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PREFACE

In the series of scientific reports: ‘Mededelingen en Verhandelingen’ issued by the
Royal Netherlands Meteorological Institute the author in 1956 presented a study
on the problem of optimal track selection in air navigation, entitled: ‘Theoretical
aspects of Aeronavigation and its application in Aviation Meteorology’ (nr. 64).
The optimization problem was solved there using the classical tools of the calculus
of variations. The study also presented an exposition of a simple prototype model
algorithm for solving this problem. The corresponding graphical technique for the

construction of the ‘minimum flight path’ found wide acceptance in operational
practice.

With the advent of high speed electronic computers it was recognized that long
distance flight planning was particularly suited to be automated. But this procedural
change would demand for the analysis and synthesis of some computational algo-
rithms, which would meet the special requirements of numerical mathematics in
computer science. In the meantime it occurred that the computational methods used
in the calculus of variation were generalized resulting in the foundation of the theory
of optimal control processes.

It was interesting to know whether this new approach might contribute to a better
insight and understanding of some intricate questions which had arisen in the course
of time by experience with the manual dispatch technique of optimal track selection.

The intent of this report is to present in a unified manner the generalization of all
the solutions known to date and some new formulations for solving the track selection
problem considered as an optimal control problem under general space-time varying
meteorological conditions and cruise performance.

Part I deals with the solution of the time optimal control problem in two dimen-

sions (Least Time Track). Here the maximum principle of Pontryagin was a leading
principle.

A special section is devoted to a modification of the governing control equations
to be valid in a conformal map projection.

In Part II the theory is extended to cover the 3-dimensional case of track selection
including the identification of the optimal vertical (stepped) altitude profile. Here
the optimality criterium is examined in terms of different options: time-, fuel- and
cost-saving. This 3-dimensional flight planning problem is solved by using some prin-
ciples of modern graph theory.



Throughout this memorandum attention is paid to the numerical aspects of the
various approaches within the scope of possible computer applications.

This work is the outcome of a co-operative project organized by the Royal Nether-
lands Meteorological Institute (K.N.M.L) and the Royal Dutch Airlines (KLM)
with the objective to study the potentialities of computerized flight planning for
trans-atlantic crossings.

The Director in Chief of the

Royal Netherlands Meteorological Institute

M. W. F. SCHREGARDUS



VOORWOORD

In de serie ‘Mededelingen en Verhandelingen’, uitgegeven door het K.N.M.1.,
wijdde de schrijver in 1956 een studie aan het probleem van de selectie van de optimale
vliegroute in de luchtvaartnavigatie, onder de titel: ‘Theoretical aspects of Aero-
navigation and its application in Aviation Meteorology’ (nr. 64). Daarin werd voor
het betreffende probleem een oplossing beschreven waarbij gebruik gemaakt werd
van de klassieke methoden van de variatierekening.

In deze studie werd een uiteenzetting gegeven van een eenvoudige rekenmethode
op basis waarvan een grafische techniek werd ontwikkeld om in de praktijk de
optimale vliegroute te construeren.

Met de komst van snelle elektronische rekenmachines werd ingezien dat de vlucht-
voorbereiding ten behoeve van het lange-afstandverkeer zich bijzonder goed leende
voor automatisering. Maar deze verandering van werkmethode maakte de analyse
en synthese van rekenprocessen noodzakelijk die moeten voldoen aan de specificke
eisen van elektronische informatieverwerking.

Intussen werden ook de grondbeginselen van de variatierekening herzien, hetgeen
resulteerde in de ontwikkeling van de theorie van optimale controle processen.

In dit verband was het interessant te onderzoeken of deze nieuwe ontwikkeling zou
kunnen bijdragen tot een beter inzicht in enkele moeilijke vraagstukken die uit de
ervaringen met de grafische methode voor de dag waren gekomen.

Het doel van deze verhandeling is een samenvatting te geven van gegeneraliseerde
versies van alle oplossingsvergelijkingen die tot op heden bekend zijn. Voorts worden
enkele nieuwe formuleringen gepresenteerd die gevonden worden als men het pro-
bleem beschouwt als een besturingsprobleem, met inachtneming van de naar tijd en
en plaats variérende meteorologische condities en vliegtuig-prestaties.

In deel T wordt de oplossing behandeld van het probleem in twee dimensies ge-
baseerd op de kortste vliegtijd. Een afzonderlijk hoofdstuk is gewijd aan het opstellen
van het stelsel basisvergelijkingen dat geldt in een conforme kaartprojectie.

In deel I is de theorie uitgebreid voor het probleem van de optimale route selectie
in de ruimte. De oplossing omvat o.a. de identificatie van het optimale hoogteprofiel.
Daarbij wordt het criterium van een optimum beschouwd in verband met vliegtijd,
brandstofverbruik en kosten. Dit probleem werd opgelost door gebruik te maken van
enkele beginselen van de ‘graph’ theorie.



In de verhandeling is speciaal aandacht besteed aan de numerieke aspecten van de
verschillende methodieken met het oog op computer-toepassingen.

De studie is het resultaat van een project dat tot stand is gekomen door samen-
werking van het Koninklijk Nederlands Meteorologisch Instituut en de Koninklijke
Luchtvaart Maatschappij (KLM). Dit project had tot doel de mogelijkheden na te

gaan van de automatisering van de vluchtplanning voor het trans-atlantische lucht-
verkeer.

De Hoofddirecteur van het

Koninklijk Nederlands Meteorologisch Instituut

M. W. F. SCHREGARDUS
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I. INTRODUCTION

In aviation much effort is put into the development of graphical and numerical
techniques for finding the most adventageous route, the adjective ‘adventageous’
in the sense of some specified optimization criterium for example minimum operating
time.

Interest in this problem was raised shortly after world war II when regular trans-
oceanic flights came into operation. In those days the long distance flights with piston-
engined aircraft were often payload-critical: strong headwinds had an adverse effect
on the economy of the flight. It was soon realized that the scale of the atmospheric
circulation was such that one could allow for track diversions in the hope that the
lengthening of the route would be overcompensated by favourable wind drifts. Those
aircraft commanders challenging nature’s forces mostly ventured to make excursions
of 500 miles or more to circumnavigate whole depressions. The principle of ‘pressure
pattern flying’ was born. As more reliable forecasts of the upper airflow became avail-
able this principle became a basic tool in practices and procedures of pre-flight
planning. In the beginning the selection of the ‘best’ route was mere guess-work. The
‘minimum flight path’ was identified qualitatively and intuitively by visual inspection
of the prevailing upper air circulation as depicted from the isobaric charts. The neces-
sary aids to construct the desired track were still lacking at the time although some
distinguished mathematicians had laid the foundation of the theory already in the
thirties. [1], [2], [3], [4].

The problem of numerical evaluation of the optimum path remained to be settled.
After some less successful attempts [5], [6] the break-through came in 1953 with the
introduction of the time-front method as explained in the KLM-report. [7]. Since
then most companies changed over from trial and error methods to the manual
construction of the optimal route.

In the last decennium we observed the manual dispatch procedures gradually
being superseded by numerical techniques using high speed electronic computers.

By chance this new strategy had its beginning almost simultaneously with the advent
of regular turbo-jet operations. Computerized flight planning and track selection
paved the way to rationalizing and centralizing existing practices, but above all to
attacking problems which in the pre-computer era had been impracticably to solve
by manual handling, for example ‘3-dimensional flight planning’.

This new trend stimulated the optimization problem to be reviewed in a wider
perspective. It promoted also the analysis and synthesis of new algorithms which
were manageable by computer within tolerable limits of running time, central core
storage and costs.

The necessity to review current methods of optimal track selection and perform-
ance may be demonstrated by a brief discussion on the existing graphical construc-
tion method as described in [7]. See Fig. 1.
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Fig. 1 Manual construction of the Least Time Track or ‘minimum flight path’ by means of the
time front method. Note the phenomenon of the focussing effect near point F (focus).
Insert: perspective drawing of the template used.

In this figure the fully drawn lines represent streamlines, which display the airflow
inanisobaric surface. The stated problem is, given the aircraft speed (True Air Speed),
to find the trajectory along which the time of flight between the point of departure A
and destination B is an (absolute) minimum with respect to all admissible trajectories
between A and B. The solution of this problem is analogous to Huyghen’s principle
of wave propagation in geometrical optics. The contruction where use is made of a

special template, drawn in perspective in the insert of Fig. 1, evolves in two stages.
From [7] we cite:

a Time fronts.

Starting from point of departure A, ensure that in any given position of the template point 7
coincides with A. Point 7 is the setting of the average true air speed for the first hour, climb includ-
ed. Rotate wind disk 2 so that groove 3 coincides with the mean wind direction for the first hour
and plot in this groove the average wind speed (point 3).

Wind direction and wind speed are read from isohypses or streamlines and isotachs or spot winds
in the forecast upper air chart in which the time fronts are to be constructed. Point 3 is a point
of the first time front. In the same way mark a number of other points and draw through these
points a fluent curve: the first time front 1. To find the next time front, move the device so that
edge 6 is a tangent in point 7 to the time front in any given point; in other words: so that the true
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heading is always perpendicular to the time front (point 7 is now set to the true air speed for
cruise flight). In this position plot the wind vector with disk 2 in the same manner as before.
Repeat in order to find other points of time front 2. According to the foregoing build up a system
of time fronts until the system covers the point of destimation B.

b Minimum Flight Path.

In order to find the minimum flight path between A en B work in reversed order from point B,
in a similar way as the time fronts were built up. From B, in this case located at the last time
front, rotate wind disk 2 so that the average wind vector for the last hour can be plotted in opposite
direction. Mark the endpoint of the opposite wind vector with a pencil and keep the pencil in
this position. Now move the template so that the zero point of groove 3 coincides with the pencil
point. Then rotate the template around this zero point (with pencil still in the same position)
until edge 6 is tangent to time front 9 (to be achieved by moving part Q of the template along
slide 4). This tangent point By, is a point of the minimum flight path from A to B. In the same

manner, starting from point By, the other points Bg, B; etc. are constructed until point of departure
A is reached.

If terminal B is not exactly located on the last time front, but between two time fronts, interpola-
tion must be applied. From B plot a fraction of the wind vector, which is defined by the flight
time between B and the last time front before B. If for instance B is located exactly halfway be-
tween the two time fronts, plot from B a distance equal to half the wind velocity and apply the

construction accordingly.’

Note:

Part P of the template is adapted to the scale and projection of the weather chart on which the minimum
flight path is constructed. Part Q is a protractor to be used for compiling the corresponding flight plan.

The synthesis of an algorithm which, for computer use, replaces the above described
graphical construction principle, requires the reformulation of all steps in mathemati-
cal terms. As the method is a simple geometric one its elaboration looks straight-
forward. In the present dynamical system, however, there is a phenomenon which
hinders the development of a suitable routine considerably. This concerns the occur-
rence of a focussing effect: the overcrossing of time fronts and the loss of uniqueness
of the solution. (See time fronts 8, 9, ... 11 in Fig. 1). The occurrence of multiple
solutions (relative extremes) is a reality in practice. Thus is it inevitable that the
procedure should involve a subroutine to account for this focussing effect. Unfortu-
nately, this is not easily to be solved numerically.

Obviously there are ample reasons to look for alternative solutions of the present
problem statement and for more efficient and convenient process algorithms.

The present unconstrained optimization problem is a typical specimen of a problem
which may be attacked using classical tools of variational calculus. The reference
to Huyghen’s principle suggests that the time front method be the result of the
Hamiltonian point of view and is described by Hamilton’s partial differential equation
for this problem. [8]. Fundamental is also the differential equation of Euler Lagrange
for this problem elaborated by Zermelo. [1]. The ‘steering equation’ of Zermelo
lends itself extremely well for the application of an iterative procedure. It is also
advisable to consider the feasibility of a numerical method based on Von Mises’
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refraction law, which is equivalent with the law of refraction due to Snellius in
optics. [3].

The navigational aspects may also be considered in the context of modern control
theory. Here research is engaged with the dynamics of physical processes, which are
influenced by some external controlling forces.

The variational methods used in these systems to solve optimal control conditions
are of a non-classical nature, when the control domain is a closed set.

It is well known that this theory is centralized about the maximum principle of
Pontryagin [9], [10]. Its strength lies in the elegant synthesis of different viewpoints,
its applicability to non-linear dynamic systems (e.g. anisotropic inhomogeneous
conditions of velocity control, time variability of the hydrodynamic flow etc.), and
the power to solve the problem with a minimum of computational effort.

In aviation the aircraft’s heading is a specific controlling entity, which indeed
suggests that the optimization problem may be reviewed using the technique and
methods of optimal control theory.

In this treatise (Part I) the theory is surveyed in a general way. (Sections 1, 2).
This approach leads not only to a recapitulation and generalization of the existing
methodology, but also to some new interpretations of the governing system equations.

A point of secondary importance, yet of vital interest in practice, is that the theory
has been extended to cover the effect of the earth’s curvature. (Section 4). It turns
out that the system equations should be expanded to include corrective terms involv-
ing the scale of the (conformal) chart projection used.

Section 5 is devoted to the numerical aspects of some computation schemes devel-
oped to solve the optimal track selection problem by electronic means. Special
attention is paid to the merits and drawbacks of the various approaches.

So far the problem was considered under the assumption of idealized conditions
of airspace utilization. It was assumed that the aircraft were not deprived from oper-
ating along the most advantageous route due to various limitations imposed by ATC-
centres of Providing States. These centres are responsible for an adequate organization
of the traffic flow. There are but a few flight regions now, where the assignment of the
most adventageous flight path is assured by these centres. The limitations force
the theory of optimal track selection and performance to branch off into a direction
of constrained optimization in a discrete system of route patterns, check points and
flight levels.

In flight planning, where the ultimate goal is to achieve peak efficiency and to
produce the optimum plan for each flight which will fulfil the company’s policy of
carrying the offered payload in the most economical manner under the safest possible
conditions, this constrained optimization will result in a sub-optimum path selection
only.

To attack discrete problems of this sort within the limitations of navigational
capability, performance characteristics, flight control and separation criteria, one can
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have recourse to the concepts of graph theory [11], [12], [13], in particular to the
category of transport problems. (Section 3).

As the performance depends also on the flight profile in the vertical, the problem
statement is wider in its scope than a quarter of a century ago.

Present techniques [14], [15] solve this problem by means of a two-stage processing,
i.e. a separate track selection in the horizontal followed by a separate selection of the
best altitude profile (stepped climb) in the vertical. In Part IT we have made an attempt
to tackle the problem in its most primitive form, namely in space-time using a special
graph structure. In the last section some process algorithms are described, which
may actually be programmed to produce the desired path- and performance informa-
tion. The usefulness of these techniques is proved by experimentation.
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PART 1

THEORY AND PRACTICAL EVALUATION
OF THE LEAST TIME TRACK

1. Optimal control problem. Review of Pontryagin’s approach

1.1 Non-autonomous control processes

In this section we shall review Pontryagin’s approach to the solution of optimal
control problems for non-autonomous systems. Due to the complexity of the theory
this review must be very descriptive and scanty. For more details, in particular for
the proof of the wellknown maximum principle, the reader is referred to modern
treatises on this subject. [9], [10], [17], [18].

We consider a non-linear dynamical system governed by the equations of motion
of its state vector x in the Euclidian n-dimensional space R":

dxt .
Eofeh e, i=1,. . mj=1,.. .1 (1.1)
dt
or in vector form:
x =f(x,u,1). (1.2)

Note:

Vectors are denoted by lower case bold-faced Latin letters, components by superscripts, matrices
by capital letters.

dx
Here x(x', . . ., x") is the state vector in R". As usual x = a

u(u', ..., u) is the control vector restricted to remain in the closed and bounded
set U of dimension r. u(#) is supposed to be piecewise continuous. Any control
function u(f) satisfying the above conditions is said to be admissible.

The constraints on the set U of admissible control variables u!, .. ., «" could be
weakened, but they are adequate for the optimization problem in navigation to be
reviewed in the next sections.

The vector valued function f (x, u, ) is assumed to have continuous first partial
derivatives at the points of R” x U x I, where I denotes the real time axis.

It is desired to find an admissible control law u(¢) such that the system in R" is
carried from an initial state x(¢;) = X, to a final state x(¢,) = x, for which the function-
al
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s = ;' £ X (), u(), 1) dr 13)

taken along the desired trajectory is a minimum. SCis a specified objective function.

The functional ¢ is associated with an optimality criterium for the specific problem
under consideration e.g. minimum costs, minimum fuel expenditure, minimum time
of transfer etc.

The time ¢; is assumed to be given, !, is the sought time at which the trajectory
passes through the point x, in R".

Next, we shall restate the problem by introducing an auxiliary state variable x°
according to the relations:

d 0
% =/, u, 1)

x%(t,) =0. (1.4)

Then the system of equations (1.2) may be replaced by the system in the augmented
space R**!:

x=f(x,u,1), i=0,1,...,n (1.5)

Here the new state vector x(x°, x?, ..., x") is the state vector in the augmented
space R**1,

S is assumed to be independent of x°.

Note:

In a more generalized form f may depend on all state variables x9, x, . . ., x*. For instance, if the
optimality criterium is based upon the fuel flow, the evolution of the flight depends on the fuel con-
sumed at every intermediate instant of time.

The problem to be solved may now be formulated as follows:
In the augmented space R"*! the point x(t;) = (0, x,) is given and the line S
parallel to the x°-axis and passing through the point (0, x,). Among all admissible

controls u = u(¢) having the property that the corresponding solution x(7) of the
system

di
7’; =fx,uf), i=01,...n

with initial condition x(¢;) = (0, x,) intersects the line S, find one whose intersection
with S has the smallest coordinate x°.
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In the context of Pontryagin’s theory the solution to this problem is given by the
maximum principle and a transversality condition.

To formulate the related theorems it is required to introduce a set of auxiliary
variables A°, 1!, ... 2" which satisfy the system of equations:

di " of I :
- _,_ocﬁﬂ’ j=0,1,..,n (1.6)

To the vector A(4%, A', ..., A") are associated different names: adjoint vector,
momentum vector, costate vector, Lagrange multipliers etc.

The set of equations (1.6) is known as the set of adjoint variational equations.

Next, we define the function J# (x, u, #, 1) by the relation:

H(x,u,t,)) =A0(x,u0,0) =Y Vfi(x,u,1). * n
v}

This function, known as Pontryagin’s quasi-Hamiltonian, becomes a function of
the vector parameter u for fixed values of x, ¢ and A. Let us denote the least upper
bound of the values of this function by .#(x, ¢, A):

M (X, 1,)) = sup H(x,u,t,L). (1.8)

uel

Then we obtain the following theorem (maximum principle for non-autonomous
systems).

Let u(#), #; < t < t; be an admissible control along the corresponding trajectory
x(#) of system (1.5). In order that u(¢) and x(¢) be optimal it is required that there
exist a non-zero continuous solution A(¢) of the adjoint variational equations

dli n 5 J .
= — —LAJ, i=01,..,n
dt j=00x'

such that
a for all ¢ the function # (x(¢), u(?), ¢, L(¢)) of the variable u € U attains its maximum
at the point u = u(¢):
H (x(), u(®), 1, M (1)) = A (x(2), 8, A(1)).

b for t = t; in the terminal point

* By convention the notation a . b indicates the scalar product of the vectors a and b.
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M (X(ty), 15, M) =0, (1.9)

The condition b is related to the transversality condition at the open end-point,
where ¢, is not known in advance.

The adjoint vector obtains a physical meaning if the control problem is conceived
as a topological (geometric) problem. In fact, the optimization problem may also
be solved by analogy with the wave propagation in optics (generalized Huyghen’s
principle).

The propagation analogy has been studied thoroughly by Halkin [16] applying
the ‘principle of optimal evolution’, which states that: ‘every event of an optimal
process belongs to the boundary of the set of possiblé events.’

By defining the set ¥(f) as the set of all states in R"*! that are reachable at the
time ¢, i.e.

V(t) = {x(t;u),ue U} (1.10)

the principle of optimal evolution states that if uy(¢) is an optimal control function,
then for every € [¢,, ¢,] the state x(¢ ; u,) belongs to the boundary ¥ (¢) of the set
V(t). Then the adjoint vector A(¢) is identical to the outward normal to the ‘wave
front’ 0V () at the point x(# ; uy). The length of this vector has not yet been defined
up to a multiplicative factor, but the knowledge of the length of the vector for some
te[t;, t,] will be sufficient to derive the length of A(¢) for all ¢ in the interval.

As in geometric optics we can define the velocity of the wave front dV(f) at the
point x(¢ ; up). This wave front velocity is parallel to the vector AL(¢). Denoting the
speed of the wave front by s(¢) we have

f(x (2 5 ug), ue(#), 1) . M (1)
=s(1).
| &) |

Solving the control problem in analogy with the wave propagation in optics it has
been shown that every trajectory belonging to the boundary of the set of possible
events satisfies the maximum principle.

The procedure to tackle a practical problem is first to determine the optimal control
uo as a function of the state- and adjoint variables from the maximum principle.

Thereafter u, is entered into Pontryagin’s quasi-Hamiltonian # giving the classical
Hamiltonian #°:

HOx, 1,0) = H(X, uq (X, 1, 0), 1, 1). (1.11)

Then the system equations (1.5) and (1.6) must be solved for the dynamics associ-
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ated with the optimal trajectory. With the aid of #° these equations may be written
in the form

dxi_ on°

a i’

ai ox° )

E = —a—xi’ l=0, 1,...,11 (1‘12)

This set of equations constitutes the wellknown canonical system of Hamilton.

Given the appropriate end conditions this set will describe how the state vector
and adjoint vector vary along the desired optimal track.

From a point of view of engineering applications considerable progress has been
made to develop suitable computing techniques for solving the optimization problems,
but it must be admitted that the solution of specific boundary value problems so far
are still way behind the manipulations of these formulas. This aspect will be discussed
furiher, when we shall study the synthesis of optimal processes in meteorological
navigation.

For the sake of completeness it is worth while to call attention to the formulation
of a partial differential equation for the objective function ¥, cf. (1.10), known as the
dartial differential equation of Hamilton-Jacobi.

Halkin [16] has shown that for the class of problems of classical calculus of varia-
tions which can be restated as optimal control problems, the Hamiltonian #° may be
used to actually find this Hamiltonian-Jacobi equation.

Let

V(x,1) =0 (1.13)

be the equation defining the boundary of reachable events V(f), which is a hyper-
surface in R**!.

Then the equation of Hamilton-Jacobi is obtained by putting

aV(x,t

V&D | o, 1, 2 0. (1.14)

ot 2= ED
oxt

The Hamiltonian point of view and its interpretation in operational practice have
proved to be of particular value in regard to the graphical evaluation of the least
time track in air navigation. [7], [8].

Its importance lies in the synthesis of the problem as distinct from an analysis of
the control to be maintained along an individual optimal trajectory.
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1.2 Time optimal control

From the theorem for general non-autonomous optimal control processes we shall
derive the necessary conditions for time optimality.

This special case will be the subject of the time optimal navigation problem to be
discussed in later sections.

Let us start with the equation defining an isochronal hypersurface:
V(x,£) =0,x =x(x% x!, ..., x").

For problems in variation calculus restated as optimal control processes, V(x, ) =0
can always be written in the form:

1(x, 1) —x° =0, x =x(x!,..., x"). (1.15)
Here t denotes the time of transfer.

