuur is een groot aantal formules ontwikkeld om de
toename van de windsnelheid met de hoogte in niet-adiabatische atmosferische om-
standigheden te beschrijven.

Enkele van de voorgestelde formules hebben uitsluitend een mathematische beteke-
nis en voldoen alleen aan de eis dat ze voor neutrale omstandigheden in het logarith-
mische profiel overgaan. De formules die een enigszins fysische basis bezitten berusten
alle op een vereenvoudigde balans-vergelijking, waarin enerzijds termen voorkomen
die respectievelijk betrekking hebben op de mechanische en de convectieve turbulentie
en anderzijds een term die de totale turbulente energie of energiedissipatie voorstelt.
Voor de eerste twee termen is een algemeen aanvaarde mathematische uitdrukking
te geven in de karakteristieke basisgrootheden. Voor de laatste term is dit helaas niet
het geval. Diverse auteurs hebben gepoogd voor deze term een analytische vorm te
vinden. Deze pogingen berusten hoofdzakelijk op dimensiebeschouwingen.

In deze studie worden deze formules voor zover mogelijk in een mathematisch
systeem samengevat, waardoor een overzichtelijk geheel wordt verkregen.

De studie bestaat uit drie gedeelten. Hoofdstuk 1 geeft de afleiding van het algemene
systeem en een aantal mathematische bijzonderheden. Hoofdstuk 2 geeft toepassingen
met behulp van waarnemingen die in 1953 resp. 1956 in O’Neill-Nebraska-U.S.A.
werden verricht. Deze toepassingen moeten gezien worden als voorbeelden omdat de
kwaliteit van de waarnemingen vrij matig is. In een klein 3de hoofdstuk werd tenslotte
de z.g. machtwet behandeld.

Nadat in 1.1 de basisgrootheden en symbolen zijn gedefinieerd, wordt in 1.2 een
overzicht gegeven van een aantal windprofiel formules en enkele bijzonderheden van
de afieidingen.

In 1.3 worden twee afleidingen (KEYPS en Businger) gegeneraliseerd. Er ontstaan
dan twee groepen vergelijkingen (Plus en Minus groepen) voor de logarithmische
dimensieloze windgradiént als functie van de hoogte-stabiliteits parameter {. Deze
groepen blijken door een eenvoudige mathematische transformatie in elkaar over te
gaan. Gemakshalve worden beide groepen in één algemene formule samengevat,
terwijl een algemene oplossing in parametervorm voor het windprofiel gegeven wordt.

In 1.4 worden een aantal bijzondere gevallen van de verschillende groepen behan-
deld, waaronder uiteraard de KEYPS formule en die van Businger.

Een tweetal bekende empirische formules nl. de machtwet en het Deacon profiel
passen niet in het systeem. Wel kan de formule van Swinbank, die niet rechtstreeks
in het systeem is ingesloten, met dit systeem in relatie worden gebracht (par. 1.5).

In de meeste artikelen in de literatuur is het gebruikelijk de grootheid § als functie
van { te gebruiken en in grafiek te brengen (zowel de “theoretische’ functie, als ook
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schattingen van S en { uit waarnemingen) om op deze wijze de formules te toetsen.
Een bezwaar van deze methode is het feit dat zowel S als  de schuifspanningssnelheid
u,, bevatten, en de meetfout in deze u, beinvloedt het beeld van de grafiek. (Hierop
wordt in het 2de hoofdstuk nader ingegaan.) In 1.6 wordt een windsnelheidsverschil-
verhouding V ingevoerd, die eveneens een functie van { is, maar genoemd bezwaar
niet heeft. De mathematische eigenschappen van ¥ worden nader onderzocht.

In het tweede hoofdstuk worden in de eerste plaats uit het 1953 onderzoek te O’Neill
(Great Plains Turbulence Field Program) een aantal waarnemingen gebruikt nl.
windsnelheidsmetingen van vier niveaus en metingen van warmteflux en schuif-
spanningssnelheid van drie niveaus.

In 2.1 wordt het bezwaar van de (S,{) grafiek aangetoond.

In 2.2 wordt de bruikbaarheid van een aantal formules via de (¥,0) grafiek onder-
zocht. De voorlopige conclusie (in verband met de onbetrouwbaarheid van de waar-
nemingen) is dat tussen de Swinbank, Goptarev en Holzman profielformules geen
verschil in bruikbaarheid is te constateren. Alle drie zijn waarschijnlijk voor een vrij
groot stabiliteitsgebied bruikbaar. Enkele andere, b.v. KEYPS en MO, zijn bepaald
niet zonder meer voor een groot gebied van { waarden bruikbaar.

In 2.3 worden uit het materiaal van het Project Prairie Grass (O’Neill 1956)
series metingen van de windsnelheid op zeven niveaus tussen % en 16 m gebruikt.
Er zijn hierbij geen metingen van u,, en H beschikbaar, zodat van toetsing geen sprake
kan zijn, maar slechts van aanpassing.

Naast vijf formules uit het systeem werden de Deacon en machtwet formules ge-
bruikt voor de aanpassing. Het blijkt hierbij dat de aanpassingsmogelijkheden voor de
KEYPS, Holzman, Swinbank en Goptarev formules nagenoeg gelijk zijn.

De machtwet blijkt in onstabiele situaties aanzienlijk minder goed aan te sluiten,
dan de overige formules. Dit is plausibel te maken. In stabiele situaties is MO mis-
schien iets ongunstiger dan de overige formules.

Met Deacon kan een redelijke aanpassing worden verkregen, echter blijkt er in
stabiele situaties een ernstig bezwaar aan de formule te kleven; er kunnen dan n.l.
negatieve u,, en complexe z, waarden ontstaan. De mathematische verklaring van dit
effect is nagegaan. :

Een opmerkelijk resultaat van de aanpassing is nog het feit dat in stabiele situaties
grotere z, waarden voorkomen dan in onstabiele. Deze variatie van z, blijkt met de
gemiddelde windsnelheid samen te hangen.

Het derde hoofdstuk is speciaal aan de machtwet gewijd. Hoewel deze formule in
het geheel geen fysische basis heeft is het toch nuttig na te gaan wat er mee gedaan
kan worden; het is tenslotte zo dat de formule wegens zijn eenvoud vaak toegepast
wordt.

Het hier uitgevoerde onderzoek is gebaseerd op waarnemingen te Lopik (centrum
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Nederland). Het bleek dat de machtwetexponent p varieert als functie van de tem-
peratuur en de gemiddelde snelheid. Verder bleek het mogelijk dit verloop af te leiden
uit b.v. de Holzman formule.

Als bijkomstig resuitaat kon ook hier een toename van z, bij afnemende wind wor-
den geconstateerd. Getracht is deze z, variatie fysisch plausibel te maken.

In een aanhangsel zijn tenslotte de toegepaste statistische methoden nader toege-
licht.
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