Let A be an outward normal to the isochronal hypersurface in R**!, then except
for a multiplicative factor

ot ot

ToxtTTT T ax"

A= (-1 ) (1.16)

Since for time optimality
Fox,u,8) = 1. 117

Pontryagin’s quasi-Hamiltonian will take the form:
ot ot
H=—1+ a—xlfl(x, wi)+.. .—Ef (x,u, 7). (1.18)

The maximum in terms of the control u is

M = —1 + sup (Vz.f).

uelU

The maximum principle may be given the following physical meaning: the control
law u = u(f) should be chosen such that at any point of the trajectory the component

of the system state velocity in R" along the gradient of the optimal isochrones is
always a maximum. (Fig. 2.)
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Fig. 2 Illustrating Pontryagin’s Maximum Principle in case of time optimal control.

The condition that .# should vanish at the terminal point is fulfilled as (Vz.f)
represents the rate at which time increases along the trajectory, hence should be
equal to unity. The same holds for every ¢ € [¢,, ¢,].

The maximum principle delivers an optimal control u, as a function of x, ¢ and
ot

ﬁ.

Substitution of the Hamiltonian s for u, yields the classical Hamiltonian #°.
The canonical system of Hamilton associated with 5#° becomes:

; = fi(x’ U, t)a

d (ot " ot

The application, in particular of the second set of equations (1.19), to the navigation
problem will result into the formulation of some control laws different from the
well-known steering equation of Zermelo.

The partial differential equation of Hamilton-Jacobi takes the form, cf. (1.14)

ot 0 ot
% + H(X, up(x, ¢, a—xi), =0

or referring to (1.18):

ot "ot Jt
_ i —_ =1, 1.1
Y + ;axi P (xu,(x, ¢, 6x-)’ =1 (1.19)
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Time fronts

Fig. 3 Configuration of ‘complementary’ time fronts and Least Time Track.

The solutions of this Hamilton-Jacobi equation embrace for instance the set of
isochronals or time fronts, which, given the time of departure, propagate from a given
location and overtake the terminal point in the least possible time.

By the same token a solution may also define the set of isochronals which propagate
towards the terminal point after having bypassed the departure point at the prescribed
initial time.

It is interesting to note that the optimal trajectory between starting point and destina-
tion appears to be the locus of tangent points of isochrones appertaining to both
these configurations. (Fig. 3.)

When an isochronal hyper-surface becomes non-differentiable at a point of an
optimal track the application of the generalized Huyghen’s principle may lead to the
possibility of branching of optimal trajectories. Then often the phenomenon of genera-
tion of caustica may be observed. The structure of the optimal tracks will then depend
on the particular problem considered.

This item will be the subject of a more detailed analysis when dealing with the
synthesis of the time optimal control in air navigation, together with some examples
of practical applications and computational techniques.
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2. Time optimal control in air navigation

2.1 General

We shall now direct our attention to the navigation problem in aviation.

Consider a long range flight within a non-stationary atmospheric airflow to deter-
mine the flight track which is flown in the least possible time between the points of
departure and destination.

It is assumed that the flight takes place on a constant pressure level with variable
air speed.

The problem as stated is typically a time optimal control problem in 2-dimensional
space.

The desired track is sometimes referred to as Minimum Flight Path, but the denomi-
nation Least Time Track is more in conformity with the character of the problem.

In mathematical terms the motion of the airplane is governed by the differential
equation:

X=w+c 2.1

where x(x!, x?) is the position vector with respect to a Cartesian coordinate system
OX ,X,; w(w', w?) represents the wind vector and c(c!, ) the (controlling) airspeed
vector.

Both the wind vector and airspeed vector may vary with position and time, so that
the equation of motion (2.1) may be written:

#=wlxY, x%, ) + ¢ (x, x2, f)cos &

% =wi(x', x%, ) + ¢ (x, x2, f) sin &
where

¢ =) + (> 2.2)

¢ denotes the heading or steering angle, i.e. the angle subtended by the airspeed
vector ¢ and the x'-direction. (Fig. 4.)

Whereas in navigation the heading is taken as increasing in a clockwise direction,
we shall follow the usual convention in mathematics and consider ¢ as increasing in
anti-clockwise direction.

Note:

In some flight regions e.g. the North Atlantic Region where the Air Traffic Services have no other
suitable means of ensuring the separation between successive aircraft a type of navigation has been
introduced known as the Mach Number Technique. This term is used to describe a technique where-
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0 x*

Fig. 4 Coordinate frame used and control of flight in a wind environment.

by turbo jet aircraft are cleared by ATC to maintain appropriate Mach numbers for the en-route
phase of the flight. The aircraft are required to adhere to the prescribed Mach number within close
tolerances in order to maintain longitudinal separation between successive aircraft on the same route.
The application of this technique implies that the airspeed will vary with ambient temperature, as the
Mach number by definition is the ratio of the airspeed to the local speed of sound and this speed of
sound at a constant pressure altitude is known to be proportional to the square root of absolute
temperature. Since the atmospheric temperature changes with time and position it follows that the
utilization of the Mach Number Technique introduces a position and time variable airspeed
c(xl, x2,t).

The heading ¢ functions as the controlling parameter. Decomposing ¢ in polar
coordinates ¢ and ¢, the purpose of the time optimal control is to find an optimal
navigation function for ¢ = ¢(¢), which directs the aircraft along the Least Time Track.
c therefore acts indirectly as a controlling entity. In the present navigation problem c
is allowed at a given location to point in any direction so that the set U of the admis-
sible control variable ¢ is an open set. This implies that Pontryagin’s approach merely
replaces the computational tools of the classical variational calculus.

If not otherwise stated we assume that the airspeed is not surpassed by the wind-
speed in the whole region, so that the manoeuvrability determined by the sum vector
w + ¢ be warranted locally in all directions.

There is a quantity which is time and again to return in the present analysis of the
control problem. (Fig. 4.)

This quantity, the effective airspeed c., is the algebraic sum of the airspeed and
tail- or headwind:
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1
ceff = C + —(CT.W).* (2.3)
c
Since ¢ > | w| the effective airspeed is always positive. The vector
1 T
Cer = (1 + 7(0 . W), (2.4)

which is directed along ¢ with length ¢, will also play an important role.
To solve the 2-dimensional navigation problem we shall follow Pontryagin’s
approach as described in the previous section.
Here the equations of motion (1.5) read:
=1 X0 = wix!, x4, 0) + ¢'(x, X2, 0),
X =20, X2, 0 = wix!, %%, 1) + A(x, X%, 1),

X0 =106 x ) =1.
subject to the end conditions:

x'(t) = x1, X*(t)) = x?
x'(tp) = x3, xz(tf) =X}
X°(t,) =0 @.5)

The objective is to find a control function ¢(z) such that x°(t,)is a minimum.
Introducing the adjoint vector

dt Ot

A= -1’—"’ A 27
( ox'’ ox?

(2.6)

where 7(x', x?) denotes the minimum time going from a point x4(x!(¢,), x*(t,)
towards a point x(x'(¢), x*(¢)) along an optimal trajectory, we can define Pontryagin’s
quasi-Hamiltonian 5#:

2
H =Y A= —1+ AW+ 22 4 2l 4 22
o

=—1+AT.w+2T., (2.7

* In matrix notation a vector is represented by a column matrix. T denotes transposition of a matrix.
cT for instance, is a row matrix.
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where it is understood that A(4', 2%) from now on is the outward normal to an iso-
chrone or timefront in R2.

According to the maximum principle a necessary condition for obtaining a speediest
flight is that at every point of the Least Time Track the scalar product

zT.e

be a maximum.

In words: at every point of the Least Time Track the airspeed vector should be directed
along the outward normal to the isochrones. (Fig. 5)
In mathematical terms:

Co = 7),, (2.8)

where
A= 10l = QY+ G
Substitution of # (2.7) for the control condition (2.8) gives:
H° = —1+4 W' + 22w + ¢ JOOT + (12, (2.9)

In case of time optimal control a second requirement is that #° should vanish
at the open endpoint (x'(t,), x*(¢,)):

AT.w+ AT c|=1.

(od

Fig. 5 Pontryagin’s Maximum Principle along the Least Time Track.
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Entering (2.8) into this condition yields:

A oz
700 (W+co)=1.

Therefore, referring to (2.3):

A= (2.10)

Cetf

As ) equals V7, up to a multiplicative factor to be taken unity here, we have also

1
|Vt]| = . (2.11)
Cett

which states that along the Least Time Track the phase speed of isochronals is equal to
the effective airspeed.

These characteristic properties concerning an effective control along the time opti-
mal trajectory within a given atmospheric wind regime are well-known. [8]. They
could have been derived using classical methods of variational calculus. The advantage

of Pontryagin’s approach is, however, that these properties may be found without
solving the entire problem.

2.2 The gradient equation

Although the geometric properties as derived in the previous section are adequate
for a synthesis of the problem for instance by a ‘wave front’ construction analogous
to Huyghen’s principle, they are not suited to describe the evolution of an individual
optimal flight.

For that purpose it is desired to establish the equations of state for the adjoint
vector ), the gradient vector Vz and the position vector x. These equations may directly
afford the required control function and resulting motion.

Consider the second set of the canonical system of Hamilton (1.12):

- oxn°
T ox
From (2.9) we derive:
ow' ow? dc
A= -4 ox' lzax‘ a lax“
1 2
2o pov 2.12)

ox? ox? ox*’
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Let the matrix W:

ow' ow!
ox!  ox?

ow?  ow?
ox!  ox?

be the Jacobian of the wind vector, then the set of equations (2.12) may be written
in vector notation:

A=—wTr-2ave. (2.13)

This Euler equation for the adjoint vector A may be put in a more convenient form
by introducing the vector

1
n=—WTc+ Ve .14
c

Then, in view of (2.8) and (2.10)

n (2.15)

or

Vi =———n. (2.16)
Cetr

This vector differential equation for the gradient of isochrones, A = Vz, will be
referred to as ‘gradient equation’.

The synthesis of the navigation problem would be incomplete without an examina-
tion of the first set of the canonical system (1.12):

on°
n -’

X =

From (2.9) we obtain:
Mt=wte—,

12

x =W2+C—1.



30

Referring to (2.8) we get

1 2

A
0s & =" sing® =2
cos ¢ 7 sin £ 7

where £° is the optimal steering angle, so that with

¢o = (ccos &%, ¢ sin £9),

X=w+¢, .17

Summarizing the results we may observe that the canonical system, in particular
the gradient equation (2.16) and state equation (2.17), afford the solution to the time
optimal navigation problem.

The canonical system offers at least in principle the necessary means to evaluate
the desired parameters for the optimum flight path. It would indeed be very welcome
if we could first find a solution of the gradient equation, and by substitution of the
optimal control ¢,(¢) into the equations of motion, could finalize the ‘construction’

.of the definite track. There is however an interdependency between the adjoint and
state variables in the canonical system and the question of finding the optimal state
of the adjoint vector for arbitrary systems under general conditions of initial and
final state has never been completely answered. Nevertheless this structure of the
canonical system does strongly suggest that some useful computation algorithms
may be developed to explore appropriate searching techniques by means of iterative
procedures.

The previous discussion has shown the significance of the adjoint system. Its
controlling properties will become more clear when we attempt to reformulate the
gradient equation with respect to the steering angle, phase speed, etc.

2.3 The steering equation

The application of efficient cruise control procedures in practical operations requires
the formulation of an appropriate control law for the heading.

In the previous section it was shown that the time optimal control is governed by
the set of adjoint equations (2.15)-(2.16).

In order to derive a vector equation for the control function £ = £(¢) it is necessary
to find another version of the adjoint equation.

Let the adjoint vector A be decomposed in polar coordinates:

A =(40).
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Then we have

il

%(/lcos §)=Acos & —Asin ¢ ¢,

12

%(/1 sin &) = 4 sin &€ + 4 cos & ¢&. (2.18)

Let A*(—A%, ') and ¢*(—¢?, ¢') represent the vector } and ¢ rotated over an angle
7/2 in anti-clockwise direction (Fig. 5), (tangent to an isochrone).
Then (2.18) may be written:

O
X=7}.+§l.

The adjoint equation (2.13) takes the form:
N+ AEF = —2(WTA + AVe). (2.19)
Next take the scalar product of (2.19) with A*:

T+ 28T A = — 205w + 05T, Vo).

Noting that
c=—»%, c* = L
Ji
AT A =0T % =22 0T ) =aTa* =0 (2.20)
we obtain:
. 1
¢ = ——c*"(WTe + cVe) (2.21)
C
or, using (2.14):
¢ = LI 2.22)
(4

A result which expresses the required rate of change of the steering angle in terms
of the local structure of the windfield and airspeed.

It can easily be shown that the control equation turns out to be a generalized form
of the well-known steering equation of Zermelo.
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Fig. 6 Interpretation of Zermelo’s steering equation.

Indeed, substituting (2.21) for ¢ (c cos &, ¢ sin &) and ¢* (—c sin ¢, ¢ cos &) affords:

: ow' ow'  ow? ow’?
¢ = oot (G G Jain o £+ S sin
dc . dc
+ 2,7 Sin E— 5Z 0 & (2.23)

Except for the contribution of the variable airspeed this Euler equation for the
heading is equivalent to Zermelo’s solution to the problem [8]. Zermelo announced
this solution in a lecture delivered at Prague in 1930: ‘Uber die Navigation in der
Luft als Problem der Variationsrechnung’.

A further exposition was given in a later paper [1]. Whereas Zermelo used highly
original methods, Levi Civitd [2] derived the same equation along more orthodox
lines, analogous to those used in the theory of geometric optics.

To bring the steering equation in a more perceptible form, we may choose a rec-
tangular coordinate system at a given point of the optimal trajectory such that the
x'-axis points into the direction of the heading. (Fig. 6.)

Then (2.23) reduces to

or

(2.29)

indicating that at every point on the optimal track the rate of change of the heading



33

is equal to the negative shear of the effective airspeed normal to the heading.
It should be borne in mind that the steering equation (2.22) holds for flights within
non-stationary windfields and time and location variable airspeed.

2.4 Phase speed equation

We have seen that the steering equation is one of the component equations associ-
ated with the adjoint vector equation (2.13).

To obtain the second component equation we compute the scalar product of (2.19)
with A:

AT+ 2T A% = —10TWTA + AT Vo).
Using the relations (2.20):

A
b= =" (WTe + cVo). (2.25)
4

This is the second component equation in terms of the quantity 4 = | A|.

In view of the relation, cf, (2.10):

1
A=

Cesf

the equation may more conveniently be expressed in terms of the effective airspeed.
As

A i
)‘ B cel'f
and
ceft'
Cerr = c.
Eq. (2.25) may be written:
1
Ct = —cXe(WTe + Vo) (2.26)

c

or, using (2.14), in a more condensed form:

Cofr = Cagg. 1 , .27

The result is an Euler equation for the rate of change of the speed of propagation
of isochronals along the optimal trajectory.
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This new equation which will be called the ‘phase speed equation’, describes the
rate of change of the phase speed of isochrones along the Least Time Track.
Substitution of (2.26) for the components of w and ¢ gives:

. ow' ow'  owt\ | ow'
Cegr = Ceft WCOS &+ 3—x2+0—x1 Slnfcosé+ﬁsm ¢
de de .
+ a—xl— cos & + -a—;z'— sSin é . (228)

By taking a Cartesian coordinate system at a given point of the track such that the
x'-axis points into the direction of the heading, this equation reduces to

. ow' dc
Cetr = Ceft ™ + ok

de,,
Cetr = Cefr —_-axflf . (2.29)

or

Along the Least Time Track the rate of change of the effective airspeed is propor-
tional to the local increase or decrease of the square of the effective airspeed.

The steering equation (2.23) and phase speed equation (2.28) together with the
equations of motion (2.17) constitute an alternative form for the canonical system
of Hamilton for the navigation problem.

When we shall discuss the numerical integration of these system equations it will
appear that the integration may in general be performed by using only one of these
component equations associated with the adjoint vector equation in addition to the
equations of motion.

2.5 Phase velocity equation

The steering equation and phase speed equation associated with the component
equations of the adjoint vector equation (2.13) suggest that we are able to establish
yet another (vector) equation, which synthesizes both to give an equation of state for
the effective airspeed vector.

The resulting equation should describe the rate of change of the phase velocity
vector pertaining to the propagation of isochrones along the controlled optimal
flight path.
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Consider the identities:

Cepr = E (Cegr cOs &) = cos ¢ Cege — Cegp SIN & 5,
2 d . L ,
Cogp = x (Cege SIN &) = 5iN & Gegp + Cogp COS & E. (2.30)

Substitution of (2.30) for (2.22) and (2.27) affords:

. Ceff .
e = — (sin € ¢*T + cos £ cT).m,
(44

Ceff

G = (—cos&c*" +sinécT).n. 2.31)

Introduce the matrix C:

cos 2¢ sin 2&

sin 26— cos 2¢ .

Then the set of equations (2.31) may be put in the matrix form:

Cefr = Cege O
If we put
n’ =Chn, (2.32)
we obtain

Cepr = Cege 1. 2.33)

This new vector equation which we will call the Dhase velocity equation has the
same controlling properties as the gradient equation. By a decomposition into the
component equations they both yield the steering equation and phase speed equation.

In a certain sense one is the inverse of the other. Combined with the equations of
motion they afford both a solution to the time optimal control problem.

The control equations are linked by the vector n and vector n’, for which a special
symmetry property holds: n and n’ are mirror images with respect to the normal to
the isochrones. (Fig. 7).



36

C*
’ ]
n
hd > C
[ J
n
C
Fig. 7 See text.
Indeed, in view of the relations
c'c=1,
I being the unit matrix,
e¢'C = ¢,
c*TC = —c*T, (2.34)

we have
c'.n’=c"Cn=c".n

"0’ =c*"Cn= —c*".n.
nT .’ =n"C"Cn=n".n (2.35)
which proves the symmetry of n and n’ with respect to ¢ normal to an isochrone.

Asthe phase velocity equation dictates the control of the flight similar to the gradient
equation, the numerical integration of this new system will proceed along the same

line as the integration of the system equations (2.16)-(2.17).
2.6 Refraction formulae

In view of the analogy of the time optimal control problem in navigation with
problems in geometric optics in particular with Fermat’s principle, it might be con-
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Jectured that in the presence of a discontinuity in the wind régime there will exist in
air navigation a refraction formula similar to the law of refraction due to Snellius.
The refraction formula in question is known as the refraction formula due to Von
Mises. [3].

Given the interface between two wind régimes (media 1 and 2, see Fig. 8) with
uniform wind velocity on either side of the interface, Von Mises’ refraction formula

reads:
sin § sin i
( ) = ( ) . (2.36)
Cest /1 Cetf /2

i denotes the ‘angle of incidence’ or ‘refraction angle’ spanned by the airspeed
vector ¢ and the normal to the line of discontinuity.

When we consider the limiting case of an ‘infinitesimal’ discontinuity in the wind
pattern the refraction formula tends to the differential form:

d (sin i
—_ =0. 2.37
dt ( Cet ) ¢ )

At first glance it may seem that for numerical integration of the navigation problem
one could make use of this simple ‘invariance’ property. A more detailed investiga-

tion, however, reveals that this invariance property should be handled with the utmost
care.

Fig. 8 Illustrating the law of refraction due to Von Mises.
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First mode

Consider the gradient equation (2.15) in the form:

L= —

n.
Cet

Let a local reference system be chosen such that the positive x!-axis is directed

along the vector n(n', n®) and let i denote the heading with respect to the new x'-axis
(Fig. 9).
Then we have, in view of the properties (2.8) and (2.10):

2 i(sin i) _o.
dt \ cege

Here we immediately identify the differential form associated with Von Mises’
refraction formula (2.36).

If the line /, normal to m, is referred to as a fictitious refraction line we may formulate
the result as follows:

In a comoving reference system along the optimal trajectory spanned by the
refraction line / and its normal n the invariance property

d (sin i
—< ) =0 (2.38)
dt \ cest

holds.

This ‘invariance property’ is not to be considered in an absolute sense, as the
property holds only with respect to a special comoving space along the optimal track!
(2.38) is the differential form for the refraction mode:

sin i sin
( ) = < ) . (2.39)
Cetr / 1 Cesf / 2

At every point of the Least Time Track there apparently exists a line of refraction

and a critical angle of incidence for the heading, so that Von Mises’ refraction formula
is applicable.

In view of the definition of n, see (2.14):

ow' - ow? Py dc 0
n, = —5C0S1 —7=-Sin ¢ —5 = VU.
2T ox? ox? ox*
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For fixed i, given the definition of c, cf. (2.3):

OCess

n, = —— =0, (2.40)
Ox,

The refraction line is therefore characterized by the property that along this line
for the critical angle of incidence the effective airspeed is constant.

By a transition to the limit we should be able to prove that the refraction formula
will transfer into the steering equation. Indeed, writing our relation (2.38):

. 1
Cos l i = Sin iéeff. (2.41)
Ceff
Substitution of (2.41) for (2.27) yields:
. osini 1 o ..
I =—— —c¢ .n=|n|sini
cosi ¢
or
. 1
i=——¢*Tn,
c

which proves the equivalence of the refraction formula with the steering equation
(2.22).

This result states once more that quite different options might be given in terms of
the optimal control. The option here lies in a proper choice of a reference system
comoving along the trajectory such that the control equation obtains the structure
of a refraction formula.

In the next section we shall see that we can easily derive another ‘mode of refraction’,
which also governs the flight control in an optimal sense.

Second mode

The connection between the gradient equation and phase velocity equation suggests
that we may establish still another invariance property.
Consider the phase velocity equation (2.33):

Cetr = CoreCML

Let now a local reference system be chosen such that the positive x'-axis is directed

along the vector n’ = Cn and let f denote the heading with respect to the new x'-axis.
(Fig. 9.)
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Fig. 9 Coordinate system with reference to the refraction normal and line of discontinuity.

Then we have

2 d o
Cett = a (cege sinf) = 0. (2.42)

This is a differential form for a mode of refraction, which might be expressed in
the form:

(Cegr SInf); = (Coge 8in i), (2.43)

Let I’ denote the (fictitious) refraction line normal to n’, then the invariance of
Cere Sin 1 is assured when adhering to the comoving reference system spanned by /'
and n’ along the trajectory.

Comparing (2.39) and (2.43) we have

sini,.sinf, =sini,.sinf,;
but V
sini; =sin#,,
whence
sini,.sinf, =sin?i,
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Fig. 10 Resuit of Hamilton’s point of view.
Complete figure of time fronts and Least Time Track.

This equation is basic to describe the well-known method of the graphical construc-
tion of the Least Time Track by means of the complementary set of time fronts [8].

One of these sets © = ¢ — t; = const. ‘radiates’ from the origin P at the initial
time ¢;. The complementary set ¢’ = t, — t = const. ‘radiates’ towards the terminal
point Q and reaches this point at the final time t; (Fig. 10). The desired track is the
locus of points of contact of corresponding isochrones for which

T+ =t — 1.

The sets of complementary isochrones together with the optimal trajectories are
sometimes referred to as ‘complete figure’ due to Carathéodory.

The method bears much resemblance to that used in wave propagation studies in
geometric optics (Huyghens’ Principle).
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Both the invariance properties can in principle be used to develop computational
algorithms for the evaluation of the Least Time Track. At each integration step it will
be required to determine the local refraction normal n or '. If correct, both refraction
formulae should provide the same solution.

If we put

iz = il + &
this implies that we should have
sin(i; + ¢).sin (i, — &) =sin?,.

This condition, however, is satisfied only if ¢ = 0 in the limiting case dt — 0. As
a consequence, it might be expected that in practice both numerical methods will
produce slightly different tracks. For a further discussion we refer to section 5.

2.7 The Hamilton-Jacobi Equation

To obtain a partial differential equation for the optimal flight time we may follow

a line of approach as indicated in section 1.2. We start with the classical Hamiltonian
in the form
ot ot ot ot
H=—1+—w+ — w4+ by —sc,
oxt ox? axt 0T ax?°

where ¢, is the optimal control derived from Pontryagin’s Maximum Principle,
see (2.6) and (2.8).

¢} = d kil
\/ dt \? + dat \? ox!

ox' x>
= 4 ot

\/ ot \? + ot \* ox*
ox! ox?
Then the partial differential equation of Hamilton-Jacobi takes the form

ot ot
= + #°(x, co(x, 1, W)’ ) =0,

2 ot \? ot \? , Ot 261 ot 2
“Wat) ") g\ treaty ) =0 a4

or
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3. The graph method

In the foregoing analysis of the time optimal navigation problem it was tacitly
assumed that there were no serious restrictions imposed on the utilization of the
airspace, so that airlines can freely dispose of this space in order to make a profitable
use of the prevailing atmospheric conditions.

In the last decennia, however, such flight regions have become sparser and sparser,
mainly due to the increase of traffic density.

From a point of view of Air Traffic Control the airspace had, so to speak, to be
‘atomized’ and the routes to be flown had to be embedded in a more or less rigid
traffic pattern.

In this situation the nature of the navigation problem has become entirely different
from that studied previously.

The problem is getting involved in the class of shortest path problems pertaining
to a traffic network which might be conceived as a directed graph of nodal points and
directed lines or arcs. A specimen of such a graph is to be found in Fig. 37.

Within this graph the aim of optimal track selection is to find an ordering and group-
ing of the nodes and arcs such that the resulting path(s) be optimal in the sense of
least flight time, costs or any other criterium.

In part II some graph theoretical concepts will form the central theme in a study
of automation of ‘3-dimensional flight planning’. In this section we shall briefly
touch upon the shortest path problem in a 2-dimensional graph which is not bound
to be strictly identical with a preassigned route pattern.

Its purpose is to examine the time optimal problem in a discrete system as distinct
from that in a continuous system, in particular to decide whether the corresponding
computation algorithms might compete with the corresponding algorithms using one
of the previously derived control equations in the continuous system.

The simplest way to tackle this problem is to replace the continuum by an arbitrary
graph. This may be accomplished by ‘sprinkling’ — at random or not — a set of
points over the area of interest and to define a set of arcs between all pairs of nodes.
Some of these arcs may be blocked.

The nodes of the graph are junctions where one or more arcs meet, the arcs are
directed flight segments between two junctions and associated with each arc is a
number — its ‘length’.

Then we may put the question: ‘what is the shortest path between two given nodes?’

Denoting flight time as ‘length’ of an arc the problem reduces to that of
finding the Least Time Track between two given nodes in the graph.
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To evaluate the shortest path in a general directed graph or digraph a few algo-
rithms exist, which are particularly adapted for machine computation. To mention
a few: the methods of Dantzig-Mintz [19], Ford-Dantzig [19], Dijkstra [20],
Bellman [13], [21].

Bellman’s matrix algorithm is of particular interest in view of its relationship with
the solution of the partial differential equation of Hamilton-Jacobi in a continuous

system especially with the complete figures of isochrones and optimal trajectories.
(See section 2.7.)

We shall give a brief account here of this method, especially within the framework
of the navigation problem.

Let the nodes of the graph be P, P, . . ., P,. If nodes P; and P; are joined by an
arc, let d;; denote the distance from P; to P;. For those pair of nodes which are not
directly linked by an arc we put d;; = co where ‘00’ denotes some suitable large number.

Naturally we put d;; = 0. We now examine the problem of finding the ‘length’ of
the shortest path between any two given nodes in terms of the matrix D = d, I

Consider the equation

d = mkin (di + dy). (3.1)

Here d;, + d,; is the length of the path from P; to P; passing through just one
intermediate node P,. Since we allow k = j the direct distance d; ; is included in the
quantities on the left of (3.1).

Hence the matrix D'® = d? is the distance matrix for the shortest path between
P; and P; using at most two arcs.

The matrix D® might be considered as the ‘square’ of the matrix D under an odd
sort of ‘multiplication’.

If we square D® in exactly the same way a matrix D is obtained whose (i, )
element is the length of the shortest path from P, to P; involving at most four arcs.
After N similar ‘squarings’ we obtain a matrix whose (7, /) element is the length of the
shortest path from P, to P; using at most 2" arcs. If 2% > n where # is the number of
nodes of the graph, then the matrix given is what we want. The matrix D™ is the
matrix of shortest distances between any pair of nodes.

The algorithm is very convenient for calculation especially when applying a very
elegant method described by Hu [21].

According to that method no more than two ‘squaring operations’ are needed to
obtain the result.

Whenever we calculate an element d{}’ using (3.1) we immediately put it down in
place of the element d,; in the matrix D",
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Subsequent calculations use these new values instead of the old. The order in which
we compute the elements df}’ in the first ‘squaring’ is from left to right and going
downwards. When the squaring of the matrix is done the second time, we do exactly
the opposite: right to left along the bottom and then upwards. The matrix resulting
from this two-stage process is again the shortest distance matrix D™,

An imperfection of the algorithm is that it gives no information about the optimal
track itself corresponding to the shortest distance. To identify the optimal track be-
tween the given pair of nodes P, and P 7 we propose the following method.

This method is inspired by the property that in a continuous system the optimum
track reveals itself as the locus of points of contact of isochrones in a complete figure
(see Fig. 10).

Consider row i in the matrix D". The elements (i, k), k =1, ..., n represent the
lengths of the shortest paths with P; as a common node. This set of shortest paths
constitutes a shortest spanning tree with root P,

In the same way the elements (k, j), k = 1, . . ., n in the column j of the matrix DY
are the lengths of the shortest paths with common node P j — shortest spanning tree
with root P;. Both these shortest spanning trees have a shortest path in common:
the shortest path between the nodes P;and P;. The nodes P, on this common shortest
path are specified by means of the property:

d”"l"d,j-_—const. =d‘j. (3.2)

Therefore, to obtain the track information one simply determines the sequence of
numbers

dik+dkj’ k= l,...,n
and sorts out those k-values for which

di + d,; = const. = d;;

The procedure in itself is very conveniently to apply to a graph which corresponds
to a given route network. Then the matrix DY will afford all required information
concerning the shortest path between any pair of airports depending on the notion
of ‘length’ of an arc. The matrix algorithm is therefore particularly suited for deter-
mining such elements like the geometric shortest paths, the Least Time Tracks (based
on a fixed time prognostic chart), time tables, etc.

Its usefulness for practical operations is, however, somewhat questionable for
the following reasons.
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The ‘length’ d;; of an arc may be variable. For example, if the length is referred
to flight time, the time of flight along a route segment may not be time-invariant due
to the time variability of winds and temperature. The length d;; may also be depend-
ent on the past history. This may occur for instance when the length refers to fuel
consumption: the fuel consumption depends on the fuel already consumed after
take-off.

These examples explain why it is necessary to look out for alternative computational
algorithms which are more suited to deal especially with boundary value problems,
and which admit a computation proceeding stepwise starting from one of the end
points.

This type of graph algorithm will be described in a special graph, which is often
used in transport problems. Berge [11], [12].

Let the set of nodes in a graph be arranged in the sub-sets X; (i =0,. . .,n + 1)
having the following properties: each node in X, , is linked with one or more nodes
in X;. There are no links between any pair of nodes in X ;. X, is the entry point, X, ,
the exit point. The pictorial form of such a graph is indicated in Fig. 11.

Such a graph may be obtained by locating the nodes on (non-intersecting) curves,
for instance on the gridlines of a meteorological grid (Fig. 31), the (standard)
meridians in oceanic regions (Fig. 37), circles about the end points (Fig. 32), etc.

Let in the graph a node A4 be labelled by the indices (i, k), k = k,(i) . . . k,(i). The
shortest distance between the entry point P and 4 be d; 4,

To acquire the shortest path between entry point P and exit point Q we consider
an optimization process which works as follows:

oP

Fig. 11 Optimization in a special transport graph.
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Fixate a node B(i + 1, K) in the set X, , and assume that for the nodes A(i, k) in
the set X ; the shortest distance from the entry point is known from previous optimiza-
tion steps.

Then we consider:

; i, k)
di+1,x) = min. (d,n + d((i'+1,K)) (3.3)
k= ki(D), ..., k(i)

The result is the shortest distance from the entry point to the fixated node B.

This optimization step is repeated by varying i and K in appropriate cycles until
the exit point Q has been reached.

The optimization scheme may be put in the mathematical form:

dpg = [[min.(d(,., ot did K]K = K, + 1), ...,K2(i+1):|i =0,.,n| (3.4)

k= ki(i), ..., k2(i)

The information required to identify the shortest path is contained in a set of
‘critical’ indices k,,;,(i), which is recorded simultaneously with the serial steps:

[kcrit(i)Id(i+l,K)]i=0’- By (4 (35)

The algorithm works sequentially and is organized in such a manner that in a
subsequent arc the ‘length’ may be adapted to the past history of the quantity or
to actual time.

In addition, the upper and lower bounds of the cycles may be chosen at will, which
makes the use of the algorithm very flexible. For instance, by equating the lower and
upper bounds of k and K the scheme may be activated to present all flight data along
a single preselected path in the graph.

The track information corresponding to the shortest distance between entry and
exit point can be found by storing at each node (7 + 1, K) the (i, k) coordinates by
which a minimum is attained.

After reaching the exit point we obtain the nodes on the optimal track in the
proper ordering by ‘reading’ the stored (i, k) coordinates starting with the exit point Q
and going backwards up to the entry point P.

The graph method has some outstanding advantages in comparison with the
methods using a control law. Most important is that the graph method avoids a lot of
difficulties in regard to mathematical rigour (continuity, convergence, differentiability).
This is a reason why for instance the graph method will always afford a unique solution
between two given nodes, which guarantees an absolute minimum distance. This in
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contrast with the methods based on the steering equation etc., where it may happen
that between the starting point and the terminal a multiplicity of solutions is found,
each giving a minimum with respect to admissible trajectories in its vicinity. To find
an absolute minimum requires a special searching technique.

Another feature of the discretization using a graph is the possibility of defining a
NEXT BEST route or, more generally, a k-th BEST route (k > 1). The order of
preference of such routes is an important item in regard to the design of organized
track systems in certain flight regions, e.g. the North Atlantic.

A disadvantage of the graph method is that the computer running time is in general
not favourable compared with that of the iterative processes in a continuous system,
at least in cases of a fast speed of convergence of the iteration.
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4. The control equations for a conformal mapping of the earth’s surface

The mathematical derivation to solve the time optimal control problem was valid
for a plane surface. The control equations and equation of motion preserve their
validity /ocally in a plane tangent to the two-dimensional sphere. Application of a
step by step integration method in the tangent plane comoving along the trajectory
will afford the correct solution on the earth’s surface.

In meteorological practice as well as in flight- and air traffic control use must be
made of a mapping of the earth’s surface on a plane. This is done for obvious reasons,

but a consequence is that the mapping will affect the solution on a global scale in the
projection map.

The effect may be visualized when a computer programme is developed on the
basis of one of the control equations together with the equation of motion, which
is activated to generate the Least Time Track, for instance in a polar stereographic
chart between, say, Amsterdam and New York in zero wind conditions (and constant
temperature). Then the result will be a straight line on the chart. The desired solution,
however, should have been the great circle path, which deviates a hundred miles from
the straight line. (See Fig. 27)

The spherical case should, therefore, be made to reduce to the plane case by a
mapping of the sphere onto the plane. Every such mapping requires a compensation
for the distortions caused by the scale of the mapping,

It is taken for granted that the mapping is conformal like the Lambert conformal
cone projection, the polar stereographic projection and the cylindrical Mercator
projection. In such mappings angles are preserved and the scale is a function of posi-
tion only. In this section we shall derive the corrective terms to be applied in the
previously described system equations. These equations corrected for the effect of
the conformal mapping are fundamental for the remaining part of this treatise.

We might suppose that the sphere has been mapped conform to a plane surface.
Establish on the plane map a system of rectangular coordinates x1 and x3. The inverse
of the mapping is again a conformal mapping of the plane onto the surface.

Then, in view of the conformity of the mapping the system of rectangular coordi-

nates x7, x, will be mapped in a local system of rectangular coordinates x!, x? on
the sphere.

Let S(x", x?) be the scale of the projection of the sphere onto the plane at the point
defined by (x', x?) on the sphere.

For the Lambert conic projection of which the polar stereographic and Mercator
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projections may be considered as limiting cases, S is a function of the latitude ¢
only [23]:
S,
S = 2
(cos ¢)' "P(1 + sin @)?

S, is the map scale at standard parallel. For instance, in the polar stereographic
projection with standard parallel at 60°N: S, = 1 + sin 7/3 = 1.86603.(p = 1).
p is a parameter.

For the Mercator projection: p = 0, so that

So
cos @

For the polar stereographic projection: p = 1:

1 +sing

For the Lambert projection: 0 < p < 1 “4.1)

A displacement on the sphere corresponding to a small displacement dx}, dx’, on
the map will have components

dx' = 8™ 'dx;,

, 4.2)
dx* = S ldx,.

Similarly a vector such as the airspeed vector ¢ or wind vector w on the sphere —
being displacements per unit time — will correspond to the vector quantities in the
plane according to

c=S5"1¢,
(4.3)
w=2S"'w.

One of the advantages of the conformity of the mapping is that the steering angle
is preserved by the mapping.

The form of the equation of motion (2.1) is not changed when expressed in the
variables on the earth’s surface.

Indeed, (2.1) transfers into

Sk = Sw + Sc
or
X=w+e¢,
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as measured on the earth’s surface.
If, however, a similar procedure is applied to one of the control equations like the

gradient equation, the steering equation, etc. it turns out that some corrective terms
are required to preserve the mathematical form of these equations.

For example, if we express the gradient equation (2.16) together with (2.14) in
terms of the variables on the spherical surface of the earth, then we obtain:

d(Vr) 1 ds 1 dvz
= \%

a\s)= T @ TS @
1 1 0Sw Se + oSc @4
= - — —.Sc+—). .
Scge \ Sc Sox Sox )
Since
s _
ot

ds
a =(+w'.Vs.

Referring to (2.6), (2.10) and (2.11):

1 c
Vr = —
Ceer €
In addition we have the identities
0Sc_6c+ c 08 CVe+ CVS
Sox ox' 8 ox T g'®

aSw_6w+1 os W IVS T
Sox  ox ' s ox " 7 tTgVvsw.

Furthermore, in view of the conformity of the mapping we may again introduce
the effective airspeed

1 T
Cr =C+ —W .C,
c

as measured on the sphere.
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By substitution of these relations into (4.4) we find:

dvz 1 /1 VS (c+w.vVS c)
— = —WT.e+ Ve + ¢, - — .
dt c,ﬁ(c ¢ €T Cor S S c

If we introduce a new ‘refraction normal’;

1 VS (c+w'.VS ¢
m=—W".c+ Ve + cy _ ) —

X 4.5
c S S c (45)
the gradient equation may be written in the form
. |
Vi = — m, (4.6)
Cett

as measured on the sphere.

We see that the equations of state for the gradient of isochrones along the least
time track with respect to a fixed Cartesian system in the image plane — with the
variables measured on the sphere -, preserve the original form (2.16), given the new
definition of the ‘refraction normal’ (4.5).

The corrective terms in m compensate for the distortion caused by the earth’s
curvature as expressed by the scale of the mapping.

By a similar reasoning it may be demonstrated that the vector equation for the
phase velocity transfers into:

Cerr = CoreCm, @.7

as measured on the sphere.
Its component equations become
steering equation:

. c*T
é = —_——, m’ (4.8)
4
phase speed equation:
. L] cT
Cett = Ceff "—c_ .m. (4.9)

These control equations apply to any regular two-dimensional surface, since any
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such surface can be mapped conformally onto a plane surface. In particular the
equations will hold for a conformal mapping of the earth’s geoide onto a plane.

It should be noted that the mappings include the Lambert conformal conic projec-
tion and the cylindrical Mercator projection as the cone and cylinder may be unrolled
to form the plane map.

In case of a plane surface the mapping may be regarded as a projection of the

surface onto itself (S = 1). Then the control equations obtain their original form
valid for the plane surface.

The meaning of the corrective term may be understood if we consider the special
case of a flight with constant airspeed within zero wind conditions.
Then:

w =0, ¢ = const.

W=0,Vc=0
Vs c'.vS.c
m=— — _—
S cS

The component equations (4.8) and (4.9) in this case take the form:

. 1
¢ = —?c”.vs,

. ch.vs  Tlvs
C = ¢ - C

S S

=0. (4.10)

As a consequence of the optimization principle this set of equations should describe
the uniform motion along a great circle on the earth’s surface and its conformal mapping
onto a plane.

The second equation is obvious, but to prove the first a rather lengthy calculation

is required. In the Annex the proof is given in terms of the conformal mappings used in
meteorological practice.

It may be expected that the conformal mapping will also affect the interpretation
of the refraction principle.

To derive the desired invariance properties we may use here the same method as
explained in section 2.6.

As a result it is found that the invariance properties (2.39) and (2.43) preserve their
validity, provided that the (fictitious) refraction line in the image plane is adapted
again to the vector n, corrected for the effect of the earth’s curvature.
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In the first mode for which the invariance property:

i(sm ') =0 (4.11)
ar \ cege

holds, the vector n should be replaced by the vector m, cf. (4.5). The angle i denotes
here the critical angle of incidence between ¢ and m.
In the second mode for which the invariance property:

d
E(Ceﬂ‘ Sin i) = 0 (4.12)

holds, the vector n’ = Cn should be replaced by the vector m’ = Cm. Here i represents
the critical angle of incidence between ¢ and m'.
The vector m’ is identical to m reflected with respect to the airspeed vector c.

An interesting feature is that the mapping problem admits yet another formulation
of the refraction principle.
Indeed, consider the relation (4.4).

" . o .V . .
Omitting total differentiation of the quantity 5 the equation of state for this

d(Vz B 1
a\s) " T sel

1. VS
].l = ‘c—W .C + Vc + CeffT. (4.13)

quantity may be written (4.5):

where

Then, in a local reference system in the image plane for which the x*-axis is directed

along p:
d (sini ~0 @.19)
dt\ Sce ] '

This is the differential form for the refraction equation

(sini) _<sini) @15
Scors )1\ Seegs) 2 )
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The subscripts 1 and 2 refer to the ‘media’ on either side of the refraction line
normal to p.

In a similar way the second mode of refraction tolerates an alternative formulation:
d .
T (Sceg sini) =0 (4.16)

which is the limiting form of the refraction formula:

(Scegp sin i), = (Sceg sin i), @.17)

Here the vector p should be replaced by the vector
p =Cp

which is the vector p reflected with respect to the airspeed vector c.

In the case of the plane surface solution (S = 1) both modes of refraction obtain
the original meaning as

":m:n,

For checking purposes it is convenient to study the special case of a flight with
constant airspeed in zero wind conditions. The refraction formulae should then
produce the great circle arcs in the conformal mapping.

To that aim we put:

w =0, ¢ = const.

W =0, Vc=0.

In the first mode using the version (4.14) the refraction normal (4.13) becomes:

Vs
=c—.
k=3

This vector is directed along the meridian in the projection map pointing to higher
S-values. (Fig. 12.)

The corresponding refraction equation is
sini;  sini,
="
Sy S

(4.18)
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Fig. 12 Refraction in case of zero winds on a conformal mapping of the earth’s surface. The result
is a great circle arc.

which is equivalent to Snellius’ law of refraction in geometric optics. The scale S
plays the role of a refraction index.

Using the version (4.11) the refraction normal (4.5) becomes:

m is the component of p normal to c. (Fig. 13.)
In this case the refraction formula (4.11) reduces to:

d . . . di
—sini =cosi— =0,
dt dt

The critical angle of incidence i, however, is equal to w/2 always, so that cos i = 0.

L di . . .
This implies that A is indeterminate, excluding the use of this version for the

evaluation of the mapping of the great circle motion!

A similar form of degeneracy comes into play when considering the second mode
of refraction.

Only in the form (4.17):
sin f, _ sin f,
S, S
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Fig. 13 Configuration of the refraction normal and geographical coordinate lines in case of zero
winds on a conformal mapping of the earth’s surface.

this mode may produce the desired track.

The generation of the great circle track by computer is an important detail for
instance to check the correct functioning of the appropriate computer programmes.

Proceeding along the same lines we may investigate the effect of the conformal
mapping on the Hamiltonian point of view as described in section 2.7.

It is easy to prove that the form of the equation of Hamilton-Jacobi (2.44) is un-
affected by this mapping, for (2.44) transfers into:

ot \? or \? ot ot ot 2
S2 2 R I - S 1 2 - =0.
¢ {(sax‘) +(Sax’-) } ( Y S T S T l)

Working this out it is observed that the equation as expressed in terms of the varia-
bles on the spherical surface, preserves exactly the original form (2.44).

One of its consequences is that the mapping does not affect either the geometrical
nature of the problem. The conformal mapping for instance does not disturb the
intrinsic properties of the complete figure. The connection between the Hamiltonian
point of view and the graph method implies that the mapping has also no effect at all
on the solution of the shortest path problem in a graph, provided that the ‘length’
of an arc in the image plane is as measured on the sphere!




58

5. Practical evaluation of the Least Time Track

5.1 Introduction

Various studies are now being devoted to the development of computational algo-
rithms suitable for a comprehensive programming [14], [15]. Most, if not all, of the
proposed methods make use of some kind of optimal track selection within a graph
associated with a prefixed route network.

In technical literature papers dealing with the optimization in a continuous system
are very scanty. Apart from a report on the programming, using Von Mises’ refrac-
tion formula, Rinicke [26], there are to the author’s knowledge no accounts avail-
able in literature on the synthesis of the navigation problem using one of the control
equations including Zermelo’s steering equation.

We have already noticed that the problem concerned with the determination of the
time optimal flight path falls in the domain of the calculus of variations and that this
problem could be treated from the point of view of Pontryagin’s approach to the
theory of optimal control processes.

The study of the maximum principle and the canonical system of Hamilton has
led to the formulation of the adjoint variational equation together with the equation
of motion. The state of the adjoint vector corresponds directly with the gradient of
isochrones. By the maximum principle this gradient is related to the controllable
air speed vector, so that it may be stated that the optimal control is basically governed
by the adjoint equation or gradient equation. The desired solutions of the optimization
problem might be obtained by integration of the gradient equation together with the
equations of motion.

The steering equation, phase speed equation etc. should merely be considered as
substitutes for the controlling gradient equation but they might be easier to manipulate
with in numerical computation.

In practice it is required to integrate the system equations so as to acquire a solution
for a given initial and final state.

The solution of this two point boundary problem is possible only if the optimal
initial state of the gradient of isochrones is known. For arbitrary systems and general
conditions of end states the question of the optimal intial state of the adjoint vector
however has never been completely answered. The problem can be solved by the idea
of searching for the optimal initial state of the gradient in a systematic manner. This
calls for the application of a suitable iterative procedure. It is recognized that such
iterative procedures, if performed by manual handling, are very cumbersome and
time-consuming. Electronic computers, however, form a powerful tool in mastering
these iterative searching techniques.
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5.2 Tterative scheme for the integration of the system equations

There are many paths open to the development of iterative searching techniques.
The basic idea underlying this iterative scheme is the following:

First select an appropriate initial state of control by some predetermined means.
The computer determines the response of the control system for some finite time
interval into the future. The determination of a sequence of responses will lead to the
generation of an optimal trajectory satisfying the basic equations of the system,
The trajectory, however, will in general not satisfy the end state condition. The final
state is bypassed at a certain ‘distance’ in phase space. The objective of the iteration
scheme is to bring this distance or a function of it to zero.

After the completion of a cycle the computer determines if a new choice of the
initial state of control is necessary. The criterium to re-start the computation depends
on a certain tolerance limit in terms of the distance function, and the next estimate
of the initial state is chosen such that a rapid convergence of the iteration process
is obtained.

This iteration searching technique may be applied to all control equations, like
the gradient equation, steering equation, as well as to one of the modes of refraction.

In the discussion to follow it is assumed that the optimization will be performed
in a conformal polar stereographic projection with true scale at 60° N.

We first give a summary of the system equations and refraction formulae. By using
the identities (2.34) which are unaffected by the mapping, the control equations are
written in terms of the vector m or the vector m’ = Cm.

Reference is made to (2.3), (2.34), (4.1), (4.5) (4.6), (4.7), (4.8), (4.9), (4.1 1), (4.12).
(4.13), (4.15) and (4.17).

Summary

Scale of stereographic projection:

1.86603
S=—" ;.1
1 +sing
Effective airspeed:
1 T
Cepp = C + v (5.2)

Matrix C:

cos 2¢ sin 2¢
C= . (5.3)
sin 2¢ - cos2¢
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Refraction normal:

| S Vs T
m=—W .c+ Vc+ c,"~S——(c+w)

c
m’ = Cm,
| B \A
" =—“W C + VC+ Cen-—,
c S
w = Cp.
Equation of motion:
X=w+ec
Vector control equations:
a gradient equation:
. 1 1
Vi = — m= — Cm’
Cets Cetf
b phase velocity equation:
Cerr = CogeCm = c pem’,
Scalar control equations:
a steering equation:
¢ = L T.m = ~—1——c*T m’
c c

b phase speed equation:

First mode of refraction:
a in terms of m:

(sin i) (sin i)
Cets /1 Cett / 2
(sin i) (sin i)

SCete/ 1 SCets/ 2

b in terms of p:

VS ¢

s

4

54)

(5.5)

(5.6)

(5.7

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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Second mode of refraction:
a in terms of m’:

(Ce" Sil‘l i)l = (ceﬂ' Sln i)2. (5.15)
b in terms of p’:
(Sce“' Sin i)l = (Sce“- Sin i)z. (5.16)

The system equations which should be integrated step by step in the iteration
process consist here of the equation of motion (5.8) together with one of the control
equations (5.9), (5.10), (5.11), (5.12) or one of the refraction formulae (5.13), (5.14),
(5.15), (5.16).

These equations apply in regard to a fixed Cartesian coordinate system on the
image plane. The state variables are evaluated as measured on the earth’s surface.

The entire analysis is obviously centred about the notion of a refraction normal
(m, m’, p, p’). This vector quantity has been introduced in order to bring the results
in a convenient mathematical form. The vector combines the effects of all system
parameters on the control including the effect of the mapping operation. In case the
constant Mach number technique is used the airspeed may be replaced by a function
of temperature according to formula (5.21).

The step by step determination of the refraction normal will be crucial in the itera-
tion process. Its computation requires the evaluation of some quantities to be derived
from the local wind and temperature conditions and the scale of the mapping. These
are obtained by application of finite difference techniques over a suitably defined grid.

5.3 Provision of basic operational data

The synthesis of the navigation problem requires the assimilation of a considerable
amount of operational data. This data requirement comprises the meteorological

conditions in the flight region, geographical and geometric data and some perform-
ance information.

Geographical data

The processing is developed with respect to a fixed orthogonal coordinate system
in the image plane of a conformal mapping of the earth’s surface.

Field data are depicted from the information points of a regular geographical grid
or a Cartesian grid superposed on a conformal map. This requires a specification of
the type and scale of the mapping, the scale of magnification and some parameters
defining the grid geometry such as orientation and delineation of the grid and the
grid spacing at the latitude of true scale.
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A fixed coordinate system Oxy might therefore best be taken with reference to the
grid system, and the x, y coordinates be expressed in grid units.

Example:

Consider a polar stereographic projection with true scale at 60° N. Let a rectangular grid
be superposed on the map in which the pole is a grid point. One of the grid lines through
the pole, parallel to the meridian Ao, is taken as y-axis. (Fig. 14.) The origin O(4¢, o) is
taken in a grid point on this meridian.

A specimen of this type of grid is the octagonal grid used by the National Meteorological
Center, Suitland, Md. The grid used in this report is part of this hemispheric grid (Fig. 26).
Then we frequently need a coordinate transformation which converts the geographical
coordinates (4, ) of a point on earth into the Cartesian coordinates (x, ) and vice versa.
Referring to Fig. 14 and Fig. 15 the mapping equations may easily be derived:

.= (1 4 cos n/6) a
M

_ (1 + cos n/6) a
M

tan (n/4 —¢/2) sin (Ag—4),
{tan (n/4—¢o/2) — tan (/4 — @/2) cos (Ao — A)} .17

M is the scale magnification (e.g. M = 30 . 109), fis a normalization factor to be used
if the coordinates x and y are expressed in grid units. If measured in cm f is the grid
spacing in cm.

For a we take the mean radius of the earth (international ellipsoid of reference):

a=6371229.315 m.

i
. . . :y. .
i

[} . d.—_.o——-.—'—-——o-——i-—x.

() (.xo '.Po)

Fig. 14 Cartesian grid superposed on a polar stereographic projection map.
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S.P.

Fig. 15 Schematic illustration of the polar stereographic projection with true scale at 60° N.

The inverse mapping equations may be written as

A = Ao~—arctan (x/(y—yo)),
fM

a (1 + cos 7/6)

where (5.18)

_ (1 4+ cos n/6)a
M

@ = m/2— 2 arctan { x2+(y—y0)dit},

Yo tan (n/4 —go/2)

is the chart distance of the origin to the pole.

We also need to convert map distances to greatcircle distances on earth.

For not too great distances in the order of the grid spacing use may be made of (4.2).

Let d, denote the grid spacing at latitude of true scale (60° N). In the octagonal
grid dy, = 381 km. Elsewhere the grid spacing d is then

If a map distance s’ is given in grid units the corresponding greatcircle distance s
is then simply:

dys’
s=ds = . 5.19
S (5.19)

where S is computed in the midpoint of a segment.
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For longer stretches, however, the distance between two points (4,, ¢,) and (4,, @,)
should be taken from the goniometric relation

cos (360s/2na) = sin @, sin @, — cos @, cos ¢, cos (4, — 4,). (5.20)

5.4 Cruising system

The only basic parameter of control is the airspeed vector, or more specifically,
the heading ¢. The airspeed is a function of position and time depending on the type
of cruising system, for instance constant IAS, constant Mach Number.

The case of the constant Mach Number technique deserves special attention.

The Mach Number is by definition the ratio of the airspeed to the speed of sound c,.

The speed of sound is related to the ambient temperature:

R\
c, = yﬁT.

7 is the ratio of specific heat of air at constant pressure to that at constant volume;
R is the universal gas constant;

M is mean molecular weight of air;

T is temperature in K.

In the ISO Standard Atmosphere (formally called ICAO Standard Atmosphere [25])
we have for dry air:
y =140 (dimensionless)-
R =8.31432 10" erg mol"* K™!
M = 28.9644 (dimensionless)
so that '

¢, =38.9826 T* kt.

The airspeed ¢ will therefore be given by
¢ = MACH,,,, c, = 38.9826 MACH,,,. T* kt. (5.21)

The implication of this result is that the airspeed is directly related to the isobaric
temperature pattern.

If not otherwise stated we shall from now on presume that the navigation is based
on the Constant Mach Number Technique.

The temperature values are usually provided in the form of grid point values.
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These are stored together with the wind information. From a point of view of compu-
tation speed it may be recommended to convert immediately these stored grid point

values into the grid point values for the airspeed, using relation (5.21). This will
facilitate the programming effort.

5.5 Operational meteorological data

The horizontal fields of meteorological parameters may be represented by their
values in a number of grid points or by the coefficients of truncated expansions in
orthogonal functions.

The last mentioned spectral representation would in principle be very convenient
to use in the numerical computation schemes for the evaluation of the Least Time
Track. Its closed analytical form admits a simple programming and the speed of
computation is favourable with respect to the grid point representation.

Although the interest in the numerical integration of the hydrodynamic equations
in terms of a spectral representation is growing steadily, the integration has until
now been based almost entirely on the grid point representation. The grid point
representation has been accepted as a standard practice for use in the automation of
Flight Planning and Air Traffic Control.

Air Traffic Services, airlines and other aeronautical users have now developed
statements of requirements, setting out the necessary details including format,
contents, grid system, frequency of issue and validity times of the meteorological
messages. The meteorological parameters required for the processing of the time
optimal track comprise mainly the forecast upper winds and temperatures at pre-
selected (standard) pressure surfaces.

In view of the dynamic character of the system it is desired to have the disposal
of at least two sets of prognostic values in digital form for successive validity times
not further apart than 12 hours. This allows the equation of state to be integrated
in phase with the time changing atmospheric conditions.

Note:

The compatibility of the flight performance with the expected time varying conditions could improve
if the evolution of the flight control could be matched with the intermediate results as provided by
each integration step — 0,5-2 hours in advance — in a numerical weather prediction model.

Wind data may be supplied in the form of grid point values of the vector wind.
Then it suffices to prepare spot values by interpolation with respect to the values of
the wind components in the surrounding vertices of the grid.

For many reasons, however, it is preferable not to receive the wind data sec but
to receive the values of the stream function ¥ or the geopotential altitude H of a
standard pressure level from which the wind may be obtained indirectly.

For instance, let y/(x, #) be the stream function obtained by solution of the balance
equation, then the wind components may be written as
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= (5.22)

Given the geopotential altitude H(x, ¢) for a constant pressure surface, the wind
may be obtained by using the geostrophic approximation:

X 1 0H
Wy = —o———— ——,
2w sin ¢ dy
2 1 o0H
w, —_— (5.23)

=2wsin<p ox

Here w denotes the angular speed of the earth’s rotation, ¢ is the latitude. The
geopotential altitude H is expressed in geopotential meters.

Both (5.22) and (5.23) are easily to manipulate with, but one could object against
its use that the approximation of the real wind may, under certain conditions, be
poor, especially in the case of strong cycloni¢ curvature of the stream lines. This effect,
however, is partly compensated for by smoothing operations in the numerical inte-
gration model. Replacing (5.22) and (5.23) by the gradient wind has experimentally
been shown not to yield a marked improvement. Henceforth we shall maintain the
use of the equations (5.22) and (5.23).

The Jacobian of the wind vector W which affects the optimal control predominantly
in real practice, assumes in case of the balance wind (5.22) the form:

Y
oxdy ox?
wT = , . (5.24)
oy Y
oy oxodv

Using the geostrophic approximation (5.23):

*H &*H
1 oxdy ox?

wT =
2w sin ¢ ?*H *H

+ cotan ¢ Vo .w]. (5.25)

dy, 0x0y |
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The second term on the right may be shown to have a vanishing small effect on the
control compared with the first term. The contribution of this second term will from
now on be discarded.

On closer examination of the system equations, cf. section 5.2, it is seen that
their solution requires the evaluation of spot values of all constituent state variables
at each step of the iteration process before integration may be performed.

These spot values comprise not only the zero order terms like wind, airspeed and
scale of the mapping, but also higher order terms: Jacobian of the wind vector, the
isobaric gradient of airspeed and the gradient of scale.

The basic atmospheric data are assumed to be provided in the form of grid point
representations. Then, given the grid point representation of a horizontal parameter
field F(x, y, t) we need to determine the value of F and its partial derivatives
OF OF 0°F &*F &*F , )
P~ Fy’ s W and e in an arbitrary point.

This requires the development of suitable bivariate interpolation and finite differ-
ence expressions over the grid system.

Let at a given time ¢ the parameter field F be represented by its grid point values
F; ;in a rectangular grid G with vertices (i,7). Let h be the mesh-width in the x-direc-
tion, k the mesh-width in the y-direction. A spot value F(P) at an arbitrary point

i,j+1\’ h l_i:1rj*1
k \

i+1,j

/

x
-

¥
-

ij

F

Fig. 16 Unit cell in a Cartesian grid for obtaining interpolation schemes.
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P(x, y) is then obtainable from the surrounding grid point values (Fig. 16) by using
specific interpolation schemes [24].

In view of the accuracy attainable in present day computer forecast products
simple interpolation formulas are acceptable like the following:

FP)~(1-DA-wF; ;+ (A -ApuF,; ;4

+ Al =@ Fq,j+ AF gy, jay. (5.26)
Here
i =[x/h],*
J =Lyik), (5.27)
h, =x —ih,
ky =y — jk,
A =h/h,
u=kk.

(5.27) specifies which unit cell in the grid contains the point P.

This 4-point bilinear interpolation formula may be used to compute the spot values
of wind components, temperature, airspeed and geopotential altitude.

The formula might also be used in subroutines developed for computergraphic
purposes, for instance to present upper air analyses via a line printer in the form of
a character display. (See Fig. 24 and Fig. 25).

Finite difference expressions in terms of higher order derivatives of F may most
efficiently be derived by applying the same 4-point formula to the grid point values

of these derivatives over surrounding vertices. This means that the F; ; should be
replaced by values in finite difference form itself.

oF oF
Spot values of Tx anda— may best be derived from the grid point values in a
x y
grid G’ which is congruent with G and centred with respect to G (Fig. 17).
oF
Let F;, ; now refer to the derivative e then a grid point value in the point
X

(i + 4,7 + 3) may be approximated by:
1
Fl+~}, j+4 ~ EE(Fi+l,j+1 +Fi+l,j - Fi,j+1 _Fi,j)' (5'28)

* [x/h] signifies the next integer < x/h.
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\\‘\ ,
x x x ﬁ*-‘( x
q7§\._// X6

Fig. 17 Cartesian grid G together with the centred Cartesian grid G'.

In G’ the unit cell which contains P is specified by:

i—Y=[xh+1]-14,
i—t=lk+1]-4
hy=x—(i—3)h,
ki=y—(j—dk,
A=h/h,
n=kyk.

Interchanging i by i — 4, j by j — % in (5.26), substitution for (5.28) and rearranging
terms gives

OF u
<6_x>p o E(F'i.j+l +AF iy, je1+ (W=D Fi_y, j4y)

1 —u
- (T)(Fi,j—l + /lFi+1,j—1 + (1 —l)Fi—l,j—l)

* <1;:”)(F"’1”Fi+x,f+(l—fl)F.--l,;). (5.29)
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Similar for the y-component

oF A
a_y A ~ E(Fi+l,j +UFig, jer v A=W Fiy, j—y)

1-4
"( Y )(Fi LituFiy jo (A =pwWFi—y ;)

1-24
+< % )(Fz,;+ﬂF: i1 tA—wF; ;). (5.30)

These 9-point formulas may be used to determine the spot values of the isobaric
gradient of the airspeed, the balance wind (5.22) or the geostrophic wind approxima-
tion (5.23). The F;, j are depicted from the grid point representations c; j» Wi Tesp.
Hi '

J

Note:

The gradient of a scalar quantlty may be expressed in simpler finite difference schemes, but these
lack symmetry and give rise to sharper discontinuities when passing from one unit cell to another.

<

The Jacobian of the wind vector in the form (5.24) or (5.25) requires the formulation
of an additional interpolation scheme in terms of the second order derivatives of F.

To that aim we consider again the grid point representation F; ;in grid G.
2

Then to obtain an estimate for — e we replace the F;; value by:
X

1
Fi,j_>F(Fi—l,j+Fi+l,j—2Fij)- 5.31)

etc.
The unit cell in G which contains P is specified by:

i =|x/h].
J=Lylk],
hy =x —ih,
ky =y —jk,
A =hy/h,

"= k1/k



Substitution of (5.31) into (5.26) yields

d*F Au
pa z’;lT(FHz,jn +F; je1—2Fiy j41) +
P

1 - Au
_'hz_(Fi+1,j+1 +Fioy, je1—2F; ji) +

AL — )

—hE—(Fi+2,j+Fi.j—2Fi+l,j) +
Q-1 -p
T(Fi+l,j+Fi+l,j_2Fi,j)'

*F
Similarly, replacing F;, ; by an estimate of -

1
Fi,j"F(Fi,jﬂ +F; ;-1 —2F;))

and entering into (5.26) gives:

9*F Au
E{ zF(Fi+1,j+2+Fi+1,j_2Fi+1,j+1) +
P

1 — Du
LkT)‘(Fi,Hz + F; j—2F; ;4 +

(14 = p)
—_kz—(Fi+l,j+1 + Fivq,j-1—2Fiy, ) +
1-2)1-p
_T——(Fi,jn + F; j—y — 2F; ).
. O’F
Finally, replacing F;; by an estimate of 5 :
X0y

1
Fij"ﬁ;(FiH,ju +Fiy,j-1— Ficq, je1— Fiaq, j-1)

n

(5.32)

(5.33)
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and entering into (5.26) affords:

62F ,ly,
<axay ) = e Fivz, o2+ Fi j= Fi joa = Fiup, ) +
P

(1 - Du
— Fisg,jra+ Fioy j—Fiq 42 —Fiy, )+
4kh

A1 — )
4—kh‘(Fi+2,j+1 +F; j-1—Fi j41 = Fiz, -1+

aI-Hd-p
T(Fi+l,j+l +Fioq,j-1 = Fioy, jor = Figq, joy) (5.34)

The expressions (5.32), (5.33) and (5.34) are vital for the computation of the ele-
ments of the matrix W in the form (5.24) or (5.25).

Since the parameter fields F are in general dependent on time the numerical inte-
gration of the system equations will necessitate the issue of at least two forecast
grid point representations. The spot values of all contributing terms in the system
equations should then be evaluated in both these representations followed by (linear)
interpolation with respect to the time variable.

Due to the linearization this procedure may be simplified by first interpolating the
F;; values with respect to time followed by a space interpolation using one of the
above finite difference expressions in terms of the new interpolated F;; values.

It is inevitable that the use of the grid point interpolation formulas introduces
some smoothing, in particular when the forecasts are issued at intervals exceeding
12 hours.

Since the grid system is assumed to be superposed on a (conformal) projection map
and the quantities should be measured on the earth’s sphere the grid spacings 4 and k
should be replaced by the arc distances, see (5.19) or (5.20).

A quantity which remains to be examined is the scale of the mapping and its
gradient.

In the polar stereographic projection the values for S and VS follow immediately
from (5.1):
1.86603
"1 +sin 7y

1.86603

VS = -
a(l + sin g)2 >°

N 8 (5.35)

where j is a unit vector parallel to a meridian pointing to the Pole.
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Thus:
A\ _ cos @

= —— | 5.36
S a(l + sin ¢) ! (5.36)

5.6 Computer implementation of the Least Time Track construction

In section 5.2 a general outline was given of the iteration method to be applied to
the evaluation of the Least Time Track. In this section we shall discuss the most
important features of this iteration process especially in regard to computer applica-
tion.

The synthesis will be based on the interpretation of the equation of motion in
conjunction with one of the control equations. The use of the refraction principle
will be the subject of a separate treatment. (section 5.7).

On closer examination of the iteration process it is observed that each cycle consists
of a simulation of a flight along an optimal trajectory starting from the departure
point at a prescribed initial time. Since the system equations have a predictive nature
each such cycle may be built up of integration steps. At each integration step the
system equations should be evaluated and integrated over a small time interval into
the future.

Let at the j-th step the integration have resulted in the determination of the next
position P; at time ¢; under influence of the control ¢ ;- (Fig. 18.) Then, in order to

Cj,.,
J+
j+

~Sam

Fig. 18 Portion of track resulting from an integration step.



74

locally evaluate the system equations in the next step, we need first to compute the
refraction normal m or m’ in point P = P;. For this purpose it is required to determine
the spot values at P of the wind vector wp, the airspeed cp, its gradient (Vc)p, the scale
of the mapping S, and its gradient (V5);.

In addition, we need to calculate the airspeed vector ¢p, which is assumed to point
into the direction of the control c; in the last step:

C.
Cp = Cp——l‘.

Cj

The effective airspeed in P is then:

1
T
(Cet)r = cp + . C; . Wp.
j

Under the assumption that the parameter fields are made available in the form of
grid point representations, preferably for at least two validity times, these spot values
may be derived from the interpolation and/or finite difference schemes as given in the
previous section, including interpolation with respect to time.

Entering these spot values into (5.4) yields:

L (5.37)

1
mp > — W' cp + (Vo)p + (Cere)p S c
P P

Cp

A (cp + wp)T . (VS)p
(5),-

The evaluation of this refraction normal along the trajectory is a key element in
the iteration process.

The next action involves the computation of the incremental change of the system
control by solving one of the control equations by means of a quadrature formula,
which does not include the unknown variables. Whichever equation is used for this
purpose the result may be shown always expressible in terms of the airspeed vector c,
which has the property to control the motion directly via Eq. (5.8).

Let us first discuss the way to establish the required quadrature formulae for the
various control equations.

Gradient equation
For a sufficiently small time increment At the integration of (5.9) gives:

At

V1)1 =~ (V1); —
(Vo)1 (¥2) (Cerr)p

mp. (5.38)
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As by the principle of optimality

1 c
Vi = —
c

Ceft

the control ¢;,, in step j + 1 might be expressed in terms of (V1) 44
Cy+1 = Cp(Cegr)p (VT),' 1+ (5.39)

Phase velocity equation

Integration of (5.10) over a small time interval At affords:
(Cetr) j+1 = (Cerp) j + (Ceer)p CpmpAt. (5.40)

If ¢!, ¢? are the components of ¢p the matrix Cp in point P takes the form, refer
to (5.3):
1 cle! —ct¢?  2c'¢?
CP = 3
p| ¢t c2 i — et
As the optimal control vector c is pointing in the same direction as ¢.¢r the control
vector ¢, in the j + 1th step may be found by putting

Cp

(ce”)j +1 (ceff)j+ 1- (5.41)

Cjyg ™

Steering equation and phase speed equation

In principle the steering equation and phase speed equation should be taken to-
gether being component equations of the adjoint system.

Let the steering angle £; be known in the j-th step. Its value in the next step is then
according to Eg. (5.11):

C*T

Ejor = & — 2 _mpAt. (5.42)
Cp

Given the efftective airspeed (c,) j at the jth step the phase speed equation (5.12)
yields:

(Cet)je1 = (Cegr); + (Cerr)p - mpAt. (5.43)
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The steering angle £;,, and effective airspeed (c¢f);+, determine uniquely the
airspeed vector (C.g(); 44 in the j + 1th step:

(ceff)j+ 1= ((Ceff)j+ 1€0s &y, (ceft')j+ 1 sin Ejr1)e (5.44)

Then, finally to obtain c;, , in the j + 1th step one can apply formula (5.41).

At this stage the question may be raised whether the optimal control may also be
described by one of the component equations only. For the steering equation the
answer is in the affirmative, for by approximation the controlling vector ¢ j+1 May
immediately be written down:

€1 2 (cpCOS &1y, cpsiné ;).
Using the phase speed equation, ¢;,, might be derived from equation (5.2):

o7

i1

(Cer)j+1 = cp + - Wp.
j+1

This relation affords two solutions for ¢ ;+1 of which it is impossible to decide which
solution is the correct one without use of some additional information concerning
the incremental change of the heading.

This finding leads to the conclusion that computer programmes may be developed
for each control equation separately except for the phase speed equation!

Once the system control is known for the next step the response of it on the motion
will follow from Eg. (5.8):

Ax ~ (wp + ¢;41) AL (5.45)

Next position P;,; and corresponding transit time ¢ j+1 follow from
Xj1 = Xj + AX, (5.46)
tiv1=1t;+ At (5.47)

The process is repeated in order to advance the terminal point. The elaboration
of the quadrature formulae was rather straightforward, but it is clear that one could
introduce various refinements in the calculation, for instance by computing the spot
values of the wind in the midst of a predicted arc element in the next step rather than
at the endpoint of the previous step.

The integration is carried out in terms of a small (fixed or not) time interval At
at each step. The quadrature could also have been performed using a small space
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interval Ax. This may be of use in case a computer programme is developed, which
provides also the visual representation of the results via an incremental plotter (or
other graphical display unit). Then a fixed space interval | Ax | may be chosen being of
the order of a few steps in the incremental plotter in order to assure a smooth picture
drawing,

In the iteration process each cycle is started after a proper choice has been made for
the initial state of control. The selection of the initial control is of prime importance,
in view of the speed of convergence of the iteration process.

The termination of the process should be decided upon by the behaviour of the
solution in the vicinity of the terminal point Q. (Fig. 19). Whether the iteration
process should be brought to a halt or be continued depends on the ‘distance’ of the
point of closest approach. In the case that the terminal point is reached withina certain
tolerance limit @ the process is terminated, otherwise a new cycle is activated.

Bypassing of the terminal point x, may be depicted from a change in sign of the
vector product:

X7, . (Xg — Xp,), (5.48)

where Xp_is the ground speed vector at the endpoint P_ of the n-th step. As soon as
the switching of sign is detected the computer calculates the distance function d:

k x )'(;n (Xg —Xp)

| Xp, |

d

(5.49)

(k is a unit vector normal to the projection plane).
|d| represents the distance of the point of nearest approach to the terminal point.

Fig. 19 Point of closest approach at the terminal point for a trial solution in an iterative process.
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If |d| > 0 the process is continued by starting a new cycle. Otherwise the process
is stopped.

In practice, however, it may be suitable in that case to restart the last cycle in order
to calculate and present all detailed information of the final optimal track.

The very nature of the iteration scheme presupposes a proper selection of the
initial state already at the start. The first choice may be a vector ¢p at P pointing to
the terminal point:

XQ_XP

’
|xQ — Xp|

(5.50)

Cp =Cp

where cp is the spot value of the airspeed in the point of departure.

Another choice may be based on the well-known drift formula of Bellamy associated
with the technique of single heading navigation.

To that aim, let y be the stream function in a fixed time prognostic chart. Let Vp
and Y, denote the values of ¢ in the endpoints (Fig. 20). Further, let PQ be the

straight line connection on the projection plane with arc distance D, then the drift
formula of Bellamy reads:

Vo — ¥p
cD

sina = (5.51)

a is the drift angle between ¢ and PQ.

After the first cycle is completed without a ‘near target hit’ the next and following
search cycles are activated by correcting the previous initial control(s). It is logical
then to correct cp in dependency of the distance function d, formula (5.49).

C

Fig. 20 Schematic illustration of a single heading flight operation.
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Examples:

a Let {i-1 be the steering angle corresponding to the initial control ¢;—; at the start of
the (i — 1)th cycle. Then we may put

d

G =81+ ——mm—
IXQ—XP|

(5.52)

for the initial control cp (cp cos &, cp sin &) in the next cycle.

b A technique which is frequently used in modern computer algorithms is Newton’s
regula falsi method.

Suppose that the (i — 1)th cycle commences with the initial steering angle &;—; and that
the terminal point is bypassed at a ‘perigee’ distance | di—; |. Let the i-th cycle have
started with the initial steering angle £; and let | i | be the perigee distance in this cycle.
Then the next cycle i 4 1 should commence with the steering angle:

diéi_1—di1&

I3 =
1 di—di_1

(5.53)

and corresponding initial control cp (cp cos €141, cp sin £;41). This procedure obviously
requires two independently assigned values for £ in the first two trial solutions.

Failure of convergence is not ruled out, in particular if there exists no simple
relationship between the perigee distance and the initial control. This may happen
for instance if the optimal trajectories tend to diverge strongly in the vicinity of the
terminal point.

The systematic algebraic schemes can readily be programmed. Numerical schemes
may be developed for the gradient equation, phase velocity equation or steering
equation. The last possibly combined with the phase speed equation.

The programmes may also be used to generate single heading tracks between a
given pair of endpoints. This may be accomplished by keeping the initial heading c,
fixed with respect to the Cartesian coordinate system in the projection plane or with
respect to the local meridians.

Applied to single heading flights the speed of convergence should be rapid: 1 to 3
cycles are satisfactory.

To check the correct functioning of a programme it may be brought to execution
for some specialized cases. Program execution in the case of zero wind conditions
should result in the production of the greatcircle track in the projection map. When
the single heading track is evaluated in terms of a constant heading with respect to
the meridians in zero wind conditions the computer should produce a loxodrome.

5.7 Use of the refraction formulae

To make the solution of the navigation problem accessible for computer applica-
tion it was required to discretisize the system parameters and system equations. The
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Fig. 21 Use of ‘meteorological’ grid lines as lines of discontinuity in a mode of refraction.
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system equations may also be discretisized in their own right, without reference to
automata. In this respect the formulation of the refraction formulae forms a good
example and from a conceptual viewpoint it might look that the refraction formulae
are particularly suited to be processed by using high speed digital computers. An
analysis of the method reveals however that its applicability is rather restricted. An
over-simplification may easily cause a misinterpretation of the desired solution [26].
To what this may lead may be illustrated by the following example:

Let by way of approximation be assumed that Von Mises’ refraction formula (5.13)
be applied with respect to the y-grid lines of the meteorological grid used as lines of
discontinuity (Fig. 21).

Let further be assumed that the windfield be uniform locally on both sides of a
gridline.

It may then be expected that a step by step integration by jumping from gridline
to gridline in an iteration process will produce a fairly accurately positioned Least
Time Track between the terminals P and Q.

Computer experiments clearly show however that this method under circumstances

may cause marked deviations from the real solution. This discrepancy may be explain-
ed by the following analysis.

Consider a square grid in a plane surface (S = 1). The y-gridlines are assumed to
represent the refraction lines in terms of which the refraction formula due to Von
Mises may be applied.

In addition, we assume that the airspeed c is constant in the whole area of interest.
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Then the wind must be approximated by

wh = f(x,1),

w? = g(x, .

The Jacobian of the wind vector becomes:

of og
wT = | 0x ox ]
0 0
The refraction normal, cf. (5.4), reads
i) 0
1 a—f cos & + % sin &
m=—Ww c=|% ox
¢
0
m is normal to the y-grid lines, as expected.
The steering equation (5.11) takes the form
) 0
o cos & + % sin ¢
Ox ox

, 1
& = ——c"T.m=[siné,—cos§] )
¢
or
. i) )
& =siné —f—cos€+—g sin € ).
Ox ox
For ¢ = 0 this equation reduces to
é¢=0.

stating that the Least Time Track degenerates into the single heading track.

In practice the orientation of the grid system is chosen such that the x-grid lines
are mainly parallel to the main stream of traffic. Then the control will also be mainly
parallel to the x-grid lines (¢ ~ 0). This implies that the proposed method will produce
an approximation to the single heading track instead of the desired Least Time Track.

The misinterpretation lies in the choice of the refraction normal, which was assumed
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to be constantly pointing in the x-direction. From the theory it is known however
that this normal continuously varies all the way along the track.

To avoid a misconception of the refraction principle it is advisable not to attach
too much importance to the connection of the refraction principle with the grid geo-
metry.

The computational algorithm in terms of the refraction formulae may ultimately
be elaborated along the same lines as described in the previous sections using an
iterative searching technique for the solution in the ‘continuous system’.

Let c; be the control at the j-th step (Fig. 22). Integration of (5.8) in the j-th step
gives the segment P; _, P;. Then we may compute the refraction normal m from (5.37)
in point P;. The refraction will be considered with respect to a line of discontinuity

normal to m. Applying the first mode of refraction the refraction formula (5.13) may
be written:

sin i; sin i;4,
K = 1 'J = i L > —. (5.54)
CJ+WJ COSlj+stmlj Cj+1 +Wj+ICOSlj+1 +wj+151n1j+|

Fig. 22 Portion of track determined by an integration step using a refraction formula.
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Here the angle of incidence i ; is the angle between ¢ ; and m measured in counter
clockwise direction. For ¢ s w}, wf- the spot values may be taken in the midst of seg-
ment P;_P;. c;, and w} 1 wf+ 1 may be determined in the midst of a first estimate
of the segment P;P;,,. Thus the only unknown variable in (5.54) is the angle of
refraction i, , between ¢ 7+1 and m.

The equation to be solved is a goniometric equation, quadratic in sin i

lj+ 1 .
The equation admits therefore two solutions for the refraction angle:

(K—we; +wh(K - wi)? + (wh)? — chHt
(K — wH? + (wh)?

(sinijyq)y, , =

(5.55)

This finding expresses the property that Von Mises refraction formula in a sense
describes a form of double refraction.

The roots may coincide or may become both real or complex. For real roots one
of these should be discarded as being physically unrealistic. Which of the roots should
be expelled might be inferred from the requirement that by transit of the interface
the refracted ‘ray element’ P;P;,, in the ‘second medium’ should be a continuation
of the incident ray element P j-1P; in the first medium, This may also be expressed
by the condition that the components of the ground speed vector normal to the line
of discontinuity in both media should have equal sign:

Sign (€;+1€08 iy q + Wi, ) =sign(c;cosi; + w)).

The case of equal roots corresponds with the optical phenomenon that the refracted
ray element P;P;, , is parallel to the interface.

For roots becoming both complex, i.e. for:
(K —w)? + w))* - 2 <0, (5.56)

the integration process will be cut off. This very unsatisfactory situation is typical
of the solution of the navigation problem using one of the modes of refraction. It is
caused by the particular type of discretization applied to the governing control
equation. The case of complex roots may occur at portions of the track where the
change in the control vector is most pronounced and the refraction normal happens
to become nearly perpendicular to the control vector c. It is not easy to remove this
abrupt termination in the integration process. The introduction of smaller steps is no
remedy, for it increases the risk of obtaining complex roots.

The best strategy seems to be a perforce rotation of the refraction normal about
a (fixed) angle Ai; such that the roots of equation (5.55) resume real values and the
step by step integration may be continued. But this measure goes to the expense of
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the precision of the construction, as the integration process is re-established at the
most sensitive portions of the desired track.

After the angle of refraction i;,, is known one may compute c¢;,, from c;,,
and i;,, and continue the process with computation of the segment P;P;, . Repeti-
tion of this scheme will finally result in a solution by iteration.

The first mode of refraction may also be applied in terms of the refraction normal p,
cf. (5.6) together with the refraction formula (5.14). The elaboration of this alternative
method meets with the same difficulties in practice as in the foregoing method.

The second mode of refraction in the form (5.15) or (5.16) becomes even more
complicated to process than the first, due to the fact that the refraction formula
turns out to be a goniometric equation of the fourth degree in sin i, ,.

5.8 Computational aspects of the graph method

We now turn to the completely different sort of problem involving the search for
the shortest path in the ‘navigation graph’. The nodes and arcs in this navigation
graph may either be defined in the free air space or be prescribed by the elements of a
given route pattern. ,

If for each arc the arc distance d;; between a pair of nodes i and j would be a fixed
value, the matrix procedure as explained in section 3 would be very convenient to use
by digital computer. In practice, however, the arc distance may be variable due to
the non-stationary character of the airflow. Then it is recommended to use an algo-
rithm as indicated by the scheme (3.4). This algorithm requires a proper ordering of
the graph points, for instance by arranging the nodes on the y-grid lines of the meteo-
rological grid (Fig. 31) or a set of concentric circles about the departure point (Fig. 32).

The procedure is then centred on the computation of the arc distance d, e

: M.
. J
. Sij w .
. M M .
197T™A f :
. [k] .

Fig. 23 Arc between two nodes of a graph within a Cartesian grid.
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Consider an orthogonal system Oxy with coordinate axis parallel to the grid lines
of a Cartesian grid superposed on a conformal chart projection. In the case of time
optimal control the ‘arc distance’ d;; will represent the flight time ¢, ; between a pair
of nodes. Let us assume that any arc is traversed as a single heading flight by keeping
the heading ¢ constant with respect to the x-axis. This heading may be derived from
Bellamy’s drift equation (5.51). For stretches of a few hundred miles we may approxi-
mate the flown track by a greatcircle arc of length s; ; (Fig. 23). Let M be the midpoint
of the arc, T), the spotvalue of the temperature at M, c,, the corresponding value of
the airspeed and w,, the wind at the point M. In order to include the effect of the time
variability of winds and temperature it is advisable to determine a time estimate Iy
for reaching the midpoint M. All these spotvalues may be obtained by using one of
the interpolation formulae of section 5.5.

The flight time ¢,; becomes approximately:

5

~— (5.57)
leasr + Wil

tij

with ¢, = (€ 008 &, ¢y sin £).

For longer stretches the flight time may be determined more accurately by consider-
ing the intersection points {k} of the straight line connection with the grid lines.
Then, if ¢4, Wy, Tepresent the values in the midpoints of the subarcs we obtain:

Sijik

hp=) tyg =) ———.
® " ® lCa;x + Wapyl

(5.58)

Representative values for the wind and airspeed may be found by taking a weighted
mean over the sub arcs in terms of the flight time:

1 1
Wiy = <“— Lijik wil;k’_ Y ik Wi{;k): (5.59)
y ® L ®
1
Cyy =— Z Lijsk CM;ke (5.60)
L ®

Given the ‘arc distance’ ¢;; the shortest path problem may be solved simply by

application of the scheme for optimization (3.4) after performing a suitable ordering
of the nodes.
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In case provision is made for the wind data sec in the form of agrid point representa-
tion the controlling airspeed cannot be derived from a single drift formula. The air-

speed ¢y is then found by the condition that the ground speed vector is directed
along an arc:

Wy + Cy X; — X,
[wWa + cpl Ix; — x4

(5.61)

The graph algorithm is easy to programme. The method is principally one of track
selection albeit that this selection takes place in a vast multitude of admissible paths.
The number of tracks runs in the millions with increasing density of nodes.

The increase of a well ordered point set in the graph will also promote the shortest
path to converge to the ‘exact’ solution.

An improved approximation might in practice however be hindered by a limitation
of available storage capacity and computer running time. In the next section we will
mention some additional advantages and disadvantages of this method.
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Fig. 24 Line print of an analysis of isobaric topography, 300 mbar for 00.00 GMT, 4 May 1970.

Contours labelled in gpdam (interval every 8 gpdam). Grid point values of temperature
in °C



49
e o)
] *i{iﬂ & Frus f EE TS 23 |
SET %}Q{} (23] ! LEE LS
Mranung” A El
TAE wyn
«-auu&\e‘}

Soennss Y s nny [V wn s

._/"'7;{)" e an/

1 '&?dw
Nk
; 3

P N s VA

[z T TE
XU AR
S

ix ~af 48 w+w \gﬁg"
A w "0
Juue/ O ERRewnen (LA

y /
27 L3221 wuder
wuf Shans L % &
.,
1354 - - YL TY
- Yo ~46 Au¥® - 4]

rd -
A LRI T T TS

# ‘/3 912 -‘\

}iy_l--"*’ﬂ{#& Nz & & &+ aa YD “
/mii*awa»a Ny 3 5 8 / BEEEEREDE [T ]
RUERBRBEB RS N 928~ [T
rannsnanbaree\ 944 Dewsnwd ¢ &
1 — y i

Fig. 25 Same as Fig. 24. 300 mbar, 12.00 GMT, 4 May 1970.

5.9 Numerical results

The purpose of this section is primarily to investigate the practical applicability
of the various approaches by computer to the solution of the navigation problem
in the time domain.

Efforts have been concentrated on the development of mechanized iterative proce-
dures involving various versions of the control equations including the refraction
formulae. In addition some programmes were written for application of the graph
method.

The numerical experiments have been carried out for transatlantic crossings in
order to bring them up to date with present day’s operation.

The meteorological information consists of the grid point values for geopotential
and temperature in the 300 mbar standard pressure level. The wind data are obtained
by applying the geostrophic wind equation (5.23). The grid is a section out of the
well-known northern hemispheric octagonal grid system used by the National
Meteorological Center, Suitland, Md. This Cartesian grid is superposed on a conform-
al polar stereographic chart projection with true scale at 60° N. The spacing at 60° N
is 381 km. The y-axis of the grid runs parallel with the 80° meridian.
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In order to account for the dynamical character of the atmospheric circulation
provision is made for the 300 mbar grid point representations for two validity times
12 hours apart.

Fig. 24 and 25 show the retouched line prints of the upper air analysis used in all
experiments to be described.

All experiments are based on the constant Mach Number Technique for Mach True
= 0.803. Acceleration and deceleration in the climb and descent phase of the flight
are discarded whence it follows that the resulting track solutions should be considered
as overhead-overhead Least Time Tracks.

The programs written for the mechanization of the iterative procedures use a
synthesis of the computational schemes explained in the previous sections. They
include the processing of the gradient equation, the phase velocity equation, Zermelo’s
steering equation and Von Mises refraction formulae.

The inclusion of the spherical domain in this system is obtained by inserting the
corrective terms associated with a mapping of the sphere onto a polar stereographic
chart, cf. (5.35) and (5.36).
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Fig. 26 Least Time Track New York-Amsterdam. Constant Mach (M = 0.803). Computer produced
using Zermelo’s steering equation. Time of departure 03.00 GMT. ‘Streamlines’ indicate
airflow in phase with flight as depicted from information in Fig. 24 and 25. Minimum flight
time: 6h 10’ 19”’. Track distance: 3235 N.M. Also shown: refraction normal at every inte-
gration step (short bars). Longer bars represent the lines of ‘discontinuity’.
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Fig. 27 Great Circle Track New York-Amsterdam. Computer produced using the gradient equation.
Zero wind, constant temperature. Track distance: 3187 N.M. Short bars denote the refrac-

tion normal. Longer bars represent the lines of ‘discontinuity’. Note that these bars are
parallel to the local meridians and latitude circles.

Fig. 26 shows the result of an iterative search obtained for a flight between John F.
Kennedy Airport, New York, to Schiphol Airport, Amsterdam, using Zermelo’s
steering equation. The curve plotter picture shows the track together with the lines
of discontinuity and direction of the refraction normal at each integration step. The
iteration took 6 cycles before the destination was reached within 5 n.m.

To check the correct performance of the programmes use can be made of an
‘exact’ solution as a test extremal. Fig. 27 has been generated by computer for the case
of zero wind conditions to yield the great circle track between New York and Amster-
dam, eastbound as well as westbound. The lines of discontinuity are parallel to the
local latitude circles at each step and the refraction normal is directed along the local
meridian. If the corrective terms for the scale S would have been abandoned from the
control equations the programme would not have generated the great circle but the
straight line connection on the projection chart instead.

In the iteration process difficulties may arise due to the ill-conditioned mapping
between the initial and final states. The process may indeed be complicated by extre-
mely high sensitivity to small changes in the initial heading. Even the most successful
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procedure depends on first obtaining a trial solution whose terminal values lie
somewhere in the vicinity of those specified. In the navigation problem the preliminary
search for such a trial solution does not consume much time and effort as the initial
heading is bound to lie within a comparatively small sector, but if ‘tight’ tolerances are
employed for reaching destination the process is oscillatory and convergence may be
slowed. If convergence fails to come within a prescribed time limit the tolerance may
be weakened, but for practical reasons such ‘loose’ tolerances should remain within
acceptable bounds, e.g. within 10 n.m. from the terminal for long range flights.

The overall success of the process will depend on the mapping between initial
heading and final distance of approach at the terminal. This mapping may be very
complicated. The mapping may be studied qualitatively by the investigation of a one-
parameter family of tracks emanating from the departure point.

Fig. 28 shows such a one-parameter set of tracks originating from New York with
an incremental change of the initial heading of 2 degrees. It is a curve plotter picture
generated by a programme including the gradient equation as control equation.
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Fig. 28 One-parameter family of Least Time Tracks with New York as origin. Mach true = 0.803.
Computer produced by means of an incremental plotter using the gradient equation.
Meteorological information depicted from Fig. 24 and 25. Time of departure: 03.00 GMT.
Short cross bars indicate the half-hourly transit times. Note the focussing effect near
Greenland and Norway.
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Fig. 29 Same as Fig. 28 with Amsterdam as origin. Note the focussing effect in the vicinity of
New York.

In regular field areas the mapping referred to above may be well-conditioned es-
pecially where the crowding of tracks is pronounced. The iteration process will then
be successful most of the time, using a simple convergence scheme like the regula falsi
method of Newton, cf. (5.53). In regions where the crowding of tracks happens to be
poor the sensitivity to small changes in the initial heading will be high, causing insta-

bility in the convergence process due to discretization, truncation- and round-off
errors.

The regularity of the field of tracks is disturbed by a focussing effect over Green-
land and Norway. In the region bounded by the enveloping caustica there occurs
an overcrossing of tracks and time fronts. This feature destroys the uniqueness of the
solution. For a terminal located in the region enclosed by the caustica two separate
solutions exist, each giving a minimum with respect to adjacent trajectories.

The mapping function referred to above becomes complicated especially for termi-
nals at or near a focus or caustic. For instance, if the focus is a terminal point,
any trial solution is likely to reach the focus within the prescribed tolerance distance.
For a terminal within the area enclosed by the caustica convergence may be fast, but



92

it is not known whether the resulting solution gives an absolute or a relative minimum.

Fig. 29 represents the one-parameter family of optimal tracks upstream with Am-
sterdam as point of departure. The wind and temperature patterns are the same as
in Fig. 28. New York terminal is located within an area where the optimum tracks
tend to focus.

Fig. 30 gives another example of a one-parameter family of extremals, which clearly
demonstrates how complex the solution of the two point boundary problem may be
when using iteration. The figure shows the more or less hypothetical case of a flight
with Mach True = 0.5 within an idealized jet stream model. The wind profile is
Gauszian with a core speed of 180 knots. The figure exemplifies the phenomenon
of beating up against the wind, wellknown to yachtsmen.

If the aircraft is not allowed to make wide excursions from the jet axis the optimum
tracks become sinusoidal.

The computational experience with this type of two point boundary problems
is very limited at the time of writing. Its elaboration awaits further studies.

«180—“’ W_=180exp.(-y 2)

T I 1 I

Fig. 30 One-parameter family of Least Time Tracks for Mach true = 0.5 with origin at the axis of
a hypothetical jet stream. The wind profile is Gauszian with a core speed of 180 kts. Comput-

er produced using the phase speed equation. Note the oscillatory character of the solutions
in the vicinity of the axis.
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Fig. 31 Shortest spanning tree with New York as root of the tree. Computer produced using the
graph method. Constant Mach (M = 0.803). Meteorological information depicted from
Fig. 24 and 25. The ‘shortest’ path between New York and Amsterdam is accentuated by
the heavier line. Time of departure: 03.00 GMT. Minimum flight time: 6 h 10’ 41", Track
distance: 3248 N.M.

When we direct our attention to the application of the graph theoretical approach
for solving the two point boundary problem an entirely different picture evolves.

The graph procedure performs a track selection within a specified network of
points and connecting arcs. It keeps away from delicate mathematical questions as
continuity, convergence, focussing, etc.

The procedure affords a unique solution all the time.

For example, if the terminal lies within an area of overcrossing optimal tracks the
graph method yields always a solution which warrants an absolute minimum with
respect to admissible paths in the graph.

Fig. 31 shows the shortest spanning tree in the graph with New York as the root
of the tree. This shortest spanning tree corresponds to the one-parameter family of
optimum tracks as shown in Fig. 28, which was produced by the iterative programme.
The graph points have been chosen to lie on the y-grid lines of the meteorological
grid. Note the peculiar structure of the graph in the region which reveals the focussing
effect. The particular solution between New York and Amsterdam within this graph
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may be back-tracked starting at the terminal (thick line). This track corresponds to
that in Fig. 26, obtained by Zermelo’s method. In another version involving the graph
method the graph points are located at the circumference of a set of concentric
circles about the origin. The shortest spanning tree associated with this graph struc-
ture is shown in Fig. 32. The graph solution between New York and Amsterdam is
again a good approximation of the ‘exact’ solution.

A disadvantage of this graph method is its moderate speed. The running time
increases proportionally with the number of subsets of nodes and quadratically with
the number of nodes in the sub sets. The processing requires the passing on of the
whole spanning tree.

The graph algorithm lends itself extremely well for comparative studies, for instance

to determine the potential gain in flight time with respect to another track for compa-
rison.

Example: Let it be intended to compare the flight time and distance along the optimal track with
the corresponding elements along the geometric shortest path in the graph. This geo-
metric shortest path which is an approximation of the great circle arc between the terminals
may first be determined by activating the program under zero atmospheric conditions.
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Fig. 32 For explanation see legend to Fig. 31. Minimum flight time: 6h 11’ 01”. Total distance:
3251 N.M.
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Given the indices of the nodes of this path the program may be restarted to produce the
desired elements in real atmospheric conditions. This may be accomplished by putting
the lower and upper bounds in the J-cycle of the scheme equal to the indices corresponding
to the nodes of the geometric shortest path.

An important question is to draw a comparison between the various computational
techniques, for instance in regard to speed and ease of computation. Computational
experience with the various iteration adjustment processes reveals that the schemes
based on the gradient equation, phase velocity- and the steering equation of Zermelo
are practically alike. Thereare no indications whatsoever which of these schemes should
be preferred. They produce curves barely distinguishable from each other. The iterative
procedure involving Von Mises’ refraction formula is more complex in view of the
selection of the correct refraction angle and the removal of complex roots in the
governing quadratic goniometric equation. The tric to rotate the refraction normal
in order to remove the complex roots distorts the solution considerably and the speed
of convergence may be low.

In so far as comparison between the various iterative schemes and the graph method
is concerned, the active competition appears to be won by the graph method. The
former require a complicated correction cycle to obtain a solution for the two point
boundary problem, which is not necessary with the latter. The graph method will
always afford a unique solution, which guarantees an absolute minimum.

Although the speed of computation required for the graph algorithm is unfavour-
able in regard to the fast convergent iteration processes, this is not considered
an unsurmountable obstacle with modern computer facilities.
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PART I1
ASPECTS OF 3-DIMENSIONAL FLIGHT PLANNING

6. 3-Space graph solution of the optimal flight path

6.1 General

Flight planning and the assignment of tracks to individual aircraft are made in
accordance with the navigational capability of the aircraft concerned. The navigation-
al capability varies with the cruise-performance characteristics and the time changing
conditions of the atmospheric environment. The influence of the environmental
conditions on the performance is exploited by the companies to obtain the assignment
of the most advantageous flight path, advantageous not always in the sense of the
speediest fligth as described in the previous sections. The criterium of optimality
may be entirely different, for the ultimate goal is to produce the optimal plan for
each flight which will fulfil the companies’ policy of carrying the offered payload in the
most economical manner under the safest possible operating conditions.

One of the most pronounced features of the optimization problem in flight plan-
ning is its 3-dimensional character, as may be inferred from possible diversions of the
ground track in the horizontal and the adherence to a continuous climb or stepped
altitude profile in the vertical (Fig. 33).

Operationally the practices and procedures have evolved in a direction whereby the
optimization is carried out in a two-stage process. First an optimal track selection
is performed in terms of a time-optimal criterium (Least Time Track). Secondly an
optimization procedure is applied in the vertical in terms of the same or another

// \
/

P Q

Fig. 33 (Optimal) stepped climb profile within a 2-space graph consisting of regulated flight levels
and intermediate climbs (descents) at check points.
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criterium to determine the optimal altitude step schedule.

Note:

In some Air Navigation Regions like the NAT Region the first stage is the responsibility of the
ATC centres.

In current practice the 3-dimensional problem has in this way been split up
in two separate 2-dimensional problems. From a point of view of logistics this ap-
proach seems to be somewhat fortuitous,

Since we may dispose now of powerful computer processing systems it would
appear worthwhile to attack the problem directly in 3-space. For it may be expected
that a 3-space solution by the effects of horizontal and vertical temperature gradients
and wind shear, may be ‘better’ than a two-stage 2-space solution. Especially in the
flight régime of turbo-jet aircraft the prevailing meteorological conditions may be so
pronounced (jet stream, tropopause) that the 3-space solution may indeed be better
than a combination of the Least Time Track and optimal step climb profile in the
vertical (See section 6.4).

In addition, ifwesucceedin findingan optimizationalgorithm for the 3-space problem
itis a simple matter to use this same algorithm as a tool for solving the above-mention-
ed 2-stage problem. This simplifies also the design of a well-ordered process architec-
ture and program structure, which makes computerized flight planning more com-
prehensive and flexible.

In this extent it is necessary to point to the fact that the flexibility is manifest also
in the degrees of freedom of the system. The operator has the choice of various cruise
systems: Long Range, Standard Cruise (Constant Mach), High Speed, etc. The opti-
mization criterium may be specified in terms of minimum operating time, minimum
fuel flow and minimum operating costs. The best strategy is trying to find a process
algorithm which solves the optimization problem in the most general terms possible.
Subsequently, when arrangements are made to develop an operational process due
account is given to the specific navigational and performance aspects encountered
in real practice.

The purpose of this chapter is to present a computational algorithm, which is
suited to be used in more advanced electronic flight planning processes. The main
intention is to prove its usefulness by experimentation.

6.2 Optimal track selection in 3 dimensions

6.2.1 The graph method

The optimization problem in ‘3-dimensional’ flight planning could in principle
be studied in the context of modern optimal control theory. This approach, however,
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has not been explored in any depth. Its elaboration is hampered by the complexity
of the flight performance in the vertical. In the régime of varying atmospheric condi-
tions of winds and temperature the problem becomes even a space-time problem.

Zermelo [1] using the classical tools of variational calculus succeeded in formulat-
ing a solution in 3-space, but under now unacceptable assumptions of climb- and
descent parameters. The criterium used for optimization was minimum operating
time. The solution was presented in the form of a set of steering equations similar
to that found in the 2-space navigation problem.

A simpler and more direct approach is to investigate the flight performance within
the structure of a graph in 3-space. In section 3 the graph method was explained for
the navigation problem in 2-space. The 2-space we had in mind there was a constant
pressure level, be it a flight level or a meteorological standard pressure level. Another
graph in 2-space is encountered when the performance is studied in a vertical plane
through a prescribed flight track. The graph is specified here by the set of flight levels
and step-climbs or step-descents (Fig. 33). The location of the steps is supposed to be
fixed at check points. The nodes of the graph consist of the intersection points of the
vertical lines through check points and the set of flight levels. The arcs of the graph
consist of the flight segments including steps. The point of departure is the entry
point. Destination is the exit point. The graph is a directed graph. It is also a multi-
graph in view of the multiplicity of arcs between a pair of nodes. A special feature
in this graph is the arrangement of the nodes in ordered point sets by virtue of which
the graph is divided into zones, a structure which is often encountered in transport
theory. The performance optimization in this 2-space graph may be elaborated using
the same principles as explained for the navigation graph in section 3, resulting in the
identification of the optimum altitude step profile.

In the two-stage processing of modern computer flight planning it has now become
general practice to perform the optimal track selection in the 2-space graph in the

horizontal and to identify the optimal altitude step schedule in the 2-space graph in the
vertical.

Now we shall focus our attention on the possibility of solving the optimal flight
planning problem directly in the navigation régime of a graph in 3-space. This naviga-
tion régime may be considered to have the appearance of a crystal lattice (Fig. 34).
The check points constitute the lattice points. In continental flight regions these check
points are located at NAVAID points, aerodromes, transition points, etc. In oceanic
regions these check points consist of the one degree crossing points at 5 or 10 degrees
standard meridians. The flight levels specify the lattice planes. The purpose of the
optimization problem is to search for the ‘shortest’ path in the ‘navigation crystal’
along which a specified performance index attains an (absolute) minimum or maxi-
mum value. This performance index or ‘figure of merit’ is associated with an entity like
minimum operating time, minimum fuel consumption, minimum operating costs,
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etc. in a preselected cruising system. The shortest path problem may then first be
formulated in terms of the performance index without reference to the specific
desiderata of flight performance. These last features come into play only when a

definite flight planning process is developed in accordance with the company’s
standard practices.

Note:

The structure of the graph as depicted in Fig. 34 presupposes that the graph is partitioned in zones
of air space. This requires the arrangement of nodes in point sets similar to the ordered sets of oceanic
check points along the standard meridians. This grouping may always be realized by adding, if
necessary, some fictitious check points. Without such grouping in the graph configuration it would
become extremely complicated to find a shortest path solution.

6.2.2 Optimization scheme

Let the nodes in the 3-space graph be arranged in the pointsets X;,i =0,...,n + 1
with the following properties. X, is the entry point P, X, , the exit point Q. A node

in the set X; is specified by its ‘coordinates’ (i, k, /), a node in the set X;,, by the
coordinates (i + 1, K, L) (Fig. 35).

Fig. 35 Portion of the 3-space graph indicating the parameters used for developing an optimization
scheme.
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Let us assume that the optimum value of the performance index J is known for all
nodes in set X;. Further, let A(i, k, 1) be an arbitrary node in X ; with optimum value
Ji% 1 Next consider a node BGi + 1, K, L) in X, ,. The vertical plane through A
and B is the support of a subgraph. This subgraph is a multigraph, as the nodes
A and B may be connected by multiple altitude segments, steps-up and steps-down
included.

The value of Jin B along an individual altitude segment u becomes:

Sk kL= e+ (Ad); 4,4, K, Ly (6.1)

Here (AJ). . . denotes the incremental change of J along the stepped altitude seg-
ment p. Then, to obtain an optimal value of the performance index J{%' 1, k, L e first
search for an optimum in the subgraph:

J?rl,x, Lk= 0157’ {:’I)” P + (A)) Lk LK, L)
( n

This is a sub-optimum value only. In order to acquire the real optimum it is requir-

ed to rotate the planar support about node B and to repeat the optimization process
in terms of k:

t t
kL= 05’1 {8 ki)
*

= opt{opt {opt %+ (AD)i k1, k, LW}
& O W

b= (i), . . ., pa(i)
I=1,3),...,L(3)
k =ky@i),....k,30)

The set of critical index values °*, jerit. ™ for which J°*(B) is obtained defines
a node in X; and arc, which appertain to the optimum path. It is required to keep a
record of these critical indices during execution of the process algorithm. In the zonal
airspace between X ; and X i+1 the above described processing should be repeated for
all nodes B in X, ,. Thereafter the process is continued in consecutive zones. It
terminates after the exit point O has been reached.

In its totality the process may be formulated as follows:

K=K,(i +1)...K,(i +1)
J?g.tl’x, L=0Pt {0)[)1{:)’;1(.];:2:,+(AJ)“C,,,K, L’")}} L = L l(i + 1) vee Lz(i + 1) i =0...n
I3

® ©62)
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= py(0), ..., p2(d)
1 =1,(i),..., L)
k =ky(i), ..., ky(i)

together with the set of critical indices:
[k (i, K, L), I°™ (i, K,L), p*™ (i, K,L) |J{% . ]i=0...n. (6.3)

The ultimate result of a process run (6.2) is the (accumulated) value of the optimized
performance between take-off and landing.

The corresponding path information should be derived from the set of critical
indices (6.3). The nodes and arcs which specify the geometry of the optimal path are
identified by means of a search of the relevant indices in (6.3) starting in the exit
point and ‘backtracking’ until the point of departure has been reached.

To appreciate the algorithm as a very useful tool in computer flight planning it is
appropriate to consider its properties and possible applications in practice.

6.2.3 Properties

a. In practice the optimality criterium is usually a minimum criterium: minimum fuel
flow, minimum operating costs, minimum operating time. In case of fuel expenditure,
however, it is customary to express this quantity in terms of loss of aircraft weight.
Taking the aircraft weight as a performance index the intention is to search for a
maximum weight.

The principle of dynamic programming in the spatial graph preserves its validity
if the performance index also depends on absolute time. Especially under control of
rapidly changing wind and temperature patterns due account should be given to these
factors in the evaluation of J and AJ.

The principle equally holds when AJ depends on J itself. For instance if the opti-
mality criterium is based on fuel economy the fuel flow will depend on the fuel
consumed already since the moment of take-off. Operating costs are predominantly
expressed as a (linear) combination of fuel flow and operating time. In a computer
flight planning system this is a strong argument to program the scheme on the basis
of a cost index. The system then provides great flexibility to explore not only cost

savings but also time- or fuel savings merely by letting vanish the values of some coeffi-
cients.

b. To start the process it is required to know the initial value J, o o = J(P) in the
entry- or departure point. In practice, however, it may occur that this initial value
is not known in advance to the operator. For example, in case the performance is
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considered in terms of fuel consumption, J is taken as aircraft weight. It may then
happen that the take-off weight J(P) is not specified, but instead the (maximum)
landing weight J(Q) in the exit point.

It is a favourable circumstance that even then the algorithm is still applicable,
provided it is performed in retrograde order starting at the exit point and terminating
in the entry point.

The retrograde scheme may be formulated as follows:

k = ky(i). .. ky(i)

Ji%, 1 =opt {opt {opt kL~ ADsk k) | = 1,G). .. L@ |i=n...0
(K) (L) ()

no=p(d),..., u2()
K=Ki(i+1),...,Ka(i + 1) 6.9)
L=Lii+1),...,LsG + 1)

with the set of critical indices:

[I<cril (i+ 1, ka l)’ Lcrit (i + l’ k’ 1)5 ”Cril (i + l’k’ l) ' J?.p’z.l i=n.. -0. (6'5)

After the process (6.4) has been finished the track information is drawn from the
set (6.5) by screening the relevant critical index values starting at the entry point P and
proceeding to the exit point Q.

¢. The principle of dynamic programming is not affected by reducing the airspace
even when the bounds of one or more index intervals are made to coincide. As a
consequence the algorithm may still be used if the graph in 3-space is made to degener-
ate into a 2-space graph or even a 1-space graph c.q. a prescribed track and altitude
profile. Identification of the lower and upper bounds of (i), L(i) and u(i) intervals
affords the optimization scheme for the optimal track solution in the 2-space graph
of a predetermined flight level. Identification of the bounds in the k(i) and K(i)
intervals affords the scheme for obtaining the optimum altitude step schedule in a
vertical plane. If carried out one after the other this processing simulates the two-stage
process as described in section 6.1.

By a proper identification of the interval bounds for the indices k(i), K(i), (i),
L(i) and pu(i) the graph is made to degenerate into a specified flight path. Execution
of the algorithm (6.2) then merely results in a performance computation along this
flight path. The latter specialization is extremely suited for comparison of the perform-
ance data along the optimal path and concurrent tracks like the Great Circle Track,
an alternate track in the organized track system, etc.
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Note:

In a computerized process of optimal track selection it is for several reasons to be recommended
to repeat the calculation in lower dimensions as soon as the first 3-space run terminates. One reason is
that in the process one should keep a record of the critical index values k°rit, Jerit and uerit, which
specify the geometry of all optimal paths emerging from the entry- or exit point. To save core storage
it may be recommended to store only the index values kc¢rit, These values fix the location of the
(projected) ground track associated with the optimum path. Then the subroutine may be put into
action a second time applied in the 2-space graph in the vertical plane through this ground track.
This will result in the identification of the optimum altitude profile. This time the / and g indices
are stored. Finally, for the purpose of the computation and presentation of all desired flight plan
entries the subroutine may be put into action once more, applied in the 1-space graph specified by
the &, / and u-indices.

Another advantage of this stepwise processing procedure is the possibility of restarting the sub-
routine with improved values for the take-off weight or landing weight resulting in an improved
solution of the two-point boundary problem. (See 6.3.5.)

d. For the purpose of long distance flight planning the spatially graph may be estab-
lished in the flight region in its most comprehensive form on the basis of air traffic
patterns and regulated flight levels. In practice the operations are often confronted
with all kinds of airspace limitations. Most common are restrictions imposed by ATC
(restricted climbs, airways and flight level restrictions) and military blockages. In the
spatially graph certain nodes and arcs need then tobe blocked, so that the optimization
problem can be solved in a subgraph. Blocking may also appear a necessity during
the execution of the algorithm due to cruise thrust limitations. At each node of the
optimal path the aircraft weight should not exceed a maximum operating weight,
which is known beforehand for each type of aircraft depending on aircraft weight and
the temperature deviation from standard (See 6.3.5).

This in turn has the consequence that application of the scheme requires a separate
calculation of the weight performance even when the optimality criterium is in terms
of cost saving or time saving. It may be noticed in passing that these weight limitations
may cause that an actual computer run fails to give a solution, for instance when the
available flight levels are too high for a heavy loaded aircraft.

The removal of graph elements may be so drastically that the remaining subgraph
admits but a few concurrent paths.

Example: Current practices and procedures relating to the airspace organization in the NAT Region
involve the establishment and application by ATC of an organized track system in parts of
this Region.

The organized track system itself is the product of an optimal track selection established
and updated at regular intervals using forecast MET conditions.

The tracks are designated in order of preference A B C ... routes. After authorization
to use this route structure or part of it the operators can take this structure into account
in their flight planning. The organized track system together with the continental track
system determine a (spatially) subgraph, which may be used by the airline to perform
a supplementary and final track selection. The ordering of routes, route A as the ‘best’
route, route B as the ‘next best’ route and so on, obtained in this final processing may be
entirely different from that established by ATC.
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The blocking of nodes and arcs may easily be accomplished in the optimization algorithm
without distortion of the scheme.

Problems may arise, however, which in order to solve them require a further stylizing
of the scheme. To take an example, we once again refer to the establishment of an organiz-
ed track system. The algorithm may first be put into action to obtain the best route. Once
this route has been identified, the process may be generated once again to determine the
next best route. The best route should first be removed from the graph, but in order to
fulfil the (lateral) separation standard the next best route should approach the best route
by a distance not closer than 2 degrees north or south of this route. A detailed analysis of
this problem reveals that it may be solved by additional blocking of nodes and arcs and
an appropriate partitioning of the index intervals in subintervals.

A last but most important restriction is related to the weight limitation at the point of

departure and destination. Both landing weight and take-off weight are bound to remain
below prefixed weight limits,

6.2.4  Reduced optimization scheme

According to the formulations (6.2) and (6.4) the optimization scheme involves
6 cycles and a supplementary one to assess the desired flight path information.

The execution time is proportional to N;N2N}, where N » N and N, are repre-
sentative values of the number of stages, the number of check points per stage and the
number of regulated flight levels. The number of arcs to be scanned in a spatially
graph for the North Atlantic may run in the millions. This is quite an obstacle for
the implementation of the method, even when use is made of a powerful computer.
It is therefore from a point of view of computation speed of paramount importance
to investigate whether the scheme may be relaxed in terms of the cycling process with-
out introducing gross errors in the overall performance.

Consider in (6.1) the argument:

I+ (AD)i k1 k, L, u

The incremental change in performance AJ along an arc between a pair of nodes
A and B (Fig. 35) consists of a contribution along the altitude segment u plus a con-
tribution due to steps-up and steps-down required to reach 4 and B. The steps are
multiples of unit-steps. For example, if regulated altitudes are used with a separation
of 2000 feet the unit-step may be taken as 2000 feet. Now let us assume that the contri-
bution to AJ per unit-step is a fixed value ¢ and is equal to the contribution to AJ
per unit step-down with opposite sign, then between 4 and B we have:

(A));, v, LKL =(A); gk, +(u—De— (u—L)e
=(AJ),~,,‘,K,”+(L—I)6. (6.6)

For turbo-jet aircraft ¢ is of the order of 25 kg/1000 ft.
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Referring to the formulation (6.2) we have

¥, kL =opt {opt {J%%  + opt (AT); . k1,1, u}}- (6.7)
k) @ ()

Next, let us assume that
i =J+ Ie, (6.8)

then we can prove that this statement holds at each step of the optimization procedure.
Indeed, entering (6.6) and (6.8) into (6.7) delivers:

I, ki =opt {opt {J% + le + opt (AJ); . k., + (L — D) e}}
* (D]

=opt {Ji% + opt (AJ); 1. x, .} + Le
(k) (u)

or

J?Kt1,x, L= J?i'l, x + Le. (6.9)

If it can be shown that the statement is also valid in the climb and descent zone,
the statement holds for the complete 3-space graph.

Climb zone

In the climb zone the subgraph has a simpler structure, so that (6.6) should be

;..»w

L ! TOD

|
1
1
i=0 i=1 i=zn-1 =N
Fig. 36 a, b Climb and descent zone.



107

considered for an arc between the entry point and a point B over the first check point
(Fig. 36a).

(A'])O,O,O,K,L,u =(AJ)o,0,k,u+ (L —pe. (6.10)

Entering (6.10) into (6.7) affords:

J?l:tK,L =J(P)+opt {(AJ)O, o,k u — ME} + Le.
(n)
JP L = I + Le. 6.11)

Here J(P) denotes the initial value of the performance index at the entry point.
The increment (AJ) involves the climb performance and the performance along the

portion of the altitude segment u remaining between TOC (top of climb) and the
first check point.

Descent zone

The subgraph has a structure similar to that in the climb zone. Referring to (6.6)
and Fig. 36b we obtain:

ANk, 1,0,0,u =A@, k0,0 + (1 — e (6.12)
And according to (6.9):

TP = TP 4 I, (6.13)

Entering (6.12) and (6.13) into (6.7) gives

I, 0,0 = (Okf’t {JoP + (05” {(AD), 4, o,u + He}},
y3

which formally may be written as:
J:ﬂtl,o’o =Jn+l,0+L8 (L=0). (6.14)

resulting in the optimum value of the performance index in the exit point. Here AJ
involves the performance along the portion of an altitude segment u between the
last check point and TOD (top of descent) augmented with the descent performance.
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Using (6.9), (6.11) and (6.14) the scheme (6.2) then reduces to:

[[Jif‘,’f,( = opt {J{% + opt (A*J)i, 6K ut] T+ Ls] K=K, (i+1)..K,(i+1)|i=0...n
*) (D]

k =k,(i), ..., k(i) (6.15)
b= “1(’): R ”2(1)

where (A*J); , g, ,denotes:

in the climb zone: (AT)o,0,k,, — M
in the descent zone: (A)n, k)0, + Ue,
elsewhere: ANk k. n

Note that in the last stage, in the descent zone, L = 0.

To identify the critical path it is necessary to store the critical index values:
[k°“ (G, K), p™ (5, K), | I3, x + Le]li=0...n. (6.16)

In (6.16) I°* is missing. This indicates that the 3-parameter family of optimized
paths emerging from the entry point reduces to a 2-parameter family.

The algorithm (6.15) involves 4 cycles as distinct from the 6 cycles in the general
approach. The computation time is now proportional to N;NZN,, which is a factor
N7 less than in the algorithm (6.2) — for 10 flight levels a factor 100. — . This is a
reason why the application of (6.15) in practice appears to be most promising although
it should be borne in mind that the solution is approximative only. The usefulness
of the algorithm must be checked by experimentation.

A point which should not be overlooked here is the possibility that the consistency
of extreme values for different options of the critical path might be disturbed. So it
may happen that for example the fuel consumed along an optimal cost-saving profile
is less than the ‘minimal’ fuel consumed along an optimal fuel profile (See 6.4,
experiment 4).

The optimization is apparently very sensitive to a slight modification of the process
algorithm. However, be it somewhat irritating, this is not considered a serious objec-
tion against the use of (6.15) and (6.16) as long as the solution remains close to the
‘exact’ solution.

The approximate scheme may further be specialized along the lines previously
described for the general process algorithm.
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Example: Let k,(i) = k,(i), K 1()) = Ky(i)and & = 0. Then the 3-space graph degenerates to a 2-space
graph in a vertical plane through a prescribed ground track with negligible step perfor-
mance. Then the scheme (6.15) reduces to

[J?K'l = JP 4 opt(AJ),,"} i=0...n, 6.17)
D)
=, (0)... ()

with track information

[ #c rh(i)

J;‘!;‘l] i=0...n (6.18)
The relation (6.17) is recursive, so that

IQ) = JJ%y = J(P) + opt (AT, + ... opt AJ, . (6.19)
() D]
B=p0)...10) p=p,(n)...puy(n)

The processing is very simple and may be used for finding an optimal altitude step schedule
in terms of minimum operating time.

6.3 Implementation of the spatial graph algorithm

6.3.1 General

This section discusses the numerical aspects of an operational flight planning process
which is founded on the previously described principles of a spatial graph algorithm.
Some of the initial steps are high-lighted, necessary for the application of the mathe-
matical technique as formulated by the optimization scheme (6.2) or the scheme in
relaxed form (6.15). The feasibility of the spatial optimization process will then be
illustrated by some examples in the next section.

The interdisciplinary nature of flight planning makes that the design of an overall
system is not so simple as could be guessed from the optimal control formulation.
Indeed, the synthesis of the spatial navigation problem involves the preprocessing
of a voluminous amount of operational data: space-time meteorological information,
geographic and geometric data and flight-performance data.

The preprocessing of this information has already been discussed in part in chapter
5 when dealing with the synthesis of the time optimal problem in two dimensions.
The extension of the problem in three dimensions and the generalization of the optimal
control in terms of cost- or fuel-saving demand however for the elaboration of some
additional numerical details.
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6.3.2 Geographic and geometric data

We may perform the computations with respect to a fixed coordinate system
Oxyp (p for pressure in the vertical) defined in a regular geographic or Cartesian
grid superposed on a conformal chart projection. The parameters which specify the
grid geometry may best be depicted from a grid already existing and used in numerical
weather prediction models. The necessary coordinate transformations, for instance to
convert the geographical into Cartesian and vice versa, may be inferred from expres-
sions like (5.17) and (5.18). Involved with the synthesis of the navigation problem in
a (spatial) graph we need as a next step to define the check points, which constitute
the nodes of the graph. These nodal points are arranged in ordered groups. The geo-
graphical position coordinates are converted into xy-coordinates and the points are
labelled with the indices (i, k, /) as required to perform the computational algorithm
(6.2). To obtain a zonal graph structure it may be necessary to add some fictitious
graph points different from NAVAID points, reporting points etc.

The arrangement of check points used in the experiments for the NAT-region is
shown in Fig. 37.

To complete the graph structure a set of flight levels is specified and provided with
the index p. The lowest level is FL 290 as turbo-jet aircraft operate in the airspace

at or above this level. In view of the presently applied vertical separation standards
the levels are 2000 ft apart.

Note:

In regions where composite separation is applied half the value of the vertical separation is
introduced (1000 ft).

The algorithm is put into action for a sub-set of these levels only, for in practical
operations the number of flight levels available is usually restricted.

As regards the flight segments between pairs of nodes some geometric data are
essential for the computation: distance, location and orientation (bearing). The
conformity of the projection makes that these data may easily be determined in
reference to the grid coordinates. The great circle distance of the segment may be
derived by using one of the formulas (5.19) or (5.20).

6.3.3  Meteorological grid point values

Computerized flight planning requires the provision of a voluminous amount of
meteorological data. In case of spatial flight planning for long distance flights there
is a need to receive forecasts for at least three standard levels, say 300, 250 and 2C0
mbar together with tropopause and wind shear data for at least two validity times
12 hours apart. The forecast should preferably be made available in the form of grid
point values and be issued in digital form and coded in a suitable format.
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In practice, Area Forecast Centres should be capable of meeting these requirements
and have adequate communication systems to disseminate its products preferably
using the facilities and services available under World Weather Watch. This point
is not discussed further here.

As regards the preprocessing of the MET information within standard pressure
levels we may refer to the discussion in section 5.5. The information thus obtained,
however, is unsuited to be applied directly in the graph algorithm, as in the spatial
graph we should have the information available in regulated flight levels instead of
standard pressure levels. The preprocessing should therefore be extended to cover
the desired grid point values in these flight levels. The additional processing com-
prises all parameters: geopotential, wind and temperatures at all flight levels from
FL 290 onwards and for all forecast times.

The geopotential and other relevant data may be deduced from the 300, 250 and
200 mbar forecasts by means of interpolation taking due account of tropopause and
wind shear information.

The winds may be calculated by using the geostrophic approximation (5.23) and
the finite difference expressions (5.29) and (5.30). Atmospheric temperatures affect
various performance data (cf. 6.3.4). In the derivation of these performance data
account is taken of the temperature effects by inclusion of a corrective term for
off-standard conditions. The grid point values of temperatures therefore may best be
expressed and stored as deviations from standard. Temperatures are also involved in
the speed control associated with a specified cruise system.

Using for example Standard Cruise, constant Mach (cf. 2.1) the speed control is
even exclusively governed by the environmental temperatures. The integration of the
equations of motion may then be facilitated by calculation of the grid point values
of the true airspeed, using formula (5.21) in the whole grid area and storing the data
sets for each flight level.

Enabling the processing to be accomplished in space-time requires that the opera-
tional flight level data be prepared separately for the validity times of the forecasts.

The preprocessing results in the production of a great series of data sets outnumber-
ing the data sets of the forecasts from which they were derived. The preprocessing
does also a strong appeal to core memory storage, but this is compensated for by a

substantial gain in runtime when the time consuming graph algorithm procedure is
put into operation.

6.3.4 Performance data

As regards the performance aspects of long distance flight planning the manual
procedure involves the following phases: selection of the cruise system, determination
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of the take-off weight (TOW), determination of the altitude schedule, calculation of
time and fuel and compilation of the flight plan.

It is outside the scope of this study to consider all these phasesin detail. The sub-
sequent rules and instructions are described in the companies’ Operations Manuals.
Besides, when exploring the flight plan calculation in a spatial system by computer
the procedure is different from that quoted. The computation scheme starts with a
known Landing Weight in the retrograde mode (6.4) and the determination of the
altitude schedule forms an integral part in the track selection.

In the computational schemes (6.2) or (6.4) or (6.15) the calculation of fuel (and
costs) takes place in step with that of flight time although the optimization is carried
through for one of these items only. The partitioning of the spatial graph requires
the processing of the performance to be considered in three phases: en route, the climb
phase and the descent phase.

a. en route
time
The time of flight follows from the equation of motion:

ds

dt .
ic + w|

(6.20)

The wind vector w and the controlling True Air Speed (TAS) vector ¢ together
determine the ground speed vector ¢ + w. Applying a Standard Cruise system
(Constant Mach) the TAS le| is bound to fulfil the relation (5.21). What then remains
is a directional control for ¢ such that the ground speed vector is directed along a
flight segment (Fig. 38). For stretches of a considerable length (6.20) may be inte-
grated by summing all contributions in the unit cells (j) of the meteorological grid,
which are crossed by the flight segment.

The flight time between the end points 4 and B of a segment 4 in the graph may
then be approximated by:

As;
At =Y (A1), ~ — (6.21)
gi d g; ch + ;w]

where As; represents the great circle distance of a subarc in unit cell (j). The spot
values ¢; and w j may be taken in the midpoints of these subarcs.

To account for the time variability of w and ¢ the spot values may be taken with
respect to the estimated time of arrival in the midpoints.

All this presupposes that the meteorological information is made available in the
form of grid point values. The spot values then may be assessed using suitable space-
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Fig. 38 Flight segment between two nodes of the graph within the meteorological grid.

time interpolation formulae in the forecast sets stored for each flight level and fore-
cast time (See 6.3.3).

In view of the costly calculation speed we may try to simplify the summation (6.21)
by defining a fixed directional control for ¢ along the whole flight segment instead of
adjusting the control in each unit cell. This may be accomplished by using the well-
known principle of single heading flight between 4 and B. The directional control is
then governed by the drift formula of Bellamy (5.51). The advantages are obvious
not only from a practical point of view (fixed heading per flight segment), but also
theoretical because of the property that for relatively short stretches the single heading
flight is a better approximation to the optimal track than the great circle track.
Adherence to a constant drift angle has no marked effect on the evaluation of the
time of travel (6.21).

If the stretches in the graph are indeed not too long (6.21) may further be approxi-
mated simply by putting:

As
At = —,
e + w|
where As is the ground distance between 4 and B and the denominator denotes some
suitable mean value of the ground speed along the flight segment, for example a
geometric or arithmetic mean of the endpoint values.
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Sfuel

The air distance covered by a turbo-jet aircraft per unit of fuel consumption — the
specific range — is an important economic index. It can be shown that this datum is
almost independent of temperature and depends on the aircraft weight W only at
a prefixed flight level. Values indicative for this specific range a (W) are known for
each type of aircraft. Table I lists these values for the DC 8-D3. The fuel consumption
may be expressed as loss of aircraft weight, so that by definition:

d I
aw = - & (6.22)
a

where the air distance s’ is related to flight time and true air speed according to
ds' = cdt. (6.23)

Integration of (6.22) may be performed in step with the summation (6.21) along
a flight segment u between the pair of nodes (4B):
;- (AY);

4
AW =) (AW), ~ =) L4 6.24

As indicated it is required to relate the spot value a ; to an estimated weight W,
say, halfway the air distance covered in the unit cell -
A good estimation is:

3c; . (Av);
a bl

W,

J

=W — (6.25)

where W and thus a are known values at the begin point of a subarc.
In the fight against the clock we may approximate the weight-loss further by putting:

W ¢ A (6.26)
a(Wy '
Here At is the time of travel derived from (6.21).
¢ is a suitable mean value along the flight segment AB and a(W) is the specific
range approximately halfway the total air distance covered between 4 and B.
For W we may put:

W=W,—3cAl(r, +r, W), (6.27)
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1
where r; and r, denote the coefficients of a straight line fit in a <—, W) graph at con-
stant pressure altitude (slicing method). a

Table II lists values for these coefficients applicable to the DC 8-D3

TABLE 1. Specific range ( NM]10.000 kg )

WEIGHT FL FL FL FL FL FL FL FL FL

(kg) 250 270 290 310 330 350 370 390 410

144000 643 655 658 648 622 - — — —

140000 654 668 674 670 651 — — —

136000 665 681 690 691 679 — — — —

132000 678 694 705 711 706 674 — —

128000 687 706 720 730 732 710 — — —

124000 697 718 734 749 758 744 — — —

120000 707 729 748 761 782 177 741 — —

116000 717 740 761 784 805 809 784 — —_

112000 727 751 714 800 827 839 826 — —

108000 736 762 786 815 848 868 865 830 —
104000 745 172 798 830 868 895 903 881 —
100000 754 782 809 845 887 921 939 930 884
96000 763 792 820 858 906 946 973 977 946
92000 771 801 831 872 923 970 1005 1021 1007
88000 719 811 841 884 940 992 1035 1063 1065
84000 787 820 852 896 956 1013 1064 1102 1119
80000 795 829 861 908 971 1033 1091 1139 1169
76000 803 837 871 919 985 1052 1117 1174 1217
72000 811 846 881 931 999 1070 1141 1207 1262
68000 819 855 890 941 1013 1088 1164 1237 1303

TABLE I1.

FL rg ra

29 671 0.0567 We finally obtain:

310 4.94 0.0693 .

330 2.32 0.0900 —

350 0.54 0.1045 Wa=W,+AW. (6.28)

370 0.66 0.1010

390 —0.65 0.1170

When the optimization scheme is executed in terms
of fuel saving we may put in (6.2) or (6.4) or (6.15):

J=W,A] = AW
and put the optimization algorithm into operation in terms of a maximum criterium.

b. climb

As confirmed by computer experiments it may occur that the ground track of a
3-space solution deviates from the Least Time Track merely as a consequence of the
climb performance characteristics. For flights with turbo-jet aircraft 10 to 15% of
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the trip fuel is already consumed in the climb zone. This fuel expenditure may vary
under influence of the meteorological conditions in different directions after take-off.

This suggests that the processing of the climb performance should be carefully
studied. To calculate the effect of the climb data on the overall performance use is
made of a set of climb tables. These are characteristic for a specific type of aircraft.

The tables IIL, IV, V, VI, VII and VIII list the data for climb time, climb air distance
and climb fuel up to the top of the climb (TOC) for the DC 8-D3.

For each parameter we need to consult two tables. One affords the values under
standard conditions and zero wind as a function of pressure altitude and take-off
weight (TOW). The second table lists the corrections to be applied for off-standard
temperature conditions. The desired information may numerically be obtained by
applying suitable table look-up and table screening procedures.

TasLe III.  Climb time (1/1000 hrs)

WEIGHT (kg) FL FL FL FL FL FL FL FL
250 270 290 310 330 350 370 390
148000 333 377 439 501 608 — — —
144000 317 359 414 466 553 — — —
140000 302 341 391 435 506 — — —
136000 287 325 369 408 467 590 —_ —
132000 274 309 350 384 434 524 — —
128000 261 294 331 362 405 473 638 —_
124000 249 280 314 342 381 435 554 —_
120000 237 267 298 324 359 406 491 —
116000 226 254 283 307 340 382 443 624
112000 216 242 269 292 322 362 406 532
108000 205 230 255 271 305 343 377 466
104000 195 219 243 263 289 325 352 418
100000 186 207 230 249 273 306 331 383
96000 176 196 218 235 258 286 310 355
92000 167 186 207 238 243 266 290 330
88000 158 176 196 210 229 245 270 307
84000 150 166 185 198 214 227 252 284
80000 142 157 174 186 200 211 235 263
TABLE IV.  Climb time (1/1000 hrs)
Climb time (1/1000 hrs)
(St. temp.) St—20 St—15 St—10 St—5 St+5 St+10 St+15 St+20
50 45 46 47 48 53 56 59 62
150 129 134 140 145 158 165 175 185
250 . 205 213 222 236 267 285 307 330
350 273 287 300 325 390 430 475 520
450 335 352 375 412 512 585 675 820
550 387 407 443 493 640 767 950 1295

650 425 453 504 568 782 985 1300 —
750 454 490 556 640 933 1245 —
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TABLE V.  Climb distance (N.M.)

WEIGHT (kg) FL FL FL FL FL FL FL FL
250 270 290 310 330 350 370 390

148000 105 126 151 181 232 — — —
144000 99 118 142 167 207 — — —
140000 94 111 133 154 187 — — —
136000 89 105 125 144 170 226 — —
132000 85 99 118 135 156 198 — —
128000 80 94 111 127 145 177 253 —
124000 76 89 105 119 135 160 216 —
120000 73 85 100 113 127 147 188 —
116000 69 80 95 107 119 136 167 250
112000 66 76 90 101 112 128 151 209
108000 63 73 85 96 106 120 139 179
104000 59 69 81 91 100 113 129 158
100000 56 65 717 86 94 107 120 143
96000 . 53 62 73 81 89 100 113 131
92000 51 58 69 76 83 94 105 121
88000 48 55 65 71 77 87 97 113
84000 45 52 61 67 72 81 90 104
80000 42 49 57 63 68 75 83 96

TaBLE V1. Climb distance (N.M.)

Climb distance (N.M.)

(St. temp.) St—20 St—15 St—10 St—5 St+5 St+10 St+15 St+20
0 0 0 0 0 0 0 0 0
50 38 40 43 47 54 59 68 75
100 73 79 84 93 110 123 141 157
150 105 113 123 136 168 190 222 268
200 131 144 160 179 230 260 322 460
250 150 168 191 218 296 334 440 —
300 161 187 219 254 372 417 — —_

The calculation of performance data in the climb zone is straightforward if the
computational algorithm starts at the point of departure for a given TOW.

Let P*B (Fig. 36a) be a flight portion at a given pressure altitude in the climb zone
of the graph. Then the performance data are composed of the climb performance up
to TOC and the en route performance between TOC and first check point B.

The calculation is somewhat complicated by the fact that the location of TOC is
not fixed. The position where the flight levels off may vary due to the influence of the
winds in the climb phase. The actual climb distance including wind effect is:

(As)climb = |Eclimb + Wclimbl . (At)climb’ (629)
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TABLE VII. Climb fuel (kg)

WEIGHT (kg) FL FL FL FL FL FL FL FL
250 270 290 310 330 350 370 390
148000 4240 4670 5150 5640 6500 — — —
144000 4050 4440 4890 5310 5980 — — —
140000 3870 4230 4640 5010 5540 — — —
136000 3700 4030 4410 4730 5160 5950 — —
132000 3540 3840 4190 4480 4830 5440 — —
128000 3380 3670 3990 4250 4550 5020 6210 —
124000 3240 3500 3800 4040 4300 4680 5490 —_
120000 3090 3340 3620 3840 4070 4380 4950 —
116000 2960 3190 3450 3650 3870 4130 4530 5570
112000 2830 3050 3290 3470 3680 3910 4210 4930
108000 2700 2900 3130 3300 3500 3710 3950 4450
104000 2580 2770 2980 3140 3320 3520 3720 4090
100000 2460 2630 2840 2980 3150 3340 3520 3300
96000 2340 2500 2690 2830 2980 3160 3330 3570
92000 2230 2380 2560 2690 2820 2980 3140 3350
88000 2120 2250 2420 2540 2650 2800 2950 3140
84000 2010 2130 2290 2400 2500 2630 2750 2940
80000 1900 2010 2160 2270 2350 2470 2570 2750

TABLE VIII. Climb fuel (kg)

Climb fuel (kg)

(St. temp.) St—20 St—15 St—10 St—5 St+5 St+10 St+15 St+20
500 460 470 480 490 515 530 545 560
1500 1430 1445 1460 1480 1550 1600 1645 1690
2500 2220 2280 2340 2420 2620 2740 2870 3000
3500 2950 3050 3180 3350 3700 3920 4200 4470
4500 3680 3850 4050 4280 4850 5150 5670 6320
5500 4370 4590 4880 5150 6000 6670 7530 8520
6500 5050 5260 5630 5950 7200 8500 9900 12150
7500 5630 5900 6280 6720 8700 11050 — —

Cctims 1S the mean projected TAS vector in the climb, W, ;, the mean climb vector
wind:

(A5 )ctimp
(At)climb ’

|cclimb| =

(6.30)

For W,;;,, We may take 60 or 70% of the 300 mbar vector wind. The direction
of ¢ may be inferred from the drift formula of Bellamy using the geopotential
altitude in P overhead (P*) and B. The climb time (Af)¢1ims 1s usually reduced by a few
minutes to account for take-off and acceleration.
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We may now proceed as follows:

1. determine the en route flight time (Ar)p#5 between P overhead and B using (6.21);

2. estimate the temperature deviation from standard at the given pressure altitude,
for example at P overhead;

3. determine the climb air distance (As’),imp, climb time (At)ctimp, and climb fuel
(AW).1imp entering the tables IIT till VIII;

4. determine the climb distance (As),;m, using (6.29);

determine the ground distance As between P* and B;

6. determine from (3) the weight at TOC:

R4

Wioc = TOW — (A W)climb'
7. determine from (1), (4) and (5) the flight time en route between TOC and B:

As — (AS)ciimb

Ai en route =
(A)en rout As

(At)pxp.

8. determine from (6) and (7) the fuel en route between TOC and B:

c (Ar)

en route

a

(A u/)en route —

9. determine the flight time between P and B including climb time:

At = (At)climb + (At)en route*

10. determine the fuel consumption between P and B including climb fuel:

A W= (A W)climb + (A W)en route*

11. determine the aircraft weight in B:
Wy =TOW — AW.

It should be stressed that this scheme is applicable only if the take-off weight is
known. When the algorithm is carried out using the retrograde version the climb
performance calculation constitutes the last stage of the process. Then the weight Wy
is known, but the TOW remains to be evaluated. To that aim an iteration search for
TOW is put into action. Starting with an estimate of TOW ( e.g. the maximally allow-
able TOW) a preliminary value W3} is derived and compared with Wj.
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In a next iteration step a correction is applied to TOW proportionally with We-Wy
and a new value for W} determined. This process is repeated until W3- W, comes with-
in prescribed bounds (5 a 10 kg).

C. descent

The descent performance is no critical factor in the search for an optimum. As
regards the processing in the descent zone the method to be followed is quite similar
to the one applied in the climb. A distinction is that no use is made of tabulated values
for the performance data, but of some simple analytical expressions instead. These
are specified in accordance with the company’s planning policy. In our experiments
for the DC 8-D 3 we have used the following expression:

(At)descent =6.1+041z (min.).

(AS)gescent = (1 + 0.004 AT).(9 + 3z) (NM). (6.31)
(A W)desccnt = 940 + 852 (kg)

z denotes flight altitude in 10° feet and AT the temperature deviation from standard
°c).

d. costs

The cost-saving potential is of a substantial economic significance. The economic
benefits improve both by a reduced fuel burn-out and time-saving. The costs may
mathematically be expressed as a function of fuel burn and flight time.

The simplest way is to express Ac linearly in At and AW

Ac =c At + c, AW (6.32)

where the coefficients ¢, and ¢, are specified in accordance with the company’s flight
planning policy.

In practice the calculation of Ac takes place in step with the fuel- and time calcula-
tion, so that the optimization in terms of a cost criterium might be performed simply
by using the subroutine for fuel- or time optimization.

It is to be expected as confirmed by experiments that the vertical cost profile will be
somewhere between the fuel- and time profiles. (See Fig. 41).

6.3.5 The graph algorithm

To apply the graph algorithm in the form (6.2), (6.4) or (6.15) one single computer
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routine may be developed. To that aim the programme might be structured so as to
admit the execution of all these modes simply by deleting or reversing some cycles
and switching a few plus or minus signs in the computation scheme.

The objective function J is identified with the planned quantity to be optimized:
aircraft weight, time of travel or costs.

The process evolves in stages starting either in the climb zone or descent zone. The
calculation of the performance data is straightforward except in the last stage. The
descent- or climb performance in the last step should be matched to the en route
performance by means of an iteration procedure (See 6.3.4. b.).

A salient feature is the requirement to protect the process algorithm against a
possible transgression of the maximum cruise thrust due to weight limitations.

At each point on the optimal path the aircraft weight is bound to remain below a
maximally allowable weight. This maximally allowable weight is dependent on flight
altitude and temperature deviation from standard. Table IX records these weight
limits as a function of flight level and off-standard temperatures for the DC 8-D 3.
In the computer routine the control with respect to this weight restriction is carried
out for each flight segment in the endpoint where the performance weight is expected
to be the highest. As soon as the actual weight surpasses the maximally allowable
weight derived from table IX, the segment is blocked and the processing continued.
The weight control should be applied in all flight segments as well as in the TOC
and TOD.

It is also required to extend the control to the landing weight and take-off weight,
which are bound to remain below the corresponding maximally allowable weight
limits. Weight limits appropriate in the climb and descent are accounted for already
in the tables III till VIII (empty spaces).

Under circumstances mainly attributable to unfavourable meteorological condi-
tions and highly restricted airspace utilization it may occur that the computer routine
fails to find a solution. The flight happens to become payload critical. In that case
the TOW or LW should be lowered and a new computer run be performed.

TaABLE IX. Maximum weight (kg) per flight level

St—10 St—S5 Stand. St+5 St + 10 St+ 15 St 420
FL 410 97700 96000 94200 92500 90900 89000 85800
FL 390 108200 106300 104300 102600 101000 99100 95600
FL 370 119900 117900 115600 113800 112100 100300 106300
FL 350 131800 129300 126800 124800 122800 120700 116900
FL 330 max. 140100 137000 134900 133200 130600 126600
FL 310 max. max. max. max. max. 141000 135800

A salient feature is further that the process should in any case entail a calculation
of the fuel burn or weight performance uncoupled with the optimality criterium.
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As a consequence it should be decided upon whether the process should start in the
point of departure or in the point of arrival. Obviously this depends on whether the
take-off weight or landing weight is known in advance.

To comment on this we consider the scheme of possible weight- and fuel desiderata
which are indicative for the main entries in a flight plan.

e

ramp weight (RW)

taxi fuel (TF)

start take-off run (TOW)

climb consumption

top of climb weight (TOC)

cruise consumption

top of descent weight (TOD)

descent consumption

landing weight for performance (LW*)
regularity percentage r%, of (RW-LW*)
landing weight (LW)

reserves

zero fuel weight (ZFW)

trip fuel
flight plan sub-total

This list is only tentative. All items in this scheme are variable with the exception
of LW. This quantity involves the zero fuel weight and reserves or more specifically:
operating weight empty, payload and reserves.

One could, of course, begin with a prescribed TOW, at the risk however of exceeding
the maximally allowable landing weight. It is more profitable to use the ‘pivotal’
term LW instead and to perform the algorithm in the retrograde mode.

Here again, a difficulty arises as the algorithm should not start with LW sec, but
with the landing weight for performance LW*.

LW* is not precisely known however, so that we should try to find an estimate LW*

dependent on type of aircraft and mileage covered. For the DC 8-D3 we have used
the expression:

S.T
—(0.08 LW — 500) — 0.15LW + TF + 7300)) (6.33)

- TA
LW* =1LW +r
465

I' is an estimate of the flight time, TAS the mean air speed en route. TAS . I' is
therefore an estimate of the air distance covered between the endpoints. LW*, LW and
taxi-fuel are given in kg.

Starting with LW* a first run is completed in the basic 3-space graph. For reasons
explained in section 6.2.3 c. the first run is not considered decisive, but it is advised
to continue with a second process run within the 2-space graph in the vertical plane
through the optimum ground track, which was identified in the first run. If this second
run would start with the TOW as obtained in the first run, the routine would merely
afford a duplicate of the optimal step altitude profile and associated performance
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data. The purpose of the recomputation is however to start with an improved TOW
or LW* in order to remove the coarse approximations of LW* in the first run.
For turbo-jet flights the following relation holds to a good approximation:

Lw*
= = constant (6.34)
TOW
Furthermore by definition:
LW* — LW =r(RW — LW¥) (6.35)
and
RW =TOW + TF (6.36)

For a new estimate of LW* we may pose

LW* = LW + r(TOW + TF — LW¥)

and
LW#*
TOW
so that the estimate for TOW becomes:
LW + rTF
TOW = — 717 (6.37)
(A+rR-—r

The algorithm is performed in the second run starting with this TOW estimate.
After completion of the second run the routine is activated once more, but now in the
1-space graph consisting of the optimal altitude profile as identified in the second run.
The intention of this third run is merely to make a final calculation of all entries
in the flight plan and to present these in an appropriate flight plan format. The
speed of computation of the third run is negligible compared with the first and second
run. In passing the third run may be used to start the computation with another im-
proved estimate for the take-off weight.

In order to investigate the feasibility of automation of this process in practice we
have developed an experimental software package in ALGOL and tested this on a
second generation computer. In view of its experimental character we abstain here from
giving a detailed description of the process architecture and programme structure.
The results of some of these experiments are given in the next section.
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6.4 Experimentation

A series of computer experiments was planned to achieve an insight in the potential-
ities of the space-time flight planning process. The main purpose of these experiments
was to prove that, in every respect, the spatial algorithm is a more powerful tool for
accurate track selection than the conventional 2-dimensional method. In one sense
this is a trivial question, for the conventional method is nothing but a special case of
the spatial process (cf. 6.2.3 c.). The question is however not trivial if we consider
the possible limitations in the practical application of the process in terms of computa-
tion time, core memory capacity, ease of programming, etc. Apart from this it is
interesting to investigate what effect the meteorological conditions have on the accura-
cy of the optimal track selection and whether the extra gain in performance obtained
is worth the price and effort. Finally, if the practical evaluation of the algorithm in its
most primitive form (6.2) or (6.4) might appear illusive with the present art of systems
design and technology, then it is very important to demonstrate that the approximate
scheme (6.15) is a useful interim solution.

The experiments were set up for transoceanic flights over the North Atlantic,
especially for flights between Amsterdam and New York vice versa.

In the process use is made of upper air forecasts for 300, 250 and 200 mbar for
two validity times 12 hours apart (See Fig. 39a, b, c, d, e, f).

The meteorological situation as depicted from Fig. 39 is characterized by a pro-
nounced meridional circulation with ‘blocking’ high west of Ireland. Off the Canadian
coast there is a deep trough extending far south over the Bermuda area moving slowly
to the east. The winds are moderate, so that it may be expected that the track diversion
and gain in performance will not be spectacular compared with the great circle route.
Notable is the strong temperature variation along the route. The amplitude of the
temperature wave is of the order of 25 °C, which probably will affect the altitude
profile.

The MET information is supplied in digital form. Geopotential values and temper-
ature are depicted from the grid points in a Cartesian grid superposed on a polar
stereographic chart projection with standard parallel at 60 °N. This grid is part of the
well-known octagonal grid prepared by the National Meteorological Center, Suit-
land, Md. The y-axis runs parallel with the 80 °W meridian. The area covered is a
rectangle comprising 12 x 16 grid points.

The number of operational MET-data (temperature and geopotential) to be sup-
plied is therefore

2x2x3x12x16=2304.
The spatial graph structure may be specified by the sets of check points and flight

levels. Fig. 37 shows in projection the groups of check points. The flight levels selected
for these experiments were FL 310, FL 350 and FL 390.



126

A 7 4
S
_. ,‘gi\;

Fig. 39 Analysis of isobaric topographies. Contours labelled in gpdam (heavy lines). Temperature
labelled in °C (dashed lines).
a 300 mbar 00.00 GMT b 300 mbar 12.00 GMT
¢ 250 mbar 00.00 GMT d 250 mbar 12.00 GMT
e 200 mbar 00.00 GMT f 200 mbar 12.00 GMT
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The input of performance data comprises the tabulated values for the specific
range (Table I, IT), maximum cruise weight (Table IX) and six tables for the climb time,
climb fuel and climb distance. The tabulated values are representative for the type of
aircraft DC 8-D 3.

The selected cruise system is standard cruise (Constant Mach number technique).

At the time the series of trials was planned it was feared that the limited storage
capacity of the available computer system would be insufficient for mastering the
processing. For that reason measures were taken to keep the amount of computational
work to a strict minimum. The number of check points and flight levels as well as the
area of the rectangle were reduced as much as possible. In addition, a measure was
taken to restrict the scanning of arcs between nodes (i, k, 1) and a given node (i + 1,
K, L) within a sector about the main flight direction. This was considered acceptable
inasmuch zigzag routes are highly improbable,

In the last few years, however, the technology has made enormous progress, so that
in modern complex machinery these measures might have become obsolete.

In the series of experiments use is made of the following desiderata for the DC 8-D 3
aircraft:

standard cruise, Mach 0.8034

taxi fuel 1500 kg
zero fuel weight 75000 kg
reserves 10000 kg

maximal take-off weight 142900 kg
maximal landing weight 93000 kg
regularity 9 3%

step up 25 kg/1000 ft
step down } extra burn —20 kg/1000 ft
flight levels 310, 350, 390
cost coeflicients ¢; = 6.0/min
(currency unspecified) ¢, = 0.02/kg
time of departure 0300 GMT

All trials made a start in the retrograde mode of (6.2) or (6.15) with the following

preliminary value of the landing weight: LW = 85000 kg (zero fuel weight + reserves,
75000 + 10000 kg).

1. The use of a computer programme needs a reasonable assurance of the reliability of
the programme. A kind of minimal check is to run the programme under standard at-
mospheric conditions and zero wind. The optimal track should then consist of the ‘opti-
mal operational distance track’ in the graph as a good approximation of the great circle
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track between the endpoints. This result should be independent of the chosen opti-
mality criterium.

In the vertical the altitude step profile and en route performance data should then be
standard as may be verified by inspection of diagrams like the flight planning check
chart and time-fuel chart. The results should be unaffected when the programme is

run for a flight in opposite direction between the same endpoints (westbound versus
eastbound).

All runs produced the optimal operational distance track as shown in Fig. 37.

Table X lists the results of a computation based on fuel economy for the traject
Amsterdam - New York, westbound, obtained by computer and manually using a
flight planning check chart and time fuel chart.

TaBLE X.  Standard meteorological conditions, zero wind. Graph algorithm (6.2). Criterium: Sfuel
saving. Amsterdam-New York, Standard Cruise, Mach 0.803.

method Lw TOW distance duration* trip fuel**
(kg) (kg) (NM) (hrs, min.) (kg)

computer 85057 124446 3193 7h 04’ 39389

manual*** 85100 124446 3193 7h 05’ 39350

* incl. 2 min. for take-off and acceleration.
** excl. taxi fuel, incl. 3% regularity.
*** flight planning check chart was entered with TOW = 124446 kg and distance: 3193 NM.

The time fuel chart indicates that two steps are required, 25’ and 4h 15’ after takeoff.
The programme required two fixed step locations — coinciding with check points —
at 44’ and 4h 30’ after take-off.

Table XI summarises some flight plan totals for calculations in terms of time-, fuel-
and cost saving, westbound and eastbound (6 runs).

TaBLE X1. Standard meteorological conditions, zero wind. Graph algorithm (6.2). Amsterdam- New
York, Standard Cruise, Mach = 0.803.

optimality criterium westbound 7 eastbound -
duration* fuel** cost duration fuel cost
(hrs, min.) (kg) (hrs, min.) (kg)

time saving 6h 58’ 41700 10784 | 6h 58’ 41732 10788

fuel saving 7h 04’ 38242 10331 | 7h 04’ 38229 10329

cost saving 7h 04’ 38242 10331 | 7h 04’ 38229 10330

* incl. 2 min. for take-off and acceleration.
** trip fuel excl. taxi fuel, excl. regularity %.
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The speediest flights should take place constantly at the lowest flight level, where
the highest temperature prevails (FL 310). This was confirmed experimentally. The
results are in fairly good agreement. Some minor discrepancies may be attributed to
discretization-, interpolation- and round-off-errors.

The correctness of the program may also be proved by comparing the computer
products in off-standard meteorological conditions with the corresponding results
obtained by manual dispatch procedures.

2. Intriguing of all is to explore how the process functions when the optimization
is performed in non-standard atmospheric conditions. Again six runs were made
using the general graph algorithm (6.2) for flights between Amsterdam and New York,
eastbound and westbound, in terms of time-, fuel- and cost-saving. Some of these
results are shown in Fig. 40 and 41 and in table XII.

First we see from Fig. 40 that the ground tracks westbound as well as eastbound

are in triplo. Apparently the criterium of optimality had no effect at all on the location
of the ground track. This may be pure chance.

TaBLe XII. Graph algorithm (6.2). Amsterdam-New York, Standard Cruise, Mach 0.803.

optimality criterium westbound eastbound o
duration* fuel** cost duration fuel cost
(hrs, min.) (kg) (hrs, min.) (kg)

time saving 7h 11 40485 10739 | 6h 43 39932 10357

fuel saving 7h 14’ 39347 10608 | 6h 51’ 36366 9502

cost saving 7h 14’ 39384 10606 | 6h 51’ 36366 9502

* incl. 2 min. for take-off and acceleration.
** trip fuel excl. taxi fuel, excl. regularity %.

FL 390
t < - \Fl 350
4
L ' 2 . AT | < \Fl 310
/
min. time min.cost min.fuel
NEW YORK AMSTERDAM

Fig. 41 Optimum altitude profile associated with the spatial optimum flight paths based on fuel-,
time- or cost-saving. New York-Amsterdam. For the corresponding ground track see
Fig. 40. Steps are located at check points.
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The graph in the vertical (Fig. 41) westbound (castbound is not shown) clearly
indicates that the corresponding optimal step altitude profiles are different. The fuel
and cost profiles have both the normal appearance: approximation of a continuous
cruise climb with one or two 4000 ft steps. The flight time profile is more irregular.
This is caused by the response of the aircraft’s speed to the vertical temperature
gradients. The level of highest temperatures is sought, which is clearly demonstrated
in the last portion of the flight in the American Airway zone. Temperatures are lower
there at 300 mbar than higher aloft in the stratosphere.

The values taken for the cost coefficients ¢, and ¢, make that the fuel costs take
approximately 75%; of the total costs. This explains why the cost profile is often coinci-
dent with the fuel profile or hardly deviates from it. This accounts also for the small
differences in the corresponding performance data (see table XII) in terms of fuel-
and cost-saving. It is worthwhile to observe the consistency of the extreme values in

the table (in italics). The consistency is required as an intrinsic property of the general
optimization algorithm.

3. The advantages of introducing a spatial flight planning process will become
obvious when proving its efficiency with respect to the conventional method. This
method consists of a separate track selection in the horizontal followed by a search
of the optimal altitude profile in the vertical.

An experiment was planned whereby the spatial process was forced to produce the
Least Time Track (at FL 310) and subsequently the optimal fuel profile in the vertical
plane through the ground track. The outcome was then compared with that obtained
in the 3-dimensional approach in terms of fuel saving. It turned out that, eastbound,
both the optimal flight path and performance were exactly the same. Westbound,
however, the results differed as indicated by a diversion of ground tracks (see dashed
line in Fig. 40) and the content of table XIII.

TaBLe XIII. Graph algorithm (6.2). Amsterdam- New York, westbound, Standard Cruise, Mach 0.803.

method duration fuel cost
(hrs, min.) (kg)

spatial fuel saving 7h 14/ 39347 10608

Least Time Track plus
fuel saving 7h 15 39449 10632

This experiment clearly proves that a solution in 3-space may indeed be rewarding
as compared with a (factorized) 2-space solution. The exira gain in performance is not
inconsiderable. This is the result of one case study only. It would require a long series
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of trials to get an insight in the efficiency of the spatial flight planning process as
compared with the traditional method.

4. Another experiment involves a test of the usefulness of the graph algorithm in
reduced form. Its significance in practice is the substantial reduction of computation
time provided that the loss in accuracy remains within acceptable bounds.

The algorithm is applicable if the saving in fuel burn in a step-down be taken equal
to the extra fuel burn in a step-up (—25 kg/1000 ft). The computer runs are the
same as described in 2). Table XIV shows the results of these runs.

TaBLE X1V, Graph algorithm (6.15). Amsterdam-New York, Standard Cruise, Mach 0.803.

optimality criterium westbound eastbound
duration fuel cost duration fuel cost
(hrs, min.) (kg) (hrs, min.) (kg)
time saving 7h1I’ 40476 10736 | 6h 43 39931 10358
fuel saving 7h 14’ 39401 10633 | 6h 51’ 36378 9909
cost saving 7h 14 39348 10607 | 6h 51’ 36378 9909

The differences observed between the flight plan totals in table XII and table XIV
may be considered immaterial from an operational point of view. The optimal paths
were identical with those identified by algorithm (6.2) in experiment 2 (See Fig. 41).
The execution time contrasted well with the general graph algorithm: 3 minutes against
25 minutes on a 1 us core assess time machine. A feature which is somewhat distur-
bing is the possibility that the consistency of extreme values may be destroyed. (See
westbound: fuel saving). The optimization is apparently very sensitive to slight
modifications of the general process scheme.

Nevertheless, when the computation speed of the general algorithm forms an
obstacle we consider the specialized scheme as a good substitute for it.
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ANNEX

The control equations associated with the conformal mapping
of a uniform great circle motion

The control equations governing the navigation along the Least Time Track have
been generalized in section 4, in order to apply them in a conformal mapping of the
earth’s surface onto a plane surface.

The resulting equations involve a corrective term in terms of the scale of the map-
ping.

In the special case of a flight with constant airspeed and zero wind conditions these
control equations should describe the mapping of a uniform great circle motion
onto the plane.

Referring to section 4, equations (4.10) the component equations to be considered
are:

£ = —cT.— M

é=0. )

These equations hold with respect to a fixed Cartesian coordinate system in the
image plane.

The proof will be given in terms of the Lambert conformal conic projection. The
proof is then valid also for the polar stereographic projection and the cylindrical
Mercator projection, being special cases of the former Lambert projection.

All these mappings may be conceived as conformal mappings onto a plane surface,
since the cone and cylinder may be unrolled to form the plane map.

First we shall review the mathematical description of the Lambert conformal
projection [23].

Consider Fig. I, 1.

In a conformal conic projection with a tangent cone enveloping the northern
hemisphere the projection of a latitude circle (latitude ¢) has radius:

r= aijﬂ{tan (n/4 — @[2)}". (3)

In this case p = sin B, where f represents half the angle of the vertex of the cone.
a is the earth’s radius and S, denotes the map scale at standard parallel:

So =cos B {tan (—;L - ﬂ/2>}-mﬂ C))
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CONFORMAL CONIC PROJECTION LAMBERT CONFORMAL CONIC

Fig. I, 1 Scheme of the conic polar and Lambert conic conformal projections.

Differentiation of (3) with respect to ¢ gives

ar asS,
do (cos ) P(I + sin @)°

The scale S, which on a conformal map must be the same in all directions through
any point, is by definition:

1

a

dr
de

" (cos @) P (1 + sin @)P

&)

The WMO recommends use of the so-called ‘secant’ projections instead of tangent
projections. In secant projections the image surface intersects the surface of the earth.
There are two standard parallels in the Lambert projection, 30 and 60° N (Fig. I, 1)
and Mercator projections and only one in the polar stereographic. The expression (5)
for the scale of the mapping applies to all these mappings.

p = 0.716 for the Lambert conformal projection;
p =0 for the Mercator projection;
p =1 for the polar stereographic projection.
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Using (5) a straightforward calculation affords:

1 dS_S sing —p
a deo a\ coso /)

Let j denote a unit vector pointing northwards along a meridian on the sphere
(Fig. 1, 2), then we may establish the gradient of the scale factor:

1 d
VS = — _S~j
a do
or
S [si —
Vs — _<gu> i ©
a cos ¢

S
Furthermore we need an expression for —, compare (3) and (5):
r

Y

Next, assume that a vehicle moves along a great circle arc on the sphere with
constant velocity c. At an arbitrary point P we consider a Cartesian coordinate system
Pxy with x-axis pointing to the east and y-axis towards the north.

NP Then from Fig. I, 2 we derive
COS & = COS Y COS (. ®)
The great circle motion does not

affect the angle « between the plane
of motion and the equator:

a=0.

Differentiation of (8) with respect to ¢

gives:
Fig. 1,2 Uniform great circle motion on the sphere.

} = — cot y tan ¢ ¢,
but

ag =c sin y,
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so that

¢
y = ———cos y tan ¢. )]
a

The uniformity of the great circle motion is expressed by

¢=0. (10

The set of equations (9) and (10) constitute the set of control equations for the
uniform great circle motion with respect to a comoving Pxy system on the sphere.

If the great circle motion is mapped conformally onto a plane surface then the
form of equation (9) is preserved, but it should be borne in mind that the equation
holds with respect to the mapping of the xy system onto the plane. To derive the
corresponding control equation with respect to a fixed coordinate system Ox'y’ on
the image plane it is necessary to find a corrective term.

From Fig. I, 3 we see that

Y
E=y+¥,
where ¢ denotes the angle between o1,
and the x’-axis.
¢,.. is the projection of ¢ on the
image plane.
¥ is the angle between the latitude
circle and the x’-axis.
Then
0 X’
cp,_ = SC,
Fig. 1,3 Scheme of the great circle motion on . . .
a conformal projection map. =7+, (11)
but
- Sc
Y =— cos y. (12)
r

Substitution of (9) and (12) into (11) affords

r

¢ = %(g— tan (p) Cos y. (13)
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According to (7)

., ¢
¢ = —(L’ — tan (p) cos ¢,

a \cosop

. c(p—sin(p)
¢=—\——)cosy.

a cos ¢

But in view of the conformity of the mapping we may put:

T
cos y = — b

resulting in

: 1 [sing —
¢ = ___(S“‘Llj)cn,j

cos @
or, in view of (6):

. o VS

Comparison of the set of equations (10) and (14) with (1) and (2) proves that by
specialization the great circle track may indeed be generated by the equations which
govern the navigation along the Least Time Track.

This result applies equally well for the polar stereographic and Mercator conformal
projection being special cases of the Lambert conformal conic projection.

Returning to the control equations (1) and (2) they might be put in the form

: [vS|
¢ =c¢ S sin i, (15)
¢=0.

Where i denotes the angle taken in counter clockwise direction between ¢ and VS
(Fig. 1, 4).

For the polar stereographic projection (p = 1) the control set becomes, see (6):

sini cos @

fm o TIIN0
a(l + sin ¢)

(16)

é=0.
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4
9

- —— v v —

—————— e e ey .

v S
Fig. 1, 4 See text.

We have then

which yields

and for the cylindrical Mercator projection
(p=0)

. (4
¢ = —sinitan @, 17
a

é=0.

For i = 0, n the control equations ge-
nerate the straight meridians in all three
mappings.

For i = n/2, —n/2 and ¢ = 0 they gene-
rate the equator.’

It is interesting to note that the control
equation (11) may also be used to evaluate
the rhumbline in the projection map, a track
which intersects all meridians at a fixed angle.

=0

cos y = const. = k.

This entered into (12) and (11) affords the control equation

. Sck
£ =" (18)
r
Substituting (18) for (7) gives:
; pck
Lambert chart: ¢ =
acos @
. R ck
Polar stereographic chart: ¢ =
acos ¢
Mercator chart: ¢=0.

The last relation states the well-known fact that in a Mercator chart all straight

lines are rhumblines.
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SUMMARY

By mere coincidence, some twenty years ago, aviation industry was enriched with
some revolutionary novelties: the advent of regular turbo-jet operations, the advent
of the high speed electronic computers and the development of the theory of optimal
control processes in mathematics.

It was soon realized that this scientific and technological development would have
a tremendous impact in the problem area of air navigation.

It was expected that, for example, these innovations would get a firm grip on exist-
ing procedures and practices of long distance flight planning. Here the new aids would
be very useful in the elaboration of the problem of optimal track selection.

In the present study this problem is reconsidered in a unified approach taking into
account the most general space variable and time changing meteorological conditions
and performance characteristics.

In case of the free utilization of air space the problem was solved using the principles
of optimal control processes. The criterium of time optimality, specific for flights
along the Least Time Track in two dimensions, has led to the derivation of generalized
forms of the well-known control equations like the steering equation of Zermelo, the
refraction formula of Von Mises and the author’s partial differential equation for
the air navigation problem.

Owing to the unified approach of the problem solving it was possible to introduce
some alternatives of the governing system equations in the form of a gradient equation
for the time of transfer and a phase velocity equation for the effective air speed.

These mathematical tools have also formed the basis for the design of some ‘con-
structive’ algorithms suitable for the practical evaluation of the two-point boundary
solution of the Least Time Track by means of iteration processes. The applicability
of these new aids was proven by experimentation.

Before the computer experiments could be accomplished it was however required
to modify the control equation as being valid in a conformal map projection.

In case of restricted airspace utilization the optimization problem could be tackled
by using the principles of graph theory. This was exploited in two and three dimensions.
The analysis of this problem in a discrete system in a space-time environment of
meteorological conditions has led to the synthesis of special graph algorithms, which
are suited to be programmed for 3-dimensional flight planning purposes. The feasibili-
ty of these graph solutions was also demonstrated experimentally.



